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CHAPTER 0

INTRODUCTION

The purpose of this dissertation is to investigate Riemannian foliations on the
Heisenberg group endowed with the natural left invariant matric. Our interest in
the subject was inspired by the following two fundamental results: the classification
of metric fibrations on Euclidean spaces of D.Gromoll and G.Walschap ({111) and
the work of D.Gromoll and K.Grove on one-dimensional Riemannian foliations on
spaces of constant curvature ([8]).

Although some of the ideas we use in order to obtain the main results are valid for
Riemannian foliations on general manifolds. our study relies heavily on properties
of the Heisenberg group. In the first chapter we summarize these algebraic and
geometric properties. We discuss such geometric objects as the isometry group.
the Killing vector fields. the geodesics. and the Jacobi vector fields. The geodesic
properties are actually essential in obtaining key information about the Riemannian
foliations. In section 1.5 we derive the form of the Killing vector fields. Their
unportance consists in that the nonzero ones correspond to the one-dimensional
Riemannian foliations. The form of the Jacobi fields is given in section 1.7 and

is vet another important feature needed in our investigation of Riemannian

foliations.



We would like to point out that even though most of the results in the first
chapter are known. our description of the automorphism group and Killing vector

fields corrects the corresponding erroneous results from (7).

The second chapter contains an overview of Riemannian foliations and Riemann-
ian submersions. As the two concepts are closely related. we start this chapter with
some generalities and remarks ou Riemannian submersions. We also mention some
results and examples found in the literature. Given our interest in homogeneous
foliations. we include in section 2.3 some examples of homogeneous and nonhomo-

geneous foliations.

The third chapter is dedicated to the study of one-dimensional Riemannian folia-
tion. The synopsis of well-known facts from section 3.1 is followed by the statements
of two of the fundamental theorems that are the key ingredients in relating the ho-
mogeneity of one-dimensional Riemannian foliations with the properties of the mean
curvature form of the leaves. We also reproduce the proof of one of these theorems
in order to emphasize the construction of the Killing vector field associated to a

one-dimensional Riemannian foliation with closed mean curvature form.

Our main results are listed in chapter four. An essential role in our investigations
of Riemannian foliations on the Heisenberg group is played by the position of the
vertical bundle with respect to the central direction. The first twe propositions
provide a partial answer to this problem. Based on these two results we show
in Proposition 4 that the vertical bundle of a one-dimensional foliation makes a

constant angle with the central direction along each leaf. In Proposition 5 we
2



conclude that the same property is valid for basic vector fields.

Theorem 1 states that every one-dimensional Riemanunian foliation on H?"*! is
homogeneous. In order to prove the theorem we use the results from section 2.2 and
the kev geometric properties mentioned above. We would like to remark that. as
noted in the literature. D.Gromoll and K.Grove's result on the homogeneity of
one-dimensional Riemannian foliations on spaces of constant curvature relies heavily
on the constancy of the curvature. As the Heisenberg group has two-planes with
both positive and negative curvature. our theorem is a first step toward extending
the homogeneity property to more general manifolds.

Using a result of G.Walschap on the homogeneity of codimension one Riemannian
foliations on the general Heisenberg group ([32]. Theorem 4.4.) and Theorem 1 we
conclude that any Riemannian foliation on the three-dimensional Heisenberg group

is homogeneous. As a consequence of Theorem 1 we also obtain homogeneity of
one-dimensional foliations on compact quotients [\ H***'. We note that this ex-
tends a similar result of G.Walschap on three-dimensional nilmanifolds ([31]). We
conclude the chapter by observing that there are no codimension one Riemannian
foliations on T\ H?"*!, This is a consequence of Theorem 4.4 in {32] and. when com-
pared to the similar situation on Euclidean spaces. it shows a somewhat surprising

rigidity property.



CHAPTER 1

THE HEISENBERG GROUP

1.1 Lie algebra considerations

Let V be a 2n-dimensional vector space and let {X,...... Y Y.} be any
basis of V. Let Z be a one-dimensional vector space spanned by some element Z.

The bracket relations

X Y=-Y.Xj=2Z1<:<n

L

and all other brackets zero define a Lie algebra structure on hy,,.; = V -+ 2. With
this structure. ha, 4 is called the (2n+1)-dimensional Heisenberg algebra and the
corresponding simply connected Lie group H*"*! is called the (2n+1)-dimensional
Heisenberg group.

[t is well known that the Lie group exponential map exp : hopey = H?**lis a
difeomorphisin. The group multiplication is given by the Baker-Campbel-Hausdorf
formula:

| S
exp(.X) -exp(Y) = exp(X + ¥ = (X V).

So. if

X = ir,.\', +X":y,)', +:Z. X = zu:f,.\'. + i:g,}', +:Z.

=1 t=1 1=1 1=1

4



then

exp(X) -exp(Y) = nxp(Z(x, +r)X, + Z(y. +y)Yo+(z+ 2+ %I(.r. rZ).

1=1 1=1

By definition. if r = (ry..... TpeYleen-n Yn) I = (Z)..... In.Yi-...4n) € R*™,

I(r.r) = Z(z,u, Fuy) = rJrt.
=1
where J{r,..... Loolflenen Yn) = (Yy1..... Yo —Tpe---. —r,). Here we identify .J

with its corresponding matrix in the natural basis of R?".

Consequently. H2"*! can be regarded as R***! with group operation given by
1
(r.z)-(r.z)=(r+ur.z2+z+ El(r.r)).
where r.r € R* and z. 2 € R. Note that under this identification we have:

1£) n
vxp(Zr..\'. + Zy,Y. +z:272) =(rq..... R T Un. Z).

=1 1=1
1.2 The structure of Aut(f*"*}!)

In this section we give a description of Aut(H?"*!) as obtained in [16'. First.
we introduce some notations and discuss some facts that will also be needed later.

Let w =ry Ay, +---+ 1, A y,. Define

O(w.2n) = {¥ € Aut(R?™) : v -w = Aw. A € R"}.

Also consider the group homomorphism =~ : O(w.2n) — R* defined by requiring ¢

to satisfv ¢ - w = yw.



The following theorem describes the structure of the automorpshism group of

H?"*1 The proof is based on two fundamental facts:
1. Every ¢ €Aut(H?"+!) descends to an automorphism ¢ of R?™.

2. An automorphism ¢ of R?® lifts to an automorphism ¢ of H27*! if and only if

® € Ow. 2n).

Theorem ({16]).
Aut(H**Y) = Hom(R*™ .R) x O(w. 2n).

where (1. ¢') acts by

(n.w)(r.z) = (w(r). vz +n(r)).

. . . . 2
It is worthwhile mentioning that. by the theorem above. Aut(H?"*!) becomes a

subgroup of the group of linear transformations on R?%+1,

From now on we will identify n € Hom(R?") with the dual vector (a..3) € R" xR"®

with the property that

n

'](f.) = Z(”x-": + Jl.’/x)-

l:l
for any r = (ry..... Iy Ype---. yn) € R® x R™.
In some sense Q(w.2n) extends Sp(n.R) = {A € Auy(R*™).v -w = v}

In fact. it is not difficult to show that O(w.2n) = Sp(n.R) x R*. Using this observa-
tion we obtain that Aut( H?"+!) 2= R?® x (R* x Sp(n. R)). This description corrects

the error in [7]. where Aut(H?"*1) is taken to be R*"*! x Sp(n. R).
6



Observation.

