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Abstract 
 

The high thermal conductivity of carbon nanotubes (CNTs) has promise for 

improving the thermal conductivity of nano composites. However, their large Kapitza 

resistance has frustrated this effect. One solution is to functionalize the ends of the CNT 

matching their vibration spectrum better to the surrounding medium. In this thesis we 

simulate cases in which the CNT ends are either well coupled or not well coupled to the 

surrounding medium. Our findings indicate a notable improvement of the thermal 

conductivity of functionalized CNTs versus pristine CNTs. The effects of excluded 

volume or sterics on the thermal conductivity is also examined. The necessary 

mathematics and physics are given along the way, as well as intuitive examples to make 

the concepts easier to understand. A random walk method is used to calculate the 

thermal conductivity of end-functionalized CNT composite materials, as well as 

molecular dynamics (MD) simulations that do the same.  
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Chapter 1: Introduction 
 

1.1 The problem of interfacial (Kapitza) resistance 

Thermal conductivity is an important property of materials. Materials with a 

high thermal conductivity1 such as metals allow heat to flow easily, while ones with a 

low thermal conductivity such as ceramics like AlN are resistant to heat flow. Thus 

depending on what the material is used for, high thermal conductivity is desired for 

objects like heatsinks while low thermal conductivity is desired for fire-resistant 

heatshields. Thermal conductivity and thermal resistance are inversely related just as 

their electrical counterparts. 

It is obvious to ask what is responsible for the transfer of heat in solids. Solids 

may be crystalline, amorphous, or random with respect to the arrangement of their 

atoms [1]. Order and disorder describe the presence or lack of symmetries or 

correlations in a many-atom system. If atoms repeat themselves and are translationally 

invariant in space (crystalline), we say the material has long-range order. 

This long-range order allows for wave-like excitations to travel freely. These 

waves might be the motion of electrons in conductors or vibrations of the lattice in 

conductors or insulators. Such lattice waves are called “phonons”. 

Electrons and phonons can still be used to discuss transport in disordered 

systems such as plastics. However in disordered systems waves are localized & 

transport is hindered. It is tempting therefore incorporate a periodic material such as 

                                                
1 Has units of W/(m*K) in SI and is generally denoted by the letter k 
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carbon nanotubes to form a composite. 

Carbon nanotubes, or CNTs, were first investigated for their unusual yet useful 

properties after the discovery of fullerenes (C60 or “buckyballs”) in 1985 at Rice 

University by Smalley, Curl, and Kroto. However, there is reason to believe materials 

like CNTs have existed in nature long before their discovery by scientists [2]. CNTs and 

other allotropes of carbon appear in small quantities in materials such as soot and 

charcoal, so Neanderthals likely generated them with their fires. Sumio Iijima is 

generally credited with the discovery in 1991, categorizing their crystal structure. Their 

interesting properties include excellent thermal conductivity, strength, and hardness as 

well as being lightweight. They are in the early stages of being used in consumer 

products, and their use in electrical and optical devices is an active area of 

interdisciplinary research, including in solid state devices (SSDs). Their thermal 

conductivity has been measured to be between 1750-6000 W/(mK) for single-walled 

carbon nanotubes (SWCNTs) at room temperature [3], and around 3000 W/(mK) for 

multi-walled carbon nanotubes (MWCNTs) [4]. 
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Figure 1: Above - Scanning electron microscopy image of purified SWCNTs [5]. 
Below - Scanning tunneling microscopy image of a single-walled carbon nanotube 

[6]. 
 

Interfacial thermal resistance was first discovered in 1941 by P.L. Kapitza in his 

study of heat transfer & the super fluidity of Helium II [7]. To this day, Kapitza 

resistance is still not well understood, with differences between models as large as an 

order of magnitude in some cases. A diagram depicting the effect is given in Figure 2.

 

Figure 2: Kapitza (thermal boundary resistance) between two materials [8]. 
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Although Kapitza resistance has historically referred to solid-liquid helium 

interfaces, and interfacial or thermal boundary resistance is the general term, I use both 

interchangeably as my research does not concern liquid helium interfaces.  

1.2 Thermal applications of carbon nanotubes 

Since 1965, Moore’s Law has predicted the dimensions of integrated circuit (IC) 

components will decrease by a factor of two approximately every two years [9]. 

However, entering the sub-22 nm dimension as mainstream IC manufacturers have 

around 2009 has posed serious problems and challenges, from device fabrication to heat 

dissipation.  

Quantum effects including limits on tunneling become more and more important 

to consider as well as materials that are better suited to work in this regime. CNTs can 

overcome many of these problems, including device defects, passive power dissipation, 

current leakage and heat transport. For CNTS, chirality (n,m) and diameter can be 

precisely controlled. Also, since they are known as quasi-1D materials, consisting of 

graphene sheets, only forward and back scattering in those sheets is allowed [9], making 

the mean free path for elastic scattering much greater than the tube length (on the order 

of µm). This gives rise to ballistic transport within the tube, where the resistivity is then 

negligible. Chemically, covalent C-C bonds make the CNTs inert and able to carry large 

amounts of electrical current for their size. The same argument applies for phonons as 

well, and therefore they are able to carry large amounts of heat for their size. They can 

theoretically conduct the same amount of heat as diamonds. These are all excellent 

reasons why CNT thermal research should be pursued. 
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CNT composites made with materials like epoxy or PMMA can be used in 

conjunction with these devices to transport heat away from them in a certain direction 

as the material has an anisotropic thermal conductivity k. These materials could be 

lighter and cheaper than conventional heatsink materials. This is formally called thermal 

interface material (TIM). TIM is any material that is applied between two devices to 

increase their thermal coupling [10].  

 Coating or covering IC components that generate a high amount of heat with a 

heatsink is critical. This may be a metal or CNT polymer radiator-type object or even 

letting them sit in a container of oil such as running a motherboard in a case of oil in 

computer overclocking competitions. The feasibility of CNT-containing materials that 

perform well has been demonstrated many times with many technologies, from fused 

deposition modeling (FDM, or a common “3D printer”) to stereo lithography (SLA) and 

digital light processing (DLP) technologies, which pull an object out of a resin bath. 

These printable plastics may be printed or bonded directly to ICs, even along the leads 

of a circuit board. However solid materials containing CNTs will need to have another 

TIM between the IC and material, to reduce Kapitza resistance. Figure 3 gives us an 

example of using CNT-infused plastics with a 3D printer allowing complicated 

structures to be printed. 
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Figure 3: a) DLP 3D printing process for material. b) 3D printed cubes containing 
0.3% wt CNTs. c) 3D hexagonal or honeycomb structure. e,f) Circuit-like 
structure built on an insulating base [11]. 
  

If TIM is not present between two solid and smooth interfacing surfaces, 

roughness can limit actual surface contact to around 1-2% due to air gaps and the low 

thermal conductivity of air. The total thermal resistance to thermal interface material 

insertion (qTM) can be written as [10] 

  𝜃"#$ = &'"
()*+

+ 𝜃-. + 𝜃-/ ( 1 ) 

with BLT the bond line thickness, kBLT the thermal conductivity, and qc1 and qc2 

represent the thermal resistances of each bonding surface with the TIM.  
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 One might expect that adding pristine, or plain CNTs to an epoxy or paste would 

increase the thermal conductivity simply because of the magnitude of the CNT’s 

thermal conductivity; however this turns out to not be the case. At the nanoscale, 

interface quality and thermal excitations or phonons are the determining factors for the 

material’s bulk thermal conductivity, and Kapitza resistance is high at an interface 

where the speed of sound changes. Chen [12] showed this experimentally in 2013, 

noting that thermal impedance sharply increases for silicon grease containing pristine 

CNTs as the weight fraction increases, yet decreases for the grease containing CNTs 

functionalized (or doped) with COOH (carboxylic acid) (Figure 4). 
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Figure 4: The thermal impedance of silicon grease with pristine CNTs and CNTs 
doped with carboxylic acid or an amino group [12]. 
 

 The primary goal of this thesis is to explain theories behind micro/nanoscale 

heat transport and to present research attempting to improve the thermal conductivity of 

CNT composites by running simulations based on nanoscale heat transport theory and 

then compare them to experimental results. Throughout this thesis I denote vectors in 

bold typeset or as  or . 

The roadmap for the rest of this thesis will be as follows. In Chapter 2: Theory 

of heat transport I discuss heat transport theory in general. In Chapter 3: Phonon 

transport theory/Kapitza resistance models I discuss more specifically theories of 

Kapitza resistance and phonon scattering models. In Chapter 4: Random Walks I 

discuss random walks and their usefulness in my research, along with the results from 



9 

my simulations on end-functionalized nanotube composites using a random walk 

method on a lattice. In Chapter 5: Molecular Dynamics I connect with research from 

another graduate student in our group, Alex Kerr, who has written a package to 

calculate thermal conductivities of these composites with a Green’s function method 

derived in our lab. I simulate these composites with a more exact method using 

molecular dynamics (MD) in vacuo. I also briefly outline the usefulness and 

mathematics of MD simulations. I conclude with a summary and what’s 

next/unresolved in my research. 
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Chapter 2: Theory of heat transport 
 

2.1 The Boltzmann transport equation 

While complicated heat transport models have been extensively developed, each 

can be derived (in principle) from the limiting cases of the Boltzmann Transport 

equation, a nonlinear integro-differential equation governing a non-equilibrium 

statistical mechanical system derived by Boltzmann in 1872 [13]. This equation is 

important for understanding the basis for how phonons, or heat excitations, propagate in 

a material. Let me first present Liouville’s equation (equation ( 1 )) as some consider 

this to be the fundamental non-equilibrium statistical mechanics equation [14]. 

  012
03
+ 012

0𝒑𝒊
∙ 𝒑7 +

012
0𝒒9

∙ 𝒒: = 0<
=>.  ( 1 ) 

This can be derived from Hamilton’s canonical equations, dividing phase space 

up into volume elements, and assuming the ergodic hypothesis (an ensemble average is 

equal to the time average of some macroscopic property). We have that FN is the 

normalized probability density function (denoting the chance at a certain position, 

momentum, and time of phase space being occupied by a particle), p is the particle’s 
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momentum and q is the particle’s position, for N particles in the system.  

The ensemble average of some macroscopic property G can be written as 

  < 𝐺 𝑡 >	= 	 𝑑𝒒𝒊𝑑𝒑𝒊𝐺 𝒒 , 𝒑 𝐹<( 𝒒 , 𝒑 , 𝑡)<
=>.  ( 2 ) 

and ( 2 ) can be rewritten in terms of forces using the fact that 𝒇𝒊 = 𝒑= and 

 𝒑𝒊 𝑚 = 𝒒𝒊, where fi is the net force acting on particle i. It would be too difficult to 

obtain these quantities for every atom in a macroscopic system, but by making some 

assumptions we can obtain a more tractable equation to describe the system. By 

assuming the net force is derivable from a pairwise potential (a function of 𝒒𝒊 − 𝒒𝒋 ),  

  𝒇𝒊 = − 0M9N
0𝒒𝒊

<
O>.P=  ( 3 ) 

we can reduce the degrees of freedom in the system and write an equation for FR, the 

reduced normalized probability density function. 

 

 01Q
03
+ 𝒑𝒊

R
∙ 01Q
0𝒒𝒊

S
=>. − 0M9N

0𝒒𝒊
∙ 01Q
0𝒑𝒊

= 𝑁 −=,O>.

𝑅 𝑑𝒙𝑹X𝟏
0M9QZ[
0𝒒𝒊

∙ 01QZ[
0𝒑𝒊

S
=>.  

( 4 ) 

 Equation ( 4 ) is known as the BBGKY hierarchy of equations [14], named after 

Bogoliubov, Born, H. S. Green, Kirkwood, and Yvon, who each derived it 

independently. We see that this equation is not closed, and further work must be done to 

obtain one equation which is not coupled to the others (the Boltzmann equation). 
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Writing out the first two hierarchy equations explicitly, we get 

  01[
03
+ 𝒑𝟏

R
∙ 01[
0𝒒𝟏

= (𝑁 − 1) 𝑑𝒙𝟐𝜱𝟏𝟐
_ ∙ 01̀

0𝒑𝟏
 ( 5 ) 

 

 

𝜕𝐹/
𝜕𝑡

+
𝒑𝟏
𝑚
∙
𝜕𝐹/
𝜕𝒒𝟏

+
𝒑𝟐
𝑚
∙
𝜕𝐹/
𝜕𝒒𝟐

− 𝛷./_ ∙
𝜕
𝜕𝒑𝟏

−
𝜕
𝜕𝒑𝟐

𝐹/

= (𝑁 − 2) 𝑑𝒙𝟑 𝜱𝟏𝟑
_ ∙

𝜕
𝜕𝒑𝟏

−
𝜕
𝜕𝒑𝟐

+ 𝜱𝟐𝟑
_ ∙

𝜕
𝜕𝒑𝟐

−
𝜕
𝜕𝒑𝟑

 

( 6 ) 

The applicability of equation ( 5 ) relies on three properties of the system (which are 

doubtful in solids): the density is low enough so that binary collisions only must be 

considered, the spatial dependence of the gas properties is slow enough that collisions 

are “local” in space, and the inter particle potential has a short enough range that the 

first statement is true. This is the Boltzmann gas limit (BGL). Mathematically it 

corresponds to the following limits: 

 

𝑁 → ∞
𝑚 → 0
𝜎 → 0

𝑁𝜎/ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑁𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 
( 7 ) 

where N is the number of particles in the system, m is the mass of each particle, and σ is 

a term that defines the range of the inter particle forces.  

