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Abstract 

Hourly maximum fields of simulated storm diagnostics from experimental 

versions of convection-allowing models (CAMs) provide valuable information 

regarding severe weather potential. The focus of this work is to extract operationally 

relevant tornado probabilities from the CAM-based Weather Research and Forecasting 

(WRF) ensemble initialized daily at the National Severe Storms Laboratory (NSSL-

WRF). Probabilities are derived in three main ways: by using updraft helicity (UH), UH 

filtered by model-derived environmental parameters, and through combining UH and 

model-derived environmental parameters with observed climatological tornado 

frequencies. Contrasting these methods compares a binary threshold exceedance 

approach and a probabilistic paradigm. Rather than using a specific threshold of UH as 

a proxy for tornadogenesis and relying on the ensemble to generate probabilities, the 

probabilistic approach treats each point as having a certain probability of producing a 

tornado, depending on the surrounding environmental conditions. Additionally, the 

ensemble-generated forecasts using both approaches are compared with the 0600 UTC 

Storm Prediction Center (SPC)’s tornado probabilities, to determine whether ensemble 

forecasts approach the skill of expert forecasters. While the methods derived using the 

threshold approach overforecast tornado probability magnitude, the probabilities that 

incorporate climatological frequency information perform much more reliably, 

particularly when the storm timing was considered.   

For the probabilistic forecasts to be operationally relevant, cooperation with 

forecasters is critical in their development. A database of right-moving supercells 

developed by SPC forecasters was used to generate the climatological frequencies on 
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which three sets of probabilities are based. Through NOAA’s Hazardous Weather 

Testbed Spring Forecasting Experiment (SFE), subjective daily evaluation of the 

probabilistic forecasts provided feedback during SFE 2015 that led to the development 

of the climatological frequency probabilities. When the climatological frequency 

probabilities were evaluated in SFE 2017, the prevalence of false alarm from nocturnal 

mesoscale convective systems led to the incorporation of timing information which 

reduces that false alarm. Therefore, the forecast probabilities are targeting the right-

moving supercells, reflecting the underlying climatological frequencies.
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Chapter 1: Introduction 
 

Severe convective hazards such as hail, thunderstorm winds, and tornadoes are a 

common threat in the United States, with its unique geography particularly conducive to 

the formation of persistently rotating thunderstorms, called supercells. The defining 

characteristic of these storms is the rotating updraft at the core of the storm, which 

allows for dynamic pressure perturbations to enhance the lift generated by the 

realization of convective available potential energy (CAPE). The rotation of the storm is 

initiated by shear between the mid-troposphere and the surface, which also helps to 

displace precipitation from the updraft. The combination of the displaced precipitation 

and the dynamic pressure perturbations leads to long-lasting, quasi-steady-state storms, 

with the potential to leave a swath of damage in their wake. Supercells also produce a 

majority of tornadoes compared to other individual storm morphologies, including 89% 

of EF2+ and 97% of EF3+ tornadoes (Smith et al. 2012). Tornadoes cause tens to 

hundreds of deaths and hundreds of millions of dollars in damages each year (Simmons 

et al. 2013), motivating studies on how best to forecast tornadoes and their parent 

storms and improve forecasters’ capability to protect lives and property.  

The first work to address the question of tornado forecasts and verification was 

Finley (1884), which highlights the local effects of tornado prediction and calls for 

minimizing false alarm in forecasts. The small-scale nature of tornadoes inherently 

makes their prediction difficult; not only are tornadoes rare events, but the processes 

leading to tornado formation are highly localized and difficult to observe. However, 

field campaigns and idealized numerical modelling experiments have allowed 

researchers to determine environmental characteristics of tornadic storms and discern 
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favorable ingredients for tornadogenesis. By applying ingredients-based methods to 

tornado forecasting following Doswell et al. (1996) and taking advantage of increased 

numerical weather prediction (NWP) capability, operational forecasts of potentially 

tornadic environments have improved since the 1970s (Hitchens and Brooks 2012).  

With the increase in computer power over the last 40 years, the ability to run 

finer grid-resolution NWP models over larger areas has allowed for the depiction of 

finer-scale atmospheric phenomena. Models with grid spacings as small as 3- and 4-km 

are now run for the entire contiguous United States, successfully simulating convective-

scale phenomena. Though these models are not run at a fine enough grid spacing to 

explicitly resolve features of convective overturning such as the entrainment process 

[which would require a horizontal grid spacing of ~100 m according to Bryan et al. 

(2003)], turning off the convective parameterization at horizontal resolutions of 3–4 km 

reproduces much of the mesoscale structure and evolution of linear convective systems, 

including depiction of the cold pool (Weisman et al. 1997). The capacity to reproduce 

realistic convective systems within these NWP models aids operational forecasters 

attempting to determine convective storm characteristics (Weisman et al. 2008; Kain et 

al. 2008). The simulated reflectivity from convection within these models often 

resembles actual radar reflectivity, giving forecasters insight into convective 

occurrence, evolution, and mode. In addition to typical NWP parameters such as 

temperature and pressure, convection-allowing models (CAMs) allow for storm-based 

metrics, including metrics diagnosing storm rotation. However, a rotating simulated 

storm does not necessarily indicate a tornado threat. Storm-scale dynamics often 

determine whether or not a tornado will occur, and simulated mesocyclones (as in 
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reality) will not always be tornadic. Therefore, midlevel rotation alone is not expected 

to be a perfect indicator of whether or not a tornado is expected to form and additional 

information is required. 