Recall from section 1.1 that we defined the linear map J : R — R2" given by
J(ry..... i S TP yn) = (Yy1..... Yn-—T1..... —-ry). Let Q denote the matrix of
J with respect to the canonical basis of R?™ and note that Q € O(w.2n). Conse-
quently. J lifts to an automorphism of H?**+! which will also be denoted by J. It
is interesting to observe that if j is the automorphism of hy, . defined by j = .J,,
and if {Xy...... A O Y..Z} is the original basis considered in section 1.1
then j(X,) = Y. j(Y,) = —-X,. and j(Z) = Z.1 < i < n. Moreover, if by, is
equipped with a positive definite inner product (.} with respect to which the basis
{X,..... X.. Y. Y.. Z} is orthonormal then the restriction of j to Z+ satisfies
XYYy =(X.Y].2Z). forall X. Y € 2+

The observations above can be used to construct the map j without having an a
priori orthonormal basis ([5]). [n the presence of an inner product on hy, .. define
J: 2% 5 ZH by (JUX).Y) = ((X.Y].Z). where Z € Z.1Z] = 1. [t is easy to see
that j2 = —Id. Also. if {X}...... X1} is a set of orthonormal vectors in 2+ then
{X,...... X,.Y1 = jX1..... Y, = jX..Z} is an orthonormal basis of ha, 4y such
that [X. Y] =Z and [Y.. X} = =Z.1 < < n. In sections 1.6 and 1.7 we will use

the nap j constructed as above (without having an a priori basis).

~1



1.3 Classification of left invariant metrics on H2"+!

Using ideas that are similar to the ones in [7]. in this section we give the clas-
sification of left invariant metrics on H2"*!. We would like to mention that our
Heisenberg group. though isomorphic to the one defined in [7]. has the group oper-
ation defined differently.

Two Riemannian metrics g; and g2 on a manifold M are said to be equivalent if
there exists a diffeomorphism ¢ such that go(X.Y) = 091 (X. V)= g1(0. XN 0. Y ).
for any vector fields X and Y on M. If M is a Lie group. a metric g on M is called
left invartant if L,*g = g for any p € M. where L,: M — M is the left translation
by p: Lplq) = pg.q € M.

Note that if g is a left invariant metric on H?**+! and ¢ is a diffeomorphism then
©®g is not necessarily left invariant. In fact, as observed in [29]. if o(¢) = ¢. then 0%y
is left invariant if and only if ¢ is an automorphism of H?"*+!. Conseauently. in order
to classify the left invariant metrics on the Heisenberg group it is enough to find the
orbit space for the action (¢.g9) = ¢*g of Aut(H2"**!) on the set of left invariant
metrics on H2"*1. This action can actually be regarded as an action on the set
Symm™*(2n+ 1. R) of positive definite. symmetric (2n+1)x(2n+1) matrices. Indeed.
every left invariant metric g is uniquely determined by the matrix G with entries
given by g evaluated on pairs of vectors of the basis B = {X;...... | (R ST Y..Z}

of hap 41 In order to write the expression of this action we need to identify the group
h



Aut(H?**1) with a group of matrices.

As mentioned in the previous section. Aut(H*"*!) can be regarded as a group
of linear transformations on R¥"*!. Hence we can define the group homomorphism
i Aut(H?+1) — GL(2n+1.R) by letting i(#) to be the matrix of the automorphism
¢ relative to the canonical basis of R?"*!. Using the identification between H2"+!
and R?™*! from section 1.1. we have i(¢)(r. 2)! = (o(r. 2))t. for any (r.z) € R®"+L
One can also define a homomorphism i: Aut(hz,41) = GL(2n + 1. R) by assigning
to an automorphism ¢ of ha,, ., ;. the matrix of ¢ relative to the basis B.

It is well known that «: Aut(H*"*!) - Aut(ho,4,) defined by ¢ — é.. is a Lie
group isomorphism. In fact, based on exp op., = o oexp and the description of the
exponential map from section 1.1 we may conclude that i = i o .

By the previous remarks. g2 = ¢°g; if and only if G, = {(0)'Gi(®). where G, is
the matrix of g, relative to the basis B.i = 1.2.

Consequently. the problem of classifying left invariant metrics on H?"*! is equiv-

alent to finding the orbit space for the action

I(Aut(H**1)) x Symm* (2n + 1.R) = Symm* (2n + L. R).

(4.G) = A'GA.

Recall that every automorphism (1. ¢7) of H™+ sends (1. .... i R /TR Yn-2)

to (w(rye....In.yi..... Yn) Do (zy + Biy) + u"r:). Thus.

A A 0
(n-w)) = | A2y Ao
v I

A A
Aoy Az

basis of R?®. Note that (1.y) belongs to Aut(H?"+1) if and only if 4*QA4 = Q.
9
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0 I,

where A(= v) € R® and Q = ( L0

) is the matrix of the 2n-form w relative

to the canonical basis of R?".

As one can easily check. for every G € Symm™* (2n + 1. R) there exist a.i3 € R"

and a € R such that

I, 0 o\' /I, 0 o0 =
0 al, 0)Gl O al, 0] = ( ! )

0 1
1% 3 a 13 3 a

with G € Symm*(2n. R). Moreover. by [36]. any such matrix can be put in diag-
onal form diag[A3..... A2 A2 AZl. Combining the two observations above we
may conclude that every G € Symm*(2n + 1.R) can be reduced to the form
diag{A3.. ... AZAZ L A2, 1] via some matrix in i(Aut(H?")). In fact. every orbit
contains a unique such diagonal matrix.

Now we write the form of a left invariant metric ¢ whose matrix G relative to the
basis B is of the from diag[A3. .. .. AZALLL AZ.1]. Observe that the left invariant

vectors corresponding to the elements of B are

. J J . J J J
Xup)= 5—=(p) ~ 4 5:(p). hilp) = o (p)+roo—(p). Z(p) = -(p).

Jr, )r,
for any p = (ry.....Ip Yy..... Yn.2) € H**1 The dual 1-forms associated to
the vector fields X,...... | G ST Y,.. and Z are dry..... dry,.dyy..... dy,,. and

dz+Z:':l(f.dy,»— yidr;). respectively. Thus. every left invariant metric is equivalent

to a metric of the form

g = Z A2(dr? + dy?) + (dz + Z(-Tidyi - yudr,))®

=1 =1

10



1.4 The isometry group

Given a left invariant metric ¢ on H2"*+!, we would like to find its isometry group
[so( H?*! g). A key role in determining this group is played by the isotropy group
[so.(H?"*!. g) of g at the identity e of H2"*!, ie.. the group of isometries of g
fixing e. As is the case for any nilpotent Lie group equipped with a left invariant
metric. [so( H¥**1. g) = H™*! x [so,(H**!.g). where H?"*! is interpreted as the
group of isometries given by left translations.

Based on the observations from the previous section. Iso,(H?*"*'.g) is a sub-
group of Aut(H?"+!). Recall from section 1.3 that Aut(H?"+!) acts on the set of
left invariant metrics by (0.g) — ¢*¢. This action is equivalent to the action of

i(Aut(H?*"+1)) on Symm™*(2n + 1. R) given by (A.G) - A*GA. Thus.
i(Iso . (H™*'. g)) = {A € i(Aut(H*™ ). A'GA = G).

where G is the matrix of g. In the following we will consider a metric g whose
matrix G is the identity. Note that for such g we have

i(Iso.(H*™*!.¢)) = i(Aut(H***')) nO(2n + 1.R)

= {(3 2).,4“52.4“ =AML AL = [, A = 11},

(The last condition above actually follows from the previous two conditions.)
As one could check. the identity component corresponds to the matrix group

Sp(n.R) N O(2n.R) = U(n). So. we get the following description of the identity
11



component Isog( H?"*1) of the isometry group:

[sog(H*™*Y)y = H*™*! x U(n).

