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C H A P T E R  0  

IN T R O D U C T IO N

Th(î piirpost* of this dissertation is to investigate Riem annian foliations on the 

Heisenberg group endowed with the natural left invariant inatric. O ur inten'st in 

the subject was inspirer! by the following two fundam ental results: the chissification 

of metric Hbrations on Euclidean spaces of D.Gromoll and G.W alsehap ([11') and 

the work of D.Gromoll and K.Grove on one-dimensional Riemannian foliations on 

spaces of constant curvature ([8 ]).

Although some of the ideas we use in order to obtain  the main results are valid for 

Riemannian foliations on general manifolds, our study relies heavily on properties 

of the Heisenberg group. In the first chapter we sum m arize tlu?se algebraic and 

geometric properties. We discuss such g(H)inetric objtn ts as the isometry group, 

the Killing v<*ctor fields, the geodesics, and the .Jacobi vector fields. The geodesic 

properti(*s are actually  essential in obtaining key inform ation al)out the Riemannian 

foliations. In section 1.5 we derive the form of the Killing vw tor fields. Their 

im portance consists in th a t the nonzero ones correspond to the oiu'-dimensional 

Riemannian foliations. The form of the Jacobi fields is given in section 1.7 and 

is yet another im portan t feature needed in our invt'stigatiou of Riemannian 

foliations.



We would like to point ou t th a t even though most of the results in the first 

chapter are known, our description of the automorphism group and  Killing vector 

fields corrects the corresponding erroneous results from [7].

The second chapter contains an overview of Riemannian foliations and Riemann­

ian submersions. As the two concepts are closely related, we s tart th is chapter with 

some generalities and remarks on Riem annian submersions. We also mention some 

results and examph^s found in the literature. Given our interest in homogeneous 

foliations, we include in section 2 .3  some examples of homogeneous and nonhomo- 

geneous foliations.

The third chapter is dixlicated to  the study of one-(limensional R iem annian folia­

tion. The synopsis of well-known facts from section 3.1 is followed by the statem ents 

of two of the fundamental theorem s th a t are the key ingredients in relating the ho­

mogeneity of oiu'-dimensional Riem annian foliations with the properties of the mean 

curvature form of the leaves. We also reproduce the proof of one of thes<' theorems 

in order to ernpluisize the construction of the Killing vix tor field associated to a 

one-dimensional Riemannian foliation with clowxl mean curvature form.

O ur main results are listed in chapter four. An essential role in our investigations

of Riemannian foliations on the Heisenberg group is played by the position of the

vertical bundle with respect to  the central direction. The first two propositions

provide a partial answer to this problem. Based on these two n^sults we show

in Proposition 4 that the vertical bundle of a otaMlimensional foliation makes a

constant angle with the central direction along each leaf. In Proposition 5 we
• )



conclude tha t the same property is valid for basic vector fields.

Theorem 1 states tha t every one-dimensional Riem annian foliation on  ̂ is

homogeneous. In order to prove the theorem we use the r*!sults from section 2.2 and 

the key geometric properties mentioned above. We would like to remark th a t, as 

noted in the literature. D.Gromoll and K.Grove's result on the homogeneity of 

one-dimensional Riemannian foliations on spaces of constant curvature relies heavily 

on the constancy of the curvature. As the Heisenberg group has two-plain's w ith 

both positive and negative curvature, our theorem is a first step toward extending 

the homogeneity property to more general manifolds.

I sing a result of G. Walsehap on t he homogeneity of codimension one Riem annian 

foliations on the general Heisenfierg group ([32]. Tfieorem 4.4.) and Theorem 1 we 

conclude that any Riemannian foliation on the three-dimensional Heisenberg group 

is homogen(H)us. .\s  a con.siHpience of Theorem 1 we also obtain homogi'iieity of 

one-dimensional foliations on compact quotients We note that this ex­

tends a similar result of G .W alsihap on thnHMlimensional nilmanifolds ([31]). We 

conclude the cha[)ter by observing that there are no codimension one Riemannian 

foliat ions on This is a consetpience of Theorem 4.4 in [32] and. when com ­

pared to the similar situation on Euclulean spaces, it shows a somewhat surprising 

rigidity property.



C H A P T E R  1 

THE H EISEN B ER G  G R O U P

1.1 Lie algebra considerations

Let V 1m* a 2n-diin('tisi()nal vector space and let {A’l  V„. Vi >’„} he any

basis of V. Let Z  be a oiM’-diniensional v(*ctor space spanned by some element Z.  

The bracki't relations

[A',. V',] = -[V ,. A'.) = Z A < i <  n.

and all other brackets zero dehne a Lie algebra structure on h2n^i -  V f  2 .  W ith 

this structure. h2r«+i is called the (2n-f- 1 )-dimensional Heisenberg algeiira and the 

corn*spondin^ simply connected Lie ^roup is called the (2n-*-1 )-dimensional

Heisenberg group.

It is well known th a t the Lie group exponential map exp : l)2n+i is a

diffeomorphism. The group multiplication is given by the Baker-C’ainpbel-H ausdorf 

formula:

exp(.V) - exp(T) = exp(.V -t- ^  ^[A'. >'■).

So. if

A =  ^ 2  ^  + zZ.
X-1 »=1 1=1 1=1

I



then

r. n

exp(X ) •ex|)(V') =  e x p ( ^ ( x ,  +  x ,)X , +  ^ ( / / ,  4- f/,)V; +  ( :  +  : +  - l ( x . t ) ) Z ) .

(=1 1=1

By definition, if x =  ( x i  x„. y \  yn) -^  = ( z i  i n - V i  On) G R^".

n

/ (x .x )  =  ^ ( x , / / ,  -  X , / / , )  =  x ./x '.
1 =  1

where . / (x i .........-r,,.//! y„) = (//i IJu---Ti  - x , J .  Here we identify ,/

with its corresponding m atrix in the natural basis of R^” .

( ’onse(iuently. can be regarded ;is R*'*"^  ̂ with group operation given by

(x. - (x. z )  =  (x +  X.  :  +  z 4- ^ /(x .x ) ) .

where x .x  Ç R"'* and z. z € R. .Note that under this identification we have:

exp(^x,.V, +  ^  =  ( ^ 1 .....A..//I..... y „ .
I-1 1=1

1 . 2  T h e  structure of Aut(//^” ^ ‘)

In this section we give a description of .Aut(//^'‘'*'') as obtained in 1 6  First,

we introduce some notations and discuss some facts that will also be nmxled later.

Let io' =  xi A //I -(- • • • -t- x„ A //„. Define

^(u;. 2n) — {0  G Aut(R^") : H’ ■ uj = Aw. A G R*}.

.Also consider the group homomorphism  ̂  : ( ) ( j j . 2 t i ) — )• R" defined by recpnring f 

to satisfy (/’ ■ uj — U’uj.



The following theorem  describes the structure of the autom orpshism  group of 

^ 2ri+i j j jp  proof is based on two fundam ental facts:

1. Every 0  €Aut(//'-^"'^^) descends to  an automorphism 0  of R^” .

2. An autom orphism  0  of lifts to an automorphism 0 of if and only if

0  € 0(u}.  2«).

Theorem  ([16]).

. 4 =  HomiR^^ .R)  X (){u}.2n).

H'hviT ( / / .  f )  a c t s  hij

{ i l . U’) { x . z )  =  (t/’(j-). +  r/(x)).

It is worthwhile mentioning that, by the theorem above. .Autl//*'*"^') becomes a 

subgroup of the group of linear transform ations on

From now on we will identify r/ 6 Hom(R^'*) with the dual vector (o. € R" xR"

with the property th a t
fl

t/(T) = + .ilJ,).
I -  I

for any x  = ( x i  t/i //„) G R'* x R".

In some sense ()(uj.2îi) extends S p (n .R ) =  {A G A u t(R '").i^ ' • ui = i }. 

In fact, it is not difficult to show that ()(u:. 2n) = Spfn. R) x R*. Using this observa­

tion we obtain th a t Aut(//^'*'*'^) 2s R^” x (R* x Sp(n. R)). This description corrw ts

the error in [7|. where A u t(//^” '^*) is taken to l»e x Sp(ti.R ).
b



O bservation.