Output from a single forecast model provides one scenario of how a day’s 

weather may unfold, but individual models imperfectly depict the atmosphere. Even the 

initial state of the atmosphere is never perfectly known, due to limited observing 

capabilities. A common solution is to create ensembles of NWP models, providing a 

range of solutions by using multiple initial conditions, differing parameterizations of 

small-scale atmospheric processes, and different methods of incorporating observations. 

By presenting a number of solutions, the eventual outcome will ideally fall within the 

envelope of the ensemble solutions. An operational convection-allowing ensemble 

became available on 1 November 2017, but experimental convection-allowing 

ensembles have been used by severe weather forecasters when available for years. From 

these ensembles, rather than having a deterministic yes or no forecast as to whether 

severe convection will occur at a given point, a probability of severe convection 

occurring can be generated. These probabilities take into account the uncertainty 

inherent in severe convective forecasting. 

The central question of this dissertation is how to best utilize guidance from 

convection-allowing NWP ensembles to generate probabilistic tornado forecasts, which 

will in turn aid operational forecasters. Multiple methods are developed and tested 

objectively, using statistical metrics, and subjectively, getting feedback from 

researchers and forecasters. Testing and verification take place in a daily, operational 

setting, as well as aggregated across spring seasons, as the methods’ usefulness to 
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forecasters are contingent upon both their daily performance and their seasonal 

performance. Isolating the tornado threat from the severe convective threat is a difficult 

challenge, but combining high-resolution CAM ensembles with prior studies of 

environmental parameters provides an opportunity to attack this challenge with the 

newest tools available.    

 

1.1 Research Background 

NWP forecasts focused on severe convective storms began with idealized 

studies of convective dynamics on relatively coarse grids (e.g., Steiner 1973). As 

computer power has increased, idealized models have been run at finer and finer grid 

spacing, including simulations run down to 30-m horizontal grid spacing that are 

capable of simulating tornadic supercells (Orf et al. 2017). Running NWP with such 

small grid spacing requires large computational resources, produces terabytes of data, 

and has limited domain constraints. However, lessons from idealized simulations can 

often give insight to forecasting processes. For example, Weisman and Klemp (1982, 

1984) developed parameter studies that linked the Richardson number and convective 

mode, helping forecasters anticipate particular hazards associated with different modes. 

Operationally, the first experiment to help determine real-time storm mode was the 

Storm Type Operational Research Model Test Including Predictability Evaluation 

(STORMTIPE; Brooks et al. 1993; Wicker et al. 1997), which used an environmental 

sounding in an idealized simulation to determine storm mode. Presently, the highest-

resolution operational model that the National Centers for Environmental Prediction 

(NCEP) runs (the High-Resolution Rapid Refresh [HRRR] model), has 3-km grid 
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spacing (Benjamin et al. 2016) and runs hourly, providing specific information on 

initiation and evolution of severe convective storms, as well as storm mode (Kain et al. 

2008; Clark et al. 2012a). The widespread increase in computing power has led to 

multiple agencies running different experimental convection-allowing models, with the 

output available online [example agencies include the National Severe Storms 

Laboratory (NSSL), Texas Tech, the Earth Systems Research Laboratory, and the 

Center for the Analysis and Prediction of Storms (CAPS), among others].  

While deterministic NWP forecasts provide realistic scenarios of how 

convection may occur on a given day, the large uncertainty inherent in small-scale 

prediction encourages an ensemble approach to realize multiple outcomes. Operational 

ensemble forecasting at coarse grid spacing began at NCEP and the European Centre 

for Medium-Range Weather Forecasts (ECMWF) in December of 1992 (see Kalnay 

2003 for a thorough review of historical ensemble configuration techniques). Kalnay 

(2003) states that ensemble forecasting has three basic goals: (1) to improve forecasts 

via ensemble averaging, (2) to provide an indication of the reliability of the forecast, 

and (3) to provide a quantitative basis for probabilistic forecasting. All three of these 

basic goals can be applied to the severe convective forecasting problem specifically. 

CAPS developed the first CAM ensemble system in 2007 for the annual Spring 

Forecasting Experiment (SFE), testing multiple methods for generating different 

members (Xue et al. 2007). Different ensemble configurations were then contributed by 

CAPS to subsequent SFEs, and other agencies were contributing ensembles by the 2014 

SFE. The current operational high-resolution ensemble, the High Resolution Ensemble 

Forecast, version 2 (HREFv2) is based on the Storm-Scale Ensemble of Opportunity 
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(SSEO; Jirak et al. 2012a), assembled by the Storm Prediction Center (SPC)  from 

deterministic CAMs developed by NSSL and the Environmental Modeling Center 

(EMC). Since the member CAMs are available of the SSEO are available daily (though 

not all are operational), this grouping served as a “poor man’s ensemble” and provided 

a good starting point for an operationalized CAM ensemble, which became available on 

1 November 2017.  

SFEs have served as a testing ground for CAM ensembles since 2007, bringing 

operational forecasters, researchers, and model developers together. Formal SFEs began 

in 2000 and continue to this day, although informal collaboration occurred prior to the 

implementation of the formal programs (Kain et al. 2003). These experiments test 

cutting-edge NWP models and post-processing techniques, as well as give forecasters 

the opportunity to provide feedback to researchers to aid in developing useful tools. A 

thorough overview of the SFEs, particularly the 2015 SFE, is presented in Chapter 2. 