1.5 The Killing vector fields

Nonvanishing Killing vector fields are the main source for one-dimensional Rie-
mannian foliations. In this section we compute the complete Killing vector fields
on the Heisenberg group equipped with a left invariant metric.

By definition. a Killing vector field on a Riemannian manifold M is a vector
field whose local low consists of local isometries of M. The collection of complete
Killing vector fields ou M. i.e. Killing vector fields with a globaly defined flow. has a
Lie algebra structure with bracket operation defined by the usual bracket of vector
fields on M. This algebra is isomorphic to iso(M). the Lie algebra of the isometry
group of M under the correspondence r — (exp(tr) - p)'(0). where r € iso(M) and
exp(tr)-p is the orbit through p of the one-parameter group of isometries generated
by r. We will use this isomorphisin to find a basis for the Lie algebra of complete
Killing vector fields on H?*"+!.

First we fix some notations. Let Ej; and F, be n x n matrices defined by:

E;=1]": : L Sl l<i<j<n,

o

12



and
10
\o ... Y,

Also consider the (2n + 1) x (2n + 1) matrices

E, 0 0 0 F, 0
Ay,=| 0 E, 0o).1<i<j<nB,=|-F, 0 0].1<i<j<n
6 0 0 0 0 0

The collection {4,,.1 < i< j<nju{B,,.1 <i<j<n}isa basis for the Lie
algebra u(n). The corresponding elements in the Lie algebra of Iso.(H?*"*!) will
also be denoted by A, and B,;. respectively. The induced one-parameter groups of
1sometries are:

E,it) 0 0

A, ()= exp(td,)) = 0 E,(t) 0
0 0 |

Ciy () Dy(t) 0

B,,(t) :=exp(tB,,) = | —=D,,(t) C,,(t) 0
0 0 1

where
cost ---  sint

—sint  ---  cost

o )

13




cost - 0
G, (t) :
0 <o cost
\o ... 1/
and
{() .. Ce ()\
0 -+ sint
DU(” = .
-sint - 0
\o .. o)
The orbit of A,;(t) through a point p = (ry..... o TR Yn. 2) is the curve
(ry..... Iy_p.costry +sintr,. Iry_y.—sintry ~costr,. ...y,
Yleo oo Yo1.costy, +sinty,. ..., Y,-1- —sinty, +costy,.. ... Un-2)
t € R. whose tangent vector at t = () is
() J J J J
Avip)=r)— -ri—+y— -y — =
Al Lor, 'i).r, ¢ dy, 'h Jdy;
= f}(-\’n - .,IIZ) - -"x(‘\’j - .'/)Z) - _l/)(Y, +r ) - .l/l():j e ‘er) =
= fj“'l - .I‘,.\’_, + .U)Yl - !/lYJ + 2(-’-1.'11 - -r;.'/a)Z-
Similarly. the orbit of B;;(t) through a point p = (ry..... ¢y .... Yn. ) is the
curve
(ry..... Ti_y.costr, +sinty;.....r;_ 1. —sinty; +costr,....r,
Yleoo oo Yi—1.cO8ty, —sintr,..... Y,-r.sintry +costy,. ..., Uno 2)

14



t € R. whose tangent vector at t = 0 is
= J J J J
B,py)=y, —+~yy——-r,— —r,— =
A T P R )
= y](/"l -nZ)+ yi(x_] - ij) - I](Yl +r,Z) - It(y} + I)Z) =
=y, Xe + X, — ;Y — Y - 2(0ir) + yiy;) 2.
Corresponding to X,.Y, and Z we have the following one-parameter groups of

isometries:

t — L(‘XP(Q‘Y.)‘t — prp(tyl). a“(l t — Lexp(tZ)-

The associated Killing vector fields are:
Xdp) =X, +yZ. Y p) =Y. - r,Z.2(p) = Z.

where p = (ry..... Too 1., Un+ 3).

Hence {A.).l <i<jy<nlu{B,. l<i<j<nju{X,}Y.Z.1<i<n}isa

basis for the Lie algebra of Killing vector fields on H?"*1,

1.6 The geodesics

The geodesic equations are obtained in [5] in the more general context of two-
step nilpotent Lie groups with a left invariant metric. Here we will only summarize
some important properties for the geodesics of the Heisenberg group. The following
proposition gives the equation of a geodesic starting at e. Since the isometry group
[so( H?"*1) is transitive. any other geodesic can be obtained by left translating the

geodesic above.



Proposition. Let v be a unit speed geodesic with v(0) = e and ¥(0) = cos8Z +

sinfX. where X1Z2.Z€ 2. and X! =|Z|=1.

(1) If 0 = n/2. then y(t) = exp(t.X).

(i1) If6 € (0.7/2). then ~(t) = exp(X(t) + Z(t)). where
X(t) = [cos(tcos @) — 1] tan®j "' X + sin(tcos@) tan 6 X.

1 1 .
Z(t) = [t(1 + 5 tan? 9) cosf — 5 sin(t cos ) tan® HZ.

- -

(i) If 6 = 0. then ~(t) = exp(tZ).

Observations.

[. If ¥(0) is orthogonal to the central direction then v minimizes the distance
between any two of its points, .e.. v is a line. Actually. these are the ouly lines
through e.

2. In the second case above. v minimizes up to the first conjugate point which

oceurs at t = 2w/ cos . Moreover.,
A(t) = (Ly(ey)e[— sin(t cos ) sin 61X, + cos(tcos8)sinbX, + Z cos 0.

As a consequence,

(27 / c0s6) = (Lyan/cose))s (F(0)).

This property plays a significant role in determining the Riemannian foliations on
H?"*'_ Another interesting property is that any two unit speed geodesics v; and
vo with 41(0) = 72(0) = e and making the same angle 8 with 2+ will intersect at

(27 / cos ) = y2(2m/ cosB) = exp(2m(1 + % tan®9))Z.
16



3. If ¥(0) = Z then v ininimizes up to the first conjugate point which occurs

at 2r. From now on. every geodesic tangent to the central direction will be called
central.

4. Every geodesic makes a constant angle with the central direction.

For the proof of the conjugacy properties as well as other interesting observations

regarding cut points. one is referred to [31].

1.7 The Jacobi vector fields

In this section we describe the Jacobi vector fields along geodesics v in H2"+1,

We use slightly more general versions of the formulas in {14].

Let v be a geodesic in H2™*! with 4(0) = e and let J be a Jacobi vector field
along v. Depending on the angle made by v with the central direction we have the

following possibilities:

(i) H4(0) = X.{X|=1.X € Z+ then any Jacobi field along v has the form:

(1) J(B) = FINZ o) + g(t)Y o~ (1) + Y (fi(8) X, 0(t) ~ g, ()Y, e (1)),
1=2

where X.Y. X, and Y, are left invariant vector fields whose values at

¢ (also denoted by X.Y. X,. and Y;. respectively) are defined such that

an orthonormal basis of hap, 4.
17



The coeflicients f.g. f,. and g, are given by the following formulas:
' ' 42
f() = f(0) +££(0) + ¢ (0 + 3(29(0) ~ fliont

g(t) = g(0) + tg'(0) + (2g(0) — f'(0))¢2.

[ilt) = £[10) + ¢£1(0).  gi(t) = g.(0) +tg.(0)., (=2...n.

