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ABSTRACT  

Relative permeability and irreducible saturations of organic-rich shale samples 

from various formations from different maturity windows are estimated by processing 

the low-pressure nitrogen adsorption-desorption measurements. Using percolation 

theory, effective medium theory and critical path analysis along with bimodal fractal 

regime, we estimate relative permeability curves for 100 samples of Bakken, Eagle Ford, 

Woodford, and Wolfcamp formations. The process also allows estimation of percolation 

and fractal parameters like coordination number and fractal dimension which facilitate 

description of the pore network for these shale samples. Transport properties are 

compared across different windows of maturity. Subsequently, reservoir simulation is 

used to predict the biphasic production performances of the corresponding formations 

and correlate predictions with field performance in unconventional reservoirs.  

Pressure transient analysis (PTA) can describe properties of subsurface natural 

fractures. Multistencils fast marching (MFM) method provides a reliable way to analyze 

the effects of natural fractures on the time-varying drainage volume and pressure 

transient response due to a production/injection well. The method is validated in various 

heterogeneous reservoirs against the response of equivalent systems generated using the 

Kappa Saphir commercial software. We study the sensitivities of pressure transients to 

fracture characteristics, such as fracture length, fracture compressibility, fracture 

permeability, angle of orientation, and fracture volume fraction in the reservoir. In doing 

so, we identify diagnostic signatures associated with these fracture characteristics.
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CHAPTER 1: INTRODUCTION 

1.1  Estimation of relative permeability in shale reservoirs 

Relative permeability characterizes multiphase flow in porous media by 

quantifying the reduction in fluid flow due to surface-tension effects between fluids and 

chemical interaction between fluids and the mineralogy of the rock matrix. Relative 

permeability estimates enable the assessment of production performance and the 

prediction of recovery factor. These estimates are indispensable for reservoir simulation, 

secondary and tertiary recovery strategies, formation damage analysis, and depth-based 

production forecasting. Inaccuracies in relative permeability estimates adversely affect 

resource assessment and prospect development in low permeability reservoirs. 

Relative permeability in a pore system depends on the fluid properties, fluid 

saturations, wettability, and the geometry and connectivity of the pore system. In low-

permeability sandstone reservoirs, Shanley et al. (2004) illustrated that both wetting and 

non-wetting phases can be immobile within a certain saturation range referred to as 

permeability jail. A common observation in low-permeability reservoirs is a large 

reduction in hydrocarbon phase permeability in response to a small increase in water 

saturation for water saturations above 40%.  

Core-based estimation of relative permeability in shales will reduce 

uneconomical drilling, formation evaluation, well testing, and completion practices. An 

understanding of the relative permeability behavior of shale reservoirs facilitates 

reservoir surveillance to maximize recovery. There are several reasons for the 

‘commonly observed and difficult to explain’ drop in gas production rate of a shale well, 

which is a consequence of reduction in permeability due to compaction, reduction of gas 
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relative permeability due to an increase in water saturation (Alfi et al., 2014), or 

inefficiencies of the installed artificial lift and completion techniques, to name a few. 

Correlations of relative permeability curves to petrophysical parameters of shale 

reservoirs will improve production forecast, water management strategies, and 

identification of “sweet spots” within the reservoir having higher EUR. 

Laboratory based techniques to estimate or measure saturation-dependent 

relative permeability of core samples from unconventional reservoirs are extremely 

limited in their scope, reliability, and adoption (Dacy, 2010). The existence of nanopores 

in shales hinders the application of known experimental measurement techniques to 

obtain relative permeability. High injection pressures, generally around 400 MPa (Klaver 

et al., 2015), are required for fluid intrusion in all the pores of shale samples. In addition, 

nanometer-sized pores are susceptible to multiple flow mechanisms arising from slippage 

and Knudsen diffusion that complicates the permeability estimation from fluid flow 

experiments on shale samples (Dadmohammadi et al., 2016a & 2016b). Mixed 

wettability of shale pore system, owing to the presence of both organic and inorganic 

surfaces (Odusina et al., 2011), also impedes the accurate estimation of relative 

permeability in shales. 

In the absence of direct experimental techniques, numerical simulations have 

been used to study the significance of relative permeability in shales. A compositional 

simulation was performed by Khoshghadam et al. (2015) for liquid-rich shales. They 

assigned distinct Pressure-Volume-Temperature (PVT), relative permeability, and rock 

compaction characteristics to macropores, nanopores and fractures in the shale. Their 

work highlights the importance of knowing the pore size distribution in a shale reservoir 
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to quantify the effect of relative permeability on the EUR estimates. Another noteworthy 

study done in this regard is that of Alfi et al. (2014). They studied three-phase flow in 

liquid-rich shale reservoirs based on three-phase relative permeability derived from 

Stone I model.  

Dacy (2010) proposed a laboratory technique to estimate relative permeability 

curves for sub-microdarcy shales by combining up to seven or more separate core 

measurements. The proposed method involves measurement of end-point specific 

permeabilities, end point non-wetting phase trapping capacity, critical gas saturation, and 

selected number of effective gas permeabilities in different core plugs during both 

imbibition and drainage. Although experimental work is possible on single phase 

permeability (Bakshi et al., 2016a; 2016b), direct measurement of relative permeability 

is not feasible within practical laboratory constraints. Lack of experimental techniques to 

measure relative permeability in sub-microdarcy rocks necessitates semi-empirical 

methods. Honarpour et al. (2012) developed relative permeability models for primary 

drainage process in liquid-rich shales based on the measurements conducted on cores and 

Lattice Boltzmann flow simulation in the 3D digital pore network generated using pore-

level images.  

Adsorption-desorption (AD) measurement is primarily used for estimation of 

pore size distribution (Barrett et al., 1951) and pore connectivity (Seaton, 1991). Yang et 

al. (2014) performed fractal analysis of adsorption/desorption measurement on 11 shale 

samples from a Lower Cambrian stratum. Yang et al. (2014) demonstrated that the shale 

pore structure can be described using the estimated fractal parameters and correlations 

were observed for TOC, fractal dimension, and adsorption capacity. ADI measurements 
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on shale samples were interpreted by Kuila and Prasad (2013) using Barett-Joyner-

Halenda (BJH) method and density-functional-theory (DFT) to estimate the pore size 

distribution. Recently, a method for estimation of relative permeability in shales was 

proposed by Daigle et al. (2015). Daigle et al. (2015) processed the low-pressure nitrogen 

adsorption/desorption measurements on shales based on effective medium 

approximation, percolation theory and critical path analysis (CPA) to compute the 

wetting and non-wetting phase relative permeability curves. 

The process of thermal maturation and its impact on pore network has been 

studied using techniques like Scanning Electron Microscopy (SEM) and gas adsorption. 

During thermal maturation, first kerogen breaks down into gas and bitumen, followed by 

the decomposition of bitumen into simpler hydrocarbons (Jarvie et al., 2007). The 

process is completed with secondary cracking of hydrocarbons into pyrobitumen and 

coke consisting of mainly carbon. Loucks et al. (2009) observed a positive correlation 

between the abundance of micropores in organic matter and its maturity due to the 

decomposition of organic matter and formation of pores during thermal maturation. 

Curtis et al. (2012) suggested that the thermal maturity and composition of organic matter 

govern the pore formation during thermal maturation. Conflicting results have been 

obtained from the studies on the relationship between kerogen maturity and nanopore 

volume. Ross and Bustin (2009) reported an increase in nano- and micropore volumes in 

shale samples with an increase in thermal maturity. However, Mastalerz et al. (2013) 

reported a reduction in total pore volume of shale samples with an increase in vitrinite 

reflectance, which indicates thermal maturity. An experimental approach to relate the 
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maturity of organic matter in shale with its pore network will help in economic 

assessment of shale reservoirs of various maturity windows. 

1.2  Modeling of pressure transient response in shale reservoirs with natural 

fractures using Fast Marching (FM) Method 

Characterization of natural fractures is indispensable for evaluation of 

heterogeneous reservoirs. Low permeability reservoirs utilize hydraulic fracturing to aid 

economic rates of production and fluid transport. During the process of fracturing, 

hydraulically induced fractures may interact with natural fractures. This increases 

stimulated rock volume and the productivity/injectivity of wells. Information on natural 

fractures in the reservoir facilitates well design and reservoir development (Han, 2011). 

Orientation and trajectory of wells in naturally fractured reservoirs are aimed at 

optimizing intersection with high conductivity natural fractures for enhanced exposure 

to rock volume.  

Natural fractures intersecting the borehole are detected in-situ using high-

resolution downhole imaging tools. Characteristics of natural fractures can be determined 

by simultaneous application of various techniques, such as microseismic interpretation, 

rate transient analysis, mud logging, and borehole images (Bounoua et al., 2008). 

Microseismic studies are helpful in determining the orientation of fractures (Kilpatrick 

et al., 2010). Borehole electrical images are used to estimate location, density and average 

orientation of fractures intersecting the well. Resistivity variation helps to determine 

fracture aperture, while acoustic images help to distinguish between open and closed 

fractures. Fracture lengths of intersecting natural fractures can be determined by 

identifying end of bilinear flow in pressure transient (PT) response.  
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Vasco et al. (2000) proposed an asymptotic method to model pressure front 

propagation in reservoir with smoothly varying permeability. The approach is based on 

Fast Marching (FM) solution of the Eikonal equation formulation of the diffusivity 

equation. FM method (Sethian, 1996) assumes that the time of arrival of a propagating 

front at any location depends only on the time of arrival at the adjacent locations and 

diffusivity along the stencil connecting the nodes. FM method models propagation in 

heterogeneous reservoirs in fraction of the computation time taken by finite-difference 

simulations. It can predict the arrival times of the first arrival of propagating front; 

however, subsequent arrivals need to be accounted into solution for accuracy, especially 

for seismic applications (Lelièvre et al., 2011).  

In reservoir characterization, FM methods have been used to model time-varying 

drainage volume and PT response. Xie et al. (2012) modeled the PT response in 

homogeneous and heterogeneous unconventional reservoirs. The solution obtained in 

fraction of computation time typically required by conventional simulators established 

the efficiency of FM methods. Zhang et al. (2016) pointed out the similarity between FM 

and streamline simulation wherein a multidimensional transport/propagation problem is 

reduced to a single dimensional problem by considering only immediate neighboring 

nodes when solving for the problem at each node. Owing to the fast computation time, 

similar to streamline simulation, FM can be used for ranking of large number of 

realizations obtained during uncertainty analysis of reservoir models (Sharifi et al., 

2014). Sharifi and Kelkar (2014) used FM method to rank multiple realizations when 

performing upscaling of permeability in reservoir models.  
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1.3  Objectives 

Our objective is to process the low-pressure nitrogen adsorption-desorption 

measurements on shale samples to estimate certain fractal and percolation parameters 

characterizing the pore network. These parameters are used to estimate relative 

permeability and residual/irreducible saturations in Wolfcamp, Woodford, Eagle Ford, 

and Bakken shale samples. We modify the methodology proposed by Daigle et al. (2015) 

and obtain results for samples of varying thermal maturity. Also, we test the 

petrophysical correlations between the relative permeability, pore characteristics, 

maturity, porosity, and TOC for various shale samples. We also present the impact of 

each parameter on the relative permeability curves with a sensitivity. We investigate the 

impact of cleaning by organic solvents on the relative permeability behavior in shale 

samples. This is done by comparing the relative permeability in these samples after and 

before treating samples to remove bitumen, and soluble hydrocarbons. Additionally, the 

impact of removal of organic matter by ashing is analyzed. Finally, we correlate the 

relative permeability curves with production performance using reservoir simulation 

predictions based on these relative permeability estimates. 

To model pressure transient response in shale reservoirs, we first test the 

accuracy of multistencils fast marching (MFM) simulations of time-varying drainage 

volume and the ensuing calculations of pressure transient responses of vertical 

production wells in reservoirs containing various types of natural conductive fractures. 

Unlike FM algorithm, MFM algorithm considers all 8 neighboring nodes including the 

diagonal nodes when modeling the propagating front in a 2D reservoir model discretized 

using square grids. MFM-assisted simulations are validated by applying it on known 
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reservoir configurations and comparing the predicted responses with those generated 

using Kappa Saphir commercial simulators. Once the validity of MFM method is 

established, we investigate the sensitivities of the MFM-generated PT responses to 

characteristics of conductive natural fractures, such as fracture length, compressibility, 

orientation, conductivity and volume fraction of natural fractures. The sensitivity studies 

reveal diagnostic transient signatures that can characterize natural conductive-fracture 

systems based on pressure transient analysis (PTA). The diagnostic methods developed 

in this study assume the diffusivity in natural fractures to be within two-orders of 

magnitude variation from the diffusivity in the reservoir. This limiting assumption makes 

the natural fracture characterization using PTA a challenging problem to be solved. 
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CHAPTER 2: METHOD FOR ESTIMATING RELATIVE 

PERMEABILITY AND PORE NETWORK CHARACTERISTICS 

2.1  Laboratory Measurements of Adsorption-Desorption Isotherm (ADI). 

In this work, we performed Adsorption-Desorption (AD) measurements on shale 

samples from various maturity windows of Eagle Ford and Wolfcamp formations. The 

native shale samples were crushed, and sieved with 35 mesh-size. Subsequently, the 

samples are oven-dried at 100°C for 24 hours to remove moisture and volatile 

hydrocarbons. This temperature condition is sufficient to remove the volatile components 

without affecting the bitumen and kerogen present in the sample. The prepared samples 

were first exposed to nitrogen gas at continuously increasing discrete pressures in the 

range of 1.1 psi (~ 2 nm) to 14.7 psi (~ 200 nm) at a constant temperature of 77.4 K to 

obtain nitrogen gas adsorption isotherm. Once the saturation pressure of 14.7 psi was 

achieved, the pressure was discretely decreased to obtain the nitrogen gas desorption 

isotherm. Unlike mercury intrusion porosimetry measurements, the pore structure of the 

sample is not expected to change during experiment because AD measurements are done 

at low pressures in the range of 1.1 psi to 14.7 psi. Nonetheless, the shale samples used 

in our research were crushed and sieved for AD measurements that may have altered the 

pore connectivity and the pore size distribution.  

For each shale sample, we evaluated the mineral composition using transmission 

Fourier Transform Infrared (FTIR) Spectroscopy, total organic carbon (TOC) content 

using a LECO™ analyzer, and porosity using Low Pressure Helium Pycnometry (LPP). 

Adsorption-desorption isotherm measurements were then performed on the samples 

using a Micromeritics Tristar 3020 gas adsorption analyzer. After the completion of 
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initial set of measurements, the measured ADI data was processed to estimate the pore 

size distribution and relative permeability of the shale samples.  

2.2  Properties of samples used for this study  

Table 2.1 shows the summary of samples used in this study. The Eagle Ford 

samples from gas and oil window have been ashed before repeating the adsorption-

desorption measurement on obtained ashed sample. Similarly, samples from L. Bakken, 

Wolfcamp, and Woodford have been cleaned using organic solvents before repeating the 

adsorption-desorption measurement on obtained cleaned samples. Properties measured 

on native samples have been presented in Figure 2.1 to show range and variation in these 

characteristics. 

Table 2.1: Petrophysical properties of shale samples studied using the ADI 

measurements. 

 Formation No. of samples Formation ID. Maturity 

Dataset-1 Lower 

Bakken 7 L. Bakken Early Oil 

Wolfcamp 

(WF) 

10 WF-1 Oil window 

9 WF-2 Condensate 

6 WF-3 Condensate 

5 WF-4 Late Condensate 

Woodford 5 WD Late Condensate 

Dataset-2 Eagle Ford 

(EF) 

9 EF Gas Gas 

6 EF Oil Oil 

Wolfcamp 

(WF) 8 WF Condensate Condensate 
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Figure 2.1: Boxplots showing range and variation in measurements made on the 

samples for (a) LPP porosity (pu), and (b) TOC (wt. %). 

 

2.3  Procedure for cleaning and ashing of samples 

For studying the distribution of bitumen and dead oil, crushed samples from 

Wolfcamp, Woodford and Bakken formations from various maturity windows were 

treated with 4:1 mixture of toluene and methanol at 110°C for 24 hrs (Sinha, 2017). 

Following that, we measured and interpreted the ADI measurements on the cleaned shale 

samples. The advantage of the solvent-extraction process is the low temperature required 

for this process. Different solvents have different affinity for molecules and hence extract 

different compounds during the extraction process. The 4:1 mixture of toluene and 

methanol removes bitumen and dead oil from the crushed shale samples while the 

insoluble kerogen is left behind. Toluene has the highest yield of extraction after 

tetrahydrofuran (Nassef et al., 2015) and is much cheaper in comparison. Toluene is 

useful in extracting aromatic and paraffinic compounds and can decompose the organic 
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matter in shales. Methanol is primarily used to extract straight-chain unsaturated and 

saturated hydrocarbons and salt.  

For studying kerogen distribution, samples from Eagle Ford oil and gas windows 

were ashed by exposure to oxygen plasma to remove organic matter.  Low Temperature 

Ashing (LTA) removes organic matter from a sample using activated oxygen (plasma). 

The removed organic matter could include any hydrocarbons not removed during the 

oven-drying along with bitumen and kerogen in the samples. Other microstructural 

impact of ashing include oxidation of pyrites, total/partial dehydration of water-

containing minerals (clays), and crystallization of components liberated during ashing 

(Vassilev and Tascon, 2003). Subsequently, adsorption-desorption measurements were 

repeated on the ashed samples and these measurements were interpreted to obtain relative 

permeability estimates for ashed samples. 