Since there was a desire for work within this dissertation to be operationally based, 

obtaining feedback on the products developed herein was critical to ensure that 

forecaster concerns were addressed and guidance was generated that forecasters could 

trust, making its operational use more likely. 

Although cutting-edge technology is tested each year in the SFEs, operational 

forecasters also play an essential role in the forecast process by incorporating the latest 

NWP with their knowledge of the atmosphere to generate the best possible forecast. 

While the specific conditions leading to tornadogenesis by a particular supercell are 

often extremely small-scale (e.g., interaction with small-scale boundaries; Markowski et 

al. 1998; Rasmussen et al. 2000), large-scale environmental characteristics conducive to 



7 

supercellular storms and subsequent tornadogenesis are less subject to large uncertainty 

than individual storm attributes, making them more easily anticipated and modeled by 

NWP output. Thus, forecasters often use an ingredients-based approach (Doswell et al. 

1996) to forecasting tornadoes, assessing where environmental conditions conducive to 

supercells and subsequent tornadogenesis may occur. Brooks et al. (2003) found high 

CAPE and strong 0–6 km shear in proximity soundings to supercellular convection, two 

ingredients that can be depicted by both coarse-resolution and fine-resolution NWP.  

However, identifying conditions favorable to supercells is insufficient for 

tornado forecasting — Trapp et al. (2005) found that ~26% of storms with 

mesocyclones produced tornadoes, and Thompson et al. (2017) found that number to be 

just 18%. Rasmussen and Blanchard (1998) identified two further parameters that 

typically differ between tornadic supercells and non-tornadic supercells: 0–3 km storm-

relative helicity (SRH), and the lifted condensation level (LCL) height. Tornadic 

supercells tended to have higher SRH and lower LCLs than non-tornadic supercells, 

although some overlap occurred between the distributions. These two parameters, in 

addition to the 0–6 km bulk shear and the CAPE from a 100 mb mixed-layer parcel, 

were combined by Thompson et al. (2003) into the significant tornado parameter (STP). 

Using the STP, supercells producing a significant tornado (defined therein as producing 

F2 or greater damage) had a statistically significantly larger STP value than non-

tornadic supercells. The STP was formulated so that a value of 1 best discriminated the 

two types, but Thompson et al. (2003) noted the importance of convective mode 

prediction in forecasting, wanting to preclude any use of this metric as a “magic 

number”. The STP was later improved upon by modifying the relative weights of each 
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parameter, using effective-layer wind shear parameters to better reflect the storm 

inflow, and adding a convective inhibition (CIN) term to limit areal false alarms 

(Thompson et al. 2012). While other composite parameters have been tested (Hart and 

Korotky 1991; Rasmussen 2003; Craven and Brooks 2004), the STP remains a key tool 

for forecasters looking to summarize the environmental ingredients conducive to 

tornadogenesis. 

While convection-parameterizing and CAM ensembles can both simulate 

environmental parameters conducive to tornadogenesis, CAM ensembles explicitly 

depict convection from which storm-based diagnostics can be computed, including a 

metric determining the rotational characteristics of a simulated storm: updraft helicity 

(UH). Formulated as the vertical vorticity times the updraft speed integrated over a 

layer, 2–5 km UH was determined to be a reliable indicator of mesocyclone-scale 

rotation (Kain et al. 2010), and therefore a successful indicator of supercells (Carley et 

al. 2011; Naylor et al. 2012). UH fields soon became used throughout the literature to 

identify areas of general severe convective threats in deterministic and ensemble 

frameworks (Sobash et al. 2011; Schwartz et al. 2015a; Sobash et al. 2016a; Loken et 

al. 2017) and were extended to individual hazards forecasting (Clark et al. 2012b; 

Sobash et al. 2016b, Gagne et al. 2017). The ensemble can then provide probabilistic 

hazard information, as well as multiple possible realizations of convection, which could 

lend confidence in forecasting convective mode. 

As the prevalence of CAM ensembles increases, ever more information is being 

provided to operational forecasters – six CAM ensembles were available and evaluated 

in real-time for the 2015 SFE, for example. Since forecasters are working within strict 
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time constraints for product issuance and often do not have the time to consider each 

member of each ensemble, post-processing the CAM ensemble output summarizes 

relevant information for the forecasters, supplanting the need to look separately at 

storm-scale and environmental fields. How best to post-process this information is the 

crux of this dissertation, which aims to determine which metric or combination of 

metrics provides the best forecast, what impact incorporating empirical climatologies 

into forecasts has, and how the timing of specific parameters may influence the 

forecasts. Together, these questions determine how to formulate a reliable first-guess 

product for operational forecasters, distilling the flood of information to a manageable, 

reliable, and useful graphic. 