(ii) If4(0) = cos0Z +sinfX, € 24 Z+.|1X | =|Z! = 1.0 € (0.7/2). construct
an orthonormal basis {X,...... ..Y7. = jX,..... Y, = jX.} of Z+. Any

Jacobi field along v has the form:

(2) J = }:(akb'k +apEy).
k=1

where

E\(t) = sin 0{:.-"‘Z‘~”s”)-\'1 o(t) - tanbZ o v ()]
(3)

E\(t) = sin ()[c'”‘d"""B’j(Z('usI)).\'l 2 4(t)].
while for k > 2

Ei(t) = e ZmO X, o 4(8).

(1)
Ei(t) = 202088 50 7 o5 0) Xk 0 v(t).

Notation:

ptl(Zcosh) Z _) (Z cosB) = cos(tcos @) + sin(t cos ).

=0
For & = 1 the coefficients are given by

/ _y sin(cos 6t)

ar(t) = ar(0) + t(a)(0) + ¢) + a(0)(1 — cos(cos 6t)) — ——
08

(D)

sin(cos#t) 1 — cos(cosbt)

t) = ay(0) + &' -
ul( ) (ll( )4-(11(0) cos 8 18( ('()820



where ¢ = @,(0)sin* 0 — at(0)(1 + tan?9).

For k > 2
ax(t) = ag(0) + aL(0)(1 - cos(cos 82)) + ay(0) L6
(6) cosf
) , .~ sin(cos 0t) .1 = cos(cos Ot)
(lk(') = (lk((’) + (lk(())—(m—— - ak(()) (‘0820

Note that

Ek(27r/ cost) = L'y(21r/(*056).E'k(0)~
(7) ) ‘
Ek(27f/ (‘()S‘)) = L-,('_),r/(.”_‘-g)‘Ek(()).
for 1 <k <n.
(iii) If 5(0) = Z. then
J() = h()Z 0 3(t) + Y (f(DX, 0 7(0) + gu()Y, 03(1).

=1

where X, . Y,.i=1..... n are constructed as in (i) and

h(t) =at +b. fi(t) =a,cost +b,sint+c,. ¢g,(t) = a,sint —b, cost +d,. 1 = 1
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CHAPTER 2

RIEMANNIAN FOLIATIONS

2.1 Generalities

A Riemannian foliation (metric foliation) on a Riemannian manifold M is a
foliation on M with locally equidistant leaves. The most basic example is provided
by the foliation on the metric product M, x M3 with leaves given by the submanifolds
{p} x Ms.p € M. The leaves can be regarded as preimages of points p € M, via
the projection map 7 : M, x My — M.

[n fact. the leaves of a Riemannian foliation are locally preimages via a Riemann-
ian submersion of which the projection map above is an example. Consequently.
the local study of Riemannian foliations is closely related to that of Riemannian
submersions. Considered as generalizations of isometries 7 : M — B for the case
dim(Af) > dim(B). Riemannian submersions are dual in some sense to isometric
immersions. Even though the latter have been studied for a long time. a thorough
investigation of the former has been started only fairly receutly.

Riemannian foliations and Riemannian submersions occur frequently in ge-
ometry. The most natural examples are the ones induced by the projections
m:G — G/H of a Riemannian homogeneous space.

[n one of the first papers to give an in depth perspective on Riemannian foliations,
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B. O'Neill ([19]) shows that their complexity. at least at the local level. can be
characterized by two tensors. While isometric immersions can be fully described
by the second fundamental form. Riemannian submersions are determined by the
integrability (A-) tensor and second fundamental (S—) form of the fibers. They
measure how far the induced foliation is from a metric product (split) foliation.

More exactly. if both A and S vanish. the foliation splits. at least locally.

[nteresting examples of Riemannian foliations can be obtained by requiring one
of the two tensors above to vanish. [f 4 = 0. the normal bundle becomes integrable.
Warped products B x ¢ F fall in this category. If § = 0. the leaves of the foliation
are totally geodesic. Among the most famous examples of such submersions are the
Hopf fibrations of spheres. In fact. Riemannian submersions with totally geodesic
tibers of spheres and complex projective spaces have been classitied ([24'). Partial
results in this direction have also been obtained on compact simple Lie groups ([23}).

[t is worthwhile mentioning that under suitable curvature restrictions. the van-
ishing of one of the structural tensors implies the vanishing of the other. [ndeed.
a totally geodesic metrie foliation on a nonpositively curved space and a flat, i.e.
A = 0. metric foliation on a nonnegatively curved space are split foliations ({31]).

The fundamental equations for Riemannian submersions are derived in {19].
They are the analogues of the Gauss-Codazzi equations for immersions. As an
important consequence. one obtains that Riemannian subinersions are curvature
nondecreasing.  This property has been used extensively to construct metrics of

. . D) D .
nonnegative curvature on manifolds such as CP=# - CP~ ({3]) . some exotic spheres
-)1



(110]. [27]). and the tangent bundle of the n-sphere ({4]).

Yet another geometrically appealing property obtained by O'Neill is the fact that
a geodesic starting perpendicular to a fiber remains perpendicular to any fiber it
intersects ([20]). While this had been observed earlier in the more general context
of metric foliations ([26]). [20] provides an extensive study of the geodesic behavior
of the top manifold as compared to that of the base. In particular. conjugacy and
index comparison theorems are derived.

Among the many applications of Riemannian submersions we would like to men-
tion the Soul Theorem ([21]) which shows that every open nonnegatively curved
manifold M can be regarded as the top space of a Riemannian submersion with
base space the soul of A,

We end this section with an observation concerning the topology of the leaves of a
Riemanniau foliations. In [26]. B.Reinhardt shows that the leaves of a Riemannian
foliation on a compact manifold have the same universal covering. In fact. the same
is true on arbitrary manifolds for complete foliations. Note that if the foliation
is given by a global submersion. the holonomy displacement map (which will be
defined in section 2.2) gives a homeomorphism between any two leaves,

Stronger topological results were obtained for one-dimensional foliations and they

will be discussed in section 3.1.

(8
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2.2 Introduction

For a detailed treatment of metric foliations and Riemannian submersions the

reader is referred to [19]. [20]. and [30].

Let M. B be differentiable manifolds with and let 7 : M — B be a submersion.
i.e.. @ 1s a surjective differentiable map of maximal rank. For any b€ B. m=(b) is a
submanifold of M of dimension dim(.M)-dim(£). Consequently. in the presence of
a Riemannian metric on M. for each i € M one has a decomposition of the tangent
space M, into a vertical subspace V,,, tangent to m~'(m(m)) and a horizontal space
Hu =V,

If M and B are Riemannian manifolds then a differentiable map = : M - B is
called a Riemannian submersion if 7 is a submersion and x, preserves the length

of horizontal vectors, that is |[r.r| = lri. for all in € M and r € H,,.

One can easily check every Riemannian submersion 7 @ M — B determines a
metric foliation whose leaves are given by the preimages of points in B. The converse
is also true locally. Thus. the following definitions and remarks. formulated in the

language of Riemannian submersions. can be extended for metric foliations.
As noted in {19]. the crucial role in the understanding of a Riemannian submer-
sion is played by the integrability tensor A and the second fundamental form S

given by:
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A:HxH- V. AxY =(Vx YY)
S:HxV -V, Syl = (V- X"

The mean curvature form & is the horizontal one-form defined by &(E) = tr(Sgs ).
If the leaves are one dimensional. we have x(X) = (SxV.V). where X € H and
Ve Vwith (V)= 1.

A horizontal vector field X on M is called basic if 7.X = X o7, where X is a
vector field on B. If X is a horizontal vector tield along 7= Yb).b € B. X will still
be called baste if 1, Xy = Tor Xpu. for all mom’ € m#-1(b). Finallv. a horizontal
one-form on M is called basic if its dual vector field is basic.

