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Abstract

Severe weather, and specifically tornadoes, can pose a significant threat to prop-

erty and human life. Tornadic storms have been extensively studied using radar

observations for decades, and some more recent studies have started to incorpo-

rate satellite-derived variables when investigating thunderstorms. In preparation

for GOES-16 operations, characterized by increased temporal and spatial resolu-

tion over existing geostationary satellite imagery, a dataset of several thousand

storms are analyzed using NEXRAD WSR-88D radar observations and 1-minute

super-rapid scan GOES-14 observations from cases during 2011-2016. Radar-based

storm tracks and parallax corrections (applied to GOES imagery) are used in order

to facilitate detailed storm-based comparisons between the datasets, and to link

individual storms to tornado reports from the National Centers for Environmental

Information.

The goal of this study is to determine if tornadic storms exhibit any dis-

tinguishing features from non-tornadic storms in this combined dataset, and how

far in advance of a tornado the data would display any distinctive characteris-

tics. The variables examined include dynamical variables such as rotation and

divergence (radar and satellite), implied ascent from single-Doppler radar winds,

polarimetric radar signatures, and overshooting tops (radar and satellite). The

project incorporates statistical methods for analysis. The data is partitioned into

storm populations and modes based on linkages with observed tornadoes and dis-

tinct physical and/or dynamical characteristics. Assessments of convective updraft

characteristics from the radar and satellite datasets are strong discriminators for
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tornadic and non-tornadic storms. The data also exhibits differences for sepa-

rate tornado intensities, where the storms that produce stronger tornadoes on the

Enhanced Fujita scale have stronger updrafts during the tornadoes.

The results were tested with a simple, objective threshold method and

compared to the National Weather Service’s tornado warnings for the same storms,

which resulted in higher probability of detection and lead time at a comparable

false alarm ratio and skill for the objective method. A more sophisticated method

of utilizing these results could be incorporated into nowcasting algorithms in order

to improve lead time for tornadoes or increase the confidence of a tornado being

present when observations are limited.
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Chapter 1

Introduction

1.1 Motivation

Tornadic storms have been extensively studied using ground-based weather radar

observations and satellite observations during the past four decades. A common

goal of historical efforts has been enabling improvements in tornado prediction,

which can save lives. Substantial efforts are almost always underway to improve

tornado warnings, including ongoing projects like Warn-on-Forecast and PROB-

SEVERE (Stensrud et al., 2009; Cintineo et al., 2014). Despite these efforts, the

time from a warning being issued to a tornado occurring (commonly known as the

warning lead time) has stayed the same from 1986-2011, averaging 18.5 minutes

(Stensrud et al., 2013; Brooks and Correia, 2016).

There are different types of tornadic storms, but most varieties generally have

a strong updraft (Bluestein, 2013). The storms that are the most likely to be able

to produce tornadoes are supercells, which are categorized by a rotating updraft

(Doswell and Burgess, 1993). These are able to produce tornadoes of all intensities.

It is also possible to generate tornadoes without a rotating updraft. For example,

one of the mechanisms for tornadogenesis in mesoscale convective systems (MCSs)

allows tornadoes to be created due to preexisting vertical rotation in low-levels

(Wakimoto and Wilson, 1989). These tornadoes are commonly weaker than those
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produced by supercells, but have been known to still reach strengths of EF2 on

the Enhanced Fujita Damage Scale, which ranges from 0 to 5. Tornadoes are

not resolved by operational radars, but some of the characteristics of tornado-

producing storms are routinely observed, such as hook echoes, bounded weak-

echo regions (BWER), or debris signatures. More recently, tornadic storms have

also been investigated by satellites, and signatures such as overshooting tops and

cloud-top cooling rates are currently being associated with severe storms, but not

tornadoes alone (e.g., Cintineo et al., 2013; Bedka et al., 2015).

Forecasting severe and tornadic storms hours to days in advance has largely

been accomplished using predicted or measured properties of the near-storm en-

vironment (e.g., Parker, 2014). These include winds, temperature, moisture, and

related variables such as convective available potential energy (CAPE) and verti-

cal wind shear. While both individual environmental variables and unique com-

binations of different variables have proven to be useful predictors of tornadoes,

it is difficult to utilize such data in the tornado-warning process given the lim-

ited number of observations available at scales necessary to resolve the near-storm

variability (Parker, 2014; Thompson et al., 2003). In addition, the near-storm

variability in environmental conditions (regardless of whether or not it is prop-

erly resolved) leads to considerable overlap in the parameter spaces occupied by

tornadic and non-tornadic storms, which makes it challenging for a forecaster to

determine which storms will and will not be tornadic within a given environment

(Anderson-Frey et al., 2016).

Observing systems in the United States provide unparalleled measurements

of storms at high spatial and temporal resolution and for long time periods. A

network of ground-based weather radars known as the Next-Generation Weather

Radar (NEXRAD) program provides three-dimensional observations of storms at

approximately 5-minute increments (Crum and Alberty, 1993). Satellite imagery
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from the Geostationary Operational Environmental Satellite (GOES) constellation

provides cloud-top visible and infrared (IR) wavelength measurements of storms

at frequencies of 15 minutes or less (Menzel and Purdom, 1994). As of December

2017, GOES-16 provides imagery with temporal resolutions of 30 seconds to 1

minute over 1000×1000 km regional domains, and every 5 minutes over much of

North America (Schmit et al., 2005). Prior to GOES-16, GOES-14 was used in

experimental mode to acquire 1-minute resolution data, with a focus on severe-

storm analyses (Schmit et al., 2013). GOES-13 and -14 datasets are used in this

study. GOES satellite observations are expected to increase in value with the

upcoming addition of GOES-16 to operations, which has 4 times finer spatial

resolution and as much as 2 times finer temporal resolution than the GOES-14

super rapid scan experiments used here.

This study is a part of a collaborative effort between National Aeronautics

and Space Administration Langley Research Center (NASA LaRC), the Univer-

sity of Alabama, Huntsville, and the University of Oklahoma to keep improving

current understanding of tornadic storms using high temporal remote sensing in-

struments. Nowcasting algorithms have become an important tool for forecasters

when predicting severe weather, and this study aims to examine the usefulness of

high-resolution radar and satellite observations near cloud top.

1.2 Evolution of Tornadic Storms and Tornadoes

It has long been known that tornadoes require a few specific ingredients to develop

in supercells, but tornadoes seldom occur even when all of the necessary ingredients

exist. In order for a tornadic supercell to form, the environment needs to be moist

and unstable, air must be lifted to form storms, and there has to be strong vertical

wind shear (Markowski and Richardson, 2009). These ingredients can result in

deep, rotating updrafts that have been associated with tornadoes for decades (e.g.,
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Lemon and Doswell III, 1979; Klemp, 1987; Doswell and Burgess, 1993). Although

this is true and these conditions are required, they are not necessarily sufficient to

produce tornadoes as storms can exist in these conditions without ever producing

a tornado.

Current understanding of tornadogenesis in a supercellular storm starts by

the updraft tilting horizontal vorticity (as a result of the wind shear) into the

vertical, which creates a mid-level mesocyclone (Davies-Jones, 1984). The rear-

flank downdraft (RFD) further tilts horizontal vorticity into the vertical in the

low-levels. Strong convergence, and hence a strong updraft, is needed to increase

this ground-level vorticity through stretching. Friction has also recently been found

to be important in the generation of tornadoes, where it is needed for the rotating

column to contract further when cyclostrophic balance is reached (Davies-Jones,

2015).

For non-supercells, the process of tornadogenesis may occur through other

mechanisms or there could be a supercell embedded within if the storm is a

mesoscale convective system. One mechanism that can explain tornadogenesis

in storms with no mesocyclone is the stretching of preexisting vertical vorticity

near the ground. This vertical vorticity can be generated by boundaries where

there is existing shearing instability and is stretched by converging air near the

ground as a result of a strong non-rotating updraft (Wakimoto and Wilson, 1989).

Another mechanism that is thought to contribute to non-supercell tornadogenesis

is a process happening along an outflow boundary with perpendicular environmen-

tal flow (Bluestein, 2013). Smaller vortices are created and pair up and merge into

a stronger, bigger vortex. As in supercell tornadogenesis, friction is thought to be

of importance for non-supercell tornadogenesis (Xu et al., 2015).

4



1.3 Radar and Satellite Observations of Tornadic

Storms

To distinguish tornadic storms from non-tornadic storms, meteorologists have ex-

amined unique radar signatures that often precede tornadogenesis, such as hook

echoes, weak echo regions, inflow notches, bowing line segments, and low-level ro-

tation, which were key to early improvements in tornado warnings (Fujita, 1958;

Browning and Donaldson, 1963; Lemon and Doswell III, 1979; Przybylinski, 1995).

The first observation of a hook echo happened in April of 1953 (Stout and Huff,

1953), which was later analyzed by Fujita (1958) where he explored the hook echo

in relation to the storm’s rotation and linked it to tornadoes. Hook echoes usually

appear in the lowest radar scans and are caused by the wrapping of hydromete-

ors into the rotating updraft near the RFD. Although hook echoes are commonly

observed with tornadic supercells, it is possible to have a non-tornadic storm with

a hook echo (e.g., Forbes, 1981) or for the hook echo to be non-existent prior to

tornadogenesis (e.g., Garrett and Rockney, 1962).

Weak echo regions (bounded or unbounded) are also associated with super-

cells and often tornadoes. They are characterized by regions of low reflectivity

surrounded or partly surrounded by high reflectivity. Weak echo regions are typi-

cally evident in the low-levels, while bounded weak echo regions are found in the

mid-levels. The weak echo regions are caused by strong updrafts lofting particles

of all sizes to higher altitudes, keeping them from falling to the surface within the

updraft (Browning, 1965).

Bowing line segments are often severe and book-end vortices can be an indicator

of a tornadic storm (Parker, 2014). These are caused by a rear-inflow jet pushing

a line of storms ahead of a broader translating storm system. Inflow notches show

up in radar imagery as notches of weak echo on the rear end of a bow echo, and
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are a result of a strong rear-inflow jet. Inflow notches can also be an indicator of

severe weather (Przybylinski, 1995).

Perhaps one of the most commonly identifiable radar signatures for tornadoes

is the tornado vortex signature, which is evident as a radial velocity couplet (strong

and adjacent outbound and inbound velocities) in the low-levels (Burgess et al.,

1975). This is a sign of strong rotation, and while the WSR-88D radars cannot

resolve the tornado itself, the low-level rotation is a good indicator of a tornado.