Recall from section 1.1 th a t we defined the linear map J  : -4 R^” given by

J ( s \  //I......... //„) — (iji y n . - i y  - J ’ri)- Let i} deiiote the m atrix of

./ with respect to the canonical basis of R^" and note tha t i î  6 (){uj/2n). C’onse- 

(juently, ./ lifts to an autom orphism  of which will also be denoted by J. It

is interesting to oliserve th a t if j  is the automorphism of h2n+i defined by j  = ,7,^

and if {A'l -V„.V'i......... V'„,Z} is the original basis considered in section 1.1

then j i X f )  -  = -A ',, and j ( Z )  = Z A  < i < ri. Moreover, if hgn + i is

e<iuippe<l with a [lositive definite inner product (.) with respect to which the basis

{A'l An. y I V'n.Z} is orthonorm al then the restriction of j  to Z-*- satisfii's

O'(A'). Y)  = ([A. r j .Z ) .  for all A. Y  € 2 ^ .

The observations above can be u.se<l to construct the map j  without having an a 

priori orthonorm al basis ([5j). In the presence of an inner product on h-jr. + i- define 

J  : 2-^ -> 2-*- by (j(A ').V ') =  ([A '.V 'j.Z). where Z E 2 . |Z | =  1. It is easy to  set'

that j~ = - I d .  .\Lso. if {A \  V,,} is a set of orthonorm al vectors in 2 *  then

| . \ ' i  A'n.V'i =  j X i  Yn ~  jA 'n .Z }  is ail orthonornial basis of hz»f i such

that [.V,.y',j = Z and A',] = - Z .  1 < i < ri. In sections 1.6 and 1.7 we will use

the map j  constructed as above (w ithout having an a priori basis).



1.3 C lassification o f left invariant m etrics on

I ’siiig idcius tha t arc similar to the ones in [7|. in this section we give the clas­

sification of left invariant metrics on We would like to mention tha t our

HeisenherR group, though isomorphic to the one defined in [7], Inis the group oper­

ation defined differently.

Two Riem annian metrics gy and 72 <>» manifold M  are said to  he equivalent if 

there exists a diffeomorphism 0  such that //ol.V. Y)  — 0 ' g \ ( X .  )'): = .71(0 , -V. o .T ) . 

for any vector fields A and Y  on Af. If M  is a Lie group, a metric 7 on M is calhnl 

left inrnnant  if L,,*7 = g for any ;> € M.  where A/ M  is the left translation 

hy p :Lp(q) -  jiq.q € A/.

.Note th a t if 7 is a left invariant metric on +  ̂ and 0  is a diffeomorphism then

O'g is not necessarily left invariant. In fact, as ohs<'rv<*d in |29|. if 0{e) — c. then 0*7

is left invariant if and only if 0  is an autom orphism  of Conseouently. in order

to classify the left invariant metrics on the Heisenberg group it is enough to find the

orbit space for the action (<p,g) -> 0*7 of .AiitfZ/^” '''^) on the set of left invariant

metrics on This action can actually be regarded as an action on the set

Sym m ^(2n-t-1. R) of positive definite, symmetric (2n -t- l)x (2n-t-l) matrices. Indmxl.

every left invariant metric 7 is uniquely determ ined by the m atrix G with entries

given by 7 evaluated on pairs of vectors of the basis B = {A \  A'„. V'l V',,. Z}

of hin+i- In order to write the expression of this action we need to identify the group
>S



with a  group of matrices.

-As mentioned in the previous section. . A u t { ^  ) can i>e regarded as a group 

of linear transform ations on Hence we can define the group homomorphism

!: .A ut(//^"+^) G L(2n-l-I.R ) by letting to be the m atrix of the automorphism 

0  relative to  the canonical basis of Using the identification between

and from section 1.1. we have j(0 ) ( t .  z)' = (ô(x.  z )) '. for any (x. z) G R""'*'’ .

One can also define a homomorphism i: A ut(li2n+i) G L(2ri +  l.R ) by assigning 

to an autom orphism  4» of h^n+i- the m atrix of 4» relative to the basis B.

It is well known th a t ♦; .Aut(f/^” '*'‘ ) —> Aut(fi2n+i) defined by 0 0 ,^ is a Lie

group isomorphism. In fact, based on expo0 „. =  0 oexp  and the description of the 

exponential map from section 1.1 we may conclude th a t i — i o *.

By the previous remarks. <j2 ~  0 'g , if and only if 6 ') = i (0)^Gii(0).  where 6’, is 

the m atrix  of relative to the basis B. i  = 1. 2.

Consecpient ly. the problem of classifying left invariant metrics on is ecpiiv-

alent to finding the orbit space for the action

i(.Aut(//^'*'*'^)) X SymnU(2n -f l.R ) ->• S ym nU (2n l.R ).

(.4.G ) -> A^GA.

Recall tha t every autom orphism  (p. U) of sends (j i .........x».  z)

to ( t ’(x i  x„ ./y i +  0z). Thus.

 ̂All A 12 0
i{(n. (.')) = A>i A >2 0

I ^ A 0

where .4 =  ( ^ ^  | is the matrix associated to t ’ relative to the canonical
\  -t -2i A -n J

basis of R^". Note th a t (r/. 0 ) belongs to A u t ( i f  mid only if .4‘îT4 = AIL
9



where A(= u>) E R* and U =  ^ ^ ***’ the m atrix of the 2n-form w relative

to the canonical has is of R^".

As one can easily check, for every G G Sym m +(2n +  l.R ) there exist a .  ii G R" 

and « G R such that

7 n  0  o y  / / „  0  U \  .

!  1 " >)'

with G G Synnn^(2M. R). Monnwer. hy [36]. any such matrix can he put in diag­

onal form diag[Af A^. A^ A“ j. Comhining the two observations ahove we

may conclude tha t every G  G Symm'*'(2n -f l .R ) can he reduced to the form

<liag[Af Af,.Af A]?,. 1] via some m atrix in In fact, every orhit

contains a unique such diagonal matrix.

.\ow we write the form of a left invariant metric y  whose m atrix G  relative to the

hjisis B  is of the from diag[Af A^. Af A^. 1], Observe that the left invjiriant

vectors (orresponding to  the elements of B  are

= 7T— ip) '  Pirr-{p)- ^i(p) = %— ip] + -T,- — ip). Zip)  = — (p)-
OT,  (fZ { /( /, (JS,  ()Z

for any p -  (x i  J'n^Pi G The dual 1-forms asso( iated to

the vector fields . \ 'i ..........A'„. I 'l .........V„. and Z  are d x i ......... dx „ .d (/i.........di/,,. and

dc + 5 m .i( j ',d y i-y ,d x ,) . respectively. Thus, every left invariant metric is equivalent 

to a metric of t he form

n  n

y  = ^  A“(dxf dyf )  +  (dz  -G ^ { T , d y ,  -  y , d x , ) f  
«=1 1=1

10



1.4 T he isom etry group

Given a left invariant metric g on we would like to find its isometry group

Iso (//^” ‘'̂ ^.g).  A key role in determ ining this group is played by the isotropy group 

7 ) of g a t the identity e. of i.e.. the group of isometrics of g

fixing e. As is the case for any nilpotent Lie group equipped with a  left invariant 

metric. Iso l//^ ”"*"*. )̂ =  x I s o , . ( \ 7 ). where is interpreted as the

group of isometrii^ given by left translations.

Based on the observations from the previous section. ls(v(ZZ^” ^ ' . 7 ) is a sul>- 

group of Aut(ZZ^” '*"* ). Recall from section 1.3 tha t Aut(ZZ^” ''"* ) acts on the set of 

left invariant metrics by (<t>.g) —> 0*g. This action is ecpiivalent to the action of 

/ (Aut(Z/^"'*'*)) on Sym m ‘̂ (2rt + l.R )  given by (.4 .6 ’) —>• .4*6.4. Thus.

, (Iso,(ZZ^"+'.7 )) =  {.4 e  , (Aut(Z/^"^^)). .4*6.4 =  6 } .

where 6  is the m atrix of 7 . In the following we will consider a metric 7 whose 

m atrix 6  is the identity. .Note tha t for such 7 we have

,(Iso,(ZZ'^"+'.7 )) =  t(Aut(ZZ^" + * ) ) n 6 ( 2 n  +  l . R)

=  { ^ Q A )  ' ~  AIL .4.4* =  l-2u - ^  =  i  I }•

(The last condition above actually follows from the previous two conditions.)

.4s one could check, the identity component corresponds to the m atrix group

S p ( n . R)  n 6 ( 2 « .R )  =  6 (n). So, we get the following description of the identity
11



com ponent Isoo(//^'*'*'^) of the isom etry group:

1.5 T h e K illing vector fields

Nonvanishing Killing vector fields are the main source for one-dimensional Rie­

m annian foliations. In this section we compute the complete Killing vector fields 

on the Heisenberg group etpiipped with a left invariant metric.