Let 3 be a geodesic in B with 3(0) = 7 and let X be the unique basic vector
field along 7= Yb) with 7..X = . For each m € ©=1(h) consider the geodesic v,
of M starting at m in direction X,,. This way we can define a diffeomorphism
he - w7 HA3(0)) = m7YA(t)). called the holonomy displacement map. Note that
every curve ¢ in © - H(3(0)) gives rise to a geodesic variation H; of v := ~ () given

by H5(t.s) := hi(c(s)). The corresponding Jacobi vector field .J along ~ is vertical

and J(t) = (H.j,).((.%) lie.0)- Moreover.

Jo=0v = ST - AL

where AJ is the adjoint of A5.

Note that if the leaves have dimension one and if |JJ(0)[ = |¢(0)} = 1 then

(8) (J(0)..J'(0)) = ~(J(0). S50/ (0)) = =K(3(0)).
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The formula above is a special case a more general result for k-dimensional Rie-
mannian foliations due to Rummnler ([28]). Let {V}.---.V%} be an orthonormal
basis for the vertical bundle at p = ~(0) and let Vi(¢t) = hg.l',. Also. consider
the function o(t) := det {Vi(¢). E (). 1 < i.j < k. where {E\(t).--- . Ex(t)} is an

orthonormal basis for the vertical bundle at v(t). We have

o' (1) = =K(3(t))o(t).

One can say that & measures the growth in the volume form of the leaves under

holonomy disp.acement.

2.3 Examples of Riemannian foliations

2.3.1 Metric product foliations

Let B and F be two Riemannian manifolds. The projection n: B x F — B from
B x F equipped with the product wetric onto 3 is a trivial Riemannian submersion
which induces a foliation on B x F. A typical leaf of this foliation is {b} x F.b € B.
Note that the leaves are totally geodesic and the normal bundle is integrable. These

are the simplest examples of Riemannian foliations.

2.3.2 Warped products

The previous example can be generalized by altering the product metric g on

B x F along the leaves. More exactly, consider a positive function o : F — R and
-)")



define a metric g on B x F by

o (X + Y1 X+ Y2) = g £ (X1. Xo) + B(f)gin g (Y1, Y20

where (0.Y7).(0.Y2) are tangent and (X.0).(X7.0) are orthogonal to the leaf
through (b. f). Observe that 7 is still a Riemannian submersion since the met-
ric has been modified only along the leaves. While in general the leaves will not be

totally geodesic. the normal bundle is always integrable.
2.3.3 Homogeneous foliations

Let M be a Riemannian manifold and H a subgroup of the isometry group of M.
[f the orbits of H have the same dimension. then they are the leaves of a foliation
By definition. any foliation obtained by the procedure above is called homogeneous.

[t is easy to see that any homogeneous foliation is Riemannian. Indeed. let O,
and Oy be the leaves through my and ma. respectively. Also consider a geodesic
~ realizing the (local) distance between my and Os. For anv h € H. h-m, € O.
and & -+ is a geodesic of the same length as ~ realizing the (local) distance between
h - my and Os and the foliation is Riemannian.

The following example is a special case of a homogeneous foliation. Let (¢ be a
Lie group endowed with a left invariant metric and let H be a subgroup of G. The
left action (h.g) = hg of H on G is an isometric action since left translations are
isometries. Consequently. the cosets {Hglg € GG} are the leaves of a honiogeneous
foliation. If H is closed (so that H\G has a manifold structure). by a standard

procedure the left invariant metric on G descends to a wmetric on H\G and the
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submersion 7 : G =5 H\G becomes Riemannian.

A notable example of the situation above occurs on
G=5"={(z1.22) €Cx C.|z1]* + |z = 1}.

regarded as the group of unit quaternions.  Consider the subgroup H =
{(e*X ety t € R}. where A and p are real numbers. The left action of H on
S% equipped with the left invariant metric induces a homogeneous foliation with
orbits given by {(e**Mz et 2) . t € R).

If A/ is rational. H is closed and all leaves are diffeomeorphic to S If A/
is irrational. the foliation contains exactly two closed leaves: z; = 0 and 2y = (.
Any other leaf is dense in a torus with equation 2y = & for some 0 < & < 1. It
is well-known that these are the only one-dimensional Riemannian foliations on $3
9.

It is also interesting to consider the right action (h.g) = gh~ ! of H on ;. In gen-
eral. the cosets {gH. g € (7} are not the leaves of a Riemannian foliation. As pointed
out in 132]. under suitable conditions. the foliation does become Riemannian. This
happeuns. for example. if H is normal or if the metric on G is Adg-invariant. Under
the weaker condition that Ady is an isomorphism when restricted to the Lie algebra
h. the metric on G projects to a metric on G/ H. Since the metric on ¢ is not in
general right invariant. this construction is a possible source for nonhomogeneous
Riemannian foliation. In fact. this idea was used in {32] to construct a nonhomo-
geneous Riemannian flow on SL(2.R). We will present this example together with

some other examples of nonhomogeneous flows in section 2.3.
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We would also like to make some comments on Riemannian foliations on quotients
of Lie groups by lattices. As before. consider a left invariant metric on a Lie group
G and the homogeneous foliation induced by the left action of a closed subgroup
H. Also. consider a discrete subgroup I acting on the right on G. Observe that [
preserves the foliation on ;. Moreover. if I is a subgroup of the isometry group
of ;. the induced foliation on G/I' s Riemannian. In fact. the induced foliation
is homogeneous since every isometry preserving the foliation on G will generate an

wsometry on (7 /1".

2.3.4 Nonhomogeneous metric flows
a) Let g denote the metric Lie algebra with orthonormal basis {V..X. Y} and

bracket relations given by:

VX =Y Y = X - Y = -X - - 1

It is easy to see that gis the Lie algebra SL(2. R). The metric How associated to the
left invariant vector field V' is metric but not homogeneous. As mentioned in [32].
in order to show the metric condition it is enough to check that < V.ELE >=10
for anv E € 1"+, The condition is entirelv algebraic and is satisfied in this case.
The following example is due to Y. Carriere ([2]) and it provides a nonhomo-
geneous one-dimensional Riemannian foliation on a compact manifold. We would
like to mention that nonhomogeneity is considered in a weaker sense here. It means
that there are no Riemannian metrics on the manifold for which the leaves of the

foliation are orbits of an isometric group action.
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b) Let 4 be a matrix in SL(2.Z) with trace(A) > 2. The automorphism A has
two real eigenvalues A; and Ay, and 0 < A; < 1 < A2 A Ay = 1. Let V7] and 15 be
the eigenvectors corresponding to A; and Aj. respectively. Let Fy and F3 be the
projections to T? = R?/Z? of the flows induced by V] and V5 on R2. The leaves of
both F| and F are dense and A induces a diffeomorphism of T? preserving these
leaves. Note that if R? and R are given the usual Euclidean metric, the Hows F
and Fy are Riemannian: in fact they are (locally) homogeneous. Now let F{ and F;
be the flows on T2 x R corresponding to F, and F,. Consider the action of Z on
T? x R given by (n.(r.t)) = (A"r.t + n). Since F| and F] are preserved by this
action. they descend to two Hows Fy and F, on the quotient manifold (T? x R)/Z.
These Hows are Riemannian but not homogeneous. The proof of this fact can be

found in [2].
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CHAPTER 3

ONE-DIMENSIONAL RIEMANNIAN FOLIATIONS

3.1 Generalities

The existence of a one-dimensional Riemannian foliation on a manifold imposes
strong restrictions on the geometry of the manifold. Consequently. not all mantfolds
admit such foliations. For example. there are no Riemannian foliations on compact
manifolds with negative Ricei curvature (125]). On the other hand. as noted in
‘8. hyperbolic spaces admit an abundance of such foliations (most of which are
nonhomogeneous) with little rigidity.