 

1.2 Research Hypotheses 

Four hypotheses were designed to explore how convection-allowing ensembles 

may be used to create skillful tornado probabilities. These hypotheses were tested 

through typical forecast verification metrics, but also through real-time evaluation by 

researchers and forecasters in NOAA’s Hazardous Weather Testbed during annual 

SFEs. These hypotheses all share the core principle that additional information from 

convection-allowing models can add to the storm-scale attributes provided by these 

ensembles to generate tornado probabilities, rather than probabilities of severe 

convective hazards as a whole. The first hypothesis is that adding high-resolution 

information to constrain tornado probabilities to areas that are environmentally 

favorable to tornadogenesis will result in more skillful probabilities than solely using 

2–5 km UH. Using environmental information to constrain the probabilities eliminates 
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areas that have, for example, high cloud bases or in which storms are drawing their 

inflow from above the surface layer.  

The second hypothesis tested is that incorporating observed tornado frequencies 

given a right-moving supercell will provide more accurate and reliable probabilities 

than those generated solely using model-derived information. The method used to test 

this hypothesis treats each grid point as though it has a probability of generating a 

tornado given some environmental information, rather than relying on fixed thresholds 

of UH and environmental information. In addition, the probability of a tornado given a 

value of STP is rooted in observed tornado frequencies, giving the probabilities a 

foundation in observed storm characteristics.  

The third hypothesis is that tornado probabilities generated using a convection-

allowing ensemble can be used operationally as first-guess tornado forecasts and have 

similar verification statistics to initial probabilistic tornado forecasts issued by the 

Storm Prediction Center (SPC) at 0600 UTC. This hypothesis addresses the operational 

nature of the probabilities and helps determine the usefulness of multiple methods of 

tornado probability formation by directly comparing model-generated forecasts to 

operationally issued forecasts to determine the strengths and weaknesses of the model-

generated forecasts. If the model-generated forecasts are useful as starting points for 

operational forecasters, it may help reduce the burden on forecasters caused by large 

amounts of high-resolution data provided by convection-allowing ensembles. 

The fourth and final hypothesis explored by this dissertation is that 

incorporating temporal information regarding UH occurrence will reduce areas of 

false alarm linked to nocturnal mesoscale convective systems (MCSs), which often 
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produce UH in NWP but do not often produce tornadoes. This hypothesis arises from 

observations during the 2015 and 2017 SFEs, when the tornado probabilities were 

tested in real-time. Broad swaths of false alarm were linked to nocturnal systems, which 

are less likely to produce tornadoes than systems occurring earlier in the day due to a 

decrease in CAPE and an increase in CIN as the surface layer becomes decoupled from 

the free atmosphere. If nocturnal UH can be weighted less than diurnal UH when 

generating daylong forecast tornado probabilities, the forecasts are hypothesized to be 

more useful to operational forecasters by producing fewer false alarms. 

Taken together, these hypotheses advance the usage of convection-allowing 

ensembles to make tornado forecasts. As tornadoes are particularly high-impact events 

with a large impact on society, having accurate probabilistic forecasts on the daylong 

convective outlook scale can allow forecasters to focus on more rapidly evolving, 

shorter-term scenarios that are more difficult to capture with convection-allowing 

models. 

  

1.3 Dissertation Organization 

Chapter 2 of this dissertation is a paper providing an overview of the 2015 

Spring Forecasting Experiment (SFE), Breaking New Ground in Severe Weather 

Prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting 

Experiment. This paper was published by Weather and Forecasting in August of 2017. 

Additionally, Chapter 2 describes how convection-allowing ensembles are contributing 

to new forecast products. Since the goal of this dissertation is to provide operationally 
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relevant forecast probabilities, establishing an overview of the real-time experiment in 

which they are tested offers operational context for the remainder of the dissertation. 

A paper investigating the first hypothesis described above is assigned to Chapter 

3, Forecasting Tornadoes using Convection-Permitting Ensembles, which was 

published by Weather and Forecasting in February of 2016. A third paper, Blended 

Probabilistic Tornado Forecasts: Combining Climatological Frequencies with NSSL-

WRF Ensemble Forecasts investigates hypotheses two and three, is assigned to Chapter 

4, and has been conditionally accepted by Weather and Forecasting. Finally, a fourth 

paper, The Impact of Updraft Helicity Timing on Ensemble-Derived Tornado 

Probabilities, will explore the final hypothesis and is assigned Chapter 5. This paper 

will be submitted to Weather and Forecasting. Chapter 6 will consist of general 

conclusions and propose directions for future research.  
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Abstract 

Led by NOAA’s Storm Prediction Center and National Severe Storms 

Laboratory, annual Spring Forecasting Experiments (SFEs) in the Hazardous Weather 

Testbed test and evaluate cutting-edge technologies and concepts for improving severe 

weather prediction through intensive real-time forecasting and evaluation activities.  

Experimental forecast guidance is provided through collaborations with several United 

States government and academic institutions, and the United Kingdom Met Office.  The 

purpose of this article is to summarize activities, insights, and preliminary findings from 

recent SFEs, emphasizing SFE 2015. Several innovative aspects of recent experiments 

are discussed, including (1) use of convection-allowing model (CAM) ensembles with 

advanced ensemble data assimilation, (2) generation of severe weather outlooks valid at 

time periods shorter than those issued operationally (e.g., 1 to 4 h), (3) use of CAMs to 

issue outlooks beyond the Day 1 period, (4) increased participant interaction through 

software allowing participants to create individual severe weather outlooks, and (5) tests 

of newly developed storm-attribute based diagnostics for predicting tornadoes and hail 

size.  Additionally, plans for future experiments will be discussed, including creation of 

a Community Leveraged Unified Ensemble (CLUE) system, which will test various 

strategies for CAM ensemble design using carefully designed sets of ensemble 

members contributed by different agencies to drive evidence-based decision making for 

near-future operational systems.    
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2.1 Introduction 