More recently, studies have examined polarimetric variables in tornadic storms,

where areas of low differential reflectivity and correlation coefficient within the

low-level vortex, which are indicators of non-meteorological scatterers, can signify

debris signatures from tornadoes (e.g., Ryzhkov et al., 2005).

Tornado detection has largely focused on low-level observations from ground-

based weather radars to date, as the low-levels are where tornadoes occur, but

recent work has increasingly focused on satellite imagery of severe storms (e.g.,

Bedka et al., 2015; Gravelle et al., 2016). Satellite-observed cloud-top features

associated with severe storms include the “Enhanced-V” signature, rapid cloud-top

cooling, anomalous cloud-top flow characteristics (strong divergence and couplets

of high positive and negative vorticity), overshooting storm tops (OTs), and above-

anvil cirrus plumes (McCann, 1983; Cintineo et al., 2013; Bedka et al., 2015; Line

et al., 2016; Apke et al., 2016; Homeyer et al., 2017). All of these features are in

one way or another produced by strong upward motion within severe storms.

OTs have been studied in relation to severe weather using satellite since the

late 1970s - early 1980s after the launch of the first GOES satellite (e.g., Reynolds,

1980; Heymsfield and Blackmer Jr, 1988). OTs are characterized by relatively low

infrared brightness temperatures and “cauliflower-like” texture in visible imagery.

The Enhanced-V signature was first linked to severe weather by McCann (1983),

and is identified by relatively cold IR brightness temperatures in the shape of a
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“V” around a region of warmer temperatures. The mechanisms behind this sig-

nature have had several hypotheses that were recently investigated by Homeyer

(2014), where it was found that the most likely explanation for the Enhanced-V

signature is above-anvil cirrus clouds. Above-anvil cirrus have also been linked to

severe storms without the accompanying Enhanced-V (Bedka et al., 2015), and

have proved to be a robust predictor of hazardous weather. Homeyer et al. (2017)

found that above-anvil cirrus are likely clouds that are injected into the lower

stratosphere. These cloud features are often referred to as “plumes” given their

chimney plume-like appearance in visible satellite imagery.

Winds have been calculated from tracking clouds in satellite imagery for decades

(e.g., Hubert and Whitney, 1971), but have only recently been used to analyze se-

vere weather. Analyses of severe storms have only been possible due to increased

temporal resolution of satellite imagery, which makes it possible to resolve higher-

density atmospheric motion vectors (at meso scales) for storm tops (Bedka and

Mecikalski, 2005; Apke et al., 2016). Apke et al. (2016) found that signatures of

strong cloud-top divergence and vorticity couplets are indicators of severe storms.

Increased resolution and the development of objective identification and track-

ing of some of these signatures have provided valuable information in the now-

casting of severe storms. For example, Mecikalski et al. (2008) evaluated fields of

developing cumulus from satellite in order to predict convective initiation, while

Cintineo et al. (2013) investigated several metrics to identify severe storms using

satellite.

This study combines the radar and satellite datasets, as has been done pre-

viously by e.g., Wexler and Blackmer Jr (1982); Dworak et al. (2012); Cintineo

et al. (2013); Bedka et al. (2015). However, the examination of a large sample of

storms, the inclusion of upper-level radar metrics, and the focus of this work on

distinguishing between tornadic and non-tornadic storms makes this study novel.
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Chapter 2

Data and Methods

2.1 Cases

This study examined 29 severe weather days in the United States during 2011-2016

that comprised more than 8000 storms, of which 335 produced tornadoes (Table

2.1). Severe weather days were chosen to represent a wide range of environmen-

tal conditions, tornado frequencies, and tornado strengths. Nine of the 29 days

were chosen due to the availability of GOES-14 super rapid scan data (1-minute

frequency), which is necessary to calculate satellite-based cloud-top divergence

(Apke et al., 2016). The days where GOES-14 data was available are bolded in

Table 2.1.

The domain of the combined cases is shown in Figure 2.1. The cases are

clustered mainly in the central U.S., but extend through most of the eastern United

States and the Mississippi Valley.

The southeast United States “Super Outbreak” of April 2011 was included in

this study, but has been excluded from the overall analyses because an event of

this magnitude is extremely rare and included over 1000 storms (>10% of the

entire 29-day dataset), which (if included) could skew the results of the analysis.

However, it was analyzed separately to confirm the general results of this study.
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Table 2.1: Overview of cases.

Max Day-1 Analysis Domain Coordinates

No. Storms No. Supercells No. SPC Tornado [lon0, lat0, lon1, lat1]

Date (No. Tornadic) (No. Tornadic) Tornadoes Risk (%) (◦W and ◦N)

*26-27 April 2011 1098 (62) 49 (34) 267 30/45 [97.0, 30.0, 81.0, 37.0]

22 May 2011 469 (21) 28 (13) 59 15 [95.5, 35.5, 87.0, 46.5]

24 May 2011 450 (24) 29 (18) 64 45 [101.5, 32.0, 92.5, 39.0]

9 April 2012 30 (1) 5 (1) 6 5 [101.0, 33.5, 95.0, 37.5]

13 April 2012 97 (3) 12 (3) 14 10 [100.5, 34.5, 95.0, 37.0]

14 April 2012 313 (23) 17 (14) 96 45 [101.0, 36.0, 95.5, 41.5]

20 May 2013 246 (16) 23 (13) 35 10 [99.0, 31.5, 93.0, 40.0]

31 May 2013 391 (14) 27 (8) 36 15 [99.0, 34.5, 87.0, 40.5]

12 June 2013 555 (10) 0 (0) 21 15 [96.0, 38.0, 80.0, 45.0]

27 April 2014 223 (8) 10 (7) 21 30 [99.0, 34.0, 91.5, 42.0]

10 May 2014 112 (2) 18 (2) 5 5 [99.0, 36.0, 90.0, 43.0]

11 May 2014 330 (10) 15 (6) 41 15 [102.0, 36.0, 92.0, 44.5]

21 May 2014 54 (2) 1 (1) 5 10 [106.0, 37.5, 101.0, 41.0]

16 June 2014 406 (10) 10 (4) 40 15 [100.0, 41.0, 89.0, 44.0]

17 June 2014 155 (7) 14 (7) 16 10 [106.0, 41.5, 94.5, 48.0]

18 June 2014 79 (5) 7 (5) 13 10 [100.0, 43.5, 98.0, 46.5]

13 October 2014 707 (17) 0 (0) 24 15 [95.5, 29.5, 84.5, 40.5]

6 May 2015 202 (23) 30 (18) 52 10 [100.0, 32.5, 95.5, 41.5]

19 May 2015 329 (13) 35 (12) 36 5 [103.0, 29.0, 94.0, 37.0]

24 May 2015 123 (1) 2 (1) 10 5 [105.0, 36.0, 97.0, 41.0]

25 May 2015 669 (18) 0 (0) 28 10 [105.0, 25.0, 89.0, 41.0]

27 May 2015 387 (8) 25 (8) 18 5 [104.0, 29.5, 96.0, 41.5]

4 June 2015 290 (3) 12 (3) 23 5 [108.0, 34.0, 93.0, 43.0]

23 December 2015 137 (7) 4 (3) 26 15 [92.5, 33.5, 84.0, 42.0]

15 April 2016 160 (4) 4 (3) 12 5 [104.0, 34.5, 99.0, 40.5]

9 May 2016 199 (10) 13 (10) 26 10 [100.0, 33.0, 94.0, 41.5]

24 May 2016 150 (11) 18 (10) 44 10 [104.0, 35.5, 97.0, 41.0]

25 May 2016 17 (2) 4 (2) 6 5 [99.5, 35.5, 95.0, 40.0]

Total 8378 (335) 412 (206) 1044 – –
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Figure 2.1: Domains for all cases.

Four of the 29 cases contained storms that produced EF5 tornadoes. The

leading motivation for picking these cases was due to the rarity of the strongest

tornadoes. Though stronger tornadoes usually last longer than the weaker ones,

the number of data points per tornado strength category in this study is smaller

for EF5 tornadoes, while data counts for the remaining categories (EF0 to EF4)

are comparable.

Mesoscale convective systems (MCSs) were the dominant storm mode for six of

the 29 severe weather days; the rest were dominated by discrete convection. MSCs

are associated with weaker tornadoes and MCS tornadogenesis has a different

evolution than that for supercells (Markowski and Richardson, 2009). Tornadoes

are sometimes hard to forecast for MSCs, but it is demonstrated that the methods

of this study can distinguish between tornadic and non-tornadic storms regardless

of storm mode.

In addition to selection based on GOES-14 data availability and tornado strength,

some events were chosen because they were high-profile cases, some due to visual
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confirmation of tornadoes by a team member, and others because there were spe-

cific storms that were not warned prior to producing a tornado.

58-104 different variables were calculated for or linked to the storms for each

case depending on what data was available. Some were calculated for quality con-

trol (e.g., location of divergence signatures from satellite) or as potential variables

for studies of a different focus (e.g., wind or hail reports), while others are be-

ing omitted from discussion due to little-to-no difference between tornadic and

non-tornadic populations.

2.2 Radar

Next-Generation Weather Radar (NEXRAD) Level II (i.e., volume) data was re-

trieved from the National Centers for Environmental Information (NCEI). The

NEXRAD network consists of more than 100 WSR-88D S-band (10-11 cm wave-

length) radars that observe clouds and precipitation on a polar grid in range,

azimuth, and elevation relative to the location of the radar. All NEXRAD ob-

servations used in this study were obtained at a range resolution of 250 m, an

azimuthal resolution of 0.5 degrees for the lowest 3-4 elevations and 1.0 degree

otherwise, and typically at 14 elevations per volume. Each Level II volume in-

cludes (at a minimum) the radar reflectivity at horizontal polarization ZH that is

proportional to the size and/or density of cloud- and precipitation-sized particles

in a radar volume and is in units of dBZ, and the radial velocity (VR), a measure

of the motion of cloud- and precipitation-sized particles toward and away from the

radar location, in units of m s−1.

