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Abstract 

Climate variability and management practices in isolation or in combination 

influence the properties of ecosystems and the flows of energy and materials through 

them. The goal of this dissertation is to better understand the ecosystem responses to 

climatic variability and management practices using different approaches such as remote 

sensing, eddy covariance techniques and modelling. Remote sensing indices were tested 

and evaluated for developing better drought monitoring. Specifically, water related 

vegetation index (LSWI) was employed to assess the ecosystem responses to the drought 

events occurred in Oklahoma from 2000-2013. Field measurements data in combination 

with the EC system were used to understand how the sink-source potential of the 

ecosystem changes when grassland ecosystem is converted to winter wheat.  

DeNitrification- DeComposition (DNDC) model was used to analyze greenhouse gas 

emissions from pasture land amended with fertilizers compared to the native pastures in 

the scenario of climatic variability. We used 14 years of MODIS, Mesonet soil moisture 

and rainfall data at Marena and El Reno tallgrass prairie sites to study the impact of 

drought events on grassland phenology and growth through analyzing sensitivity 

differences of vegetation indices to drought. A new approach of drought assessment, 

counting number of days with LSWI < 0 and LSWI-based drought severity classification, 

is proposed in this study. The number of days with LSWI < 0 was found higher during 

the summer droughts of 2006 and 2012 and negative LSWI represented the higher 

intensity drought categories (D2, D3 and D4) defined by USDM, which demonstrated 

that it could be used to describe the hydrological condition of the ecosystem as an 

effective additional vegetation based indicator for drought assessment. This study also 



 

xix 
 

investigates the potential of the LSWI-based algorithm, for agricultural drought 

monitoring under varying soil and land cover conditions of 113 Mesonet stations of 

Oklahoma. We compared LSWI and the number of days with negative LSWI (DNLSWI) 

to summer time precipitation, precipitation anomalies, and the U.S. Drought Monitor. 

Additionally, the assessment of the algorithm with USDM was performed separately for 

different land cover type and climate divisions. Therefore, results from this study will 

help in improving the capability of remote sensing vegetation drought monitoring by 

establishing LSWI as a complimentary tool to existing NDVI based drought products as 

well as help to identify the sensitivity of LSWI to the diversity of the ecosystems of 

Oklahoma. 

We quantified and compared the carbon and water fluxes from winter wheat and 

tallgrass prairie ecosystems and discussed the possibility of change in carbon and water 

budgets of the southern plains under the land use change scenario (conversion of 

grassland into winter wheat). Both ecosystems were sinks of carbon during their 

respective growing seasons. At the annual scale, the wheat ecosystem was a net source of 

carbon (128 ± 46 g C m-2 yr-1) when fluxes from summer fallow period were considered. 

Results suggest that the differences in magnitudes and patterns of CO2 and H2O fluxes 

between winter wheat and tallgrass prairie ecosystems can exert an influence on the 

carbon and water budgets of the whole region under land use change scenario. Another 

hypothesis tested in our study was that the application of fertilizers in the managed 

pasture would increase the primary productivity of the ecosystem for few years but this 

increase in carbon sink would be counteracted by the increasing rate of greenhouse gas 

emissions in the long run. Here we used DNDC, a process-based model that simulates the 



 

xx 
 

emissions and consumption of gases within the ecosystem based on the interactions of 

local climate, local soils and on-site management practices. The fertilization of pasture 

increased the productivity that increased the roughages demands resulted by increased 

stocking density of cattle. Similarly, higher flux of N2O from the managed pasture was 

resulted as the effect of fertilizer addition which amplified in magnitude in wet years than 

dry and normal years. The advantage from increased soil organic carbon due to the 

fertilizer application, measured in terms of global warming potential (GWP) was 

outweighed by the GWP calculated from the increased magnitude of N2O fluxes thereby 

giving the positive net global warming potential (NGWP). Therefore, pasture 

management policies should consider maintaining emissions level as minimum as 

possible while optimizing the productivity.  
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Chapter 1: Introduction 

1.1 Research background  

Climate variability and management practices in isolation or in combination 

influence the properties of ecosystems and the flows of energy and materials through 

them (Fig 1.1). Models results shows large uncertainty in the estimates of plant 

productivity changes with the changes in temperature, moisture and rainfall that interact 

in influencing plant growth (Heinsch et al. 2006; Hilker et al. 2008). The effects of 

climate variability on ecosystems are likely to be exacerbated in ecosystems that are 

altered by anthropogenic interventions (Cramer et al. 1999; Huntzinger et al. 2012; 

Thebault et al. 2014).  The question about how the change in patterns of weather 

elements will affect the complex interactions and feedbacks of ecosystems with diverse 

management activities is yet to be elucidated for addressing the uncertainties existed in 

model outputs.  

 

 

 

 

 

 

 

 

 
 
Figure 1.1. Two-way interactions between climate and ecosystem.  
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The Southern Great Plains (SGP) of the US is one of the most volatile region with 

respect to climatic variability especially rainfall. The ecosystems of this region have 

responded enormously to the dynamics of drought and wet events in the past (Basara et 

al. 2013b; Christian et al. 2015a). The ecosystem feedback in terms of productivity is 

generally positive in good rainfall year and is negative when it is impacted by drought. 

This kind of impact resulted from rainfall variability at the larger spatial extent have been 

monitored by using the vegetation indices derived from satellite observations. Yet, the 

repeated occurrence of drought events has highlighted the need to develop effective 

drought monitoring tools to assess the impacts of this phenomenon. It is well known that 

Normalized Difference Vegetative Index (NDVI) is related to leaf area index (LAI), and 

NDVI will decline when plant canopy defoliates due to drought, which often occur at late 

stage of severe agricultural drought. It is also well assumed that EVI is related to green 

and chlorophyll in the canopy, and Enhanced Vegetative Index (EVI) will decline when 

plant canopy starts to lose chlorophyll due to drought. When drought occurs, plant 

canopy will experience (1) loss of water in leaves, (2) loss of chlorophyll pigment in 

leaves (e.g., yellowing), and (3) loss of green leaves over time (dead leaves, defoliation). 

Land surface water index (LSWI) reflects the loss of water in leaves. EVI reflects the loss 

of chlorophyll in leaves. NDVI reflects the loss of green leaves. The hypothesis that the 

water related vegetation index LSWI computed based on Near infra-red (NIR) and 

Shortwave infra-red (SWIR) of electromagnetic spectrum is more sensitive to vegetation 

water content offers a new and improved capacity for drought monitoring, an approach to 

assess the ecosystem responses to drought. 
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Ecosystem responses to climatic variability and management practices causing 

altered species composition, productivity, vegetation phenology, canopy roughness and 

others may result in biophysical and/or biogeochemical feedbacks. Land use change as an 

example of a management practices impact the biophysical pathways that alter the 

exchange processes such as carbon, energy and water exchanges between the ecosystem 

and atmosphere. The eddy covariance (EC) systems provide continuous measurements of 

ecosystem-level net exchange of carbon, water, and energy between land surface and the 

atmosphere under different management scenario. Net Ecosystem Exchange is used to 

indicate whether the ecosystem is a carbon sink or source.  

Biogeochemical feedbacks involve ecosystem changes when climate and 

management activities cause change in uptake and release rate of greenhouse gas (GHGs) 

emissions. Pasture grasslands used to graze livestock make up about 45% of land use 

southern Great Plains are also one of the most sensitive and important ecosystems of North 

America. Better Grassland management practices thus have the potential to mitigate 

climate change by shaping carbon sequestration and methane production (Smith et al. 

2000). Native grasslands are often managed with the aim of enhancing Net Primary 

Production (NPP, the amount of plants dry matter produced per unit time through carbon 

fixation). But management activities like fertilizer application, deposition of manure by 

livestock, burning, tillage practices can have substantial influence on the fundamental 

biophysical processes such as mineralization and decomposition because addition of such 

managements inputs changes the soil Carbon (C) and Nitrogen (N) pool. This, in turn, can 

alter the soil environmental conditions such as moisture, temperature, pH and Eh (redox 

potential) thereby increasing the magnitude of the greenhouse gas (GHG) emission.  
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1.2 Overall research objectives 

 The goal of this dissertation is to better understand the ecosystem responses to 

climatic variability and management practices using different approaches such as remote 

sensing, eddy covariance techniques and modelling. Specifically, my dissertation focuses 

on three major topics: (1) Remote sensing indices were tested and evaluated for 

developing better drought monitoring. Water related vegetation index (LSWI) was 

employed to assess the ecosystem responses to the drought events occurred in Oklahoma 

from 2000-2013; (2) field measurements data in combination with the EC system to 

understand how the sink-source potential of the ecosystem changes when grassland 

ecosystem is converted to winter wheat; and (3) to model the greenhouse gas (GHGs ) 

emissions from managed pasture amended with fertilizers compared to the native 

pastures in the scenario of climatic variability.  

 

1.3. Organization of the dissertation 

This dissertation consists of one introductory chapter, four main chapters, and one 

summary chapter. Chapters 2, 3 have been published in two peer-reviewed journals, 

chapter 4 is submitted to the peer-reviewed journal, and chapter 5 is in preparation and will 

be submitted to one of the peer-reviewed journals.  

 

Chapter 2: This study aims to develop an LSWI-based drought monitoring algorithm 

based on two tallgrass prairie ecosystems in Oklahoma. This study describes an 

exploration of vegetation indices, both greenness related (NDVI and EVI) and water 

related (LSWI), as drought indicators. The key to this study is the site-specific analysis 
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and the comparison with the USDM index. We used 14 years of MODIS, Mesonet soil 

moisture and rainfall data at Marena and El Reno tallgrass prairie sites to study the 

impact of drought events on grassland phenology and growth through analyzing 

sensitivity differences of vegetation indices to drought. A new approach of drought 

assessment, counting number of days with LSWI < 0 and LSWI-based drought severity 

classification, is proposed in this study. The number of days with LSWI < 0 was found 

higher during the summer droughts of 2006 and 2012 and negative LSWI represented the 

higher intensity drought categories (D2, D3 and D4) defined by USDM, which 

demonstrated that it could be used to describe the hydrological condition of the 

ecosystem as an effective additional vegetation based indicator for drought assessment.  

 

Chapter 3: This study investigated the potential of the Land Surface Water Index 

(LSWI)-based algorithm developed in Chapter 2, for agricultural drought monitoring 

under varying soil conditions of 113 Mesonet stations of Oklahoma. We compared LSWI 

and the number of days with negative LSWI (DNLSWI) to summer time precipitation, 

precipitation anomalies, and the U.S. Drought Monitor. Additionally, the assessment of 

the algorithm with USDM was performed separately for different land cover type and 

climate divisions. Therefore, results from this study will help in improving the capability 

of remote sensing vegetation drought monitoring by establishing LSWI as a 

complimentary tool to existing NDVI based drought products as well as help to identify 

the sensitivity of LSWI to the diversity of the ecosystems of Oklahoma. 
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Chapter 4: This study quantified and contrasted the carbon and water fluxes from winter 

wheat and tallgrass prairie ecosystems and discussed the possibility of change in carbon 

and water budgets of the Southern Plains under the land use change scenario (conversion 

of grassland into winter wheat). We measured the exchange of carbon dioxide and water 

vapor fluxes from two major ecosystems, located very few kilometers away in OK using 

the eddy covariance technique. This study has a great significance in order to understand 

the impacts of land conversion from grassland to winter wheat since the Southern Plains 

of the United States has seen the dramatic land use change in the over the past century. 

 

Chapter 5: The hypothesis tested in this chapter is that the application of fertilizers in the 

managed pasture would increase the primary productivity of the ecosystem for few years 

but this increase in carbon sink would be counteracted by the increasing rate of GHGs 

emissions in the long run. Here we used the De-Nitrification De-Composition (DNDC), a 

process-based model that simulates the emissions and consumption of gases within the 

ecosystem based on the interactions of local climate, local soils and on-site management 

practices. By combining field measurements and modeling simulations, we examined the 

effects of grassland management practices on the net carbon balance and GHGs emissions 

in the managed pasture amended with fertilizers. Fertilizer application increased the 

productivity and soil organic carbon (SOC) pool whereas grazing decreased the SOC pool. 

Farm management practices altered the soil moisture, temperature, redox potential, and 

SOC and available Nitrogen content. The change in these factors changed the rate and 

direction of nitrification, denitrification and decomposition either collectively or 

simultaneously and ultimately the GHGs emissions. 
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Chapter 2: Sensitivity analysis of vegetation indices to drought over two tallgrass 

prairie sites 

Abstract 

Vegetation growth is one of the important indicators of drought events. 

Greenness-related vegetation indices (VIs) such as Normalized Difference Vegetation 

Index (NDVI) and Enhanced Vegetation Index (EVI) are often used for the assessment of 

agricultural drought. There is a need to evaluate the sensitivity of water-related 

vegetation indices such as Land Surface Water Index (LSWI) to assess drought and 

associated impacts. Moderate-Resolution Imaging Spectroradiometer (MODIS) derived 

time series NDVI, EVI and LSWI data during 2000-2013 were compared for their 

sensitivity to drought at two tallgrass prairie sites in the Oklahoma Mesonet (Marena and 

El Reno). Each site has continuous soil moisture measurements at three different depths 

(5, 25 and 60 cm) and precipitation data for the study period (2000-2013) at 5-minute 

intervals. As expected, averaged values of vegetation indices consistently lower under 

drought conditions than normal conditions. LSWI decreased the most in drought years 

(2006, 2011 and 2012) when compared to its magnitudes in pluvial years (2007, 2013), 

followed by EVI and NDVI, respectively. Because green vegetation has positive LSWI 

values (> 0) and dry vegetation has negative LSWI values (< 0), much longer durations 

of LSWI < 0 were found in the summer periods of drought years rather than in pluvial 

years. A LSWI-based drought severity scheme (LSWI > 0.1; 0 < LSWI ≤0.1; -0.1 < 

LSWI ≤ 0; LSWI ≤ -0.1) corresponded well with the drought severity categories (0; D0; 

D1: D2; D3 and D4) defined by the United States Drought Monitor (USDM) at these two 

study sites. Our results indicate that the number of days with LSWI < 0 during the 
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summer and LSWI-based drought severity scheme can be simple, effective and 

complementary indicator for assessing drought in tallgrass prairie grasslands at a 500-m 

spatial resolution.  

 

2.1 Introduction 

Drought is a recurring event of Oklahoma`s climate cycle (Basara et al. 2013b; 

Christian et al. 2015a) and poses significant impacts on various sectors of the economy 

(OWRB, 2010). Seasonal drought can occur at any time of the year and the summer 

drought that coincides with the growing season can cause ecological imbalances and 

influences surface biophysical parameters such as vegetation indices, land surface 

temperature, soil moisture and evapotranspiration (Ghulam et al. 2007; Reichstein et al. 

2002). This ultimately impacts the productivity of the tallgrass prairie ecosystem, which 

can cause billions of dollars in damage to livestock’s industries depending on its timing, 

duration and severity. 

Several conceptual definitions of drought have been classified into four major 

categories: meteorological, agricultural, hydrological and socio-economic droughts 

(Wilhite and Glantz 1985). Understanding the need to quantify drought severity, 

researchers have developed several methods to assess and diagnose different droughts.  

Meteorological drought indices (Rainfall Anomaly Index, Bhalme and Mooley Drought 

Index, Drought Severity Index, Standardized Precipitation Index) were solely based on 

meteorological data such as precipitation and temperature (Bhalme et al. 1981; McKee et 

al. 1993; Van Rooy 1965). Agricultural drought indices (Crop Moisture Index, the Soil 

moisture Drought Index, Soil Moisture Deficit Index) considered soil moisture and 
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evapotranspiration deficit (Hollinger et al. 1993; Narasimhan and Srinivasan 2005; 

Palmer 1965), while hydrological drought indices (Palmer Hydrological Drought Index, 

Surface Water Supply Index, Reclamation Drought Index) were based on a water balance 

model (Shafer and Dezman 1982; Weghorst 1996). 

With the advancement of Earth observations from satellite-based sensors, 

numerous recent studies have used remote sensing data for assessing drought impacts 

(Ghulam et al. 2007; Peters et al. 2002; Tadesse et al. 2005; Wan et al. 2004).  Over the 

period of more than 20 years, a number of remote sensing based vegetation indices (VIs) 

have been developed from various spectral band combinations to monitor vegetation 

(Table 2.1).  While greenness-related VIs retrieved from remote sensing land surface 

reflectance such as Normalized Difference Vegetation Index (NDVI) and Enhanced 

Vegetative Index (EVI) have often been used for vegetation condition monitoring 

(Diodato and Bellocchi 2008; Herrmann et al. 2005; Song and Ma 2011), NDVI derived 

indices such as Anomaly Vegetation Index  (Weiying et al. 1994) and  the Vegetation 

Condition Index (VCI) (Kogan 1995) were used to relate vegetation dynamics to drought 

patterns. Similarly, several water related satellite-based vegetation indices that estimate 

vegetation water content have been used for drought detection (Chen et al. 2005; Fensholt 

and Sandholt 2003; Gao 1996; Kimes et al. 1981). Shortwave infrared reflectance 

(SWIR) and leaf water content are negatively related due to the large absorption (Hunt 

and Rock 1989; Tucker 1980) and is contrasted with near infrared (NIR) band to 

normalize the effects of other leaf parameters such as internal leaf structure for proper 

estimation of vegetation water content (Ceccato et al. 2001; Gao 1996). Based on the 

analysis of reflectance spectra, combination of SWIR and NIR bands have been reported 
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by numerous studies under different names:  Normalized Difference of Landsat TM 

bands 4 and 5, ND45 (Kimes et al. 1981); Normalized Difference Infrared Index, NDII 

(Hardisky et al. 1983); Shortwave Water Stress Index, SWIS (Fensholt and Sandholt 

2003); Normalized Difference Water Index, NDWI (Jackson et al. 2004; Maki et al. 

2004) and Land Surface Water Index,  LSWI (Qin et al. 2015; Xiao et al. 2002; Zhang et 

al. 2015). 

 

Table 2.1.  Drought indices based on different spectral bands and their combination. 
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Name of 
Vegetation 
indices Full name Formula  References 

NDVI 
Normalized Difference 
Vegetation Index 

(ρ858 –
ρ650)/(ρ858+ρ650) 

Tucker, 1979; 
Kogan, 1991; 
Kogan, 1995 

EVI 
Enhanced Vegetation 
Index 

2.5*(ρ858 –
ρ650)/(ρ858+6* ρ650-

7*ρ469+1) 

Huete et al. 
2002; Saleska 
et al. 2007 

WI Water Index  ρ900/ρ970   
Peñuelas et al. 
1993, 1997 

NDWI1240 
Normalized Difference 
Water Index 

(ρ858–
ρ1240)/(ρ858+ρ1240)  Gao, 1996 

NDII 
Normalized Difference 
Infrared Index  

(ρ850 –
ρ1650)/(ρ850+ρ1650)  

Kimes et al. 
1981; 
Hardisky et al. 
1983 

MSI  Moisture Stress Index ρ1600/ρ820  
Hunt et al. 
1989 

SRWI 
Simple Ratio Water 
Index  ρ858 /ρ1240   

Zarco-Tejada 
et al. 2001, 
2003 

LSWI 
Land Surface Water 
Index 

(ρ858–
ρ1640)/(ρ858+ρ1640) 

Xiao et al. 
2002 

SWISI 
Shortwave Infrared 
Water Stress Index 

(ρ1640-
ρ850)/(ρ1640+ρ850) or 

(ρ1240-
ρ850)/(ρ1240+ρ850) 

Fensholt and 
Sandholt 2003 

NDWI2130 
Normalized Difference 
Water Index 

(ρ858–
ρ2130)/(ρ858+ρ2130)  

Chen and 
Huang, 2005 

NMDI 
Normalized Multiband 
Drought Index  

(ρ860–(ρ1640-ρ2130))/ 
(ρ860+(ρ1640- ρ2130)) 

Wang et al. 
2007 

VTCI 

Vegetation 
Temperature Condition 
Index 

NDVI, Land Surface 
Temperature(LST) 

Morgan et al. 
1995; Wan et 
al. 2004 

TVDI 

Temperature 
Vegetation Dryness 
Index NDVI, LST 

Sanholt et al. 
2002 

SDCI 
Scaled Drought 
Condition Index LST, NDVI, Precipitation 

Rhee et al, 
2010 

VCI 
Vegetation Condition 
Index 

 (NDVI − NDVIMIN) / 
(NDVIMAX − NDVIMIN) Kogan, 1995 

VHI 
Vegetation Health 
Index NDVI, LST  

NDDI 
Normalized Difference 
Drought Index 

(NDVI-
NDWI)/(NDVI+NDWI) Gu et al.2007 
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These indices have proven to be effective in monitoring the water content of 

vegetation. However, NDVI has been the most popular and extensively used satellite-

based index for drought monitoring over the past decades. Numerous studies have 

analyzed the relationships between NDVI and rainfall across geographical areas and 

vegetation types (Bhalme et al. 1981; Boschetti et al. 2013; McKee et al. 1993; Van Rooy 

1965). In the central and northern Great Plains grasslands, growing season rainfall, 

growing degree days and potential evapotranspiration exerted strong control over 

grassland productivity (Yang et al. 1998). There was a stronger relationship between 

NDVI and rainfall than between NDVI and temperature for the grassland located in the 

central and northern Great Plains of the US (Wang et al. 2001). Like other drought 

monitoring algorithms (Ji and Peters 2003; Liu and Kogan 1996; Nemani and Running 

1989; Pettorelli et al. 2005), the Vegetation Drought Response Index (VegDRI) 

introduced by the United States Drought Monitor (USDM) also used NDVI in monitoring 

droughts (Brown et al. 2008). A few recent publications have reported that water-related 

vegetation indices such as LSWI are relatively more sensitive to drought than greenness 

related VIs and presented as a potential drought monitoring tool (Chandrasekar et al. 

2010; Gu et al. 2008; Wagle et al. 2015c; Wagle et al. 2014; Zhang et al. 2013). Long 

term analysis of LSWI over pluvial, dry and normal years can provide better insight into 

vegetation response to climate variations and complement current drought monitoring 

tools to incorporate water related vegetation index into their models and algorithms. 

In this pilot and site-level study, we chose two tallgrass prairie sites in Oklahoma, 

which are the part of the Oklahoma Mesonet (McPherson et al. 2007). The objectives of 

this study were to: a) explore the relationship between seasonal and inter-annual rainfall 
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variability and dynamics of grassland vegetation growth, and b) ascertain the sensitivity 

of VIs (NDVI, EVI and LSWI) to rainfall variations. This study further investigates 

additional drought information rendered by LSWI, based on episodic drought events over 

time series (2000-2013). Using the drought information generated from LSWI, a new 

approach (the number of days with LSWI < 0 during the plant growing season and 

LSWI-based drought severity classification) for an assessment of the drought impacts 

over grasslands is proposed in this study. This LSWI-based approach can potentially 

provide more insights into drought monitoring over tallgrass prairie grasslands. 

 

2.2 Materials and Methods 

2.2.1 Site description 

The Marena site is located near Stillwater, OK (97.21694° W, 36.063493° N). 

This site is collocated with the Marena Oklahoma In-Situ Sensor Test bed (MOISST), a 

core calibration/validation site for NASA`s soil moisture active passive (SMAP) satellite 

mission. The site contains relatively homogenous distribution of tallgrass prairie in sandy 

clay loam soil with similar grazing management practices over the years.  