By definition, a Killing vector field on a Riemannian manifold M  is a  vector 

field whose local How consists of local isometrics of M.  The collection of complete 

Killing vector fields on M .  i.e. Killing vector fields with a globaly defined flow, has a 

Lie algebra structu re  with bracket operation defined by the usual bracket of vector 

fields on A/. This algebra is isomorphic to i.so(Af ). the Lie algebra of the isometry 

group of M  under the correspondence t  -+ (exp(/x) • />)'(0). where x € Lso(A/) and 

exp(fx) p is the orbit through of the one-param eter group of isometrics generated 

by X. We will use this isomorphism to find a basis for the Lie algc'bra of complete 

Killing vector fields on

First we fix some notations. Let and F,j be n x n matricc's defined by:

E,j =

/()

0

- I

\  0 • • •

1

0

12
0 /



and

/O 0 \

0 1 

1 • • • 0

\ o

Also consider the (2rt +  1) x (2n +  1) matricf»

0 /

0
0

(}

0

0
0
0

0 F.
. I < i < j  < n, B, j  =

0
0
0

0
0
0

. 1 < , < J  < H.

The collection 1 < t < )  < n } U I < ; < j  < n} is a hasis for the Lie

aigehra u(n). The corresponding elements in the Lie algebra of Iso,,(//^""^^) will 

also be denoted by .1,^ and /i,j . respectively. The induced one-param eter groups of 

isomet r tf's are:

= exp(/A *j ' 0
0

where

\  0

0 0

COS t

sin t

sin t

cos t

1

l) \

. . .  \ /
13



/ I 0 \

and

C\At )  -

Vo

cos t

0

sin t

cos t

sin t

0

1 /

0 \

Vo ' • ■ • • ■ ■ 0 /

The orhit of A, j ( t )  through a point p -  ( x i  -fn-.Vi //„. :)  is the curve

( z i  1. COStx, -t- sin t S j  -  sin / r ,  — cos tXj  j „ .

..'/I........ //,_ 1. (OSh/, -t- s i n  sinh/, + rost i j j .........

t € R. whose tangent vector at t = 0 is

, , , _  i) 0  0

=  -Tji.V, -  ! J , Z )  -  r,(Xj -  i j j Z )  -  + T,%) -  ^  X j Z )  =

=  -V, -  j - .A 'j  f  -  f iA ' j  +  2 { x ,!Jj -  X j u A Z .

Similarly, the orhit of through a point p — ( z , ............ - f r > - / / i .............is the

curve

(z I  J", _ 1. cos tz , -r sin t p j  Zj _ 1. -  sin t y, + cos tx  ̂ z „ .

//I y ,- 1. cos -  sin tXj  //j_ I . sin tz , +  cos t p j  y„.
14



( € R. whoso tangont vortor a t f =  0 is

^  ^  0  0  0  _  

= Uj i^x -  VxZ) t- */,(%; -  Vj Z)  -  Xj {Y,  +  x , Z )  -  x , ( Yj  +  Xj Z)  =

~ Uj^x !/x^j ~ ^I ~ -^x^J ~ + Uxyj)Z-

CorrospoïKÜng to A',. V', and Z  wo have tiio following one-parainotor groups of

isoinetrios:

 ̂ ^rxp(t.Y,)-^ — ^expitY,)- ^"(1  ̂ ^exp(f2 )-

Tho associatod Killing vector Holds arc;

X,{p)  = A , + !j,Z. Y,(p) = V', -  XtZ. Zip) = Z.

wlioro p =  ( r i  Xr̂ . i n  //„. :).

Home 1 < i < J <  n} U {B^j, I < t < j  < n}  U {Â,, Z . I < i < n} is a

bîisis for tho Lie algohra of Killing vo( tor Holds on

1.6 The geodesics

Tho goodosic (‘quations aro ohtainod in [5] in tho more gonoral cout('xt of two- 

stop nilpotont Lio groups with a loft invariant motric. Horo wo will only suiiunarizo 

somo im portant proporti(‘s for tho goodosics of tho Hoisonborg group. Tho following 

proposition gives the e<piation of a  geodesic starting  a t e. Since the isometry group 

Iso(//^” '''‘ ) is transitive, any other gw desic can bo obtained by left translating tho 

g(‘odosic above.



P roposition . Let y  be a unit speed geodesic with 7(0) = e. and 7 (0 ) — coa6Z  -t- 

siii6>.Y. where X l Z . Z  G 2 .  and  |A'l =  |Z | =  1.

(i) I /O — n/2 .  then y{t) = exp{tX) .

(ii) I f  0 Ç. [O.n/2).  then y( t )  = e \ p ( X ( t )  ^  Z( t ) ) .  where

X( t )  — [cos(t cosff) -  l j tnn(t j~’^X  + sin(< cas0) tan^A '.

Z(f} = |f( I 4- ^ v a i \~ 0) H -  -  sin(f cosf)) tan" ^ Z.

(iii) If f )  =  0 . then yi t )  =  Pxp((Z).

O bservations.

1. If 7 ( 0 ) is orthogonal to tho ren trai direction then 7 minimizes the distance 

between any two of its points, i.e., -v is a line. Actually, these are the only lines 

through e.

2. In the seiond case ahove. 7 minimizes up to the first conjugate point which 

occurs at t = 2n/vosf ) .  Moreover.

7 (f) = (L .y((,),[- s in (/co s6)) s in f^ j'^Y , -r cos(f cos6̂ )sinf^A, + Z cos^j.

.As a conse(}ueiice.

7(27r/cos(9) =  (/L^(2T /r» s^ )).(i(0 )).

This property  plays a significant role in determ ining the Riemannian foliations on

.Another interesting property is th a t any two unit speed geodesics 7 % and

72 with 7 i ( 0 ) =  72(0 ) =  c and making the same angle B with 2-^ will intersect at

7 i(27r/cos^) =  72(27r/cos0) = ex p (2 ff(l +  | t a n “ 0))Z.
IG



3. If 7 (0 ) =  Z  then 7 minimizes up to the first conjugate point which occurs 

at ' It:. From now on. every geodesic tangent to the central direction will be called 

central.

4. Every geodesic makes a constant angle with the central direction.

For the proof of the conjugacy properties as well as other interesting observations 

regarding cut points, one is referred to [31].

1.7 T he Jacobi vector fields

In this section we describe the .lacobi vector fields along geodesics 7 in 

We use slightly more general versions of the formulas in [14].

Let 7 be a geodesic in with 7 (0 ) — c and let ./ be a .Jacobi vector field

along 7 . Depending on the angle made by 7 with the central direction we have the 

following possibilities:

(i) If 7 (0) = X.  j,Y| =  I. ,Y Ç Z-^ then any .lacobi field along 7 Inis the form:

rt

( 1) J( t )  = f { t ) Z  o y(t )  4- g{ t )Y  o -v(0 4- o 7 (f) + c 7(D) .
1=2

where A . V'. A', and V, are left invariant vector fields whose valla's at 

c (also denot<'d by A'. E. A',, and respectively) are defined such that

y  =  j ( X ) .  y; =  j { x , ) .   n. and {A', y .  A ',......... .v„. y \ ........ y ; . z ]  is

an orthonorm al basis of b2n+i-
17



The coefficients f . g . f , .  and g, are given by the following formulas:

f i t )  = 1(0) +  t f ' (O)  + g ' m ^  + ‘̂ (2.7(0) -  /'(()))/"  

git) = <7(0) +  (7 (0 ) + (2.7(0 ) -  / '(0 ))(2 .

/ i(()  = /i(0) + (/, '(0). 7t(() =  7t(0) +  (7,'(0). ' = 2 ......n.

(ii) If i (0 )  =  cosOZ -f-sin0.\'i € Z  <3 Z ^ .  |X[|  =  |Zl =  1.^ € (0. 7t/2). construct

an orthonorinal basis {A'l V„. V'l = j X i  = j X n ]  <>f 2-^.  Any

Jacobi field along i  has the form:

n

(2 ) J  -  ^ («A-t'k + (Ik f'k 1.
fc = i

wh(*re

h' l in  sm g [/^ '^ '" ^ '"A ', o-f(l) -  lanÜ Z o
(J)

Ei(t )  = s in f7 [c '; '^ ""^ ';(Z co s7 )A i o i( ( ) j .

while for k > 2

t \ { t )  = c 'J '^ ‘‘”‘^»A To^(().

( - 1)

Ekit) = /J(Zr.«,g,^^2c.KS0)AkO-Mf).