The radar data was processed using the four-dimensional space-time merging

methods described in Homeyer et al. (2017) and references therein, which resulted

in volumes of the radar variables at 2-km horizontal resolution, 1-km vertical res-

olution, and 5-minute temporal resolution over the entire extent of each analysis
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domain (see also information available at http://gridrad.org). Merging of VR

from multiple radar volumes onto a common grid is challenging, largely due to

the fact that VR is a measure of the motion of scatterers toward and away from

the radar, such that any given measurement has a unique geometry and thus is

incomparable to a measurement made at the same location from a different radar.

In order to overcome this challenge, derivatives of VR must be merged instead.

For this study, the radial derivative (in spherical coordinates) of VR (radial di-

vergence) and the azimuthal derivative (azimuthal shear or rotation) are merged,

both of which are computed using centered differencing.

Merging of the VR derivatives requires multiple quality-control steps. First,

since VR is prone to large errors in magnitude and sign due to aliasing (i.e.,

winds that exceed the maximum detectable VR at a given operating frequency

– the Nyquist velocity – and become “folded”), the winds must be de-aliased prior

to computing the derivatives. De-aliasing is performed using the Python ARM

Radar Toolkit (Py-ART; Helmus and Collis, 2016). For use in this merging proce-

dure, a Py-ART routine was invoked that does not require a reference atmospheric

wind profile and is more computationally efficient than alternative approaches –

dealias region based, which accomplishes de-aliasing by modeling the problem as a

dynamic network reduction (see http://arm-doe.github.io/ for additional de-

tail).

Following de-aliasing, random fluctuations of VR in each azimuthal sweep (a

360-degree scan made at a single elevation) are further suppressed first by using

a 3×3 median filter and second by using a 5-gate running-mean range filter prior

to computing the radial and azimuthal derivatives (divergence and rotation). The

derivatives are then calculated using the quality controlled VR and merged into the

large-area, multi-radar dataset following the procedure in Homeyer et al. (2017).

In order to avoid potential artifacts within weak radar echo, VR derivatives are
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only analyzed within ZH ≥ 30 dBZ in this study. The divergence maximum above

an altitude of 8 km (upper-level) and the convergence maximum – or divergence

minimum – below 3 km (lower-level) were calculated for each storm at each time

step. Maximum cyclonic rotation was also calculated for the lower- and upper-level

altitudes, as well as for the mid-levels (4-7 km).

Relationships between the horizontal divergence and vertical velocity are made

for the atmosphere using the mass continuity assumption. For an incompressible

atmosphere (one with negligible changes in density with altitude), the equation for

mass continuity is as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.1)

where u, v, and w are the x, y, and z components of the three-dimensional

wind. The first two terms in Equation 2.1 comprise the horizontal divergence.

Rearranging Equation 2.1 and integrating in altitude provides the vertical velocity

w. Mass continuity for an incompressible atmosphere is a good approximation for

shallow motions on Earth, so it is not a good quantitative measure when consid-

ering deep convection since the density decreases approximately logarithmically in

Earth’s atmosphere with increasing altitude. It can still give a satisfactory pic-

ture of the qualitative vertical motion, but a more accurate approach for deep

convection is to use the anelastic approximation for mass continuity:

ρ
∂u

∂x
+ ρ

∂v

∂y
+ ρ

∂w

∂z
+ w

∂ρ

∂z
= 0 (2.2)

where the atmospheric density ρ is a function of altitude, and the product of ρ

and the horizontal divergence is known as the “mass flux divergence”, typically ex-

pressed in units of kg m−3 s−1 rather than s−1. Both the flow divergence (the terms

from Equation 2.2) and the mass flux divergence (the product of flow divergence

and observed atmospheric density) are shown in this study. Mass flux divergence
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is computed for radar data using the atmospheric density at the altitude of the

radar measurement.

Implied ascent was calculated using the incompressible version of the continuity

equation (Equation 2.1) by integration in altitude between low-level convergence

and upper-level divergence maxima in each grid column, which introduces several

potential errors, but is still shown here to be interpreted qualitatively. The median

and maximum implied ascent values for each storm were calculated within 10 km

of the storm location, as well as the area of ascent exceeding 10 m s−1. The area

of strong implied ascent is synonymous to updraft width.

Spectrum width, or the standard deviation of velocity estimates within a radar

volume, is extracted from the radar data where the radar reflectivity is greater

than 30 dBZ. Spectrum width is influenced by different factors including shear

from the radial velocity and turbulence (Doviak and Zrnić, 1993). The turbulence

component has been linked to updraft strength (Feist et al., 2017). The column

maximum spectrum width and its maximum value below 3 km are calculated for

analysis of each storm.

Echo-top altitudes are computed for this study using multiple ZH thresholds,

though the 40-dBZ echo-top altitudes are used for analysis. The echo-top altitudes

are computed at every horizontal grid point by finding the highest altitude where

ZH exceeds the specified threshold, provided that ZH was also greater than the

threshold in the next two lowest altitude layers.

The dual-polarization variables considered in this analysis are correlation co-

efficient and differential reflectivity. The column minimum for each variable was

calculated for each storm where the reflectivity is at or above 45 dBZ in order

to reduce influence by non-meteorological targets and identify possible large hail

signatures. Correlation coefficient (or ρHV ) is a measure of the variety of the hy-

drometeor shape, orientation, or phase within the sample volume, where lower
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values signify a larger variation. Reductions in ρHV below a value of about 0.97

are indicative of mixed-phase regions (e.g., melting layers) or non-meteorological

echoes. The differential reflectivity (or ZDR) is the difference between the horizon-

tal and vertical reflectivity factors, where values near zero signify spherical shape of

hydrometeors within the radar sample volume. ZDR values near zero are therefore

often a good indicator of large hail and negative ZDR values are often indicative of

large wet hail (Balakrishnan and Zrnić, 1990). Columns of high ZDR values can be

created by lofting of supercooled liquid above the freezing level and are indicative

of a strong updraft (Kumjian et al., 2014).

Analyses of all datasets on an individual storm basis in this study was fa-

cilitated through objective radar-based storm tracking. In particular, individual

storm tracks were computed for each severe weather day using an echo-top algo-

rithm described in Homeyer et al. (2017). Local maxima in echo-top altitudes

are identified in each 5-minute radar volume and linked together in time if they

lie within close proximity to each other. For this study, tracking is accomplished

through time linking of ZH = 40 dBZ echo-top maxima, filtered by the convective

echo classification output by the Storm Labeling in 3 Dimensions (SL3D) algorithm

(Starzec et al., 2017). The objectively tracked storms were reviewed to manually

identify and merge discontinuous tracks that correspond to the same storm. The

quality-controlled storm tracks were then used to extract maximum values from

each dataset within a 10-km radius of the storm location at 1-minute intervals,

with observations made at coarser resolution than 1-minute interpolated linearly

in space and time to the storm track location. Such interpolation was only per-

formed for data with time coverage gaps less than or equal to 5 minutes. Figure 2.2

shows the resulting tracks from all storms exceeding 30 minutes in length analyzed

in this study.
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Figure 2.2: Storm tracks of at least 30 minutes in length from all 28 cases.

Variation in color is arbitrary and meant to improve interpretation of overlapping

storms.

2.3 Satellite

Geostationary Operational Environmental Satellite (GOES) imagery was also re-

trieved from NCEI. GOES is primarily a constellation of two operational satel-

lites that continuously monitor the weather over the United States: GOES-West

stationed at 135◦W and GOES-East at 75◦W nadir longitudes. For the time pe-

riod analyzed in this study, GOES-15 was operational in the West position and

GOES-13 was operational in the East position. GOES-13 and -15 provide visible

and infrared (IR) imagery at 5- to 15-minute intervals. A spare GOES satellite

(GOES-14), positioned at 105◦W, has been used for experimental super rapid scan
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observations in preparation for GOES-R (1-minute frequency; SRSOR) during var-

ious periods since late summer 2012 (Schmit et al., 2013). For nine severe weather

days (bolded in Table 2.1), 1-minute imagery from GOES-14 was used for analy-

sis. For the remaining severe weather days, imagery from GOES-13 was used. The

visible imager aboard the GOES-13 and -14 satellites has a horizontal resolution

of 1 km at nadir, while the IR imager has a horizontal resolution of 4 km at nadir

and an absolute accuracy of ≤1 K (Menzel and Purdom, 1994).

Convective updrafts of sufficient strength to penetrate through a thunderstorm

anvil, known as overshooting tops, produce texture in GOES visible-channel im-

agery due to turbulent flow and shadowing induced by the updraft penetration.

An algorithm to detect and quantify this texture has recently been developed that

produces a “visible texture rating” product (Bedka and Khlopenkov, 2016). Anvil

clouds are identified using a two-step process and then a search is performed within

the anvils to identify texture associated with penetrative updrafts. The first step

in anvil detection is based on thresholding of GOES visible reflectance based upon

an empirical model used to define how bright an anvil should be at given time

of day and day of year. Spatial and statistical analysis of the pixels that meet

the day/time-dependent threshold is performed to eliminate singular pixels and

preserve those within a broad area (greater than or equal to approximately 10

km2) of near-uniform reflectance characteristic of anvil clouds. Fourier-transform

analysis of visible reflectance within small (32 pixel) windows is then performed,

yielding a power spectrum for varying wavelengths in a 32×32-pixel domain. Typ-

ical OT signatures and concentric gravity waves that often surround OTs produce

the strongest signal in a ring-like pattern with a wavelength of ∼4-8 km. Pat-

tern recognition is applied to the power spectrum to identify ring patterns within

this wavelength range. The results of the pattern recognition analysis define the
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unitless visible texture rating; the most coherent ring patterns are assigned a high

rating.

Infrared brightness temperature from satellite is also examined. The minimum

within a storm is calculated and compared with the temperature at the tropopause

from NARR in order to investigate the minimum tropopause-relative temperature

of the cloud tops, which can be indicative of the vertical extent of a storm into the

stratosphere.

The derivation of mesoscale atmospheric motion vector (mAMV) flow grids

begins by identifying targets such as maxima, minima and gradients in GOES

visible, IR and water vapor imagery (Bedka and Mecikalski, 2005). Point-source

motion is quantified by tracking targets through a series of three satellite images

spaced 1 minute apart in SRSOR imagery. Tracking is achieved by identifying the

minimum sum-of-square error values for targets in permissible search regions within

the images. The tracked motions are height assigned using IR and water vapor

imagery comparisons to Global Forecasting System (GFS) numerical model output.