The El Reno site is located near El Reno, OK (98.0401°W, 35.5465° N) at the 

United States Department of Agriculture-Agriculture Research Service (USDA-ARS) 

Grazing Research laboratory (GRL). The site is an open terrain, slightly sloped from east 

to west and is covered by natural tallgrass prairie in silty clay loam soil. The location and 

the landscape features of the study sites are shown in Fig. 2.1 while the biophysical 

features of the sites are presented in Table 2.1. 
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Figure 2.1. The location (Oklahoma map) and the landscape features of the study 
sites. The red boarder line represents the size of a MODIS pixel at 500-m spatial 
resolution. 
 
Table 2.2.  Overview of the study sites. 

 

 

Site Lat Long 

Elevation 

(m) 

Mean annual 

rain (mm) 

Mean annual 

temp  

(° C) 

Major 

vegetation Soil type 

Marena 

36.063 

°N  

97.216 

°W 327 802 14 

Tallgrass 

prairie 

Sandy clay 

loam 

El 

Reno 

35.546 

°N 

98.040

°W 419 794 15 

Tallgrass 

prairie 

Silty clay 

loam 

  

El Reno Marena 



 

16 
 

2.2 Rainfall and soil moisture data during 2000-2013 from the Oklahoma Mesonet 

The Oklahoma Mesonet is a system designed to measure the environmental 

parameters by a network of instruments deployed on or near a 10-meter-tall tower. The 

recorded measurements are aggregated into observations every five minutes and the 

observations are sent out to a central facility every five minutes, 24 hours per day year-

round (McPherson et al. 2007). Daily precipitation and soil moisture data from 2000-

2013 at the Oklahoma Mesonet Marena and El Reno stations were downloaded from the 

Oklahoma Mesonet website 

(http://www.mesonet.org/index.php/weather/daily_data_retrieval). The daily data were 

aggregated into 8-day periods to match with the temporal resolution of the Moderate-

Resolution Imaging Spectroradiometer (MODIS) derived VIs. Three different soil moisture 

data products (soil water potential, fractional water index and volumetric water content) 

are available at the Mesonet website. These soil moisture data products were derived based 

on the calibrated change in soil temperature over time after a heat pulse is introduced 

(Illston et al. 2008). In our analysis, we used volumetric soil water content (SWC) collected 

at three different soil profiles (5, 25, and 60 cm depth). The SWC measured by Mesonet is 

a point measurement, but it is representative from a magnitude and temporal variability 

standpoint at scales of up too several hundred meters or field scale (Basara and Crawford 

2002a; Illston et al. 2008). 

2.2.3 MODIS images and vegetation indices during 2000-2013 

Daily images are acquired by the MODIS sensors on-board the Terra and Aqua 

satellites. Seven spectral bands: red (620-670 nm), NIR1 (841-876 nm), blue (459-479 

nm), green (545-565 nm), NIR2 (1230-1250 nm), SWIR1 (1628-1652 nm), and SWIR2 
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(2105-2155 nm) are available for the study of vegetation. In this study, we used the 8-day 

composite land surface reflectance (MOD09A1) data from Feb 2000 to Dec 2013 for one 

MODIS pixel (500 m × 500 m spatial resolution) centered on the study sites. The dataset 

was extracted from the data portal at the Earth Observation and Modeling Facility 

(EOMF) at the University of Oklahoma (http://eomf.ou.edu/visualization/gmap/). Land 

surface reflectance (ρ) from blue, green, red, NIR1, and SWIR1 bands were used to 

calculate three spectral indices as follows: 

NDVI = ρ NIR1− ρred
ρ NIR1 + ρred

        (1) 

EVI =  ρ NIR1 − ρred
ρ NIR1 + 6 ∗ ρred − 7.5 ρblue + 1

      (2) 

LSWI = ρ NIR1 − ρSWIR1
ρ NIR1 + ρSWIR1

        (3) 

To understand the relative sensitivity of these three VIs to drought, we computed the 

deviation (absolute values) of the maximum values (NDVImax, EVImax, and LSWImax) of 

VIs each year with reference to 14-year mean maximum VIs. 

2.2.4 United States Drought Monitoring (USDM) Data 

The USDM is a composite drought index that includes many indicators based on 

measurements of climatic, hydrologic and soil conditions in order to provide weekly 

maps of drought conditions (Svoboda et al. 2002). The drought categories (D0, D1, D2, 

D3 and D4) for the study sites were extracted from the weekly drought maps published 

by the USDM (http://droughtmonitor.unl.edu/MapsAndData/).  The corresponding NDVI 

and LSWI values to the USDM defined drought categories were identified from MODIS 

data and plotted against each other to define the LSWI-based drought classifications. This 

http://droughtmonitor.unl.edu/MapsAndData/
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relationship between the USDM classified drought categories and MODIS-derived VIs 

were analyzed only for the Summer months (Jun- Aug) of each year from 2000-2013. 

2.3 Results  

 2.3.1. Inter-annual variation of rainfall, soil moisture and vegetation indices- 

identifying drought years 

Annual precipitation varied substantially during 2000-2013 at both sites with an annual 

average precipitation of 802 mm (± 220) at the Marena site and 794 mm (± 182) at the El 

Reno site. Dry and pluvial years were determined based on the 14-year (2000-2013) 

average annual precipitation and the associated standard deviation. Years with 

standardized score values greater than sum of its average and one standard deviation 

(negative side) were labeled as drought years, whereas years with standardized score 

greater than sum of its average and one standard deviation (positive side) were identified 

as pluvial years (Fig. 2.2).   
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Figure 2.2. The variability of annual rainfall at study sites over time (2000-2013). 

The anomaly of rainfall is calculated as percentage change from a 14- year average 

rainfall. 

 

From this analysis, the years 2001, 2006, 2011, and 2012 were identified as 

drought years at both Marena and El Reno sites. In addition, 2003 also was a drought 

year at the El Reno site. Additionally, 2007 and 2013 were identified as pluvial years for 

both sites. For both sites, two episodic drought years (2006 and 2012) were compared 

with two episodic pluvial years (2007 and 2013). 
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Figure 2.3. Inter-annual variation of: soil water content at different soil depths (a, b) 
and growing season (March- October) vegetation indices (c, d). The vertical bars 
represent the total growing season rainfall.   

 

Figure 2.3 (a, b) shows SWC at various depths (5, 25, and 60 cm). The growing 

season average SWC of drought years (2006 and 2012) was approximately 20-25 % (5 

and 25 cm depths) and 25-30 % at 60 cm whereas SWC at three depths ranged from 27-

44% in pluvial years (2012 and 2013). At El Reno, SWC at the 60-cm depth was 

relatively higher than that of Marena for all years.  

Figure 2.3 (c, d) shows inter-annual variation of seasonal mean VIs (NDVI, EVI, 

and LSWI). NDVI and EVI had relatively smaller variations compared to the variation 

observed in LSWI. The average NDVI, EVI and LSWI values during the growing season 

were consistently lower (NDVIavg<0.55, EVIavg<0.35 and LSWIavg<0) in drought years 

(2006 and 2012) in comparison with pluvial years (2007 and 2013). Both sites showed 

consistently lower values of VIs in drought years. However, VIs at the Marena site were 

more sensitive to drought than those at the El Reno site. 

To understand the relative sensitivity of VIs to drought, the deviation in the 

maximum values of VIs (NDVImax, EVImax and LSWImax) for each year were compared 

to long term (2000-2013) mean of maximum VIs (Fig. 2.4). The largest negative LSWI 

anomaly was observed in drought years (2006 and 2012) at both sites, although the 

magnitudes of decrease varied between sites. LSWI showed the largest deviations in 

drought and pluvial years compared to NDVI and EVI. For Example, LSWImax was 

reduced by -0.36 (66%) and-0.32 (59%) at the Marena site, and by -0.18 (43%) and -0.2 

(62%) at the El Reno site in 2006 and 2012, respectively. The change in EVImax in 

drought years was greater than that of NDVImax. In 2006 and 2012, drought reduced the 
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EVImax by almost two folds compared to NDVImax. At the Marena site, the drought 

reduced NDVImax by -0.04 (7%) whereas EVImax was reduced by -0.09 (17%) and -0.07 

(14%) in 2006 and 2012, respectively. Similarly, at the El Reno site, NDVImax was 

reduced only by -0.02 (4%) and -0.06 (10%) whereas EVImax was reduced by -0.04 

(10%) and -0.09 (19%) in 2006 and 2012, respectively. 

 

Figure 2.4. Sensitivity analysis of three vegetation indices (NDVI, EVI, and LSWI) to 
drought. The change in absolute values of vegetation indices (maximum values) is 
computed based on 14-year average values deviated from mean. 
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2.3.2. Seasonal dynamics of rainfall, soil moisture and vegetation indices – 

identifying spring drought and summer drought within a year 

  During pluvial years, the duration of LSWI > 0 period was longer and LSWI 

values were positive throughout the growing season. Air temperature over a certain 

threshold (> 5 °C) in the spring determines the start of the growing season (late Mar-early 

Apr). After greening up in spring, the rate of vegetation growth depends on available 

SWC. If the plant available SWC is not sufficient then the vegetation experiences stress. 

As such, LSWI< 0 during the Mar-May period was designated as Spring drought. LSWI 

< 0 during the Summer period (Jun-Aug) was defined as Summer drought, while LSWI< 

0 during the late growing season (Sep-Oct) was defined as Fall drought (Fig. 2.5 inset 

Table). Thus, a year could have Spring, Summer and/or Fall droughts as per the rainfall 

received for that period of that year.  

Duration of negative LSWI (LSWI < 0) during Summer (Jun, Jul and Aug) was 

longer in drought years than pluvial and normal years (Table 2.3). For example, LSWI 

values were negative for 56 and 42 days during summer months in 2006 at the Marena 

and El Reno sites, respectively. Further, LSWI values were negative for 72 days during 

the summer of 2011 at the Marena site. In contrast, LSWI values never fell below zero in 

the summer of pluvial years (2007 and 2013) at both sites. These results indicate the 

potential of LSWI to track water status of vegetation during dry summers. Interestingly, 

the duration of negative LSWI values during summer showed a definite pattern when 

plotted with the cumulative summer rainfall (Fig. 2.6). For those years with summer 

rainfall less than certain thresholds (230 mm for Marena site and 250 mm for El Reno 



 

23 
 

site), duration of negative LSWI values increased linearly as the cumulative summer 

rainfall decreased. However, the relationship collapsed when the summer rainfall 

exceeded the threshold. 

 

Figure 2.5. Schematic diagram showing seasonal dynamics of daily air temperature, 
NDVI and LSWI in drought (2006) and non-drought year (2007). The inset table 
(below) presents the designation of drought types based on LSWI values and seasons. 
 

The years with summer rainfall over the threshold had zero or only one 8-day 

period with LSWI < 0. The relationship between NDVI and LSWI for summer months 

(Jun- Aug) over the 14-years is presented in Fig. 2.7. Each point in the plot represents the 

weekly observation of drought severity designation for the study area as determined from 

USDM drought maps (http://droughtmonitor.unl.edu/MapsAndData/). The descriptions 
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of the drought intensity defined by the USDM are listed Fig. 2.7 inset table.  Results 

illustrated that VIs values were much lower (NDVI < 0.6 and LSWI < 0) during higher 

intensity droughts, identified as D2, D3 and D4 by the USDM, whereas NDVI and LSWI 

values were higher (NDVI > 0.6 and LSWI > 0) in lower intensity and non-drought 

conditions, identified as D1 (moderate) and D0 (dry) by the USDM. Based on LSWI 

values during the summer months, drought was classified into non-drought or dry (LSWI 

> 0.1), moderate (0 < LSWI ≤ 0.1), severe (-0.1 < LSWI ≤ 0) and extreme-exceptional 

drought (LSWI ≤ -0.1) corresponding to USDM`s 0 or D0, D1, D2 and D3 or D4 

categories, respectively. 

 

 

Figure 2.6.  Relationship between duration of negative LSWI and cumulative rainfall 
during summer (June-August).  
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Table 2.3.  Summary of the start of growing season (SOS), ending of growing season 

(EOS), duration (in days) of land surface water index (LSWI < 0) during spring and 

summer for the study sites over the study period (2000 – 2013).  

 

 
 

2.4 Discussions  

Globally, all ecosystems will be impacted to a greater extent by the climatic 

extremes in future because most of the global climate models predicted more extremes in 

the climates such as multi-year droughts (Field et al. 2014). Previous studies reported the 

sensitivity of the U.S. Southern Great Plains grassland to extreme drought events during 

the historic droughts of the 1930`s and 1950`s (Albertson et al. 1957; Albertson and 

Weaver 1944). Both pure and mixed prairies were seriously depleted by those historic 

droughts and a long delay occurred in the recovery of the vegetation. The negative 

impacts of two episodic droughts of 2006 and 2012 over tallgrass prairie were apparent in 

our study as documented by the lower values of NDVI, EVI and LSWI (Fig. 3). 

Sensitivity of grassland vegetation to drought, when monitored through several VIs, 

  

  Marena El Reno 

Year 

SOS  
(Tmin 
>5°C) 

duration 
of  

LSWI 
<0  

(spring) 

duration 
of  

LSWI <0  
(summer) 

 
Summer 
rainfall 
(mm) 

EOS 
 

(Tmin< 
5°C) 

SOS  
(Tmin 
>5°C) 

duration 
of  

LSWI 
<0  

(spring) 

duration 
of  

LSWI <0  
(summer) 

 
Summer 
rainfall 
(mm) 

EOS 
 (Tmin< 
5°C) 

2000 21-Mar 24 10 394 07-Oct 21-Mar 42 0 250 05-Oct 
2001 02-Apr 40 23 203 09-Oct 02-Apr 42 16 135 13-Oct 
2002 10-Apr 40 8 281 11-Oct 06-Apr 56 24 151 10-Oct 
2003 11-Apr 32 0 225 24-Oct 13-Apr 80 24 172 24-Oct 
2004 15-Apr 16 0 312 29-Oct 15-Apr 56 8 283 02-Nov 
2005 04-Apr 48 8 362 20-Oct 13-Apr 16 0 309 22-Oct 
2006 29-Mar 56 53 164 17-Oct 29-Mar 56 40 214 17-Oct 
2007 18-Apr 24 0 570 20-Oct 17-Apr 24 0 655 20-Oct 
2008 16-Apr 24 0 297 14-Oct 20-Apr 24 0 356 21-Oct 
2009 15-Apr 32 8 353 07-Oct 21-Apr 24 16 260 21-Oct 
2010 10-Apr 16 8 265 27-Oct 10-Apr 24 0 314 25-Oct 
2011 17-Apr 24 76 124 17-Oct 06-Apr 88 32 153 18-Oct 
2012 11-Mar 56 34 191 24-Oct 11-Mar 72 42 102 24-Oct 
2013 26-Apr 24 0 325 15-Oct 26-Apr 8 0 434 15-Oct 
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showed varied degrees of response. LSWI was the most sensitive indicator of vegetation 

condition followed by EVI and NDVI. For example, NDVImax was 0.63 (7 % less than 

14-year average, 0.69), the EVImax was 0.39 in 2012 (14% less than 14-year average, 

0.45) and the LSWI max was 0.22 (59% less than 14-year average, 0.56) in 2012 at the 

Marena site. 

 

 
 
 
 
 
 
 
 
 
 
Figure 2.7.  Relationship between: NDVI, EVI and LSWI for individual pixels of the 
grassland study sites for June – August over a 14-year study period (2000-2013).  
Drought severity categories defined by USDM, Palmer Drought Severity Index 
(PSDI) and LSWI-based drought categories (inset table). 
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Years with abundant rainfall (2007 and 2013) were characterized by the positive 

LSWI throughout the entire season, while LSWI values decreased below zero and 

remained negative during the summer droughts in 2006 and 2012.This finding is in 

agreement with the results reported by Wagle et al. (2014) for El Reno tallgrass prairie 

sites in Oklahoma. The sharper drop in LSWI values in drought years revealed that the 

grassland vegetation had lost a greater amount of water than the greenness because loss 

of chlorophyll and leaves is a rather slow process compared to water loss from stomata 

via transpiration during drought (Chaves et al. 2003). Therefore, LSWI can give a 

stronger vegetation drought signal than that of NDVI or EVI. Chandrasekar et al. (2010) 

also reported that LSWI responded more directly to the water status of the vegetation 

than did NDVI and EVI.  Negative LSWI during the summer not only indicated the 

drought but also reflected the relative persistency of summer droughts. The longer the 

period of LSWI< 0, the lesser the amount of rainfall was received by the ecosystem and 

vice-versa, indicating relative drought persistency or duration (Fig. 2. 6). For example, 

LSWI < 0 in 2011 (Marena site) lasted for a longer period than in 2006 (72 and 32 days, 

respectively), which indicates more persistent summer drought in 2011 than in 2006. 

Rainfall events correlate with the soil moisture regimes and LSWI being the sensitive 

index provided an earlier signal of declining SWC than did NDVI and EVI. For instance, 

at the Marena site, LSWI dropped below zero indicating droughts during late June (DOY 

170) of 2006 (Fig. 2.8e) when the SWC dropped below 12% whereas the NDVI reduced 

late during mid-July (DOY 200) only when SWC dropped below 12% for a substantial 

period of time (Fig. 2.8a). However, most of the models and drought monitoring 

algorithms for the last two decades (Hartmann et al. 2003; Ji and Peters 2003; Liu and 
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Kogan 1996; Nemani and Running 1989; Pettorelli et al. 2005) have widely used NDVI 

as a drought index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.8. Seasonal soil moisture dynamics between dry and wet years and sensitivity 
of NDVI (a,b) EVI (c,d) and LSWI (e,f)  to declining soil moisture at 5 cm depth 
(Marena). 
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experts reviews. The USDM employs NDVI observations that are more characteristic 

features of plant greenness and was found to be relatively less sensitive to drought 

compared to EVI and LSWI in our study. Our study (14 years) over the grassland based 

on sensitivity of VIs to past drought revealed that LSWI could not only monitor the 

drought occurrence but also designate drought into different intensity categories (Fig. 

2.7). Traditionally, USDM has used PDSI to classify drought into different classes (D0, 

D1, D2, D3 and D4). Such climate based drought monitoring and classification 

approaches have coarse spatial resolutions and do not better represent vegetation status 

since the interpretation depends heavily on point based meteorological measurements 

(Brown et al. 2008). We attempted to describe drought severity categories quantitatively 

based on LSWI values of vegetation which is relatively more precise and useful because 

it is a pixel based finer resolution and vegetation specific calculation and is more related 

to water status of vegetation than greenness. The classification of drought categories is 

simply grouped based on two dimensional spaces of NDVI and LSWI plots where each 

point represents the weekly observation of drought severity designation for the study area 

as determined from USDM (Fig. 2.7). In our study, we found that higher negative values 

of LSWI represent a higher intensity drought. For example, when LSWI was -0.1 or 

smaller we defined it as extreme drought, comparable to D3 and D4 (extreme and 

exceptional) categories by USDM, while moderate-severe droughts were identified when 

LSWI values ranged greater or equal to zero to less than -0.1 corresponding to D1 and D2 

drought categories of USDM classification. Overall, good vegetation growth exhibited 

higher LSWI values, which decreased with drought and ultimately became negative when 

drought became more extreme. Therefore, by using the information rendered by LSWI 
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during the drought, we can quantitatively investigate the drought impacts on vegetation 

that can contribute toward the development of more robust tools for monitoring drought 

stress in vegetation. 

2.5 Conclusion 

We used 14 years of MODIS-derived VIs, Mesonet soil moisture and rainfall data 

at Marena and El Reno tallgrass prairie sites to study the impact of drought events on 

grassland phenology and growth through analyzing sensitivity differences of vegetation 

indices to drought. Specifically, the drought events (2006 and 2012) that occurred in the 

last 14 years negatively impacted the growth of the vegetation. When three VIs were 

compared, LSWI decreased the most in drought years followed by EVI and NDVI, 

indicating that LSWI was the most sensitive indicator to the drought events. The number 

of days with LSWI < 0 was found higher during the summer droughts of 2006 and 2012, 

showing the ability of LSWI to track drought. Based on this finding, a new approach of 

drought assessment, counting number of days with LSWI < 0 and LSWI-based drought 

severity classification, is proposed in this study. LSWI values were more negative for the 

period of intensity drought categories (D2, D3 and D4) defined by USDM, demonstrating 

that LSWI could be used to describe the hydrological condition of the tallgrass prairie as 

an effective additional VI for drought assessment. However, a more thorough evaluation 

of this approach as a drought monitoring tool for widely distributed grasslands and other 

vegetation types is required and will be the subject of future research. 
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Chapter 3: Assessing agricultural drought in summer over Oklahoma Mesonet sites 

using the water related vegetation index from MODIS 

Abstract 

Agricultural drought, a common phenomenon in most parts of the world, is one of 

the most challenging natural hazards to monitor effectively. Land surface water index 

(LSWI), calculated as a normalized ratio between near infra-red (NIR) and short wave 

infra-red (SWIR), is sensitive to vegetation and soil water content. This study examined 

the potential of a LSWI- based drought monitoring algorithm to assess summer drought 

over 113 Oklahoma Mesonet stations comprising various land cover and soil types in 

Oklahoma. Drought duration in a year was determined by the number of days with LSWI 

< 0 (DNLSWI) during summer months (Jun-Aug). Summer rainfall anomalies and LSWI 

anomalies followed a similar seasonal dynamic and showed strong correlations (R2= 0.62 

– 0.73) during drought years (2001, 2006, 2011, and 2012). The DNLSWI tracked the 

East-West gradient of summer rainfall in Oklahoma. Drought intensity increased with 

increasing duration of DNLSWI, and the intensity increased rapidly when DNLSWI was 

more than 48 days. The comparison between LSWI and the United States Drought 

Monitor (USDM) showed a strong linear negative relationship i.e, higher drought 

intensity tends to have lower LSWI values and vice-versa. However, the agreement 

between LSWI-based algorithm and USDM indicators varied substantially from 32% (D2 

class, moderate drought) to 77 % (0 and D0 class, no drought) for different drought 

intensity classes and varied from and ~ 30% (western Oklahoma) to >80 % (eastern 

Oklahoma) across regions. Our results illustrated that drought intensity thresholds can be 

established by counting DNLSWI (in days) and used as a simple complementary tool in 



 

32 
 

several drought applications for semi-arid and semi-humid regions of Oklahoma. 

However, larger discrepancies between USDM and the LSWI-based algorithm in arid 

regions of western Oklahoma suggest the requirement of further adjustment in the 

algorithm for its application in arid regions. 

 

3.1 Introduction 

Drought is a recurrent and inevitable threat in several parts of the world (Hulse 

and Escott 1986; Shahid and Behrawan 2008; Sönmez et al. 2005). Southern Great Plains 

of the United States experience drought on varying spatial and temporal scales (Basara et 

al. 2013a; Christian et al. 2015b). Drought is also among the most difficult of all natural 

hazards to monitor effectively.  

Yet, the repeated occurrence of drought events has highlighted the need to 

develop effective drought monitoring tools to assess the impacts of this phenomenon.  

Research to retrieve leaf water content from the reflectance acquired from satellite 

sensors has progressed for more than three decades. Tucker 1980 first suggested that the 

1550–1750 nm spectral intervals were the best-suited band in the 700–2500 nm region 

for monitoring plant canopy water status from space. A number of broad-band ratio and 

combination techniques using Thematic Mapper (TM) channel 4 (760–900 nm, near 

infrared) and TM channel 5 (1550-1750nm, shortwave infrared) were proposed for 

remote sensing of plant water status (Hunt et al. 1987; Jackson et al. 1983). The 

combination of the near infra-red (NIR) and short wave infra-red (SWIR) bands has the 

potential of retrieving vegetation canopy water content (Ceccato et al. 2002; Ceccato et 

al. 2001; Maki et al. 2004). The water related vegetation index computed from the 
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combination of NIR and SWIR has different nomenclatures by different authors. Gao 

1996 and Chen et al. 2005 referred it the Normalized Difference Water Index (NDWI. 