Notation:

J L  ftCOS0) ^:= ^  —j'{Zc()s0)  = cos((cos7)/ sin(( cos^)j.
t = i )

For k  =  1 the coefficier'ts are given by

sinfcos #()
(ii{t) =  ni(0) + f(a ,(0 ) +  c) 4- d i(0 )(l -  cos(cos^f)) -  c   —

( " ) )

COS 0 COS'' 0
18



when* r =  rzi(O)siri"0 -  rtj(0)(l -t- tan^.9).

For k > 2

fik(t) = f l f c ( O ) - I - -  c()s(cos6̂ <)) +  .
(Ü)

n u n  = .u ( 0 ) .  _ -4 (0 ) - ' ' -I F " ' 'ras 0 cas-  ̂6

Note that

^fc( ̂ tr/cos 6̂ ) — />-y(2ir/cos fl) , (̂ )̂ •
(7)

ffc ( ̂ t r / ( os ) =  k  ̂ ^‘2n / Cits 0)  ̂ •

for 1 < t  < N.

(iii) If 'v(O) — Z. tIll'll

.7(0 = / t ( o ^  o i ( f )  + 5 ^ ( / , ( 0 A', o 7(<) + o 7 (0 ).
1=1

where .V,. >',./ = I  rt are constructe<l as in (!) and

h{t) =  (it +b.  f , ( t )  = (I, cost  ^ h ,  s in t -'-r,. (7 ,(0 = siiif -  b, cost -t-d,. / = 1 n.
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C H A P T E R  2 

R IE M A N N IA N  FOLIATIONS

2.1 G eneralities

A Riemanntan folxation {metric foliation)  on a Rinnannian manifold M  is a 

foliation on M  with locally o<j)iidistant loaves. The most basic example is provided 

by the foliation on the metric prodm t A/i x Afg with leaves given by the submanifolds 

{p} X A/).p 6 A/i- The leaves can be regarded as preimages of points p  6 A/, via 

the projection map rr ; A/i x A/o —>■ M \.

In fact, the leaves of a Riemannian foliat ion are locally preimagt's via a Riemann- 

ian submersion of which the projection m ap  above is an example. Conserpiently. 

the local study of Riemannian foliations is closely related to that of Riemannian 

submersions. Considered as generalizations of isometries n : M  ^  B  for the ( ase 

dim(A/) > dim(R). Riemannian submersions are dual in some sense to isometric 

immersions. Even though the latter have Imhmi studied for a long time, a thorough 

investigation of the former has been s ta r ted  only fairly recently.

Riemannian foliations and Riemannian submersions occur fre<juently in ge­

ometry. The most natural example; are the ones induced by the p ro je t io n s  

7T : G —> G / / /  of a Riemannian homogeneous space.

In one of the first papers to give an in d ep th  perspective on Riemannian foliations.
20



B. O'Neill ([19]) shows that, their coinplexity. at least at the local level, can he 

characterized by two tensors. While isometric immersions can he fully described 

by the st*cond fundamental form. Riemannian submersions are determined by the 

integrability ( .4 - )  tensor and second fundamental ( S - )  form of the fibers. They 

measure how far the induced foliation is from a metric product (split) foliation. 

.More exactly, if both .4 and S  vanish, the foliation splits, at least locally.

Interesting examples of Riemannian foliations can be obtained by nxptiring one 

of the two tensors above to vanish. If .4 = 0. the normal bundle becomes integrable. 

Warped products B  x f  F fall in this category. If S  = 0. the leaves of the foliation 

are totally geodesic. .Among the most famous examples of such submersions are the 

Hopf fibrations of spheres. In fact. Riemannian submersions with totally geodesic 

fibers of spheres and complex projective spaces have been classified ([24 ). Partial 

results in this direction have also been obtained on compact simple Lie groups ([23]).

It is worthwhile mentiouing that under suitable curvature restrictions, tin* van­

ishing of one of the structural tensors implies the vanishing of the other. Indenl. 

a totally geodesic metric foliation on a nonpositively curved space and a flat. i.e. 

.4 = 0. metric foliation on a nonnegatively curved space are split foliations ([31]).

The fundamental (Hjuations for Riemannian submersions are derived in [19].

They are the analogues of the Gauss-Codazzi ecpiations for immersions. .As an

important consecjuence. one obtains that Riemannian submersions are curvature

nondecnvising. This propertv has Imm'u iiswl extensively to construct metrics of

nonnegative curvature on manifolds such ;is C P " # - C P "  ([3]) . some exotic spheres
21



([10], [27]). ;uul the tang«*nt bundle of the «-sphere ([4]).

\ e t  another geometrically appealing property obtained by O ’Nc'ill is the fact that 

a geo(h%ic starting perpendicular to a fiber remains perpendicular to any fiber it 

intersects ([20]). While this had been observed earlier in the more general contc.xt 

of metric foliations ([26]). [20] provides an extensive study of the geodesic behavior 

of the top manifold ;us compared to that of the base. In particular, conjugacy and 

index comparison theorems are derived.

Among the many applications of Riemannian submersions we would like to men­

tion the Soul Theorem ([21]) which shows that every open tionnegatively curved 

manifold M  can be regarded as the top space of a Riemannian submersion with 

biuse space the soul of M .

We end this section with an observation concerning the topology of the leaves of a 

Riemannian foliations. In [26]. B.Reinhardt shows that the leaves of a Riemannian 

foliation on a compact manifold have the same universal covering. In fact, the same 

is true on arbitrary manifolds for complete foliations. N'ote that if the foliation 

is given by a global submersion, the holonomy displacement map (which will be 

defined in section 2 .2 ) gives a homeomorphism between any two leaves.

Stronger topological results were obtained for one-dimensional foliations and they 

will be discussed in section 3.1.
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2.2 Introduction

For a detailed treatment of metric foliations and Riemannian submersions the 

reader is referred to [19]. [20]. and [30].

Let M. B he differentiahle manifolds with and let ir : M  —* B  he a submersion, 

i.e.. 7T is a snrjective differentiable map of maximal rank. For any h € B. rr~^(b) is a 

submanifold of .\[ of dimension dini( . \ / ) -d im ( / i ) .  Consetpiently. in the presence of 

a  Riemannian metric on M . for each tii € M  one luis a decomposition of the taiiRent 

space .\f„, into a vertical snbspace V',„ tangent to 7T~^(7r(m)) and a horizontal space 

Hrn = F,j;.

If M  and B are Riemannian manifolds then a differentiaf)le map n : M  —̂ B  is 

called a Rifmannian submersion  if n is a submersion and tt. preserves the length 

of horizontal vectors, that is |n .z |  = \x\. for all in 6 A/ and x € tl.n-

One can ejusily check every Riemannian submersion tt : M  B  determines a 

metric foliation whose leaves are given by the preimages of points in B.  Tlie converse 

is also true locally. Thus, the following definitions and remarks, formulated in the 

language of Riemannian submersions, can be extemkxl for metric foliations.

.As noted in [19]. the crucial role in the understanding of a Riemannian submer­

sion is played by the integraf)ility tensor .4 and the second fundamental form 5  

given by:
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A - . H x n - ^ V .  =  (VxY

.S : % X V - t  V. S x V  = --(Vv-V)''.

T h r  inran ciirvaturr form k is the horizontal oiip-form defined by k (E)  = triS^h  ).

If the leaves are one dimensional, we have k(.V) = ). where X  € H and

V e V with IV'I = I.

A horizontal vector field A on M  is called haste if n . X  = X  o n. where .V is a 

vector field on IL If X  is a horizontal vector field alons n~^(h).h G B.  .V will still 

he called haste if 7r,„,.V„, = f»r all m . m '  G 7r~Uh). Finally, a horizontal

one-form on . \ f  is called hjusic if its dual vector Held is hasi<.

Let -V he a j^eodesic in B  with 'v(O) = j- and let .V he the nni(;ne hasic vector 

field aloiiK with 7r,.V = r.  For ea( h iii G n 'U h )  consider the geodesic -i,,,

of M  starting at rn in direction .V,„. This way we can define a diffeomorphisrn 

/<!_ ; 7r^*('>(h)) — TT“■ *("ÿ(f ) ). called the holonnrnij displaeement map. Note that 

every curve c in xr^'fyfO)) ^ives rise to a geodesic variation of ^ ^iven

hv l l ^ i t . s )  := h ‘̂ {e(s)). The corresponding .lacohi vector field ./ alon^ is vertical

and J{t)  = (Hÿ),{§;)  Ip.ii)- Moreover.

./ ' = ./" + ./"■ = - S ^ . f  -  .4*./. 

where .4* is the adjoint of .4^.