2.4  Adsorption-desorption isotherm interpretation methodology  

The method for interpretation of adsorption-desorption isotherms uses 

percolation theory, effective medium theory and critical path analysis. Percolation theory 

defines macroscopic transport properties in terms of statistical transport behavior of 

connected clusters of microscopic pores. It employs power law formulation that 

quantifies the probability of connected paths in random systems. It is suitable for systems 

exhibiting long range connectivity. Percolation theory is invoked to predict the behavior 

of percolation clusters near percolation threshold where clusters exhibit sharp changes in 

properties.  The sudden change in macroscopic properties can be conveniently described 

by the power law formulation from percolation theory. Thus, percolation theory is useful 

in our method for description of the adsorption process with quantification of percolation 
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threshold and pore network characteristics especially residual/irreducible saturation of 

the non-wetting/wetting phase. Use of percolation theory lends the non-linear nature of 

relative permeability curves near the residual/ irreducible saturations. Percolation theory 

also attempts to correlate macroscopic properties of the system with the pore-level 

characteristics. Therefore, it works best for narrow pore size distributions. 

Effective medium theory defines macroscopic properties in terms of analytical 

averaging of constituent microscopic properties. It replaces a heterogeneous system with 

an equivalent homogeneous system. Effective medium theory uses linear scaling to 

describe gradual changes in system. Effective medium models tend to be erroneous for 

percolating systems with large range connectivity. Around and beyond percolation 

threshold, when the system properties show abrupt changes, effective medium theory 

does not yield desired predictions due to their linear scaling nature. Further away from 

the percolation threshold, effective medium theory is used for predicting relative 

permeability behavior of the non-wetting phase which is visible in form of the linear 

nature of corresponding relative permeability predictions.  

Critical path analysis assumes that each pore diameter in the pore network 

corresponds to a particular value of permeability. Using the estimated pore size 

distribution along with fractal model, the method correlates between pore characteristics 

to identify the path of least resistance to flow. CPA is applicable when the range of pore 

size distribution becomes wide and correlations between pore characteristics become 

evident. This limits the application of critical path analysis in conjunction with 

percolation theory for quantifying macroscopic transport behavior. CPA formulates the 

wetting phase relative permeability curve away from the percolation threshold. 
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The interpretation methodology for processing the adsorption-desorption 

isotherm of a shale sample to estimate the relative permeability curves of aqueous and 

hydrocarbon phases in shales is presented in Figure 2.2. Broadly, the interpretation 

involves three sequential steps:  

a) estimation of pore size distribution in the range of 2 nm to 200 nm using BJH method,  

b) estimation of fractal and percolation parameters (Z, L, 𝛽, D and fc) using percolation 

theory which includes application of the universal scaling function and bimodal 

fractal model, and  

c) estimation of relative permeability curves of aqueous and hydrocarbon phases using 

formulation derived from percolation theory, effective medium theory and critical 

path analysis.  

 

Figure 2.2: Flowchart for ADI Interpretation and relative permeability estimation. 

The method has been further explained in Ojha et al. (2017a & 2017b). The results 

pertaining to pore size distribution and pore network are explained in Ojha et al. (2016, 

2017c & 2017d). The impact of these results on relative permeability and production 

performance has been explained in Ojha et al. (2017e). 
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2.4.1. Pore size distribution 

Pore size distribution (PSD), which includes both pore throat and pore body 

volumes, can be determined from the adsorption isotherm using several well-established 

methods that relate condensation pressure to pore size, such as the Kelvin-Cohan 

equation (Cohan, 1938). In our interpretation methodology, the PSD estimate from 

adsorption isotherm is used to calculate the percolation and fractal parameters, namely f, 

D, and β, as shown in Figure 2.2.  

During an adsorption measurement, nitrogen gas is gradually injected into a 

sample by increasing the nitrogen gas pressure around the sample. Nitrogen gas adsorbs 

on the pore walls as mono- and multi-layers until condensation pressure of the injected 

nitrogen gas is reached. Following that, nitrogen nucleates into liquid phase inside the 

pores. Nitrogen gas condenses at lower pressures in smaller-sized pores. With gradual 

increase in pressure during the adsorption measurement, condensation occurs in 

relatively larger pores. Consequently, the adsorption isotherm data contains information 

of the pore size distribution of the sample. In contrast, during a desorption measurement, 

nitrogen gas is gradually withdrawn from the sample by lowering the nitrogen gas 

pressure around the sample. Volume of liquid nitrogen that remains in the pores at any 

given pressure during a desorption process is higher than that during an adsorption 

process due to pore blockage effects. Nitrogen filling the pores that are connected only 

to smaller-sized pores can desorb and escape only after the evaporation and desorption 

of nitrogen from the connected smaller-sized pores. Consequently, the hysteresis of 

adsorption-desorption measurement can be related to the connectivity of the pore 

network and pore size distribution. 
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Barrett-Joyner-Halenda (BJH), Dollimore-Heal (DH), and Density-Functional-

Theory (DFT) methods are commonly employed to compute pore size distribution from 

adsorption-desorption isotherm measurements. DFT method is used to calculate PSD 

from ADI data with an assumption that the distribution of adsorbed fluid over the 

adsorbent is a function of its density. The equilibrium density of the adsorbed fluid over 

the adsorbent thus obtained is used to model the adsorption-desorption isotherm. PSD of 

a sample is estimated by matching the adsorption-desorption isotherm generated using 

the DFT model with the measured ADI data. In contrast to DFT method, DH and BJH 

methods employ analytical models that relate the volume desorbed/adsorbed at each 

pressure decrement/increment to the pore volume associated with the corresponding pore 

width window by assuming a fixed pore shape, mostly slit or cylinder. The BJH and DH 

methods are not applicable for pore widths smaller than 7 nm. Average pore size for our 

samples is in the range of 70-90 nm. Based on the assumed pore shape, both BJH and 

DH methods have similar approach but assume different constant parameters. 

We implemented the BJH method (Barrett et al., 1951) along with the Harkins-

Jura thickness equation to compute PSD of shale samples from adsorption isotherm of 

shale samples. There are several forms of the BJH method in literature; we adopt the BJH 

method formulation proposed and tested by Kruk et al. (1997, 1999). The thickness 

equation models the adsorbed nitrogen film thickness, t, as a function of relative nitrogen 

pressure. This corrects the pore radius available for subsequent condensation of nitrogen 

molecules with change in relative pressure as per the assumed pore geometry. For the 

PSD estimation, we used the thickness equation and modified Kelvin equation 

recommended by Kruk et al. (1997). The required 𝛼𝑠 values were taken from those given 
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by Kruk et al. (1999). The calculation was performed in accordance with codes published 

by Gobin (2006). Kruk et al. (1997) expressed the thickness of adsorbed layer in nm as  

𝑡 =  0.1(
60.65

0.03071 − log (
𝑃
𝑃𝑜
)
)

0.3968

,                                                                               (2.1) 

where P is pressure, Po is saturation vapor pressure of nitrogen adsorbate (1 atm), and 

P/Po denotes relative pressure. This equation provides accurate estimates in the relative 

pressure range of 0.1-0.95. Kruk et al. (1997) corrected the Kelvin equation using BJH 

method and expressed the pore radius in which condensation occurs at a given relative 

pressure in the following form:   

𝑟 =  (
2γ𝑉𝐿

𝑅𝑇 ln (
𝑃
𝑃𝑜
)
) + 𝑡 + 0.3,                                                                                               (2.2) 

where r is the pore radius in nm, VL is nitrogen molar volume (34.68 cc/mol), 𝛾is surface 

tension (8.88 x 10-3 N/m), R is universal gas constant (8.314 J/mol/K), and T is the 

absolute temperature (77 K).  

The application of BJH method requires assumption of pore geometry (slit or 

cylindrical). Based on SEM images of shale pore structure, this assumption may not be 

valid. Moreover, BJH method is not strictly applicable over the entire range of pore 

widths. However, it was demonstrated by Kuila and Prasad (2013a) that BJH method 

provided reasonable estimates of PSD in pore structure of shale and clay samples. The 

analytical form of BJH method facilitates its application with percolation theory.  Kuila 

and Prasad (2013a) compared results of PSD from DFT and BJH methods for shale 

samples. They suggested that DFT approach requires assumption of solid-gas 
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interactions in shale samples which are difficult to validate due to sample heterogeneity. 

Therefore, application of DFT on these samples would have its own sources of error and 

application of BJH method is recommended.  

A key point to note here is the difference in nitrogen adsorption on the surfaces 

of organic matter and inorganic content in shale samples. The volume of absorbed 

nitrogen changes with mineral composition and type of organic matter in various shale 

samples. Change in thermodynamic interactions between solid-gas molecules is the key 

premise of DFT method for the estimation of PSD from adsorption measurements on 

various samples. Although we do not expect gas-solid interactions to remain same for 

organic matter and inorganics, we assume that the impact of change in interactions is 

dominated by changes in pore size distribution. Thus, any change in the nitrogen volume 

adsorbed is a direct consequence of changes in pore size distribution. This allows use of 

a similar equation for silica and shale samples. This assumption has been reinforced by 

observations by Kuila and Prasad (2013a) which show that this approach can yield valid 

estimates for PSD in shale samples. 

 

2.4.2. Percolation parameters: Site Occupation Probability (f) and Percolation 

Probability (F) 

Percolation parameters can be computed from joint interpretation of PSD 

estimates and the measured ADI data based on Seaton’s method (Seaton, 1991). During 

an adsorption-desorption measurement, shale pore structure is assumed to be composed 

of connected pores that are filled with either nitrogen vapor and metastable liquid 

(occupied sites) or condensed stable liquid nitrogen (unoccupied sites). The pores 
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containing nitrogen vapor are considered as sites in the percolation cluster connected to 

the external surface. Thus, nitrogen can vaporize during desorption process when it is in 

an occupied site that is a part of the percolation cluster connected to surface. During the 

desorption step, the number of occupied sites increases with the decrease in the pressure 

as a function of pore size distribution and pore connectivity.  

Seaton (1991) defined the probability of a pore being occupied by nitrogen vapor 

and metastable liquid, referred as the site occupation probability, f, that is defined as the 

number of occupied sites divided by the total number of sites. Seaton (1991) showed that 

f can be computed from ADI data as a ratio of number of pores where nitrogen 

condensation has not occurred to the total number of pores present in the sample. This 

allows analysis of the adsorption-desorption process using percolation theory. Assuming 

cylindrical pores with pore radius proportional to length and fractal scaling in the shale 

sample, f(P) can be expressed as 

𝑓(𝑃) =  
∫

𝑣(𝑤)
𝑤3 𝑑𝑤

𝑑𝑚𝑎𝑥
𝑤∗(𝑃)

∫
𝑣(𝑤)
𝑤3 𝑑𝑤

𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛

,                                                                                                       (2.3) 

where w*(P) is the maximum pore diameter in which nitrogen condenses at 

pressure P, w is the pore diameter for cylindrical pores, and v(w) is distribution of pore 

volume as a function of pore diameter, as determined from the PSD estimates. dmin and 

dmax are corresponding minimum and maximum pore diameters corresponding to the 

minimum and maximum relative pressures at which the adsorption-desorption 

measurements were performed on the samples. Typically, dmin will be around 2 nm and 

dmax will be around 200 nm. Ideal fractal objects can follow the relation from zero pore 
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radius to infinite pore radius but for real samples, the range is restricted by dmin and dmax. 

PSD is estimated using the method recommended by Kruk et al. (1997).  

Another definition was the probability of a pore being a part of a percolation 

cluster, referred as the percolation probability, F. The f(P) needs to be calculated using 

Equation 2.3 prior to the calculation of F(P). Seaton (1991) proposed a graphical 

analysis of adsorption-desorption hysteresis to calculate F(P). The ratio F(P)/f(P) is the 

ratio of number of vapor-filled pores in the percolation cluster to the number of vapor-

filled and metastable-liquid-filled pores below their condensation pressures. In other 

words, the ratio F(P)/f(P) is equal to the ratio of volume of nitrogen gas that desorb at a 

given pressure (Vd) and the total volume of nitrogen gas that would desorb at that pressure 

if all pores had access to nitrogen vapor phase (Va). The volume Vd can be estimated from 

the desorption isotherm and Va can be estimated from the adsorption isotherm at a 

specific pressure. The contribution of surface clusters, i.e. clusters of vapor-filled pores 

of limited span only around the surfaces of a sample, to the desorption isotherm is 

neglected in this approach. 

Both the parameters are functions of nitrogen pressure. The parameters help to 

analyze the adsorption-desorption process using percolation theory. f denotes the 

probability that the pores are occupied by gas which increases with desorption as more 

liquid nitrogen vaporizes to gaseous state. F denotes the probability that these gas pores 

join to form a continuous spanning cluster. F is zero when f is below the percolation 

threshold, fc which implies that a continuous cluster is yet to form across the pore 

network. The parameters F and f increase with a decrease in pressure with more pores 

being added to the cluster with desorption. F tends to f as f tends to 1 which is a result 
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that at high site occupation probability, almost all pores are part of the percolation cluster. 

Estimates of the percolation parameters f and F of a sample are essential for estimating 

coordination number (Z) and percolation length (L) using the universal finite-size scaling 

function h, as described by Seaton (1991). The thermodynamic effects on the hysteresis 

loop during desorption are neglected in this approach.  

 

2.4.3. Fractal parameters: Fractal Dimension (D) and Probability of Drainage (β)  

Fractal dimension (D) quantifies the complexity of a pattern in terms of the 

change in detail to the change in scale. D describes the self-similar scaling of a porous 

medium. Perfect (2005) defined probability of drainage (β) is the ratio of pore volume to 

the sum of pore and solid volumes in a repeating fractal model (Ghanbarian-Alavijeh & 

Hunt, 2012). A unimodal model for fractal pore size distribution is an ideal approach that 

may break down for real samples. A bimodal approach tends to be a closer 

approximation. Moreover, bimodal approach is convenient in implementation compared 

to a trimodal approach. Therefore, we have used the bimodal approach for sample 

analysis presented in this paper. From Hunt et al. (2013), the bimodal approach requires 

two values each for D and β. In this approach, the cumulative volume distribution of pore 

sizes, θ(d), is defined as 

𝜃(𝑑) = {
 𝜑1(𝑑),            𝑑𝑚𝑖𝑛 < 𝑑 < 𝑑𝑥

𝜑1(𝑑𝑥) + 𝜑2(𝑑),        𝑑𝑥 < 𝑑 < 𝑑𝑚𝑎𝑥  
                                                              (2.4) 

where  𝜑1(𝑑) = 𝛽1 [(
𝑑

𝑑𝑥
)
3−𝐷1

− (
𝑑𝑚𝑖𝑛

𝑑𝑥
)
3−𝐷1

] and  𝜑2(𝑑) = 𝛽2 [(
𝑑

𝑑𝑚𝑎𝑥
)
3−𝐷2

−

(
𝑑𝑥

𝑑𝑚𝑎𝑥
)
3−𝐷2

] 

Here dx is the pore diameter at which pore behavior changes from the fractal 

regime 1 to fractal regime 2 and D1, β1, D2, and β2 are the fractal dimension and 
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probability of drainage for respective fractal regimes. dmin and dmax are minimum and 

maximum pore diameters in samples influencing the adsorption-desorption isotherm.  

The values of dx, β1, D1, β2 and D2 are computed using an optimization algorithm 

implemented in MS-Excel toolbox involving following steps: 

1. Assume an initial guess of dx, such that dmin < 10 nm < dx < 100 nm < dmax. 

2. For the chosen value, use optimization algorithm to estimate β1 and D1 for regime-1 

and β2 and D2 for regime-2 that generates the best match between θ(d) predicted by 

Equation 2.4 and the PSD estimated from AD measurement using BJH method.  

3. Change the value of dx. 

4. Repeat steps 2 and 3 to find the global optimum solution of dx and corresponding 

values of β1, D1, β2 and D2. 

2.4.4. Percolation parameters: Percolation cluster length (L) and coordination 

number (Z) 

Coordination number (Z) is the number of immediate neighbors of each pore in 

the pore structure. An increase in coordination number results in a decrease in the 

percolation threshold. Percolation cluster length (L) is the size of pore network in terms 

of number of pores contained in the network. Average pore length in a microparticle can 

be approximated as the size of microparticle divided by L. The parameter L is used as a 

qualitative check for the estimated properties of the pore networks of the sample. The 

parameters Z and L are obtained by using an optimization algorithm on the universal 

scaling function proposed by Seaton (1991) expressed as  

𝐿
𝑏

𝑣𝑍𝐹 = ℎ ([𝑍𝑓 − 𝑍𝑓𝑐]𝐿
1

𝑣),                                                                                                    (2.5)                         

where  
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ℎ(𝑥) = 9.753 𝑠𝑖𝑛(0.04046𝑥 + 0.2653)  +  2.253 𝑠𝑖𝑛(0.4244𝑥 − 1.972)  

+  2.072 𝑠𝑖𝑛(0.4495𝑥 + 0.8723),                                                         (2.6) 

based on the expression presented by Daigle et al. (2015), b=0.41 (universal 

value), v=0.88 (universal value), and f and F are percolation parameters. The parametric 

value of Zf denotes an average number of occupied bonds per site at a given site 

occupation probability, f. The proposed optimization method to estimate Z and L requires 

f(P) and F(P) values estimated for relative pressures of the nitrogen gas greater than 0.45.  