All point-source winds assigned to altitudes above 500 hPa are assumed to be on a

two-dimensional flat plane, to which an objective analysis is used to retrieve 0.02◦×

0.02◦ longitude-latitude grids of horizontal flow at the cloud top. The final retrieved

product is termed the Super Rapid Scan Anvil Level flow system (SRSAL; see Apke

et al. (2016) and references therein). This study employs version 2.2 of SRSAL,

which is an updated version from Apke et al. (2016) that uses targets 5×5 pixels

in size and a low permissible gradient threshold of 4 for mAMV target gradient

identification. SRSAL v2.2 utilizes a recursive filter (RF; Hayden and Purser, 1995)

instead of a Barnes (Barnes, 1973) analysis to perform the objective analysis of

derived flow. The specific default settings for the RF are detailed in Table C1 in

Hayden and Purser (1995), though SRSAL v2.2 uses modified settings for mAMV
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analysis. The two background RF analyses are performed on GFS tropopause-

level flow with the default settings from Hayden and Purser (1995). The second

background analysis and observation analysis use a wind error tolerance of 25 m

s−1. For the RF observation analysis, the RF is applied on the grid five times,

with three smoothing iterations per pass. Initial and final characteristic spatial

scales are set to 16 km and 10 km respectively. The RF background wind weight

in the observation analysis is set to 0.01 and the observation weight is set to 1. The

smoothness degree (parameter f in 34) is set to 1 for the initial four observation

passes and 0.5 for the final observation pass. When wind observations are not

available for flow derivation, the RF analysis interpolates to GFS tropopause-level

flow.

Centered finite differencing of the mAMVs from satellite is used to retrieve

cloud-top vertical vorticity (CTV) and cloud-top horizontal divergence (CTD).

When associating GOES CTD with individual storms, only data points with fi-

nal smoothing parameter (α) values less than 0.5 were considered for analysis,

as points with higher values were not densely sampled by mAMVs. In order to

mitigate cirrus contamination (the masking of cloud-top flow in a desired storm

by thin cirrus lying above), the data points for CTD, as well as visible texture

rating, were filtered by using only those points with a maximum visible texture

rating greater than 7, which is indicative of an overshooting convective top (Bedka

and Khlopenkov, 2016). CTV in the immediate vicinity of a large sample of deep

convection is frequently largest at or near cloud-edges with the SRSAL flat plane

assumption, and thus will require more filtering and perhaps a separate three di-

mensional analysis prior to implementation on a statistical basis, which is currently

beyond the scope of this project. Once completed, analysis of storm-related CTV

can be compared to the findings here of the radar-based upper level vorticity prior
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to the formation of tornadoes in severe thunderstorms. The maximum CTD is

calculated for each storm.

Mass flux divergence is computed for the satellite data using the atmospheric

density at the cloud-top altitude (approximated using the tropopause altitude from

NARR). The maximum cloud-top mass flux divergence for each storm is also ex-

tracted for analysis.

In order to extract satellite data along the path of the radar-based storm tracks,

corrections for parallax error (that owing to the viewing geometry of the satellite)

are required. Parallax error increases as the cloud top altitude increases. Methods

typically used to correct for parallax involve converting IR cloud-top temperature

to cloud-top altitude using a reference tropospheric temperature profile. However,

these methods are prone to large errors for deep convective anvils because high-

altitude clouds may either be: i) thermally adjusted to stratospheric temperatures

that are warmer than the upper troposphere, or ii) be optically thin and thus

mostly transparent in IR. In this study, the merged radar observations are used

to correct for parallax error. In particular, the ZH = 5 dBZ echo top is used as

a proxy for cloud-top height to estimate parallax. These estimates were used to

correct the coordinates of the satellite imagery in order to extract values coincident

with the storm tracks.

Only the position of the satellite, the cloud-top height, and the coordinates of

the correct position of a particular data point are needed to calculate the radar-

based parallax. The traditional satellite-based parallax is similarly calculated using

the position of the points to be corrected. Some studies that compare satellite and

radar data have used a radar-based parallax correction to align radar data with

the satellite data (Radová and Seidl, 2008), but due to the additional and varied

datasets used in this study, parallax corrections for only the satellite data were

necessary. Linking the satellite data points to the correct location was done by
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using basic trigonometric equations. Once the parallax estimate of a cloud field

was found, it was interpolated from the radar grid to the given satellite grid, which

was different for the SRSAL and OT datasets.

The first step in calculating the radar-based parallax is to find the central angle

between the satellite and the correct point from radar (αcc) by using Equation 2.3

(for illustration, see Figure 2.3).

αcc = 2 · arcsin

√(
sin

ys − yc
2

)2
+ cos ys · cos yc ·

(
sin

xs − xc
2

)2
(2.3)

where ys is the latitude of the satellite, yc is the latitude of the correct point

from radar, xs is the longitude of the satellite, and xc is the longitude of the correct

point from radar. The central angle is then used to calculate the satellite viewing

distance between the satellite and the cloud top (d) using the Law of Cosines,

which in turn is used to find the satellite viewing angle (αsv) using Equations 2.4

and 2.5.

d =
√
h2s + h2ct − 2 · hs · hct · cosαcc (2.4)

αsv = arccos
h2s + d2 − h2ct

2 · hs · d
(2.5)

The satellite viewing angle is used to deduce the central angle for the satellite

in reference to the point that needs parallax correction (αc) by Law of Sines using

Equations 2.6 and 2.7.

αp = arcsin
hs · sinαsv

rE
(2.6)

αc = π − αp − αsv (2.7)
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Figure 2.3: Parallax correction illustration.
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where αp is the angle between the radius of the Earth and the full satellite

viewing distance, and rE is the radius of the Earth. The same process from Equa-

tions 2.5, 2.6, and 2.7 is repeated for latitude instead of angles in order to find the

latitude of the point that should be linked to the given correct point (yp). The

final step is to compute the longitude of the point that needs to be parallax cor-

rected (xp), which is done using Equation 2.8. The sign of the second term of the

equation depends on whether the storm is to the east or the west of the satellite.

xp = xs ± 2 · arcsin

√√√√( sin αc

2

)2
−
(

sin ys−yp
2

)2
cos ys · cos yp

(2.8)

Examples of the resulting parallax correction are shown in Figures 2.4 and 2.5.

Colder temperatures generally indicate higher cloud tops. Echo-top altitudes are

used as a proxy for cloud-top height, so the coldest IR brightness temperatures

should line up with the tallest echo-top heights.

Figure 2.4 shows an example of a storm from 11 May 2014 at 2300 UTC. At this

time, no parallax correction was available from the satellite dataset, which further

demonstrates the need for a radar-based parallax correction (i.e., often poor data

availability for satellite-based parallax corrections). The left panel depicts the raw

data from radar and satellite, and focusing on the white areas of IR brightness

temperature and the edges of the storm it is evident that the datasets are differing

in the actual location of the storm. In the panel on the right, the radar-based

parallax correction has been applied, and the areas of colder temperatures now

fall mostly within the 15-km echo-top altitude contours and all the echo tops are

contained within the satellite-observed cloud shield.
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Figure 2.4: Parallax correction example for 11 May 2014 at 2300 UTC. The

infrared brightness temperature is shaded by the scale below the plots. The

magenta contours represent 5-dBZ echo-top altitudes greater than 13 km (thin

lines) and 15 km (thick lines).

Another example is presented in Figure 2.5 from 12 June 2013 at 1940 UTC

where satellite-based parallax correction was available for a few hours of the case.

The satellite-based parallax-corrected data in the middle panel shows similarities

to the radar-based correction in the center of the largest cloud feature (an MCS),

but it provides no correction for the smaller cloud features in the southeastern

portion of the domain.
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Figure 2.5: As in Figure 2.4, but for 12 June 2013 at 1940 UTC.
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2.4 Lightning

The Earth Networks Total Lightning Network (ENTLN) detects lightning using

pulses in vertical electric field measurements from parts of the 1 Hz to 12 MHz

frequency range from over 700 sites across the contiguous United States (Liu and

Heckman, 2011). Individual pulses are located in space and time by statistically

solving over-determined electrical signal time-of-arrival equations using measure-

ments from at least 5 stations. Sources close together in space and time are grouped

into flashes, which are binned into 0.08◦×0.08◦ longitude-latitude (∼64 km2) flash

density grids for analysis.

Lightning flash density data was extracted from the ENTLN dataset. The

maximum of the total lightning flash density, which consists of both cloud-to-

ground and intracloud flash density, within a storm is calculated.

2.5 NARR

Characteristics of the atmospheric environment (tropopause altitude and temper-

ature, CAPE, and effective bulk wind shear) were extracted from North American

Regional Reanalysis (NARR) output. NARR aims to provide best estimates of the

atmospheric state over the United States at a horizontal resolution of 32 km, 29

vertical levels, and a time increment of 3 hours. NARR output for this study was

retrieved from NCEI and the National Center for Atmospheric Research (NCAR)

Research Data Archive (RDA). Environmental variables from NARR were linearly

interpolated to the radar-based storm tracks in space and time for analysis.

Several variables were extracted, including tropopause height and temperature,

most-unstable CAPE, the u- and v-components of the wind, and cloud-base and
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cloud-top altitudes. Bulk effective shear is calculated using the winds at the cloud-

base and cloud-top. Upward motion (w) is estimated from most-unstable CAPE

using Equation 2.9.

w =
√

2 · CAPE (2.9)

2.6 Warnings

Tornado warnings from the National Weather Service (NWS) are used for perfor-

mance comparisons and were obtained from the online archive maintained by Iowa

State University (https://mesonet.agron.iastate.edu/request/gis/watchwarn.

phtml). The warnings are provided as shapefiles, with each warning consisting of a

start (issuance) and end (expiration) time and coordinates of a polygon outlining

the warned area. Warnings were linked with individual storms using the coordi-

nates of the radar-based storm tracks. If a storm track passed through a warning

polygon during the time the warning was valid, the warning was documented at

all valid times along the track.

2.7 Tornado Reports

Severe Weather Data Inventory (SWDI) tornado reports from NCEI were also

added to the dataset and linked to the nearest storm within 3 km of the tornado

path. Weak tornadoes have been known to be under-reported in the past, and there

has been a clear population bias in reporting tornadoes (Doswell III et al., 1999).