Note that if the leaves have dimension one and if | . / ( 0 ) i  = |c(())| = I then

(H) (./(0)../'(U)) =  -(./(0).N^,o). /(0)) =  -K(7(0)).
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The foriiuila above is a special cas*' a more general result for Ar-dimensional Rie- 

iiiannian foliations due to Ruiniiiler {[28]). Let { l \ .  - . f t )  be an orthonormal

basis for the vertical bundle a t p — 7 (0 ) and let V\(t) — Also, consider

the function <!){t) := det (V,(t). E j (t )) .  1 < i . j  < k. where {Ei(/). -- . A\.(/)} is an 

orthonormal basis for the vertical bundle at 7 (0 - We have

o'{t)  = -K(i{ f) )o( t) .

One can say that k measun's the growth in the volume form of the leaves under 

holonomy displacement.

2.3 Exam ples o f Riem annian foliations  

2.3.1 M etric product foliations

Let B  and F  be two Riemannian manifolds. The projection n : B  x F  —r B  from 

B  X F  ('((nipped with t he ()roduct metric onto B  is a trivial Riemannian submersion 

which induces a foliation on B  x F. tv()ical leaf of this foliation is (6} x F.b £ B. 

.N’ote that the leaves are totally g('odesic and the normal bundle is integrable. These 

are the sim;)lest exam()les of Riemannian foliations.

2.3.2 Warped products

The ()revious exam()le can be generalized by altering the ()roduct metric p on 

B  X F  along the leaves. More exactly, consider a ()ositive function h : F R and
• ) . ' i



(lefiiio a metric (j on D x F  hy

!h 6./) ( -V1 + v'l. A 2 + y 2 ) =  //, 6./ j ( A' 1. a '2 ) + /j ( /  ).7( h./ ) ( y 'i. y 2 ) •

where (0. y\). (0. V'2) are tangent and (A'l.O). (A'2. 0 ) are orthogonal to the leaf 

through {b . f  ). ()hs<’rve that % is still a Riemannian submersion since the met­

ric has l)M'n modifiiHi only along the leaves. While in general the leaves will not be 

totally geodesic, the normal bundle is always integrable.

2.3.3 H om ogeneous foliations

Let M  be a Riemannian manifold and H  a  subgroup of the isomet ry group of M .

If the orbits of / /  have the same dimension, then they are the leaves of a foliation

Ry delinit ion. any foliation obtained by the procedvire above is called homoficiii tms.

It is e;isy to  see that any homogeneous foliation is Riemannian. Index'd, let 0 \

and O'i be the leaves through <ii\ and m». respectively .\lso considi'r a geodesic

^ realixing the (local) distance betwrnm mi  and O2 For any h Ç H .h  ■ m , € 0 \ .

and A ^ is a geodesic of the same length as 7 realizing the (local) distance between

h • m\  and O 2 and the foliation is Riemannian.

The following example is a spm ial case of a homogeneous foliation. Let G  be a

Lie group endowed with a left invariant metric and let H  be a subgroup of G. The

left action (h.tj) —> h(j of H  on G  is an isometric action since left translations are

isometries. Conse(;uently. the cosets {Hg\g € G}  are the leaves of a homogeneous

foliation. If H  is closed (so that H \ G  has a manifold structure), by a standard

procedure the left invariant metric on G  descends to a metric on H \ G  and the
26



submersion it : G ^  H \ G  beeomes Riemannian.

A notai)le example of t lie situation above occurs on

G =  = {(Zi.Z,) E C  X C. |z, |Z2|2 = 1}.

regarded as the group of unit (juaternions. Consider the subgroup / /  =

J  Ç where A and fi are real numbers. The left action of H on 

S'^ e<juipped with the left invariant metric induces a homogeneous foliation with 

orbits given by {(f f E R}.

If A/p is rational, H  is closed and all leaves are dilfeomeorphic to 5*. If A/p 

is irrational, the foliation contains exactly two closed leaves: zi = 0 and = b 

.Any other leaf is dense in a torus with e(juatioii Zj = k for some I) < A- < 1. It 

is well-known that these are the only one-dimensional Riemantiian foliatiotis on .S’*

[Si­

lt is also interesting to consider the right action (/i. p) —̂ ' of H  on G. In gen­

eral. the cosets {////. y E G}  are not the leaves of a Riemantiian foliation. As pointed 

out in 132]. under suitable conditions, the foliation does become Riemannian. This 

happens, for example, if / /  is normal or if the metric on G is .4d^-invariant. I'nder 

the weaker condition that A d n  is an isom(,rphism when restricted to the Lie algebra 

fi. the metric on G  projects to a metric on G /H .  Sime the metric on G  is not in 

general right invariant, this construction is a possible source for nonhomogeneous 

Riemannian foliation. In fact, this idea was used in [32] to construct a nonhomo­

geneous Riemannian How on 5L(2. R). VVe will present this example together with

some other examples of nonhomogeneous flows in section 2.3
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Wf* would also like to make some comments on Riemannian foliations on quotients 

of Lie groups by lattices. .\s before, consider a left invariant metric on a Lie group 

G  and the homogeneous foliation inducitd by the left ac-tion of a dosed subgroup 

H. .‘Mso. consider a discrete subgroup L acting on the right on G. ( ibserve that L 

p n ‘serv(‘s the foliation on G. Moreover, if L is a subgroup of the isometrv group 

of G. the induced foliation on G /V  is Riemannian. In fact, the induced foliation 

is homogeneous since every isornetry preserving the foliation on G  will generate an 

isomet ry on ( / / ! ' .

2.3 .4  N onhom ogeneous m etric flows

a) Let g denote the metric Lie algebra with orthonormal b;isis {I . .V. >'[ and 

bracket relations given by:

V . x \  - y - i - . i l ' .  y |  -  - .V  -  y.i.v . v] = - x  -  y  + i .

It is easy to see that g is the Lie algebra SL('~. R). The metric How dissociated to the 

left invariant vei tor field I is metric but not homogeneous. .As mentioned in [321. 

in order to show the metric condition it is enough to check that < >\\E\. H >= II 

for any E  G The condition is entirely algebraic <ind is satisfied in this cdise.

The following example is due to Y.  barrière  ([2l) ;uid it provides a nonhomo­

geneous oruMÜmensional Riemannian foliation on a compact manifold. We would 

like to mention that nonhomogeneity is considered in a weaker sense here. It means 

thiit there are no Riemannian metrics on the manifold for which the leaves of the 

foliation are orbits of an isometric group action.



b) Lot .4 bo a matrix in SL{2 .Z)  with traco(/l) > 2. Tho automorphism .4 has 

two real oigonvaluos A, and A .̂ and 0 < A; < 1 < Aj.AiA) = 1. Lot I \  and V'2 bo 

tho oigonv«Ttors oorrosponding to Ai and A2. rospootivoly. Lot F\ and F t bo tho 

projootions to 7’̂  =  R“/ Z “ of tho flows indiicod by V'l and f 2 on R^. The loavos of 

i)oth F[ and F? aro donso and .4 induoos a  diffoomorphisrn of prosorving thoso 

loavos. N’oto that if R^ and R aro givon tho usual Euclidoan motrir. tho flows F, 

and F2 aro Riomannian; in fact thoy aro (locally) homogom'oiis. Now lot F[ and Ft 

bo tho flows on X R corrosponding to F, and Ft. Coiisidor tho action of Z on 

/ ’* X R givon by (n.{jr .t)) —>■ (A"jr.t  -t- n). Sinco F[ and FÔ aro prosorvod by this 

action, thoy doscond to two flows Fi and Fi on tho (piotiont manifold {T~ x R)/Z . 

Thoso flows aro Riomannian but not homogonoous. Tho proof of this fact can bo 

found in [2 !.
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C H A P T E R  3 

O N E -D IM E N SIO N A L  R IE M A N N IA N  FOLIATIONS

3.1 G eneralities

Tlie existence of a one-dimensional Riemannian foliation on a manifold imposes 

strong restrictions on the geometry of the manifold. Consequently, not all manifolds 

admit such foliations. For example, there are no Riemannian foliations on compact 

manifolds with negative Ricci curvature (i25{). On the other hand, as noted in 

8 |. hyperl)oli( spaces admit an ahundance of such foliations (most of which are 

nonhomogeneous) with little rigidity.

One has a very good description of Riemannian foliations on Hat manifolds. 

For exani[)le. the librations of Fuclidean spaces are all homogeneous I i l l ; . [12!). 

Moreover, on compact flat manifolds every Riemannian foliat ion splits. While open 

positively curved manifolds admit no Riemannian librations ([33]). one-dimensional 

metric librations on open nonnegatively curved symmetric spaces are eit her homoge­

neous or the base of the libration splits (locally) isometrically ([33{). On manifolds 

M "  with constant positive .sectional curvature every metric fibration of .\f is con­

gruent to a generalised Hopf libration ([9].[35]). If the libration is oiu'-dimensional. 

then it is homogeneous.