One has a very good deseription of Riemannian foliations on flat manifolds.
For example. the fibrations of Euclidean spaces are all hormogeneous (111./121).
Moreover. on compact fat manifolds every Riemannian foliation splits. While open
positively curved manifolds admit no Riemannian tibrations ([33]). one-dimensional
metric fibrations on open nonnegatively curved symmetrie spaces are either hoinoge-
neous or the base of the tibration splits (locally) isometrically ([33]). On manifolds
M™ with constant positive sectional curvature every metric fibration of M is con-
gruent to a generalized Hopf fibration ({9].[35]). If the fibration is one-dimensional,
then it is homogeneous.

Some authors define homogeneous foliations as foliations for which there exists
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a metric with respect to which the leaves of the foliation are orbits of an isometric
action. With this definition. the existence of one-dimensional Riemannian foliations
imposes topological restrictions on the manifold. Indeed. the homogeneity condi-
tion for foliations of dimension one is equivalent to the nonvanishing of the basic
cohomology space of maximal degree. The same condition is also equivalent to the
existence of a metric for which the leaves are geodesics.

While a classification of one-dimensional Riemannian foliations on manifolds of
a given dimension may be very diflicult. one does have such a classification on
three-dimensional manifolds. Y. Carriere showed that such foliations are either

homogeneous or they are conjugated to the foliation described in 2.3.4 b) ([1]).

3.2 Fundamental properties and theorems

As noted in section 2.2, the mean curvature form x plays a fundamental role
in understanding the structure of the foliation. In fact. the homogeneity of
one-dimensional Riemannian foliations is characterized entirely in terins of the

properties of x. More precisely. we have the following:

Theorem 1. (8] A one-dimensional metric foliation F is (locally) homogeneous of

and only if x is closed.

Proof. Assume F is (locallv) homogeneous. Let T be the (local) Killing vector
field induced by the isometric action and L = [T'|. Since V7 # 0. there exists a

{local) unit vector field V" = }T tangent to the leaves. If X is a (local) basic vector
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field. using the fact that T is Killing we have
(VxLV. V) + (V- LV, X) = 0. which implies
X(L) +(VxT.T) + T(L) + L{(Vy V. X) = 0.

As any Killing vector field has constant length along its integral curves. we have
X(L)+ L{(VyV.X) = 0. For ® = —In(L). we get x(X) = X(®) = dd(X). Conse-
quently. & is closed.

For the converse. assume that & is closed and note that & = d®. for some locally
defined function &. Moreover. since & vanishes on the vertical bundle. @ is (locally)
constant along leaves. If L = exp(-®) and if V" is a (local) unit vector field tangent
to the foliation then T' = LV is a Killing vector field. Indeed. it is easy to see that
(N LVVY = V(L) = LT(®) = 0. for anv horizontal X. The only condition left
to check is (Vi-LV. X)) + (Vx LV.V) = 0. But the left side equals La( X)) + X(L)

which cancels by the definition of L and the fact that x is closed. 5

Observe that on a simply connected manifold & is closed if and ouly if the foliation

is globally homogeneous. ¢ is now globally defined and the arguments are the same.

Theorem 2. [34] Let F be a one-dimensional metric foliation on a manifold with
sectional curvature bounded either from below or from above. If Kk s basic then it 1s
also closed.

Thus. in order to show that a one-dimensional metrie foliation on a space with
bounded sectional curvature is homogeneous. it is enough to show that the mean

curvature f()l‘lll K 1s basic.
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CHAPTER 4

THE MAIN RESULTS

In preparation for our first proposition we first prove the following:

Lemma. Let W be an m-dimensional inner product space. V a k-dimensional sub-
space of W.1 <k <m— 1. and Z € W such that Z is neither orthogonal to V nor
contaed in V. Let Oy be the angle made by Z with V+ and let 0 < 6, < 0 < 7/2.
There ensts a basis {hy. ha. . ... Bk} of V& such that hy makes an angle 6 uath

Z. forany 1 <i<m - k.

Proof. Let Z" be the orthogonal projection of Z onto V* and note that the con-
clusion of the lemma is equivalent to the existence of a basis as above for which
each element of the basis makes an angle a with Z% where a = cos7Hcos 6/ cos ).
In order to achieve this consider a basis {hy. ha. -+ bk} of (V= span(Zf))”
and let h,, _r = —hy. It is easy to check that the set {hy. ha.---  hy, _} with

h, = cosaZl + sineeh,. 1 < i < m — k satisties the requirements above. T

Proposition 1. Let F be a k-dimensional Riemannian foliation on H>™**' with
vertical bundle V. If v 1s a horizontal geodesic making an angle 8 € (0. %) with 2
then

1}"(2”/“)36) = L‘.‘('-)’f/""*"”)-vw(())
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Proof. Let 6, be the angle made by Z with the horizontal space at +(0) and assume
that | <k <2n-1.If# > 6,. by the lemma above one can find a set of 2n +~1 - k
linearly independent horizontal vectors {hj. h,.. ... hansi-k} at ¥(0) making the
same angle § with 2. Consider the geodesics v, starting at 4(0) in direction h,
and observe that +,(2n/cos0) = v,(2x/cos@). for any 1.5 = 1.2..... 2n + 1 — k.
Morcover. 3,(2m/cos#) = L, (2n/cosgy (hy) for any 1 < @ < 2n + 1 - k. This
implies that the set {+;(2n/cos@).i = 1.2..... 2n + 1 — k} consists of 2n + 1 — k
linearly independent vectors. Also note that since geodesies which are horizontal
at one point stay horizontal for all time. the set above is actually a basis for the
horizontal space at v, (27 / cos#). Thus. the horizontal space at ~,(27/ cos#) is the
left translation of the horizontal space at 4(0). Consequently. the vertical spaces are
in the same relation.

If § = 0y, consider the sequence 8, — 8y.n > 1 with 0, > 6y and the geodesics
vn making angles 6, with Z. respectively. Since Vi (an/cos8.) = Vai2rn/cons,) and
Voo 2n/costa) = Lo, 2n/cos8,), Vanio)- using a limit type of argument we may con-
clude that Vior/ cossy) = Ly2n/ conso), Vio)-

If £ = 2n then 4(0) and 4(27/cosf) generate the horizontal spaces at ~+(0)
and y(2n7/cos#). The conclusion of the theorem holds based on the left invariance

property mentioned above. [
Using Proposition 1 we show that if | < & < 2n — 1 then the vertical bundle
of a k-dimensional Riemannian foliation is left invariant along geodesics in central

direction.
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Proposition 2. Let F be a k-dimensional Riemannian foliation on H*™+! with

vertical bundle V and | < k < 2n - 1. Then
vp~¢'xp tZ = Lexp tZ.vp-
for any p € H*"*! and t € R.

Proof. Without loss of generality we may assume that p = ¢. Also assume that
Z is neither horizontal nor vertical at ¢ and let #y be rthe angle made by Z with
H... As we mentioned in Observation 2 from section 1.6. if v is a geodesic making
an angle # with Z and if ~(0) = ¢ then y(27/cosf) = exp(2m(l - %t:m"’())Z).
Thus. for any ¢ € R with {#{ > 2n(1 + %t;m2 #,) there exists # > #, such that
exp(tZ) = ~(2r/cosf). where ~ is some unit speed horizontal geodesic with

~(0) = e If it] > 2x(1 + L tan®6,) then the result follows as an immediate conse-

quence of Proposition 1. In order to prove the proposition for ¢ < 2x(1 + % tan f,)
it is enough to repeat the same argument with e replaced by exp(tyZ) for some t,,
with 1ty > d7x(] + é tan>fy).