The behavior of percolation near the percolation threshold is dependent on the 

size of the system. For an ideal infinite system, the f value changes instantaneously once 

the percolation threshold is achieved. For any finite cluster, the parameters show a 

gradual change near the percolation cluster. The universal scaling function defines the 

effect of size of system on the behavior of parameters near the percolation threshold. The 

function is universal in form which changes with nature of pore lattice. The function 

defines the expected behavior of the percolation clusters which helps to model the 

adsorption phenomenon to find coordination number and percolation cluster length. 

The parameter Z is used to compute the bulk volume of a fluid phase at which the 

pore structure of the porous media changes from percolation scaling to effective medium 

scaling, denoted as θx, that was expressed by Sahimi (1993) as 

𝜃𝑥 = 𝜃𝑡 + 
𝜑

𝑍
,                                                                                                                           (2.7) 

where φ is the ADI porosity of the sample obtained by multiplying the cumulative 

pore volume from calculated pore size distribution at nitrogen saturation pressure with 

bulk density of the sample, and θt=fc* φ is the critical phase content for percolation, where 

fc is the percolation threshold that describes the critical value of occupation probability 

at which the cluster percolates across the medium and attains infinite length.  
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The optimization algorithm is designed to find the values of Z and L for a given 

f, F, b, and v that satisfies the universal scaling function expressed as Equation 2.5. 

Equation 2.6 was obtained through curve fitting the simulation results of a 3D 

percolation cluster model. As the first step of the optimization, initial guesses of Z and L 

are used to calculate  𝑥 = [𝑍𝑓 − 𝑍𝑓𝑐]𝐿
1

𝑣and  𝑦 = 𝐿
𝑏

𝑣𝑍𝐹.  To improve the robustness of the 

optimization, rather than estimating fc as the third unknown parameter, we express fc as 

a function of Z, given as fc =1.7259Z-1.081, which is calculated as a regression on the 

typical values of coordination number and corresponding percolation thresholds for 

various lattice structures, as presented by Seaton (1991). The second step of optimization 

involves iterative modification of the values of Z and L to minimize the error between 

h(x) and y.  

Our interpretation methodology involves two separate optimization procedures: 

one for β and D, and another for Z and L. The algorithm implemented in the optimization 

procedure is not significant as long as it converges to the global solution. We confirmed 

the uniqueness of the optimal solution against 2D contour plots of errors involved in the 

solution space of the optimization problem for β and D and those for Z and L.  

 

2.4.5. Relative permeability of non-wetting phase 

Several authors have demonstrated that percolation theory can predict transport 

properties of fluid-filled porous media (Ghanbarian et al., 2014 & 2015). We assume that 

the transport behavior of the non-wetting phase can be holistically predicted using 

percolation theory and effective medium theory. It is assumed that percolation theory 

best predicts the transport properties of the fluid phase for small volume fractions of that 
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phase (θi) close to the critical phase content (θt), whereas effective medium theory 

provides the best approximations for the transport properties of the fluid phase for 

volume fraction of that phase much above the critical phase content (Daigle et al., 2015). 

The volume fraction of the fluid phase at which percolation scaling switches to effective 

medium scaling is denoted as θx, as described in Equation 2.7. Relative permeability of 

the non-wetting phase at non-wetting phase volume fraction of θnw is expressed as  

𝑘𝑟𝑛𝑤(𝜃𝑛𝑤) =

{
 
 

 
 (𝜑 − 𝜃𝑡)(𝜃𝑛𝑤 − 𝜃𝑡)

2

(𝜃𝑥 − 𝜃𝑡)(𝜑 − 𝜃𝑡)2
, 𝜃𝑡 < 𝜃𝑛𝑤 < 𝜃𝑥

(𝜃𝑛𝑤 − 𝜃𝑡)

(𝜑 − 𝜃𝑡)
,                           𝜃𝑥 < 𝜃𝑛𝑤 < 𝜑  

                                          (2.8) 

 

2.4.6. Relative permeability of the wetting phase 

We assume that the saturation-dependent transport behavior of the wetting phase 

can be formulated using percolation theory and critical path analysis (CPA). The 

transport properties of the wetting fluid phase for volume fraction of that phase much 

above the percolation threshold can be best approximated using CPA (Daigle et al., 

2015). CPA proposes that fluid flow in a highly heterogeneous porous media is 

dominated by pore throats whose radii are slightly greater than the critical radius 

(Ghanbarian et al., 2016); therefore, it expresses the pore-size dependence of 

permeability. The percolation threshold for wetting and non-wetting phases are assumed 

to be equal. The equation for relative permeability can be derived by applying 

Poiseuille’s law to an assumed fractal porous media. From Hunt et al. (2013), relative 

permeability of the wetting-phase at wetting phase volume fraction of θw is expressed as  

a) 𝜃𝑡 < 𝜑1 
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𝑘𝑟𝑤(𝜃𝑤)

=

{
 
 
 

 
 
 
[
𝛽1 − 𝜑 + 𝜃𝑤 − 𝜃𝑡

𝛽1 − 𝜃𝑡
]

3
3−𝐷1

,                                                 𝜃𝑤 − 𝜃𝑡 > 𝜑2 , 𝜃𝑤 > 𝜑2 
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𝛽1

3
3−𝐷1

𝛽2

3
3−𝐷2

)(
𝛽1 − 𝜑

𝛽1
)

3
3−𝐷1

[
𝛽2 − 𝜑2 + 𝜃𝑤 − 𝜃𝑡

𝛽1 − 𝜃𝑡
]

3
3−𝐷2

, 𝜃𝑤 − 𝜃𝑡 < 𝜑2 , 𝜃𝑤 > 𝜑2  .

  (2.9) 

b) 𝜃𝑡 > 𝜑1 

𝑘𝑟𝑤(𝜃𝑤) = [
𝛽2 − 𝜑2 + 𝜃𝑤 − 𝜃𝑡

𝛽1 − 𝜃𝑡
]

3
3−𝐷2

  .                                                                           (2.10) 

According to the bimodal approach used in our method, the total ADI porosity 

(φ) is divided in two components (φ1 and φ2), each calculated as a separate fractal regime. 

This division leads to the following two scenarios: 

1. 𝜃𝑡 < 𝜑1: Percolation can occur in both fractal regimes and therefore the scaling is 

dependent on parameters from both fractal regimes. The 𝜃𝑤 − 𝜃𝑡 > 𝜑2  indicates θw 

is away from the point of change of fractal regime, whereas 𝜃𝑤 − 𝜃𝑡 < 𝜑2 indicates 

θw is near the point of change of fractal regimes and percolation characteristics is 

simultaneously affected by fractal parameters of both regimes. 

2. 𝜃𝑡 > 𝜑1: Percolation occurs entirely in the 2nd fractal regime and therefore is only 

dependent on fractal parameters of the 2nd fractal regime. 

The following conditions are required for applying critical path analysis (CPA) 

to fluid transport: 

1. CPA was derived to model transport in random systems with broad distribution of 

conductance based on the dominance of a controlling conductance of a critical 

magnitude.  
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2. It is observed that CPA predictions are good for small coordination numbers, likely 

characteristics of sedimentary rocks, and a limited range of pore size distribution. 

3. Application of CPA to predict permeability assumes equivalence of permeability 

with electrical conductance. This assumes the same critical pore size for both 

electrical conductivity and permeability. When surface conductance has significant 

contribution to electrical transport, it leads to differences in critical radius for 

conductance and permeability. This requirement for the applicability of CPA is 

strictly valid for samples with negligible surface conductance (Daigle, 2016) that may 

breakdown in presence of clays, conductive minerals, and nanoscale pores.  

4. Daigle (2016) states that CPA is applicable for PSD varying 2.5 to 3.5 orders of 

magnitude based on their investigations on pore sizes ranging from 0.9 nm to 1000 

nm. Samples studied in our paper exhibit PSDs varying between 2.3 to 2.5 orders of 

magnitude for pore sizes in the range of 2 nm to 200 nm, as sensed by the phenomena 

of adsorption and desorption.  

2.4.7. Relative diffusivities of wetting and non-wetting phases 

Transport of a fluid phase in shale has Darcy (including slip flow) component and 

diffusive component. Both the components of transport are saturation dependent. 

Therefore, the concept of relative permeability and relative diffusivity needs to be 

invoked to characterize the saturation dependence of the two components of flow in 

shales. Sections 2.4.5 and 2.4.6 describe the formulation of relative permeabilities of 

wetting and non-wetting phases, which is associated with the Darcy component of flow. 

For the non-wetting fluid phase, Ghanbarian et al. (2014) demonstrated that the 

formulation of diffusion coefficient of charge carriers is analogous to that of electric 
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conductivity. Martys (1999) showed using lattice Boltzmann method that diffusion 

coefficient of charge carriers in non-wetting phase followed percolation theory and could 

be expressed using a scaling function, which is similar to that obtained by Ghanbarian et 

al. (2014). A polynomial scaling between charge carrier diffusion coefficient and 

electrical conductivity was recommended the by Martys (1999) for the wetting phase. 

These observations in the domain of electrical conduction and diffusion can be extended 

to relate relative diffusivity and relative permeability of the non-wetting phase. Daigle et 

al. (2015) proposed that relative diffusivity of non-wetting phase can be expressed using 

a formulation analogous to the relative permeability of the non-wetting phase. This was 

based on experimental data published by Springer et al. (1998). In our interpretation 

methodology, we assume that relative diffusivity formulations for non-wetting phase are 

analogous to the relative permeability formulations for non-wetting phase. Consequently, 

our investigation of saturation-dependent transport properties does not need to explicitly 

account for both relative diffusivity and relative permeability for non-wetting phase.  

The mean free path of water molecules in liquid phase would always remain very 

small compared to pore diameter. The Fick’s diffusion coefficient for water in liquid 

phase is 3-4 orders of magnitude smaller compared to that in gas phase. As a result, 

diffusion for liquid phase is not likely to play an appreciable role in transport phenomena. 

Hence, we assume that advection is the dominant mode of transport in wetting aqueous 

phase and diffusion can be neglected without compromising on accuracy of predictions 

for wetting aqueous phase. These assumptions allow us to account for relative diffusivity 

and relative permeability for non-wetting phase using a single expression whereas 

relative diffusivity for wetting phase can be neglected. 



29 

2.4.8. Improvements implemented in the proposed methodology compared to earlier 

methodologies 

Following are few key improvements in the methodology used for this analysis: 

1. We replaced the unimodal fractal model used by Daigle et al. (2015) with a bimodal 

fractal model, mentioned in Equation 2.4, to derive fractal parameters from the 

computed PSDs. Pore size distribution exhibited by the samples under our 

investigation are multimodal in nature; consequently, an analysis with unimodal 

fractal model may not be reliable. We realize that even the bimodal model may not 

be sufficiently accurate to describe the computed PSDs. We are not aware of any 

multimodal fractal model that can used for the PSD analysis required for the proposed 

methodology. 

2. Use of bimodal fractal distribution necessitates reformulation of the wetting phase 

relative permeability, mentioned in Equations 2.9 and 2.10, which is significantly 

different from the one used by Daigle et al. (2015). 

3. For calculation of wetting phase relative permeability, Daigle et al. (2015) combined 

both critical path analysis and percolation theory by defining a crossover fraction θd. 

This could be done because they assumed a unimodal fractal model. On the other 

hand, we are using critical path analysis for the wetting phase and assume a bimodal 

fractal model that does not require calculation of a crossover fraction, similar to Hunt 

et al. (2013). 

4. The formulation of Equation 5 mentioned in Daigle et al. (2015) was modified based 

on Sahimi (1993) to obtain the new formulation mentioned in Equation 2.7 in our 
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paper, which accurately describes the crossover point between percolation theory and 

effective medium theory. 

5. Instead of fc = 1.5/Z used by Daigle et al. (2015), we use fc = 1.7259Z-1.081 for the 

correlation between percolation threshold and coordination number. The correlation 

is based on the published values of numerical simulation results obtained by Seaton 

(1991).  

6. Daigle et al. (2015) separately defines the relative permeability of non-wetting phase 

due to diffusion and that due to advection using Equations 7 and 8 in that paper, and 

later combines them to calculate the relative permeability of the non-wetting phase. 

However, the two aforementioned relative transport models are based on the same 

formulation of percolation theory; therefore, the two formulations become redundant. 

We eliminate this repetition as it is not required from the point of view of a relative 

transport model for shale. 

2.4.9. Method Validation 

2.4.9.1. Validation of Method to Estimate PSD 

The nitrogen adsorption data and pore size distribution results published by Kruk 

et al. (1997, 2000) and Liu et al. (1992) have been analyzed for purposes of validation. 

Kruk et al. (1997) used a modified Kelvin equation on ADI measurements on MCM-41 

siliceous molecular sieves and macro-porous silica gel. Kruk et al. (2000) used the 

formulation given by Kruk et al. (1997) to process the ADI measurements on SBA-15 

ordered mesoporous silica. Similarly, Liu et al. (1992) modified the method proposed by 

Seaton (1991) to interpret the ADI measurements on numerous silica samples. All the 

authors assumed cylindrical or slit pore geometry and used variations of BJH method to 
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calculate the pore size distribution. The choice of the thickness equation does not alter 

the estimates as long as the same equation is applied consistently on the entire set of 

samples (Kuila and Prasad, 2013a).  

Figure 2.3 compares the dV/dR estimates obtained by Kruk et al. (1997), Kruk et 

al. (2000) and Liu et al. (1992) with those obtained using the PSD estimation method 

described in Section 3.1. The dV/dR denotes the slope of the cumulative pore volume 

curve, i.e. incremental pore volume, when plotted against pore diameter. The authors 

recognize that the nature of the curves will be different for plots of dV/dR or dV/dln R 

(Meyer and Klobes, 1999) that will not affect the conclusions based on the type of plot. 

The plots are presented for dV/dR to maintain similarity with the original published 

literature. 

The range of estimated pore diameter exhibits a good match for the three cases 

but the volumetric results are different. The volumetric disparity between the previously 

published and newly calculated results should be due to difference in the values assumed 

for conversion constants, namely VL, 𝛾 and 𝛼𝑠. The 𝛼𝑠  values are needed to convert the 

measured nitrogen gas volume to required liquid nitrogen volume adsorbed at each 

pressure step and remains constant for each pressure step. Since any alternate reference 

for 𝛼𝑠   values deemed fit for use in shale samples is not available, we have used the only 

available values but are aware that these values may introduce some error in interpreted 

PSD. Introduction of error at this stage would result in deviation of interpreted PSD and 

pore coordination number from actual values but is not likely to introduce much error in 

relative permeability estimates.  Figure 2.3c appears noisy due to use of higher number 

of points as compared to Figures 2.3a and 2.3b. If number of points is decreased, noise 
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can be reduced although the overall nature of the curve needs to be preserved in each 

case. 

 

Figure 2.3: Comparison of the estimated PSDs against those published by (a) Kruk 

et al. (1997) for MCM-41 sample presented in Figures 2 and 8 of the referenced 

literature, (b) Kruk et al. (2000) for S4 sample presented in Figures 4 and 5 of the 

referenced literature, and (c) Liu et al. (1992) for Sample A presented in Figures 1 

and 4 of the referenced literature. 

2.4.9.2. Validation of Method to Estimate F(P) and f(P)   

PSD estimates for a sample is used to calculate F(P) and f(P). Figure 2.4 

compares F(P) vs. f(P) plots obtained by Liu et al. (1992) against those obtained by using 

the method described in Section 2.4.2. Liu et al. (1992) used adsorption data on silica 

samples to which they applied the BJH method separately assuming cylindrical and slit 

pore geometry. Our assumptions of pore geometries are similar to those used by Liu et 

al. (1992) for processing the ADI measurements using a modified BJH method, as 

recommended by Kruk et al. (1997). In Figure 2.4, the point where F equals f is a 

qualitative indicator of the coordination number of pore network (Seaton, 1991). The 

point where F(P)=f(P) is indicative of the point of closure of the hysteresis loop in 

adsorption-desorption isotherms which is consistently correlated with the coordination 
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number of pore structure. The f value corresponding to smallest positive value of F is 

indicator of percolation cluster length. For small clusters (L<10), this f value is close to 

0. For an ideal cluster of infinite length, this f value will be equal to the percolation 

threshold. This is representative of the percolation phenomenon for which flow happens 

only when the cluster percolates and achieves infinite size.  

 

Figure 2.4: Estimated F(P) vs. f(P) plots against those published by Liu et al. (1992) 

for (a) cylindrical pore geometry (b) slit pore geometry. The sample referred here 

is Sample-A with data shown in Figures 1,4, and 6 of the referenced literature. 