More recently, there has been a decline in the population bias in the Central Plains,

where more tornadoes outside of the bigger cities in the Plains have been reported

(Elsner et al., 2013). Elsner et al. (2013) hypothesize that the increasing number

of and technology available to storm chasers have positively influenced this bias.
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Although this may be true, there are still many tornadoes that go unreported in

rural areas (e.g., Anderson et al., 2007), introducing possible bias. However, since

the reports used in this study are only from the 21st century and mostly from the

Plains, it was deemed sufficient to make no efforts towards minimizing population

bias. Therefore, some tornadic storms may have been incorrectly placed in the non-

tornadic storm population, which could cause less separation between tornadic and

non-tornadic storms in this study.

2.8 Supercell Classification

Supercell storms were identified using radar observations for all 29 severe weather

days via a combination of objective and subjective methods. First, 15 storms were

subjectively identified as supercells out of a sample size of 330 storms. The lowest

values of maximum and mean upper-level divergence, maximum mid- and upper-

level rotation, ZH = 40 dBZ echo-top altitudes, and lifetimes for these 15 supercells

were used as objective thresholds for identifying candidate supercell storms in

the remaining cases in order to limit the number of storms to be subjectively

analyzed. The threshold values used for objective identification are 5.5 and 3.5

·10−3 s−1, 4.5 and 4 ·10−3 s−1, 12 km, and 60 min, respectively. Following the

objective identification, entire lifetimes of the candidate storms were subjectively

analyzed to confirm or deny supercellular characteristics. In particular, several

conditions were examined to aid the classification of a supercell: If a storm was

discrete, characterized by deviant motion relative to neighboring storms, contained

a hook echo, or contained a bounded weak echo region (Doswell and Burgess, 1993;

Fujita, 1958; Browning and Donaldson, 1963; Lemon and Doswell III, 1979). If

most of these conditions were met, the storm was categorized as a supercell. This

classification method resulted in 412 confirmed supercells, half of which produced

tornadoes (Table 2.1). The fraction of supercells that produced tornadoes might
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have been biased by the classification criteria, where weak supercells, as well as

supercells embedded within an MCS, are possibly missed. The tornadic storms

were subjectively examined for supercellular characteristics regardless of whether

they were identified by this classification algorithm. This bias could lead to more

overlap in certain variables between tornadic and non-tornadic storm populations,

since potentially weak, tornadic supercells were identified, but some weak non-

tornadic supercells might have been missed.
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Chapter 3

Results and Discussion

Although time series analyses of individual storms were performed, no conclusive

trends in time variation of different variables were seen in association with torna-

does. This may be due to the storms that were examined, or that the tracking

algorithm does not identify storms until a storm is sufficiently strong in order to

be able to produce a 40-dBZ echo top. Instead, statistical analyses comparing

tornadic and non-tornadic storms were executed in order to evaluate the potential

differences between the two populations. The notched box-and-whiskers through-

out the analyses presented in this chapter show the 5th, 25th, 50th, 75th, and 95th

percentiles of each metric and for all severe weather days for which data is avail-

able. Notches in the boxes emanating from the median values represent the 95%

confidence interval for the median values. When the notches of different boxes

within the same subplot do not overlap, the medians are significantly different

(Krzywinski and Altman, 2014).

The leftmost box in each subplot shows distributions based on the entire life-

times of non-tornadic storms. The five remaining boxes in Sections 3.1-3.3 show

distributions for tornadic storms at 30 and 15 minutes prior to the first tornado of

each storm, during the lifecycle of all tornadoes, and 15 and 30 minutes after the

last tornado of each storm, from left to right. The tornadic storms are analyzed
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Table 3.1: Number of data points per box for box plots in Sections 3.1-3.3.

30 min before 15 min before During 15 min after 30 min after
Figure Non-tornadic first tornado first tornado tornado last tornado last tornado
3.1 268089 184 228 6130 201 155
3.2 33873 22 27 541 19 10
3.3 208793 159 193 5244 166 131
3.4 266758 184 225 6133 200 156
3.5 33873 22 27 541 19 10
3.6 207039 159 191 5192 166 133
3.7 276127 185 228 6210 204 160
3.9 45168 38 43 977 32 22
3.10 90702 52 65 1419 49 42
3.11 209988 170 211 5834 179 138
3.12 234541 169 207 5690 188 146
3.13 209304 160 193 5279 166 133
3.14 80934 37 41 844 39 25
3.15 276127 185 228 6210 203 160
3.16 264725 180 223 6006 201 158
3.17 264725 180 223 6006 201 158
3.18 192091 167 205 5692 167 132
3.19 222511 139 171 4045 152 121
3.20 222511 139 171 4045 152 121
3.21A 27560 142 163 5042 146 127
3.21B 240529 42 65 1088 55 28
3.22A 23111 126 141 4389 120 106
3.22B 185982 33 52 855 46 25
3.23A 27624 142 163 5059 146 127
3.23B 248503 43 65 1151 58 33
3.24A 27624 142 163 5059 146 127
3.24B 248125 43 65 1151 57 33
3.25A 25858 138 159 4947 135 116
3.25B 184130 32 52 887 44 22
3.26A 25231 132 150 4681 135 117
3.26B 209310 37 57 1009 53 29
3.27A 23212 126 141 4412 122 107
3.27B 186092 34 52 867 44 26
3.28A 26992 141 161 4968 145 126
3.28B 237733 39 62 1038 56 32
3.29A 26992 141 161 4968 145 126
3.29B 237733 39 62 1038 56 32
3.30A 5755 24 29 768 22 16
3.30B 39413 14 14 209 10 6
3.31A 10009 35 44 1123 35 34
3.31B 80693 17 21 296 14 8
3.32A 24805 134 155 4825 127 114
3.32B 167286 33 50 867 40 18
3.33A 21137 101 117 3226 106 94
3.33B 201374 38 54 819 46 27
3.34A 21137 101 117 3226 106 94
3.34B 201374 38 54 819 46 27
3.35 209617 170 211 5830 179 138
3.37 35371 43 48 2204 37 31
3.38 32530 43 47 2194 36 32
3.39 32411 43 47 2185 36 31
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prior to tornadogenesis to investigate possible lead time on separation between

tornadic and non-tornadic storms. They are also analyzed after the last tornado in

order to determine whether or not these variables can determine when the tornado

threat is over. The number of observations contributing to each box for each plot

in Sections 3.1-3.3 can be found in Table 3.1.

3.1 Tornadic vs. Non-Tornadic Storms

Severe storms are known to be characterized by strong upward motion, with many

radar- and satellite-based indications of severe storms related to this character-

istic. Upward motion within storms can be assessed in these datasets through a

variety of established dynamical and physical metrics. Dynamical approaches typ-

ically involve using the divergence of the horizontal wind through a column with

the assumptions of an anelastic atmosphere (O’Brien, 1970). Strong upper-level

divergence located at altitudes above low-level convergence implies strong upward

motion due to the conservation of mass in the atmosphere. While the radar and

satellite observations can only measure winds within and atop storms, respectively,

upward motion can be assessed by analyzing one of these components alone (typi-

cally upper-level divergence because the signal is often stronger). Physical metrics

to identify and diagnose upward motion include radar-observed weak echo regions

and cloud and radar echo-top altitudes (often referenced to a stable boundary such

as the tropopause).

The maximum upper-level divergence estimated from both radar and satellite

is stronger for tornadic storms, especially when there is a tornado on the ground

(Figures 3.1 and 3.2). Time periods prior to only the first tornado in each storm are

shown (rather than those prior to all tornadoes) to best isolate unique evolutionary

characteristics of tornadic storms before they produce a tornado. Otherwise, time

periods between successive tornadoes within a single storm may bias the perceived
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evolution in storm-based analyses and corresponding observational indicators of

tornado potential. The contrast between the tornadic and non-tornadic storms is

greater for the radar-estimated divergence, with clear and consistent differences at

times 15 and 30 minutes prior to first tornado occurrence. The divergence declines

after the last tornado to values below those prior to the tornadic period. Not only

does divergence from radar separate the tornadic and non-tornadic storms, but it

can also diagnose when the tornadic storm is no longer a threat. Low-level con-

vergence from radar displays an analogous tendency to the upper-level divergence,

but with more overlap between the tornadic and non-tornadic populations (Figure

3.3). This might be due to intermittent or otherwise poor low-level radar coverage.
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Figure 3.1: Box plot for maximum upper-level radar divergence.
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Figure 3.2: Box plot for maximum upper-level satellite divergence.
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Figure 3.3: Box plot for maximum low-level radar convergence.
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Divergence estimates are computed assuming an incompressible atmosphere,

which is not precisely representative of the real atmosphere. However, assuming an

anelastic atmosphere (scaling by observed atmospheric density with height, which

decreases with increasing altitude) provides consistent results, although the mass

flux convergence signal is weak (Figures 3.4, 3.5, and 3.6). The process of comput-

ing divergence assuming an incompressible atmosphere is slightly faster than when

assuming an anelastic atmosphere, which could be of importance when translating

the results into a possible nowcasting algorithm. The incompressible assumption

might not provide meaningful quantities, but the relative values for tornadic and

non-tornadic storms are sufficient to distinguish between the populations. Never-

theless, differences between the divergence estimated from ground-based radar and

satellite imagery are likely due to both the limited information detected by satellite

(i.e., at cloud top only and the low number of data points) and the differences in

the spatial resolution of the two datasets.
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Figure 3.4: Box plot for maximum upper-level radar divergence assuming an

anelastic atmosphere.
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Figure 3.5: Box plot for maximum upper-level satellite divergence assuming an

anelastic atmosphere.
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Figure 3.6: Box plot for maximum low-level radar convergence assuming an

anelastic atmosphere.
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Physical metrics show behavior consistent with that observed from radar and

satellite divergence. Radar-observed 40-dBZ echo-top altitudes (the maximum

altitude reached by radar-indicated precipitation of considerable size – e.g., large

rain drops or ice particles such as hail) imply that tornadic storms have stronger

updrafts (Figure 3.7). This is because larger precipitation particles have faster fall

speeds, meaning stronger in-cloud vertical motion is required to loft them to higher

altitudes. Identifying cloud-top altitudes from satellite is challenging when storms

reach the tropopause (commonly the case for storms analyzed in this study) due

to the higher temperatures encountered by the cloud top extending into the lower

stratosphere, which can bias IR-based cloud-top retrievals low. Alternatively, it is

possible to measure the visible texture of the cloud top from satellite to indicate the

tropopause-relative depth of OTs (Bedka and Khlopenkov, 2016). A high visible

texture rating implies a more complex texture, which has been linked to stronger

upward motion and higher cloud tops (Figure 3.8). Indeed, the visible texture rat-
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Figure 3.7: Box plot for maximum 40-dBZ echo-top altitude from radar.
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ing is also highest in the tornadic storms examined here, providing further evi-

dence of stronger upward motion (Figure 3.9). Tropopause-relative IR cloud-top

temperatures show similar characteristics, but less contrast likely due to the 16

times poorer spatial resolution of the IR imagery (compared to the visible im-

agery) from GOES used in this study (Figure 3.10).
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Figure 3.8: Box plot for relationship between visible texture rating and 10-dBZ

tropopause-relative echo-top altitudes. Numbers at the base of each box and

whisker show the total number of 1-min observations contributing to the

distribution.