Annual Spring Forecasting Experiments (SFEs) conducted in the National 

Oceanic and Atmospheric Administration (NOAA)’s Hazardous Weather Testbed 

(HWT) provide opportunities for testing new tools and techniques in forecasting severe 

thunderstorms. Jointly run by the National Severe Storms Laboratory (NSSL) and the 

Storm Prediction Center (SPC), SFEs provide a two-way research-to-

operations/operations-to-research pathway for enhanced understanding and problem-

solving regarding severe thunderstorm forecasting. The real-time SFE takes place 

during the spring severe weather season, providing realistic operational pressure for 

participants as each day provides a unique set of conditions regarding severe weather 

potential.  

Formal SFEs began in 2000; Kain et al. (2003) emphasizes that collaboration is 

the crux of SFEs, noting that “the interaction between forecasters and numerical 

modelers was the most rewarding part of (the) Spring Program”. This collaboration has 

created greater forecaster understanding of numerical models and greater researcher 

understanding of operational challenges (Kain et al. 2003). Clark et al. (2012a) further 

emphasizes SFE’s collaborative aspects, detailing the extension of severe thunderstorm 

forecasts issued during SFE 2010 to aviation and heavy precipitation interests.  

While SFEs involve real-time forecasting, daily evaluation exercises are another 

key aspect of SFEs (Clark et al. 2012a). Evaluating cutting-edge techniques such as 

experimental severe weather guidance derived from convection-allowing models 

(CAMs) allows participants to grasp strengths and weaknesses of each technique and 

assess readiness for operational adoption. Subjective evaluations illustrate the 
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impressions participants have, while objective evaluations often take place after SFEs 

when time permits a thorough examination of the large volume of data (e.g., Johnson et 

al. 2013, Smith et al. 2014, Surcel et al. 2014, Duda et al. 2014).  

Since 2007, the Center for Analysis and Prediction of Storms (CAPS) at the 

University of Oklahoma has provided a real-time CONUS forecast at 4-km grid spacing 

from a multi-model Storm-Scale Ensemble Forecast system (SSEF) to the SFE (Kong et 

al. 2015 and references therein).  This system was reduced to 3-km grid spacing for SFE 

2015. SFE 2015 also included five other unique CAM ensembles. Multiple 

organizations contributed  NWP forecasts, including the Environmental Modeling 

Center (EMC), Earth Science Research Lab’s Global Systems Division (ESRL/GSD), 

NSSL, CAPS, the National Center for Atmospheric Research (NCAR), and the 557
th

 

Weather Wing (formerly the Air Force Weather Agency [AWFA]). Experimental 

deterministic guidance also featured during SFE 2015, particularly three versions of the 

Unified Model (UM; Davies et al. 2005) from the United Kingdom Met Office and the 

Model for Prediction Across Scales (MPAS; Skamarock et al. 2012) from NCAR. 

SFE 2015 pursued a number of goals consistent with the visions of both the 

Forecasting a Continuum of Environmental Threats (FACETs; Rothfusz et al. 2014) and 

Warn-on Forecast (WoF; Stensrud et al. 2009) initiatives. These programs aim to 

generate probabilistic hazard information (PHI), to go beyond the current binary 

paradigm of products such as watches, warnings, and advisories. Under a probabilistic 

paradigm, forecasters can give users more specific, understandable information that 

they can use to take action based on their individual needs. Developing probabilistic 

guidance to support this new paradigm requires cooperation between the operational 
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forecasting and research communities, making the SFEs optimal for exploration of 

probabilistic forecasts. SFE 2015’s goals fall into two categories consistent with the 

visions of FACETs and WoF: (1) Operational Product and Service Improvements and 

(2) Applied Science Activities. The Operational Product and Service Improvements 

goals focused on model guidance-driven forecast generation by participants, while 

Applied Science Activities focused on the evaluation of new forecasting tools and 

forecast types, including new numerical guidance and post-processing techniques. 

Numerical guidance characterization supported both types of goals by determining how 

to incorporate guidance into the forecasts and evaluating model output fields such as 

simulated reflectivity and hail size estimates.  

Introduced in SFE 2014 and continued in SFE 2015 is the incorporation of 

individual participant forecasts, essentially forming an “ensemble” of participant 

forecasts (Coniglio et al. 2014). Prior SFEs solely issued group forecasts, reaching a 

consensus on the placement of the day’s probability contours. While group discussion 

and consensus forming remained an integral part of the Day 1 full period forecasting 

process, individuals then created higher time frequency forecasts. These forecasts tested 

the feasibility of operationally issuing more forecasts, each covering a shorter time 

window, and the subsequent increase in forecaster workload. Individuals’ forecasts also 

illustrated a variety of forecasting approaches, with differing reliance on observations, 

model guidance, and prior forecaster experience. 

Also new to SFE 2015 are the evaluation capabilities of participants using 

laptops with internet connectivity. Previously, evaluations were also consensus-based. 