Taking a step backward, equation ( 8 ) is simply a force balance for the net force 
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on each particle fi, and F(r,t) represents the force field which acts on the particles. 

  0m9
03
+ 𝐅 ∙ opq

o𝐩𝐢
= opq

ot uvww
 ( 8 ) 

The left term accounts for the external forces (no mass transport for the case of 

phonons), and the right term accounts for the collision effects. If we set the collision 

term equal to 0 the equation becomes the Vlasov equation. 

 Boltzmann derived a form for the collision term assuming two-body collisions 

to be uncorrelated (the “Stosszahlansantz”), giving us the expression 

  
0m9
03 -xyy

= 𝑔=O𝐼=O 𝑔=O, 𝛺 𝑓=_𝑓O_ − 𝑓=𝑓O 𝑑𝛺𝑑~<
O>. 𝒑′ ( 9 ) 

with 𝑓_ = 𝑓′(𝒑𝒊_, 𝑡) and the relative momenta magnitude given by 

  𝒈𝒊𝒋 = 𝒑𝒊 − 𝒑O = 𝒑′𝒊 − 𝒑′O  ( 10 ) 

and Iij is the differential cross section.  

 Replacing the right hand side of equation ( 8 ) with equation ( 9 ), and rewriting 

in a similar form gives [14] 

 
 0m
03
+ 𝐯𝟏 ∙

op
o𝐪𝟏

= .
R

𝑑𝜔𝑑𝒗𝟐 𝑉[𝑓 𝒒𝟏, 𝑣., 𝑡 𝑓 𝒒𝟏, 𝑣/, 𝑡 −

𝑓 𝒒𝟏, 𝒗𝟏, 𝑡 𝑓 𝒒𝟏, 𝒗𝟐, 𝑡 ] 
( 11 ) 

The one and two indices are the respective quantities assuming only two particles, 1 and 

2. The barred velocities indicate the initial velocities of the particles before the collision 

occurs. Error of the collision term is of order s, the distance between the two particles 
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and f is the force on particle 1. 

Equation ( 8 ) (or equation ( 11 )) is the Boltzmann equation. In general it is a 

set of N coupled nonlinear integro-differential equations for N particles in the system 

and described as a “beast” by some authors [14]. It is the fundamental equation for non-

equilibrium thermodynamics and Fourier’s Law as well as other fundamental fluid 

mechanics formulas can be derived from it. 

Most solutions to this equation involve a linearization procedure, and they are 

known as Hilbert-type solutions. These solutions reside in Hilbert space and so have 

simplifying properties, and by introducing the quantity where the linear operator would 

be, 

  𝛿 = 𝜆𝔏�. ≡ 𝐾� ( 12 ) 

we can see that where the system behaves as a continuum, d, is small. This term K is 

called the Knudsen number and these linear solutions are only valid for systems with 

small Knudsen numbers. 

 Chapman & Enskog independently derived solutions more general than Hilbert, 

and these solutions allow transport coefficients to be computed, such as the thermal 

conductivity and the viscosity. Macroscopic equations such as the Navier-Stokes 

equation cannot tell us those in this regime due to the continuum hypothesis. Grad 

developed a solution in terms of Hermite tensor polynomials, assuming the particles are 
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Maxwell particles, or hard-sphere scattering. Specific solutions also exist, such as for 

the plane Poiseuille flow problem in fluid mechanics. I will leave the Boltzmann 

equation discussion where it is for now and continue discussing interfacial resistance in 

general. 

 While this framework was developed for atoms & molecules, we can also use it 

to describe the probability distribution of phonons, treating these excitations as the 

particles in our system. The collision term represents phonon-phonon scattering due to 

anharmonicity as well as phonon impurity scattering.  

Regardless of the model, a mismatch of material properties is responsible for 

interfacial resistance, specifically the differences between the speed of sound vD and the 

specific heat CV between two materials. Starting with Fourier’s Law of Heat 

Conduction, we have 𝑞 = −𝑘∇𝑇, where in general k is a tensor of rank two. If we 

assume there is a constant heat flux q across this interface, we have 

  𝑞 = ∆𝑇
𝑅 ( 13 ) 

with ∆𝑇 the temperature difference across the interface and R the Kapitza resistance. 

Some of the heat carriers will scatter and some will pass, depending on R. This is 

important to understand because of how important heat dissipation is at the nanoscale 

level. If we can control R, we can design metamaterials with properties better than 

Nature has given us. 

 Also relevant is the concept of heat diffusivity2, which tells us if an object is 

                                                
2 SI units of m2/s 
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“cold to the touch” [15]. It is given by 

  𝛼 = 𝑘 𝜌𝑐�, 0"
03
= 𝛼∆𝑇 ( 14 ) 

with k the thermal conductivity, ρ the density of the material and cP its specific heat. I 

show the heat equation alongside it to show how it simplifies the expression. 

CNTs are essentially rolled up sheets of graphene, a 2D sheet of carbon in a 

honeycomb structure [16]. The way the sheets are rolled determine their lattice 

structure. The common way to do this is with indices (n,m), where n & m are the two 

unit vectors of graphene, detailing how many unit vectors to step in each direction 

during the rollup. These two unit vectors together are called the lattice, or chiral vector. 

Names given to these indices are zigzag (n,0), armchair (n,n), and chiral (n,m). These 

are referred to as single-walled CNTs, and have typical diameters of 1-10 nm and 

lengths of several micrometers, making large L/d ratios possible. Their thermal 

conductivity has been found to be approximately 3000 W/mK for isolated multi-walled 

CNTs (MWCNTs) and between 1750 and 6600 W/mK for single-walled CNTs 

(SWCNTs) at room temperature [17][18][3]. 
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Figure 5: Rolling the carbon nanotube in the direction of the unit vector (a,b,c) 

determines the type and properties of the CNT [19]. 
 

 Electrically, CNTs can act as either metallic or semiconducting depending on 

how they are rolled. A third of all possible single-walled carbon nanotubes (SWCNTs) 

are metallic, where the electronic density of states (DOS) is not zero at the Fermi 

energy, and two-thirds are semiconducting with zero DOS at the Fermi energy [20]. 

Multi-walled carbon nanotubes (MWCNTs) are also possible and usually are comprised 

of alternating metallic and semiconducting SWCNTs of different radii.  

n = m implies a metallic tube, (n-m)mod(3) = 0 a small bandgap semiconductor, 

and any other possibility is a moderate semiconductor. In either case, the CNT acts as a 

p-type semiconductor when undoped. The diameter of the tube affects the bandgap, 
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which is direct. CNTs also have many interesting optical properties, but most of these 

will not be discussed to focus on semiconductor-based devices instead of optoelectronic 

devices. 

2.2 Tight binding model 

 There are two common models for understanding CNT lattice dynamics, a force-

constant approach where a Hamiltonian is constructed using the adiabatic 

approximation, or a tight-binding approach directly from the Schrödinger equation. The 

important thing they both depend on is the screw symmetry in CNTs. This includes 

three types of symmetry: translational, helical, and rotational. These symmetries 

translate into reciprocal space in the Brillouin zone. Since SWCNTs are graphene sheets 

rolled into a cylinder, high symmetry points for the graphene lattice translate to CNTs.  

 For instance, the tight-binding approximation considers the wave function as a 

Linear Combination of Atomic Orbitals (LCAO) [21]. The electron energy in a solid 

can be estimated from Schrödinger’s equation 

 −
ℏ
2𝑚

∇/ + 𝑉 𝒓 𝜓( 𝒓 = 𝐸𝜓((𝒓) ( 15 ) 

 
Symmetry gives us the condition 

  𝑢𝒌 𝒓 𝑒=𝒌∙(𝒓) = 𝑢( 𝒓 𝑒=𝒌∙(𝒓X𝑪) ( 16 ) 

where uk is a periodic function defined by the crystal lattice, and C is the lattice vector. 

Solutions to the Schrödinger equation in this model must be of the form shown in 

equation ( 16 ). Then 𝒌 ∙ 𝑪 = 2𝜋𝑙, with k the wave vector and l an arbitrary integer. 

This is a boundary condition known as the “Born-von Karman” condition, which states 

the Brillouin zone is quantized. 
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Figure 6: High symmetry in graphene quantizes the Brillouin zone of CNTs in the 
tight-binding model due to the “Born-von Karman” condition [21]. 

 

 By “tight-binding” or considering only nearest neighbor interactions (π-TB), we 

can solve for the band structure of the CNT. 

 

Figure 7: Only the atomic orbitals of an atom’s nearest neighbors are considered 
in the π tight-binding model [21]. 

 

ψk is written as 𝜓( 𝒓 = 𝑐(¢𝜑(¢(𝒓)¢ , with the φkr’s acting as basis functions of the 

atomic orbitals 
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  𝜑(¢ 𝒓 = .
√<¥

𝑒=𝒌∙𝑹𝜒¢(𝑹 − 𝒓)§�=3	-¨yy©  ( 17 ) 

and Nt is the total number of unit cells in this system. Only the 2pz orbitals of the carbon 

atoms are considered since they dominate the structure of the energy states. With |𝜓 =

𝑐.|𝜓. + 𝑐/|𝜓/ , 

 𝐻|𝜓 = 𝑐.𝐻|𝜑. +𝑐/𝐻|𝜑/ = 𝑐.𝐸|𝜑. +𝑐/𝐸|𝜑/  ( 18 ) 
 

  𝑐. 𝜑. 𝐻 𝜑. + 𝑐/ 𝜑. 𝐻 𝜑/ = 𝑐.𝐸 𝜑. 𝜑. + 𝑐/𝐸 𝜑. 𝜑/  ( 19 ) 

 

𝑐. 𝜑/ 𝐻 𝜑. + 𝑐/ 𝜑/ 𝐻 𝜑/ = 𝑐.𝐸 𝜑/ 𝜑. + 𝑐/𝐸 𝜑/ 𝜑/  
( 20 ) 

To simplify, we can define 

  𝐻¬¬ = 𝜑. 𝐻 𝜑. , 𝐻¬& = 𝜑. 𝐻 𝜑/ , 𝑆¬¬ =

𝜑. 𝜑. , 𝑆¬& = 𝜑. 𝜑/  

 

( 21 ) 

Then equation ( 21 ) becomes 

  𝑐. 𝐻¬¬ − 𝐸𝑆¬¬ + 𝑐/ 𝐻¬& − 𝐸𝑆¬& = 0 ( 22 ) 

with  

  |𝝋𝟏 = .
√<¥

𝑒=𝒌∙𝑹𝑨𝜒¢(𝒓 − 𝑹𝑨)y°33=-¨	©=3¨	¬  ( 23 ) 

|𝝋𝟐 =
1
√𝑁3

𝑒=𝒌∙𝑹𝑩𝜒¢(𝒓 − 𝑹𝑩)
y°33=-¨	©=3¨	&

 ( 24 ) 

By substituting equations ( 23 ) & ( 24 ) into equation ( 22 ), the equation reduces using 

the properties of Hilbert space and the linearity of exponentials. This gives us 

𝑐. 𝐻¬&∗ − 𝐸𝑆¬&∗ + 𝑐/ 𝐻¬¬ − 𝐸𝑆¬¬ = 0 ( 25 ) 

Then a non-trivial solution exists for c1 and c2; in the form of a determinant 
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𝐻¬¬ − 𝐸𝑆¬¬ 𝐻¬& − 𝐸𝑆¬&
𝐻¬&∗ − 𝐸𝑆¬&∗ 𝐻¬¬ − 𝐸𝑆¬¬

= 0 ( 26 ) 

Solving for E, we get 

  𝐸 𝒌 ± = �(�/´µX´[)± �/´µX´[ `�¶´`´·
/´·

 ( 27 ) 

with  

 
 𝐸¸ = 𝐻¬¬𝑆¬¬, 	𝐸. = 𝑆¬&𝐻¬&∗ + 𝐻¬&𝑆¬&∗ , 	𝐸/ = 𝐻¬¬/ −

𝐻¬&𝐻¬&∗ , 	𝐸~ = 𝑆¬¬/ − 𝑆¬&𝑆¬&∗  
( 28 ) 

If we neglect any overlap of the 2pz orbitals with their neighbors, we have equation  

( 28 ), which along with the “Born-von Karman” condition, we can compute the band 

structures.  

 
 𝐸 𝒌 ± =

±𝑉¹¹º 3 + 2𝑐𝑜𝑠 𝒌 ∙ 𝒂𝟏 + 2𝑐𝑜𝑠 𝒌 ∙ 𝒂𝟐 + 2𝑐𝑜𝑠 𝒌 ∙ (𝒂𝟏 − 𝒂𝟐)  
( 29 ) 
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Figure 8: Electronic band structures of different SWCNTs calculated using the π-
tight binding model, with chiral vectors (n,m) a) (6,0) b) (6,3) c) (8,0) d) (5,5) e) 
(8,8) f) (5,4) [21]. 
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Chapter 3: Phonon transport theory/Kapitza resistance models 
  

 In this chapter I discuss one of the first theories that predicted the heat capacity 

of a dielectric solid – the Debye model. Then in order to discuss Kapitza resistance 

which occurs at the interface between materials, I explain two limiting case models for 

phonon scattering, the acoustic mismatch model (AMM) and the diffusive mismatch 

model (DMM). 