2.4.9.3. Validation of Estimations of Z and L 

Z and L estimates were obtained using an optimization algorithm that requires 

f(P) and F(P) as inputs. We compare the Z and L estimates published by Liu et al. (1992), 

Liu et al. (1993), and Liu and Seaton (1994) against those estimated using our 

optimization procedure on the corresponding published data. The authors adsorption 

measurements on silica samples. The authors presented the f(P) and F(P) curves derived 

from the AD measurements. These curves were then used to estimate the Z and L of the 

samples. We apply our optimization procedure on the published data and curves to 

compute the Z and L values. Table 2.2 shows a good agreement between the estimated 
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and published Z estimates. The published L values were higher than our estimates, as 

reported in Table 2.2. Our estimation is based on the universal scaling function described 

in Equations 2.5 and 2.6. Liu et al. (1992), Liu et al. (1993), and Liu and Seaton (1994) 

replaced parameters F and f with accessibility functions (XP and X). The accessibility 

functions have the same physical definition and calculation procedure as F and f defined 

earlier. The accessibility functions were used to estimate Z and L by matching the 

calculated accessibility functions with those obtained by Monte-Carlo simulations of 

percolation for different values of L. Procedure used by Liu et al. (1992) assume 10 < L 

< 60, which is not valid for our method that assumes L < 12, which is chosen to be less 

than 12 to speed up the calculation for finding the global optimum solution within the 

chosen solution space. Upon increasing the upper limit of L to 60 in the proposed 

optimization method, we observed that the accuracy of Z and L estimates are unaltered 

though the time to converge to an optimal solution increased. The L estimates directly 

influence the accuracy of Z, other than that there is not any quantitative application of 

the L estimates in the entire interpretation methodology. 

Table 2.2: Comparison of estimated and published Z and L estimates 

Reference Estimated Z Published Z Estimated L Published L 

Liu et al. (1993)* 2.9 3 - - 

Liu et al. (1993)* 4.9 5.1 5.1 4.3 

Liu et al. (1992)-

Sample 1 (Cylindrical) 

5.3 5.1 5.7 43 

Liu et al. (1992)-

Sample 1 (Slit) 

3.6 3.7 5.2 50 

Liu and Seaton 

(1994)- Sample A 

5.0 4.7 3.3 12 

* The samples referred here are presented in Figures 6 and 7 of the referenced literature. 
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2.5 Assumptions made in the approach 

1. We assume that the PSD estimation from BJH method is representative of shale 

samples. This is in line with demonstrations made by Kuila and Prasad (2013a), 

wherein the PSD estimates obtained using DFT method were significantly different 

from those obtained using BJH-type methods.  

2. We assume that shale pore structure can be accurately defined by a single value of 

coordination number (Z) which can be found using the universal scaling function. 

This assumption is strictly valid only for unimodal samples. 

3. We assume that a bimodal fractal model can accurately match the PSD of shale 

samples used in the study. 

4. We assume that in each case of optimization used in the method, the result refers to 

the global solution of the optimization problem. The estimates β and D strongly 

depend on dx. Therefore, it is very important to identify the true global optimum 

solution of dx. 

5. The method assumes water to be wetting phase for shale samples and hydrocarbon is 

assumed to be wetting to organic matter. 

6. We assume that relative diffusivity formulations for non-wetting phase are analogous 

to the relative permeability formulations for non-wetting phase. Consequently, the 

scaling formulation based on percolation theory can holistically predict transport in 

shale samples. 

7. The method assumes equivalence of permeability with electrical conductance. This 

assumes the same critical pore size for both electrical conductivity and permeability 

and negligible impact of surface pores on transport properties.  
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2.6 Limitations of the approach 

1. PSD estimation from low-pressure nitrogen gas adsorption measurements is 

applicable up to a maximum pore width of 200 nm (Kuila and Prasad, 2013b) and 

minimum pore width of 7 nm. The relative permeability results based on adsorption 

measurements need to be considered in conjunction with those obtained from other 

methods, such as mercury intrusion, to include pores  beyond the range of width 

spanned by the AD measurements. 

2. The method assumes water to be wetting phase for shale samples and hydrocarbon is 

assumed to be wetting to organic matter. This assumption needs to be further tested 

to ensure the reliability of the method. 

3. Equation 2.5 and the assumption of a universal scaling function to find Z and L is 

theoretically applicable only for unimodal pore size distributions. In absence of any 

substitute method to find Z and L for practical materials with bimodal and trimodal 

PSDs, we adopt the procedure developed for unimodal distribution. 

4. The universal scaling function method generates reliable results for H1 and H2 

hysteresis loops only. We observe H3 hysteresis loops in our samples. 

5. The L estimates obtained from optimization on the universal scaling function differ 

from those obtained in other published results. This shows that the method is not very 

sensitive to variation in L values. 

6. Analytical form of h(x) proposed in Equation 2.6 is not a unique relationship, it was 

estimated by analytically approximating the simulation results for 𝐿
𝑏

𝑣𝑍𝐹  versus 

[𝑍𝑓 − 𝑍𝑓𝑐]𝐿
1

𝑣. 
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7. An inherent limitation of Sections 2.4.4 and 2.4.5 is the inability to set bounds on the 

upper limit of θx value because all values of Z theoretically are allowed for the 

equations mentioned in these sections. This keeps the method open to the possibility 

of having values such as θx >φ for low values of Z. In these circumstances, Equations 

2.8, 2.9 and 2.10 may yield inconsistent relative permeability curves. 

8. The relative permeability curves generated are equivalent to normalized relative 

permeability curves since they always predict values ranging from 0 to 1. Further 

experimental measurements would be required to have the actual relative 

permeability predictions at maximum saturation of corresponding phase.  
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CHAPTER 3: ESTIMATION OF PORE NETWORK 

CHARACTERISTICS 

 

3.1 Estimation of pore size distribution(PSD) and associated characteristics  

We define ADI pore volume (APV) as the cumulative volume of nitrogen 

adsorbed on the grain surfaces of 1 gram of sample at the saturation pressure of nitrogen. 

Figure 3.1 shows the incremental and cumulative pore size distributions in the pore size 

range of 2 nm to 200 nm for dataset-1 mentioned in Table 2.1 containing shale samples 

from oil-, condensate-, and late-condensate-window of thermal maturity. For most 

samples, the PSD is multimodal with peaks visible around 15, 35 and 110 nm. The 

relative contribution of pore sizes varies with thermal maturity. WF-4 and WD samples 

show higher contribution from pore size peaks around 15 nm.  Except for L. Bakken 

samples, the cumulative and incremental PSDs tend to increase with increasing thermal 

maturity. High TOC in L. Bakken samples may be the reason for this discrepancy. 

Figure 3.2 shows the incremental and cumulative PSDs for dataset-2 mentioned 

in Table 2.1 containing samples from oil-, condensate-, and gas-window of thermal 

maturity. Unlike dataset-1, these samples do not show a definite correlation between 

adsorption-desorption-isotherm pore volume (APV), which is the total volume of pores 

of size between 2 nm and 200 nm, and thermal maturity. Eagle Ford oil- and gas-window 

samples show similar PSDs. The Wolfcamp samples in this dataset exhibit a dominant 

peak in pore size around 50 nm. The cumulative pore volume of Wolfcamp condensate-

window samples exceeds that of Eagle Ford gas-window samples. Difference in kerogen 

properties and variation in maturation history could be potential reasons for these 
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observations. Except the Wolfcamp samples in this dataset, all samples exhibit similar 

features and petrophysical trends in PSD to those observed for samples in dataset-1. 

 

Figure 3.1: (a) Incremental pore size distribution, and (b) cumulative pore size 

distribution for samples from different thermal maturity windows from Bakken, 

Woodford and Wolfcamp formations. 

 

Figure 3.2: (a) Incremental and (b) cumulative pore size distributions for samples 

from different thermal maturity windows of Eagle Ford (EF) and Wolfcamp (WF) 

formations. 
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3.2 Correlations of APV and average pore diameter with LPP Porosity and 

TOC:  

Crossplots between LPP porosity (in porosity units, p.u.) before cleaning and ADI 

pore volume (APV, in cc/g) for native (Figure 3.3a) and cleaned samples indicate the 

abundance of nano- and micropore volumes smaller than 200 nm. APV varies linearly 

with LPP porosity of the samples. APV and LPP porosity of samples increase with 

sample maturity. These trends indicate that a higher LPP porosity is related to larger 

connected nano- and micropore volumes for adsorption of nitrogen. These observations 

match with the linear relationship between surface area calculated from ADI experiments 

and total porosity for Devonian-Mississippian shale samples reported by Ross and Bustin 

(2009). They also reported that at higher thermal maturity, organic matter is transformed 

by diagenesis to create more microporosity, which can be detected using AD 

measurements due to higher number of sites for adsorption of nitrogen. Overall, samples 

exhibit positive correlations between APV, LPP porosity and maturity.  

The crossplots between total organic content (TOC) before cleaning and APV for 

native samples (Figure 3.3b) indicate the abundance of nano- and micropore volumes 

smaller than 200 nm in the organic matter. Similar response is seen in cleaned samples. 

L. Bakken samples exhibit considerably higher TOC compared to other samples but show 

no commensurate increase in APV.  This indicates that the maturation resulted in 

production of larger sized pores that are not observable using the AD measurements. WF-

4 samples are the highest maturity samples; nonetheless, they exhibit low TOC and 

corresponding low APVs. Samples from other formations have TOC in the range of 2-4 

wt. % and exhibit positive correlations between APV, TOC and maturity. 
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Figure 3.3: Crossplots of (a) LPP porosity before cleaning versus ADI pore volume, 

and (b) TOC before cleaning versus ADI pore volume for native samples from 

various maturity windows. 

 

Figure 3.4 shows the relationship between average pore diameter and APV for 

both native and cleaned samples. We assumed cylindrical pore geometry to compute the 

pore size distribution of a sample from its ADI measurement. The average pore diameter 

was calculated as an incremental pore volume weighted average over the entire pore size 

distribution from 2 nm to 200 nm. In Figure 3.4, the average pore diameter of samples 

decreases with increasing thermal maturity, despite the increase in APV with maturity. 

This indicates an increase in number of nanopores and micropores for both native and 

cleaned samples with increase in thermal maturity. Similar observations were made on 

shale samples from North American basins by Valenza et al. (2013), more micropores 

were generated during the thermal maturation of organic matter. Higher number of 

micropores leads to considerable increase in surface area for adsorption. Valenza et al. 

(2013) explained that the increase in volume with increase in maturity is not as high as 

the increase in surface area for the studied shale samples. Average pore diameter can be 
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expressed as d=8V/A, a higher increase in surface area compared to the volume will lead 

to the decrease in average pore diameter, which is in good agreement with our 

observations. 

 

Figure 3.4: Crossplots of average pore diameter versus APV for (a) native samples, 

and (b) cleaned samples from various maturity windows. 

 

3.3 Impact of Cleaning and Ashing  

3.3.1. Impact on PSD and associated parameters 

Figure 3.5a shows that the Low Temperature Ashing (LTA) leads to an overall 

increase in the ADI porosity due to the removal of organic matter. Despite the low bulk 

porosity of gas-window samples, the net increase in ADI porosity of gas-window samples 

due to ashing is comparable to that of the higher porosity oil-window samples. The figure 

indicates that the change in ADI porosity due to ashing is independent of the LPP porosity 

before ashing. Both oil- and gas-window samples exhibit a physically consistent linear 

relationship between the change in ADI porosity due to ashing and TOC before ashing, 

as depicted in Figure 3.5b. Also, based on the observed linear trends in Figure 3.5b, 
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gas-window samples exhibit a higher change in ADI porosity due to ashing than oil-

window samples, which indicates that the organic matter in gas window samples is 

present in micro- and mesopores. 

 

Figure 3.5: Crossplots of (a) change in ADI porosity due to ashing versus LPP 

porosity before ashing and (b) change in ADI porosity due to ashing versus TOC 

before ashing of samples from gas and oil windows. 

 

Figure 3.6 has average pore diameters of native samples on X-axis and those of 

cleaned and ashed samples on Y-axis. The Y=X line demarcates the region for which the 

samples do not exhibit appreciable change in average pore diameter upon cleaning and 

ashing. Except for L. Bakken samples, none of the samples show any appreciable change 

in average pore diameter when cleaned, as shown in Figure 3.6a. Consequently, in all 

except L. Bakken samples, bitumen and dead hydrocarbons are distributed in the pore 

networks almost evenly across the entire range of pore diameters sensed by AD 

measurements. On the other hand, Figure 3.6b shows a distinct increase in pore diameter 

upon ashing for most samples. This is in line with observations that kerogen is associated 

with smaller pores and removal of kerogen yields increase in the average pore diameter. 
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Unlike the effects of sample ashing, the cleaning of samples generally reduces the 

average pore diameter. 

 

Figure 3.6: Crossplots of (a) average pore diameter of cleaned samples and (b) 

average pore diameter of ashed samples versus the average pore diameter of native 

samples. 

 

Figure 3.7 compares the pore size distributions of samples from various thermal 

maturity windows. Figures 3.7a & 3.7b compare the PSDs of native and cleaned 

samples. PSD is expressed as dV/d(log D) plots, where V is pore volume in cc/g and D is 

pore diameter in nm. The PSDs are divided into three windows: d < 20 nm, 20 < d < 80 

nm, and d > 80 nm. In Figure 3.7a, the pore volume of pores in all windows increase 

with the increase in thermal maturity of the samples. The increase is most pronounced 

for d < 20 nm, which agrees with the observations by Valenza et al. (2013) that the 

process of diagenesis leads to the creation of nanopores. A visual comparison between 

Figures 3.7a & 3.7b highlights that the sample cleaning using 4:1 mixture of toluene and 

methanol primarily leads to an increase in pore volume associated with d < 20 nm. It can 

be concluded that the kerogen maturation lead to the generation of nanopores and 
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bitumen creation in the smaller pore sizes. Similar to our observations, Xiong et al. 

(2015) reported high values of change in pore surface area in pores smaller than 10 nm 

due to the removal of bitumen. 

 

Figure 3.7: Incremental pore size distributions of (a) native samples and (b) cleaned 

samples. 

 

PSDs of oil- and gas-window samples in all the pore-size windows increase due 

to ashing as shown in Figure 3.8. For oil and gas window samples, the largest increase 

in PSDs is for the pore-size window d > 80 nm. This implies that removal of kerogen 

tends to increase the macropore and mesopore volumes as compared to the nanopore 

volume.  

The comparisons of PSDs across the three pore-size windows due to cleaning and 

ashing is depicted as histograms in Figure 3.9. Upon ashing, volume fraction of only 

pore sizes with d > 80 nm increases, as presented in Figure 3.9b. Upon cleaning, volume 

fraction for only pore sizes with d < 20 nm increases, as presented in Figure 3.9a. 

Increase in volume fraction of small pores due to cleaning is much larger compared to 

that of large pores upon cleaning. 
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Figure 3.8: Incremental pore size distributions (a) Eagle Ford oil window samples 

and (b) Eagle Ford gas window samples in their native state and after ashing. 

 

 

Figure 3.9: Pore-size window-based comparison of changes in pore size distribution. 
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Figure 3.10: Boxplots showing range and variation of (a) coordination number (Z), 

(b) percolation cluster length (L), and (c) fractal dimension of first fractal regime 

(D1) estimates for samples from various maturity windows. 

 
 

3.3.2. Impact on percolation and fractal parameters (Z, L, D) 

Coordination number (Z) is the number of immediate neighbors of each pore in 

the pore structure. An increase in coordination number will decrease the percolation 

threshold. Percolation cluster length (L) is the size of pore network in terms of number 

of pores contained in the network. Fractal dimension (D) quantifies the complexity of 

pore network in terms of the change in detail to the change in scale. We implement 

bimodal fractal regime; consequently, we obtain two values of D for each sample 

corresponding to the two regimes. Figure 3.10 shows the range of estimates obtained for 

Z, L and D1 for samples from various maturity windows. Z estimates do not exhibit a 

definite trend with kerogen maturity. Few samples have poor pore connectivity having Z 

estimates lower than 4.5. The oil- and condensate-window samples exhibit L estimates 

lower than 3, whereas the late-condensate-window samples exhibit L estimates in the 

range of 3 to 5. D1 estimates for Wolfcamp, Bakken and Woodford formations increase 

with increase in thermal maturity.  
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Coordination number (Z) is the average number of immediate neighboring pores 

for each pore in the pore structure. Z was determined by performing an optimization on 

the universal scaling function shown in Equations 2.5 & 2.6. Cleaning removes the dead 

hydrocarbons and bitumen and creates more empty spaces in the pore structure which 

would lead to higher coordination number of pores (Figure 3.11a). Samples from the oil 

window (L. Bakken and WF-1) do not follow the aforementioned trend of coordination 

number upon cleaning. This indicates that the distribution of bitumen and dead 

hydrocarbons in the low maturity samples is not even. The impact of ashing on Z 

estimates is presented in Figure 3.11b. Upon ashing, the Z estimates increase for oil 

window samples, whereas those for gas window samples decrease. 

 

Figure 3.11. Estimates of coordination number of native samples versus (a) cleaned 

samples and those versus (b) ashed samples. 

 

Percolation cluster length (L) for native samples is shown in Figure 3.12. L is 

defined as the is the size of pore network in terms of number of pores contained in the 

network. It is obtained along with Z from the optimization procedure as per universal 

scaling function. Liu and Seaton (1994) reported L values between 18 and 31 for alumina 
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catalyst while Daigle et al. reported values in the range of 1.8 to 2.25 for shale, kerogen 

and coal samples. For our optimization procedure, we assume L to be between 2 and 12. 

As observed, the results do not change on extending the limits. Therefore, the values of 

L are not constrained by limits in any of the samples. The values obtained for L are lower 

than those reported earlier. However, since L is not used in calculation of relative 

permeability results, we do not expect any error in our results due to this.  