However, laptop usage enabled approximately five independent forecaster ratings per 
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day for each evaluation. Although the SFE leaders had documented previous 

experiments’ discussions, enabling individuals to comment on products provided a 

more complete record of opinions, suggestions, and reflections on each product’s 

operational potential than in previous experiments.  

This paper provides a broad overview of SFE 2015 and its innovations, which 

advance the two-way research-to-operations/operations-to-research pathway inherent to 

SFEs. Section 2.2.1 of this paper describes the numerical weather prediction (NWP) 

systems utilized throughout SFE 2015, and Section 2.2.2 elaborates upon the daily 

activities of the SFE. Section 2.3 highlights preliminary results from the SFE, including 

subjective and objective evaluations. Finally, Section 2.4 provides a summary and 

evaluation of SFE 2015, along with plans and directions for future SFEs.  

 

2.2 Experiment Description 

2.2.1 Experimental Numerical Guidance 

SFE 2015 focused on experimental probabilistic forecast generation informed by 

a suite of experimental NWP forecasts. Four of the six experimental ensembles 

extended into the Day 2 period, allowing for exploration of longer-range CAM 

forecasts. All models detailed below produced hourly maximum fields (Kain et al. 

2010) of explicit storm attributes such as simulated reflectivity and updraft helicity 

(UH) for forecasting and evaluation purposes.  

a. NSSL-WRF and NSSL-WRF Ensemble 

SPC forecasters have used output from an experimental 4-km grid spacing 

Weather Research and Forecasting (WRF; Skamarock et al. 2008) Advanced Research 



19 

WRF (ARW) model produced by the NSSL (Kain et al. 2010) since the fall of 2006. 

Currently, this model runs twice daily at 0000 UTC and 1200 UTC over a full-CONUS 

domain, with forecasts to 36 hours (Table 2.1, Ensemble Member cn [control]). Nine 

additional 4km WRF-ARW members are run at 0000 UTC to 36 hours by varying the 

initial conditions and lateral boundary conditions of the control, to compose the 10-

member NSSL-WRF ensemble (Table 2.1; Gallo et al. 2016). These members use the 

0000 UTC National Centers for Environmental Prediction (NCEP) Global Forecast 

System (GFS) analysis or the 3-h Short-Range Ensemble Forecast (SREF; Du et al. 

2014) system forecasts initialized at 2100 UTC for initial conditions and corresponding 

GFS or SREF member forecasts as lateral boundary conditions. Physics 

parameterizations amongst all members are identical. 

b. CAPS Storm-Scale Ensemble Forecast Systems 

The Center for the Analysis and Prediction of Storms (CAPS) provided two 

ensembles to SFE 2015. The 20-member SSEF system included 12 members that 

accounted for as many sources of forecast error as possible (e.g., initial conditions, 

boundary conditions, multi-physics; Table 2.2). These members were used to generate 

probabilities of severe convective hazards. The eight remaining members tested physics 

sensitivities. WSR-88D data was used for data assimilation along with available surface 

and upper air observations using the Advanced Regional Prediction System (ARPS) 

3DVAR/cloud-analysis system (Xue et al. 2003; Hu et al. 2006) to produce the control 

member. The 0000 UTC North American Mesoscale (NAM) model analysis on a 12-km 

grid was used as a background for the analysis, and NAM forecasts provided boundary 

conditions. Perturbed members applied initial condition and boundary condition 
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perturbations drawn from the SREF to the control analyses and forecasts. The CAPS 

forecasts were run with 3-km grid spacing and extended to 60 h, supporting Day 2 

forecasts. 

A separate 12-member ensemble of 60-h forecasts was also produced on the 

same 3-km domain as the prior SSEF system (Table 2.3) using XSEDE supercomputing 

facilities (Towns et al. 2014). Rather than 3DVAR, the ensemble Kalman filter (EnKF; 

Evensen 1994, 2003) data assimilation method was used, specifically the CAPS EnKF 

DA system (Xue et al. 2006; Wang et al. 2013) that has been directly interfaced with the 

WRF model. Specifically, 40-member ensemble forecasts were launched from NAM 

analysis plus SREF perturbations at 1800 UTC, and run to 2300 UTC. The 

configuration of this ensemble involved both initial perturbations and mixed physics 

options, to provide a variety of input for the EnKF analysis. Each member used the 

WRF single-moment six-class (WSM6; Hong and Lim 2006) microphysics with 

different intercept parameter settings for rain and graupel, and the density of graupel, 

and included relatively small random perturbations (0.5 K for potential temperature and 

5% for relative humidity) with recursive filtering of approximately 20-km horizontal 

correlations scales. EnKF cycling utilizing radar data was performed every 15 minutes 

from 2300 UTC to 0000 UTC, using the 40-member ensemble as background. Besides 

radar data, only Meteorological Assimilation Data Ingest System (MADIS; Miller et al. 