Kimes et al. 1981 used the terms Normalized Difference Infrared Index (NDII). 

Similarly, Jurgens 1997 and Xiao et al. 2002a, b called the same combination of NIR and 

SWIR bands as the Land Surface Water Index (LSWI). Despite known by different 

names, the features they have in common is that the NIR spectral region serves as a 

moisture reference band and the SWIR spectral domain is used as the moisture measuring 

band.  The water related vegetation index is a measurement of liquid water in vegetation 

canopies and hence is sensitive to the total amount of liquid water contained in vegetation 

when the vegetation cover is high. Some recent studies (Bajgain et al. 2015; 

Chandrasekara et al. 2011; Wagle et al. 2014) have identified LSWI as an index in 

extracting the vegetation water status and in drought detection.  

Because agricultural drought occurs due to lack of soil moisture and the 

consequent water stress in the vegetation, a water-based index should also be used along 

with the greenness related indices such as Normalized Difference Vegetative Index 

(NDVI) and Enhanced Vegetative Index (EVI) to develop systematic and effective 

method of agriculture drought assessment (Bajgain et al. 2015; Chandrasekara et al. 

2011; Tian et al. 2013; Wagle et al. 2014).The Moderate Resolution Imaging 

Spectrometer (MODIS) sensor onboard the NASA Terra satellite platform provides 

continuous daily observations of the land surface. Our hypothesis is that the water related 

vegetation index LSWI computed from time series MODIS images, offers a new and 

improved capacity for drought monitoring. In this study, we evaluated the hypothesis 

over 113 Mesonet sites across Oklahoma under different land cover and soil types. Also, 



 

34 
 

the drought intensity class classified based on LSWI values corresponding to United 

States Drought Monitor (USDM) drought intensity classes are further linked to the 

duration of LSWI < 0 (DNLSWI) to establish a certain threshold of DNLSWI (in days) to 

define drought intensity classes. Therefore, results from this study will help in improving 

the capability of remote sensing vegetation drought monitoring by establishing LSWI as a 

complimentary tool to existing NDVI based drought products. Specifically, we addressed 

the following research questions: 

1) Is LSWI anomaly able to capture the drought events across multiple sites over years? 

2) Is LSWI-based drought monitoring algorithm developed for two tallgrass prairie sites 

(Bajgain et al., 2015) applicable to quantify drought intensity over 113 Mesonet sites 

comprising various land cover and soil types in Oklahoma?  

3) What is the relationship between the DNLSWI and drought intensity classified by 

USDM? 

 

3.2 Materials and Methods 

3.2.1 Data 

3.2.1.1 Oklahoma Mesonet Stations and rainfall data 

An extensive environmental observation network is well established and 

distributed over Oklahoma, known as the Oklahoma Mesonet (Brock et al. 1995). The 

Oklahoma Mesonet is a network of 120 automated stations with at least one in each 77 

counties of Oklahoma. The Mesonet provides quality-controlled measurements of 

meteorological and land-surface variables such as precipitation, temperature, and soil 
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moisture at intervals spanning 5-30 minutes depending on the variables 

(http://www.Mesonet.org/).  

In this study, we used 113 Mesonet stations that have continuous measurements 

of meteorological parameters from 2000-2013. Retired and replaced Mesonet stations 

were not considered because site replacements were on different MODIS pixels. The 

locations of the selected sites are presented in Fig. 3.1; biophysical features are presented 

in Table S1. In this study, we used the precipitation and soil water content (SWC) data 

for three summer months (Jun-Aug) and calculated the rainfall and SWC anomalies from 

the 14-year mean (2000-2013). Additionally, the anomalies in rainfall calculated from 

30-year rainfall data (climatological normal) from COOP (Cooperative Observer 

Program, National Weather Service) sites were compared with the rainfall anomalies 

computed from a 14-year data from Mesonet stations, two from each climate division of 

Oklahoma.  

 

Figure 3.1. The location and distribution of the Mesonet sites (113 Mesonet stations) 
in Oklahoma, USA. 

http://www.mesonet.org/
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3.2.1.2 MODIS surface reflectance and vegetation index data 

The MODIS is an instrument on board the NASA’s Terra (EOS am) and Aqua 

(EOS pm) spacecraft. This sensor provides simultaneous observations of the atmosphere, 

terrestrial surface, and oceans. The MODIS instrument has a temporal resolution of one 

to two days with high radiometric resolution images (12 bit). It collects data for 36 

spectral bands, and seven of these bands are designated mainly for land surface and 

vegetation studies: blue (459-479 nm), green (545-565 nm), red (620-670 nm), near 

infrared (nir1: 841-875 nm and nir2: 1230-1250 nm), and shortwave infrared (swir1: 

1628-1652 nm, and swir2: 2105-2155 nm) (Lillesand et al. 2014). 

The 8-day MODIS land surface reflectance product (MOD09A1) at a 500-m 

spatial resolution, was used in this study. The MOD09A1 time series datasets for 

individual Mesonet sites were downloaded from the data portal managed by the Earth 

Observation and Modeling Facility at the University of Oklahoma 

(http://eomf.ou.edu/visualization). The geographic locations of the Mesonet sites were 

used to retrieve MODIS data at pixel level. For each MODIS 8-day composite, surface 

reflectance (ρ) values for visible, NIR and SWIR bands were used to calculate NDVI, 

EVI and LSWI as: 

NDVI = ρ NIR1− ρred
ρ NIR1 + ρred

          (1) 

EVI =  ρ NIR1 − ρred
ρ NIR1 + 6 ∗ ρred − 7.5 ρblue + 1

                                                                (2) 

 

LSWI = ρ NIR1 − ρSWIR1 
ρ NIR1 + ρSWIR1

       (3) 
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3.2.1.3 United States Drought Monitor (USDM) data 

The USDM map is a weekly drought product developed by a partnership of 

various agencies including National Oceanic and Atmospheric Administration (NOAA), 

the United States Department of Agriculture (USDA), and the National Drought 

Mitigation Center (NDMC) 

(http://www.drought.unl.edu/MonitoringTools/USDroughtMonitor.aspx). The USDM 

includes a weekly national map displaying dryness divided into five categories, or levels 

of intensities, from D0 to D4, based on a percentile ranking of numerous indicators or 

indices (Svoboda et al. 2002). The D levels are based on a blend of different indices 

including: the Palmer drought index, CPC soil moisture model, United States Geological 

Survey (USGS) weekly streamflow, standardized precipitation index (SPI), and satellite 

vegetation health index (Kogan 2002; Kogan et al. 2004). The D levels are labeled by 

drought intensity or severity, with D1 being the least intense and D4 is the most intense. 

The D0 classification or drought watch areas, are abnormally dry and may be heading 

into drought or recovering from drought but conditions have not yet returned to normal 

(Svoboda et al. 2002). The USDM archived weekly maps are available at 

http://droughtmonitor.unl.edu/archive.html.  

For this study, weekly USDM drought maps for Jun-Aug (2000 to 2013) were 

provided by the National Drought Mitigation Center (NDMC) in shape file format and 

then rasterized to the 10-km ALEXI CONUS grid. Numerical values were assigned to 

each drought category, with no drought conditions set to 0, abnormally dry conditions 

(D0) to 1, moderate drought (D1) to 2, severe drought (D2) to 3, extreme drought (D3) to 

4, and exceptional drought (D4) to 5.  

http://www.drought.unl.edu/MonitoringTools/USDroughtMonitor.aspx
http://droughtmonitor.unl.edu/archive.html
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3.2.2 Methods 

3.2.2.1 LSWI-based agricultural drought monitoring algorithm 

The LSWI-based algorithm uses LSWI as an indicator to assess agricultural 

drought in tallgrass prairie (Bajgain et al. 2015). Generally, green vegetation has positive 

LSWI values (> 0) and dry vegetation has negative LSWI values (< 0). Therefore, LSWI 

< 0 during growing season indicates drought in tallgrass prairie in Oklahoma (Bajgain et 

al. 2015; Wagle et al. 2014). The duration of LSWI < 0 (DNLSWI) during the summer 

months (Jun-Aug) was used to estimate the drought duration and drought intensity.  To 

illustrate the algorithm at single site, the dynamics of rainfall and LSWI in drought 

(2006) and pluvial year (2007) at Marena Mesonet station is presented in Fig. 3.2. The 

LSWI was greater than zero throughout the growing season in 2007 when ecosystem 

received well distributed rainfall, while the LSWI was less than zero for substantial 

number of days in 2006 due to rainfall associated with drought (Dong et al. 2011). 

Therefore, we used DNLSWI during the summer months (Jun-Aug) to reflect the 

duration (length) of drought period as an algorithm to assess summer drought of the 

ecosystem. 
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Figure 3.2. Seasonal dynamics and interannual variations of daily rainfall and land 
surface water index (LSWI) in drought (2006) and pluvial (2007) years at Marena, 
Oklahoma. 

 

3.2.2.2 Anomaly analysis of summer rainfall and LSWI 

Mean LSWI was computed for the summer months and anomalies were 

determined for each station during drought years (2001, 2006, 2011 and 2012) from the 

14-year mean (2000-2013). Similarly, summer rainfall anomalies were computed for each 

station during drought years based on the 14-year mean. The similarity between the 

LSWI anomaly and summer rainfall anomaly for each station was determined by 

evaluating the correlation between them. This method identified the stations where LSWI 

anomalies followed the trends of summer rainfall anomalies, thus providing a direct 

method to assess ecosystem drought.   
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3.3 Results 

3.3.1 Characteristics of summer rainfall over 113 Mesonet sites and identification of 

drought years based on summer rainfall 

Figure 3.3a shows the box plots of the total summer rainfall that occurred in each 

year over the113 Mesonet sites. The dispersion in the rainfall among the 113 stations is 

compared for each year and the line in the box represents the median summer rainfall 

amount which is equivalent to the 50th percentile of observations (113 stations). The 

median summer rainfall was highest (455 mm) in 2007, while the years including 2001, 

2006, 2011 and 2012 had relatively low median rainfall. For example, 50 percent of the 

observations were below 111 mm of summer rainfall in 2011, indicating dry conditions at 

more than half of the Mesonet stations and was consistent with significant drought during 

the period (Hoerling et al. 2013; Tadesse et al. 2015).  

The analysis of summer drought for each year (2000 - 2013) was computed by 

calculating the average summer rainfall from the14-year average. Precipitation values 

representing 50% and 25% of the long-term average rainfall were calculated for each 

station. These values were then deducted from the long-term average at every station to 

obtain values of 25% and 50% precipitation. If the annual rainfall was between 25% and 

50% deficiency then it was classified as moderate drought. If the annual rainfall was less 

than the value of 50% deficiency then it was classified as severe drought. For example, at 

the Acme Mesonet station: 

Average summer rainfall (1981-2010) = 260 mm 

50 % of average summer rainfall = 50% of 260 = 130 mm 

25 % of average summer rainfall = 25 % of 260 = 65 mm 
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50 % deficiency = 260 -130 = 130 mm 

25 % deficiency= 260 – 65 = 195 mm 

Summer rainfall during 2011 = 83 mm 

Thus, the summer rainfall at Acme in 2011 was less than the calculated 50% deficiency 

and was subsequently classified as severe drought.  

Based on annual rainfall deficiency, the majority of the stations received less than normal 

amounts of rainfall in 2001, 2006, 2011, and 2012, whereas stations received normal to 

above normal rainfall in 2004, 2007, 2008, and 2013 (Fig. 3.3b).  For example, in 2011, 

drought occurred at nearly all stations whereby 70% of stations included at least the 

moderate drought classification with 29% of those classified as severe.  

A frequency distribution was completed for drought periods when compared with 

the total period by computing total summer rainfall (Jun-Aug) for 1582 site-years (14 

years × 113 sites) of total data. The results displayed in Fig. 3.3c demonstrate that 

drought site years have a significant right skew in distribution whereby the summer 

rainfall ranged from 50 to 350 mm with the greatest number falling within 150 mm bin. 

Conversely, the frequency distribution for all years (drought plus normal) ranged from 50 

to 500 mm with the highest number falling within the 250 mm bin.  

Figure 3.3d shows the anomalies in summer rainfall calculated from a 30-year 

rainfall data (climatological normal) from COOP sites compared with the rainfall 

anomalies computed from a 14-year data from Mesonet stations, two from each climate 

divisions of Oklahoma. The correlation analysis showed a strong relationship (r2 = 0.91) 

between the anomalies of rainfall obtained from two data sources, suggesting drought 
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years (2001, 2006, 2011 and 2012) identified in our analysis can represent the climatic 

extremes of Oklahoma in the last decade based on climatological normal perspective.  
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Figure 3.3. Summer rainfall across 113 Mesonet sites during 2000-2013 (a). The solid 
lines in the box represent the median and the dots above and below the box represent 
the 95 and 5 percentiles, respectively. Yearly summer drought analysis by rainfall 
deficiency: percentage of the Mesonet stations under three drought categories (severe, 
moderate and normal) for 2000 - 2013 (b). The frequency distribution of site-year 
grouped under different summer rainfall regimes (c) for whole study period (2000 -
2013) and for drought years (2001, 2006, 2011, and 2012). Correlation of rainfall 
anomalies calculated from 30-year rainfall data from COOP (Cooperative Observer 
Program) and 15-year rainfall data from Mesonet stations (d). 
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3.3.2 The relationship between rainfall anomaly and LSWI anomaly 

Once the drought years were selected, the relationship between summer rainfall 

anomalies and LSWI anomalies was investigated.  Figure 3.4 displays the LSWI 

anomalies and summer rainfall anomalies for individual pixels over the 113 Mesonet 

stations during drought years (2001, 2006, 2011, and 2012). Overall, the anomalous 

summer rainfall results in anomalous LSWI at most Mesonet stations during drought 

years. As such, the anomalies in summer rainfall and LSWI revealed a strong relationship 

between rainfall and vegetation water content. For example, pixel-based correlation 

analyses between summer rainfall anomalies and LSWI anomalies are presented in Fig. 

3.4 (inset graphs). For all identified drought years, strong relationships (r2= 0.61 – 0.67) 

between anomalies of summer rainfall and anomalies of LSWI were identified. Although 

the magnitudes of the anomalies of summer rainfall and LSWI varied from year to year, 

the relationship between two parameters was consistently strong.  
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Figure 3.4. Dynamics of summer rainfall and LSWI anomalies in drought years: (a) 
2001, (b) 2006, (c) 2011 and (d) 2012 at 113 Mesonet stations. The inset graphs are the 
regression analyses between summer rainfall and LSWI anomalies (n=113). 
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3.3.3 The relationship between soil water content (SWC) anomaly and vegetation 

indices anomaly 

Figure 3.5 presents the Pearson correlation coefficients (r) between soil water 

content anomalies (SWCanomalies) and three vegetation anomalies (NDVI, EVI, and 

LSWI). As expected, a better relationship (rLSWI=0.52) of SWC-anomalies was observed 

with LSWI-anomalies than NDVI anomalies (r NDVI=0.40) and EVI-anomalies 

(rEVI=0.44). We examined the correlation coefficients (rLSWI, rEVI and r NDVI) for all 113 

Mesonet stations. Figure 3.6 compares the r values derived for NDVI, EVI, and LSWI 

anomalies with SWC anomalies. The analysis showed the significant difference between 

rLSWI & r NDVI, and rLSWI & rEVI with p-values less than 0.0001. As a whole, there are 

significant r values that fall above the 1:1 line towards the rLSWI. The rLSWI was 25% and 

20% higher than rNDVI and rEVI, respectively, suggesting LSWI as a better indicator of 

soil water content as compared to NDVI and EVI.  

3.3.4 The relationship between LSWI-based drought duration and summer rainfall 

Figure 3.7 shows the scatter plot of DNLSWI versus total summer rainfall across 

113 Mesonet stations binned into 50 mm classes. The result highlights that LSWI was 

highly sensitive to summer rainfall and the DNLSWI rapidly decreased as the amount of 

rainfall increased. Specifically, the DNLSWI was more than 50 days when summer 

rainfall was less than 150 mm indicating water stress (LSWI < 0) during active growing 

period of the vegetation. Conversely, the DNLSWI was less than two weeks when 

summer rainfall was greater than 400 mm. 
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Figure 3.5. Correlation analysis between soil water content (SWC) anomaly and 
vegetation indices (VIs) anomaly a) NDVI, b) EVI and c) LSWI. Each point represents 
the VIs anomaly and SWC anomaly value for each month of the summer from 2000-
2013. 
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Figure 3.6. Relationship between the values of correlation coefficients of VIs anomaly 
and SWC anomaly. Each point represents the correlation coefficient obtained by 
plotting monthly anomaly values for each station. 

 

Figure 3.7.  Relationship between summer rainfall and duration of LSWI < 0. Each 
point is an average for all Mesonet stations binned by 50 mm of summer rainfall. 
 

The longitudinal gradient of summer rainfall is a widely recognized pattern in 

Oklahoma where the amount of rainfall decreases from East (mean summer rainfall ~ 

300mm) to West (mean summer rainfall ~ 150 mm; Fig. 3.8a). To understand the 

occurrence of drought across the rainfall gradient of Oklahoma, we counted total 

DNLSWI during summer months (Jun-Aug) from 2000 to 2013 for all Oklahoma 

Mesonet stations. As expected, a distinct increasing pattern of total number of DNLSWI 

was observed across East-West gradient of Oklahoma (Fig. 3.8b), which was opposite to 

the rainfall pattern. The sites towards the east with greater amount of average summer 

rainfall had the least DNLSWI whereas a general increment of DNLSWI was observed 

with lesser precipitation as we moved from East to West.  
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3.3.5 Characteristics of DNLSWI and USDM drought history (2000-2013) 

The pattern associated with DNLSWI for 113 Mesonet stations during the study 

period (2000-2013) is presented as box plots in Fig. 3.9a. These plots revealed the 

distribution of DNLSWI among the Mesonet sites within a year and among years. The 

median DNLSWI was relatively greater during the drought years (2000 = 32 days, 2006 

=48 days, 2011 =56 days and 2012 = 56 days) than non-drought years.  

 

Figure 3.8. The performance of LSWI to track East-West rainfall gradient of 
Oklahoma: (a) average summer rainfall gradient from East to West and (b) DNLSWI 
(total number of days with LSWI < 0 during summer months) from 2000-2013 for 
113 Mesonet stations arranged by East-West geographical locations. 
 

The distribution as well as the median DNLSWI was the lowest in 2007 which was a 

pluvial year and the wettest summer on record in central Oklahoma (Arndt et al. 2009; 

 



 

49 
 

Christian et al. 2015b; Dong et al. 2011). Figure 3.9b shows the frequency distribution of 

the Mesonet stations (113 stations over 14 years) with associated DNLSWI (113 stations 

over 3 months) for the total study period and drought years separately. The count was 

highest for DNLSWI equal to 8 days because it is very common that majority of the 

stations could have LSWI below zero for 8 days over limited period during seasonal 

drying. However, the ratio of drought years to all years increased as the DNLSWI 

increased, suggesting that drought years contributed larger counts for the higher 

DNLSWI (Fig 3.9c). For example, ratio of 0.13 for DNLSWI equal to 8 days means only 

13 % of the total counts was contributed by the drought years, while for DNLSWI equal 

to 64 days, drought years contributed 63% of the total counts, suggesting higher 

DNLSWI during the drought years. 
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Figure 3.9. Duration of LSWI < 0 (DNLSWI) across 113 Mesonet sites during 2000-
2013(a). The solid lines in the box represent the median and the dots above and below 
the box represent the 95 and 5 percentiles, respectively. The frequency distribution 
of the Mesonet stations (113 stations times 14 years) with associated DNLSWI for 
2000 -2013 (b) and the ratio of number of stations with drought years to total years 
(drought and normal) for respective DNLSWI bins (c). 
  

Figure 3.10 shows the weekly percentage of Oklahoma Mesonet sites affected by D0 to 

D4 drought from 2000 to 2013. The drought periods spanning 2006, 2011, and 2012 were 

evident and reached D4 status for extended periods. The plot also depicts the pluvial 

condition during 2007 when D0 drought occurred in a very limited temporal window. 

However, significant areas, especially sites in western Oklahoma where drought 

conditions persisted even though majority of the state yielded above normal precipitation, 

showed higher intensity summer drought in 2013, which was also considered as an 

overall pluvial year based on total year rainfall. 

 

 

Figure 3.10. Percent of Oklahoma area covered by a USDM drought designation from 
2000-2013. The designations 0 (no drought), D0 (Abnormally dry), D1 (Drought-
Moderate), D2 (Drought-Severe), D3 (Drought-Extreme), and D4 (Drought-
Exceptional) are the drought intensity classes defined by USDM (Data Source: U.S. 
Drought Monitor). 
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3.3.6 The Relationship between LSWI-based drought severity and USDM drought 

intensity categories 

The LSWI values corresponding to its NDVI values for each week based on 

USDM weekly map is plotted in Fig. 3.11. Results showed that larger negative values of 

LSWI corresponded to higher drought intensity categories identified by USDM classes 

(i.e, D3 and D4 - extreme and exceptional), while no drought and abnormally dry 

categories (0 and D0) corresponded to the larger positive LSWI values. Further, moderate 

to severe drought categories (D1 and D2) corresponded to intermediate LSWI values. 

Based on this LSWI-NDVI two-dimensional scatter plot, we identified the range of 

LSWI values for each drought categories used by USDM in Bajgain et al. 2015. Due to 

the large number of site years and mixture of land cover types, the groupings of drought 

intensity could not be visualized effectively within the range formulated on observations 

at two tallgrass prairie sites. However, the general pattern that higher drought intensity 

tends to have lower LSWI values and vice-versa was observed for all land cover types as 

well as grasslands and croplands. Compared to all land cover types and croplands, 

grasslands showed better relationships to the drought intensity categories. To determine 

the agreement between LSWI-based drought intensity classification based on the LSWI 

value range and USDM drought categories (Table 1), we computed the percentage of 

pixels that fall within the defined LSWI value range for the particular drought class. The 

assessment was performed for different land cover types (all land covers, grasslands and 

croplands) (Fig. 3.12a). 
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Table 3.1.  A summary of the USDM Drought Intensity Classes and the LSWI-based 

classes (see Bajgain et al., 2015) 

 

 

 

Overall, the agreement was higher (>60%) for low intensity (0 and D0) and high intensity 

(D3 and D4) droughts (the two ends of drought class), but the intermediate drought 

intensity (D1 and D2) had relatively low agreement. However, the relationship was 

slightly improved when computed for individual land cover types with grasslands 

showing the best agreement.  

USDM Drought Intensity Class Description LSWI-D values  

0 

D0 

non-drought 

abnormally dry 

 

LSWI > 0.1 

D1 drought-moderate 0 < LSWI ≤ 0.1 

D2 drought-severe -0.1 < LSWI ≤ 0 

D3 

D4 

drought-extreme 

drought-exceptional 

 

LSWI ≤ -0.1 
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Figure 3.11. Relationship between: NDVI and LSWI for individual pixels of the all 
types (a), grasslands (b), and croplands (c) land cover sites for Jun – Aug over a 14-
year study period (2000-2013). Each point in the plot represents the weekly 
observation of drought intensity designation for the study area as determined from 
U.S. drought monitor (USDM) drought maps. 
(http://droughtmonitor.unl.edu/MapsAndData/).  
 