If Z is either horizontal or vertical at ¢ then the proposition follows as a conse-
quence of the previous case. O

It is interesting to remark that in the case of a one-dimensional foliation. Propo-
sition 2 implies that if Z is vertical at p then the leaf through p is the geodesic
through p in the central direction. We will use this observation in the proof of

Theorem 1.



Proposition 3. Let F be a one-dimensional Riemannian foliation on H?"*'. [f
J s a holonomy Jacobi vector field along a horizontal geodesic ~ making an angle

A€ (0.7/2). with Z then

-I(ZTF/('()S”) = L,(gn/m)sg)..l(n).

Proof. As before. we may assume that v(0) = e. Let 4(0) = cos#Z + sinfX,
with X'} unit. orthogonal to Z and assume that 8 is not equal to 6. the angle
made by the horizontal space at ~(0) with Z. By Proposition 1. we have that
J0) = Ly Can/connye J (20 cos0) is vertical at ~(0) = ¢. Using the observation on
the form of the Jacobi vector fields mentioned in section 1.7 (ii). the holonomy
Jacobi vector field J along ~ can be written as
n
J = (arEr + ak).
k=1
with £y, Ex.ag. and ag given by (3) (6). Also. by (5) and (6). a; and. for k > 2. a,
and ag are periodic with period 27/ cos#. Using (7). the observation above trans-
lates to (a(27/ cosf) — ay (0))E(0) being vertical at . But E{(0) is not vertical
at e since this would imply € = . Consequently. a(0) = a,(27/cosf) and a; is
21/ cos f—periodic. thus proving the proposition in this case. Note that we also ob-
tain that |J(t)] is periodic with the same period. Moreover, k(3(t)) = —1/2(1J(H)1?Y
is periodic as well and £(3(0)) = &(¥(27/ cos§)).
If = 6. consider a sequence {h,, }n>1 of unit horizontal vectors with h,, — 7(0).

We may also assume that 6,, > 6,. where 6,, is the angle made by h,, with Z. By a
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limit argument similar to the one used in Proposition 1 we obtain

K(¥(0)) = lin’xc K(v(0)) = lim K(5,(27/cos8,,)) = K(Z(27/ cosh)).
"—> 7l —

where v, are geodesics with v, (0) = ¢ and %,,(0) = h,,.

Now consider the holonomy Jacobi tield J along ~ with L.J(0)] = 1. Since 6 = 6,,.
we have ¥(0) = ,—2—',,—,2" and. following the notation from section 1.7. .J(0) = F(0).
Consequently. a;(0) = 1 while the rest of the coefficients appearing in the formula
for .JJ cancel at t = 0 (and. by periodicity. at any integer multiple of 27/ cos ).

Using relation (8) from section 2.2 and the observations above we obtain

(J(0). J0)) = =~(F(0))LIO)? = a}(0) and

(J2r)cos0). J' (2 ) cos ) = —K(3(2n/ cos LI (2n/ cosH)? =

H

ay(2n/cos B)ay(2n/ cosd).

As noted above, K(5(0)) = &(~(27/cos#)) and the previous relations imply
u’l(‘l))u'f(27r/('()s()) = a(2n/ cosB)a(2r/ cosB). But la(2x/ cos @) = J(2n/ cos )]
cannot cancel and we get a{(0)a,(2r/cos8) = a{(2n/cosH). Using the periodicity

of a} and relation (5) from section 1.7 we obtain

Irtan?

afl(0)(1 = a;(2x/ cos ) = (a} (0))2 = 0.

oS
Thus. a}(0) = 0 and. using (5) again. a, is periodic. This proves the proposition. O

[t is important to note that the proof of the proposition above actually shows

that x(Z") = 0. which will be essential in the proof of the next proposition.
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Proposition 4. [f F is a one-dimensional Riemannian foliation on H***! then Z

makes a constant angle with V along L. for any leaf L.

Proof. Let Z = Z¥* + Z" € V& H and let’s assume that V makes an angle different
from 0 or 7/2 with Z at some point on L. Let V7 = 'Z' —=2Z". We have the following:
V(V.Z)y=(VyV.Z)+ (V.V Z) =
= (Ve V2B (V1 2% = w(2ZM) = 0.
where the second equality follows from the fact that Z is a Killing vector field and
the third one follows from (V- V. 2" = 127 (V- V.1V = 0. The last equality follows
formm Proposition 3. Hence (V. Z) is constant along L. The other two cases follow

as a consequence of the case above. -

Proposition 5. Let F be a one-dimensional Riemannian foliation on H?"**' and
let X be a basie vector field along a leaf L. Then, along L. X makes a constant

angle with the central direction Z.

Proof. We may assume that Z is not tangent to L since. by Proposition 4.
the conclusion is true if 2 is tangent to L. Note that it is enough to prove
the proposition for basic vector fields that are orthogonal to 2 at some point
p € L. Indeed. let Xy..... Xo,,_1. H be (local) basic fields along L such that
{Xap).---  Xow_i(p). H(p)} is an orthonormal basis of H,. where X (p)LZ(p).

H(p) = —r‘p—)7"(p). and Z € Z2./Z] = 1. As we will show below. X, remains or-

thogonal to Z along L forany | <: < 2n -1 and it follows that H(q) = (q i 2" (q)
for anv ¢ € L. Using the fact that Z makes a constant angle with V (and. thus.
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with %) we may conclude that |Z"| is constant along L. Hence. since H is basic.
we may conclude that Z" is basic as well. The result follows easily since any unit

: . . . . -1
basic vector field along L is can be written as X = aZ? + 3" " 4, X,. where a and

e 7h]2

a, are constants. Consequently. [cos(L(X. 2)! = la) 2 is constant.

Now let X be a basic vector field along L such that X, 1Z for some p € L and
let us show that X is orthogonal to Z along L. If p is another point of L. consider
the horizontal geodesics v and 4 starting at p and p in direction X, and X;. respec-
tively. By contradiction. assume that Xj is not orthogonal to Z and let J and J
be holonomy Jacobi fields along v and 5. Using the form of the Jacobi fields along
geodesics orthogonal to Z given in 1.7(i). it is easy to see that cos(£(J(t). Z)) is the
quotient of a polvnomial by the square root of another polvnomial. Consequently.
as t = x. cos(L(J(t). 2)) eonverges to some «a € [0. 1. But. by Proposition 3.

t — cos(LJ(t). Z2)) is a periodic function. This is a contradiction since. by Propo-

—

sition 1. J(t) and J(t) make the the same angle with 2.

Remark. Let v be a horizontal geodesic for which 4(0) LZ and let .J be a Jacobi
vector field along 4. As noted above. the coetficient of Z in the expression for .J
is. in general. a degree three polvnomial. We claim that if J is a holonomy Jacobi
field then this polvnowmial has degree at most two. To see this. choose a sequence
of horizontal geodesics v, with 4 (0) = 4(0) and £(A«(0). Z2) < m/2. Let J; be the
holonomy Jacobi field along v, with J;.(0) = J(0). Combining the form of .Ji along

i (see section 1.7(ii)) with the additional restrictions imposed by Proposition 3.
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it is easy to check that
fity =(J(t).Z) = leIL(JkU)-Z)
is a polvnomial in t of degree at most two.

Theorem 1. Let F be a one-dimensional foliation on H*™*! equipped with a left

mvarwant metric. F s Riemannian if and only of it 1s homogeneous.