 

Figure 3.12: Crossplot of percolation cluster length (L) versus APV for native 

samples from various maturity windows. 

 

 

For the samples, L estimates exhibit a distinct increase with the increase in 

maturity. Only, the mature samples have L values higher than 3. It is shown in the 

previous section that low maturity samples have smaller average pore diameter despite 

the larger volume content of nanopores and micropores. In agreement with these earlier 

findings, low maturity samples have low percolation cluster lengths that indicates higher 

content of dead-end pores. With increase in sample maturity, the pores are well connected 

leading to larger percolation lengths with lower volume fraction of dead-end pores. For 
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our dataset, we did not observe any appreciable change in L with ashing or cleaning of 

samples. 

The theoretical limit for fractal dimensions (D) of porous reservoir rocks lie 

between 2 and 3, with complex fractal structures having D values close to 3. A complex 

pore structure has a large range of pore diameter and increased small-scale heterogeneity. 

An increase in the range of pore sizes requires more self-repeating structures for fractal 

modeling of pore structures, which leads to higher fractal dimensions. Yao et al. (2009) 

observed inverse relation between permeability and fractal dimension for coal samples 

from coalbed methane production areas in North China. Yao et al. (2008) partitioned 

adsorption data of coal samples into two parts and conducted independent fractal analysis 

to obtain two values of fractal dimensions using the Frenkel-Halsey-Hill (FHH) method. 

They concluded that D1 estimated from first regime indicates fractals related to pore 

surface area generated by surface topography, whereas D2 estimated from second regime 

correlates with fractals from pore structure and is sensitive to changes in mineral 

composition and pore diameter. 

Figure 3.13 relates fractal dimensions of both regimes with APV for native 

samples. The first fractal regime typically extends from 2-30 nm and the second fractal 

regime extends from 30-200 nm. The limit is a result of the optimization process to get 

the solution and is a direct consequence of the location of peaks in incremental pore 

volume distribution of these samples. The fractal dimension for both fractal regimes 

show an increase with increase in thermal maturity, which agrees with the increase in 

micropore abundance, reduction in average pore diameter, and longer percolation lengths 

with the increase in thermal maturity of the samples. Fractal dimensions for the first 
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regime exhibit larger variation between 2 to 3 as compared to those for the second regime. 

First fractal regime extends over smaller pore sizes that exhibits simple to complex pore 

structure, unlike the second fractal regime that tends to mostly exhibit complex pore 

structures. Several samples exhibit fractal dimensions for the second fractal regime close 

to D2 = 3, which is the highest theoretical value of fractal dimension for porous rocks.  

 

Figure 3.13: Crossplots of (a) fractal dimension of first fractal regime (D1) versus 

APV and (b) fractal dimension of second fractal regime (D2) versus APV for native 

samples from various maturity windows. 

For the first fractal regime corresponding to smaller pore sizes, samples from all 

maturity windows show an increase in fractal dimension with cleaning and ashing 

(Figure 3.14a). The removal of bitumen and dead hydrocarbons invariably leads to 

increase in pore complexity by exposing the pore network to previously blocked 

micropores. Ashing leads to the replacement of pores occupied by kerogen with the host 

inorganic pore space; thereby leaving more complex inorganic pore networks. Addition 

of smaller pores to the network adds to the complexity of the network and leads to 

increase of fractal dimension (Figure 3.14b). This sounds counter-intuitive and may 

indicate partial removal of organic matter as a complete removal of organic matter should 
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lead to a decrease in fractal dimension. For the second fractal regime corresponding to 

larger pore sizes, fractal dimension estimates do not exhibit any significant correlation 

because the D2 estimates for native samples are close to theoretical limit of 3 (Figure 

3.15). Overall there is a decrease in the D2 estimates upon cleaning indicating a simpler 

pore network for larger-sized pores in the cleaned samples. 

 

Figure 3.14: Estimates of fractal dimension of first fractal regime (D1) of native 

versus (a) cleaned samples and those versus (b) ashed samples. 

 

Figure 3.15: Estimates of fractal dimension of second fractal regime (D2) of native 

versus (a) cleaned samples and those versus (b) ashed samples. 
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CHAPTER 4: ESTIMATION OF RELATIVE PERMEABILITY AND 

RESIDUAL/IRREDUCIBLE SATURATIONS 

 

4.1  Estimation of relative permeability and residual/irreducible saturations 

The two-phase relative permeability estimation assumes water phase as the 

wetting phase and the hydrocarbon phase as the non-wetting phase for shale samples. 

Irreducible/residual saturation of a phase is defined as the phase saturation at which the 

relative permeability of the corresponding phase is 0.01. Residual hydrocarbon saturation 

(Shcr) and irreducible water saturation (Swir) estimates can be obtained by interpolating 

values from the results in estimated relative permeability curves. 

The nature of curves for relative permeability of wetting and non-wetting phases 

is different. For the wetting phase, effective medium theory (EMT) and percolation 

theory (PT) are combined to predict the relative permeability curves. PT is used for 

prediction near the percolation threshold and EMT is employed further away, the limit 

being calculated as shown in Equation 2.7. Use of EMT provides the non-wetting phase 

relative permeability curve with linear shape away from residual saturations. For 

saturations closer to residual saturations, the curve is non-linear due to use of PT. 

Similarly, PT and critical path analysis (CPA) are used for obtaining the relative 

permeability curve for wetting phase that results in non-linear form of the curve. The 

linear form of non-wetting phase relative permeability proves useful in explaining fast 

decline in hydrocarbon production rates. Similarly, the non-linear wetting phase relative 

permeability curves prove useful in explaining rapid increase in water production after 

sustained lower water production. 
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Previous attempts to model relative permeability in tight sandstone reservoirs 

have used Brooks-Corey model. Cluff and Byrnes (2010) used modified Brooks-Corey 

model to predict relative permeability for wetting and non-wetting phases in tight sands. 

Similar approach was used by Dacy (2010) to generate relative permeability curves. The 

modified Brooks-Corey model takes critical saturations for gas/water as inputs and 

defines the nature of relative permeability curves based on respective Corey exponents. 

This approach suffers from following limitations (Behrunbruch and Goda, 2006): 

• Does not account for the effect of pore structure. 

• Highly sensitive to endpoints of residual hydrocarbon saturation and irreducible 

water saturation.  

• Limited sensitivity to parameters that govern the relative permeabilities at 

intermediate saturations between critical and maximum saturation of respective 

phase. 

• Limited predictive capacity because it can be used to match the measured data 

but cannot predict relative permeability in absence of sufficient number of 

measurements.  

• Fails if the endpoints are not available. 

• The model cannot be used to predict a relative permeability relationship but is 

aimed to smoothen an existing relationship. For an existing dataset, the method 

can match measurements which can be subsequently applied on new data-points 

within same dataset. 

These limitations can be addressed using percolation theory. The relative 

permeability estimation method proposed in this paper can predict both the endpoints and 
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the scale-dependent nature of the relative permeability curve. The pore network 

characteristics, pore size distribution, and percolation behaviors of wetting and non-

wetting phases are honored in the proposed estimation method. Separate parameters 

define the endpoints and the nature of curves which allows independent validation of 

these parameters. However, the proposed estimation method is only applicable to the 

relative permeability of the micro- and mesoscale pores in the range of 2 nm to 200 nm. 

Figure 4.1 shows representative relative permeability curves for native samples 

from various maturity windows. Samples from similar maturity windows exhibit similar 

relative permeability curves. Lower maturity samples have higher relative permeabilities 

for both the phases indicating better flow performance for both the phases compared to 

mature samples. WF-4 samples (late condensate window) have the lowest relative 

permeability, whereas the least mature WF-1 samples have the largest relative 

permeability. In terms of production performance, samples with lower maturity should 

exhibit slower decline in gas production rates and faster and more uniform increase in 

water production. This would be accompanied by higher cumulative production for 

hydrocarbons and water for WF-1 or L. Bakken samples. Among the formations studied 

in this paper, WF-1 is likely to sustain hydrocarbon production over a longer production 

period along with uniform increase in water production rates. WF-1 samples would show 

higher cumulative water and hydrocarbon production. High maturity samples, like those 

from WF-4, should show rapid decline in the hydrocarbon production rates with 

sustained low water production rates until very high-water saturations are achieved in the 

reservoir when the water production will show a drastic increase. WF-4 samples are also 

likely to have minimum cumulative production for water and hydrocarbons. 



56 

 

Figure 4.1: Relative permeability curves for wetting and non-wetting phases for (a) 

Bakken, Woodford and Wolfcamp samples from dataset-1 mentioned in Table 2.1 

and (b) Eagle Ford and Wolfcamp samples from dataset-2 mentioned in Table 2.1. 

 

In Figure 4.1b, the relative permeability curves for Eagle Ford, Wolfcamp, and 

Woodford samples from dataset-2. Unlike the trend observed for samples in dataset-1 

(Figure 4.1a), relative permeability curves of the samples in dataset 2 (Figure 4.1b) do 

not correlate with thermal maturity. However, the curves for samples in dataset-2 

correlate with the total volume of pores of size between 2 to 200 nm, also referred to as 

the adsorption-desorption-isotherm pore volume (APV). Wolfcamp samples with highest 

APV have the lowest relative permeability for both wetting and non-wetting phases 

(Figure 4.1b). Eagle Ford samples from oil and gas window have similar APVs and show 

similar relative permeabilities. A slight increase in APV of Eagle Ford gas window 

sample correlates with slightly lower water relative permeability of gas window sample.  

Figure 4.2 shows the correlation between relative permeability of a phase at a 

fixed saturation and corresponding residual/irreducible phase saturation. For all 

saturations, relative permeability of both the phases exhibit an inverse relation with the 
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residual phase saturations. The inverse relation between relative permeability and 

residual/irreducible saturations is the characteristic of the formulation used and may not 

be present in field cases. 

 

Figure 4.2: Correlation between relative permeability and residual/irreducible 

saturations for (a) non-wetting hydrocarbon phase at Sw=0.5 and (b) wetting 

aqueous phase at Sw = 0.8. 

 

4.2  Sensitivity of relative permeability curves to network properties 

A sensitivity study on different variables being used in calculation of relative 

permeability curves is performed to illustrate the role of each parameter. A single 

formation with default parameter values is considered for the sensitivity study. 

Thereafter, we vary the value of a single parameter while keeping other parameters at 

constant values to generate the model sensitivities. Table 4.1 mentions the default values 

of the parameters. The relative permeability curves obtained for the various cases are 

shown and analyzed to infer the importance of these parameters on saturation-dependent 

fluid transport properties. 
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Table 4.1: Default values of model parameters used for the sensitivity study on the 

relative permeability model. 

Pore Volume (in cc/g) 0.0231 

Coordination Number (Z) 5.7745 

Percolation Cluster Length (L) 2.8871 

1 0.0090 

D1 2.1221 

 1.0000 

D2 2.9928 

dx (nm) 31.47 

Min. Pore Diameter- dmin(nm) 1.74 

Max. Pore Diameter- dmax(nm) 274.35 

x 0.0100 

1 0.0080 

2 0.0151 

 

Changes in coordination number (Z) directly impacts θx & θt, as discussed in the 

interpretation methodology section. Consequently, change in Z affects the relative 

permeability for both phases. Increase in Z gives rise to a decrease in percolation 

threshold that implies reduction in residual saturations of both the phases (Figure 4.3a). 

There is an increase in the perceived-wettability of the system to the aqueous phase with 

the increase in Z, as supported by the movement of the point of intersection of wetting 

and non-wetting phases towards right. For the non-wetting phase, relative permeability 

curve only depends on Z and θx. Hence, as Z increases the curve moves rightward and 

the non-linear behavior of the curve decreases. For the wetting phase, however, the curve 

also depends on fractal parameters discussed further and there is an interplay between θt 

and porosities of the two fractal regimes. As can be seen from Equations 2.9 & 2.10, 

nature of the curve for wetting phase relative permeability changes due to alteration in 

θt, which is affected by the change in Z. However, the strong correlation visible earlier 

in the wetting phase curves tends to weaken for the non-wetting phase.  Unlike Z that 
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indicates the short-range connectivity, percolation cluster length (L) does not affect the 

relative permeability curves. The estimation method is not able to model the influence of 

long-range pore connectivity on the transport properties because L is not used 

quantitatively in any of the mentioned equations. Nonetheless, in mathematical terms, Z 

and L are related through the optimization used to determine them by processing the ADI 

measurements using the universal scaling function based on Seaton’s method (Seaton, 

1991).   

Figure 4.3b shows the impact of variation in θx on the curves for constant Z and 

θt. Under these restrictions, the wetting phase remains unchanged and independent of θx. 

For the non-wetting phase, θx determines the point of switch between percolation theory 

scaling to effective medium theory formulation. In other words, the parameter determines 

the point where the curve becomes non-linear around a fixed residual saturation. Higher 

value of θx means percolation theory is being used for larger window of water saturation 

around the residual saturation. 

Pore size distribution of the samples are modeled using a bimodal fractal model 

that requires us to define the pore diameter dx demarcating the change in the fractal 

regime (Equations 2.9 & 2.10). The contributions of fractal regimes change by changing 

the pore diameter at which this switch occurs; thereby changing the nature of the curve 

for wetting-phase relative permeability (Figure 4.3c). No impact is seen on non-wetting 

phase relative permeability. Generally, a decrease in dx leads to uniform increase in water 

relative permeability with the increase in water saturation indicating the presence of 

predominantly one type of pore fractal regime. Higher values of dx leads to increase in 
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residual saturation due to the effect of pore complexity of smaller-sized pores and also 

leads to a rapid increase in water-phase relative permeability.  

 

 

 

Figure 4.3: Relative permeability curves for wetting and non-wetting phases for 

sensitivity of (a) coordination number (Z), (b) fluid content level for switch between 

percolation and effective medium formulations (θx), (c) pore diameter for change of 

fractal regimes (dx), (d) probability of drainage for first fractal regime (β1), and (e) 

fractal dimension of first fractal regime (D1). 
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Probability of drainage (β) values are constant multipliers in the fractal model. It 

must be noted that dx values must be constant for analyzing sensitivity in β. A higher β 

implies higher pore volume of the corresponding fractal regime and overall a higher 

porosity. An increase in wetting-phase relative permeability and resultant decrease in 

irreducible water saturation is observed with the increase in β (Figure 4.3d). Again, no 

impact is seen on non-wetting phase relative permeability as it is independent of fractal 

model. Higher β lowers the probability of observing “permeability-jail” and reduces the 

perceived-wettability to aqueous phase. Here, for the sake of simplicity we illustrate the 

impact of β from first fractal regime but the effects of β in both fractal regimes are 

identical. 

As seen in Equations 2.9 & 2.10, fractal dimension (D) acts as exponent for 

wetting-phase relative permeability formulation. Therefore, increase in fractal dimension 

changes the nature of curve for wetting-phase relative permeability if we assume constant 

irreducible water saturation (Figure 4.3e). In other words, increase in pore volume is 

implied with increase in fractal dimension. A higher fractal dimension leads to regular 

increase in water relative permeability. If pore volume is assumed constant, both β and 

D values need β to be changed simultaneously. In this case, changes in D have results 

similar to that seen in Figure 4.3c with increase in dx value for wetting phase. This trend 

is illustrated using the fractal dimension of first fractal regime D1, which is similar to the 

influence of D2. 

To summarize, the non-wetting phase relative permeability depends on Z and θx. 

On the other hand, wetting phase relative permeability depends on both percolation and 

fractal parameters including Z, dx, β, and D. This is the direct result of use of critical path 
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analysis which invokes fractal parameters only for wetting phase relative permeability 

formulation. 

4.3 Correlations of estimates with ADI pore volume, TOC and LPP porosity. 

Figure 4.4a shows the correlation of residual hydrocarbon saturation (Shcr) with 

thermal maturity of organic matter, such that mature samples from condensate window 

tend to have higher residual gas saturation and APV than those for oil window samples. 

Irreducible water saturation (Swir) exhibits the positive correlation with thermal maturity, 

as shown in Figure 4.4b. These trends can be explained by microstructural changes in 

pore structure with increase in thermal maturity. Due to the conversion of kerogen to 

bitumen and hydrocarbons, there is an increase in mesopores and micropores. The non-

wetting phase tends to reside in larger pores, whereas the wetting phase will occupy the 

smaller pores. Increase in both micropores and mesopores leads to an increase in residual 

hydrocarbon saturation and irreducible water saturation. A similar trend is observed for 

the residual/irreducible saturations as a function of total porosity measured using low-

pressure helium pycnometry.  

In Figure 4.5, no definite correlations are observed between residual/irreducible 

saturations and TOC. Except for L. Bakken samples, all other samples have TOC in the 

range of 1-4%. The extended TOC range for L. Bakken samples may have distorted 

possible correlations existing between these parameters. Absence of a definite correlation 

may be a consequence of the assumption that all pores in the shale sample are water wet. 
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Figure 4.4: Crossplots of (a) residual hydrocarbon saturation (Shcr) and that of (b) 

irreducible water saturation (Swir) with ADI pore volume (APV). 