Furthermore, we analyzed the agreement of the LSWI-based drought 

classification for nine climate divisions of Oklahoma to further analyze the spatial 

variability of drought tracking by the LSWI-based algorithm (Fig. 3.12b). The LSWI-

http://droughtmonitor.unl.edu/MapsAndData/
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identification showed better agreement (>80 %) with USDM 0 and D0 (no dry & 

abnormally dry) classes in the eastern humid areas whereas the agreement was low 

(<30%) for the same drought classes in the western arid areas (panhandle). However, the 

western region identified as severe to exceptional drought (D3 &D4) by USDM matched 

very well with the new LSWI-based classification. For example, 91% of the pixels were 

classified as severe and exceptional droughts in the panhandle region whereas USDM 

also identified the same drought intensity. However, only 19 % of the low intensity 

drought pixels matched well with the lower intensity drought classification of USDM. 

 

The relationship between USDM drought intensity, DNLSWI and average LSWI 

value is presented in Fig. 3.13. The general observation was that drought intensity 

increased as DNLSWI became longer. For short DNLSWI periods (0-24 days) the 

drought impact was sharp and then plateaued between 24-48 days. As DNLSWI became 

larger (> 48 days), the addition of each new day resulted into larger drought impacts 

identified as a higher drought intensity class by the USDM (Fig 3.13). This relationship 

was further supported by the average LSWI values which declined as DNLSWI 

increased. The decreasing pattern of average LSWI was also persistent for the shorter 

DNLSWI but declined sharply as the DNLSWI was longer than 50-60 days.  
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Figure 3.12. Agreement of the drought intensity class to the LSWI-based classification 
adapted from Bajgain et al. 2015 for different a) land cover and b) climate divisions 
of Oklahoma (NE: North Eastern; EC: East Central; SE: South Eastern; CT: 
Central; NC: North Central; SC: South Central; WC: West Central; SW: South 
Western and PH: Panhandle)  
 

3.4 Discussion 

The correlation analyses between summer rainfall anomalies and LSWI anomalies 

in drought years revealed sensitivity of LSWI to summer rainfall variability in Oklahoma. 
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Higher negative anomalies in summer rainfall resulted in larger decline in LSWI values, 

an indication of drought-impacted vegetation (Bajgain et al. 2015; Wagle et al. 2014). 

Regardless of different land cover and soil types across 113 Oklahoma Mesonet sites 

LSWI tracked droughts in majority of the study sites. However, it over classified the low 

intensity droughts in arid western regions of Oklahoma. Given the anticipated future 

increase in precipitation variability (Liu et al. 2012; Zhang and Nearing 2005), 

ecosystems in this region are expected to be particularly susceptible to droughts resulting 

large losses for food and livestock industries. Our results suggested that the ability of 

LSWI to track the summer rainfall anomalies could be one of the important features to 

assess and track agricultural droughts. Our finding on the performance of LSWI to track 

water content of the ecosystem was consistent with the results by Chandrasekara et al. 

2011 that demonstrated LSWI as a potential indicator of increasing water content in the 

ecosystem following the onset of monsoon in India. Since commonly used NDVI and 

EVI are not always good indicators of vegetation conditions especially during adverse 

climatic conditions for vegetation growth (Gamon et al. 1995; Gamon et al. 1993), LSWI 

can better track the drought-impacted vegetation because of its higher sensitivity to 

drought (Bajgain et al. 2015; Chandrasekara et al. 2011; Tian et al. 2013; Wagle et al. 

2014) . The opposite longitudinal patterns of DNLSWI and summer rainfall suggested 

that counting the DNLSWI (in days) has the ability in tracking the drought across various 

mesonet sites of Oklahoma. The results illustrate that LSWI can be used as an effective 

tool to monitor dryness persisted in the diverse (land cover and soil types) ecosystems in 

semi-arid and semi-humid regions in eastern and central Oklahoma. However, the spatial 

variability of drought tracking ability was observed based on drought intensity. In Eastern 
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humid regions of Oklahoma both USDM-D and LSWI-D showed no drought (0 drought 

class) when average summer rainfall was above 250-300 mm (Table 2). However, in 

western dry region of Oklahoma, USDM and LSWI based drought categories were 

different. For example, above 150 mm of summer rainfall was considered as no drought 

categories by USDM, but LSWI showed severe drought category (D3) with 150-300 mm 

of summer rainfall. The less agreement between our LSWI-based and USDM drought 

categories for the low drought intensity categories is because of the fact that dry areas 

like panhandle region of Oklahoma has higher negative LSWI values, and consequently, 

the LSWI-based algorithm showed higher drought severity. LSWI values are considered 

proxy of vegetation water content and are the physical values whereas USDM considered 

several factors including local reports of drought conditions (such as reports from water 

managers and residents) (Svoboda et al. 2002). This made USDM assessment more 

locally adjusted despite of coarse spatial resolution.  
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Table 3.2.  USDM and LSWI based drought classes in Eastern and western 

Oklahoma binned by average summer rainfall of the Mesonet stations located in the 

areas.   

 
  Eastern OK Western OK 

Summer Rain (mm) 
USDM-D 

class 
LSWI-D 

class 
USDM-D 

class 
LSWI-D 

class 
50-100 3 2 5 5 
100-150 2 2 4 5 
150-200 2 3 1 3 
200-250 0.5 0.5 0 3.5 
250-300 0 0 0.2 3 
300-350 0 0 0 1.5 
350-400 0 0 0 0 
400-450 0 0   

450-above 0 0     
 

One of the main reasons behind attempting to establish the relationship between 

summer rainfall and LSWI was to determine the hydrological status of the ecosystem. 

The total amount of summer rainfall received by a particular ecosystem in a particular 

year could be related to DNLSWI which in turn can be inferred in terms of drought 

intensity. Though, our results showed a smooth decreasing trend of DNLSWI with 

increasing summer rainfall, site specific relationship could  not be established (Bajgain et 

al. 2015) because averaging multiple data points produced a smoother overall trend. 

Thus, additional experiments are needed to identify the threshold values for each site with 

different soil and crop types in the future. Rainfall expressed as a percentage departure 

from the long-term average for a given period is widely used index for drought 

monitoring where monitoring other parameters such as soil moisture or 

evapotranspiration are costly and difficult (Nicholson 1989, 2000). With this approach, 
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where total summer rainfall is inferred in terms of DNLSWI for assessing drought is 

extremely valuable since LSWI is derived from satellite sensors. Therefore, it is very 

important to apply this information rendered from LSWI and summer rainfall relationship 

while developing drought monitoring network for this region. 

Knowledge of LSWI-based drought intensity could be critical for assessing 

drought with different parameters like DNLSWI. Quantifying drought intensity in terms 

of LSWI and defining a threshold for each USDM drought class will be an important 

implication for a future drought-monitoring program. For example, secretarial disaster 

area determination and notification process depends on the USDM drought intensity 

classification for designating any geographical unit as a disaster area (USDA, 2012). The 

criteria used are the area should be under either D3 or D2 (at least 8 consecutive weeks) 

drought class. USDM drought classification involves a series of information for finding a 

threshold, comprised of complex procedures as well as could have a limited spatial 

precision because it relies on spatially interpolated climate data input (Tadesse et al. 

2015). Our results suggested that this USDM drought intensity class can be linked with 

DNLSWI. The intersection of intensity curve and LSWIavg curves in Fig. 3.13 established 

a threshold point at which drought impacts increased sharply as LSWIavg declined. This 

threshold value is between the D2 and D3 drought intensity classes and can be inferred in 

terms of DNLSWI, which is approximately 60-62 days. Many agencies have used USDM 

drought intensity class thresholds to guide measures in a variety of assistance programs 

such as Livestock Forage Disaster Program (LFP), Emergency Haying and Grazing, 

Livestock Indemnity Program, Noninsured Crop Disaster Assistance program (NAP) and 

Crop Insurance Basics (Mallya et al. 2013; Mizzell and Lakshmi 2003; Otkin et al. 2015). 
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Such assistance programs can alternatively input DNLSWI thresholds for simple and 

easy operations as well as for a better precision in terms of spatial resolution (500m). 

However, validation of this approach of LSWI-based thresholds for such kind of 

applications remains a further research topic. 

 

Figure 3.13. Relationship between USDM based drought intensity classes, DNLSWI 
(duration of LSWI < 0) and average LSWI. The USDM drought intensity classes 0, 
D0, D1, D2, D3, and D4 are set to 0, 1, 2, 3, 4, and 5 respectively.  

 

The MODIS derived LSWI-based drought assessment algorithm, is simple and 

has a higher spatial resolution (~500). However,  the LSWI-based drought algorithm can 

have a limitation when the reflectance from land surface is impacted by cloud cover 

(Jensen 2009). An appropriate gap-filling algorithm can create a continuous dataset, 

thereby reducing the effect of unreliable observations, which is needed for making the 

drought monitoring algorithm robust. Another limitation is the threshold values used in 

the algorithm. We used LSWI < 0 during the growing season as the indicator of 
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agricultural drought in tallgrass prairie based on calibration made on two study sites 

(Bajgain et al. 2015) .Although, the algorithm showed good agreement in most of the 

Mesonet sites, the DNLSWI clearly over-classified D0 and D1 drought conditions in the 

arid regions of Oklahoma .This is because these regions receive less rainfall than the 

semi-arid to semi-humid regions of eastern Oklahoma, where the algorithm was 

originally calibrated. This result suggests that it is necessary to further refine the LSWI-

based algorithm to better represent drought severity in arid western regions of Oklahoma. 

One of the possible adjustments could be the LSWI threshold values for the arid region 

considering more negative magnitudes of the LSWI values in arid regions. This 

adjustment could reduce the discrepancies observed between the LSWI and USDM 

drought classification especially for lower drought intensity resulted from the larger 

negative values of LSWI, a common feature of arid region.  

 

5. Conclusions 

Results of LSWI analysis for the period of 2000-2013 for 113 Mesonet stations 

across Oklahoma revealed valuable information within the context of drought tracking. A 

strong correlation and dynamics between LSWI-anomalies and summer rainfall 

anomalies comprises a fact that LSWI is sensitive to rainfall variations and can be used as 

an indicator of drought occurrence in an ecosystem. It is then deduced that DNLSWI had 

the close association with the vegetation condition under rainfall variations. Pixel based 

drought intensity classification has been tested to validate the LSWI-based drought class 

for different land cover and soil types. Despite a relatively lower degree of agreement for 

the intermediate drought classes, the LSWI-based drought intensity class was reliable for 
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low and high intensity classes defined by USDM.  There was a longitudinal sensitivity 

for low intensity droughts between eastern and western Oklahoma as shown by lower 

agreement of D0 and D1 drought with USDM in panhandle region (western Oklahoma).  

The drought assessment at larger scale could be made more effective by incorporating 

information and features of LSWI such as DNLSWI from a site level to a regional scale 

with further improvement for arid regions where larger negative LSWI values are 

common. The analogy of DNLSWI to USDM drought intensity class could be made 

complement in current drought monitoring program and algorithms. Results also 

demonstrated that by counting the number of DNLSWI, drought intensity thresholds can 

be established and used as a simple complementary tool in several applications.   
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3.6 Supplementary materials 

S
N Name ID County Latitude Longitude Land cover Soil  

1 Acme ACME Grady 
34.8083

3 -98.02325 Grassland Sandy loam 

2 Ada ADAX Pontotoc 
34.7985

1 -96.66909 Grassland Sandy loam 

3 Altus ALTU Jackson 
34.5872

2 -99.33808 Cropland Clay loam 

4 Alva ALVA Woods 
36.7082

3 -98.70974 Cropland Clay loam 

5 Antlers ANTL 
Pushmatah
a 

34.2496
7 -95.66844 Cropland N/A 

6 Apache APAC Caddo 
34.9141

8 -98.29216 Cropland Loamy sand 

7 Ardmore 
ARD
M Carter 

34.1925
8 -97.08568 Cropland Loam 

8 Arnett ARNE Ellis 
36.0720

4 -99.90308 Shrubs Sandy loam 

9 Beaver BEAV Beaver 
36.8025

3 
-

100.53012 Grassland Loam 

10 Bessie BESS Washita 
35.4018

5 -99.05847 Grassland Silt loam 

11 Bixby BIXB Tulsa 
35.9630

5 -95.86621 Cropland Sandy loam 

12 Blackwell BLAC Kay 
36.7544

3 -97.25452 Cropland Silt loam 

13 Boise City BOIS Cimarron 
36.6925

6 
-

102.49713 Cropland Clay loam 

14 Bowlegs 
BOW
L Seminole 

35.1715
6 -96.63121 Grassland Sandy loam 

15 
Breckinridg
e BREC Garfield 

36.4120
1 -97.69394 Cropland Silt loam 

16 Bristow BRIS Creek 35.7805 -96.35404 Grassland Sandy loam 

17 
Broken 
Bow BROK McCurtain 34.0433 -94.6244 Grassland N/A 

18 Buffalo BUFF Harper 
36.8312

9 -99.64101 Cropland Loam 

19 Burbank BURB Osage 
36.6345

9 -96.81046 Cropland N/A 

20 Bourneville BURN Love 
33.8937

6 -97.26918 Cropland Loamy sand 
21 Butler BUTL Custer 35.5915 -99.27059 Cropland Silt loam 
22 Byars BYAR Garvin 34.8497 -97.0033 Grassland Loamy sand 

23 Camargo 
CAM
A Dewey 

36.0286
6 -99.34652 Cropland Loam 

24 Centrahoma CENT Coal 
34.6089

6 -96.33309 Grassland Sandy loam 

Table S1. The location and biophysical features of the 113 Oklahoma Mesonet sites 
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25 Chandler CHAN Lincoln 
35.6528

2 -96.80407 Grassland 
Sandy clay 
loam 

26 Cherokee CHER Alfalfa 
36.7481

3 -98.36274 Cropland Loam 

27 Cheyenne CHEY 
Roger 
Mills 

35.5461
5 -99.7279 Shrubs Sandy loam 

28 Chikashaw CHIC Grady 
35.0323

6 -97.91446 Cropland N/A 

29 Clayton CLAY 
Pushmatah
a 

34.6565
7 -95.32596 Grassland N/A 

30 Cloudy CLOU 
Pushmatah
a 

34.2232
1 -95.2487 Grassland Silt loam 

31 Cookson COOK Cherokee 
35.6800

1 -94.84896 Grassland Silt loam 

32 Copan COPA 
Washingto
n 

36.9098
7 -95.88553 Cropland Loam 

33 Durant DURA Bryan 
33.9207

5 -96.32027 Grassland Sandy loam 

34 El Reno ELRE Canadian 
35.5484

8 -98.03654 Grassland Silt loam 

35 Erick ERIC Beckham 
35.2049

4 -99.80344 Grassland Loamy sand 
        

36 Eufaula EUFA McIntosh 
35.3032

4 -95.65707 Grassland Loam 

37 fairview FAIR Major 
36.2635

3 -98.49766 Cropland Silt loam 

38 fittstown FITT Pontotoc 
34.5520

5 -96.71779 Grassland Sandy loam 
39 Foraker FORA Osage 36.84053 -96.42777 Cropland Sandy loam 

40 freedom FREE 
Woodwar
d 36.72562 -99.14234 

Grasslan
d Silt loam 

41 Fort Cobb FTCB Caddo 35.14887 -98.46607 Cropland Loamy sand 

42 Goodwell GOOD Texas 36.60183 -101.6013 
Grasslan
d Loam 

43 Grandfield GRAN Tillman 34.2392 -98.7397 Cropland Clay loam 

44 Guthrie GUTH Logan 35.84891 -97.47978 
Grasslan
d Sandy loam 

45 Haskell HASK Muskogee 35.74798 -95.64047 Cropland Silt loam 

46 Hectroville HECT Okmulgee 35.84162 -96.0024 
Grasslan
d Loam 

47 Hinton HINT Caddo 35.48439 -98.48151 Cropland Sandy loam 
48 Hobart HOBA Kiowa 34.98971 -99.05283 Cropland Silty clay loam 
49 Hollis HOLL Harmon 34.6855 -99.83331 Cropland N/A 

50 Hooker HOOK Texas 36.85518 
-

101.22547 Cropland loam 

51 Hugo HUGO Choctaw 34.03084 -95.54011 
Grasslan
d Loam 

52 Idabel IDAB 
McCurtai
n 33.83013 -94.8803 

Grasslan
d Silt loam 

53 Inola INOL Rogers 36.14246 -95.45067 Cropland Loam 
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54 Jay JAYX Delaware 36.4821 -94.78287 
Grasslan
d Silt loam 

55 Kenton KENT Cimarron 36.82937 -102.8782 
Grasslan
d Loam 

56 Ketchum Ranch KETC Stephens 34.52887 -97.76484 
Grasslan
d Loam 

57 Kingfisher KING 
Kingfishe
r 35.8805 -97.91121 Cropland Sandy Loam 

58 Lahoma LAHO Major 36.38435 -98.11139 Cropland Silt loam 
59 Lane LANE Atoka 34.30876 -95.99716 Cropland Sandy loam 

60 Madill MADI Marshall 34.03579 -96.94394 
Grasslan
d N/A 

61 Mangum MANG Greer 34.83592 -99.42398 
Grasslan
d Sand 

62 Marena MARE Payne 36.06434 -97.21271 
Grasslan
d 

Sandy clay 
loam 

63 May ranch MAYR Woods 36.98707 -99.01109 Cropland Sandy loam 

64 McAlester MCAL Pittsburg 34.88231 -95.78096 
Grasslan
d Loamy sand 

65 Medford MEDF Grant 36.79242 -97.74577 
Grasslan
d N/A 

66 Medicine Park MEDI 
Comanch
e 34.72921 -98.56936 

Grasslan
d Sandy loam 

67 Miami MIAM Ottawa 36.88832 -94.84437 
Grasslan
d Silt loam 

68 Minco MINC Grady 35.27225 -97.95553 
Grasslan
d Silt loam 

69 Marshall MRSH Logan 36.11685 -97.60685 Cropland Silt loam 

70 Mt Herman MTHE 
McCurtai
n 34.31072 -94.82275  N/A 

71 Newkirk NEWK Kay 36.8981 -96.91035 
Grasslan
d Silt loam 

72 Newport NEWP Carter 34.2281 -97.20142 
Grasslan
d N/A 

73 Ninnekah NINN Grady 34.96774 -97.95202 Cropland N/A 

74 Norman NORM Cleveland 35.2556 -97.4836 
Grasslan
d Silt loam 

75 Nowata NOWA Nowata 36.74374 -95.60795 
Grasslan
d Silt loam 

76 Oilton OILT Creek 36.03126 -96.49749 
Grasslan
d Sandy loam 

77 Okemah OKEM Okfuskee 35.43172 -96.26265 
Grasslan
d Silt loam 
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78 Okmulgee OKMU Okmulgee 35.58211 -95.91473 Grassland Loam 
79 Pauls Valley PAUL Garvin 34.7155 -97.22924 Grassland Silt loam 
80 Pawnee PAWN Pawnee 36.36114 -96.76986 Cropland Silty clay loam 
81 Perkins PERK Payne 35.99865 -97.04831 Cropland Loam 
82 porter PORT Wagoner 35.8257 -95.55976 Grassland Sandy loam 
83 Pryor PRYO Mayes 36.36914 -95.27138 Grassland Silt loam 
84 Putnam PUTN Dewey 35.89904 -98.96038 Cropland Loam 
85 Red rock REDR Noble 36.3559 -97.15306 Grassland Loam 
86 Ringling RING Jefferson 34.19365 -97.58812 Grassland Sandy loam 
87 Sallisaw SALL Sequoyah 35.43815 -94.79805 Grassland Silt loam 
88 Seiling SEIL Woodward 36.19033 -99.0403 Grassland Loam 
89 Shawnee SHAW Pottawatomie 35.36492 -96.94822 Grassland Silt loam 
90 Skiatook SKIA Osage 36.4153 -96.03706 Grassland Sandy loam 
91 Slapout SLAP Beaver 36.59749 -100.26192 Grassland Sand 
92 Spencer SPEN Oklahoma 35.54208 -97.34146 Grassland Sandy loam 
93 Stigler STIG Haskell 35.26527 -95.18116 Grassland Silt loam 
94 Stillwater STIL Payne 36.12093 -97.09527 Grassland Silty clay loam 
95 Stuart STUA Pittsburg 34.87642 -96.06982 Grassland Loamy sand 
96 Sulphur SULP Murray 34.5661 -96.95048 Grassland N/A 
97 Tahlequah TAHL Cherokee 35.97235 -94.98671 Cropland Silt loam 
98 Talihina TALA Rogers 36.57431 -95.74515 Grassland  N/A 
99 Tipton TIPT Tillman 34.43972 -99.13755 Cropland Sandy loam 

100 Tishomingo TISH Johnston 34.33262 -96.67895 Grassland Silt loam 
101 Vanoss VANO Pontotoc 34.79146 -96.84381 Grassland  N/A 
102 Vinita VINI Craig 36.77536 -95.22094 Grassland Silt loam 
103 Walters WALT Cotton 34.3647 -98.32025 Grassland N/A 
104 Washington WASH McClain 34.98224 -97.52109 Grassland Loam 
105 Watonga WATO Blaine 35.84185 -98.52615 Cropland Loam 
106 Waurika WAUR Jefferson 34.16775 -97.98815 Grassland Sandy loam 
107 Weatherford WEAT Custer 35.5083 -98.77509 Cropland Silt loam 
108 Webber falls WEBB Muskogee 35.47298 -95.13209 Cropland Silt Loam 
109 Westville WEST Muskogee 35.489 -95.1233 Grassland Silt loam 
110 Wilburton WILB Latimer 34.90092 -95.34805 Grassland Silt loam 
111 Wister WIST Le Flore 34.98426 -94.68778 Grassland Silt loam 
112 Woodward WOOD Woodward 36.42329 -99.41682 Grassland Sandy loam 
113 Wyona WYNO Osage 36.51806 -96.34222 Grassland Silt loam 
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Chapter 4: Contrasting carbon dioxide and water vapor fluxes between winter 

wheat and tallgrass prairie in central Oklahoma 

 

Abstract 

Winter wheat (Triticum aestivum L.) and tallgrass prairie are common land cover 

types in the southern plains of the United States. During the last century, agricultural 

expansion into native grasslands was extensive, particularly managed pasture or dryland 

crops such as winter wheat. In this study, we measured carbon dioxide (CO2) and water 

vapor (H2O) fluxes from winter wheat and tallgrass prairie sites at El Reno in Central 

Oklahoma using the eddy covariance technique in 2015 and 2016. The objective of this 

study was to contrast CO2 and H2O fluxes between these two ecosystems to provide 

insights on the impacts of conversion of tallgrass prairie to winter wheat on regional 

carbon and water budgets. Daily net ecosystem CO2 exchange (NEE) reached seasonal 

peaks of - 9.4 and -8.8 g C m-2 in 2015 and - 6.2 and -7.5 g C m-2 in 2016 at winter wheat 

and tall grass prairie sites, respectively. The winter wheat site was a net sink of carbon for 

four months (February-May), whereas the tallgrass prairie site was a net sink of carbon 

for seven months (March-September). At the annual scale, the winter wheat site was a net 

source of carbon (56 ± 13 and 33 ± 9 g C m-2 yr-1 in 2015 and 2016, respectively). In 

contrast, the tallgrass prairie site was a net sink of carbon (-128 ± 69 and -119 ± 53 g C 

m-2 yr-1 in 2015 and 2016, respectively). The daily ET reached seasonal maximum of 6.0 

and 5.3 mm in 2015 and 7.2 and 8.2 mm day-1 in 2016 at the winter wheat and tallgrass 

prairie sites, respectively. Although ecosystem water use efficiency (EWUE) was higher 

in winter wheat (11 - 13 g CO2 mm-1 ET) than in tallgrass prairie (7 – 8.5 g CO2 mm-1 
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ET) at the seasonal scale, summer fallow contributed higher water loss from the wheat 

site resulting into lower EWUE at the annual scale. Considering the large scale of land 

use conversion from prairie to winter wheat, our results indicate that the differences in 

magnitudes and patterns of CO2 and H2O fluxes between the two ecosystems can 

influence carbon and water budgets at the regional scale. 