Some authors define homogeneous foliations as foliations for which there exists
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M metric with respect to which the leaves of the foliation are orbits of an isometrk 

action. With this definition, the existence of one-dimensional Riemannian foliations 

imposes topological restrictions on the manifold. Indefxl. the  homogeneity condi­

tion for foliations of dimension one is e<piivalent to the nonvanishing of the hash 

cohomology spfwe of maximal degrm\ The same condition is also ecpnvalent to the 

existence of a metric for which the leaves are geodesics.

While a classification of one-dimensional Riemannian foliat ions on manifolds of 

a given dimension may be very difhcult, one does have such a classification on 

thre<Mliniensional manifolds. Y. Carrière showed that such foliations are eitfier 

homogeneous or they are conjugated to the foliation described in 2 .3 .4  b) ([Ij).

3.2 Fundam ental properties and th eorem s

.As noted in section 2.2. the mean curvature form k. plays a fundamental role 

in understanding the structure  of the foliation. In fact, the  homogeneity of 

one-dimensional Riemannian foliations is charac terixed entirely in terms of the 

properties of k . More prm isely. we have the following:

Theorem  1. [8] A onc-dirncnsionnl uutric foliation T  is (lorallii) liouioi^vnf ons if 

anil null) i f  k is rlosrd.

Proof. .Assume T  is (locally) homogeneous. Let T  be the (local) Killing vector

field induced by the isometric action and L — |T|. Since I '  ^  0. there exists a

(local) unit vector field f =  j -T  tangent to the leaves. If A' is a (local) basic vector
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field. iLsiriR the fact th a t  T  is Killing we have

. I ) + (V\ L \ ’. X )  = 0 . which iui[)lies 

X ( L )  +  ( V x T . T )  + T{L)  + L { X v V . X )  = 0.

As any Killing vix tor field has constant length along its integral curves, we have 

X{ L )  + L{VyV\  X )  = 0 . For <ï> =  -  ln(/>). we get k ( X)  -  =  d<t>(A'). Con.se-

(juently. k is closed.

For the converse, jussurne tha t k is closml and note that k =  d<f>. for some locally 

defined function 4>. Moreover, since k vanishes on the vertical bundle. is (locally) 

constant along leaves. If L = exp(-1>) and if V is a (local) unit vector field tangent 

to the foliation then T  — L \ '  is a Killing vector field. Indeed, it is easy to see that 

(V v '/A .V ) = V( L)  — /,T(4>) = 0. for any horizontal ,V. The only condition left 

to check is { Xv LV.  X )  + { V \ L \ ' .  F) -  0. Uut the left side «'(juals L u l X )  X l L )  

which cancels by the definition of L and the fact that k is closed. □

Observe that on a simply connected manifold k is ( losed if and only if the foliation 

is globally homogeneous. is now globally defined and the arguments are the same.

Theorem  2. [34] Let J- hr a oiu -dwiensinnal m r tn c  foliation on a manifold intfi 

sectional cui'i'atnre hounded either from below or from above. I f  k  is baste then it is 

also ( losed.

Thus, in order to show that a oiu'-dimensional metric foliation on a space with 

bounded sectional curvature is homogeneous, it is enough to show that the mean 

curvature form s  is basic.
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C H A P T E R  4 

T H E  M A I N  R E S U L T S

III preparation for our first, proposition we first prove tfie following:

L e m m a .  Lvt W he an tn-dimrn.sioiKil inner prndnct span'. V a k-dimrjisioiial siih- 

sj>an' of  VV. I < < rn -  1. mid 2T G W such that Z  is nf'ithrr orthogonal to V nor

rontatnni in V. Li t (),) he the anglt tnadi hg Z  until and h t 0 <  fh) <  0  <  tv/ 2 .

Then exists a basis { / i i . / i j  hm -k}  <>f such that /i, makes an angle f) nnth

Z. for ang 1 < / < rn -  k.

Proof  Let Z^  he the orthogonal projection of Z  onto V’^ and note that the con­

clusion of the lennna is e(|iiivalent to the existeni e of a hasis as ahove for which 

each element of the hasis makes an angle o  with Z ^ . where o = c o s '  '(cosO/ cosf?,))- 

In order to achieve this consider a hasis {hi . h-y. - -  .h ,„ - k - i }  of {V ~  span(Z^))"  

and let = - h i .  It is easy to check that the set {/ti./io.- - ,h„,_k}  with

/t, = cosoZ ^ + sin oh ,. 1 < i < rn -  k satisfies the requirements ahove. □

P r o p o s i t i o n  1. Let T  be a k-dimensional Riemannian foliation on  ̂ nnth

vertical bundle V. If  -y is a horizontal geodesic making an angle h G (0. r̂ ) unth Z  

then

rosfl)  L-,( 2)r/cosfl)  ,  (0)
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P ro o f .  Let 6*0 the angle made by Z  with the horizontal spare at 7 ( 0 ) and assume 

that 1 < k < 2n -  I . U 0 > 6)„. by the lemma above one ran  find a set of 2n + 1 -  A:

linearly independent horizontal vectors {A;, hg at 7 (0 ) making the

same angle 6 with Z.  Consider the geodesics 7, starting at 7 (0 ) in direction /i,

and observe that 'y,{2n /  cos0)  = 7j(27r/cos0). for any i . j  — 1.2 2n +  I -  A.

Moreover. •>,(2^/cos^^) —  L ^ j 2n/cnsO) f o r  any 1 < < < 2n - f  1 -  k. This

implies that the set {'v,(27r/cos0).t = 1 .2 2n 4- 1 -  k \  consists of 2n + I -  k

linearly independent vectors. .\lso note that since geodesics which are horizontal 

at one point stay horizontal for all time, the set above is actually a basis for the  

horizontal spai e at -),(2n/  vdsO). Thus, the horizontal space at "v,(27t / c o s i s  the 

left t ranslation of the horizontal space at 7 (0 ). Con.serjuently. the vert ical spaces are 

in the same relation.

If 0 = fk). consider the serpience n > 1 with 0,i > Oo and the geodesics

7„ making angles f)„ with Z.  respectively. Since V\„,2,r/<

V'’>,.(27r/<.,.s«,.) />-,,(2,r/r.,srt„).^’->.i'i)- "^ '"g a liuiit type of argument we may con­

clude that — T.j(2,r/,-os«„),V\(o).

If k = 2n then 7 (0 ) and 7(27r/cos0) generate the  horizontal spaces at 7 (0 ) 

and 7(27r/cos^). The conclusion of the theorem holds based on the left invariance 

property mentioned above. □

I sing Proposition 1 we show that if 1 < A < 2n — 1 then the vertical bundle 

of a A-dimensional Riemannian foliation is left invariant along geodesics in central 

direction.
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Proposition 2. Let T  be a k-dimensional Riemannian foliation on unth

vertical bundle V and \ < k < 2n -  I. Then

^ p t ' x p t Z  —  L p x p t Z

for atifi i> € and  / G R.

Proof. Without loss of ^rnrrality  wv may assume that p = e. Also iissume that 

2  is iieitluT hori/ontal nor vertical at e and let he rhe angle made hy 2  with 

H,.- As we mentiomxl in Observation 2 from sm tion 1.6. if is a gmxlesic making 

an angle f) with 2  and if ",(0) = c then ■)('2n /  cot>0) = exp(27r(l tan"

Thus, for any / € R with |/| > 27t( 1 + tan^ 0,)) there exists f) > ftp such that 

vxpi t Z)  -  ~i{2n/  cttsO). where '  is some unit speed horizontal geodesic with 

'<(()) = e. If 't\ > 27r( 1 4-  \  t a i r^ o )  then the result follows as an immediate coiise- 

(juence of Proposit ion 1. In order to prov(' the proposition for P < 27r( 1 ^ t a i r  ^o)

it is enough to repeat the same argument with e replac»xl hy exp(/oZ) for some hi

with |/(i! > 4z( 1 + t a i r

If 2  is either horizontal or vertical at e then the proposition follows as a con.s<‘- 

((uence of t he previous case. □

It is interesting to remark t hat in the c;ise of a oni'-dimensional foliation. Propo­

sition 2 implies that if 2  is vertical at p then the leaf through p is the geodesic 

through p in the central direction. We will use this olxservcition in the proof of 

Theorem I.
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P roposition  3. Let !F be n one-dtmensional Rtemanman foltaiion on / /

. /  i.s n holnuoriuj Jarohi rector field along a horizontal geodesic ^ making an angle 

0 G fO.Tr/2). inth Z  then

JCIn/cOsf))  ^  ^ ^ ( 2 ; r / c o s ^ ) , - ^ ( 0 ) .