3.1 Debye model for phonons 

 Boundary resistance can occur electrically and thermally [22]. For the thermal 

case, a mismatch of the two density vibrational states (given by the Debye model in this 

case) cause thermal boundary resistance, specifically the differences between the speed 

of sound vD and the specific heat CV. First I will discuss the Debye model, applying 

within only one material. The Debye model (acoustic phonon modes) treats atomic 

vibrations as phonons in a box, and is very similar to the treatment of an EM field as a 

gas of photons in a box [23]. It predicts the correct heat capacity in a solid and that 𝐶	 ∝

	𝑇~. This model contrasts the Einstein model (optical phonon modes), which treats the 

solid as several non-interacting quantum harmonic oscillators. 

 We will start from the dispersion relation 

 𝜀 = ℏ𝜔, 𝜔 = 𝑣© 𝑞  ( 30 ) 

with the phonon energy 𝜖, reduced Planck’s constant ℏ, phonon frequency 𝜔, and the 

sound wave velocity vs. Phonons obey Bose-Einstein statistics, and the expectation 

number of bosons in some state with frequency ω is then given by 

 𝑛 𝜔 =
1

𝑒ℏÂ/(Ä" − 1
 ( 31 ) 
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with kB the Boltzmann’s constant 3. Phonons cannot have infinite frequency and there 

are N primitive cells then there exists N phonon modes. The wave vector volume is 

  
/º
~

~
= Åº·

Æ
 ( 32 ) 

We assume that there is an isotropic cut-off vector 𝒒𝑫 =
𝝎𝑫 𝒗𝒔 terminating the density 

of states. Substituting, we can write this cut-off Debye frequency as 

  𝜔Ê = (6𝜋/ <
Æ
)./~𝑣© ( 33 ) 

and the Debye temperature corresponding to this frequency is given by 

  𝑇Ê =
ℏ𝜔Ê

𝑘& ( 34 ) 

Next I will derive the specific heat of the material. The speed of sound in the material is 

assumed constant (Debye approximation), therefore we can write the density of states as 

 𝐷 𝜔 =
𝑑𝑁
𝑑𝜔

=
𝑉𝜔¶

2𝜋/𝑣©~
 ( 35 ) 

For each type of polarization the thermal energy U is given by 

  𝑈 = ∫ 𝑑𝜔𝐷 𝜔 𝑛 𝜔 ℏ𝜔 = 𝑉𝜔4
2𝜋2𝑣𝑠3

𝜔𝐷
0

1
𝑒ℏ𝜔/𝑘𝐵𝑇−1

 ( 36 ) 

There are 2 transverse and 1 longitudinal types of polarization. If we further assume the 

phonon velocity is independent of this, we have 

𝑈 =
3𝑉𝑘&¶𝑇¶

2𝜋/𝑣©~ℏ~
𝑑𝑥

ÒÓ

¸

𝑥~

𝑒Ò − 1
= 9𝑁𝑘&𝑇

𝑇
𝑇Ê

~ 𝑥¶𝑒Ò

(𝑒Ò − 1)/

ÒÓ

¸

 ( 37 ) 

with 𝑥 ≡ ℏÂ
(Ä"

 and 𝑥Ê ≡
"Ó
"

. Heat capacity is then  

  𝐶Æ =
0Õ
0"
= 9𝑁𝑘&

"
"Ó

~ ÒÖ¨×

(¨×�.)`
ÒÓ
¸  ( 38 ) 

                                                
3 kB = 1.38×10−23 J/K 
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Equation ( 38 ) does not have a closed form solution. We can approximate this in the 

low and high temperature limits. In the high temperature limit, 𝑇 ≫ 𝑇Ê, so 𝑒Ò = 1 + 𝑥 

and we have 

  𝑈 = 9𝑁𝑘&𝑇
"
"Ó

~
𝑥/𝑑𝑥 = 3𝑁𝑘&𝑇, 𝐶Æ = 3𝑁𝑘&

ÒÓ
¸  ( 39 ) 

the classical Dulong and Petit Law derived in 1819. In the low temperature limit, 𝑇 ≪

𝑇Ê, long wavelength acoustic modes only contribute. Then take 𝑥Ê ≡
"Ó
"

, and from 

integral tables we have the result 

  𝑑𝑥 Ò·

¨×�.
= ºÖ

.Ú
Û
¸  ( 40 ) 

Then finally we have 

 𝑈 = 3𝜋¶𝑁𝑘&𝑇¶ 5𝑇Ê~, 𝐶Æ = 12 𝜋¶𝑁𝑘&𝑇Ú 5𝑇Ê~ ≅ 324𝑁𝑘&
𝑇
𝑇~

 ( 41 ) 

A plot showing specific heat vs. temperature for a semiconductor vs. conductor is in 

Figure 9. Note the differences between the two materials. 

 

Figure 9: Specific heat vs. Temperature log plot for Si and Cu in the Debye model 
[24]. 
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For semiconductors, at low temperature their behavior agrees with the Debye model, 

while for conductors, it does not agree due to the electron contributions. A more 

complete expression for the specific heat is 

  𝐶R¨3°y = 𝐶¨y¨-3¢x� + 𝐶¹Þx�x� =
ºÖ<(`

/´ß
+ 12𝜋4𝑁𝑘𝐵

5𝑇𝐷
3 𝑇3 ( 42 ) 

incorporating the Einstein model to form the Einstein-Debye specific heat.  

This model can be useful for computing thermodynamic properties of carbon 

nanotubes. Quantities such as the bulk modulus K, a measure of the CNT’s resistance to 

compression, or the shear modulus (resistance to shear stress) or Young’s modulus 

(response to linear stress) [25] can also be calculated. To compute the CNTs specific 

heat within the tight-binding model, we can use the expression 

  𝐶Æ(𝑇) = 𝑘&
ℏà
áÄ)

`
¨Ò¹ ℏà

áÄ)

¨Ò¹ ℏà
áÄ)

�.
`

Û
¸ 𝐷 𝜔 𝑑𝜔 ( 43 ) 

with D(ω) the phonon density of states. This is derived from the dispersion relation 

which relates energy and frequency/wavenumber as well as results from the Debye 

model.  

  𝐶â =
0Õ
0"
= 0

0"
𝜖 𝜔 	𝑛 𝜔 	𝐷 𝜔 	𝑑𝜔 ( 44 ) 

At high temperatures equation ( 44 ) approaches the classical limit 2 𝑘& 𝑚. In 

the low temperature limit, around 1 K, it is determined by the dispersion of the lowest-

energy acoustic branches [20].  
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Figure 10: Specific heat of SWNTs and ropes of SWNTs, calculated within a force 
constant model in comparison with that of graphene and graphite, and available 

experimental data [20]. 
 

I have discussed a model to compute important thermodynamic properties for 

some materials. However, this model only works within one material. The big question 

is what happens at the interface between a dielectric, such as some industrial epoxies, 

and a semiconducting CNT? We need a model to compute the Kapitza resistance at this 

boundary so we can calculate the thermal conductivity. The two most common models 

are the Acoustic Mismatch Model (AMM) and the Diffusive Mismatch Model (DMM).  

3.2 Phonon scattering models 

 Before I can discuss those models, I need to discuss phonon transport in general. 

As explained in chapter 1, the Boltzmann equation (equation ( 45 )) can be used to 

model phonon transport; however this is not a trivial task. It was said by Ziman in 1960 

[26] “The Boltzmann equation is so exceedingly complex that it seems hopeless to 

expect to generate a solution from it directly”. The Peierls-Boltzmann equation is 

another name for the form describing phonon transport. Only recently has 
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computational power and experimental ingenuity allowed for solving this equation 

directly for a system. 

  0m
03
+ 𝐅 ∙ op

o𝐩
= op

ot uvww
 ( 45 ) 

For systems in equilibrium, f (or f0) is the standard Bose-Einstein distribution, 

  𝑓 = 𝟏
𝑨𝒆ℏ𝝎/𝒌𝑩𝑻�𝟏

 ( 46 ) 

However in order to model phonon scattering, some assumptions have to be 

made. The relaxation time approximation [27] is commonly used to solve the 

Boltzmann equation, especially when fitting theoretical thermal conductivities to 

experimental data. The collision term is then linearized assuming the phonon collisions 

can be represented by a relaxation time and the system in question is subjected to a 

thermal gradient. 

 −𝑣¹ 𝒒 ∙ ∇𝑇
𝜕𝑓å¹
𝜕𝑇

+
𝜕𝑓å¹
𝜕𝑡

|©-°33 = 0 ( 47 ) 

Here vp is the group velocity of phonon (q,p), fqp is a non-equilibrium distribution of 

phonons in state (q,p) at a position r, time t, and temperature T, with q is wave number 

and p the polarization. Equation ( 47 ) is the general Boltzmann equation for phonons 

being acting on by a thermal gradient, and is still a integro-differential equation due to 

the scattering term. Setting the equation equal to 0 is the stationary condition. 

 Since no mass transfer takes place, phonon momentum is a “quasi momentum”. 

That being said, this quasi momentum transfers the heat energy in the lattice, and this 

process can be represented as a normal process or as an “umklapp” process [28] 

(German meaning to “flip over”), and both are three phonon scattering processes. 

Conservation of momentum/energy for a normal phonon-phonon scattering event can be 
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expressed with the equations 

  𝒌𝟏 + 𝒌𝟐 	−	𝒌𝟑 = 0	, ℏ𝜔. + ℏ𝜔/ − ℏ𝜔~ = 0 ( 48 ) 

and total phonon quasi momentum is conserved. Conservation of momentum for an 

umklapp process can be expressed with the equation  

  𝒌𝟏 + 𝒌𝟐 	−	𝒌𝟑 = 𝑮 ( 49 ) 

where G is a nonzero reciprocal lattice vector responsible for redirecting the phonon’s 

quasi momentum. This can also be expressed pictorially using scattering diagrams. 

 

Figure 11: Diagram showing conservation of momentum in reciprocal space for 
normal (left) and umklapp (right) phonon-phonon scattering processes [29]. 

 

Umklapp scattering is one factor responsible for limiting the thermal 

conductivity of a crystalline material, along with crystal defects, surface imperfections, 

and isotope scattering [29]. They are also not modeled in the standard Debye model I 

just discussed; however it can be modified to include them (allowing for anharmonic 

interactions or separate longitudinal and transverse acoustic branches) [28]. 

In the relaxation time approximation (RTA), the thermal conductivity is given 
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by 

 𝜆 =
1
3

1
2𝜋 ~ 𝐶𝒌𝑣ç/𝜏S"¬𝑑~𝒌 ( 50 ) 

with Ck the phonon mode specific heat and τRTA is the single-mode relaxation time, 

summing over all branches [28]. This equation has been found to hold experimentally 

for Ge and Si above 100 K in 2010 by Ward & Broido [30], with the relaxation time 

defined as 

  𝟏
𝝉𝑹𝑻𝑨

= 𝟏
𝝉𝑵
+ 𝟏

𝝉𝑼
 ( 51 ) 

giving the normal and umklapp scattering rates. 

Equation ( 50 ) comes from Callaway’s theory for thermal conductivity, first 

proposed in 1959 [31]. From equation ( 47 ), Callaway defined a term from the 

difference in a distribution having a temperature gradient from that of the equilibrium 

Bose-Einstein distribution f0 as 

  𝑓𝒒¹ − 𝑓 = −𝜏 𝒒, 𝑝 𝑣𝒒¹	̇	∇𝑇
ℏÂ
(Ä"`

¨×

(¨×�.)	`
 ( 52 ) 

with 𝑥 = ℏ𝜔å¹/𝑘&𝑇. If we assume an isotropic solid and 𝜏 𝑞 = 𝐴𝑞��, we obtain the 

following proportionality relation for the thermal conductivity: 

  𝜅 ∝ 𝑇~�� ÒÖðñ¨×

¨×�. ` 𝑑𝑥
ò/"
¸  ( 53 ) 

with Θ the Debye temperature. 

For a more in-depth derivation, see Sparavigna [27]. For an excellent review on 

higher-order phonon scattering, non-linear effects and relevant models, refer to Dreyer 

et. al. [32]. I will now begin discussing phonon scattering specifically at an interface as 

opposed to the general case. 
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The two models I am about to discuss involve phonon transmission at non ideal 

surfaces, responsible for heat transfer. They can be derived from considering limiting 

cases of the Boltzmann equation. The acoustic mismatch model (AMM) is the limiting 

case which is specular, meaning the wave vector parallel to the interface is conserved. 

This happens in a crystal when the mean free path (lattice constant a) is much shorter 

than the wavelength, and no scattering occurs at the interface. It was first developed by 

Khalatnikov in 1952 [33] following Kapitza’s hypothesis of interfacial resistance.  This 

is the model that I assume in my research. 

The diffusive mismatch model (DMM) is the case that applies at very rough 

surfaces where nearly all heat energy is backscattered. This was heavily developed by 

Swartz and Pohl in 1989 [34]. 