 

4.1 Introduction 

Land use has changed rapidly across much of North America during the last 

century, mainly due to  intensification and expansion of agricultural cultivation in many 

central and western states (Turner and Meyer 1994; Wright and Wimberly 2013). In the 

Great Plains region, agricultural expansion into native grasslands has been extensive, as 

particularly either managed pasture or dryland crops such as wheat (winter and spring, 

Triticum aestivum L.)  and sorghum (Sorghum bicolor L.) (Lark et al. 2015; Riebsame 

1990). The savannas and tallgrass  prairie have been replaced by cultivated crops and 

only about 4 % of tall grass prairie which once covered a large portion of the central US 

remains today (Claassen et al. 2011; Fischer et al. 2007). 

Grasslands contributed about 77% (2.3 million hectares) of new croplands in the 

US from 2008-2012 (Lark et al. 2015). Out of the converted land, 26% was planted to 

corn (Zea mays L.), followed by wheat (25%). The expansion of wheat was more 

common across the central plains, with spring wheat in the north and winter wheat in the 

south (Lark et al. 2015). Land cover remote sensing datasets from the Cropland Data 

Layer (CDL) produced by United States Department of Agriculture (USDA) National 

Agricultural Statistics Service (NASS) also showed about 1.1 million hectares of 
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grassland converted to winter wheat from 2008 to 2015, in the southern plains 

(Oklahoma, Texas) (Fig. 4.1a). The area converted from tallgrass prairie to winter wheat 

was highest in 2008 and lowest in 2013 (Fig. 4.1a inset bar graph). To understand the 

border implications of such land use change in the region, a comparative analysis of 

carbon dioxide (CO2) and water vapor (H2O) fluxes of cultivated systems (e.g., winter 

wheat) and their native counterparts (tallgrass prairie) can provide insights into the 

changes in carbon and water budgets. 

Major sections of the Southern Great Plains are dominated by winter wheat, a C3 

species, generally planted in September/October and harvested in June/July of the 

following year. Traditionally, a 3-4 months fallow period from harvest to planting is 

considered an important component of the farming system to accumulate soil moisture 

for the next wheat crop cycle (Dhuyvetter et al. 1996; Lyon et al. 2007). In contrast, the 

growing season of tallgrass prairie (mixture of C3 and C4 species, dominantly warm 

season) starts between March and May depending on spring temperature and remains 

active until September/October (Cooley et al. 2005; Fischer et al. 2007). The dynamics of 

the land surface processes resulting from the combined interactions of climate, vegetation 

cover, and management practices are closely coupled with the dynamics of the lower 

atmosphere and are very significant in the mid-continental regions such as the southern 

plains. Thus, the change from prairie to winter wheat shifts the magnitude and seasonal 

timing of energy, momentum, CO2, and H2O fluxes between the atmosphere and 

ecosystem in this region (McPherson and Stensrud 2005). Further, the change in 

vegetation over an extended region may induce changes in the circulation patterns 

resulting into changes in weather conditions over much larger regions (Cooley et al. 
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2005; Fischer et al. 2007; Song et al. 1997). Observational analysis using Oklahoma 

Mesonet data (McPherson et al. 2007) demonstrated that the winter wheat belt in 

Oklahoma significantly altered the mesoscale atmospheric environment (Haugland and 

Crawford 2005; McPherson et al. 2004). Numerical modeling simulations, conducted by 

replacing native grassland vegetation with winter wheat in Oklahoma showed weakened 

winds within the planetary boundary layer due to insufficient sensible heat which 

impacted the mesoscale circulation (McPherson and Stensrud 2005). Similarly, spatial 

heterogeneity caused by intermixing of winter wheat in Oklahoma into grasslands 

induced the vertical velocities of 1-2 ms-1, which is linked to  convective cloud formation 

(Weaver and Avissar 2001). Various studies in the past have quantified within season and 

inter-annual variations in CO2, H2O, and energy fluxes in tallgrass prairies and crop 

fields of the southern plains (Fischer et al. 2012; Meyers 2001; Suyker and Verma 2001; 

Suyker et al. 2003). However, this study focuses on contrasting CO2 and H2O fluxes of 

winter wheat and tallgrass prairie ecosystems within the context of land use change, a 

significant human intervention in the native prairies of southern plains over the past 

century and continuing today. Specifically, the following questions were addressed in this 

study: a) What were the magnitudes and seasonal patterns of CO2 and ET fluxes in 

tallgrass prairie and winter wheat? b) What is the impact of management activities ( 

fallow on winter wheat site and grazing on tallgrass prairie site) on the total annual 

carbon and water budgets of  the two sites? and c) what are the differences in seasonal 

and annual dynamics of ecosystem water use efficiency (EWUE) between winter wheat 

and tallgrass prairie sites? This study has a great significance to understand the impacts of 

land conversion from grassland to winter wheat on carbon and water budgets since the 
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southern plains of the United States has seen the dramatic land use change in the last 

decades. 

 

4.2 Materials and methods 

4.2.1 Study sites  

The measurements were conducted in two sites: a) native tallgrass pastureland (64 

ha) and b) winter wheat cropland (11 ha) spaced about 2.7 km at the US Department of 

Agriculture- Agricultural Research Service (USDA- ARS), Grazinglands Research 

Laboratory (GRL, 35.561319, -98.035742, 428m), in El Reno, Oklahoma (Fig. 4.1b). El 

Reno has a temperate continental climate with an average air temperature of 14.9 °C and 

an average annual rainfall of 860 mm for the 1091-2000 period (Fischer et al. 2012). 
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Figure 4.1. (a) Map represents the grassland conversion to winter wheat (2008-2015) 
in the southern plains (Oklahoma, Texas). Inset bar graph represents the yearly 
change in land area from grassland to winter wheat. (b) Location and landscape 
features of study sites. The red dots represent the location of the flux tower and the 
red rectangles represent the size of one Moderate Resolution Imaging 
Spectroradiometer pixel (~500m spatial resolution). 
 

Winter wheat is a cool season crop representing the dominant cultivated 

ecosystem (converted from tallgrass prairie) of central Oklahoma. The first season of 

winter wheat was planted on 29th September 2014, on a tilled and fertilized field 

dominated by silt loam soil. and was harvested on 10th June, 2015 and the land was kept 

fallow during the summer months with weed control by tillage and herbicide application. 

The second season of winter wheat was planted on 9th September, 2015 and harvested on 

10th June, 2016. The other details on management practices are presented on Table 1. 

Tallgrass prairie is predominantly warm season vegetation representing the native, mixed 

species grassland of Oklahoma. The site has silt loam soil with big bluestem 

(Andropogon gerardi Vitman) and little bluestem (Schizachyrium halapense (Michx.) 

Nash.) as dominant species. The study site was grazed for nine months (Jan-Feb, Jun-

Dec) in 2015 and for six months in 2016 (Jan, May-Jun, Aug-Oct) at different grazing 

intensities. More information on the management activities at study sites and climatic 

features of the study years are presented in Table 1 and Fig. 4.2. 
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Table 4.1 Major management activities at the winter wheat and tallgrass prairie 

sites during the observation period. 

Date Management 
Winter Wheat site 
Sep, 2014 Chisel plow tillage 
Sep, 2014 Pre-plant fertilizer (32-23-0 @ 168 kg/ha) 

Sep-29,2014 
Planting (Gallagher variety with seeding rate 89.6 
kg/ha)  

Oct -29,2014 Starter fertilizer (32-23-0 @ 56 kg/ha) 
Jun-10,2015 Harvest 
Jun-30,2015 Tillage (tandem disc harrow) 

Jul-29,2015 
Herbicide RT 3 glyphosate, Weedmaster (dicamba and 
2,4 D) 

Aug-18, 2015                              Tillage 
Sep-06, 2015                                   Pre-plant fertilizer (32-23-0 @ 112 kg/ha) 

Sep-09, 2015                                   
Planting (Gallagher variety with seeding rate 89.6 
kg/ha) 

Sep-12, 2015 Starter fertilizer (32-23-0 @ 81.8 kg/ha) 
Jun-10, 2016 Harvest 

Jun-24, 2016 
Herbicide RT3 glyphosate, Weedmaster (dicamba and 
2,4 D) 

Jul-19, 2016 Tillage (tandem disc harrow) 
Aug-18, 2016 Tillage (tandem disc harrow) 
Tallgrass Prairie site 
01-Jan, 2015 to 15-Feb, 
2015 

Grazing (Cows average weight of 520 kg with stocking 
rate @ 0.40 hd/ha) 

01-Jun, 2015 to 31-Jul, 
2015 

Grazing (Cows average weight of 480 kg with stocking 
rate @ 0.40 hd/ha) 

01-Aug, 2015 to 31-Dec, 
2015 

Grazing (Cows average weight of 576 kg with stocking 
rate @ 0.96 hd/ha) 

01-Jan, 2016 to 31-Jan, 
2016 

Grazing (Cows average weight of 576 kg with stocking 
rate @ 0.73 hd/ha) 

30-May, 2016 to 10-Jun, 
2016 

Grazing (Cows average weight of 576 kg with stocking 
rate @ 0.72 hd/ha) 

31-Aug, 2016 to 18-Oct, 
2016 

Grazing (Cows average weight of 576 kg with stocking 
rate @ 0.72 hd/ha) 
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Figure 4.2 Seasonal dynamics of enhanced vegetation index (EVI) of winter wheat (a) 
and tallgrass prairie (b); photosynthetically active radiation (PAR) and mean air 
temperature (c); and soil water content (SWC) and rainfall at winter wheat and 
tallgrass prairie sites (d). Each data point for PAR and EVI represents 8-day mean. 

 

4.2.2 Eddy covariance and other supplementary measurements 

Eddy covariance (EC) towers were deployed to measure CO2, H2O and energy 

fluxes from the winter wheat (35.5685, -98.0558) and tallgrass prairie (35.54865°, -

98.03759°) ecosystems. Continuous measurements of CO2 and H2O fluxes from October 

2014 to September 2016 for winter wheat and from January 2015 to December 2016 for 

tallgrass prairie respectively are presented in this study. 

The measurement system at each site consisted of a three-dimensional sonic 

anemometer (CSAT3, Campbell Scientific Inc., Logan, UT, USA) and an open path 

infrared gas analyzer (LI-7500, LI-COR Inc., Lincoln, NE, USA). The sensors were 

mounted at a 2.5 m height from the ground and the system was set up at the center of 

each site facing south, towards the prevalent wind direction. The fetch area was about 

300 m in all directions. The EddyPro processing software (LI-COR Inc., Lincoln, NE, 

USA), was used to process the raw data, collected at 10 Hz frequency (10 samples sec-1), 

to get 30-min fluxes. The software employed correction factors for coordinate alignment, 
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temperature due to humidity influence, and compensation of density fluctuations in 

infrared gas analyzer using the Webb-Pearman-Leuning (WPL) theory to make necessary 

corrections in the high frequency data. Negative sign convention is used to denote CO2 

uptake by the ecosystem whereas positive sign denotes the CO2 release by the ecosystem 

to atmosphere. 

 

Auxiliary sensors measured other metrological and soil variables. Quantum 

sensors (LI-190, LI-COR Inc. Lincoln, NE, USA) were used to measure photosynthetic 

photon flux density (PPFD). Net radiometers (CNR1, Kipp and Zonen, Delft, The 

Netherlands) were used to measure net radiation (Rn) over plant canopy. Temperature 

and relative humidity were measured by using temperature and relative humidity probes 

(HMP45C, Vaisala, Helsinki, Finland). Similarly, self-calibrating heat flux sensors 

(HFT3.1, Radiation& Energy Balance Systems, Inc, Seattle, WA, USA) at 5-cm depth 

were used to measure soil heat fluxes (G). Soil moisture content was measured at about 

5-cm depth using Hydra probe (Delta-T, Lexington, MA, USA). 

 

4.2.3 Vegetation measurements and phenology 

Leaf area index (LAI) was measured at biweekly intervals during the active 

growing season using the LAI-2200 (LI-COR Biosciences, Lincoln, NE, USA). Six 

measurements were made within the eddy covariance footprint area at each site. 

Aboveground biomass (AGB) was measured by destructive sampling from 0.5 m2 

quadrats with three replicates at each site. The fresh samples were oven dried at 70 °C for 

72 hours and total aboveground dry weight was measured by weighing the oven dried 
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samples. The 8-day Enhanced Vegetation Index (EVI) (Huete et al. 2002) was computed 

from the land surface reflectance data from MOD9A1 data product downloaded from the 

University of Oklahoma data portal (http://eomf.ou.edu/modis/visualization/gmap/). 

Winter wheat in this region is often a dual-purpose crop in which cattle grazing is 

allowed over the winter (generally November-February) and the crop is allowed to grow 

for grain harvest after removal of the cattle. However, the winter wheat site was not 

grazed during this study. The tallgrass prairie is generally used for grazing. Based on EVI 

time series data, we divided the one year cycle of winter wheat into two categories: 

growing season and non-growing season. The growing season for winter wheat comprises 

the period from planting to harvesting which is referred to as I-A (November-January) 

and I-B (February-June) whereas the non-growing season (summer fallow) is the period 

between harvesting (June) and the next planting (September), denoted as II. For the 

tallgrass prairie, the calendar year is divided into growing season (March to mid-October) 

and non-growing season (January, February and mid-October to December) based on 

phenology represented by the EVI time series data (Fig. 4.2a, b).  

 

4.2.4 Data Screening and Gap filling for eddy flux tower data 

Quality flags were applied for screening erroneous data. Data outside  a ± 3.5 

standard deviation range from a 14-day running mean window were identified as outliers 

and were removed (Wagle et al. 2015a). This allowed us to filter out the data outside of 

the accepted range of -50 < CO2 flux < 60 μmol m-2 s-1, -20 < LE < 600 W m-2, and -100 

< H < 400W m-2 (Joo et al. 2016; Ní Choncubhair et al. 2016; Zeri et al. 2011). We used 

the online R package “REddyProc” tool developed at the Max Planck Institute for 

http://eomf.ou.edu/modis/visualization/gmap/
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Biogeochemistry, Jena, Germany (Moffat et al. 2007; Reichstein et al. 2005) for gap 

filling of flux data and partitioning of NEE into ecosystem respiration (ER) and gross 

primary production (GPP). The gaps in the datasets (18 and 22% at the winter wheat site 

and 24 and 32% at the tallgrass prairie site in 2015 and 2016, respectively) were due to 

filtering of bad quality and unreliable values and malfunctioning of the sensors were gap 

filled. Average value of measurements immediate before and after the gap was used to 

fill half hourly gaps. Gaps of two hours or fewer hours were filled by linear interpolation. 

Mean diurnal variation, look up tables, and regressions techniques were used to fill the 

larger gaps either in isolation or in combination based on the requirements described in 

previous studies (Amiro et al. 2006; Falge et al. 2001; Hui et al. 2004; Moffat et al. 2007; 

Wilson and Baldocchi 2001). The NEE was partitioned into ER and GPP using the 

regression model constructed by plotting ER versus either soil or air temperature. This 

model defines the temperature sensitivity of ER by estimating the other parameters to 

separate ER and GPP from NEE (Lloyd and Taylor 1994; Reichstein et al. 2005).The gap 

filled NEE and partitioned GPP and ER data were used to compute the daily, seasonal 

and annual carbon budgets. 

 

4.2.5 Energy Balance Closure  

The plausibility of fluxes from the EC system was assessed based on energy 

balance closure (EBC). According to the first law of thermodynamics, the sum of 

turbulent fluxes (latent, LE and sensible heat, H) should be equivalent to the available 

energy, (i.e., Rn-G). The imbalance between available energy and turbulent fluxes 

indicates inaccurate estimates of scalar fluxes. Many research studies reported EBC as a 
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standard test of eddy covariance data (Foken 2008; Twine et al. 2000; Wilson et al. 

2002). Turbulent fluxes (LE +H) are commonly underestimated by about 10-30% relative 

to the estimates of available energy (Rn-G) (Aubinet et al. 1999; Barr et al. 1994; Foken 

2008; Wilson et al. 2002).The EBC, based on half-hourly data, was 83% and 85% in 

winter wheat and tallgrass prairie, respectively in 2015 and 77% for both sites in 2016 

(Fig. 4.3). 
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Figure 4.3 Relationship between the available energy [net radiation (Rn) – soil heat 
flux (G)] and the sum of turbulent fluxes [(latent heat (LE) + sensible heat (H)] at 
winter wheat (WW) and tall grass prairie (TGP) sites in 2015 (top) and 2016 (bottom). 
 

4.2.6 Estimates of evapotranspiration (ET) and ecosystem water use efficiency 

(EWUE)  

ET (mm 30 min-1) was calculated from the H2O fluxes (mmol m-2 s-1) measured 

by the eddy covariance system using the following equation:  

ET = (H2O flux x 18.01528 x 1800)/106       (1) 

The computed half hourly ET values after gap-filling were used to generate daily, 

monthly, and seasonal ET values. We estimated ecosystem water use efficiency (EWUE) 

at monthly and seasonal scales:  a) monthly EWUE as the ratio of monthly GPP to 

monthly ET and  b) seasonal EWUE as the ratio of seasonal GPP to seasonal ET over the 

growing season (Tubiello et al. 1999; Wagle and Kakani 2014). Only the daytime ET was 

considered in the calculation because the carbon sequestration by the vegetation occurs 

during daytime only. 

 

4.3 Results  

4.3.1 Seasonal dynamics of weather, soil moisture, and plant growth  

Patterns of air temperature, rainfall, soil water content (SWC), and 

photosynthetically active radiation (PAR) for the two sites during the study period are 

shown in Fig. 4.2c, d. The highest daily mean air temperature reached approximately 32 

°C in August, 2015 (15-year average maximum air temperature of 28 °C). The study sites 

received above normal rainfall (1273 mm) in 2015, with the 30-year average (1981-2010) 
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annual precipitation of 925 mm. Notably, the sites received record high rainfall of 393 

mm in May 2015 (30-year average May rainfall= 124 mm). Both sites showed similar 

trends in SWC fluctuations corresponding with rainfall events. Distinct seasonality in 

LAI and AGB were observed for winter wheat and tallgrass prairie in both years (Fig. 

4.4).  The maximum recorded LAI was 5.0 and 4.7 m2m-2 for winter wheat and 5.4 and 

4.3 m2m-2 for tallgrass prairie in 2015 and 2016, respectively. The maximum recorded 

AGB was 881 and 865 g m-2 for winter wheat and 1048 and 1306 gm-2 for tallgrass 

prairie in 2015 and 2016, respectively.      

 

Figure 4.4 Patterns of leaf area index (LAI) and aboveground total dry weight (TDW) 
of winter wheat (WW) and tallgrass prairie (TGP) during the study period. 

 

4.3.2 Diurnal dynamics of carbon dioxide and water vapor fluxes 

The diurnal trends of NEE for winter wheat and tallgrass prairie for different months 

during the active growing season are compared in Fig. 4.5. Considerable variations in 

NEE rates were observed between sites as well as among months during the growing 

season. The rates of NEE were higher in 2015 than in 2016 at both sites. As expected, 
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NEE rates increased with the plant development, reaching a maximum during peak 

growth, and declined during the late growing season due to vegetation senescence. The 

NEE rates reached maximum for winter wheat in April (-24.22 ± 0.97 and, -24.79 ± 0.53 

µmol m-2 s-1 in 2015 and 2016, respectively) and for tallgrass prairie in July (-20.55 ± 

0.74 and, -14.40 ± 0.83 µmol m-2 s-1 in 2015 and 2016, respectively). Solar radiation was 

one of the primary drivers for determining diurnal rates of the fluxes within the growing 

season. With increasing maximum PAR from 40 molm-2day-1 in February to 48 molm-

2day-1 in April (Fig. 4.2c), winter wheat achieved its maximum carbon uptake. Similarly, 

the maximum PAR in July (70 molm-2day-1) corresponded with the highest NEE rate in 

tallgrass prairie. 

 

Figure 4.5. Half-hourly binned diurnal courses of net ecosystem CO2 exchange (NEE) 
in winter wheat (WW) (left) and tall grass prairie (TGP) (right) for the entire months 
across the growing season (top – 2015 and bottom - 2016). 

a b 

c d 
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Diurnal ET trends at tallgrass prairie and winter wheat sites across the growing 

season are compared in Fig. 4.6. Like NEE rates, ET rates were higher in 2015 than in 

2016 at both ecosystems. The ET rates reached a maximum in April for winter wheat and 

in June for tallgrass prairie. Peak hourly ET was 0.86 ± 0.06 (2015) and 0.44 ± 0.06 

(2016) in winter wheat and 0.62± 0.02 (2015) and 0.65 ± 0. 03 (2016) mm hr-1 in 

tallgrass prairie. The role of PAR was also evident in determining the rate of ET in both 

ecosystems. The average SWC at both ecosystems was above 15 % by volume (Fig. 4.2d) 

during the most of the growing season, suggesting that the ecosystems did not experience 

severe drought during the study period. However, the rates of fluxes were impacted by 

grazing in the tallgrass prairie (the site was grazed from May to December in 2015 and 

January, May-June, and August- October in 2016).  
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Figure 4.6. Half-hourly binned diurnal courses of evapotranspiration (ET) in winter 
wheat (WW) (left) and tall grass prairie (TGP) (right) for the entire months across 
the growing season (top – 2015 and bottom - 2016). 
 

 

4.3.3 Seasonal dynamics of carbon dioxide and water vapor fluxes 

Figure 4.7 shows the seasonal dynamics of daily NEE, ER, GPP, and ET from the 

winter wheat and tallgrass prairie sites. Winter wheat was a sink of carbon (negative 

NEE) for ~100 days between DOY 32 (February 1) and 132 (May 12), while tallgrass 

prairie was a sink of carbon for 144 days between DOY 105 (April 15) and 248 

(September 5). The carbon uptake rate by winter wheat began to increase from early 

February and reached a maximum in April with the active growth of the crop followed by 

a rapid decrease towards crop senescence (mid- May). For tallgrass prairie, CO2 uptake 

a b 

c d 
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rate began to increase in mid-March and reached a maximum in July before a rapid 

decrease towards senescence (early October) when release of CO2 (ER) dominated over 

CO2 assimilation (GPP). Substantial rates of carbon uptake were observed during the 

active growing season by both ecosystems (Fig. 4.7) because of rates of carbon 

assimilation (GPP) exceeded carbon release (ER). However, the magnitude of carbon 

uptake (NEE) was greater in winter wheat (-9.24 g C m-2 d-1 in 2015 and - 8.69 g C m-2 d-

1 in 2016) than in tallgrass prairie (-6.23 g C m-2 d-1 in 2015 and -7.52 g C m-2 d-1 in 

2016). The higher NEE in winter wheat resulted from lower ER (4.84 g C m-2 d-1 in 2015 

and 5.57 g C m-2 d-1 in 2016) and higher GPP (14.08 g C m-2 d-1 in 2015 and 14.27 g C m-

2 d-1 in 2016) in winter wheat as compared to tallgrass prairie (ER= 5.87 and 5.62 g C m-2 

d-1 and GPP= 12.11 and 10.19 g C m-2 d-1 in 2015 and 2016, respectively). However, the 

relatively higher rates of NEE occurred for a short period (only during April) in winter 

wheat, while NEE rates were consistently higher for three months (June-August) in 

tallgrass prairie. 