Proof. Let p and p be two points on the same leaf. Also. let X and X be the values
of a basic vector field at p and p. respectively. We want to show that &(X') = ~( X).

Observe that X (and X) mayv be chosen to be orthogonal to Z since. for Z € Z with

|1Z1 = 1. we already have that Z® is basic and x(Z") is constant along individual
leaves.

Let ~ and 5 be horizontal geodesics with 4(0) = X and w.f(()) = X. Recall that if
J is the holonomy Jacobi field along v with i.J{0)] = 1 then. by (8) in section 2.2.
we have x(.X) = —(J'(0)..J(0)). Using Proposition 4 and the form of the Jacobi

fields given in 1.7(1). we obtain

()] ; )l

= = lc¢os . . = | COs . A = — .

T leos(L(J(t). Z))| = |cos(L(J(t). 2 ST
where ./ is the holonomy Jacobi field along 5 with ./(0)! = 1. The relation above
implies
(9) FOWnP = FAn?

Let’s denote [J(t)[2 by h(t) and !.i(t)l2 by h(t). Note that h and h cannot have any

real roots since a holonomy Jacobi field cannot have any zeroes. Also note that f
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and f are polynomials of degree at most two. while & and h have degree at most

four.

We will show that h = h. provided that f is not identically zero. Note that h = h

is enough to conclude that x is basic since x(.X,) = —A'(0) and n(X) = =h'(0).

If f =

0. in order to show that x is basic we will adapt the technique used in

Theorem 1.1 from [11]. First, assume f is not identically zero and consider the

following cases:

(1)

(2)

f and f are not relatively prime

By (9) and the observations above., we must have f = af. for some real
number «. Indeed. since f and f are not relatively prime they must have
the same degree since otherwise either J or J will have a zero. For the same
reason. the common factor of f and f must he of degree two. Thus f =uf.
which implies h = h/a?. Since A(0) = h(0) = 1. we have h = h.

f and f are relatively prime

In this case we get that f2 divides h. Consequently. f? divides h — f2. Note
that if A(0) = f2(0) then the Z is vertical at p and the leaf through p is
the geodesic in the central direction along which & is basic. If h(0) # f2(0).
then the degree of h — f? is less than or equal to two. By degree count.
f must have degree at most one. But f cannot have degree one since f?
divides & and A has no real roots. Thus. f is constant. A similar argument

shows that f must be constant. If f # 0. as before. we obtain b = h.
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Let’s discuss the case when f is identically zero. By 1.7(i) and (9). ¢. f. and
g are also identically zero. This implies that the vertical bundles at p and p are
orthogonal to span{ X.jX.Z} and span{X.jX.Z}. respectively.

Let A = (X)) and consider the vector field Jy(t) = (1 — A)E o ~(t) along
~v. where E is the left invariant vector field defined by the condition that E, is
vertical of unit length. Based on the observations above, .J, is a Jacobi vector
field. Moreover. Ji(0) = —AJo(0) = ~S;5.)J0(0). Thus, if 7 is the Riemann-
ian submersion locally defining F. Jy projects to a Jacobi field =.J, along 7 o~
(see [20]). Assuming A # 0.7 o~ has a conjugate point at 1/A. By Lemma 1 in
[20]. there exists a unique Jacobi field Jo along ~ such that =0, = x.Jo.
Jo(1/A) = 0. and Ji¥ +S:J8 + A JP = 0.But Jy = (1 - AH)Eo4. where E is the left
invariant vector field for which [;‘,-, is vertical and of length one. To see this, recall

-

that Jy(0) is orthogonal to X.jX. and Z. Thus. the coefficients of Z and ¥ = ;X
in the expression of Jy from 1.7(i) will cancel at + = 0. Since thev also cancel at
t = 1/A. they must be identically zero. Based on 1.7(1) again and the fact that Jo
cancels at + = 1/A. we may conclude that Jy has the form above. Now. if we let
t=0in JE+ 8oy + AP = 0, we get k(X)) = = < S do(0). Jo(0) >= ALJy(0)]2.

Consequently. K(X') = A. In view of the above. the same must be true if A = (.

Consequently ~ is basic and we are done. O

In [32]. G.Walschap shows that every codimension one Riemannian foliation on
2 . . . . . .
H?"*1 s actually left invariant and is generated by an ideal of the Lie algebra

. . . - . 92
han+1- Thus. the foliation is given by cosets of the form {gK.g € H*"*1}, where
12



K is a normal subgroup of H?*1. As noted in section 2.3, all such foliations are
homogeneous.
Using the result mentioned above in conjunction with Theorem 1. we obtain the

following:

Theorem 2. All Rirmannian foliations on H® are homogeneous.

The following theorem generalizes a result of G.Walschap ([31]) regarding

one-dimensional  Riemannian  foliations on  three-dimenstonal  nilmanifolds.

N . 9
Theorem 3. Let U be a lattice tn H***'. There ensts a unique one-dunensional
Riemannian foliation F on T\NH**'. F 15 homogeneous and its lift to H>"*' has

vertical bundle Z.

Proof. Let F be the lifted foliation. Note that F is a one-dimensional Riemannian
foliation on H?"*!'. By Theorem 1. any such foliation is homogeneous. But then F
is also homogeneous since the isometric action defining F descends to an isometrie
action on T\ "+t

According to [5]. the identity component of Iso(T\H?*"*!) is C/C N I'. where
C is the center of H*"*' If my : C - C/CNT and m @ H?™*Y o [\H!
denote the projection maps then the action of C/C N T on T\H**+! is given by
(mi(c). ma(h)) — ma{ch). Consequently. the leaves of the lifted foliation are orbits of
C acting on the left on H2"*! and the conclusion follows. Note that we obtain a

. . »
principal circle bundle over T-". [
13
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Theorem 2 remains valid for Riemannian foliations on '\ H3. This is due to the
fact that there are no two-dimensional Riemannian foliations on T\ H3. Indeed. if F
is such a foliation. by Theorem 2. its lift must be homogeneous. But then F must
also be homogeneous and this is impossible because the dimension of the isometry
group of F\H?"*! is one. The same type of argument used in conjunction with
the homogeneity of Riemannian foliations of codimension one on H***! implies the

following:

Proposition 6. Let I be a lattice in H*"*+'. There are no Riemannian foliations

9
of codimension one on T\ H*"+1,

+H



CHAPTER 5

CONCLUDING REMARKS

The main goal of our dissertation is to show that one-dimensional Riemannian
foliations on the Heisenberg group are homogencous. In section 1.5 we describe the
corresponding Killing vector fields associated to these foliations. Using our result
and the homogeneity of codimension one foliations ({32]). we conclude that every
Riemannian foliation on the three-dimensional Heisenberg group is homogeneous.
As noted in [311. the same is true on U\H3, where [ is a lattice in F2. In chap-
ter 4 we give another proof for this theorem and we improve it by showing that
there are no codimension one foliations on T\ H?"*!. We also show that the only
one-dimensional Riemannian foliation on the space above oceurs as the projection

of the foliation on H***! with leaves tangent to the center.

Some interesting geometric properties for Riemannian foliations of any dimen-
sion on the Heisenberg group are also derived. It would be interesting to investi-
gate whether all these foliations are homogeneous. If valid. the previous statement
would imply that there is only one Riemannian foliation on F\H?***!. This is the

one-dimensional foliation described above.

We expanded our inquiries to one-dimensional Riemannian foliations on semi-

simple Lie groups and showed that they are also homogeneous provided the leaves
15



are closed. This result is not included in the dissertation and will soon be submitted

for publication.
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