3.3 Acoustic Mismatch Model (AMM) 

 Thermal boundary resistance is normally discussed in an elasticity theory 

formalism. However, I will discuss it here analogous to the reflection and transmission 

of photons at an interface where the speed of light changes. Since a phonon is either 

transmitted or reflected, we can write a transmission coefficient a(w,q,j) that depends 

on the phonon frequency w, angle of incidence q, and phonon mode j (assume constant 

temperature on both sides) [34]. For acoustic mode phonons, there exist two transverse 

modes and one longitudinal mode (motion towards/away from each other). Even with 

the linear approximation we can see the problem is quite a bit more complicated than 

just Snell’s Law. We will also assume a solid-solid interface and that the phonons act as 

plane waves (continuum acoustics) or that the phonon sees no crystal lattice.  
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Figure 12: Example schematic of the many different possibilities that exist in the 

acoustic mismatch model for phonons at an interface [34]. 
 

 The total heat current density from side one to two (from Fourier’s law) is 

[.
¬
]𝑄.→/3x3 (𝑇), and this must be summed over all frequencies and angles of incidence of 

the number of phonons at a certain frequency and angles q, j on a unit area A per unit 

time times the phonon energy ℏ𝜔 = ℏ𝑐.,O𝑘. In this formula j is the phonon mode, c is 

the phonon velocity in side one with mode j, and w is the phonon frequency. Let j be 

the azimuthal angle of incidence and q the angle between the phonon’s wave vector and 

the normal vector to the interface. Then 𝑐.,Ocos	(𝜃) is the normal component of 

velocity, the solid angle is 𝑑Ω = 𝑑𝜑 sin 𝜃 𝑑𝜃, and 𝑁.,O 𝜔, 𝑇  is the density of the 

phonon states at the given angles times the Bose occupation (degeneracy) factor. 

Putting this all together, we have the expression 

  .
¶º

𝑁.,O 𝜔, 𝑇 𝑑Ω𝑐.,O𝑐𝑜𝑠(𝜃) ( 54 ) 
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 Integrating this over all angles gives us 𝑐.,O𝑁.,O 𝜔, 𝑇 . Now we can write the 

total heat current as (pulling out the 2p) 

 
 .
¬
𝑄.→/3x3 𝑇 =

	.
/

𝑁.,O 𝜔, 𝑇 ℏ𝜔𝑐.,O𝛼.→/ 𝜃, 𝜔. 𝑗 cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜔º//
¸

Â[ûü×

¸O  
( 55 ) 

𝜔.R°Ò is the maximum phonon frequency on side one. If we assume a small reduced 

temperature difference (𝑇/ − 𝑇.)/𝑇/, one can solve for the thermal boundary 

conductivity. 

  ℎ&þ =
𝑄.→/3x3 𝑇/ − 𝑄.→/3x3 (𝑇.)

𝐴(𝑇/ − 𝑇.) 
( 56 ) 

Therefore to calculate the Kapitza resistance in theory we only need to know the 

transmission probabilities.  

 Let us assume that the total heat flow from side 1 (T1) to side 2 (T2) is the 

difference between the gross heat flow from side 1 to side 2, when side 1 has a 

temperature of 𝑇., and also the difference between the gross heat flow from side 1 to 

side 2 when side 1 has a temperature of 𝑇/. Then the temperature of side 2 does not 

need to be considered [34]. This quantity will be T from here on out. Also let us assume 

the transmission probability (coefficient) to be independent of temperature. This is not 

required for these models but it makes the explanation simpler. 

 We can write a more succinct expression for the acoustic impedance 𝑍= = 𝑐=𝜌= 

using the mass density r and the phonon velocity c. Then the transmission probability 

can be written as 



34 

  𝛼.→/ = 4𝑍.𝑍/ 𝑍. + 𝑍/ / ( 57 ) 

Many times the solids are assumed to isotropic Debye solids as it does not 

substantially affect the results (longitudinal and transverse speeds of sound are not the 

same). Many of these formulas will include similarities to those in the Debye model I 

covered in 3.1 Debye model for phonons. For frequencies that are below the Debye 

cutoff frequency, denoted by 𝜔=
Ê¨!"¨, 

  𝑁.,O
Ê¨!"¨ 𝜔, 𝑇 𝑑𝜔 = Â`þÂ

/º`-[,N
· [¨Ò¹ ℏà

áÄ)
�.]

 ( 58 ) 

Now I will define the following quantity 𝛤.,O, 

  𝛤.,O = 𝛼.→/ 𝜃, 𝑗 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 𝑑𝜃º//
¸  ( 59 ) 

These polynomial integrals can be looked up in tables or computed. Then from 

equations ( 58 ) and ( 59 ) a simplified expression for the thermal boundary conductance 

can be written, 

  ℎ&þ =
.
/

𝑐.,O𝛤.,O ℏ𝜔 𝑑𝑁.,O(𝜔, 𝑇)
𝑑𝑇 𝑑𝜔Â[

Ó%&'%

¸O  ( 60 ) 

 In the low temperature limit, the upper frequency limit can be taken as infinity, 

and we have the analytical solution 

 
 𝑅&þ =

º`

.Ú
(Ä
Ö

ℏ·
𝑐.,O�/𝛤.,OO

�.

𝑇�~ =

2.04𝑋10.¸ 𝑐.,O�/𝛤.,OO
�.
𝑇�~ ©¨-`

-R` 𝐾~ )
*/-R`  

( 61 ) 

Also Rbd may be approximated (using the Debye model) as .
¶
𝐶â𝑐𝛼

�.
, with Cv the 

Debye specific heat, a an averaged transmission probability, and c the Debye phonon 
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velocity. Let us look at the special case where the material is the same on both sides of 

the interface. The G’s are all 0.5 and the a’s are all 1. Then equation ( 61 ) becomes  

𝑅&þ = 1.02𝑥10.¸ 𝑐.,O�/

O

�.

𝑇�~
𝑠𝑒𝑐/

𝑐𝑚/ 𝐾
~ 𝐾
𝑊/𝑐𝑚/  ( 62 ) 

We see the thermal boundary resistance does not disappear even at these types of 

interfaces where the material is the same. The first part of equation ( 62 ) basically tells 

us a rate of propagation from the harmonic mean of all phonon modes. This model can 

give a lower limit to the thermal boundary resistance by assuming the transmission 

probability a is 1. 

3.4 Diffusive Mismatch Model (DMM) 

 This model relies more on phonon scattering or “diffusing” at an interface. It can 

give an upper limit for how much diffusive scattering may affect the thermal boundary 

resistance [34]. In this model, at a typical solid-solid interface with a small difference in 

their acoustical properties, around 50% of the phonons scattered at the interface are 

transmitted. That means that the effect of diffuse scattering at these interfaces is 

relatively small (< ±30%) [34].  

 To derive this model, the only quantity that must be changed from the AMM 

derivation is the transmission probability. We must also assume the principle of detailed 

balance, and define mathematically what diffuse scattering is at the interface. We say 

that a phonon is diffusively scattered if the final phonon’s wave vector 𝒌𝒇 and mode 𝑗m 

are independent of 𝒌𝒊 and 𝑗=. This is also called the memoryless, or Markovian property. 

We also will assume that every scattering event is elastic (ℏ𝜔= = ℏ𝜔m). By doing this, 
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no correlations between the incoming and outgoing phonons except those of energy are 

accounted for, and the structure of the scattered particles are not accounted for either. 

 Therefore a phonon’s transmission probability is also independent of its mode 

and wave vector (𝛼=,O 𝜔, 𝒌 = 𝛼=(𝜔)). Now an equation that describes the principle of 

detailed balance can be written4. 

  𝛼= 𝜔 = 1 − 𝛼x¹¹	=�=(𝜔) ( 63 ) 

Equation ( 63 ) states that the transmission probability on one side must equal the 

reflection probability on the other. 

 Similarly from Chapter 3.2 Phonon scattering models, an equation for the 

number of phonons with an energy ℏ𝜔 that leave side i per unit area per unit time is 

  𝑑𝜃𝑐𝑜𝑠 𝜃 𝑑𝜙𝑁=,O 𝜔, 𝑇 𝑐=,O𝛼=(𝜔)
º//
¸

/º
¸O  ( 64 ) 

These integrals over the angles immediately give us ¼, and substituting equation ( 63 ) 

(principle of detailed balance) results in 

 
 𝑐=,O𝑁=,O 𝜔, 𝑇 𝛼= 𝜔 =	O 𝑐x¹¹	=�=,O𝑁x¹¹	=�=O 𝜔, 𝑇 [1 −O

𝛼= 𝜔 ]]	 
( 65 ) 

Solving for the transmission probabilities, we get 

  𝛼= 𝜔 = 𝑐x¹¹	=�=,O𝑁x¹¹	=�=,O(𝜔, 𝑇)O
𝑐=,O𝑁=,O(𝜔, 𝑇)=,O

 ( 66 ) 

                                                
4 aopp i-I denotes the side of the interface i and its opposite side 
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 With this formula we can calculate the total heat flux and therefore Kapitza 

resistance in the DMM. Making the generalized Debye approximation as in Chapter 3.2 

Phonon scattering models, we obtain 

  𝛼= 𝜔 = 𝑐x¹¹	=�=,O�/
O 𝑐=,O�/=,O  ( 67 ) 

To obtain the thermal boundary resistance, we will use equations ( 58 ) & ( 59 ) from 

the previous section. Substituting equation ( 67 ) gives 

  𝛤=,O =
-.//	9ð9,N
ð`

N

-9,N
ð`

9,N

0
`
¸ 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 𝑑𝜃 = .

/

-.//	9ð9,N
ð`

N

-9,N
ð`

9,N
 ( 68 ) 

These results tell us that 

  𝒄𝒊,𝒋�𝟐𝜞𝒊,𝒋𝒋 = 𝟏
𝟐

-9,N
ð`

N -.//	9ð9,N
ð`

N

-9,N
ð`

9,N
 ( 69 ) 

These sums are over all phonon modes for every phonon velocity. Similarly to the 

expression for thermal boundary resistance in the AMM, we now can write a similar 

expression for the DMM. 

𝑅&þ =
𝜋/

15
𝑘&¶

ℏ~
1
2

𝑐.,O�/𝛤.,O
O

�.

𝑇�~

= 1.02𝑋10.¸ 𝑐.,O�/𝛤.,O
O

�.

𝑇�~
𝑠𝑒𝑐/

𝑐𝑚/ 𝐾
~ 𝐾
𝑊/𝑐𝑚/  

( 70 ) 

We obtain exactly half as expected from equation ( 62 ). It is interesting to compare the 

models to each other; I will look at the low temperature limit in order to do this. Writing 

an expression for the ratio of the Kapitza resistance in the DMM to the AMM, we 

obtain 
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  𝑅Ê$$ 𝑅¬$$ = 2
-9,N
ð`39,NN -9,N

ð`
9,N

-9,N
ð`

N -.//	9ð9,N
ð`

N
 ( 71 ) 

If we assume the acoustical properties on both sides are the same as before, we get 

RDMM/RAMM = 2. 

3.5 Physical explanation of thermal boundary resistance 

Now that I have covered the mathematics of the AMM and DMM, it is 

important to give an intuitive explanation of the practicality of both models.  

 

Figure 13: Diffuse (DMM) vs. specular (AMM) transmission at an interface. The 
critical cone gives limits for the incoming phonon’s angle assuming transmission 

[8]. 
 

As one can see from Figure 13, both models depend on the transmission coefficient α at 

the interface. The AMM computes this coefficient based on continuum acoustics and 

the mismatch of the acoustical properties between the materials at the interface [8]. The 

DMM computes this coefficient assuming elastic diffusive scattering at the interface. 
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Both use the Debye density of states (DOS), which makes several unrealistic 

simplifications, and some have suggested using a more realistic DOS [35]. 

 The DMM is more of a high-temperature model as it relies on the scattering of 

phonons at the interface. The “roughness” of an interface from the point of view of a 

phonon has to do with its wavelength compared to the average spatial variation of the 

boundary. At low temperatures, the AMM is more suited since the interface appears 

more perfect and smooth. For solid-solid interfaces at high temperatures, both models 

predict almost the same results for Rb, once again given by 

  𝑅! = 𝛥𝑇/𝑞�¨3 ( 72 ) 

with ΔT the temperature difference across the interface, and qnet the total heat transfer 

per unit area.  

The problem of Kapitza resistance is still an active area of research as can be 

seen from Figure 14. For interfaces such as that of solid Helium III and copper, the 

effects of phonon (especially Rayleigh) scattering cause both models to be off by orders 

of magnitude. A “fractal” based model by Majumdar [36] agrees well with experiment 

for this case. Both models are very dependent on temperature, and can be used as limits 

when estimating Rb for an experiment. In the next chapter I will apply the AMM to my 

research. 
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Figure 14: Experimental comparison of Rb’s for a He-III/Cu interface by the 
AMM, DMM, and a mixed “fractal” model [37]. 
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Chapter 4: Random Walks 
 

4.1 Review of method 

In this chapter I will discuss the random walk method used to calculate the 

thermal conductivity k of a CNT-polymer matrix, along with how I specifically 

implement this in my code package and my results.  

Interfacial or Kapitza thermal resistance occurs at an interface between two 

materials, due to the differences in the material’s properties such as the speed of sound 

in the material and its specific heat [7]. The fact that CNTs have a thermal conductivity 

several orders of magnitude greater than common epoxy-like dielectric matrix materials 

is a direct cause of that as well. Functionalizing the ends of a CNT allows for improved 

coupling of the vibration spectrum between the CNT and its polymer matrix, thereby 

reducing the Kapitza resistance. However, functionalizing the sides of a CNT may 

increase the Kapitza resistance as ballistic transport takes place along the direction of 

the CNT. Aligning the CNTs in the direction of heat flow can improve the thermal 

conductivity even greater, exploiting their anisotropic thermal conductivity. This can be 

done using a method called electrophoresis, which can take advantage of the dipole 

moment inherent in CNTs, causing a torque to be applied and thus aligning them [38] 

[39]. The goal of this would be to develop a cost-effective alternative to metals for 

heatsinks and thermal interface materials (TIM) that conduct heat in one direction and 

are light and durable.  