 

 

Figure 4.5: Crossplots between (a) residual hydrocarbon saturation (Shcr) and TOC, 

and that between (b) irreducible water saturation (Swir) and TOC. 
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4.4 Impact of Ashing and Cleaning on relative permeability estimates 

 

Figure 4.6: Changes in (a) residual hydrocarbon saturation (Shcr) and (b) irreducible 

water saturation (Swir) of samples due to cleaning with methanol-toluene mixture. 

 

Cleaning the samples with a 4:1 toluene-methanol mixture leads to a decrease in 

residual hydrocarbon saturation (Figure 4.6a) and increase in hydrocarbon relative 

permeability (Figure 4.7a). Further, the cleaning results in a slight increase in irreducible 

water saturation (Figure 4.6b) and a slight decrease in the wetting phase relative 

permeability (Figure 4.7a). Oil-window samples show the largest variation in these 

results (Figure 4.6). The aforementioned impacts of cleaning are a consequence of the 

microstructural removal of bitumen and soluble dead hydrocarbons especially from 

larger pores, thereby exposing greater pore surface area that resists the wetting-phase 

fluid flow. Non-wetting phase tends to occupy the larger pores and the creation of pore 

space due to cleaning facilitates the movement of non-wetting phase, which is reflected 

as a significant increase in the non-wetting phase relative permeability. The wetting 

phase can spread on the newly-created surface and thus has an increased value for 

residual wetting-phase saturation.  
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In Figure 4.7b, the relative permeabilities for wetting and non-wetting phase for 

gas window samples tend to change only slightly upon the removal of kerogen through 

ashing. This indicates that the maturation process has already converted most organic 

matter to hydrocarbons in gas window. Thus, the pore network characteristics do not 

change substantially upon removal of kerogen from mature gas-window samples.  

However, for oil window samples, the residual hydrocarbon saturations do not vary, 

which results in nearly unaltered hydrocarbon relative permeability, as shown in Figure 

4.7c. Notably, for the wetting phase, removal of kerogen through ashing results in a 

decrease in irreducible water saturation and an appreciable increase in the relative 

permeability of the wetting phase (Figure 4.7c). This is a consequence of the removal of 

micropores and mesopores in kerogen upon ashing which indicates reduced surface area 

over which the wetting phase can spread. 

 

Figure 4.7: Changes in relative permeability due to (a) cleaning with methanol-

toluene mixture, (b) ashing for Eagle Ford gas window samples, and (c) ashing for 

Eagle Ford oil window sample. 
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4.5 Applications to performance prediction. 

To illustrate the impact of the estimated relative permeability curves on the 

production performance of the formations, we created reservoir models using the 

Computer Modeling Group (CMG) software. The assumed default values for key 

parameters of the numerical reservoir flow model is shown in Table 4.2. We assume the 

reservoir to contain gas and water to predict the production performance. The reservoir 

is drained either through a single vertical well (Case-1) or a horizontal well (Cases-2 & 

3) perforated throughout the pay zone and located in the center of the reservoir. In both 

the cases, the well produces for a period of 10 years. Relative permeability curves for 

each formation, which is the key input to the reservoir model, is assumed to be the 

average of the relative permeability estimated for the native organic-rich shale samples 

extracted from the corresponding formation, as presented in Figure 4.1a. We perform 

the numerical simulations under the following three well scenarios: 

• Case-1: Formations have the same porosity (4%) and viscosity with gravity effect 

and are drained by a vertical well. 

• Case-2: Formation properties remain same as in Case-1 but the production well is a 

horizontal well with perpendicular horizontal fractures. The fracture properties are 

listed in Table 4.3. 

• Case-3: All inputs for reservoir and fracture properties are similar to those in Case-2. 

Oil production is predicted for oil window samples for various fluid viscosities. 

Similarly, for condensate and late condensate window, cumulative gas productions 

are predicted for corresponding viscosities.  
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Table 4.2: Default values of the key inputs used in simulation fluid flow models to 

demonstrate the impact of relative permeability curves on the production 

performance for Case-1. 

Type of Reservoir Gas-Water System 

No. of Cells in Grid 100*100*10 

Grid Size (ft) 10*10*1 

Grid Top (ft) 6000 

Horizontal Permeability (md) 0.1 

Vertical Permeability (md) 0.01 

Reservoir Pressure (psi) 6000 

Reservoir Temperature (°F) 140 

Gas specific gravity 0.6 

Porosity (%) 4 

Rock Compressibility (psi-1) 6x10-6 

Initial Water Saturation (%) 60 

Minimum well bottomhole pressure (psi) 500 

Maximum gas production from well (MSCF/D) 1000 

Net-to-Gross 1 

Formation Thickness (ft) 10 

 

 

Cumulative productions of hydrocarbon and water phases are shown for each of 

the five formations. Cumulative production forecasts for both fluid phases are strongly 

governed by the relative permeability estimated for a given formation. For the case of 

fully perforated vertical well in these formations (Figure 4.8), Lower Bakken oil 

formation has the highest hydrocarbon-phase relative permeability, whereas Wolfcamp 

condensate (WF-2) and late condensate (WF-4) formations have the lowest hydrocarbon-

phase relative permeability. This is the result of lower coordination numbers and higher 

fractal dimensions for the mature WF-2 and WF-4 formations. Cumulative water 

production is highest for Wolfcamp oil formation (WF-1) and lowest for the Wolfcamp 

late-condensate formation (WF-4). We observe that the hydrocarbon-phase production 

of Lower Bakken oil formation is better than that of Wolfcamp oil formation (WF-1) but 

water production trend is significantly reversed. These observations are the result of 

minor variations in the fractal properties, like fractal dimension, which are influenced by 
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pore size distribution of these formations. The fractal properties only influence the 

wetting phase relative permeability. Due to variations in each property, we recommend 

avoiding quantitative comparison of nearly equal parameters and focus on the general 

trend of increasing relative permeability of samples of lower thermal maturity.  This 

implies that reservoirs of lower thermal maturity, like Lower Bakken and Wolfcamp oil 

window formations, would possess the best transport properties leading to higher 

cumulative production for both hydrocarbon and water phases. On the other hand, 

Wolfcamp and Woodford late condensate window samples would have poor transport 

characteristics and lower cumulative production for both hydrocarbon and water. 

Table 4.3: Fracture and horizontal well inputs used in simulation fluid flow models 

to demonstrate the impact of relative permeability curve on the production 

performance for Case-2. 

Fracture Geometry Planar 

Fracture Width (ft) 0.08 

Fracture Permeability (md) 200 

Effective Permeability (md) 8 

Fracture Orientation Horizontal 

Fracture Half-length (ft) 50 

Fracture Height (ft) 5 

Length of horizontal section (ft) 200 

Fracture Spacing (ft) 100 

No. of fracture stages 3 

Non-Darcy Flow Correlation General 

 

Case-2 focuses on fractured horizontal well production in these formations 

(Figure 4.9). The higher permeability due to fractures allows for higher production rates 

which leads to faster increase in cumulative production for both phases for period < 1000 

days. Thereafter, production rates stabilize with relatively slower increase in the 

cumulative productions. Higher stimulated rock volume leads to increase in ultimate 

recovery and higher permeability in vicinity of wellbore leads to acceleration of 
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production. This implies that although well design affects the cumulative production and 

ultimate recovery, the production trends are predominantly governed by relative 

permeability curves alone and remain unchanged by well design variation. 

 

Figure 4.8: Simulation-generated (a) cumulative gas production and (b) cumulative 

water production of a vertical well (Case-1) in various formations. 

 

Figure 4.9: Simulation-generated (a) cumulative gas production and (b) cumulative 

water production of a horizontal fractured well (Case-2) in various formations. 

The cumulative production differences between the three best performing 

formations in the horizontal production well scenario (Figure 4.9) are much lower than 
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for those in the vertical production well scenario (Figure 4.8). The relative performance 

of the worst performing formations in the horizontal well scenario are much better than 

for those in the vertical well scenario. These are direct consequences of enhancement of 

permeability due to hydraulic fractures. Fracturing leads to better transport characteristics 

and horizontal orientation of well leads to better vertical sweep efficiency achieved in 

smaller production time. This leads to improvement in ultimate recovery for all 

reservoirs. The ultimate recovery depends on the matrix permeability and is nearly 

constant for the best performing reservoirs. The relative permeability affects the 

production time required to drain the reservoir. Therefore, reservoirs with higher relative 

permeability achieve higher productions at smaller time. The cumulative water 

production increases disproportionately in comparison to the increase in cumulative 

hydrocarbon-phase production when the production well changes from vertical to 

horizontal orientation. This is due to improved vertical sweep caused by horizontal well 

design. Coupled with gravity, water is able to sweep gases further across the reservoir 

which leads to higher water saturation and higher cumulative water production. 

Production performances of the formations exhibit greater variations in the horizontal 

well scenario compared to those in the vertical well scenario. The improved performance 

is due to improved sweep in the reservoir by water phase assisted by horizontal trajectory 

of well and better permeability due to hydraulic fractures. The key observation here is 

the unchanged trend of production between both cases. The well design may affect the 

cumulative production figures but reservoirs of lower thermal maturity (Lower Bakken 

and Wolfcamp oil window) continue to perform better than formations of higher maturity 

(Wolfcamp and Woodford late condensate). 
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Figure 4.10: Simulation-generated (a) cumulative oil productions of oil-window 

formations, and (b) cumulative gas productions of condensate and late condensate 

window formations using horizontal wells of similar design as in Case-2. 

Maturation leads to changes in fluid properties like decrease in viscosity, increase 

in gas-oil ratio and change in reservoir pressure. We designed Case-3 to test the impact 

of change in viscosity on the production performance of the reservoirs.  The impact of 

hydrocarbon-phase viscosity on production performance of horizontal fractured wells in 

all formations are shown in Figure 4.10.  We assume all oil-window reservoirs to have 

40° API oil with the water-oil contact at 6010 ft. The wells are operated at minimum 

bottomhole pressure of 500 psi.  In Case-2, we assume similar viscosities for L. Bakken 

and WF-1 oil. In Case-3, the viscosity of WF-1 oil is reduced to consider the impact of 

maturation on fluid viscosity. The inputs used for the oil-phase viscosity models are 

shown in Table 4.4. All other reservoir and well inputs remain same as defined for Case-

2. Similarly, for condensate and late condensate windows of WF-4 and WD formations, 

the gas viscosities are assumed to be lower than WF-2 formation. For both oil and gas 

studies, the properties for water phase remains unchanged. Hydrocarbon production in 

Case-3 is simulated for the zone having similar water saturation as Case-2.  
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Table 4.4: Fluid inputs used in simulation fluid flow models to demonstrate the 

impact of relative permeability curve along with fluid viscosity on the production 

performance for Case-3.  
Initial viscosity at reservoir 

conditions (cp) 

Reduced viscosity at reservoir 

conditions (cp) 

L. Bakken Oil 

Window 

2 2 

WF-1 Oil Window 2 1.5 

WF-2 Condensate 

Window 

0.037 0.037 

WF-4 Late 

Condensate Window 

0.037 0.025 

WD Late Condensate 

Window 

0.037 0.015 

With similar viscosities for L. Bakken and WF-1 formations, L. Bakken exhibits 

slightly higher cumulative oil production (Figure 4.10a) according to the hydrocarbon 

relative permeability curves (Figure 4.10a). When viscosity for WF-1 is reduced, the 

trend is reversed and WF-1 shows better performance than L. Bakken. The same result 

is observed for condensate and late condensate window samples (Figure 4.10b). With 

similar gas viscosities, WF-2 exhibits higher cumulative gas production than WF-4. 

When the viscosity for WF-4 is reduced according to maturity, both WF-2 and WF-4 

show nearly identical cumulative gas production. These predictions show that the effect 

of fluid viscosity on production performance may dominate the effect of relative 

permeability. Therefore, for realistic comparison of field performance based on thermal 

maturity, fluid properties and reservoir pressure affected by increasing kerogen maturity 

need to be considered in conjunction with the trends in relative permeability. 
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CHAPTER 5: MODELING OF PRESSURE TRANSIENT 

RESPONSE IN NATURALLY FRACTURED RESERVOIRS 

 The method for modeling of pressure transient response is based on solution of 

the Eikonal equation. The Eikonal equation defines the propagation of the pressure wave 

in the reservoir with time and helps in tracking of the pressure propagation front. This 

equation can be solved using specialized methods called fast marching methods. These 

methods use finite difference approximation to solve for position of the pressure front at 

each time-step. The term stencil is used to denote the technique of solution of these fast 

marching methods. A stencil refers to orientation of nearby cells for each grid point 

which are used for solution of the equation at each grid point. A single stencil refers to 

use of cells only in X & Y directions in 2D. A multistencil approach refers to addition of 

diagonal cells to cells in X & Y directions for the calculation procedure. The solution 

traverses from one grid point to other until the solution is known for the entire grid. This 

gives us the location of the pressure front with time. A drainage volume is calculated at 

each time-step corresponding to the computed location of the front. Spatio-temporal 

evolution of drainage volume is analyzed to estimate the pressure drop and pressure 

derivative response of vertical wells in various reservoir and well scenarios. 

5.1  Multistencil Fast Marching (MFM) Method 

Fast marching solution of Eikonal equation form of diffusivity equation assumes 

that the arrival time of the pressure front at any node is only dependent on the lowest 

value of arrival time among the immediate neighboring nodes. This assumption is called 

the “causality relationship” (Hassouna and Farag, 2007). Unlike conventional fast 

marching methods, MFM method includes all adjacent nodes including the diagonal 
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nodes during the calculation of diffusive time of flight (DTOF) from the central node. 

MFM method was implemented in Matlab using code developed by Yoon (2017). 

Following steps are executed in the MFM approach (Figure 5.1): 

1. Use a numerical simulation model in Matlab to develop the 2D reservoir diffusivity 

map discretized into equal-sized square grids. The center of the grids are the nodes 

and the lines connecting the nodes in vertical, horizontal, and diagonal directions are 

the stencils used for the fast marching calculations (also, referred to as diffusive time 

of flight).   

2. Assign the heterogeneous distributions of permeability, viscosity, compressibility, 

and porosity across the reservoir to the corresponding grids or stencils for the 

calculation of the diffusivity along each stencil. 

3. First node (vertical well location) is selected among the available nodes in the 

reservoir model and the arrival time for that node is assigned an initial value to start 

the fast marching calculation (Figure 5.1a). Selected node is identified by the filled 

circle. This is the initialization step. For all the studies listed in this paper, the first 

node is denoted as source point in corresponding reservoir maps.  

4. 8 neighboring nodes around the selected central node (vertical well location) are 

identified along the 8 stencils, shown as unfilled circles (Figure 5.1b). 

5. DTOFs of the propagating pressure front from the selected central node to the 8 

neighboring nodes are calculated along the 8 stencils (Figure 5.1b).  

6. Different stencils can have different diffusivity. Therefore, the neighboring node with 

minimum value of DTOF among the 8 neighboring nodes is selected as the node for 
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the next fast marching calculation (Figure 5.1c). The newly selected node is 

identified by the filled circle.  

7. Arrival time of the pressure front at the newly selected node is the sum of arrival time 

of pressure front at the previously selected node and a time-equivalent of DTOF 

calculated along the stencil joining the previously and newly selected nodes.   

8. The multistencil then moves to the newly selected node and DTOFs are calculated 

for the new 7 unselected neighboring nodes (Figure 5.1d). 

9. The node with minimum value of DTOF among the 12 unselected neighboring nodes 

is selected as the node for the next fast marching calculation.  

10. Steps similar to Steps 8 and 9 are repeated till arrival times for all the nodes are 

known. 

 

Figure 5.1: Schematic of multistencil fast marching (MFM) algorithm. 

 

The above workflow helps us to solve the Eikonal equation form of diffusivity 

equation for modeling the propagation of the pressure front in a 2D reservoir (King et al., 
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2016). DTOF and diffusivity in the heterogeneous media are related using the following 

equation: 

|∇𝜏(𝐱)|√
𝑘(𝒙)

𝜑(𝒙)𝜇𝑐𝑡
= 1                                                                                                            (5.1) 

where x denotes location of the neighboring node, k is permeability, φ is porosity, 

μ is fluid viscosity and ct is total compressibility. Parameters k, φ, μ, and ct are defined 

along the stencil joining the selected node and neighboring node of interest located at x. 

For this study, μ, φ and ct are assumed to be constant in the entire reservoir including the 

fractures. The entire term inside the square root is referred as the diffusivity α. τ(x) is 

DTOF from the selected node to the neighboring node at x and has the unit of time0.5.  

This technique approximates DTOFs of the pressure front propagation from each selected 

node to its neighboring nodes. DTOF calculated using the MFM approach is transformed 

to the physical time t to formulate drainage volume as a function of time using 𝜏2  =  4𝑡, 

which assumes flow in pseudo steady state with a transient reservoir boundary (King et 

al., 2016). This implies negligible pressure depletion beyond the pressure front during a 

2D radial flow. The contours connecting nodes of equal arrival time denote the time-

varying drainage volume. These drainage volumes are converted to pressure and pressure 

derivative response of the vertical production well centrally located in the assumed 

reservoir configuration. A geometric approximation of the drainage volume is used to 

relate the well rates with the pressure response of a well. A detailed explanation of the 

procedure with required equations is provided by King et al. (2016). 
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5.2  Workflow for generating 2D reservoir diffusivity map used to study the 

effects of conductive natural fractures on pressure front propagation and pressure 

transient response 

A spatially discretized 2D reservoir model needs to be created prior to the fast 

marching calculations. The workflow used for creating the 2D naturally fractured 

reservoir model used for the study presented in this paper is as follows: 

1. We generate 2D reservoir diffusivity map with varied fracture characteristics, such 

as fracture length, compressibility, orientation, permeability, and volume fraction of 

fracture. These maps are imported into the MATLAB-based MFM code for fast 

marching calculations, as described in the previous section.  