Proof. .As [«'fore, we may jussiime that 7 (0 ) = e. Let -v(0) = cosOZ — sin fLV, 

with .X'l unit. orthoRonal to Z  and assume that 0 is not e(;ual to the an^le 

made hy the horizontal space at '(()) with Z.  By Proposition 1. we have that 

./(O) -  is vertical at 7 (0 ) =  c. I'sinR the observation on

the form of the .lacohi vi-ctor fields mentioned in section 1.7 (ii). the holonomy 

.Iticohi vector field ./ alotiK "y can he written jus

k^\

with ujt. and <ik R iven  hy (.{) (0). .Also, hy (ô) and ({>). u, ;ind. for k > 2.

Jind (ii; an ' periodic w ith period iTr/cnsf). I ’siiiR (7). the observation ahove trans-

hites to (ui(2?r/cos^) -  Ui(0))6'i(0) heiiiR vertical at r. But L’i(O) is not verticjil

at c since this would imply 0 = Of). ConstHpiently. U |(0 ) = ui(27r/cos^) and rij is

2 k /  c o s —periodic, thus proviiiR the proposition in this cjuse. .Note tluit w(‘ jil.so oIk

tain tha t |./(f)| is periodic with the same period. Moreover. Kfyff)) =  -l/2(i./(f)! '^) '

is periodic jus well jiiul k(7(0)) =  K(7(27r/cosff)).

If ^ =  0(). consider a setpience of unit horizontal vectors with h„ -> 7 (0).

We mjiy also jussume that where is the angle nuide hy /i„ with Z.  By a
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limit argument similar to tho one used in Proposition 1 wo obtain

«(->(0)) =  lirn k(7„(0)) = liin K (i„(27r/r< )sfJ ,J)-K (',(2z/rosff)} .f I —► Tc n —> x:

whoro 7„ aro goodi'sios with 7n(0) = r and 7„(0 ) = h„.

Now oonsidor tho holonomy Jacobi Hold ./ along with !./(0)i = I. Sinco 0 = ff„. 

wv havo 7(d) = and. following tho notation from section 1.7. .7(0) = 6\(d).

C'onso(;nontly. ui(()) = I while tho rest of the coofficionts appearing in tho formula 

for .7 carn ol at t = 0 (and. by [)oriodicity. at any integer multiple of 27r/ cos#).

( sing relation (8) from section 2.2 and tho observations above we obtain

(.7(0)..7'(())) = -K(7(d))l./(0)i^ = u'llO) and

( J{2n/cosO).  ./'{'2k/voiif))) = cos^) ) i .7(2rr/cos ^)'^ =

=  <1\,('2k /  v o s O) ( i ^{' 2k /  r a s f / ) .

.\s noted above. «(8(0)) = «(~-(2T/costy)) and the previous relations imply

a'((0)uf(27r/cosf>) — (Ii ('2k /  c()s O)u' (̂'2k /  vosO). Hut |n,(27r/ cos^)l = .7(27r/ cosf))!

cannot cancel and we get u,(())ui(27r/cos^) = u^(27r/cosf)). Using the periodi( ity

of a'l and relat ion (.3) from sect ion 1.7 we obtain

u',(())( 1 -  ui(27r/cosf))) =  ------ -— (u,(d))" = 0.
cos U

Thus. «',(()) = 0 and. using (5) again. «i is periodic. This proves rhe proposition. □

It is important to note that the proof of the proposition above actually shows

that k [Z^)  =  0. which will be essential in the proof of the next proposition.
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Proposition  4. I f T  ts a one-dimensional R temanman foliation on then Z

makes a constant aiujle u'ith V alon<) L. for any leaf L.

Proof. Lot Z  =  Z^’ + £ V and lot's assuino tha t V nuikos an an^lo difforont

from 0 or n /2  with Z  at somo point on L. Lot l = r ^ Z ' ' .  VVo havo tho following:

v ' ( r . z )  = ( V v V ' . z )  + (v .V v-z) =

=  ( V v - r . z ' * )  +  ( V v - r . z ' - )  =  k {z ^]  =  o .  

whoro tho socond otpiality follows from tho fact tha t Z  is a Killing voctor Hold and 

tho third otio follows from ( V i  V’. Z '  ) =  | Z '  ( V v V ' .  V')  -  0. Tho hist oipiality follows 

form Proposition ii. Honco {V. Z)  is constant along L. Tho othor two casos follow 

as a consoipionco of tho cjuso ahovo. □

Proposition 5. Let 7-  be a one-dimensional Riemannian foliation on ' and

let .V be « basic rector field alony a leaf L. Then, nlony L. A makes a conslnnt 

anyle nnth the central direction Z .

Proof. VVo may ;issnmo that Z  is not tangent to L sinco, hy Proposition T 

tho conclusion is triio if Z  is tangent to L. Note *hat it is enough to prove 

the proposition for hasii voctor Holds that aro orthogonal to Z  at somo point

p 6 L. Indeed, lot A 'l.........Von-i-ZZ ho (local) Inusic Holds along L such that

{.Vi(p). -- . A ' o „ _ i ( p ) - i s  an orthonormal hasis of Hp. whoro X, (p)j^Z{p) .

H(p)  = and Z G Z . \ Z \  = I. .-Vs wo will show holow. .V, remains or­

thogonal to Z along L for any 1 < f < 2u -  1 and it follows that H(y)  =  Z^^iy)

for any y E L.  Lsing tho fact tha t Z  makes a constant angle with V (and. thus.
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with H) we may conclude that \Z^\ is constant along L. Hence, since H  is basic, 

we may conclude that is basic as well. The result follows ejusily since anv unit 

basic vector field along L is can be written as A =  u Z ^  + u, A',. where a and

ri, are constants. Consequently. | cos(Z( A'. 2 ) '  — is constant.

Now let .V be a basic vector field along L such th a t  Xp-LZ for some p ^  L and 

let us show that X  is orthogonal to Z  along L. If p is another point of L. consider 

the horizontal geodc'sics y and -> starting at p and p in direction Xp  and A',;, respec ­

tively. Hy contradiction, assume that .V,-, is not orthogonal to Z  and let ./ and ./ 

be holonomy .Jacobi fields along 7 and 7 . L’sing the form of the .Jacobi fields along 

geodesics orthogonal to Z  given in 1.7(i). it is c>;isy to see that cos(2 (./(/). Z))  is the 

cpiotient of a polynomial by the scpiare root of another polynomial. Consecpiently. 

as t —> X. cos(2(./(t) . 2 ) )  convergc's to some a  € [II. Ij. But. by Hroposition 

t —> eos(Z(./(t). 2 ) )  is a periodic func tion. This is a contradic tion since, by Propo­

sition I. J(t )  ancl ./(/) make the the same angle with 2 .  □

R e m a rk .  Let -y be a horizontal geodesic for which 7 (0 ) 1 2  and let ./ be a .Jacobi

vcvtor field along 7 . .As noted above, the coefficient of Z  in the c'xpression for ./

is. in general, a clegrc*e three polynomial. We c laim tha t if ./ is a holonomy Jacobi

field then this polynomial luis degree at most two. To sc>e this, choose a secpience

of horizontal geodesics 7  ̂ with 7a , ( 0 ) 7 (0 ) and 2 (7&(0 ). 2 )  < tt/2. Le t .4 . be the

holonomy .lacobi field along 7t  with .4(0) = ./(()). Combining the form of .4  along

-yjt (sc'e sc'c-tion 1.7(ii)) with the additional restrictions imposc'd by Proposition 3.
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it is easy to cheek that

f ( l )  = {J( t ) . Z)  = Win {Jk( t ) . Z)  

is a polynomial in t of degm ' at most two.

T h e o r e m  1. Let T  he a one-dnnenstonnl foliation on eqntpjied unth a left

inrarnant metnr.  F  is Riemannian if  and only if it is homoyeneons.

P ro o f .  Let p and p he two points on the same leaf. .\lso. let .V and .V he the values 

of a hasic vector field at p and p. respectively. V\e want to show that k(.V) = k(.V). 

Observe that X  (and .Y) may he chosen to he orthogonal to Z  since, for Z  € 2  with 

\Z\ = 1. we already have that Z^  is hasic and k(Z^‘ ) is constant along indivi«lnal 

h'aves.