Large variation in ET was observed between two ecosystems and the ET rates 

showed a clear seasonal pattern corresponding to the seasonality of the respective crops 

(Fig. 4.7d). At the winter wheat site, the magnitude of daily ET was the highest (6.0 and 

5.4 mm day-1) on 10th and 23rd May in 2015 and 2016, respectively, while in tallgrass 

prairie, the highest daily ET (7.2 and 8.2 mm day-1) was observed on 10th and 31st June in 

2015 and 2016, respectively. Higher ET was observed during the period of higher LAI 

values, which is earlier in the year for winter wheat than tallgrass prairie. However, two 

significant peaks (~29th June and ~29th July) of ET can be seen for winter wheat in 2015 
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during the summer even after winter wheat was harvested due to the contribution from 

the growth of weeds.  

 

Figure 4.7. Growing season patterns of: (a) net ecosystem CO2 exchange (NEE), (b) 
ecosystem respiration (ER), (c) gross primary productivity (GPP), (d) 
evapotranspiration (ET) in winter wheat (WW) and tall grass prairie (TGP) sites. 
Data lines represent daily values of CO2 and water fluxes. The growing seasons are 
represented by shaded regions. 
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4.3.4 Seasonal and annual (calendar year) sums of carbon dioxide and water vapor 

fluxes 

The growing season, non-growing season, and annual (based on Fig. 4.2a) values 

of GPP, ER, and NEE for both ecosystems are shown in Table 2. Cattle grazing is 

generally allowed in first half of the growing season (GS I-A) of winter wheat. This 

period had low plant activity indicated by lower cumulative GPP (150 ± 23 and, 93 ± 14 

g C m-2), ER (176 ± 32 and, 176 ± 32 g C m-2), and NEE (26 ± 6 and, 46 ± 12 g C m-2) in 

2015 and 2016, respectively. Cumulative growing seasonal values (GS) of GPP and ER 

fluxes from the tallgrass prairie were larger than those from the winter wheat in both 

years. The NEE during the 2015 growing season for tallgrass prairie (-276 ± 43 g C m-2) 

was similar to winter wheat (-251 ± 43 g C m-2). However, it was more than double in 

winter wheat (-403 ± 73 g C m-2) than in tallgrass prairie (-159 ± 61 g C m-2) during the 

2016 growing season. The growing season GPP total was 921 ± 169 and 996 ± 137 g C 

m-2 in winter wheat as compared to 1663 ± 233 and 1346 ± 103 g C m-2 in tallgrass 

prairie in 2015 and 2016, respectively. Similarly, the growing season ER total in winter 

wheat was 672 ± 154 and 603 ± 102 g C m-2 compared to 1386 ± 221 and 1186 ± 145 g C 

m-2 in tallgrass prairie in 2015 and 2016, respectively. These results show that both 

ecosystems were carbon sinks on a seasonal scale. However, the winter wheat site was a 

carbon source on an annual scale when the carbon fluxes of the fallow period were 

considered.  The non-growing season (NGS II) of winter wheat, which is comprised of 

mostly summer fallow, had larger positive NEE values attributed to higher ER and lower 

GPP. On the other hand, the growing season was longer and ER rates were lower in 

tallgrass prairie during the non-growing season (NGS II). Thus, the winter wheat 
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ecosystem released about 56 ± 13 and, 33 ± 9 g C m-2 (positive NEE), while tallgrass 

prairie ecosystem gained about -128 ± 69 and, -119 ± 53 g C m-2 (negative NEE) on an 

annual scale in 2015 and 2016, respectively.  

Table 4.2. Sums of net ecosystem CO2 exchange (NEE), gross primary production 

(GPP), ecosystem respiration (ER), and evapotranspiration (ET) (± uncertainty), 

and average ecosystem water use efficiency (EWUE= GPP/ET) from Winter Wheat 

(WW) and Tallgrass prairie (TGP) fields during their respective growing seasons. 

Growing season (GS) refers to Oct - May (WW) and March - mid-Oct (TGP).  Non-

growing season refers to Jun-Sep (WW) and Jan-Feb & mid-Oct- Dec (TGP) and 

whole year is an integrated flux for 12 months (Oct-Sep and Jan-Dec, respectively 

for WW and TGP). 

 

 

 
*g CO2 mm-1 ET= g Cmm-1ET (44.01/12.01) 
 

Annual ET was greater in tallgrass prairie (919 ± 89 mm) than in winter wheat 

site (651± 69 mm) in 2015, but was similar in 2016 at both sites (winter wheat = 644 ± 

111 mm and, tallgrass prairie = 669 ± 117 mm). Monthly ET was also generally higher 

for tallgrass prairie except in March and April (Fig. 4.8 b,e). Winter wheat had the 

Non-growing  Annual Growing Non-growing Annual
Year I-A (Fall) I-B (Spring) Total (I-A + I-B) season (NGS) Season (GS)  season (NGS)

GPP (g C m-2) 2015 150 ± 23 771 ± 146 921 ± 169 312 ± 81 1233 ±168 1663 ± 233 41 ± 19 1704 ± 252
2016 93 ± 14 903 ± 123 996 ± 137 129 ± 48 1125 ± 185 1346 ± 103 152 ± 80 1498 ± 183

ER (g C m-2) 2015 176 ± 32 496 ± 122 672 ± 154 638 ± 143 1311 ± 153 1386 ± 221 203 ± 29 1589 ± 250
2016 139 ± 19 464 ± 93 603 ± 102 555 ± 97 1158 ± 209 1186 ± 145 192 ± 23 1378 ± 168

NEE (g C m-2) 2015 26 ± 6 -277 ± 37 -251 ± 43 325 ±96 56 ± 13 -276 ± 43 148 ± 26 -128± 69
2016 46 ± 12 -439 ± 61 -403 ± 73 357 ± 101 33 ± 9 -159 ± 61 40 ± 8 -119 ± 53

ET (mm  m-2) 2015 94 ± 15 256 ± 81 350 ± 96 301 ± 102 651 ± 69 826 ± 72 93 ± 17 919 ± 89
2016 135 ±74 294 ± 40 429 ± 114 214 ± 56 644 ± 111 588 ± 102 81 ± 15 669 ± 117

EWUE 2015 1.2 11.3 6.2 3.9 5.5 7.2 1.6 5.4
(g CO2 mm-1ET)* 2016 3.2 12.7 7.9 4.4 6.0 8.5 1.6 8.1

Winter Wheat Tallgrass Prairie
Growing season (GS)
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highest GPP (334 g C m-2) during the peak growth (AGB= 400 g m-2) in April when the 

total ET reached the maximum (101 mm). The highest ET in the tallgrass prairie was 

observed in April (71 and 53 mm month-1 in 2015 and 2016, respectively) when the 

tallgrass prairie was in the initial phase of the growing season (AGB=300 g m-2) with a 

cumulative GPP of 127 and 71 g C m-2. For tallgrass prairie, ET reached its maximum 

(2015= 180 mm and 2016= 127 mm) in the month of July, with the corresponding AGB 

of 900 and 875 g m-2 and a cumulative GPP of 379 and 314 g C m-2 in 2015 and 2016, 

respectively. 

 

 

 
Figure 4.8. Monthly cumulative gross primary productivity (GPP), 
evapotranspiration (ET), and average ecosystem water use efficiency (EWUE) in 
Winter Wheat (WW) and Tallgrass Prairie (TGP) sites in 2015 (a-c) and 2016 (d-f). 
 

The GPP to ER ratio for the study period at the two sites are presented in Fig. 4.9. 

Generally, the ratio was greater than one (net carbon uptake) from February to June in 
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winter wheat and from April to October in tallgrass prairie. In winter wheat, the ratio 

decreased after June when the crop was harvested, while in tallgrass prairie the ratio 

decreased after October with the onset of senescence.  
G
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Figure 4.9. The daily dynamics of ratio of gross primary productivity (GPP) to 
ecosystem respiration (ER) at Winter Wheat (WW) and Tallgrass Prairie (TGP) sites.  
 

4.3.5 Seasonal dynamics of ecosystem-level water use efficiency (EWUE) 

EWUE was lower in the early and late growing season and higher during the peak 

growth of the vegetation at both sites (Fig.4.8 c, f). In winter wheat, the EWUE reached a 
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maximum of 15 and 14.3 g CO2 mm-1 ET (March) in 2015 and 2016, respectively, while 

the highest EWUE in tallgrass prairie was 8.8 and 13.9 g CO2 mm-1 ET in August 2015 

and June 2016, respectively. The peak growing season EWUE was substantially higher 

for winter wheat (11.3 and, 12.7 g CO2 mm-1 ET in 2015 and 2016, respectively) than for 

tallgrass prairie (7.2 and, 8.5 g CO2 mm-1 ET in 2015 and 2016, respectively) (Fig.4.8, 

Table 2). 

 

4.3.6 Rainfall, management activities, and carbon flux rates 

We demonstrated four specific cases from the two study sites to illustrate the 

impact of climate and management activities on carbon fluxes (Fig. 4.10.).  Case I: 

Before a week of rain pulse event on July 26, carbon fluxes (NEE, GPP and ER) in 

tallgrass prairie site started declining. It took few days after rain to increase the carbon 

fluxes. Case II: In the 1st week of June 2016, at the tallgrass prairie site, NEE decreased 

by about 3 µmolm-2 s-1 during the first week of grazing. After about one week of grazing, 

the carbon uptake rate increased again. Case III: In winter wheat site, herbicide RT 3 

glyphosate, Weedmaster (dicamba and 2,4 D) was applied on June 29, 2015 to kill the 

weeds. This caused the reduction in GPP at a higher rate than that of ER resulting into 

positive NEE, which was negative a week before herbicide was applied. Case IV: The 

winter wheat site was tilled using a tandem disc harrow on June 30, 2015 to inhibit the 

growth of weeds for maintaining fallow. This management activity also caused changes 

in the carbon fluxes particularly GPP and NEE. GPP was reduced at a higher rate, while 

ER remained unchanged making NEE of the site positive. 
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Figure 4.10. Changes in carbon fluxes in winter wheat (WW) and tallgrass 
prairie(TGP) sites due to climate and management activities: (a) rainfall events 
(TGP), (b) tillage (WW), (c) grazing (TGP) and (d) herbicide application (WW). The 
arrows represent the occurrence of the events. 

 

4.4 Discussion 

4.4.1 Comparison of CO2 and H2O fluxes of winter wheat and tallgrass prairie  

Management activities, weather conditions, and soil types at the study sites 

influenced the magnitudes of the CO2 and H2O fluxes.  The year 2015 was wetter and 

hotter whereas 2016 was close to the average of 30-year weather records of the study 
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sites. Similarly, the grazing events at the tallgrass prairie sites impacted the rates of fluxes 

recorded in this study. The maximum diurnal peak rate of -24 (2015) and – 25 (2016) 

µmol m-2 s-1 measured in the winter wheat ecosystem was close to the maximum NEE of 

-25 to -30 µmol m-2 s-1 measured for winter wheat ecosystem of Ponca City, Oklahoma 

(Fischer et al. 2007; Gilmanov et al. 2003). Additionally, the daily peak NEE value 

(2015= -9.24  and 2016= -8.8 g C m-2 d-1) of winter wheat  measured in our study was 

similar to the daily peak NEE value of -9.3 g C m-2 d-1  at Billings, Oklahoma (Fischer et 

al. 2007) and -8.18 g C m-2 d-1 at Ponca City, Oklahoma (Gilmanov et al. 2003). The 

daily peak NEE values of about -12 to -13 g C m-2 d-1 from the European winter wheat 

ecosystems (Belgium and Germany) were higher than that those -8 to -9.3 g C m-2 d-1 

from winter wheat ecosystems in Oklahoma (Table 3).  
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Table 4.3 The maximum rates of net ecosystem exchange (NEE, g C m-2 d-1) and 

evapotranspiration (ET, mm d-1) of winter wheat and tallgrass prairie at different 

study sites. 

 

The peak diurnal NEE rates of -20 µmol m-2 s-1 (2015) and -15µmol m-2 s-1 (2016) 

in tallgrass prairie in our study were slightly lower than the values of -28 µmol m-2 s-1 and 

-22 µmol m-2 s-1 in 2005 and 2006 reported for a tallgrass prairie ecosystem at El Reno, 

Oklahoma (Fischer et al. 2012). The maximum NEE daily values of tallgrass prairie 

varied from -5.2 to -8.1 g C m-2 d-1 at various sites in southern plains (Suyker and Verma 

2001; Wagle et al. 2015b) (Table. 3), which are in agreement with the maximal NEE 

daily value of –6.3 g C m-2 d-1 (2015) and -7.5 g C m-2 d-1 (2016) measured in our study.  

Sites Year Vegetation NEEmax ETmax References 
Ponca  City, OK 1997-

1998 
Winter Wheat -8.2 7.0 (Gilmanov et al. 2003) 

Billings, OK 2001-
2003 

Winter Wheat -9.3 5.2 (Fischer et al. 2007) 

Selhausen, Belgium 2007-
2009 

Winter Wheat -12.0 - (Schmidt et al. 2012) 

Thuringia, Germany 2001 Winter Wheat -13.3 5.7 (Anthoni et al. 2004) 
El Reno, OK 2015 Winter Wheat -9.2 6.0 This study 
 
El Reno (Burned), 
OK  

2005-
2006 

Tallgrass 
Prairie 

-6.9 5.5 (Wagle et al. 2015b) 

El Reno 
(Unburned), OK 

2005-
2006 

Tallgrass 
Prairie 

-5.2 5.7 (Wagle et al. 2015b) 

Fermi, IL 2005-
2007 

Tallgrass 
Prairie 

-9.5 5.6 (Wagle et al. 2015b) 

Konza Prairie, KS 2007-
2012 

Tallgrass 
Prairie 

-9.1 7.6 (Wagle et al. 2015b) 

Shilder, OK 1997 Tallgrass 
Prairie 

-8.1 - (Suyker and Verma 
2001) 

El Reno, OK 2015 Tallgrass 
Prairie 

-6.3 7.0 This study 
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In the winter wheat ecosystem, the maximum daily ET of 6 mm d-1 (2015) and 5.3 

mm d-1 (2016) measured  in our study was similar with the  maximal daily ET values of 7 

mm day-1 measured in winter wheat at Ponca City, Oklahoma, but the maximum daily ET 

of 7.2 mm d-1 (2015)  and  8.2 mm d-1 (2016) in tallgrass prairie ecosystem was slightly 

higher than 5 mm d-1 reported for tallgrass prairie at Ponca city, Oklahoma (Burba and 

Verma 2005). Similarly, the annual ET  of  651 and 644 mm measured at our  winter 

wheat site in 2015 and 2016, respectively, was slightly lower than that of  750, 714, and 

742 mm of ET at the winter wheat site of Oklahoma in 1997, 1998, and 1999, 

respectively (Burba and Verma 2005). On the other hand, the annual ET from tallgrass 

prairie site in our study was relatively higher (919 mm) in 2015 and was similar (679 

mm) in 2016 compared to the range (485 to 716 mm) of ET values reported for six 

different tallgrass prairie sites by Wagle et al. (2017). The higher values of ET was most 

likely due to the high amount of rainfall received in 2015 which is in agreement with the  

higher ET values (807 mm yr-1 ) reported  for tallgrass prairie when Oklahoma received 

higher rainfall in 1997  (Burba and Verma 2005). Although the weather condition and 

management activities (e.g., grazing) are site specific and impact on the rate of 

atmospheric exchanges, the CO2 and H2O fluxes reported in our study are comparable to 

the values reported in the literature. 

 

4.4.2 Impacts of management activities on carbon fluxes  

Application of herbicide and tillage for keeping the land fallow at winter wheat 

site during summer months impacted the carbon fluxes. These activities contributed to 

the change in annual carbon budgets. For example, the weekly average of NEE was 
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changed from -0.39 g C m-2 to 3.79 g C m-2 after herbicide was applied to kill the weeds. 

Similar switch in NEE was observed when the site was tilled for maintaining the fallow 

(Fig. 4.10). Summer fallow contributed only about 25% and 11% GPP to the annual 

budget whereas the carbon loss due to ER was about 48% and 47% in 2015 and 2016, 

respectively, resulting into the positive annual NEE (carbon source) from the winter 

wheat site. This loss of carbon from the fallow in winter wheat-fallow system was in 

consistent with the study conducted in Montana, USA. About 135 g C m-2 was lost 

between April to September from the fallow field of Montana in 2013/2014 (Vick et al. 

2016).    Livestock grazing in prairie pasture is a common feature of the southern plains 

(Gillen et al. 1998; Hickman et al. 2004; Luo et al. 2012; Zhou et al. 2017a). Grazing 

plays an important role in modifying the vegetation phenology, canopy structure, and 

productivity of grasslands which, in turn, alters the magnitude and temporal patterns of 

CO2 and H2O fluxes of the ecosystem (Luo et al. 2012; Owensby et al. 2006; Wayne 

Polley et al. 2008). For example, in the 1st week of June 2016, the tallgrass prairie NEE 

decreased by about 3 µmolm-2s-1 during the first week of grazing (Fig. 4.10). After about 

one week of grazing, the ecosystem again increased the carbon uptake rate. Although the 

effects of grazing are not quantified completely in this study, it can be argued that the 

tallgrass prairie ecosystem in our study would be larger sink (more negative NEE) with 

less or no grazing since in both years the pasture was grazed intensively. However, low 

productivity has been reported for prairie that was ungrazed for long periods due to 

senescent vegetation that shades out new green leaves (Belsky 1986; Dalgleish and 

Hartnett 2009). 
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4.4.3 Change in seasonal patterns and magnitudes of water vapor fluxes  

Some researchers have reported that the cropping sequence that utilize summer 

cover crops in place of fallow increased the ecosystem productivity and resulted to less 

evaporative water loss (Farahani et al. 1998a; Farahani et al. 1998b; McGee et al. 

1997).While the objective of  summer fallow is to accumulate water for the subsequent 

crop, the wheat-fallow system has been found to be inefficient in storing soil water due to 

greater loss by soil evaporation, transpiration from weeds, deep percolation, and runoff 

(Black et al. 1981; Farahani et al. 1998b). When land use is converted from grassland to 

winter wheat with bare summer fallow, the resulting ecosystem is less water efficient due 

to the resulting amount of moisture loss to evaporation when no or minimal amounts of 

carbon are fixed. In our study, the EWUE in winter wheat declined to about 5.5 - 6 g CO2 

mm-1 ET at the annual scale from about 11 - 13 g CO2 mm-1 ET at the seasonal scale due 

to loss of water during the fallow period with more release of carbon than the uptake. 

Although more amount of water was lost as ET from tallgrass prairie than from the 

winter wheat, results showed that tallgrass prairie was more water efficient (EWUE= 6.8 

g CO2 mm-1 ET in 2015 and 8.2 g CO2 mm-1 ET in 2016 than winter wheat (EWUE= 

6.19 g CO2 mm-1 ET in 2015 and 6.4 g CO2 mm-1 ET in 2016 g CO2) at the annual scale. 

Throughout the southern plains, the dominant agricultural crop is winter wheat, which is 

planted in early fall and harvested in June. This pattern contrasts sharply with the 

seasonal cycle of tallgrass prairie, which is most active from May to August. The change 

from prairie to winter wheat shifts the magnitude and seasonal timing of energy, 

momentum, H2O, and CO2 fluxes between the atmosphere and ecosystem. Many studies 

in the past have examined the role of variation of ET in relation to the atmospheric 
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processes determining the change in the regional climate (Clark et al. 2001; Katul et al. 

2012; Shukla and Mintz 1982; Wang and Eltahir 2000). The soil-plant system is 

embedded within the atmospheric boundary layer where change in ET due to change in 

land surface influences the precipitation patterns and frequency at the regional scale 

(Katul et al. 2012). Currently, there exist known impacts of the winter wheat in the 

southern plains on surface-layer and boundary layer processes (Haugland and Crawford 

2005; McPherson and Stensrud 2005; McPherson et al. 2004). Further, the southern 

plains region is located in a region with strong feedbacks between the land surface and 

the atmosphere across various spatial and temporal scales during the growing season 

(Basara and Christian 2017; Basara and Crawford 2002b; Ferguson and Wood 2011; Ford 

et al. 2015a; Ford et al. 2015b; Guo and Dirmeyer 2013; Guo et al. 2006; Koster et al. 

2004; Ruiz-Barradas and Nigam 2013; Santanello Jr et al. 2013; Santanello Jr et al. 2009; 

Santanello Jr et al. 2015). Thus, the shift in the ET (latent heat flux) resulting from land 

use change (tallgrass to winter wheat) could impact the overall water balance of 

terrestrial ecosystems, atmospheric circulations, and the regional climate of the southern 

plains, especially given expansion of the winter wheat within the region. Such impacts 

could also influence the timing and severity of convective storms in the region. 

Considering  recent research findings that the overall variability of precipitation in the 

region is increasing (Christian et al. 2015b; Flanagan et al. 2017; Weaver et al. 2016) 

which could additionally yield downstream impacts related to excessive precipitation 

(McCorkle et al. 2016) and rapid development of drought (Bajgain et al. 2017; Otkin et 

al. 2013; Zhou et al. 2017b). 
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4.4.4 Land use change, winter wheat-summer fallow, and carbon sink potential  

Despite large differences in carbon uptake (NEE) in 2015 and 2016 at both 

ecosystems, winter wheat and tallgrass prairie ecosystems were carbon sinks in both 

years during their respective growing seasons (Table. 2). The higher carbon uptake 

during the growing season in 2016 in winter wheat than 2015was due to the good crop 

growth resulted from higher amount of fall rainfall (Fig. 4.2d). Similarly, the higher 

amount of rainfall during May in 2015 contributed to the higher carbon uptake during the 

2015 growing season by tallgrass prairie than in 2016. The carbon fluxes showed large 

differences (winter wheat released 56 and 33 g C m-2 in 2015 and 2016, respectively and 

tallgrass prairie accumulated -128 and -119 g C m-2 in 2015 and 2016, respectively) when 

accounted for at the annual scale. This difference in carbon fluxes between the two sites 

suggests that although the tallgrass prairie had a longer growing season than winter 

wheat, the carbon sink potential was similar during the growing season in 2015 and the 

carbon sink of tallgrass prairie was smaller in 2016 than that of winter wheat. This is due 

to less loss of carbon via ER displayed by the higher ratio of GPP over ER in winter 

wheat ecosystem (Fig. 4.9 and Table 4.2). The average GPP to ER ratios for winter wheat 

during the growing season were 1.6 (2015) and 1.7 (2016), while the same ratios during 

the growing season were 1.2 (2015) and 1.1 (2016) for tallgrass prairie. Until harvest of 

winter wheat, the ecosystem was a carbon sink due to higher GPP than ER. The transition 

of sink to source of carbon resulted from lower GPP and higher ER (low GPP:ER ratio) 

after harvesting during the summer month with increased temperature and decomposition 

of winter wheat residue. Consequently, the winter wheat ecosystem was a potential 

carbon source offsetting the growing season carbon sink magnitude when accounted for 
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the annual time scale. On the other hand, the annual GPP in the tallgrass prairie 

ecosystem was sufficient to cover the carbon expense caused by ER with a GPP:ER ratio 

of about 1.07 (both years) and resulting in a net cumulative carbon balance (NEE) of -128 

and –119 g C m-2 in 2015 and 2016, respectively. This differential capacity in carbon 

uptake potential between these two ecosystems have a broader interpretation when 

accounting the tallgrass prairie converted land determined using the remote sensing land 

use dataset as in Fig. 4.1. Overall, about 3.6 million tallgrass prairie pixels were 

converted to winter wheat pixels between 2008 to 2015 which is equivalent to about 1.1 

million hectares of land area. The area of the pixels was multiplied by the difference in 

carbon fluxes between winter wheat and tallgrass prairie to estimate the total carbon 

contributed by the converted pixels (tallgrass to winter wheat) in the southern plains. This 

estimation suggested that the southern plains could contribute a substantial amount of 

carbon to atmosphere which otherwise would have been a potential carbon sink (2015= -

128 and 2016= -119 g C m-2 y-1). Conversion from a sink (tallgrass) to a source (winter 

wheat) during 2008 to 2015, the total additional carbon release from the converted winter 

wheat fields would be about 0.6 million tons (616 kg per ha) in 2015 and about 0.36 

million tons (363 kg per ha) in 2016 which otherwise would have been a sink of about 1.4 

and 1.3 million tons (1,408 and 1,309 kg per ha) of carbon in 2015 and 2016, 

respectively, had the fields remained as a tallgrass prairie. These results, indicate that the 

land use change from grassland to winter wheat has significant effect on the carbon cycle 

of the southern plains. The prevailing practice of keeping land fallow after harvesting the 

winter wheat for capturing moisture from summer rainfall for the following winter wheat 

crop caused the ecosystem to release more carbon to the atmosphere. Although the main 
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goal of fallow is to ensure soil moisture for the subsequent winter wheat, it has been 

found that summer fallow rotation system is not effective with respect to productivity, 

economic risk, organic matter storage and even soil water storage (Kolberg et al. 1996; 

McGee et al. 1997; Peterson et al. 1996). Only 25% precipitation efficiency was achieved 

from the summer fallow in terms of soil water storage (McGee et al. 1997; Peterson et al. 