Many experiments have been carried out investigating if CNT-polymer based 

nano composites have potential. The chemical interaction between a functionalized 
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CNT and its polymer matrix is significantly greater than between a pristine CNT and its 

matrix, as well as having an increased Vickers hardness [40]. Bonnet et. al. found an 

increase of 55% for a 7% volume fraction SWCNT-polymethylmetacrylate (PMMA) 

polymer composite [41], while Bryning et. al. found that SWCNTs prepared in a 

suspension of N-N-Dimethylformamide (DMF) allows for greater loading and for a 

higher thermal conductivity [42]. Chen et. al. found that functionalizing a CNT with 

carboxylic acid (COOH) inside of a silicon grease matrix decreases the thermal 

impedance almost two-fold at 2% weight fraction, but then begins to increase at higher 

concentrations [12]. Lee et. al. demonstrated an experimental method to asymmetrically 

end-functionalize MWCNTs [43]. Many molecular dynamics simulations have been 

researched as well on these nano composites [44] [45] [46] [47]. 

In order to understand the maximum possible improvement in thermal 

conductivity obtained by functionalizing the ends of CNTs, we simulated the heat flux 

through a toy model of a nanocomposite. The computational model that is used is an on-

lattice random walk method, which is similar to other papers [48]–[50] that have used 

an off-lattice Monte Carlo method. However, the key difference is that we model the 

effects of both end-functionalized carbon nanotubes and pristine carbon nanotubes and 

investigate the expected increase in thermal conductivity due to a CNT’s functionalized 

ends. This is a general model as we do not model specific groups of candidates to 

functionalize their ends with, but we investigate their effects.  

This type of motion in a material is known as Brownian motion, which may be 

described as a normal distribution with zero mean and a standard deviation which 

depends on Dm, the matrix thermal diffusivity. In each spatial dimension, the standard 
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deviation of the distribution is 𝜎 = 2𝐷R𝛥𝑡, with ∆t the time step. Dm is set to 1 for 

these simulations for convenience.  

In our model we treat CNT thermal conductivity as being infinite, allowing us to 

not model random walks inside the CNTs. The simulation begins by setting up a 

simulation box with CNTs randomly dispersed throughout the polymer matrix material 

and aligned either horizontally (parallel to heat flow), vertically (perpendicular to heat 

flow), or randomly with respect to the heat flow. The heat flux remains constant 

throughout the simulation. An example of the setup is given in Figure 19. Random 

walkers (phonons) spawn at a constant rate at x=0 (hot walkers) and x=100 (cold 

walkers) and take an on-lattice random walk throughout the material. In the X direction 

we have reflective boundary conditions (isothermal), thereby fixing the heat flux in the 

system, and periodic boundary conditions in the Y and Z directions (constant flux). As 

the heat flux is constant, a non-equilibrium steady state occurs once the simulation has 

converged and the profile dT/dx is linear. Fourier’s law of heat conduction can then be 

used to find the thermal conductivity (𝑞 = −𝑘 þ"
þÒ

). The temperature is computed by 

histogramming the locations of the walkers; hot walkers add to the temperature and cold 

walkers subtract from the temperature. The simulation box size is 100x100x100 and 

210000 total walkers & 35000 timesteps were used. Three different tube lengths were 

investigated: 10, 15, and 20 in units of the simulation box. The paths these walkers are 

allowed to take are shown below in Figure 15 (2D) and Figure 16 (3D)
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Figure 15: Example random walk paths in 2D, D=1 (steps per timestep). Above-
normal random walk (without CNTs). Below-Kapitza/tunneling model type 
random walk (with CNTs). Periodic boundary conditions are also visible as lines 
across the box. 
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Figure 16: Example random walk paths in 3D, D=1 (steps per timestep). Above-
normal random walk (without CNTs). Below-Kapitza/tunneling model type 

random walk (with CNTs). Periodic boundary conditions are also visible as lines 
across the box. 
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We looked at four types of models which govern the rules of the simulation: 

• Tunneling without volume. In this model if a walker lands on either CNT end it 

can only walk off or jump to the other end. This models the very high k values 

on the functionalized ends only. However, CNTs are allowed to cross each other 

in space and the excluded volume of the CNT itself is not modeled. While not 

physical, it gives intuition and may be useful in areas that involve networks, 

such as friend networks on Facebook or the World Wide Web (WWW).   

• Tunneling with volume. This model is identical to the first case however the 

CNTs have volume & are not allowed to intersect. This is the limit of infinite 

Kapitza resistance.   

• Kapitza without end functionalization. In this model a walker can move around 

inside a tube (randomly) and has a non-trivial chance of entering/exiting through 

the sides. When a walker is at a CNT interface, the walker will move into the 

CNT phase with a probability Pm−CN or stay at the previous position in the 

matrix with a probability 1 − Pm−CN , a constant of the simulation representing 

the thermal boundary (Kapitza) resistance. If it stays within the CNT its position 

is randomized to any location in the CNT, reflecting the high thermal 

conductivity of the CNT. This model prohibits CNT crossings in space and 

models the excluded volume as well. CNTs are face-connected to ensure 

detailed balance is upheld.  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• Kapitza with end functionalization. This model is identical to the previous model 

except that both ends of the CNT have Pm−CN = 1 always, meaning that if a 

walker chooses to land on a CNT end it will enter it with no resistance and move 

to a random position within the CNT, and at the same time if a walker chooses 

to land on CNT volume, a generated random number will have to be less than 

the set value for Pm−CN to enter it. This models the Kapitza resistance of the 

CNT volume pixels and the significantly higher thermal conductivity of the 

functionalized ends with respect to the matrix/CNT phases. Ideally the phonon 

modes would be matched using the ends between the matrix and CNT phases.  

 

Figure 17: Diagrams of how “walkers” (phonons) propagate in a CNT during a 
random walk simulation for different models. Left-tunneling model. Right-Kapitza 
model. 

  

In order to visualize a setup of what the CNTs look like in a simulation box, see the 

next two figures. 
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Figure 18: CNTs generated inside a 2D simulation box, where free space is 
modeled as a polymer matrix (or epoxy-like material). Top-tunneling model. 
Bottom-Kapitza model. CNT length is 15 units & the volume filling fraction is less 
than 1% for all plots. Going clockwise, random, vertical (perpendicular to heat 
flow), and horizontal (parallel to heat flow) orientations are shown. In my random 
walk package, a similar setup is generated automatically for each simulation run. 
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Figure 19: CNTs generated inside a 3D simulation box, where free space is 
modeled as a polymer matrix (or epoxy-like material). Top-tunneling model. 
Bottom-Kapitza model. CNT length is 15 units & the volume filling fraction is less 
than 1% for all plots. Going clockwise, random, vertical (perpendicular to heat 
flow), and horizontal (parallel to heat flow) orientations are shown. In my random 
walk package, a similar setup is generated automatically for each simulation run. 
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 There are three phases of material: CNT volume, CNT functionalized ends, and 

polymer matrix (empty space). Several assumptions are made in this model:  

• Walkers distribute uniformly inside the CNTs (kends >>  kCNT >> kmatrix).  

• Collisions between walkers are ignored. The random walk models phonon scattering 

within the disordered matrix material. Walker-walker collisions would imply 

that the thermal conductivity depends on the local temperature, and they are 

ignored.   

• The material properties do not change with respect to temperature over the range of 

the model.   

• Thermal resistance for a heat walker entering a CNT from the matrix equals that 

entering the matrix from a CNT (principle of detailed balance). Indeed, for an 

on- lattice simulation we find that Pm−cn = Pcn−m.   

The code package developed for this simulation is called PRTCNT and is available at 

https://github.com/tab10/conduction with a MIT license. It is written in Python and MPI 

and is parallelized for speed to run on any number of cores and on supercomputers.  

4.2 Implementation of method 

4.2.1 Specific implementation in code package ‘PRTCNT’ 

We start by setting up an empty box for the simulation. Since we are on-lattice, 

tube points are restricted to integers. Then we generate the positions of the CNTs. I do 

this by picking a random point in the box and setting it as the left point. I use simple 
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trigonometry to generate random angles, then get the right endpoint using tube length 

and those angles. If it is in the box we keep the point, else toss it. I also ensure line or 

face connection on a lattice for the CNT points. 

Once tubes are generated, to calculate volume filling fractions we have 

 % = #𝑡𝑢𝑏𝑒𝑠 ∗ 3§!¨y¨�ç3Þ
ç¢=þ©=7¨89û

. ( 73 ) 

I round final right endpoints to make them on lattice, so this formula isn’t exact 

and filling fraction is computed by counting the total squares in simulation which is. I 

have outlined the rules in detail with charts in Appendix A: Random walk simulation 

rules. 

In my implementation, the first walker runs for the total number of time steps, 

then only the last position of the walker is histogrammed into an array. Then the next 

walker runs for the total timesteps-1 and that position is histogrammed. This occurs 

until there are no time steps or walkers left. This means that the total walkers/2 must be 

a multiple of the total time steps. It is total walkers/2 as half are treated as “hot” and the 

other half as “cold”. This is done to capture a “snapshot” in time of the particular 

system, having fixed its heat flux and knowing the simulation box area/volume. 

The “hot” walkers are treated as +1 in the histogram and “cold” walkers as -1. 

This gives a uniform temperature distribution in steady state following Fourier’s law of 

heat conduction. Now the periodic dimensions are collapsed in the histogram (3D or 2D 

simulations to 1D) by summing. A line is then fit using linear regression to this 

collapsed histogram, T(x), giving us dT/dx. 

Heat flux is fixed in our simulation as mentioned before, following the 

expression 𝑞 = 𝑡𝑜𝑡𝑎𝑙	𝑤𝑎𝑙𝑘𝑒𝑟𝑠/(𝑡𝑜𝑡𝑎𝑙	𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 ∗ 𝑔𝑟𝑖𝑑	𝑠𝑖𝑧𝑒þ=R�.). Grid size was set 
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to 100 for our simulations. Therefore to get thermal conductivity, we have the 

expression 𝑘 = −𝑞/(þ"
þÒ
). Enough walkers and a long enough time interval must be 

chosen in order for the simulation to converge. In 2D, 50000 walkers and 25000 

timesteps was chosen and in 3D, 210000 walkers and 35000 timesteps was chosen. 

There are 4 choices to move in 2D and 6 in 3D on-lattice. Because of this fact, 

we can derive an exact value for the thermal conductivity of the empty boxes. The 

simulation has dimensionless units, and as k is how easily these walkers flow 

throughout the box, in the limit we have k=0.50 for 2D and 𝑘 = 0.00333 for 3D. k is 

defined differently for 2D and 3D in terms of dimensions, so it is important not to 

compare the two. These values were used as a check to make sure the code is working 

properly as an empty box yields these values to ±0.001 for 2D and ±0.000001 for 3D 

with specified simulation settings.  

The value for k is very sensitive to the linear fit, and for the simulations I have 

run I removed the first and last 3 values of T(x) at the edges before the fit. This 

parameter is fixed in the code and calibrated to give the correct analytical k values in an 

empty box as given above, and should not be changed without rechecking the vacuum k 

values and quality of the fit (this plot is auto-generated with a goodness of fit R2).  

In addition to the random walk simulation, a rules test simulation for any setup 

can be selected to run instead. This simulation can be run to check the validity of the 

rules governing the simulation to make sure that the principle of detailed balance is 

upheld and heat is not being trapped or held anywhere within the simulation. 

The value of Pcn-m has not been discussed yet, which is the probability for a 

walker to exit a CNT into the matrix. Since we are on-lattice, we have that Pm-cn=Pcn-m 
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and the two probabilities are equal. From the rules test simulations, we can see that 

detailed balance is upheld and the CNTs or the matrix are not retaining heat; therefore 

this is correct. If the average walker density within the CNTs during a simulation does 

not equal the average walker density within the matrix during a simulation, then these 

two probabilities are not equal and a weighting factor must be applied to uphold 

detailed balance [48]. A schematic of the computational process is given in Figure 20.

 

Figure 20: Figure depicting the computational process of running the random 
walk method for obtaining the thermal conductivities of nanotube composites from 
simulation. 
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Figure 21: Above-Example of temperature histogram for random walk simulation 
in 2D. Below-The same histogram collapsed to 1D, with the linear regression 
applied. The slope is dT/dx, and error bars at each point are shown. As the error 
bars are roughly the same size, the simulation has converged. This simulation was 
in 3D, with a box size of 100x100x100. 
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Figure 22: Above-Histogram of walker positions during a 2D rules test simulation, 
illustrating that the walker rules follow the principle of detailed balance, or that all 
sites are visited equally. This simulation had a box size of 30x30x30, tube length 15, 
with 4.86x108 total walkers used. Below-dT(x)/dx directly from the histogram, 
which has mean 0. 
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4.2.2 Coding/computational details about code package ‘PRTCNT’ 

On-lattice random walk simulations are ideal applications for use on multi-core 

machines such as OU’s supercomputer Schooner which was where these simulations 

were run. Options are given on the command line. 