2005, 2007) surface observations, profiler, and radiosondes were assimilated at 2300 

UTC and/or 0000 UTC. A 12-member ensemble forecast to 60 h followed, using the 

last EnKF analyses at 0000 UTC (Table 2.3).  

c. SPC Storm-Scale Ensemble of Opportunity 
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The SPC Storm-Scale Ensemble of Opportunity (SSEO; Jirak et al. 2012a) is a 

7-member, multi-model, multi-physics ensemble consisting of deterministic CAMs 

available year-round to the SPC (Table 2.4). Individual members include one model 

produced by NSSL, and six members produced by EMC. The ensemble has been 

utilized in SPC operations since 2011 as a practical alternative to a formal storm-scale 

ensemble (Jirak et al. 2012a), which is planned for implementation in the next few years 

(Dimego, G., personal communication). Forecasts are initialized from the operational 

NAM with no additional data assimilation and are generated twice daily to 36 hours, 

starting at 0000 UTC and 1200 UTC. These members differ slightly in grid spacing (3.6 

km to 4.2 km), vertical levels, and length, with 36-h forecasts, 48-h forecasts, and 60-h 

forecasts. Microphysics schemes of the members include WSM6, Ferrier (Ferrier 1994), 

and Ferrier-Aligo (Aligo et al. 2014).  

d. Air Force Weather Agency 4-km Ensemble 

The U.S. Air Force 557
th

 Weather Wing at Offutt Air Force Base (USAF) ran a 

real-time 10-member, 4-km WRF-ARW model ensemble (AFWA; Kuchera et al. 2014) 

over the CONUS for SFE 2015 to 60 h (Table 2.5). Forecasts were initialized twice 

daily, at 0000 UTC and 1200 UTC, using 6- or 12-h forecasts from three global models: 

the Met Office UM, the NCEP GFS, and the Canadian Meteorological Center Global 

Environmental Multiscale (GEM) Model. Member microphysics and boundary layer 

parameterizations varied, and no data assimilation was performed during initialization.  

e. NCAR EnKF-based Ensemble 

In SFE 2015, NCAR provided a new 10-member, 3-km grid spacing ensemble 

with a CONUS domain (Schwartz et al. 2015b). EnKF data assimilation occurred every 
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6 h with 15-km grid spacing using the following observational sources: Aircraft 

Communications Addressing and Reporting System (ACARS), MADIS surface 

observations, METARs and radiosondes, NCEP MARINE, Cooperative Institute for 

Meteorological Satellite Studies (CIMSS) cloud-track winds (Menzel 2001), and the 

Oklahoma Mesonet stations.  From this mesoscale background, ten downscaled 3-km 

forecasts were initialized daily at 0000 UTC using consistent physics with the data 

assimilation system, sans cumulus parameterization. The first ten members of the 

analysis were selected after random shuffling between analyses, and therefore differed 

daily. Each selection of ten members was equally representative of the ensemble mean 

analysis and perturbations, and unique lateral boundary condition perturbations were 

member-dependent, but used random draws from global background error covaraiances. 

(Schwartz et al. 2014). Both the data assimilation scheme and the forecasts used 

Thompson microphysics (Thompson et al. 2008), Rapid Radiative Transfer Model 

(RRTM; Mlawer et al. 1997) for Global Climate Models (RRTMG; Iacono et al. 2008), 

Mellor-Yamada-Janjić (MYJ; Mellor and Yamada 1982; Janjić 1994, 2002) planetary 

boundary layer (PBL) parameterization, and the Noah land surface model (Chen and 

Dudhia 2001). The analysis system contained 50 members of constant physics that were 

continuously cycled using the ensemble adjustment Kalman filter (EAKF; Anderson 

2001, 2003) within NCAR’s Data Assimilation Research Testbed (DART; Anderson et 

al. 2009) software. The analyses provided initial conditions for the daily forecasts, 

which were run to 48 h. Both the analyses and the forecasts had 40 vertical levels. 

f. UKMET Convection-Allowing Model Runs 
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The Met Office provided three nested, limited-area high-resolution versions of 

the UM to SFE 2015: two at 2.2-km grid spacing, and one at 1.1-km grid spacing. The 

operational 2.2-km version incorporated the UM specifications currently run in the Met 

Office’s operational 1.5-km grid length, UK-centered model (McBeath et al. 2014; 

Mittermaier 2014). The operational 2.2 km provided for SFE 2015 had 70 vertical 

levels across a domain ranging from just west of the Rocky Mountains to the western 

border of Maine. Initial and lateral boundary conditions were taken from the 0000 UTC 

17-km global version of the UM without additional data assimilation, and forecasts 

extended to 48 hours.  

A unique aspect of the UM models was the configuration of the turbulence 

parameterization. The operational run used a 3D turbulent mixing scheme consisting of 

a locally scale-dependent blending of Smagorinsky (Smagorinsky 1963) and boundary 

layer mixing schemes, wherein stochastic perturbations were made to the low-level 

resolved scale temperature field in conditionally unstable regimes to encourage the 

transition from subgrid to resolved scale flows (Clark et al. 2015). This turbulent 

mixing scheme differs from that of WRF, which utilizes 3D Smagorinsky turbulence 

closure to determine eddy viscosities in the absence of a PBL scheme (Skamarock et al. 

2008). The operational 2.2-km run had single moment microphysics (Wilson and 

Ballard 1999), and diagnosed partial cloudiness assuming a triangular moisture 

distribution whose width is a function of height only.  

 The parallel version of the 2.2-km UM used an experimental parameterization of 

partial cloudiness, expanding upon the prognostic scheme used in the Met Office global 

UM. The parallel scheme includes an additional parameterization of subgrid moisture 
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variability linked to the boundary layer turbulence. This version was also run to 48 

hours, and was otherwise identical to the operational 2.2-km version of the UM.  