Let -, and -, he horizontal geodesics with 7(0) = .V and 7(0 ) = .V. Recall that if

./ is the holonomy .lacohi field along -, with i./(0)! = 1 then. hy (S) in section 2.2.

we have k(.V) = - (./'(O). ./(O)). I ’sing F’roposition I and the form of the .lacohi

fields given in l.T(i). we obtain

fit)! - ' f{*)\
!cos(Z(./(f).Z))| -  |cos(Z (./( /) .Z ))l =

I./(/)! !./(/)'

where ./ is the holonomy .Iacol>i field along i  with l./(0)| = 1. The relation afiove

implies

(0) / - ( 0 | . / ( / ) | ‘ =  f - ( t ) \ J ( t ) \ \

Let's denote | . /( / ) |“ hy li{t) and \J{t)\~ hy fi{t). Note that h and h cannot have any

real roots since a holonomy .lacohi field cannot have any zeroi's. .Ylso note tha t /
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and /  am polynomials of (iegref* a t most two. while h and h have decree at most 

four.

We will show tha t h =  h. provided tha t /  is not identically zero. Note th a t  h = h 

is enough to conclude that k is basic since n(Xp} = -h'{Q)  and k(.V) = -/; '(()).

If /  =  0. in order to show that k is basic we will adapt the techni(pie used in 

Theorem 1.1 from [11]. First. a.ssume /  is not identically zero and consider the 

following case's:

(1) /  and /  are not relatively prime

Hy (!1) and the observations above, we must have /  = (if.  for some real 

number u. Indeed, since* /  anel /  are* neit relative'ly prime they must have- 

the same* ele*gre*e* since othe*rwise either ./ e>r ./ will have a /e*ro. Fe>r the* same* 

re*a.se)ti. the* e e)mme)n fae-tor e>f /  anel /  must be* of de*gre*e* twet. Thus f  ~ af .  

whie h implie*s h = h/ii^. Sine e / i ( 0 )  = /e(0) = 1. we have h = h.

(2) /  anel /  are* re*lative*ly prime*

In this e ase we* get that f  ~ eliviele*s h. Cemse*epiently. f  ̂  eliviele*s h — / ‘ . Xeite*

that if /i(0) = / “(()) then the* 2  is ve*rtieal at /> anel the* le*af threiugh p is

the* ge*e)ele*sie- in the e-entral elire*e tie)n ale>ng which k is basie*. If /j(0) ^  / “(O).

the*n the* ele*gre*e* e>f fi -  f ‘~ is le*ss than or e*ejual te) two. By de*gre*e* eount.

/  must have* elegre*e at me)st e)tie. But /  e annot have ele*gre*e euie* sine e / "

eliviele*s h and h has ne) real roots. Thus. /  is ce)nstant. .\ similar argument

sheews that /  must be e e)nstant. If /  /  0. as before*, we obtain h = h.
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Lot’s discuss the case when /  is identically zero. By 1.7(i) and (9). (j . f .  and 

() are also identically zero. This implies that the vertical hundles at p and p are 

orthogonal to span{ X. j  A'. Z} and span{Â. j À .  Z}. respectively.

Let A = k(A') and consider the vector Held ./,)(/) = (1 -  \ t ) t J  o -){t) along 

'V. where E  is the left invariant vector field definefl by the condition that Ef, is 

vertical of unit length. Based on the observations above. is a .Jacobi vector 

field. Moreover. .//)(0) = -A./o(0) = )./„(()). Thus, if n is the Riemann­

ian submersion locally defining JF. projects to a .lacobi field 77, . /o along -  o -, 

(see [20j). .Assuming A ^  0. tt o h a s  a conjugate point at 1/A. By Lemma 1 in 

[ 2 0 j .  there exists a uni(|ue .lacobi field along -v such that 

./()( 1/A) = 0 . and ./// .S\ + .1^./,^ = 0 . But ./„ = ( 1 -  A/)À’o i . where E  is the left

invariant vec tor field for which E,, is vertical and of length one. Ib see this, recall 

that ./,,(()) is orthogonal to X . j X .  and Z Thus, the coefficients of Z and )'  -  j X  

in the expression of from 1.7(i) will cancel at t = (I. .Since they also <anc»'l at 

t = 1/A. they must be identically zero. Based on 1.7(i) again and the fact that 

cancels at / = 1/A. we may conclude that ./„ has the form above*. .Now. if we* le*t 

t -  0 in ./|7’ -r -e = 0. we get k {X)  = -  < .S/y./o(()). ./o(0) > =  A|./„(d)|^.

C'on.se*(juently. k(A') = A. In vie*w of the* abewe*. the* same must be* true* if A = (I. 

Ceenseepiently K is basic and we* are* deme*. □

In [32]. G.VVaLschap sheews that e*ve*rv e e)dime*nsion eene* Rie’inannian foliatiem on

is actually left invariant and is generatexl by an ide*al e>f the Lie alge*bra

fi’n-ri- Thus, the foliation is given by cosets of the form {e/A'.e/ € }. where*
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h  is a normal subgroup of As notwi in softion 2.3, ali such foliations an*

homogeneous.

1 sing the n*sult mentioned above in conjunction with Theorem 1. we obtain the 

following:

T heorem  2. All Rtrmauman foliations on arr homogrncons.

The following theorem generalizes a resuh of C.Walschap ([31]) regarding 

one-dimensional Riemannian foliations on three-dimensional nilmanifolds.

T h e o r e m  3 U t 1 6c a lattio in Z / 1  T h m  irists  a nnigiic onr-dtrncnsionnl 

Rm nnnn inn  foliation T  on I \  ZZ^"^^. T  is homogrncons and its lift to ZZ '̂* '̂ has 

m i  teal hnndlr Z.

Proof, bet T  be the lifted foliation. .Note that T  is a one-dimensional Riemannian 

foliation on ZZ'"^^. By Theorem I. any such foliation is homogeneous. But then T  

is also homogeneous since the isometric action defining P  descends to an isometric 

action on r\ZZ“"'*‘ .̂

.According to [5|. the identity component of l so ( r \Z Z '"^ ')  is C / C  T. where 

C' is the center of ZZ^"^b If tti : T” —v C / C  F and ttj : ZZ'"^' —> F\ZZ“'*^' 

denote the projection maps then the action of C / C  n  F on F\ZZ^"^^ is given by 

(7ri(c). 7T2(/()) —> K-2(ch).  Con.se«ju«*ntly. the leaves of the lifti*d foliation are orbits of 

C  acting on the left on ZZ^"^^ and the conclusion follows. Note that we obtain a 

principal circle bundle over T~’\  □
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Theorem 2 remains vîilid for Riemannian foliations on F \ / /^ .  This is due to the 

fact that there are no two-dimensional Riemannian foliations on Indeml. if ^

is such a foliation, by Theorem 2. its lift must he homogeneous. But then !F must 

also be homogeneous and this is impossible because the dimension of the isometry 

group of is one. The same type of argument used in conjunction with

the homogeneity of Riemannian foliations of codimension one on implies the

following:

P r o p o s i t io n  6. Let F hr a lattice in Thm- an- no Rtrmanntan foliations

of codiinrnsion one on F \ / / “’*■*■*.
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C H A P T E R  5 

C O N C L U D I N G  R E M A R K S

The niiiin goal of our dissortation is to show that ono-dinn’risional Rietnannian 

foliations on tho llnisnnberg group arc homogeneous. In section 1.5 we deserihe the 

(orresponding Killing vector fields associatjvl to tlu'se foliations. Using our n*sult 

and the homogeneity of codimension one foliations (|32{). we conclude that every 

Riemannian foliation on the thret'-dimensional fleisenherg group is homogeneous. 

As noted in [31j. the same is true on 1 \ / / \  where T is a lattice in //*. In chap­

ter 4 we give another proof for this theorem and we improve it hy showing that 

there are no codimension one foliations on I We also show that the only

one-dimensional Riemannian foliation on the space ahove oc( ttrs as the projix tion 

of the foliation on ' with leaves tangent to the center.

Some interf'sting geometric [)roperties for Riemannian foliations of any dimen­

sion on the Heisenberg group are also derived. It would he interesting to investi­

gate whether all tln'se foliations are homogeiu'ous. If valid, the previous statement 

would imply that there is oidy one Riemannian foliation on I This is the

oinMlinu'nsional foliation (h'scrihed above.

We expanded our impiiries to otuMlimensional Riemannian foliations on semi­

simple Lie groups and showed that they are also homogeiu'ous provided the leaves
45



are cIosih I. This rf'siilt, is not ineludml in the dissertation and will soon he submitted 

for piil)iication.
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