Two additional metrics that are related to upward motion in storms are shown

to provide further evidence of a unique relationship between tornadic storms and

upward motion. As upward motion increases within a storm, stretching of air

within the main storm updraft leads to increases in vertical vorticity relative to

storms with weaker updrafts (Markowski and Richardson, 2009), which is demon-

strated well in the radar observations of rotation, especially in the upper-levels
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Figure 3.9: Box plot for maximum visible texture rating from satellite.
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Figure 3.10: Box plot for minimum tropopause-relative IR brightness

temperature from satellite.

39



0

2

4

6

8

10

12

Az
im

ut
ha

l s
he

ar
 (•

10
–3

 s
–1

)

Non
-to

rna
dic

30
 m

in 
be

for
e

firs
t to

rna
do

15
 m

in 
be

for
e

firs
t to

rna
do

Duri
ng

 an
y

tor
na

do

15
 m

in 
aft

er

las
t to

rna
do

30
 m

in 
aft

er

las
t to

rna
do

Figure 3.11: Box plot for maximum upper-level radar rotation.
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Figure 3.12: Box plot for maximum mid-level radar rotation.
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Figure 3.13: Box plot for maximum low-level radar rotation.

(Figures 3.11, 3.12, and 3.13). Stronger upward motion also has implications for

lightning activity. When upward motion in the mixed-phase (liquid and ice) re-

gion of a cloud increases, the non-inductive charging mechanism typically becomes

more efficient and thus, lightning flashes become more frequent (Deierling and Pe-

tersen, 2008). Data from the Earth Networks Total Lightning Network (ENTLN)

in the United States (Liu and Heckman, 2011) for eight of the GOES-14 severe

weather days evaluated here show that flash density is indeed greater in tornadic

storms, especially during tornadoes (Figure 3.14). This result is comparable to

the so-called “lightning jump” discussed in previous studies (Williams et al., 1999;

Schultz et al., 2009). Increased lightning activity and low-to-mid-altitude rotation

are currently being used as variables of interest for probabilistic forecasts of tor-

nadoes (Smith et al., 2016). However, the upper-level metrics of upward motion

and rotation used here show greater separation between non-tornadic and tornadic

storms at longer lead times (compare 30 and 15 minutes prior to first tornado in
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Figure 3.14: Box plot for maximum ENTLN total lightning flash density.

Figures 3.1 and 3.11 to that in Figures 3.12, 3.13, and 3.14). The overall rotation

is also less useful than radar divergence when judging whether a tornadic storm

is done producing tornadoes or not, though the upper-level rotation is the most

helpful of the three.

Another quantity that can be related to the updraft strength is the velocity

spectrum width. High velocity spectrum width will occur near wind shifts or in

areas of high turbulence (such as that which occurs within convective updrafts).

Indeed, the column maximum velocity spectrum width mirrors the behavior of the

divergence and rotation for the tornadic and non-tornadic storms (Figure 3.15).

The updraft strength itself is also evaluated, both for the maximum and median

within a storm calculated from the divergence profile using the incompressible

assumption (Figures 3.16 and 3.17). The maximum and median implied ascent

from divergence are very similar, but the maximum for tornadic storms is slightly

more separated from the non-tornadic population than the median.
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Figure 3.15: Box plot for maximum column maximum spectrum width.

0

20

40

60

80

Non
-to

rna
dic

30
 m

in 
be

for
e

firs
t to

rna
do

15
 m

in 
be

for
e

firs
t to

rna
do

Duri
ng

 an
y

tor
na

do

15
 m

in 
aft

er

las
t to

rna
do

30
 m

in 
aft

er

las
t to

rna
do

Im
pl

ie
d 

as
ce

nt
 (m

 s
–1

)

Figure 3.16: Box plot for maximum implied ascent.
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Figure 3.17: Box plot for median implied ascent.

Updraft width, here quantified by the area of implied ascent exceeding a certain

threshold, was examined as well (Figure 3.18). Due to the 10-km radius restriction

in the data belonging to a specific storm, there is an upper limit to the implied

ascent area just below 400 km2. This analysis shows that a storm with a wider

updraft is more likely to be able to produce a tornado.

Correlation coefficient is lower for tornadic periods, which can be a sign of a

stronger updraft (Figure 3.19). However, the signal is not very strong, and there is

no way to tell if a tornadic storm no longer has a potential for producing a tornado

within a reasonable time frame. Differential reflectivity is also lower for tornadic

storms, and shows a larger gap in the values for non-tornadic and tornadic storms

(Figure 3.20). This could just be an indication that hail is more likely when a storm

is capable of producing a tornado, which is usually a microphysical indication of

a stronger updraft, since large hail stones require an updraft of a certain strength

to form (e.g., Nelson, 1983).
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Figure 3.18: Box plot for area of implied ascent ≥ 10 m s−1.

0.80

0.85

0.90

0.95

1.00

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Non
-to

rna
dic

30
 m

in 
be

for
e

firs
t to

rna
do

15
 m

in 
be

for
e

firs
t to

rna
do

Duri
ng

 an
y

tor
na

do

15
 m

in 
aft

er

las
t to

rna
do

30
 m

in 
aft

er

las
t to

rna
do

Figure 3.19: Box plot for minimum correlation coefficient.
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Figure 3.20: Box plot for minimum differential reflectivity.

Some of the variables have certain limitations or conditions associated with

them. The farther the distance from the radar, the more error is possibly in-

troduced in the variables, especially the wind derivatives and the polarimetric

variables. As the distance from the radar increases, the radar beam height in-

creases, making the derivative less of a horizontal derivative with distance from

the radar. In addition, dual-polarization variables become less indicative of parti-

cle shape and the winds will gain more of an vertical component as the elevation

increases. Also, the low-level coverage suffers from the increase in beam height

with distance. Due to the definition of the upper levels being at or above 8 km,

upper-level measurements will be missing for storms that do not exceed 8 km.

This might introduce potential missed observations of tornadic storms, especially

for non-supercell storms that might be relatively shallow. Additionally, the visible

texture rating only applies to storms with an overshooting top, and while many

severe storms have overshooting tops, Dworak et al. (2012) found that the number
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of overshooting tops only adds up to less than half of the storms linked to severe

weather reports. Another factor that can bias these results is under-reporting of

tornadoes, especially in rural areas (e.g. Anderson et al., 2007). If storms were

incorrectly categorized as non-tornadic, the separation between the tornadic and

non-tornadic populations might have been smaller than the reality.

3.1.1 Supercells and Non-Supercells

A majority of the storms that produce tornadoes are supercells, which are typically

isolated storms that are characterized by deep, rotating updrafts (Doswell and

Burgess, 1993). This is true for the population of tornadic storms analyzed in

this study (see Table 2.1), where 206 out of 335 tornadic storms were identified

as discrete supercells. For this section, where the Super Outbreak of April 2011 is

excluded, 273 tornadic storms were analyzed, where 172 were supercells, with 363

supercells overall. Not all supercell storms produce tornadoes, and non-tornadic

supercell storms are typically stronger than non-tornadic, non-supercell storms. It

is therefore appropriate to separately examine supercell and non-supercell storms

to confirm that the differences in upward motion inferred from the analyses of

the entire storm population are qualitatively similar. Due to the limited 1-minute

satellite data for supercells available to this study, comparisons of supercell and

non-supercell storms are accomplished using data that was available for a majority

of the cases only.

Tornadoes produced by non-supercell systems like mesoscale convective systems

(MCSs) are notoriously hard to forecast, with a recent example of the EF2 Tulsa

tornado in August 2017 that was not warned prior to the tornadogenesis. Several

of the metrics evaluated here show separation between tornadic and non-tornadic

storms for even non-supercell storms half an hour before tornadogenesis. Notably,

both dynamical and physical metrics within each storm population show consistent
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behavior with the overall analysis (i.e., stronger upper-level divergence and rota-

tion and higher echo-top altitudes in tornadic storms), with greater values overall

observed within supercell storms (Figures 3.21 through 3.31). While there is more

of a contrast in low-level rotation between tornadic and non-tornadic supercell

storms when there is a tornado present, the upper-level rotation values for the tor-

nadic supercell storms start to diverge from the general non-tornadic values at an

earlier time relative to the first tornado (Figures 3.25 and 3.27). Interestingly, vis-

ible texture rating from satellite gives a longer lead time for non-supercell storms,

and the minimum IR brightness temperature shows more promise for isolating the

tornadic supercells from non-tornadic supercells than separating the populations

overall (Figures 3.30 and 3.31).
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Figure 3.21: Box plot for maximum upper-level radar divergence for supercells

and non-supercells.
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Figure 3.22: Box plot for maximum low-level radar convergence for supercells

and non-supercells.
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Figure 3.23: Box plot for maximum 40-dBZ echo-top altitude for supercells and

non-supercells.
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Figure 3.24: Box plot for maximum column maximum spectrum width for

supercells and non-supercells.
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Figure 3.25: Box plot for maximum upper-level radar rotation for supercells and

non-supercells.
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Figure 3.26: Box plot for maximum mid-level radar rotation for supercells and

non-supercells.
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Figure 3.27: Box plot for maximum low-level radar rotation for supercells and

non-supercells.
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Figure 3.28: Box plot for maximum implied ascent for supercells and

non-supercells.
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Figure 3.29: Box plot for median implied ascent for supercells and non-supercells.
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Figure 3.30: Box plot for maximum visible texture rating from satellite for

supercells and non-supercells.
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Figure 3.31: Box plot for minimum tropopause-relative IR brightness

temperature from satellite for supercells and non-supercells.
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Figure 3.32: Box plot for area of implied ascent ≥ 10 m s−1 for supercells and

non-supercells.