2. For this study, a 2D reservoir of dimension of 2000 ft is discretized into 1-ft×1-ft 

grids. The square reservoir is bounded by no-flow boundary. A vertical production 

well is located at the center of the circular reservoir.  

3. Primary reservoir is the isotropic and homogeneous matrix. Conductive natural 

fractures of varying properties are placed on the primary reservoir.  

4. Conductive natural fractures are defined using the following properties: length, 

width, orientation, volume fraction, and conductivity. These fractures are inserted at 

random locations in the primary reservoir. For this study, the natural fractures are 

assigned viscosity, and porosity similar to the primary reservoir matrix.  

5. The 2D reservoir diffusivity map thus generated shows the distribution of fractures 

in the reservoir. 

It is important to note regarding the importance of permeability contrast during 

generation of fracture distributions. The fracture distributions can be created using any 
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geological modeling package. However, we observed that these packages may alter the 

permeability of cells around each introduced fracture to smoothen the permeability 

variation in nearby cells. This may alter the volume fraction and permeability contrast 

desired in some cases. To overcome this, we generated these fracture distributions using 

a code developed in Matlab to ensure accurate permeability contrast and volume fractions 

of fracture distributions in each reservoir geometry. 

 

5.3 Assumptions made in the approach 

1. The proposed method assumes the primary 2D reservoir to be isotropic and 

homogeneous. The fluid is assumed to be slightly compressible and consisting of 

single phase. 

2. The grid dimension for the method is 1 ft. A constant flow rate is assumed for the 

vertical production well in the reservoir. 

3. The method is based on fast marching method which requires causality relationship 

to hold true. This means that at each point, the solution for DTOF is only dependent 

on the smallest value of diffusivity among the neighboring points. 

4. All points with the drainage volume at any instant are assumed to be in steady state. 

This means that an instantaneous pressure drop occurs at the pressure front. 

5. All points beyond the pressure front see no impact of the source at the well location. 

The Darcy flux is negligible beyond the drainage area. This is similar to pseudosteady 

state approximation in conventional pressure transient analysis. 
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5.4 Limitations of the approach 

1 The proposed method is unable to handle 3D propagation of pressure transients with 

multiphase fluid. Further improvement of the proposed method is required in this 

regard. 

2 The primary reservoir is assumed isotropic and homogeneous. This may not be 

representative of shale reservoirs where anisotropy and heterogeneity may interfere 

with interpretation of pressure transient response. 

3 The method does not incorporate grid refinement which prevents consideration of 

fracture widths less than 1 ft. This may also be the cause for some error introduced 

in early-time results.  

4 The method needs to be improved to allow interpretation in cases where the source 

well may be intersected by one or more natural fractures or is hydraulically fractured. 

5 The method is based on fast marching method which requires causality relationship 

to hold true. This assumption fails in presence of large permeability contrasts. For 

permeability contrasts higher than 2 orders, the pressure predictions are not accurate. 

6 The application of this method for non-conductive fractures needs further 

improvement. In the current approach, the pressure front chooses the path of highest 

diffusivity and bypasses the non-conductive zones. This makes characterization of 

non-conductive fractures difficult. 

 

5.5 Illustration and Validation of Method 

5.5.1. Illustration of MFM simulations of pressure propagation and pressure transient 

response for an abstract reservoir 
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Table 5.1- Summary of parameters assumed for the reservoir model shown in 

Figure 5.2a. 

Reservoir size (ft) 2000×2000 

Uniform grid size (ft) 1 

Distance of no-flow boundary (ft) 1000 

Production rate (bbl/d) 5 

Total compressibility (psi-1) 6.00E-06 

Fluid viscosity (cp) 0.4 

Initial reservoir pressure (psi) 6000 

Porosity (%) 20 

Formation thickness (ft) 10 

Wellbore radius (in) 3.6 

Reservoir permeability (md) 0.01 

 

This section qualitatively validates the MFM simulations. The abstract circular 

reservoir model has a radius of 1000 ft (Figure 5.2a) and the region outside the circular 

no-flow boundary has zero diffusivity. A vertical production well is located at the center 

of the reservoir model. An inner circular region of radius 100 ft with permeability 0.5 md 

is implemented in the model to prevent fast propagation of the pressure into the 

conductive wings. A 2000×300 ft rectangular section having permeability of 2 md is 

centrally located along the West-East (WE) diameter of the reservoir. A 2000×200 ft 

section having permeability of 1 md is centrally located along North-South (NS) diameter 

of the reservoir. The remaining portion of the abstract reservoir has a permeability of 

0.01 md. In Figure 5.2a, higher permeability regions are in lighter colors, whereas the 

lower permeability regions are darker in color. Table 5.1 lists parameters assumed for 

building the reservoir model. Figure 5.2b shows the propagation of the pressure front 

across the reservoir for a time period of 6 days.  The pressure diffuses at higher speed 

along the high-permeability WE section. Contours of arrival time are farther spaced in 

the WE section compared to that in NS direction indicating a faster propagation. At the 
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end of 6 days, the pressure front has travelled farther in the WE section reaching the 

circular no-flow boundary.  

Arrival-time contour joins all locations that require similar time for the 

propagating pressure front to travel from well to those locations and is similar to the 

drainage volume in the reservoir due to the production well. The increase in drainage 

volume with time can be used to calculate the change and Bourdet-type derivative of the 

PT response (Figure 5.2c). The constant pressure derivative till time of 0.2 days is result 

of circular zone with permeability 0.5 md around the well. At any instant, the pressure 

derivative is representative of the average permeability of area drained till that instant. A 

higher permeability is indicated by lower value of the pressure derivative. Once the 

pressure front moves into the WE section with higher permeability, there is a drop in the 

pressure derivative. Due to higher permeability in WE direction, the WE no-flow 

boundary is seen first at t = 6 days. Pressure derivative response exhibits linear trend after 

t =10 days when the boundaries in both the WE and NS rectangular sections are reached 

by the pressure front. The propagation of pressure front is slow in the four low-

permeability sections (shown as dark gray regions in Figure 5.2a). This leads to very 

closely spaced arrival-time contour lines along the edges of the high-permeability WE 

and NS rectangular sections, indicating a slow pressure propagation into the low-

permeability regions.  
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Figure 5.2: (a) Permeability map of the abstract reservoir, (b) MFM-generated 

arrival times for the pressure front propagating across the reservoir, and (c) 

pressure change and Bourdet-type pressure derivative responses of a vertical 

production well located in the center of the abstract reservoir. 

 

5.5.2. Validation of MFM simulations against Kappa Saphir commercial software 

simulations for vertical production wells with and without hydraulically induced bi-wing 

planar fractures  

MFM model simulations were compared against Kappa Saphir simulations for 

unfractured and fractured vertical wells centrally located in a homogeneous reservoir 
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having permeability of 0.1, 0.5, and 1 md (Figure 5.3). In these simulations, the reservoir 

does not contain natural fractures. In Figure 5.3a, we observe good match between the 

two simulation methods for the unfractured vertical well without induced hydraulic 

fractures. The pressure derivative is constant until the pressure front reaches the circular 

reservoir boundary, beyond which the derivative exhibits a unit slope. For the vertical 

production well with hydraulically induced bi-wing planar fractures, the predictions of 

the two methods show discrepancy during the early time (Figure 5.3b) because the 

current version of the MFM model does not handle local grid refinement for fractures. 

Values of other parameters used for this comparison is in Table 5.2. 

 

Figure 5.3: Validations of MFM-assisted predictions against Kappa Saphir 

predictions of pressure and its derivative responses in (a) unfractured and (b) 

fractured vertical well located centrally in bounded circular homogeneous reservoir 

for various reservoir permeabilities. 
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Table 5.2: Summary of parameters used for the comparisons shown in Figure 5.3. 

Reservoir size (ft) 2000x2000 

Uniform grid size (ft) 1 

Distance of outer no-flow boundary (ft) 700 

Production rate (bbl/d) 1 

Total compressibility (psi-1) 2.00E-06 

Fluid viscosity (cp) 0.4 

Initial reservoir pressure (psi) 6000 

Porosity (%) 20 

Formation thickness (ft) 10 

Wellbore radius (in) 3.6 

Fracture half-length (ft) 100 

Fracture permeability (md) 100 

Fracture width (ft) 3 

Production time (days) 400 

Reservoir permeability (md) 0.1 

 

5.5.3. MFM Simulations of Pressure Front Propagation and Pressure Transient 

Response of a Vertical Production Well in a Conceptual Sector/Concentric Reservoir 

Model

 

Figure 5.4: (a) Concentric reservoir model with 5-ft wide zones of alternating 

permeabilities, and (b) sector reservoir model with 5°-angle sectors of alternating 

permeabilities. 

Conventional homogenization equations or effective medium (EM) equations are 

used to model various physical responses of mixtures as a combination of responses due 
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to the constituents. Similarly, it is common knowledge that, for approximating effective 

permeability of a reservoir comprising series distribution of two alternating 

equidimensional concentric layers of permeabilities k1 and k2 (Figure 5.4a), the 

following EM model is used  

𝑘𝑒𝑓𝑓 = 
ln (

𝑟𝑒
𝑟𝑤
)

∑
𝑙𝑛 (

𝑟𝑒𝑥𝑡
𝑟𝑖𝑛𝑡

)

𝑘𝑖
𝑛
1

                                                                                                                (5.2) 

where 𝑘𝑒𝑓𝑓 is the approximate effective permeability (md), 𝑟𝑒 is the radius of reservoir 

boundary (ft), 𝑟𝑤 is the wellbore radius (ft), n is the number of concentric rings, 𝑟𝑒𝑥𝑡 is 

the outer radius of i-th ring, 𝑟𝑖𝑛𝑡 is the inner radius of i-th ring and 𝑘𝑖 is the permeability 

of the i-th ring. Similarly, for approximating effective permeability of a reservoir 

comprising parallel distribution of two alternating equidimensional sectored layers of 

permeabilities k1 and k2 (Fig. 4b), the following EM model is used 

𝑘𝑒𝑓𝑓 =
(𝑘1𝜃1 + 𝑘2𝜃2)

(𝜃1 + 𝜃2)
                                                                                                            (5.3) 

where 𝑘1is the permeability of the first alternating sector extending over an angle of 𝜃1, 

while 𝑘2 & 𝜃2 are the corresponding properties of the second alternating sector.  

Accuracy of conventional EM model increases when the alternating layers are 

very thin and the propagating front encounters an infinitely alternating media, as shown 

in Misra et al. (2016) for propagation of EM waves in a mixture containing parallel beds. 

We generate MFM simulations of Pressure Transient (PT) response of a vertical 

production well centrally located in the conceptual reservoir model comprising 

series/parallel distribution of permeabilities (Figure 5.4).  These are compared against 

those for an equivalent homogeneous reservoir model having permeability equal to that 
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calculated using Equations 5.2 and 5.3. This helps to test the effectiveness of the 

conventional series/parallel effective medium equations for flow in a composite 

reservoir. These conceptual models comprise two alternating zones having permeability 

of 0.1 md and 0.02 md, respectively. Homogeneous reservoir models equivalent to the 

concentric and sector reservoir models can be generated by calculating the effective 

permeability of the conceptual models using series (Equation 5.2) and parallel 

(Equation 5.3). EM equations, respectively, in cylindrical coordinates. The effective 

permeability of concentric model is 0.04 md and that of sector model is 0.06 md. 

 

 

Figure 5.5: Pressure difference and pressure derivative responses of a vertical 

production well centrally located in (a) concentric model shown in Figure 5.4a and 

(b) sector model shown in Figure 5.4b. Temporal evolution of drainage areas till 10 

days for (c) case-1 of concentric model and that for (d) case-1 of sector model. 
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When performing fast marching calculation for concentric or sector models, the 

early PT response is significantly affected by whether the first node is in the zone that 

has the higher permeability of 0.1 md (Case 1 in Figure 5.5) or the lower permeability 

of 0.02 md (Case 2 in Figure 5.5). As the pressure front propagates through larger 

numbers of alternating layers to a larger drainage area, the late-time pressure derivative 

response of the vertical production well in the concentric model converges with that of 

the equivalent homogeneous model (Figure 5.5a); however, there is discrepancy 

between the derivative response of sector model and that of the corresponding equivalent 

homogeneous model (Figure 5.5b). Importantly, the derivative responses of concentric 

and sector models oscillate and converge to steady values due to the homogenization 

effect. Pressure responses show large discrepancies due to initial errors in the pressure 

derivatives. In other words, pressure derivative responses are more reliable than pressure 

responses for history matching purposes in composite reservoirs.  

 

5.6 Sensitivity of pressure transient response to properties of the naturally 

fractured reservoir 

The characteristic properties of naturally fractured reservoir considered in the 

sensitivity study includes fracture orientation, fracture length, fracture compressibility, 

permeability contrast between matrix and fracture, and fracture volume fraction. 

Comparison of the modeled PT responses obtained in the sensitivity study will reveal 

diagnostic signatures that will aid PTA for naturally fractured systems containing 

conductive fractures. Table 5.3 lists the values of the characteristic properties modeled 

in the Base Case of the sensitivity study. Values of all other relevant parameters are listed 

in Table 5.1. For the sensitivity study, natural fractures are assumed to be linear, 
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directionally aligned, randomly distributed, and more conductive than the reservoir 

background. For each case, all fractures in the reservoir have similar properties. This 

provides an ideal scenario to identify distinct features in the PT response of the naturally 

fractured systems.  

For the Base Case, early-time derivative response is constant till the front 

encounters the nearest natural fracture, beyond that the derivative drops (Figure 5.6b). 

As the transient moves further outward, it encounters more conductive fractures; 

therefore, the effective permeability of the drainage area increases and derivative 

response progressively drops. In the Base Case, the decrease continues till the pressure 

front reaches the reservoir boundary, following that the derivative exhibits unit slope. 

The steady drop in derivative till the unit-slope response indicates that the conductive 

natural fractures are distributed over the entire reservoir. 

 

Table 5.3: Summary of inputs used for Base Case of pressure transient response of 

a vertical production well in sensitivity study of characteristic properties of 

naturally fractured reservoir. 

  Base Case Value 

Fracture Orientation (deg) 30 

Width (ft) 1 

Length (ft) 50 

Fracture Compressibility (psi-1) 6.00E-06 

Volume Fraction (%) 1 

Matrix permeability (md) 0.1 

Fracture Permeability (md) 1 

Well Location (X-Y) 1001-1001 

 

Table 5.4: Summary of inputs used sensitivity on volume fraction of fractures. 

  Base Case Case-1 Case-2 

Volume Fraction of fractures (%) 1 2 4 
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Figure 5.6: (a) Reservoir map for Base Case (dimension of square area shown in 

map is 1000 ft), and (b) pressure difference and pressure derivative responses of a 

vertical production well centrally located in Base Case reservoir. 

 

 

Figure 5.7: Reservoir map for (a) Base Case, (b) Case-1, and (c) Case-2. The 

dimension of square shown in each plot is 1000 ft. 

 

Figure 5.8: Time of arrival maps at t=10 days for (a) Base Case, (b) Case-1, and (c) 

Case-2. The dimension of square shown in each plot is 1000 ft. 
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Figure 5.9: Pressure derivative responses of a vertical production well centrally 

located in reservoir to study sensitivity on volume fraction of fractures. 

 

Volume fractions of the natural fractures in Base Case, Case-1, and Case-2 are 

1%, 2% and 4%, respectively (Table 5.4) with remaining parameters same as shown in 

Table 5.3. The maps for the three cases are shown in Figure 5.7 and the corresponding 

time of arrival contour maps are shown in Figure 5.8. For these three cases, the volume 

fraction of fracture and number of fractures increase while keeping the length and width 

of all fractures the same. The increase in volume fraction is achieved by increasing the 

number of fractures without altering the minimum distance of the fracture from source 

well. Derivative responses are relatively similar till 0.8 day (Figure 5.9). As the front 

moves away from the well, Case-2 exhibits the lowest derivative response indicating the 

highest effective permeability of the drainage area. This is evident in Figures. 5.8a-c, in 

which at 10 days, the drainage areas are significantly different and largest for Case-2. 

When the front reaches the circular reservoir boundary, the derivative responses converge 

and exhibit unit slopes. We notice an overall faster propagation of pressure front in Case-

2 indicated by early signature of boundary flow.  
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Table 5.5: Summary of inputs used sensitivity on fracture permeability. 