1996). The use of cover crops after winter wheat during summer could be a better 

practice to compensate for carbon loss via ER by fixing more carbon into the ecosystem 

via photosynthesis from cover crops. However, any changes in the summer fallow system 

must consider the effect on the soil moisture availability required to stabilize production 

for the next crop cycle.   

 

It is important to mention the uncertainties associated with the rates of land use 

change and the spatial heterogeneity of land management, soil properties, and weather 

variables across the region. However, the ecosystems chosen are the representative of the 

practices of the southern plains. While the size of the potential carbon sink/source at the 

regional level can`t be estimated with greater confidence from this study, it can be 

inferred that the change of grassland to winter wheat with a summer fallow reduced the 

carbon sink potential and made the ecosystem less water efficient (more water loss for 

less carbon fixed). Also, the winter wheat fields in our study had been in wheat for many 

years and had depleted soil carbon relative to tallgrass prairie. For the first few years after 

conversion there would be an even greater loss of carbon, and then at some new semi-

equilibrium, the estimated carbon loss become more relevant. Therefore, it appears that 
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fallow land after harvesting of winter wheat is a factor that needs to be considered for 

managing the ecosystem sustainably.  

 

4.5 Conclusions 

Carbon dioxide and water vapor fluxes were measured using the eddy covariance 

system from two major ecosystems of the southern plains (winter wheat and tall grass 

prairie) in 2015 and 2016. Both ecosystems were carbon sinks during their active 

growing seasons. Despite having the greater carbon sink potential demonstrated by higher 

hourly rate and daily integrated values of NEE in winter wheat than in tall grass prairie, 

winter wheat ecosystems were a source of carbon when the carbon budgets for the 

summer fallow period were included. Similarly, the significant water loss due to 

evaporation from the fallow land (winter wheat-fallow rotation) when little carbon was 

fixed caused the winter wheat ecosystem to be less water efficient than the tallgrass 

prairie ecosystem despite higher growing season EWUE. Results suggest that the 

differences in magnitudes and patterns of carbon dioxide and water vapor fluxes between 

winter wheat and tallgrass prairie can exert influence on the carbon and water budgets of 

the whole region under land use change scenarios. 

 

 

 

 



 

102 
 

Chapter 5: Modeling of carbon sequestration and greenhouse gas dynamics in 

managed and native pasture 

Abstract 

Pasture grasslands used to graze livestock make up about 45% of land use in 

Southern Great Plains are also one of the most sensitive and important ecosystems of North 

America. Better grassland management practices thus have the potential to mitigate climate 

change by shaping carbon sequestration and methane production. The hypothesis tested 

was that the application of fertilizers in the managed pasture would increase the primary 

productivity of the ecosystem for few years but this increase in carbon sink would be 

counteracted by the increasing rate of greenhouse gas emissions in the long run. We used 

DeNitrification- DeComposition, a process-based model and simulated the carbon 

sequestration and greenhouse gas emissions from 1999 -2016 at managed and native 

pastures located at El Reno, Oklahoma. The increased in productivity was measured in 

terms of GPP in managed pasture to that of native pasture particularly in years with good 

rainfall, resulting into higher soil organic carbon (SOC) sequestration rate. Similarly, the 

stronger signal of N2O flux was observed in the managed pasture than that in the native 

pasture. Therefore, the advantage from increased SOC due to the fertilizer application, 

measured in terms of global warming potential (GWP) was outweighed by the GWP 

calculated from the increased magnitude of N2O fluxes in wet years thereby giving the 

positive net global warming potential. A more fundamental understanding of how pasture 

management practices contribute to the local and global N2O emissions allowed us to take 

step towards the development of land use and management policies to mitigate the climate 

change impacts. 
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5.1 Introduction 

A steady increase in the concentration of the greenhouse gases in the atmosphere 

has been observed throughout the past decades (Change 2007; Mitchell et al. 1995; 

Solomon et al. 2009; Stocker 2014) and this is speculated to be a major causative factor 

in increasing the earth`s surface temperature and human induced global climate change 

(Crowley 2000; Keohane and Olmstead 2016; Pielke et al. 2002). Agriculture and 

livestock have been considered significant contributors of the greenhouse gas (GHGs) 

emissions (Garnett 2009; Searchinger et al. 2008; Steinfeld et al. 2006). Nitrous oxide 

(N2O) one of the major GHGs from agriculture accounted for about 58% of the total 

global emissions, with about 16-33% of this total attributed to the direct emissions from 

grazing land (De Klein et al. 2008; Delgado et al. 2013). Both the croplands and 

grasslands of Southern Plains contribute significantly to the total GHGs emissions of the 

region. Approximately 43 tetragrams carbon dioxide equivalent (Tg CO2 eq.)  of net 

GHGs emissions has been reported from the agricultural sector (including crop, animal 

and forest) of US Southern Plains (Steiner et al. 2015). Out of the 32.9 Tg CO2 eq. of 

total N2O emissions in 2008 from Southern Plains, approximately more than half (17.3 

Tg CO2 eq.) was contributed from the grasslands (USDA, 2011). A grazing agro-

ecosystem is complex, considering too many factors that are inter-related and influenced 

by local climate, soil environment and management decisions. Therefore, it is very 

unlikely that the experimental comparison of greenhouse gas emissions under different 

pasture management is feasible. Modeling simulation offers the only feasible method for 

systematically comparing two pasture management systems for a longer time period.  
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Beef cattle production is the main economic activity in Southern Plains of US.  

Grasslands that are primarily used as grazing pastures constitute the significant land-use 

area in the Southern Plains (Coppedge et al. 2001; Ji and Peters 2003) are also one of the 

most sensitive and important ecosystems of North America. With the US population 

expected to increase from 319 million to 417 million between 2014 and 2060 (US 

Census, 2014), the demand for beef is also expected to grow annually. Thus, the beef 

production will imply pressure on the grassland to produce more beef by grazing more or 

achieved more by converting native grassland into improved pasture. Intensive grazing or 

overgrazing in some parts of the continents has already resulted into land degradation 

(Oldeman 1994) thereby leading to the depletion of soil carbon stocks (Conant and 

Paustian 2002). However, studies showed that better pasture management can potentially 

sequester substantial quantities of C in the soil. Grassland is one of the largest carbon (C) 

sequestration pools of the atmospheric CO2 (Jones and Donnelly 2004; Lal 2004; 

Schuman et al. 2002). Globally more than 3.5 billion ha of grassland contained about 

20% of the world`s soil carbon stocks (Ramankutty et al. 2008). More of the C in the 

grassland can be sequestered by improving the pasture by applying fertilizers, irrigation 

and other management inputs.  Incorporation of legumes, application of irrigation and 

fertilizers, and planting of more productive forage species are considered improved 

management practices (IPCC, 2004) (Conant et al. 2001). About 14% and 17 % increase 

in SOC have been reported in the temperate and tropical grassland respectively with one 

of the improved management practices implied for 20 years (Ogle et al. 2004).  
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Native grasslands are improved with the aim of enhancing plant production 

potential. Managed pastures undergo various changes in quick succession compared to 

natural pasture caused by human management intervention. Activities like fertilizer 

application, deposition of manure by livestock, burning, tillage practices can have 

substantial influence on the fundamental biophysical processes such as mineralization 

and decomposition because addition of such managements inputs changes the soil Carbon 

(C) and Nitrogen (N) pool. This can alter the soil environmental conditions such as 

moisture, temperature, pH and Eh (redox potential) thereby increasing the magnitude of 

the greenhouse gas (GHG) emission. Due to the fact that there is a strong coupling 

between soil C and N dynamics, the changes in soil C driven by management factors 

could bring concomitant changes in soil N. While majority of the studies found improved 

pasture management as a potential mechanism to mitigate global warming by C 

sequestration (Ellis and Ramankutty 2008; Smith 2008; Smith et al. 2000), few studies 

have examined the associated impacts on N emissions from the soil (Conant et al. 2005). 

In one hand fertilization adds the biomass incorporation into the soil providing 

opportunity to sequester higher amounts of atmospheric CO2. On the other hand, 

fertilization increases soil mineral N concentrations, causing more fluxes of N2O from 

the ecosystem. N2O is a powerful biogenic GHG, which has 300 times global warming 

potential than CO2 (Carlsson-Kanyama and González 2009; Lashof and Ahuja 1990). 

Therefore, the hypothesis to be tested is that the application of fertilizers in the improved 

pasture would increase the primary productivity of the ecosystem for few years but this 

increase in C sink would be counteracted by the increasing rate of GHGs emissions in the 

long run. We will be testing this hypothesis using the DeNitrification- DeComposition 
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(DNDC) model simulations. DNDC is a process-based model that simulates the 

emissions and consumption of gases within the ecosystem based on the interactive 

functions among local climate, local soils and on-site management practices (Giltrap et 

al. 2010; Li 2007). The combination of field measurements and modeling simulations 

help to examine the effects of grassland management practices on C sequestration and 

GHGs emissions. Specifically, the study will assess the effects of management practices 

on the net C balance and GHGs emissions in the managed pasture amended with 

fertilizers. 

5.2. Materials and Methods 

5.2.1 Basic description of DNDC model 

DNDC is a process based biogeochemical model that simulates soil carbon, 

nitrogen dynamics, plant growth and biogenic GHGs via different sub models i.e. soil-

climate/thermal hydraulic flux, decomposition and denitrification, plant growth, 

nitrification and fermentation (Li et al. 1992a). Conceptual model of DNDC consists of 

three layers. The outer layer of the model consists of ecological drivers or primary drivers 

which are the basic inputs such as climate, topography, soil, vegetation and human 

activities that turns on the model. The second layer is the biogeochemical field which is 

an assembly of soil environmental factors such as soil temperature, soil moisture, soil 

redox potential (Eh), soil pH, and substrate concentration. All these factors form the multi 

dimension field which determines the transfer and transformation of chemical elements 

within the field. The central part of the model consists of the core processes where 

biogeochemical reactions take place producing GHGs. GHGs are the products of redox 

reactions through electron exchange between electron donors and acceptors mediated by 
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microbes during the process of energy harnessing by breaking down the soil organic 

matter. Occurrence of the electron exchange is determined by the Eh of the soil as 

described by the Nerst equation: 

Eh= E0 + RT/nF * ln ([B]/[C])       (1) 

Where, Eh= redox potential, volts 

E0= standard redox potentials, volts 

R= gas constants 

T= temperature, Kelvins 

F= Faraday constants, 

B= Concentration of oxidant, mol 

C= Concentration of reductant, mol 

 

When the suitable Eh is established, the functional group of bacteria builds up their full 

capacity by rapid generation and horizontal gene transfer with in short period of time. 

After the microbes built up their capacity, the reactions rate is then controlled by the 

concentrations of the relevant nutrient substrates based on Michaelis-Menten equation: 

R = Rmax *A / (Ka + A) * B / (Kb + B)      (2) 

R= reaction rate 

Rmax= maximum reaction rate 

A, B = concentrations of substrate A and B (electron donors and acceptors) 

Ka, Kb = half saturation constants for substrate A and B 
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Since both the reactions share a common factor i.e B (electron acceptors, the coupling of 

(1) and (2) are used for modeling the redox reactions. 

 

Brief description of  employed submodels:  

1. Thermal Hydaulic flux (Soil-Climate)- simulation of soil temperature and soil moisture 

The biogeochemistry of soil environment are mainly controlled by soil temperature 

and soil moisture. DNDC utilizes a cascade of equations in calculating average temperature 

and soil moisture profiles at daily time scale. The equations involved in calculation of 

temperature and moisture are gradient-driven equations. The difference in mean daily air 

temperature and the temperature of a soil at certain layer determine the heat flux between 

the soil surface and the atmosphere and is calculated using following equation series: 

qs = (T1−Tair)
(z1−0)

 * -k1         (3) 

 

qi, i-1 = (Ti−Ti−1)
(zi−zi−1) 

 * -k i, i-1        (4) 

 

qb= (T𝑏𝑏1−T𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑧𝑧𝑏𝑏1−z𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑)

 * Kbl         (5) 

 

where q is the heat flux (Js-1), k is the soil thermal conductivity (J cm g-1 °C-1), T is the 

temperature (°C), Tair is the air temperature (°C), Tmean is the mean annual air 

temperature (°C), zbl is the depth at the bottom of the profile (cm) and zdeep is the depth 

where temperature variation is assumed to be negligible (5m). The subscripts 1, i and b 

represent the soil surface layer, ith layer and the bottom of soil profile respectively. 
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The model simulates soil moisture in terms of evapotranspiration as an output using 

precipitation and irrigation data as input data. At the beginning of each time step the model 

assumes water input saturates the soil layer by layer, where the surplus from one layer fills 

the next deep layer and the surface runoff and water intercepted by vegetation is not 

considered (Li et al. 1992). Evapotranspiration is calculated using the Thornthwaite 

equations: 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐷𝐷𝐷𝐷𝐷𝐷 ∗ � 1.6
𝑁𝑁𝑁𝑁
� ∗ �10 ∗  𝑇𝑇𝑚𝑚

𝐼𝐼
�
𝑎𝑎
       (6) 

𝑎𝑎 = 0.49 + 0.07 ∗ 𝐼𝐼 − 7.71 ∗  𝑒𝑒−5 ∗  𝐼𝐼2 + 6.75 ∗  𝑒𝑒−7 ∗  𝐼𝐼3     (7) 

𝐼𝐼 =  ∑  12
𝑛𝑛=1 � 𝑇𝑇𝑚𝑚

5
�
1.5

         (8) 

where, PET is the potential evapotranspiration (cmd-1), a is coefficient of PET, DAY is the 

1/12th fraction of the hours of a day (daylight hours), NM is the number of days in a month, 

and Tm is the mean monthly temperature (° C). The model consider PET is zero when the 

mean air temperature is below zero and the evapotranspiration is regulated by the 

volumetric soil water content (θ) as described by the following equations: 

𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃; if θ > θfc            (9) 

𝑃𝑃 = � (𝜃𝜃−𝜃𝜃𝑤𝑤𝑑𝑑
(𝜃𝜃𝑓𝑓𝑓𝑓−𝜃𝜃𝑤𝑤𝑑𝑑

� ∗ 𝑃𝑃𝑃𝑃𝑃𝑃 ; if  θfc >θ > θwp      (10) 

𝑃𝑃𝑃𝑃𝑃𝑃 = 0 ; if θ < θwp         (11) 

where  E is the actual evapotranspiration (cmd-1), θ  is the  actual soil water content (% 

water filled pore space),  θfc is soil water content at field capacity and θwp is soil water 

content at plant wilting point.  

 

2.  The decomposition submodel 
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Depending on the simulated oxygen content of the soil, soil decomposition 

submodel alternates with the denitrification submodel. Three soil organic pools: plant 

decomposable residues, microbial biomass and humads are determined first and then the 

first order kinetics as in equations 9-11 are used to calculate the decomposition of labile 

and resistant components of each organic pools.  The soil is either source or sink of C 

depending on the C/N ratio which also determines the speed of the decomposition process 

(Gilmour et al. 1985). 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑� =  𝜇𝜇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗  𝜇𝜇𝐶𝐶𝑁𝑁 ∗  𝜇𝜇𝑡𝑡𝑛𝑛 ∗ (𝑆𝑆 ∗  𝑘𝑘1 + (1 − 𝑆𝑆) ∗  𝑘𝑘𝑟𝑟     (12) 

𝜇𝜇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = log ( 0.14
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

) + 1         (13) 

𝜇𝜇𝐶𝐶𝑁𝑁 =  0.2+7.2
(𝐶𝐶𝐶𝐶 𝑁𝑁𝐶𝐶� )

          (14) 

where, 𝜇𝜇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝜇𝜇𝐶𝐶𝑁𝑁 ,𝑎𝑎𝑎𝑎𝑑𝑑 𝜇𝜇𝑡𝑡𝑛𝑛  are the reduction factor for nitrification for clay content, 

C/N ratio and temperature respectively, CLAY is the fraction of clay in the soil, S is the 

labile organic C fraction in the pool, k1 and kr is the specific decomposition rate of labile 

and resistant fraction (d-1), CP and NP are the carbon (kg C ha-1 d-1) and nitrogen (kg N 

ha-1d-1) produced by the potential residue decomposition.  

3. The denitrification submodel 

 The denitrification submodel is switched on under anaerobic condition, i.e. the 

rainfall events trigger the activity of denitrifiers and their potential growth rate ((dB/dt)g) 

and death rate ((dB/dt)d) are given by equations (12) and (13), respectively. 

�𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� �𝑔𝑔 =  𝑢𝑢𝐷𝐷𝑁𝑁 ∗ 𝑑𝑑 (𝑑𝑑)       (15) 

�𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� �𝑑𝑑 =  𝑀𝑀𝑐𝑐 ∗ 𝐷𝐷𝑐𝑐 ∗ 𝑑𝑑 (𝑑𝑑)       (16) 
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where, 𝑢𝑢𝐷𝐷𝑁𝑁 is the relative growth rate of denitrifiers and is calculated by equation (14) 

given by the relative growth rate of NO3
-, NO2

-, or N2O denitrifiers (𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶), B(t) is the 

total biomass of denitrifiers (kg C ha-1), 𝑀𝑀𝑐𝑐 is the maintenance coefficient of carbon, and  

𝐷𝐷𝑐𝑐 is the maximum growth yield on soluble carbon. 

𝑢𝑢𝐷𝐷𝑁𝑁 =  𝜇𝜇𝑡𝑡,𝑑𝑑𝑑𝑑 ∗ (𝜇𝜇𝑁𝑁𝑁𝑁3 ∗  𝜇𝜇𝐶𝐶𝑃𝑃𝑁𝑁𝑁𝑁3 +  𝜇𝜇𝑁𝑁𝑁𝑁3 ∗ 𝜇𝜇𝐶𝐶𝑃𝑃𝑁𝑁𝑁𝑁2 +  𝜇𝜇𝑁𝑁𝑁𝑁2 ∗  𝜇𝜇𝐶𝐶𝑃𝑃𝑁𝑁𝑁𝑁2 +  𝜇𝜇𝑁𝑁2𝑁𝑁 ∗  𝜇𝜇𝐶𝐶𝑃𝑃𝑁𝑁2𝑁𝑁   

(17) 

 Bacteria consumes the soluble carbon for cell synthesis and finally the CO2 

production is the result from the excess of available carbon than that is required for the 

bacterial cell synthesis and is calculated by equations (15) and (16) 

𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑛𝑛
𝑑𝑑𝑑𝑑� = �𝜇𝜇𝐷𝐷𝑁𝑁 𝐷𝐷𝑐𝑐� +  𝑀𝑀𝑐𝑐 � ∗ 𝑑𝑑(𝑑𝑑)        (18) 

𝑑𝑑𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑� =  𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑛𝑛,𝑡𝑡

𝑑𝑑𝑑𝑑� − (𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑)�
𝑔𝑔

       (19) 

where, 𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑛𝑛 𝑑𝑑𝑑𝑑�  is the change in the total consumption of soluble carbon over time, 

𝑑𝑑𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑�  is the change in CO2 production over time.  

3.1 Emissions of N2 and N2O and CH4 

N2 and N2O emissions from soil are calculated as a function of adsorption coefficient 

(AD) and air-filled porosity (PA) and is given by equations (17) and (18) respectively 

𝑃𝑃 (𝑁𝑁2) = 0.017 + ((0.025– 0.0013 ∗ 𝐷𝐷𝐷𝐷) ∗ 𝑃𝑃𝐷𝐷     (20) 

𝑃𝑃 (𝑁𝑁2𝑑𝑑) = (0.0006 + 0.0013 ∗ 𝐷𝐷𝐷𝐷) + (0.013– 0.005 ∗ 𝐷𝐷𝐷𝐷) ∗ 𝑃𝑃𝐷𝐷   (21) 

where, 𝑃𝑃 (𝑁𝑁2) and 𝑃𝑃 (𝑁𝑁2𝑑𝑑) are the emitted fraction of the total N2 and N2O evolved in a 

day.  
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In DNDC, CH4 uptake in dry land is positively correlated with soil organic carbon, soil 

temperature, and negatively correlated with soil moisture. Specifically, it is calculated by 

using the following two equations: 

𝑑𝑑𝐶𝐶4𝑢𝑢𝑢𝑢𝑑𝑑𝑎𝑎𝑘𝑘𝑒𝑒 ∗

=  

0.001 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑒𝑒𝑡𝑡𝑢𝑢𝑒𝑒𝑡𝑡𝑎𝑎𝑑𝑑𝑢𝑢𝑡𝑡𝑒𝑒 ∗ (36.26 ∗ log (𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑠𝑠 + 𝑤𝑤𝑡𝑡𝑤𝑤𝑠𝑠 + 𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡 + 𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤 +
𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑠𝑠 + 𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑡𝑡 + 𝑤𝑤ℎ𝑢𝑢𝑡𝑡𝑢𝑢𝑠𝑠 + 0.000001) 

28
                            

(22) 

𝑑𝑑𝐶𝐶4𝑢𝑢𝑢𝑢𝑑𝑑𝑎𝑎𝑘𝑘𝑒𝑒 =  𝑑𝑑𝐶𝐶4𝑢𝑢𝑢𝑢𝑑𝑑𝑎𝑎𝑘𝑘𝑒𝑒 ∗ (0.5 ∗ (1 −𝑊𝑊𝑊𝑊𝑃𝑃𝑆𝑆)       (23) 

where soil temperature and WFPS are the soil temperature and moisture (in water filled 

porosity) of the first soil layer; wrcvl, wrcl, wrcr, wcrb, wcrhl, wcrhr, and whumus are 

content (in kg C ha-1) of different soil organic carbon pools. 

 

4. Crop growth submodel  

This submodel helps DNDC to simulate the carbon turnover in soils using the daily 

crop growth curve (Giltrap et al. 2010). The climate-soil system and the crop growth are 

linked by the Nitrogen cycling (decomposition to plant growth). The plant biomass is 

computed from total N uptake, which is calculated from the crop potential maximum yield 

(derived from literature for each crop), and C/N ratio specific to that crop and is partitioned 

into different plant parts. Some or whole plants residues are again returned to the soil 

depending upon the harvest, tillage and grazing. A potential maximum biomass is 

calculated using the potential maximum yield and biomass partitioning ratios. The potential 

maximum Nitrogen uptake is calculated as a ratio between potential maximum biomass 

and estimated C/N ratio. The crop fractional growth obtained from the crop growth curved 
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is multiplied by the potential maximum Nitrogen uptake resulting into potential cumulative 

crop Nitrogen content. The crop Nitrogen demand is then simulated based on the 

availability of dissolved inorganic nitrogen in soil, determined from their concentration in 

the soil water solution and the current soil moisture(Li et al. 1994).   