MPI code is run with "mpirun -np X python mpi_run.py" with X the number of 

cores available. On OU's Schooner, this line must be added to your .profile or specified 

in the job scheduler (SLURM) submission script: module load OpenMPI mpi4py 

numpy matplotlib. Those are the dependencies required for Python. MPI4PY should be 

installed regardless of whether you are using many cores or just one. 

 Random walks lend themselves to parallelism as each walker is independent 

and so can be run on its own core. Here’s an example of how much of a speedup can be 

expected. For example, for a 2D run with 100x100 box dimensions with 25000 

timesteps and 50000 walkers: Macbook Air with Intel Core i7 serial (1 core) – 160 

minutes, Macbook Air with Intel Core i7 parallel (2 cores) – 90 minutes, 80 cores on 

OU’s Schooner – 4 minutes, a 40x speedup. 

 In order to provide the parallel speedup, I use “barriers” which make unused 

cores wait, then I run a random walk on each core. I then use “gathers” to collect the 

data from each core back to the primary core, core 0.  

4.3 Results 

We will start by defining the reduced thermal conductivity (�(µ
(µ

, which allows 

for comparison to experimental data. k0 is defined as the vacuum thermal conductivity. 

It can be shown analytically that 𝑘 = .
~¸¸

 for a 3D symmetric random walk with one 

reflective and two periodic boundary conditions & within a cube. We also define L/s as 
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the ratio of the tube length to the box length (100).  

First let us look at comparing the results between the non-functionalized and 

functionalized cases (Figure 23, Figure 24, Figure 25). We can directly observe the 

improvement from functionalizing the ends at low Pm−cn values for both horizontal 

and random orientations. 

Now let us look at the ∆k vs. Pm−cn plots (Figure 26, Figure 27). These were 

created by first plotting the reduced thermal conductivity with respect to the CNT 

volume fraction (0% to 20%). A linear fit was applied to get the slope, as the data was 

sufficiently linear, and the slopes for the functionalized CNTs was subtracted by the 

thermal conductivity slope of the pristine CNTs. We will define this as ∆k, the change 

in thermal conductivity slope due to the CNTs. Due to the CNTs, the primary trend is 

that k ∝ nl, where n is the number of CNTs in the material and l is the CNT length. 

We notice the highest improvement in the horizontally aligned CNTs and a 

moderate improvement in the randomly aligned CNTs. We see almost no improvement 

for the vertically aligned CNTs, as expected.  

In order to generate the colormap plots (Figure 30), weighted linear fits were 

applied to the ∆k vs. Pm−cn plots. These figures offer a succinct picture of the results of 

this paper; we see that longer tube lengths provide a higher improved thermal 

conductivity, and the horizontally aligned CNTs show an increase as high as 6 units for 

L/s=0.2. They also summarize the idea of how much Kapitza resistance impacts the 

improvement from functionalization. As Pm−cn approaches zero, we see that 
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functionalizing the ends leads to a substantially increased thermal conductivity, and as 

Pm−cn approaches one, functionalizing the ends makes almost no difference. This 

should give experimentalists an idea of what they should expect to find in their results.  

The results from the tunneling models should not be compared to that of the 

Kapitza models, as the models are significantly different. However, results between the 

tunneling with volume and tunneling without volume are shown in Figure 28. We can 

directly see how much the excluded volume affects the thermal conductivity this way. 

The inert CNT volume restricts the propagation of the phonons throughout the material, 

thus hindering the thermal conductivity.  

If we define the volume fraction of the tunneling no volume model to be only 

the two endpoints, then around 20 % filling fraction we begin to see phase transition 

like behavior. This means we are approaching the percolation threshold of the material. 

In the given figures the volume fractions are set to the full tube lengths to allow 

comparison.  

For all simulations, 5 different configurations of randomly dispersed CNTs were 

run & averaged over. 2D results are given in Appendix B. Error bars are generated from 

the covariance matrix in the case of the bar graphs, and from the standard deviation of 

the mean between the 5 configurations for the plots of thermal conductivity vs. CNT 

volume fraction or CNT volume percent. 
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Figure 23: Slopes of linear fits to thermal conductivity (dimensionless) vs. CNT 
filling fraction plots for CNTs aligned parallel to heat flow (horizontal WRT x-
axis) for Pm-cn=0.02, 0.2, 0.5, 1.0 and tube lengths 10, 15, 20 in a 100x100x100 3D 
simulation box. Top-CNTs without end functionalization. Bottom-CNTs with end 
functionalization. 
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Figure 24: Slopes of linear fits to thermal conductivity (dimensionless) vs. CNT 
filling fraction plots for CNTs aligned randomly to heat flow for Pm-cn=0.02, 0.2, 
0.5, 1.0 and tube lengths 10, 15, 20 in a 100x100x100 3D simulation box. Top-CNTs 
without end functionalization. Bottom-CNTs with end functionalization. 
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Figure 25: Slopes of linear fits to thermal conductivity (dimensionless units) vs. 
CNT filling fraction plots for CNTs aligned perpendicular to heat flow (vertical 
WRT x-axis) for Pm-cn=0.02, 0.2, 0.5, 1.0 and tube lengths 10, 15, 20 in a 
100x100x100 3D simulation box. Top-CNTs without end functionalization. Bottom-
CNTs with end functionalization. 
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Figure 26: Change in thermal conductivity slope after CNT end functionalization 
vs. probability for a phonon (walker) to enter a CNT (Pm-cn), for tube lengths 10, 
15, 20 in a 100x100x100 3D simulation box. Above-CNTs aligned parallel to the 
heat flow (horizontal WRT x-axis). Below-CNTs aligned randomly to the heat 
flow. 
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Figure 27: Change in thermal conductivity slope after CNT end functionalization 
vs. probability for a phonon (walker) to enter a CNT (Pm-cn), for tube lengths 10, 
15, 20 in a 100x100x100 3D simulation box. CNTs aligned perpendicular to the 
heat flow (vertical WRT x-axis).  

-0.15 

-0.05 

0.05

0.15

0.25

0.35

0.45

0.55

0 0.2 0.4 0.6 0.8 1

Ch
an
ge
	in
	th

er
m
al
	co

nd
uc
tiv
ity
	s
lo
pe
	k

fu
nc
-k

pr
ist
in
e

Pm-cn

CNTs	aligned	perpendicular	to	heat	flow	(vertical)

L/s=0.1 
L/s=0.15 
L/s=0.2 
L/s=0.1	fit 
L/s=0.15	fit 
L/s=0.2	fit 



64 

 

Figure 28: Slopes of linear fits to thermal conductivity (dimensionless) vs. CNT 
filling fraction plots for all orientations and tube lengths 10, 15, 20 in a 

100x100x100 3D simulation box (tunneling models). 
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Figure 29: Plot of reduced thermal conductivity (k-k0)/k0 vs. volume fraction for 
3D Kapitza model with functionalization, Pm-cn=1. Fits for CNTs randomly, 

horizontally, and vertically oriented to the direction of heat flow in a 100x100x100 
simulation box are given. Error bars are too small to be seen. Notice the deviation 

of linear behavior for the horizontal orientation starting around 18%; this is phase 
transition like behavior. 
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Figure 30: Colormaps for horizontal, random, and vertical orientations in 3D 
depecting the improvement of thermal conductivity after end functionalization as 
the color. Shown on the x-axis is Pm-cn, and shown on the y-axis is the CNT volume 
fraction. These follow what we would expect; if a CNT has a high Kapitza 
resistance, functionalizing the ends will help a lot, but if a CNT has a low Kapitza 
resistance, it will not help. 
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4.4 Discussion 

 First we see that the horizontal orientation, which is parallel to the heat flow, has 

the highest thermal conductivity k and the vertical has the lowest. In fact the vertical 

should not have any improvement which is what we see, and in some cases where 

Kapitza resistance is high (Pm-cn is low) it actually decreases k. This is expected since 

the tubes occupy space and exclude volume, reducing free space for walkers or phonons 

to move. The random orientation is in the middle of both of those for almost all cases.   

 In Figure 23, Figure 24, and Figure 25 we can see bar graphs of the reduced 

thermal conductivity vs. CNT filling fraction. This allows the reader to view the 

improvement directly as a function of functionalizing the ends of the CNT by 

comparing models without end functionalization to ones with their ends functionalized. 

Immediately we see improvement after the ends are functionalized for low values of Pm-

CN, as can be seen by direct comparison. However, this compares the thermal 

conductivity slope which is not the same as the thermal conductivity itself. Later we 

will see a more detailed & generalized plot comparing Pm-CN to the CNT volume 

fraction (Figure 30).  

 Another important note to make is the absence of a percolation threshold, for all 

cases except for that seen in Figure 29, which is for a tube length of 20, Kapitza model, 

horizontal orientation (CNTs aligned parallel to heat flow), and for Pm-CN=1. This is not 

a practical model since this model has a physical value of Pm-CN=1. The AMM 

discussed in Chapter 2: Theory of heat transport gives a formula relating Pm-cn to the 

thermal boundary resistance Rbd, 



68 

  𝑃R�-� = 4 𝜌𝐶𝐶R𝑅!þ ( 74 ) 

with ρ the matrix density, C the matrix specific heat, and Cm the speed of sound in the 

matrix [48]. A value for the probability of a walker entering a CNT from the matrix can 

then be calculated if the thermal boundary resistance is known and simulations run at 

that value. 

 In Figure 29 we see a significant deviation in this linear behavior at around 15-

20% CNT volume fraction. Extra data points were run at higher CNT volume fraction 

values to flush out the trend better, and it appears that there is a phase transition present. 

Since this is only visible for CNTs aligned parallel to the heat flow, and for CNTs 

without any Kapitza resistance (Pm-cn=1), this makes sense as the Kapitza resistance 

counters any phase transition we would see at a lower Pm-cn. Simulations were also run 

in a box with side lengths of 150 for the same tube lengths as before to see if the phase 

transition trend would be the same if the ratio of the tube length to box size was 

constant. It appears that while the phase transition becomes steeper as this ratio 

increases, plots having the same ratio approximately line up, as we would expect from 

the scaling hypothesis in phase transition theory. 

Given in Appendix D: Experimental apparatuses are images of several 

laboratory tools used to measure k in the Glatzhofer lab. 
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Chapter 5: Molecular Dynamics 
 

In this chapter I will explain what molecular dynamics (MD) simulations are, 

along with the appropriate mathematics, and how different transport properties (such as 

the thermal conductivity) can be calculated using this technique. Then I will discuss my 

research and simulation results as it relates to the subject. My MD simulations use the 

GROMACS (Groningen Machine for Chemical Simulations, http://www.gromacs.org) 

software package, a program called LAMMPS (Large-scale Atomic/Molecular 

Massively Parallel Simulator, http://lammps.sandia.gov) and for visualization I 

primarily use VMD (Visual Molecular Dynamics, 

http://www.ks.uiuc.edu/Research/vmd/).  

5.1 Molecular dynamics (MD) theory 

 The goal of MD is quite simple: given a system of particles, all potential forces 

involved, and their positions in space and initial conditions, integrate Newton’s 

equations of motion to compute future positions, velocities, and forces of each particle 

for as long as your computational resources allow. 

  𝒇𝒊 = 𝑚=𝒓:									𝒇𝒊 = − 0Õ
0¢9

 ( 75 ) 

fi denotes the forces acting on particle I, U is the potential energy force field (model-

dependent), and ri is the position of particle i. Then by specifying a force field, the 

problem is in theory solved. By knowing these quantities, transport coefficients for the 

system can be calculated from statistical mechanics. These are very useful for the 

applied physicist or chemical engineer who wishes to run computational fluid dynamics 

(CFD) on the same system and lacks transport coefficients. 
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MD simulations allow for a bridge between theory and experiment; they fill in 

the gaps that experiment cannot easily access and vice versa. Note that this is known as 

classical MD. For systems with significant quantum effects (such as a low-temperature 

quantum harmonic oscillator), quantum MD or more rigorous methods such as time 

dependent (TD) Hartree-Fock or TD density functional theory (TDDFT) are needed. 

 

Figure 31: Left-MD simulations can relate macroscopic to microscopic quantities. 
Right-Theory and experiment working together to solve a research problem [51]. 
 

 A MD potential energy force field is built using both theory and experimental 

data. These are freely available for researchers in very diverse areas, from biophysics to 

polymer research. I use the AMBER force field for my simulations 

(http://www.ambermd.org). Next I will explain the common terms in one of these force 

fields. 

 A MD force field is made up of covalently bonded forces and non-covalently 

bonded forces. 
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𝑼𝒕𝒐𝒕 = 𝑼𝒏𝒐𝒏�𝒃𝒐𝒏𝒅𝒆𝒅 + 𝑼𝒃𝒐𝒏𝒅𝒆𝒅 

𝑼𝒏𝒐𝒏�𝒃𝒐𝒏𝒅𝒆𝒅 = 𝑼𝑳𝑱 + 𝑼𝑪𝒐𝒖𝒍𝒐𝒎𝒃 

𝑼𝒃𝒐𝒏𝒅𝒆𝒅 = 𝑼𝒃𝒐𝒏𝒅𝒔 + 𝑼𝒂𝒏𝒈𝒍𝒆𝒔 + 𝑼𝒅𝒊𝒉𝒆𝒅𝒓𝒂𝒍𝒔 

( 76 ) 

 

Figure 32: The global MD algorithm [52]. 
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This is the most common way to define a force field. I will explain the non-

bonded terms first. Non-bonded in this sense refers to interactions that apply to all 

atoms within a simulation. The Lennard-Jones (LJ) term accounts for the N-body 

potential, and is attractive beyond a defined radius and repulsive inside of that radius. 