While the results for the updraft width for supercells are consistent with the

overall storms, it is not as clear for non-supercells (Figure 3.32). Updraft width

for non-supercells could perhaps benefit from a smaller implied ascent threshold

for the calculation of the area, as it has shown promise in subjective analyses

of individual storms as a discriminator for tornadic storms when compared to

surrounding non-tornadic storms.

The tendency in minimum correlation coefficient was also similar for the over-

all analysis and the supercells, but the tornadic non-supercells show much lower

minima (Figure 3.33). This indicates that correlation coefficient could be a good

discriminator for tornadic storms in non-supercells, but a problem with using a

pure minimum threshold in ρHV to identify tornadic storms alone is that it could

also be a sign of unrelated non-meteorological scatterers. This is addressed in this

study by only analyzing ρHV in areas where the reflectivity is greater than 45 dBZ.

Whereas the correlation coefficient show different results for supercells and non-

supercells, the other polarimetric variable, ZDR, is showing similarities for all the

analyses (Figure 3.34).
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Figure 3.33: Box plot for minimum correlation coefficient for supercells and

non-supercells.

A. Supercells

D
iff

er
en

tia
l r

ef
le

ct
iv

ity
 (d

B)

B. Non-supercells

Non
-to

rna
dic

30
 m

in 
be

for
e

firs
t to

rna
do

15
 m

in 
be

for
e

firs
t to

rna
do

Duri
ng

 an
y

tor
na

do

15
 m

in 
aft

er

las
t to

rna
do

30
 m

in 
aft

er

las
t to

rna
do

Non
-to

rna
dic

30
 m

in 
be

for
e

firs
t to

rna
do

15
 m

in 
be

for
e

firs
t to

rna
do

Duri
ng

 an
y

tor
na

do

15
 m

in 
aft

er

las
t to

rna
do

30
 m

in 
aft

er

las
t to

rna
do

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 3.34: Box plot for minimum differential reflectivity for supercells and

non-supercells.
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3.2 Evaluation of a Simple Objective Short-Term

Forecast Product

The observed relationship between strong upward motion and tornadic storms at

times prior to and during the occurrence of tornadoes motivates an evaluation of

the ability of a simple objective technique to identify storms capable of producing

tornadoes before they occur. Toward this end, the product of two radar-observed

dynamical metrics is computed: upper-level divergence and rotation (Figure 3.35).

Storms that exceed a single threshold value of this product for a specified time

period are flagged as potentially tornadic and the time at which the condition is

met is recorded. For a predictive model, the resulting probability of detection

(POD) and false alarm ratio (FAR) forecast skill metrics for the storm population

are then computed by Equations 3.1 through 3.4.

POD =
No. correctly flagged storms

No. tornadic storms
(3.1)

FAR =
No. incorrectly flagged storms

No. storms flagged
(3.2)

CSI =
( 1

1− FAR
+

1

POD
− 1
)−1

(3.3)

Bias =
POD

1 - FAR
(3.4)

Mean and median lead times of the potentially-tornadic flag relative to the first

occurrence of a tornado (hereafter the flag lead time) within each storm are also

computed. To provide context for this objective method, results are compared with

the first tornado warning given to each storm by the responsible National Oceanic
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Figure 3.35: Box plot for radar-derived upper-level divergence-rotation product.

and Atmospheric Administration (NOAA) National Weather Service (NWS) fore-

cast office, which serves as a metric of the first public recognition that a storm was

potentially tornadic by forecasters.

The single radar-derived rotation-divergence product threshold used for com-

parison with NWS performance was chosen to match the skill (or critical success

index – CSI) of the NWS for the cumulative performance of all 27 severe weather

days (34·10−3 s−2; see Figures 3.35 and 3.36A), though many other configurations

were investigated. A 5-minute time period of exceedance was deemed sufficient for

the objective technique, since the product did not appear to be affected negatively

by random time variations (compare multiple time periods of exceedance in Figure

3.36A).
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Figure 3.36: Performance diagrams.
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Figure 3.36 shows performance diagrams for the objective and NWS warning-

based methods. Solid black lines are lines of constant CSI. The dashed lines rep-

resent bias, where values >1 signify over-forecasting and values <1 signify under-

forecasting. Subplot A shows performance of the objective method at multiple

time periods of exceedance for divergence-rotation product threshold values rang-

ing from 5 ·10−3 to 80 ·10−3 s−2. Subplot B compares the equivalent-CSI objective

method (filled circles) to the performance of the NWS warning-based method (open

circles). Black circles show the cumulative performance for all severe weather days,

while the colored circles show the performance for days grouped by NOAA Storm

Prediction Center (SPC) Day 1 outlook for tornado risk (the forecast probability

of a tornado occurring within 25 miles of any point). Gray lines atop each circle

represent median and mean lead times. (See Table 3.2 for point values in panel

B.)

Table 3.2: Values of the performance metrics shown in Figures 3.36 and 3.40. NWS

values are in parentheses.

Mean flag Median flag

POD (%) FAR (%) lead time (min) lead time (min)

27 cases 70.98 (53.89) 85.28 (84.45) 49.4 (38.9) 40 (29)

5% risk 79.31 (48.28) 87.15 (82.28) 44.7 (30.3) 46 (20)

10% risk 70.67 (61.33) 81.91 (78.50) 48.7 (38.1) 34 (31)

15% risk 66.13 (48.38) 87.83 (87.65) 46.8 (40.9) 38 (31)

≥30% risk 77.50 (62.50) 74.59 (81.20) 57.5 (42.5) 48 (31)

Super Outbreak 77.08 (87.50) 72.40 (82.35) 72.6 (63.6) 56 (51)

A perfect forecast has a 100% POD, 0% FAR, and a CSI of 1. For objective

upper-level divergence-rotation thresholds ranging from 5·10−3 s−2 to 80·10−3 s−2

applied to data from all 27 severe weather days, the CSI largely varies between 0.1

and 0.2 (Figure 3.36A). In comparison, the CSI based on NWS performance was
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0.137. The objective method achieved a comparable CSI to the NWS performance

at a POD of approximately 71% and an FAR of approximately 85%, while the

POD and FAR based on NWS performance were approximately 54% and 84%,

respectively. The mean lead time is 49.4 minutes using the objective method (10.5

minutes greater than the NWS), while the median lead time was 40 minutes (11

minutes greater).

Performance comparisons can also be made for varying storm environments,

which is done here using the maximum NOAA Storm Prediction Center (SPC)

Day 1 outlook for tornado risk. In particular, severe weather days are grouped

by maximum SPC Day 1 tornado risks of 5%, 10%, 15%, and 30% or greater and

the single-value upper-level divergence-rotation threshold from all days is applied

to each (Figure 3.36B). For severe weather days with SPC Day 1 tornado risks

less than 30%, the results are comparable to the 27-day performance comparison

between the objective method and NWS warning-based method (i.e., similar CSI,

higher POD, and longer lead times for the objective method). However, severe

weather days with high tornado risk (30% or greater) show a substantial increase

in skill (CSI) for the objective method, while also showing increases in POD and

lead time compared to the NWS and in agreement with the 27-day performance

comparison.

From the analysis of supercells versus non-supercells, improvements could per-

haps be increased further by using different thresholds for different storm modes.

Supercells generally have higher values for these updraft characteristics than even

tornadic non-supercells, but there is still separation between tornadic and non-

tornadic non-supercell storms. As a result, the POD for tornadoes from non-

supercells could be lower than necessary or the FAR from supercells could be

erroneously high. However, for the purpose of this study, a simple evaluation of

the results was deemed sufficient. Future research that incorporates these results
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in operational forecasts would likely utilize more advanced techniques, perhaps

employing methods like machine learning and a more probabilistic approach.

3.3 Super Outbreak of April 2011

It was earlier mentioned that the Super Outbreak of April 2011 was excluded from

the overall analyses due to being a very rare event accounting for a high percentage

of the overall data. Additionally, it was a highly anticipated event, which may have

led forecasters to perform differently than normal, i.e., warn most storms shortly

after initiation, causing both a higher-than-usual POD and potentially, FAR. The

analysis of tornadic and non-tornadic storms mirrors the analysis in Section 3.1,

only the tornadic storms have generally higher values of the metrics (Figures 3.37-

3.39). Further analyses were performed for short-term forecasts for the Super

Outbreak alone, which show increased performance of the NWS warning-based

method (slightly higher CSI and a large increase in POD compared to that in Figure

3.36B) and similar performance for the objective method compared to the 30% 1

Day tornado risk days, though with a slightly higher skill and lower FAR (Figure

3.40). The improvements for these storms, many of which produced tornadoes on

the stronger end of the spectrum, in the objective method led to a hypothesis that

stronger tornadoes may require stronger updrafts, which is explored in the next

section.
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Figure 3.37: Box plot for maximum upper-level radar divergence for the Super

Outbreak of April 2011.
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Figure 3.38: Box plot for maximum upper-level radar rotation for the Super

Outbreak of April 2011.
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Figure 3.39: Box plot for divergence-rotation product for the Super Outbreak of

April 2011.
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Figure 3.40: Performance diagram for the Super Outbreak of April 2011.
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3.4 Tornado Strength

The storm-based analysis fundamental to this study was taken one step further by

breaking down the tornadic storm category by the strength of the tornadoes to see

if the strength could be predicted or detected indirectly. A few different approaches

were investigated, including separating the storms by the strength of the strongest

tornado associated with the storm and simply examining the different variables

during the tornadoes of different intensity, the latter of which is presented here.

Recently, the addition of the “unknown category” (EFU) for reported tornadoes

has led to the exclusion of some tornadoes for this specific analysis, as some of

the tornadoes in this study are of the category EFU (tornadic storms that only

produced EFU tornadoes were not included in the non-tornadic category). In

addition, only radar data was used in this section due to insufficient satellite data

for the older cases, when the majority of the stronger tornadoes occurred. Due

to limited data for EF4 and EF5 tornadoes, the Super Outbreak of April 2011 is

included in this analysis.

In Figures 3.41 to 3.53, the leftmost box still represents the full lifetime of the

non-tornadic storms. The remaining boxes represent the different variables when

the tornado of the denoted strength is occurring, from EF0 on the left increasing

to EF5 on the right. The number of data points used to create each box is listed

in Table 3.3.