 

5.2.2 Development of the conceptual model 

The management practices like fertilizers application and grazing in improve 

pasture will have impact on carbon dynamics, and greenhouse gas emissions mainly by 

three ways: a) Loss or gain of soil organic carbon (SOC) primarily depending on addition 

or decomposition of plants litter into the soil pool, b) changing the concentration of the 

substrates like NO3
-, and c) by directly influencing the soil environment by changing soil 

pH and Eh (Fig. 1). The amount of SOC available for the microbes determines the 

amount of the gas emissions from the soil. Once the suitable environment is developed in 

the soil, particular group of microbes gets activated and their biomass is determined by 

the growth rate in the model. Fertilizer application will increase the plant production and 

generally that leads to the increment of SOC pool whereas grazing decreases the SOC of 

the soil pool. Farm management practices alter the soil moisture, temperature, redox 

potential, and SOC and available N content. The change in these factors will determine 

the rate and direction of nitrification, denitrification and decomposition either collectively 

or simultaneously. 
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Figure 5.1. The sequential model framework representing management, soil 
environment and gas emissions dynamics. 
 

5.2.3 Study sites and parameterization 

The study sites i) native (98.03759°W, 35.5486565° N)   and improved (98.04529 

°W, 35.54679° N)  pastures are located near El Reno, OK at the United States Department 

of Agriculture-Agriculture Research Service (USDA-ARS) Grazing Research laboratory 

(GRL). Both native and improved pasture sites are open terrain, slightly sloped from east 

to west and is covered by natural tallgrass prairie in silty clay loam soil with the annual 

average temperature 15 C and average annual preciptation is 794 mm.  

Some of the parameters were selected from historical field and laboratory 

measurements. The climate, soil and crop parameters used for calibration of the model 

based on sensitivity analysis of Arango et. al, 2013 are presented in Table 1. The sensitive 

parameters identified were tested for a specified range by running the model in several 

interations which allowed the best calibration of the model under study site conditions.  
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Table 5.1 Climate, soil and crop parameters used on calibration of the model based 

on sensitivity analysis of Arango et. al, 2013 (Dissertation) 

 
Serial Number Parameters 
 Climate 
1 NH3 and NH4 in the rainfall 
2 Temperature 
3 Precipitation 
 Soil 
4 Bulk Density 
5 pH 
6 SOC at surface 
7 Clay fraction 
8 Field Capacity 
9 Soil Microbial Index 
 Crop 
10 Maximum Yield 
11 Total Degree Days 

 
5.2.4 Model validation 

Nine site years of data from three eddy covariance (EC) sites were used to validate 

the gross primary productivity (GPP) simulated from the model. The simulated GPP 

obtained by running DNDC for both native and managed pasture in 2005, 2006, 2014-2016 

were  used to compare the measured values. Model Efficiency (ME, equation (24) and the 

coefficient of determination (R2) will be used to evaluate the performance of the model. 

The values of ME ranges from - ∞ to 1, where 1 corresponds an ideal fit of the observations. 

R2 examines the relationship between model simulated values and field measurements. 

𝑀𝑀𝑃𝑃 = 1 −  
∑ (𝑁𝑁𝑗𝑗−𝑁𝑁𝑗𝑗)𝑚𝑚
𝑗𝑗=1

∑ (𝑁𝑁𝑗𝑗−𝑁𝑁)2𝑚𝑚
𝑗𝑗=1

       (24) 

where, O,  𝑑𝑑, M and n are measured, mean, modeled and total number of observation 

values, respectively. 



 

116 
 

 

5.2.5 Calculation of Global Warming Potential (GWP) 

The GWP resulting from fertilizer applications in managed pasture was calculated 

for better understanding the influence of fertilizers in global warming. Net Global Warming 

Potential (NGWP) represents the net balance of GWP reulting from increaased N2O flux 

and  increased carbon uptake. The following equations were used to calculate the GWP 

and NGWP. 

N2OGWP = (N2O (kg N2O-N ha-1) /28) * 44 * 298     (25) 

where 28 is the molecular weight of N in N2O and 44 is the molecular weight of N2O and 

298 is the global warming potential equivalent of 1 kg N2O relative to reference gas (CO2) 

in 100 years (IPCC, 2007). 

SOCGWP = (SOCSR (kgCha-1)/12) *44      (26) 

where SOCSR is the sequestration rate of soil organic carbon obtained by change in SOC 

per year and 12 and 44 represents the molecular weight og C and CO2 respectively. 

CH4GWP = CH4 (kgCH4-Cha-1)/12 * 16 *25      (27) 

where 12 is the molecular weight of C in CH4 and 16 is the molecular weight of CH4.The 

global warming potential of 1 kg CH4 is equivalent to 25 kg CO2  (IPCC,2007) 

NGWP = N2OGWP - SOCGWP  - CH4GWP     

 (28) 
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5.3 Results 

5.3.1 Comparison of modelled carbon fluxes with Eddy covariance (EC) 

measurements  

The modeled results of Gross Primary Productivity (GPP)  are plotted together with 

the EC measuremetns and are presented in Fig. 5.2. Despite the greater discrepancies 

between simulated GPP and observed GPP in natve pasture particularly in 2006 and 2016 

, the model showed good performance in the peak growing season in other years at both 

pastures. In 2006 and 2016, GPP was over estimated towards the end of the growing season 

in native pasture (Fig. 5.1 e, g) but showed very consistent trends with the observed GPP 

for the rest of the growing season. Regardless of the year and sites, we observed 

consistenent over estimation of simulated GPP during the dry summer months of 

Oklahoma (June-August) except 2015. The year 2015 received above average rainfall at 

both sites and the simulated results showed consistently correspondance with the observed 

GPP values throughtout the year (Fig. 5.2 b,f). 
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Figure 5.2 Seasonal dynamics of modelled simulated GPP and observed GPP from 
eddy covariance measurement of managed pasture (a-c) and native pasture (d-g). 
 

When linear regression was applied to simulated and EC measured GPP values, the 

results showed varied coefficient of determination (R2) and slope (Table 5.2). The overall 

a 

b 

c 

d 

e 

f 

g 
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R2 and slope values across sites and years were 0.73 and 0.84, respectively. However, the 

year 2006 in native pasture showed significant lower values of R2 (0.5) and slope (0.48) 

whereas the highest R2 ( MP= 0.8, NP=0.8) and slope (MP= 0.99, NP= 0.95) was observed 

in the year 2015 at both sites.   

 

Table 5.2 Coefficient of determination (R2) for validation of the model results based 

on regression analysis between the observed and simulated GPP values. 

 

    R2 slope 
  2014 0.76 1.13 

MP 2015 0.8 0.99 
  2016 0.72 0.64 
     

  2005 0.74 0.76 
NP 2006 0.5 0.48 

  2015 0.8 0.95 
  2016 0.76 0.9 

 

 

5.3.2 Dynamics of Gross Primary Productivity (GPP) and Soil Organic Carbon 

(SOC) from 1999-2016: managed versus native pastures 

The bar chart (Fig. 5.3) displays the simulated annual  Gross Primary Productivity 

(GPP) and Soil Organic Carbon (SOC) from 1999 to 2016. As expected, the GPP and SOC 

of managed pasture were higher in years at the beginning of simulation (1999-2007) 

compared to the GPP and SOC of pasture under native condition. Both GPP and SOC at 

managed pasture site started to decline from 2009 and significantly decreased during 

drought spell of 2010-2012.The interannual variability in GPP and SOC was observed for 
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both managed and native pastures depending on the meterological conditions of the 

particular year. However, native pasture showed more resillience to rainfall variation than 

that by managed pasture. The productivity of the managed pasture was highest (22.31 

thousands Kg C ha-1yr-1) in 2007 while the lowest (11.34  thousands Kg C ha-1yr-1) was 

observed in 1999. However, the highest (21.45 thousands Kg C ha-1yr-1) and lowest (10.26 

thousands Kg C ha-1yr-1) productivity of native pasture was observed in 2016 and 

19991,respectively (Fig. 5.3 a).  

 

Figure 5.3. Interannual variability of Gross Primary Productivity (GPP) and soil 
organic carbon (SOC) at managed and native pasture sites. 

 

The management activities (application of fertilizer) contributed higher soil organic 

carbon (SOC) in managed pasture sites at the first half of the study period (1999-2008). 

Similar to the GPP variation the managed pasture showed significant decline of SOC 

during the drought years (2010-2012) (Fig. 5.3 b). The addition of carbon to the soil in 

managed was greater (> 200 Kg C ha-1yr-1) for the first four years which decreased to 

around  7 Kg C ha-1yr-1 in 2012. The largest difference in SOC sequestration between the 

managed and native pasture was obtained in 2008, which showed about 289 Kg Kg C ha-

1yr-1 was sequesterd moreby the managed pasture than did by native pasture. However, the 
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difference in SOC sequestration rate between managed and native pastures were variable 

depending upon the raifall amount. 

 

5.3.3 Dynamics of N2O and CH4 fluxes from 1999-2016: managed versus native 

pastures 

Although the magnitudes of N2O fluxes varied largely between the years, the 

management activities in the managed pasture significantly contributed higher N2O 

emissions in most of the years. About 1.7 Kg N ha-1 y-1 was released from the managed 

pasture in 2007 while it was only 0.8 Kg Kg N ha-1 y-1 from the native pasture. The lowest 

N2O emissions was observed in 2001 from both pastures. Rainfall amount showed 

relationship to the magnitude of N2O fluxes (Fig.5.4 a). In wet years (2007, 2013 and 2015) 

, both managed and native pastures showed higher emissions and the emissions was 

substantilly lowered in the dry years like 2003, 2006, and 2012 except 2011 where N2O 

emissions from both pastures were relatively higher than other dry years. 
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Figure 5.3. Total annual N2O (a) and CH4 fluxes (b) from managed and native pasture 
from 1999-2016. The black solid line represents the total annual rainfall in mm. 

 

The methane fluxes in both pastures sites are negative indicating the net sink of 

methane gases during the study period. There was no any significant differences in the 

magnitude of CH4 fluxes between managed and netaive pastures, however small 

interannual variability was observed for both pastures (Fig. 5.4 b). 

 
5.3.5 Seasonal dynamics of N2O and CH4 fluxes from managed and native pastures 

in dry and wet years 

To understand the role of rainfall in N2O and CH4 emissions, the daily N2O and 

CH4 emissions from both managed and native pastures were simulated in wet (2007) and 

dry (2011) year and is presented in Figure 5.4. The signal of N2O emissions was stronger 

from managed pasture regardless of the rainfall scenario, however the magnitude of 

emission was significantly higher in wet year than dry year. The signal of emission at about 

DOY=130 with amplified peak in 2007 was after the rainfall of 108 mm in DOY=128 (Fig. 

5.5 a). The highest daily emission was about 0.13 Kg N ha-1 y-1 and 0.07 Kg N ha-1 y-1 from 

the improved and native pasture respectively in wet year (2007) but it was only about 0.09 

Kg N ha-1 y-1 from both pastures in dry year (2011). This higher emissions signal of N2O 

after the rainfall events  indicated the significance of rainfall in N2O emissions. Therefore, 

the application of fertilizer in managed pasture accompanied by the rainfall was more 

influential in terms of N2O emissions. However, rainfall events did not show any impacts 

on the emissions of methane fluxes from both pastures. In both dry and wet years, the CH4 

fluxes from managed and native pastures did not vary and both pastures were sink of the 

CH4 fluxes (Fig. 5.5 c,d). 
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Figure 5.4 Daily dynamics of N2O and CH4 emissions from managed and native 
pastures in wet (2007) and dry (2011) year. The black bars represent the daily rainfall 
in mm. 
 

5.3.6 Global warming potential (GWP) of soil organic carbon sequestration rate 

(SOC-R), N2O and CH4 and resulted net global warming potential (NGWP) 

 The global warming potential of soil organic carbon sequestration (GWP SOC-R) 

was observed higher in the managed pasture than in the native pasture corresponded to 

the higher GPP. The highest (GWP SOC-R) for managed pasture was observed in 2003 and 

the highest for native pasture was observed in 2007 (Fig 5.5 a) and there was large inter 

annual variation of GWP SOC-R at both pasture sites dependent on the variation of SOC. 

The global warming potential of N2O (GWP N2O) is presented in figure 5.5, b. The GWP 

N2O of managed pasture was significantly higher than that of native pasture most notably 
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on those wet years when the emissions were dependent on the rainfall events. For 

example, 2007 one of the wettest year had the highest (791 kg CO2 -eq ha-1) GWP N2O 

from the managed pasture and the N2O contributed about 389 kg CO2 -eq ha-1 GWP 

from the native pasture in the same year. The net global warming potential (NGWP) 

calculated from GWP SOC-R, GWP N2O, and GWP CH4 was observed positive for managed 

pasture and was significantly higher in the years with higher N2O emissions. The NGWP 

for native pasture was negative in all years except 2004 (Fig 5.5 c).  

 

Figure 5.5 Yearly global warming potential (GWP) of soil organic carbon 
sequestration rate (SOC-R), N2O and CH4 and net global warming potential (NGWP) 
for managed and native pasture from 2000-2016. 
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5.4 Discussion 

In the context of climate change and climatic variability many simulation studies 

from global climate models predicted rainfall in the future will either increase or decrease 

(Huntingford et al. 2003; Wang et al. 2005). Our results showed that the N2O emissions 

was dependent on rainfall amount and distribution (Fig. 3.5). Higher rainfall contributed 

larger magnitudes of N2O emissions in the managed pasture. At the same time, efforts in 

the future will be towards the increasing of grassland productivity by improving the pasture 

that demands the use of more chemical fertilizers. Many others studies in agriculture and 

grassland have showed the larger fluxes of greenhouse gases from the ecosystem as 

consistent with our study (Kessavalou et al. 1998; Mosier et al. 2006). However significant 

variation in N2O emissions has been reported for temperate grasslands (Flechard et al. 

2007; Rafique et al. 2011), native semi-arid grasslands (Du et al. 2006; Tian et al. 2010) 

and grasslands under varying soil conditions (Tian et al. 2010; Xu et al. 2008).The mean 

annual (1999-2016) N2O emission rate of 0.43Kg N ha-1 in the native pasture was relatively 

higher from the mean emissions rate (0.09-0.16 Kg N ha-1 ) reported from the Colorado 

shortgrass steppe between 1992-1994 (Mosier et al. 1996). However, the study reported 

increased N2O emissions rates from the fertilized grassland from (0.21 – 0.83 Kg N ha-1) 

which is similar to the mean rate we observed in our managed pasture (0.56 Kg N ha-1). 

The considerable variations in the mean N2O emissions (0.94, 0.16 and 0.1 Kg N ha-1 ) 

from North American grassland has been observed in the previous studies  based on 

different methods used such as process-based model (Tian et al. 2010), remote sensing 

model (Potter et al. 1996) and emprical model (Xu et al. 2008) respectively. The limited 

information on the N2O rates from  managed grassland of US has been available. However, 
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the syudies conducted in the grasslands of Europe, New Zealand and Australia showed 

significant increase in the emission rates of N2O from fertilized pastures compared to 

native pastures(Burchill et al. 2014; Ding et al. 2004; Liu and Greaver 2009) .The inter-

annual fluctuations on the emissions rate of N2O was highly corresponded with the mean 

annual precipitation for example pluvial years (2007 and 2013) had the significant higher 

fluxes and the drought years (2006, 2011 and 2012) had significant lower fluxes,  from 

both native and managed pastures due to the soil moisture a factor that regulate the soil 

denitrification processes (Conrad 1996). The control of rainfall on N2O emissions 

consistent with our study has been reported in several other studies in the past (Butterbach-

Bahl et al. 2013; Goldberg and Gebauer 2009; Ma et al. 2010).   

  

The potential of pasture ecosystem to sink more atmospheric CO2  by improving 

the pasture have been achieved in our study as in consistent with the arguments that 

managed grasslnd is one of the largest sink of atmospheric carbon via carbon sequestration 

(Ellis et al. 2010; Smith 2008) . The greater GPP in most of the years especially towrads 

the beginning of simulation provided the evidence that the productivity can be enhanced 

by improving the native pasture. However, the SOC sequestration rate was not consistent 

throught the period. Initial years sequestered the larger amounts of SOC while the potential 

of soil to sequester carbon in the soil decreased substantially, indicating the management 

of pasture by adding chemical fertilizers is not a sustainable mechanism to enhance the soil 

carbon sequestration potential. Therefore, in the long run this might be counterproductive 

for mitigating climate change due to the fact of higher green house gas  emissions. 
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Pasture management such as application of fertilizers that change one type of GWP 

may also impact other GWP and therfore changes the NGWP (Mosier et al. 2006; Shang 

et al. 2011). In this study, addition of fertilizer in the pasture reduce the GWP by 

sequestration of more carbon into the soil and at the same time contributed to the larger 

amount of the N2O emissions which offsetted the advantage gained from the increased 

SOC (Matson et al. 1998; Robertson et al. 2000). The GWP of the N2O is greater than 298 

factor equivalent to CO2 which finally contributed for increased GWP therby resulting 

higher NGWP of managed pasture throught our study period (Fig 5.5 c). This is in 

agreement with the findings that the unmanaged ecosystem had lower GWP than the 

managed cropland during 1991-1999 in midwest US showing lower potentiality to mitigate 

the climate change due to higher GWP potential of N2O emissions from the managed 

ecosystems (Robertson et al. 2000).  

 

The results in this study indicate that the N2O emissions from the managed pasture 

were controlled by the rainfall and nitrogen input. The significant contributions of the  N2O 

emissions to the NGWP from the managed pastures highlights the need for regular and 

long term measurement of the robust data from the manged pasture. This finding has the 

greater implications in the context of future volatility in raifall patterns has been predicted 

(Miraglia et al. 2009; Solomon 2007) and intensively managed pastures for increasing 

productivity productivity has been expected. 
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5.5 Conclusion 

 
The management activities in pasture (managed pasture) increased the productivity 

that increased the roughages demands resulted by increased stocking density of cattle. The 

increased in productivity was measured in terms of GPP in managed pasture to that of 

native pasture particularly in years with  good rainfall . Similarly, higher flux of N2O from 

the managed pasture was resulted as the effect of fertilizer addition which amplified in 

magnitude in wet years than dry and normal years. The sesonal dynamics of N2O flux was 

identified in correspondence with the rainfall distribution within the season. The advantage 

from increased SOC due to the fertilizer application, measured in terms of GWP was out 

weighed by the GWP calculated from the increased magnitude of N2O fluxes in wet years 

thereby giving the positive NGWP. Therefore, pasture management policies should 

consider maintaining emissions level as minimum as possible while optimizing the 

productivity.  
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Chapter 6: Conclusions and Perspectives 

Remote sensing indices have been widely used to study the ecosystem responses 

to climatic variability specially in drought assessment. The land use change and its 

impacts on change in carbon, water and energy flows from and to the ecosystems can be 

studied using the eddy covariance techniques. Similarly, various biogeochemical models 

are used to study the impacts of human management in emissions of greenhouse gases 

from the ecosystem. Therefore, this dissertation overall aims to understand the ecosystem 

responses to climatic variability and management practices using different approaches 

such as remote sensing, eddy covariance techniques and modelling. 

 

Chapter 2 proposed a new approach of drought assessment, counting number of 

days with LSWI < 0 and based on this approach, an LSWI-based drought severity 

classification was developed. For this, 14 years of MODIS-derived VIs, Mesonet soil 

moisture and rainfall data at Marena and El Reno tallgrass prairie sites was used to study 

the impact of drought events on grassland phenology and growth through analyzing 

sensitivity differences of vegetation indices to drought. When three VIs were compared, 

LSWI decreased the most in drought years followed by EVI and NDVI, indicating that 

LSWI was the most sensitive indicator to the drought events. The number of days with 

LSWI < 0 was found higher during the summer droughts of 2006 and 2012, showing the 

ability of LSWI to track drought. LSWI values were more negative for the period of 

intensity drought categories (D2, D3 and D4) defined by USDM, demonstrating that 

LSWI could be used to describe the hydrological condition of the tallgrass prairie as an 
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effective additional VI for drought assessment. However, a more thorough evaluation of 

this approach as a drought monitoring tool for widely distributed grasslands and other 

vegetation types is required and will be the subject of future research. 

 

Chapter 3 investigates the potential of the Land Surface Water Index (LSWI)-

based algorithm developed in Chapter1, for agricultural drought monitoring under 

varying soil and land cover conditions of 113 Mesonet stations of Oklahoma. We 

compared LSWI and the number of days with negative LSWI (DNLSWI) to summer time 

precipitation, precipitation anomalies, and the U.S. Drought Monitor. Results of LSWI 

analysis for the period of 2000-2013 for 113 Mesonet stations across Oklahoma revealed 

valuable information within the context of drought tracking. A strong correlation and 

dynamics between LSWI-anomalies and summer rainfall anomalies comprises a fact that 

LSWI is sensitive to rainfall variations and can be used as an indicator of drought 

occurrence in an ecosystem. It is then deduced that DNLSWI had the close association 

with the vegetation condition under rainfall variations. There was a longitudinal 

sensitivity for low intensity droughts between eastern and western Oklahoma as shown 

by lower agreement of D0 and D1 drought with USDM in panhandle region (western 

Oklahoma).  Results illustrated that drought intensity thresholds can be established by 

counting DNLSWI (in days) and used as a simple complementary tool in several drought 

applications for semi-arid and semi-humid regions of Oklahoma. However, larger 

discrepancies between USDM and the LSWI-based algorithm in arid regions of western 

Oklahoma suggest the requirement of further adjustment in the algorithm for its 

application in arid regions. 
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Chapter 4 aims to contrast CO2 and H2O fluxes between winter wheat and 

tallgrass prairie to provide insights on the impacts of conversion of tallgrass prairie to 

winter wheat on regional carbon and water budgets. Carbon dioxide and water vapor 

fluxes were measured using the eddy covariance system from two major ecosystems of 

the southern plains (winter wheat and tall grass prairie) in 2015 and 2016. The winter 

wheat site was a net sink of carbon for four months (February-May), whereas the 

tallgrass prairie site was a net sink of carbon for seven months (March-September). At 

the annual scale, the winter wheat site was a net source of carbon. In contrast, the 

tallgrass prairie site was a net sink of carbon.  Similarly, the significant water loss due to 

evaporation from the fallow land (winter wheat-fallow rotation) when little carbon was 

fixed caused the winter wheat ecosystem to be less water efficient than the tallgrass 

prairie ecosystem despite higher growing season EWUE. Considering the large scale of 

land use conversion from prairie to winter wheat, our results indicate that the differences 

in magnitudes and patterns of CO2 and H2O fluxes between the two ecosystems can 

influence carbon and water budgets at the regional scale. 

 

  

Chapter 5 tested the hypothesis that the application of fertilizers in the managed pasture 

would increase the primary productivity of the ecosystem for few years but this increase in 

carbon sink would be offsetted by the increasing rate of GHGs emissions in the long run. 

DeNitrification- DeComposition, a process-based model was used to simulate the 

emissions and consumption of gases within the ecosystem based on the interactions of local 

climate, local soils and on-site management practices. By combining field measurements 
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and modeling simulations, the effects of grassland management practices on the net C 

balance and GHGs emissions in the managed pasture amended with fertilizers was 

examined. Fertilizer application increased the plant production and generally leads to the 

increment of SOC pool whereas grazing decreased the SOC of the soil pool. Farm 

management practices alter the soil moisture, temperature, redox potential, and SOC and 

available N content. The change in these factors will determine the rate and direction of 

nitrification, denitrification and decomposition either collectively or simultaneously.  
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