  𝑈'H 𝒓𝒊𝒋 = 4𝜖=O
I9N
¢9N

./
− I9N

¢9N

J
 ( 77 ) 

e is the well depth, and s is the well diameter (see figure 34a), both determined 

empirically for the interaction between atoms i and j. 

 The Coulomb (electrostatic) interaction is given by 

  𝑼𝑪𝒐𝒖𝒍𝒐𝒎𝒃 = 1
4𝜋𝜖¸

å9åN
KL¢9N

`
𝒓𝒊𝒋
¢9N

 ( 78 ) 

This term is only present if there are ions or charges on any of the atoms or if modeling 

electrostatics is important. 

 The non-bonded terms apply to all atoms in a simulation (within a cutoff 

distance) and turn on and off throughout the simulation. The bonded terms are 

determined before the simulation starts by a cutoff parameter and do not turn off (5 Å is 

typical).  
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( 79 ) 
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 The “bonds” reflect the structure of the system, and are the stretching terms 

between two atoms i and j. As one can see, the “harmonic” assumption has been made 

(only keep 2nd order term from the polynomial expansion) so the timescales must be 

appropriate to the distance between the atoms for it to yield correct results. 

 The “angles” occur between 3 atoms in the same plane. The angle is between 

atoms 1 and 3, with atom 2 defined as the origin for the calculation. 

 The “dihedrals” or torsion angles occur between 4 atoms, and it is the angle 

between two planes, as shown in Figure 33.  

 

Figure 33: Picture showing the dihedral angle f along with the atoms [51]. 
 

They may be proper (most common) or improper dihedrals. Improper dihedrals may use 

a different expression than given above, as they are intended to keep planar groups 

linear (aromatic rings) or prevent a molecule from flipping over into its reverse image 

[52]. 
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Figure 34: Left-Picture of a carbon nanotube-water nanofluid MD simulation, 
Right-“Armchair” CNT with hydrogen atoms attached to the ends. Both generated 
using VMD. 
 

 

Figure 35: Carbon nanotube with Teflonä (polytetrafluoroethylene) molecules 
attached to the ends. Above-unrelaxed MD structure. Generated using VMD. 
Below-3D printed model of same structure lacking one sidechain on each end. 
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Molecular dynamics is such a vast topic it would be impossible to cover all of it 

in a short introduction. As I explain how thermal conductivity calculations may be 

computed for my systems, I will introduce relevant terms & concepts. 

5.2 Simulation methods 

 The specific details for how I implemented my MD simulations can be found in 

Appendix C: LAMMPS thermal conductivity code example. I begin by defining several 

variables for unit conversion, then I energy minimize the structure using the conjugate 

gradient method. Once that is performed I run the relaxed structure in the canonical 

ensemble (constant number of particles, temperature, and pressure (NVT)), with 

thermostats applied to all atoms in order to have the system in thermodynamic 

equilibrium. The specific method I use to integrate Newton’s equations of motion 

(Langevin equation) is a standard velocity-Verlet numerical integrator [53]. The 

thermostats are Nose-Hoover type (non-Hamiltonian) which after integration generate 

positions and velocities appropriate to the canonical ensemble [54]. Specific details 

about these methods may be found in the LAMMPS documentation.  

Once the system stabilizes I turn off the thermostats, thereby switching the 

ensemble to microcanonical (constant NVE). I then use equation ( 94 ) and the 

equilibrium MD Green-Kubo method I discuss in the next section to compute the 

thermal conductivity. After running the system and observing the dissipation of the 

fluctuations in the heat flux, the heat flux autocorrelation function converges to yield a 
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value for the thermal conductivity. A schematic of this process is shown in Figure 36.

 

Figure 36: Diagram showing the process used in LAMMPS to compute thermal 
conductivity. 
 

5.3 Using Green-Kubo relations to obtain thermal conductivity 

 The Green-Kubo relations (or method) relate a system’s transport coefficients 

(such as thermal/electrical conductivity and viscosity) to integrals of time correlation 

functions [55]. 

  𝛾 = < 𝐴 𝑡Û
¸ 𝐴 0 > 𝑑𝑡 ( 80 ) 

 They were first derived by Green (in 1954) and Kubo (in 1957) [56], and I will 

derive these relations next.  

 If no velocity gradient exists, the internal energy per unit volume follows a 

continuity equation, PþÕ
þ3

= −∇ ∙ 𝐽R. Fourier’s law of heat conduction is 𝐽R = −𝜆∇/𝑇, 

and combining these two equations together gives [57] 

  𝜌 þÕ
þ3
= 𝜆∇/𝑇 ( 81 ) 

A small perturbation on the left hand side of equation ( 81 ) can be written as                 

𝜌 + ∆𝜌 𝑑(< 𝑈 > +∆𝑈)/𝑑𝑡. Since d <U>/dt=0, to first order we have Pþ∆Õ
þ3

 , and the 

spatial gradient of <T> also doesn’t contribute, so we can write 

Energy minimize 
structure

• Conjugate Gradient 
(CG) method

Equilibrate system 
at fixed temp
• NVT Canonical 

Ensemble
• 300 K

• Nose-Hoover 
thermostatting

• Verlet algorithm

Turn off 
thermostats and 

simulate heat flux 
dissipation

• NVE Microcanonical
Ensemble

• Green-Kubo relations
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  𝜌 þ∆Õ
þ3

= 𝜆∇/∆𝑇 ( 82 ) 

Now we will relate the temperature variation ∆𝑇 to the variation in energy per unit 

volume ∆(𝜌𝑈) using 

  .
Æ
0´
03
|Æ =

0(PÕ)
03

|Æ = 𝜌𝑐Æ ( 83 ) 

with cV being the specific heat per unit mass. A slight variation of the temperature ∆𝑇 is 

equal to ∆(𝜌𝑈)/𝜌𝑐Æ. Then we can write 

  𝜌∆𝑈 = S
P-T

∇/𝜌∆𝑈 ( 84 ) 

Letting 𝐷" ≡ 𝜆/𝜌𝑐Æ be the thermal diffusivity, the terms of the wave vector-dependent 

internal energy density equation become 

  𝜌∆𝑈 𝑘, 𝑡 = −𝑘/𝐷"𝜌∆𝑈(𝑘, 𝑡) ( 85 ) 

Defining the wave vector dependent internal energy density autocorrelation function 

C(k,t) as 

  𝐶 𝑘, 𝑡 =< 𝜌∆𝑈 𝑘, 𝑡 𝜌∆𝑈 −𝑘, 0 > ( 86 ) 

The frequency and wave vector dependent diffusivity is the memory function of the 

autocorrelation function. 

  𝐶 𝑘,𝜔 = 𝐶(𝑘, 0) 𝑖𝜔 + 𝑘/𝐷3(𝑘, 𝜔) ( 87 ) 

This equation can be converted in terms of the diffusivity in terms of a current 

correlation function. If 𝜙 = −𝑑/𝐶 𝑑𝑡/, we have  

  𝜙 𝑘, 𝑡 = 𝑘/ < 𝐽RÒ 𝑘, 𝑡 𝐽RÒ −𝑘, 0 > ( 88 ) 

and we can now write the expression as  
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 𝑘/𝐷" 𝑘, 𝜔 =
𝐶 𝑘, 0 − 𝑖𝜔𝐶(𝑘, 𝜔)

𝐶(𝑘, 𝜔)
=

𝜙(𝑘, 𝜔)

𝐶 𝑘, 0 − 𝜙(𝑘, 𝜔)𝑖𝜔

 ( 89 ) 

With the equation 𝜙 𝑘, 𝑡 = 𝑘/𝑁R(𝑘, 𝑡), the thermal diffusivity may be written as 

  𝐷" 𝑘, 𝜔 = <U((,Â)

V (,¸ �á
`

9à<U((,Â)
 ( 90 ) 

We must obtain the zero wavevector limit before taking the zero frequency limit. The 

canonical ensemble fluctuation formula for specific heat is 

  𝜌𝐶Æ =
V(¸,¸)
Æ(Ä"`

 ( 91 ) 

Using both of these equations, the Green-Kubo relation for thermal conductivity is 

finally obtained. 

 𝜅 =
𝑉

3𝑘&𝑇/
< 𝑱𝑸 0 ∙ 𝑱𝑸 𝑡 > 𝑑𝑡

Û

¸
 

 

( 92 ) 

Deriving the Green-Kubo relation for viscosity is similar to the previous derivation.  

𝜂Æ =
1

𝑉𝑘&𝑇
𝑑𝑡 < [𝑝 𝑡 𝑉 𝑡 	−< 𝑝𝑉 >]

Û

¸
𝑝 0 𝑉 0 	−< 𝑝𝑉 > > ( 93 ) 

These relations have several implications. If we have a thermodynamic system 

in equilibrium, we may use these relations to obtain these values from molecular 

dynamics simulations. In order to practically use equation ( 92 ), the heat flux 

autocorrelation function < 𝑱𝑸 0 ∙ 𝑱𝑸 𝑡 > must be computed from an atom’s forces, 

velocities, and positions if molecular dynamics is used. The heat flux JQ can be 

calculated from the following formulas given from the LAMMPS documentation [58]: 
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H>[T ¨9𝒗𝒊� 𝑺𝒊𝒗𝒊99

H>[T ¨9𝒗𝒊X 𝒇𝒊𝒋∙𝒗𝒋 𝒙𝒊𝒋9ZN9

H>[T ¨9𝒗𝒊X
[
` 𝒇𝒊𝒋∙(𝒗𝒊X𝒗𝒋) 𝒙𝒊𝒋9ZN9

 ( 94 ) 

Where ei is the per-atom kinetic and potential energy, V is the molecule’s volume, vi is 

the per-atom velocity, Si is the stress tensor, fij is the force particle i exerts on particle j, 

and xij is the distance between particles i & j. The first term is a bulk transport term and 

the second term is due to the interaction force between the particles. Once the heat flux 

is obtained, the autocorrelation of the heat flux with itself can be computed, yielding the 

thermal conductivity after multiplying by constants and integrating [58]. 

 It is reasonable due to the fact that Alex and myself use the same force field, we 

can assume that our results should be comparable. However it seems as though my 

derivative of the thermal conductivity turns out to be very similar to Alex Kerr’s result 

for the thermal conductivity. It is also reasonable in that Alex’s program only drives the 

last atom in the chain while the LAMMPS code couples to all of them. Therefore my 

results would be the sum of the thermal conductivity from Alex’s Green’s function 

calculation. 

5.4 Results 

I will now discuss how I used MD simulations to compare with another 

theoretical model. Alex Kerr, another member of my group, has developed a code 

package (https://github.com/ajkerr0/kappa) which calculates the thermal conductivity 

across molecular interfaces. Specific groups to functionalize the ends of a CNT, along 

with how many repeated units of the group to use, may be chosen and a molecular 

model built. The precise method is a Green’s function method detailed in [59]. While 
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the method is a good approximation, it does not promise the same precision that MD 

results, or experimental results for that matter, can provide. 

  

Figure 37: Image of functionalized CNT with Polyvinyl Fluoride (PVF) groups (4 
units of the group on each end). Generated using VMD. 
 

 Specifically, only bond and angle interactions are used and there is no polymer 

matrix present. Adding Van der Walls (Lennard-Jones 12-10) interactions and a matrix 

medium is important as these dictate whether or not the functionalized ends will wrap 

around the CNT as well as the dynamics of the system.  

 In equation 93, the autocorrelation is used to compute the thermal conductivity. 

Autocorrelation is how alike a signal is to a delayed copy of itself as a function of the 

time lag between them [60]. It can be represented mathematically as 

  𝑅 𝑠, 𝑡 = ´ [¥�\¥ []�\]
I¥I]

 ( 95 ) 

Where E is the expected value operator, the process has mean µ at a time t or s, σ is the 

standard deviation of the set at time t, and X is a stochastic process at time t. If we allow 

X to be J (the heat flux), then we can obtain the following plots from simulation. 

Specifically, LAMMPS was used to obtain the thermal conductivities using the Green-

Kubo method previously discussed [58].  
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Figure 38: Heat flux autocorrelation function (ACF) vs. lag time for a 
functionalized CNT. 
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Figure 39: Heat flux ACF vs. lag time for a pristine CNT. Note the resonation at 
the resonant frequency for the CNT. 

 

 As opposed to the random walk method I discussed earlier, the MD method 

allows one to try exactly a specific group to functionalize a CNT with and compute the 

thermal conductivity. Figure 40 gives 5 specific groups I will run MD simulations on. 