The maximum upper-level radar divergence is mostly the same for EF0 to EF2

tornadoes, with a shallow dip in magnitude for EF1 tornadoes (Figure 3.41). It

was hypothesized that this dip would be mostly due to non-supercellular tornadoes,

which could be evaluated by isolating the supercells. Figure 3.42 shows the radar

divergence for supercells only, where the three lowest categories of tornadoes are

now more similar. Further examining Figure 3.41, it is evident that the EF3 to

EF5 tornadoes generally have higher values of upper-level divergence than the
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weaker tornadoes. The median upper-level divergence is gradually increasing with

tornado strength for the stronger half of the tornado categories, and the data for

each category is less variable, which is especially clear for EF5 tornadoes.

Table 3.3: Number of data points per box in box plots for tornado strength.

Figure Non-tornadic EF0 EF1 EF2 EF3 EF4 EF5

3.41 303460 1605 2372 1663 1518 906 270

3.42 29534 1327 1749 1242 1262 906 270

3.43 246632 1386 2181 1532 1376 859 270

3.44 313999 1631 2498 1739 1535 906 270

3.45 29613 1331 1755 1249 1262 906 270

3.46 313621 1631 2498 1739 1535 906 270

3.47 302597 1622 2459 1674 1444 906 270

3.48 302597 1622 2459 1674 1444 906 270

3.49 215935 1494 2128 1520 1397 901 270

3.50 242518 1544 2210 1611 1487 906 270

3.51 272404 1550 2316 1608 1435 871 270

3.52 247158 1409 2187 1538 1376 859 270

3.53 222511 899 1266 820 697 331 32
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Figure 3.41: Tornado strength box plot for maximum upper-level radar

divergence.
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Figure 3.42: Tornado strength box plot for maximum upper-level radar

divergence, supercells only.
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When repeated for low-level convergence maximum, the analysis shows much

less meaningful results (Figure 3.43). Although there is a tiny uptick in the peak

value of convergence with increasing tornado strength, it is not as prominent as

the difference in convergence between tornadic and non-tornadic storms.

40-dBZ echo-top altitudes in Figure 3.44 show a similar tendency to the upper-

level divergence, though the slightly larger separation between the non-tornadic

storms and the tornadic periods seen in the previous analysis is also apparent in

Figures 3.41 and 3.44. There is a greater separation between the E4+ tornadoes

and the rest for 40 dBZ echo-top altitude, and the dip for the EF1 tornadoes

remains. Again, isolating the supercells it seems the negative bias in EF1 torna-

does is mostly gone for the 5th, 25th, and 50th percentiles, indicating that non-

supercellular tornadoes might require a less strong updraft than their supercellular

counterparts (Figure 3.45).
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Figure 3.43: Tornado strength box plot for maximum low-level radar convergence.
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Figure 3.44: Tornado strength box plot for maximum 40-dBZ echo-top altitude.
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Figure 3.45: Tornado strength box plot for maximum 40-dBZ echo-top altitude,

supercells only.
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Column-maximum spectrum width shows a nearly identical tendency to the

upper-level divergence (Figure 3.46).

Confirming what most of the updraft-related metrics have been showing, the

maximum and median implied ascent from the divergence profile depict the same

increasing relationship between upward motion and tornado strength (Figures 3.47

and 3.48).

The width of the updraft has recently been hypothesized to be related to tor-

nado strength (Trapp et al., 2017), and it is shown here that this holds true for

observations from radar. The upper limit due to calculation restrictions described

before prevents much change in the 95th percentile, but the median ascent area

magnitude shows a significant increase in updraft width with increasing tornado

strength (Figure 3.49).
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Figure 3.46: Tornado strength box plot for column-maximum spectrum width.
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Figure 3.47: Tornado strength box plot for maximum implied ascent from

divergence.
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Figure 3.48: Tornado strength box plot for median implied ascent from

divergence.
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Figure 3.49: Tornado strength box plot for area of implied ascent ≥ 10 m s−1

from divergence.

Stronger rotation is associated with stronger tornadoes (Figures 3.50, 3.51,

and 3.52). Rotation seems to be less affected by storm type than the updraft-

related characteristics, as there is no pronounced dip in the increasing tendency

with tornado intensity for EF1 tornadoes. The increase is roughly even for the

low-level rotation, while the mid- and upper-level rotation show more separation

between EF4+ tornadoes and the rest.

Of the polarimetric variables, correlation coefficient is the only variable that

shows any difference in the values for the different tornado strengths (Figure 3.53).

Since the data is being evaluated during the tornadoes, the lower ρHV is likely a

debris signature within otherwise meteorological echo exceeding the 45-dBZ thresh-

old used in this analysis. The values during EF5 tornadoes may be extra low due

to these tornadoes’ ability to lift non-meteorological items capable of producing
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echoes exceeding 45 dBZ alone, which removes the need for the debris to be within

the meteorological echo in order to be detected.
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Figure 3.50: Tornado strength box plot for upper-level rotation from radar.

72



0

2

4

6

8

10

12

Non
-

tor
na

dic EF0
EF1

EF2
EF3

EF4
EF5

Az
im

ut
ha

l s
he

ar
 (•

10
–3

 s
–1

)

Figure 3.51: Tornado strength box plot for mid-level rotation from radar.
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Figure 3.52: Tornado strength box plot for low-level rotation from radar.
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Figure 3.53: Tornado strength box plot for correlation coefficient.
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Chapter 4

Summary and Conclusions

Indicators of strong updrafts and rotation are more prominent for tornadic storms

than for non-tornadic storms, especially prior to tornadogenesis and during the

tornado. This holds true when examining supercells and non-supercells separately,

though the differences are slightly less pronounced. While these results are con-

sistent for both radar and satellite variables, larger differences are seen in the

radar variables with the instruments used in this study. The separation between

the tornadic and non-tornadic storms is significant enough that a simple objective

threshold method used to provide a short-term forecast of tornadogenesis is able to

perform comparatively to a short-term forecast based on the NWS tornado warn-

ings (i.e., equivalent skill) with higher POD and lead times. Both the separate

analysis of the Super Outbreak of April 2011 and the analysis of the different SPC

Day 1 tornado risks indicate that metrics of upward motion show more separation

between the tornadic and non-tornadic storm populations when the environment

has been deemed more favorable for severe storms. The tornadic storms with the

strongest and widest updrafts produce the strongest tornadoes on the EF-scale.

In addition, the updraft rotation is more powerful for the most intense tornadoes.

The results of this study agree with the current understanding of tornadogenesis

within supercells (Markowski and Richardson, 2009; Davies-Jones, 2015). Leading

up to a tornado, a mid-level storm circulation develops, followed by a low-level
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circulation induced by strong downward motion, which in turn increases the low-

level updraft from the resulting in-storm pressure perturbations. The strength of

this low-level updraft is what allows a tornado to form through vertical stretching

of the air and intensification of low-level rotation. The strong, rotating updraft

inferred from upper-level radar and satellite observations of tornadic storms in

this study is evidence of the deep rotating updraft associated with the mid-level

circulation in the conceptual model. In addition, the increases in inferred updraft

strength observed in the time leading up to tornadogenesis at upper-levels may be

a vertical extension of the intensification of the low-level updraft. It is possible

that vertically-stacked low- and mid-level updrafts and associated rotation also

support these signals. However, it is not yet known what factors within the near-

storm environment or storms themselves lead to the observed differences in inferred

upward motion, but currently used environmental metrics for the 27 severe weather

days analyzed here, such as CAPE and effective bulk wind shear (the difference

between the horizontal wind at cloud base and that at half the distance to cloud

top), show considerable overlap (Figure 4.1). This limited understanding is the

primary challenge for improving forecasts of tornadic storms hours to days in

advance.
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Figure 4.1: Covariation of effective bulk wind shear and CAPE-estimated

maximum vertical motion for tornadic and non-tornadic storms.
76



It is surprising that upper-level rotation and divergence have not provided a

better distinction of tornadic storms from non-tornadic storms in the past, espe-

cially for supercells. Many previous studies have been limited to a small num-

ber of storms (<10) and only considered the time variations within the tornadic

storms, which was explored and found to be of little value in this study (e.g., Van

Den Broeke, 2017). The size of the storm sample analyzed here may be one reason

why this difference was revealed. Others have used either single-radar observa-

tions or composites that were generated differently than the GridRad composites,

so perhaps the way the wind derivatives are calculated in these composites provide

a better picture of these variables than that available to prior studies (e.g., Parker,

2014). It is more likely, however, that the large number of storms and resulting

population statistics summarized here were key to reaching these conclusions.

An updraft of a certain strength seems to be a necessary condition for tornado-

genesis, and stronger updrafts can produce more intense tornadoes. The same ar-

gument is made for the width of the updraft, which Trapp et al. (2017) tied to the

strength of the mesocyclone and in turn to tornado strength for simulated storms.

Trapp et al. (2017) discussed the swirl ratio in relation to the updraft width, where

the swirl ratio increases with increasing updraft width and a strong swirl ratio is

needed for stronger tornadoes, and it seems that this reasoning could be extended

to weak tornadoes versus no tornadoes. The strong updraft contributes to more

tilting of horizontal vorticity into vertical vorticity, which is needed for tornadoes

to develop, as well as the stretching of the vertical vorticity near the ground in the

later stages of tornadogenesis. The upper-level rotation measured within a tor-

nadic storm distinguishes itself from that of a non-tornadic storm earlier than the

low-level rotation, possibly indicating that the process starts in the upper-levels

and later extends down in agreement with that found in simulations by Markowski

et al. (2003). What is often brought up in the discussion of tornadogenesis that
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was not investigated here is the role of the downdraft in forcing preexisting rota-

tion in the lower-levels to extend to the ground to create a tornado (Markowski

and Richardson, 2009). Future studies should evaluate the potential of an analo-

gous implied descent product to provide a pathway for identifying time-evolving

characteristics prior to tornadogenesis.

In conclusion, multiple dynamical and physical metrics of the strength of up-

ward motion in storms from ground-based weather radar and satellite imagery

show that tornadic storms have stronger inferred upward motion than non-tornadic

storms. A simple objective threshold technique using the radar observations can

match the skill of a NOAA NWS tornado warning-based short-term forecast, while

increasing the POD to approximately 71% and lead time to approximately 49 min-

utes on average. These findings provide an opportunity for improving the forecaster

decision-making process used when issuing tornado warnings and, hopefully, saving

lives. Increases in the spatial and temporal resolution of visible and IR satellite

imagery as GOES-16 becomes operational in November 2017 will likely provide

additional value to this process.
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