  Base Case Case-3 Case-4 Case-5 

Permeability of fractures (md) 1 0.2 10 0.01 

 

 

 

Figure 5.10: Reservoir map for (a) Base Case, (b) Case-3, (c) Case-4, and (d) Case-

5. The dimension of square shown in each plot is 1000 ft. 

 

Cases-3,4 & 5 are used to study the sensitivity to fracture permeability while 

ensuring the other properties to be similar. Cases 3 & 4 show cases where the fractures 

are more permeable compared to matrix whereas Case-5 considers the fractures to be 

non-conductive compared to matrix. Table 5.5 shows the fracture permeability used in 

each case with the corresponding reservoir maps shown in Figure 5.10 and time of arrival 
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maps shown in Figure 5.11. The position of fractures in each map remain the same with 

the permeability contrast between fracture and matrix as the variable. Derivative response 

starts dropping for all cases at the same time when the pressure front encounters the 

nearest conductive fracture. Out of all cases for conductive fractures, Case-3 has the 

lowest fracture permeability of 0.2 md with a permeability contrast of 2 with respect to 

the reservoir background. Consequently, Case-3 exhibits the slowest decline in derivative 

before the unit slope response. This indicates that a permeability contrast of 2 cannot be 

distinguished from the reservoir background response using pressure derivatives. As the 

fracture permeability increases, rate of decrease in the derivative response is faster as 

shown for Case-4 in Figure. 5.12. An increase in volume fraction of natural fractures 

and increase in fracture permeability leads to a drop in pressure derivative response. 

However, an increase in fracture permeability led to a dual minima and oscillation in 

derivative response which was not observed for the response due to increase in volume 

fraction. As expected, higher fracture permeability leads to faster propagation of pressure 

front and the circular reservoir boundary is reached earlier that results in the unit slope 

response (Figure 5.12). Presence of non-conductive fractures in Case-5 is accompanied 

by nearly horizontal pressure derivative (Figure 5.12) and nearly circular time of arrival 

contours (Figure 5.11). This indicates that the pressure transient tends to bypass the non-

conductive fractures and stays in the continuous reservoir matrix. Therefore, the pressure 

derivative is not similar to that expected for a radial composite response. 
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Figure 5.11: Time of arrival maps at t=10 days for (a) Base Case, (b) Case-3, (c) 

Case-4, and (d) Case-5. The dimension of square shown in each plot is 1000 ft. 

 

Figure 5.12: Pressure derivative responses of a vertical production well centrally 

located in reservoir to study sensitivity on permeability of fractures. 
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Table 5.6: Summary of inputs used sensitivity on compressibility of fractures. 

  Base Case Case-6 Case-7 

Fracture Compressibility (psi-1) 6.00E-06 1.00E-06 1.00E-05 
 

 

 

Figure 5.13: Time of arrival maps at t=10 days for (a) Base Case, (b) Case-6, and (c) 

Case-7. The dimension of square shown in each plot is 1000 ft. 

 

 

Figure 5.14: Pressure derivative responses of a vertical production well centrally 

located in reservoir to study sensitivity on compressibility of fractures. 

 

Cases-6 & 7 are used to study the sensitivity to fracture compressibility while 

ensuring the other properties to be similar. Table 5.6 shows the fracture compressibility 

used in each case with the corresponding reservoir maps remain same as that for Base 
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Case shown in Figure 5.6a. The time of arrival maps for each case is shown in Figure 

5.13 with the corresponding pressure derivatives shown in Figure 5.14. Since diffusivity 

is inversely proportional to compressibility, a lower fracture compressibility helps in 

increasing the contrast in diffusivity. For the same fracture distribution, Case-6 has faster 

propagation of pressure front due to lower compressibility whereas Case-7 has nearly 

circular time of arrival contours due to high fracture compressibility (Figure 5.13). The 

same response is also visible in derivative responses in Figure 5.14 where the reservoir 

boundary is seen earliest for Case-6. 

Table 5.7: Summary of inputs used sensitivity on location of source well. 

  Base Case Case-8 Case-9 

Well Location (1001,1001) (901,1001) (1001,1101) 
 

 

Figure 5.15: Reservoir map for (a) Base Case, (b) Case-8, and (c) Case-9. The 

dimension of square shown in each plot is 650 ft. 

 

Figure 5.16: Time of arrival maps at t=1 day for (a) Base Case, (b) Case-8, and (c) 

Case-9. The dimension of square shown in each plot is 650 ft. 
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Figure 5.17: Pressure derivative responses of a vertical production well in reservoir 

to study sensitivity on location of source well. 

 

Cases-8 & 9 are used to study the sensitivity to well location without altering 

other properties. Table 5.7 shows the well location used in each case with the 

corresponding reservoir maps shown in Figure 5.15. The time of arrival maps for each 

case is shown in Figure 5.16 with the corresponding pressure derivatives shown in 

Figure 5.17. In each case, the fractures are placed at minimum 30 ft distance from the 

well. The distribution of fractures in the immediate vicinity of well is variable due to 

variable well location. This results in different shape of contours indicating changes in 

pressure propagation when the pressure transient approaches the nearby fractures (Figure 

5.16). The same is also visible in pressure derivative at t=1 day (Figure 5.17). When the 

pressure front moves further away, the overall distribution of fractures is same in each 

case as the map is unaltered. This leads to similar pressure propagation and pressure 

derivative response at time after t= 3 days. 
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Table 5.8: Summary of inputs used for normal distribution of fracture length and 

fracture orientation. 

Normal distribution Minimum 

Value 

Mean 

Value 

Maximum 

Value 

Comment 

Fracture Length (ft) 0 50 100 Case-10 

Fracture Orientation (deg) 10 30 50 Case-11 

 

 

Figure 5.18: Reservoir map for (a) Base Case, (b) Case-10, and (c) Case-11 to 

implement variation in fracture length and orientation according to normal 

distribution. The dimension of square shown in each plot is 650 ft. 

 

Figure 5.19: Time of arrival maps at t=10 days for (a) Base Case, (b) Case-10, and 

(c) Case-11. The dimension of square shown in each plot is 650 ft. 

 

Cases-10 & 11 are used to study the impact of variation in fracture properties 

including fracture length and fracture orientation. The properties are assumed to vary 

according to normal distribution. The limits assumed for these properties are shown in 

Table 5.8 with the corresponding reservoir maps shown in Figure 5.18. The time of 

arrival maps for each case is shown in Figure 5.19 with the corresponding pressure 
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derivatives shown in Figure 5.20c. Due to variation in fracture characteristics, we see 

minor variation in the time of arrival contours for each case shown in Figure 5.19. 

However, these changes are negligible compared to total drainage volume at any instant 

which is shown by nearly identical pressure derivative response seen in Figure 5.20c. 

Figures 5.20a & 5.20b show that the normal distribution generated in the maps 

according to grid constraints is aligned with the theoretical normal distribution expected 

according to input limits.  

 

 

Figure 5.20: Comparison of normal distribution expected with that generated using 

Matlab for (a) length of natural fractures (Case-10), and (b) orientation of fractures 

(Case-11). (c) Pressure derivative responses of a vertical production well centrally 

located in reservoir to study impact of variation in fracture length and orientation. 
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These cases aim to replicate the variation of properties of natural fractures found 

in field cases. The volume fraction and permeability contrast of fractures are constant in 

each case. Under these conditions, it becomes evident that the impact of variation in 

characteristics of natural fractures is negligible and the system can be described using 

mean values of these characteristics. Impact of width has not been considered due to grid 

limitations which do not allow fracture width of less than 1 ft. For higher fracture widths, 

we do not expect any impact of variation, similar to cases shown here. 

 

 

 

Figure 5.21- Reservoir maps for realizations in Cases 12-20 shown in (a)-(i) to show 

impact of change in position of natural fractures around well. The dimension of 

square shown in each plot is 650 ft. 
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Figure 5.22: Pressure derivative responses of a vertical production well centrally 

located in reservoir to study impact of variation in position of fractures with 

random distribution between different realizations. 

 

For considering the impact of change in distribution of fractures in the reservoir, 

9 different realizations were considered (Figure 5.21). For each realization, all fracture 

properties like length, width and orientation remain same. Similarly, the volume fraction 

of fractures and the permeability contrast is also maintained constant. The position of 

fractures in the reservoirs is generated new is each case and is variable for different 

realizations. The closest distance of fractures with well is 5 ft and remains same for all 

cases in Figure 5.21. In each case (Figure 5.22), the pressure derivative remains same 

just near the well (t~0.003 day) and near the reservoir boundary (t~40 days). These values 

are dependent on volume fraction, permeability contrast and compressibility of fractures. 

Since these values remain unchanged between realizations, the pressure derivative has 

same value at these instants of time. The transition between these two fixed values varies 

according to position of fractures around the well. A sharp decrease in pressure 

derivative, as in Case-20 (Figure 5.21i & Figure 5.22), shows closer positioning of 
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fractures around the well. Similarly, fractures placed further away from well, as in Case-

16 (Figure 5.21e & Figure 5.22), result in decrease of pressure derivative at later time. 

At any instant between early (t~0.003 day)  and late time (t~40 days), the decrease in the 

pressure derivative is proportional to the fraction of fractures traversed by the 

propagating pressure front. Therefore, the shape of the curves is indicative of the 

distribution of fractures around the well.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1  Conclusions 

Our method uses percolation theory, effective medium theory, and critical path 

analysis for estimation of relative permeability. The method assumes use of single 

coordination number, bimodal fractal model for pore size distrbution and negligible 

impact of surface pores on the percolation process. The method assumes water to be 

wetting phase for shale samples. We also assume efficacy of percolation theory along 

with critical path analysis in holistic prediction of transport properties including 

diffusion.  

Based on these assumptions, relative permeability, residual/irreducible 

saturations, and production performance for Bakken, Eagle Ford, Wolfcamp, and 

Woodford shale formations from gas, oil, condensate and late-condensate maturity 

windows are estimated using low-pressure nitrogen adsorption-desorption measurements 

on the samples. Relative permeability curves for the wetting and non-wetting phases are 

well correlated with the thermal maturity, and the volume of pores of size ranging from 

2 nm to 200 nm. Residual/irreducible saturations of both the phases tend to increase with 

increasing thermal maturity. The estimated relative permeability curves allow us to 

predict the expected production performance using a numerical simulator. The simulated 

production performances of the various formations exhibit greater variations in the 

horizontal well scenario compared to the vertical well scenario. Formations with lower 

thermal maturity show slower decline in hydrocarbon production rates and more uniform 

increase in water production.  
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The approach is limited due to the inability of adsorption measurements to 

describe pore diameters beyond range of 2-200 nm. The assumption of wettability of 

shale samples needs further investigation and validation. The method is yet to be 

validated using alternate laboratory experiments. The method is not strictly applicable on 

shale samples due to requirement of unimodal samples for application of universal 

scaling function along with presence of H1 or H2 hysteresis loops. 

We also analyze a new approach to characterize conductive natural fractures in 

heterogeneous shale reservoirs, using multistencils fast marching method. This method 

assumes a homogeneous and isotropic 2D reservoir with a vertical well producing at a 

constant rate. The fluid is assumed to be single phase and slightly compressible. The 

method needs causality relationship to hold true and assumes pseudosteady state 

propagation of pressure wave in the reservoir.  

Based on these assumptions, pressure transient response is analyzed to determine 

impact of change in fracture characteristics. The method can also prove useful in 

estimating the location of nearest natural fracture from the well. An increase in volume 

fraction of natural fractures, decrease in fracture compressibility and increase in fracture 

permeability lead to drop in pressure derivative responses. A progressive decrease in the 

derivative response is an indicator of conductive naturally fractured system, such that a 

short duration of such a drop indicates that the conductive fractures are distributed in a 

narrow band.  

The method is limited in the present application due to its 2D approach and single 

phase fluid without any anisotropy in the reservoir. The present grid implementation 

needs to incorporate grid refinement techniques to consider natural fractures with width 
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smaller than 1 ft. It also needs improvement to consider variety of cases where natural 

fractures may be intersecting the production well. The causality relationship is an 

important assumption which breaks down if permeability shows more than 2 order of 

magnitude of variation in adjacent cells. 

 

6.2  Recommendations for Future Work 

The prediction of relative permeability based on percolation theory assumes 

water to be the wetting phase for shale samples and hydrocarbon is assumed to be wetting 

for isolated organic matter. Further research will be useful in evaluating this assumption 

on samples from different formations. Additionally, validation of the method using 

alternative methods of measurements on field data would be helpful in establishing the 

efficacy of the method for predicting production performance in shale reservoirs.  

Analysis of natural fractures using multistencil fast marching method can be 

improved by extending the current 2D approach to 3D. Incorporation of multiphase flow 

will improve the versatility of the method. Most importantly, the current method uses a 

uniform grid of 1 ft. Due to this, fracture widths smaller than 1 ft cannot be modeled. 

Therefore, further research on incorporation of grid refinement which will also enable 

incorporation of complex fractures into the model is recommended. Wellbore effects may 

be accounted in the model. Also, the fast marching methods would be benefitted by 

improving their ability to handle large permeability contrasts within the reservoir.  
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APPENDIX A: NOMENCLATURE 

𝑘1  Permeability of first sector in sector model (md) 

𝑘2  Permeability of second sector in sector model (md) 

𝑘𝑒𝑓𝑓  Effective Permeability of reservoir model (md) 

𝑟𝑒  Drainage radius of reservoir (ft) 

𝑟𝑒𝑥𝑡  Outer radius of i-th layer in concentric ring model (ft) 

𝑟𝑖𝑛𝑡  Inner radius of i-th layer in concentric ring model (ft) 

𝑟𝑤  Wellbore radius (ft) 

b  Constant with universal value of 0.41 

ct  Total compressibility (psi-1) 

d   Pore diameter (nm) 

D  Fractal Dimension 

D1  Fractal Dimension for first fractal regime 

D2  Fractal Dimension for second fractal regime  

dmax   Maximum pore diameter (nm) 

dmin   Minimum pore diameter (nm) 

dx   Pore diameter at which fractal regime changes from regime-1 to regime-

2 (nm) 

F(P)   Percolation Probability 

f(P)   Site Occupation Probability 

fc   Percolation Threshold 

i  Reference for layer number in concentric ring model 

k   Permeability (md) 

k(x)  Permeability at node x (md) 

krhc  Hydrocarbon Relative Permeability 

krnw   Relative permeability of nonwetting phase 

krw   Relative permeability of wetting phase 

L   Percolation cluster length 

n  No. of layers in concentric ring model 

P   Pressure (psi) 

P/Po   Relative Pressure 

Po   Nitrogen saturation pressure (1 atm) 

r   Pore radius (nm)  

R   Universal gas constant (8.314 J/mol/K) 

Shcr   Residual hydrocarbon saturation 

Swir   Irreducible water saturation 

T   Absolute temperature for adsorption experiment (77 K) 

t   Thickness of adsorbed layers of nitrogen in nm 

t  Time of pressure wave propagation (days) 

v   Constant with universal value of 0.88 

V  Pore Volume Distribution (cc/g) 

Va  Total volume of nitrogen gas that would desorb at that pressure if all pores 

had access to nitrogen vapor phase 

Vd  Volume of nitrogen gas that desorb at a given pressure 

VL   Nitrogen molar volume (34.68 cc/mol) 
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w   Mean pore diameter (nm) 

Z   Coordination Number 

𝑘  Reservoir permeability (md) 

𝑣(𝑤)  Distribution of pore volume as a function of pore diameter 

 

 𝜑1(𝑑)  Contribution to pore volume from first fractal regime 

 𝜑2(𝑑)  Contribution to pore volume from second fractal regime 

𝜃1  Angle subtended by first sector in sector model (°) 

𝜃2  Angle subtended by second sector in sector model (°) 

µ  Fluid viscosity (cp) 

β   Probability of Drainage  

β1   Probability of Drainage for first fractal regime  

β2   Probability of Drainage for second fractal regime  

ΔP  Pressure difference (psi) 

ΔP’  Bourdet pressure derivative (psi) 

θ   Pore volume fraction 

θ(d)   Cumulative volume distribution of pore sizes 

θd  Crossover volume fraction for wetting phase 

θnw   Pore volume fraction of nonwetting phase 

θt   Critical Phase Content 

θw  Pore volume fraction of wetting phase 

θx   Crossover volume fraction for non-wetting phase 

φ(x)  Porosity at node x (fraction) 

s   Constants needed to convert the measured nitrogen gas volume to 

required liquid nitrogen volume adsorbed at each pressure step 

  Probability of Drainage  

   ADI pore volume 

  Surface tension (8.88 x 103 N/m) 

𝛼  Diffusivity (time-0..5) 

𝜏(𝑥)  Diffusive time of flight (time0.5) 

 

AD  Adsorption-Desorption 

ADI   Adsorption-Desorption Isotherm 

APV  ADI Pore Volume 

BJH   Barrett-Joyner-Halenda  

CPA  Critical path analysis 

DFT   Density Functional Theory 

DH  Dollimore-Heal  

DTOF  Diffusive Time of Flight 

EF  Eagle Ford Formation 

EMT  Effective Medium Theory 

EUR  Estimated ultimate recovery 

FHH  Frenkel-Halsey-Hill 

FM  Fast Marching 

FTIR  Fourier Transform Infrared 

LPP  Low Pressure Helium Pycnometry 



114 

LTA  Low Temperature Ashing  

MFM  Multistencil Fast Marching Method 

PSD   Pore Size Distribution 

PT  Percolation Theory 

PT  Pressure Transient 

PVT  Pressure-Volume-Temperature 

SEM  Scanning electron microscopy 

TOC  Total organic content 

WD  Woodford formation 

WF   Wolfcamp formation 

 
 

Subscripts 

gr  Residual for gas phase 

max  Maximum 

min  Minimum 

nw  Non-wetting phase 

hcr  Residual for hydrocarbon phase 

w  Wetting phase 

wir  Irreducible for water phase 

 