 

Figure 40: Lewis structures for (from left to right): Polyvinyl fluoride (PVF), 
Polytetrafluoroethylene (Teflon™), Polyethylene (PE), Polyvinyl chloride (PVC), 
Poly(methyl methacrylate) (PMMA). 
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Figure 41: Above-Thermal conductivity measured at CNT interface vs. chain 
length. Below-Derivative of thermal conductivity measured at CNT interface vs. 
chain length. One sidechain of PMMA is affixed to each end of the CNT and the 

number of chains in the polymer are varied. Smoothing has been applied to 
highlight the oscillations present. 
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Figure 42: Above-Thermal conductivity measured at CNT interface vs. chain 
length. Below-Derivative of thermal conductivity measured at CNT interface vs. 

chain length. One sidechain of PE is affixed to each end of the CNT and the 
number of chains in the polymer are varied. Smoothing has been applied to 

highlight the oscillations present. 
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Figure 43: Above-Thermal conductivity measured at CNT interface vs. chain 
length. Below-Derivative of thermal conductivity measured at CNT interface vs. 

chain length. One sidechain of PVC is affixed to each end of the CNT and the 
number of chains in the polymer are varied. Smoothing has been applied to 

highlight the oscillations present. 
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Figure 44: Above-Thermal conductivity measured at CNT interface vs. chain 
length. Below-Derivative of thermal conductivity measured at CNT interface vs. 

chain length. One sidechain of PVF is affixed to each end of the CNT and the 
number of chains in the polymer are varied. Smoothing has been applied to 

highlight the oscillations present. 
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Figure 45: Above-Thermal conductivity measured at CNT interface vs. chain 
length. Below-Derivative of thermal conductivity measured at CNT interface vs. 
chain length. One sidechain of Teflon is affixed to each end of the CNT and the 

number of chains in the polymer are varied. Smoothing has been applied to 
highlight the oscillations present. 
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Twenty simulations were run for chains repeated from 1 to 40 on each end of a CNT 

(length 20 units, radius 1 Å). This means that every plot in Figure 45 required 800 

individual simulations. The derivatives are also shown alongside of the thermal 

conductivity plots, noting an intriguing observation of oscillations present as the chain 

(or repeated unit) length increases. It’s important to note that only the thermal 

conductivity between the 6 molecules that make up an interface on either end were 

considered in this calculation. This removes the factor of scaling chain lengths 

increasing as the thermal conductivity does. However, since it does not define a volume 

from the interface, the application of comparing the results directly to Alex Kerr’s 

results is uncertain as his describe the total driving power (in force field units). At first 

glance comparing Figure 45 & Figure 46 show that my derivative for thermal 

conductivity looks similar to Alex Kerr’s thermal conductivity vs. chain length results 

and his integral of those results match my thermal conductivity results. 

 It is important to note that both Alex and I use the same force field containing 

only bonds & angles, which is a good approximation for polymers. It may be the case 

that integrating Alex’s driving power may be the right thing to do to make the proper 

comparison. However at this point, we are not sure. So far I have run a 1D toy model of 

balls and springs to compare with Alex’s results and the numbers look similar which is 

promising. We are currently working on ensuring our results are comparable to each 

other. 
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Figure 46: Plots showing Alex Kerr’s Green’s function method results, with 
thermal conductivity vs. chain length on the top and its integral on the bottom. 

 

 

Figure 47: Example of ball & spring model used to compare my results to that of 
Alex Kerr’s. Generated using VMD. 
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Chapter 6: Conclusion 
 

 In this thesis I have discussed a number of things. First I discussed the problem 

of interfacial, or Kapitza, resistance as well as the history, physics, and mathematics 

behind carbon nanotubes (CNTs). I then discussed thermal applications of CNTs and 

why they could be a “game-changer” in polymer research. Next I discussed phonon 

transport theory as well as Kapitza resistance models to give the reader a mathematical 

background of the phenomenon. 

 Next I discussed the main body of my research for this thesis; using a random 

walk method to estimate the thermal conductivity of end-functionalized CNT 

composites. In Chapter 5: Molecular Dynamics I outline the results from molecular 

dynamics simulations that do the same. 

For my random walk project, there were a few unanswered questions. I used 

randomly dispersed CNTs throughout the polymer, however in higher concentrations 

CNTs tend to clump together or agglomerate. It would be wise to model this effect 

during the simulations and see how it affects the thermal conductivity. Another 

deficiency is using only a symmetric random walk to govern the walkers (phonons) 

motion throughout the polymer. Using another type of random walk to model the heat 

walker’s motion, such as a non-Brownian model) is intriguing to research as well as 

important. 

A Lévy flight (named after the French mathematician Paul Lévy) is another 

important random walk model, in which instead of Brownian motion the walkers have a 

step-length of a probability distribution with a substantial “tail” (non-Brownian motion) 

[61]. It follows the following piecewise equations (“survivor” function): 
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  𝑃𝑟𝑜𝑏 𝑈 > 𝑢 = 1				 ∶ 𝑢 < 1
𝑢�þ 		 ∶ 𝑢 ≥ 1			 ( 96 ) 

where Prob is the probability of observing the walk step size U larger than u and D is 

related to the fractal dimension (a measure of how detailed a particular pattern changes 

with the scale it is measured with [62]). This statement holds for other similar functions 

that model random walks.  

Far away from the center of the distribution it becomes stable (generalized 

Central Limit Theorem), allowing many physical models, such as my model, to 

incorporate this type of random walk. 

For my molecular dynamics project, much was left open-ended. Ideally my MD 

results should have matched Alex Kerr’s results; however time constraints proved that 

to be a challenge.  

 The numerical analysis of Chapter 3 can be supplemented by a theoretical 

analysis. For example, the effective thermal conductivity should be compared with the 

Maxwell formula for the effective properties of composites. It may also be possible to 

model the nano-composite as a two-step random walk, with small random steps 

representing the standard diffusion, & occasional large steps representing the CNTs. 

Finally, it would be useful to determine the “correlation volume” of the functionalized 

ends of the CNTs. This analysis assumes it is small – on the order of a CNT diameter. 

This can be tested using the molecular dynamics (MD) techniques of Chapter 5: 

Molecular Dynamics. If the correlation volume is large the simulation of Chapter 3: 

Phonon transport theory/Kapitza resistance models would have to be revisited. 
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Appendix A: Random walk simulation rules

 

Figure 48: Walker rules for Kapitza model – on matrix elements. 
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Figure 49: Walker rules for Kapitza model – on CNT volume. 
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Figure 50: Walker rules for Kapitza – on CNT functionalized end and Kapitza – 
on boundary of simulation. 
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Figure 51: Walker rules for all tunneling models. 
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Appendix B: 2D random walk results 
 

 

 

Figure 52: Slopes of linear fits to thermal conductivity (dimensionless) vs. CNT 
filling fraction plots for CNTs aligned parallel to heat flow (horizontal WRT x-
axis) for Pm-cn=0.02, 0.2, 0.5, 1.0 and tube lengths 10, 15, 20 in a 100X100 2D 
simulation box. Top-CNTs without end functionalization. Bottom-CNTs with end 
functionalization. 
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Figure 53: Slopes of linear fits to thermal conductivity (dimensionless) vs. CNT 
filling fraction plots for CNTs aligned randomly to heat flow for Pm-cn=0.02, 0.2, 
0.5, 1.0 and tube lengths 10, 15, 20 in a 100X100 2D simulation box. Top-CNTs 
without end functionalization. Bottom-CNTs with end functionalization. 
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Figure 54: Slopes of linear fits to thermal conductivity (dimensionless) vs. CNT 
filling fraction plots for CNTs aligned perpendicular to heat flow (vertical WRT x-
axis) for Pm-cn=0.02, 0.2, 0.5, 1.0 and tube lengths 10, 15, 20 in a 100X100 2D 
simulation box (Kapitza models). Top-CNTs without end functionalization. 
Bottom-CNTs with end functionalization. 
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Figure 55: Slopes of linear fits to thermal conductivity (dimensionless) vs. CNT 
filling fraction plots for all orientations and tube lengths 10, 15, 20 in a 100x100 2D 

simulation box (tunneling models). 
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Figure 56: Change in thermal conductivity slope after CNT end functionalization 
vs. probability for a phonon (walker) to enter a CNT (Pm-cn), for tube lengths 10, 
15, 20 in a 100X100 2D simulation box. Above-CNTs aligned parallel to the heat 
flow (horizontal WRT x-axis). Below-CNTs aligned randomly to the heat flow. 
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Figure 57: Change in thermal conductivity slope after CNT end functionalization 
vs. probability for a phonon (walker) to enter a CNT (Pm-cn), for tube lengths 10, 
15, 20 in a 100X100 2D simulation box. CNTs aligned perpendicular to the heat 
flow (vertical WRT x-axis). 
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Figure 58: Colormaps for horizontal, random, and vertical orientations in 2D 
depecting the improvement of thermal conductivity after end functionalization as 
the color. Shown on the x-axis is Pm-cn, and shown on the y-axis is the CNT volume 
fraction. These follow what we would expect; if a CNT has a high Kapitza 
resistance, functionalizing the ends will help a lot, but if a CNT has a low Kapitza 
resistance, it will not help. 
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Appendix C: LAMMPS thermal conductivity code example 
 
# Green-Kubo method via compute heat/flux and fix ave/correlate 
# LAMMPS script 
# Tim Burt 9/28/2017 
 
# settings 
 
#variable name equal X 
variable rho equal 0.6 
variable     t equal 7.5 
variable rc equal 5.0 
 
variable    p equal 400     # correlation length of J output  (make sure heat flux ACF 
dissipates to zero within this window) 
variable    s equal 10     # sample interval 
variable    d equal $p*$s   # dump interval 
 
variable    equil_timesteps equal 2500000 
variable    thermo_timesteps equal 50000000 
 
# convert from LAMMPS real units to SI 
 
variable    kB equal 1.3806504e-23    # [J/K] Boltzmann 
variable    kCal2J equal 4186.0/6.02214e23 
variable    A2m equal 1.0e-10 
variable    fs2s equal 1.0e-15 
variable    convert equal ${kCal2J}*${kCal2J}/${fs2s}/${A2m} 
variable    dt equal 0.01 
variable    V equal 1.0 
 
units real 
 
log             dummy5.log 
 
# setup problem 
 
atom_style angle  # bonds angles only 
bond_style harmonic 
angle_style harmonic 
dimension  3 
atom_modify sort 1000 2.0 
read_data  dummy10.lammps 
group  1 molecule 1 
group  2 molecule 2 
#group  3 molecule 3 
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velocity  all create $t ${random} mom yes rot yes dist uniform units box loop all 
 
neighbor        2.0 bin 
neigh_modify    delay 0 every 1 
 
pair_style  none 
#pair_style      lj/cut ${rc} 
#pair_coeff      * * 1E-4 1.52 
 
fix  1 all momentum 1 linear 1 1 1 angular 
 
# energy minimize structure 
 
min_style cg 
dump  m1 all movie 100 simulation.m4v type type zoom 2.5 adiam 0.2 size 
1280 720 
#dump   m0 all image 1000 pic.*.png type type zoom 4 size 1280 720 
minimize 1.0e-4 1.0e-6 1000 10000 
 
# 1st equilibration run 
 
fix  2 all nvt temp $t $t ${dt} 
thermo  100 
dump   positions all xyz 100 step1_nvt.xyz 
run_style  verlet 
timestep   ${dt} 
 
run  ${equil_timesteps} 
 
velocity all scale $t 
 
unfix  2 
 
# thermal conductivity calculation 
 
reset_timestep  0 
 
compute         myKE 2 ke/atom 
compute         myPE 2 pe/atom 
compute         myStress 2 stress/atom NULL virial 
compute         flux 2 heat/flux myKE myPE myStress 
variable        Jx equal c_flux[1]/$V 
variable        Jy equal c_flux[2]/$V 
variable        Jz equal c_flux[3]/$V 
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fix         3 all nve 
fix             JJ 2 ave/correlate $s $p $d & 
                c_flux[1] c_flux[2] c_flux[3] type auto & 
         file dummy5.heatflux ave running 
 
#variable       scale equal $s*dt/$t/$t/$V 
variable        scale equal ${convert}/${kB}/$t/$t/$V*$s*${dt} 
#variable      scale equal (${convert})/(${kB}*$V*$s*dt) 
variable        k11 equal trap(f_JJ[3])*${scale} 
variable        k22 equal trap(f_JJ[4])*${scale} 
variable        k33 equal trap(f_JJ[5])*${scale} 
 
thermo         $d 
thermo_style    custom step temp v_Jx v_Jy v_Jz v_k11 v_k22 v_k33 
 
run             ${thermo_timesteps} 
 
variable        k equal (v_k11+v_k22+v_k33)/3.0 
variable      ndens equal count(all)/$V 
print         "average conductivity: $k[W/mK] @ $t K, ${ndens} /A^3" 
print  "$k" file dummy5.k screen yes 
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Appendix D: Experimental apparatuses used to measure k 
 

 

Figure 59: Image of baked CNT polymer composites synthesized in the Glatzhofer 
lab, showing dye punchouts from one of the samples which are then placed in the 
differential scanning calorimeter (DSC) to experimentally measure k. CNTs are 
known to agglomerate or clump together as the CNT volume fraction increases in 
a sample, and the method used in the Glatzhofer lab disperses the CNTs well 
within the polymer matrix to avoid this. 
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Figure 60: Image of a copper-wound coil (electromagnet) created in the Glatzhofer 
lab which creates an electric field which may then be applied to a CNT polymer 
composite (which is still viscous) in order to align the CNTs (electrophoresis). 
 

 

Figure 61: Left-emission image of CNTs aligned and deposited using 
electrophoresis [39]. Right-Drawing of vectors relating momentum and electric 
field to torque. 
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Figure 62: Image of the differential scanning calorimeter used in the Glatzhofer 
lab to experientially measure the thermal conductivity of the CNT-polymer 
composites (Mettler DSC830). 
 