Finally, the 1.1-km horizontal resolution UM centered on Oklahoma ran over a 

1300 km by 1800 km domain nested within the 2.2 km model. The initial and lateral 

boundary conditions were taken from hour 3 of the 0000 UTC 2.2 km run to reduce 

spinup time, and run to 33 hours. The 1.1-km run was otherwise identical to the 2.2-km 

operational run, thereby testing the horizontal resolution effects.  

g. Model for Prediction Across Scales (MPAS) 

Another new deterministic modeling system provided to SFE 2015 was the 

MPAS, which produced daily 0000 UTC initialized forecasts at 3-km grid spacing over 

the CONUS. Forecasts from MPAS extended to 120 h (5 days), allowing for a unique 

glimpse into the long-range capabilities of convection-allowing models. The MPAS 

horizontal mesh is based on Spherical Centroidal Voronoi Tessellations (SCVTs; Satoh 

et al. 2008), allowing for quasi-uniform discretization of the sphere and local refinement 

with smoothly varying mesh spacing between regions with differing resolutions. 

Smoothly varying mesh eliminates major problems regarding transitions between 

differing resolutions of nests (Skamarock et al. 2012). MPAS has 55 vertical levels, and 

the “scale-aware” physics allows for the output of explicit storm attributes for those 

regions at convection-allowing resolution. Physics parameterizations include the MYJ 

PBL scheme and the WSM6 microphysics. 

h. Parallel Operational CAMs 

During SFE 2015, SPC had access to parallel versions of NAM and the High-

Resolution Rapid Refresh (HRRR; Alexander et al. 2010), containing improvements 
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over the operational versions of these models (Table 2.6). The parallel versions were 

candidates for operational implementation by NCEP. Parallel high-resolution window 

(HRW) WRF-ARW and Nonhydrostatic Multiscale Model on the B grid (NMMB; 

Janjić and Gall 2012) runs included slight changes such as increasing vertical levels 

from 40 to 50, updating the WRF version used, and modifying the microphysics scheme 

in the WRF-ARW  to decrease the amount of falling graupel. The parallel HRRR 

included changes in the physics to improve an afternoon warm, dry bias in the 

operational HRRR that had resulted in overpredicting convective initiation (Alexander 

et al. 2015). These changes included updating the microphysics to the Thompson-

Eidhammer scheme (Thompson and Eidhammer 2014) and modifying the MYNN PBL 

scheme. Changes to the NAM Nest included reducing the grid spacing to 3 km in the 

parallel version, as opposed to the 4 km operational version. The parent NAM providing 

the boundary conditions was also updated.  

2.2.2 Daily Activities 

SFE 2015 was conducted weekdays from 4 May through 5 June 2015, excepting 

the Memorial Day holiday on 25 May 2015, for a total of 24 days. Each day, 

participants completed the same activities, separated broadly into experimental forecasts 

and evaluations. 

a. Experimental forecasts 

 Daily activities were split between two “desks”, led by SPC forecasters. Each 

desk focused on different experimental forecasts and evaluations, and participants 

rotated through desks during the week to gain exposure to all experimental products. 

Besides generating forecasts, participants at each desk evaluated prior forecasts and 
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experimental numerical guidance. Activities took place at roughly the same time each 

day (Table 2.7), and mainly occurred over regions of the United States which had the 

greatest potential for severe weather during a given day.  

Participants at the “individual hazards” desk issued daily probabilistic forecasts 

of severe hail, damaging wind, and tornadoes within 25 miles (40 km) of a point, 

consistent with the SPC’s definition of a severe convective hazard, valid from 1600 

UTC to 1200 UTC the following day. Meanwhile, participants at the “total severe” desk 

forecasted the risk of any severe hazard following the SPC’s operational Day 2 

Convective Outlook format, valid over the Day 1 time period. Participants at both desks 

then refined their Day 1 forecasts into higher temporal resolution forecasts, with the 

individual hazards desk issuing hail, wind, and tornado forecasts for two 4-h periods: 

1800-2200 UTC and 2200-0200 UTC. Individual hazard forecasters could use 

temporally disaggregated first-guess probabilities generated from the full-period hazard 

outlook to constrain and scale the magnitude and spatial extent of the SSEO 

neighborhood probabilities of proxy variables (i.e., UH for tornadoes, updraft speed for 

hail, 10 m wind speed for wind), ensuring consistency among the 24-h and 4-h forecasts 

(Jirak et al. 2012b).  

At the total severe desk, probabilistic forecasts were manually stratified by 

participants and the desk lead forecaster into 1 h periods valid starting at 1800-0000 

UTC. The 2100-0000 UTC forecasts were updated each afternoon, with two additional 

hourly forecasts issued from 0100-0200 UTC and 0200-0300 UTC. This approach was 

first attempted in 2014, and continued in 2015. Reliability diagrams computed post-SFE 

2014, when hourly forecasts were issued from 1800-0300 UTC (Coniglio et al. 2014; 
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Fig. 2.1), showed that when verified on a 40-km grid (~20 km neighborhood), 

participants and the desk lead forecaster issued reliable hourly probabilistic forecasts, 

but overforecasted severe weather when verified on a 20-km grid (~10km 

neighborhood). These hourly forecasts were verified by gridding local storm reports 

(LSRs) and grid points of NSSL Multi-Radar Multi-Sensor maximum estimated size of 

hail (MESH; Witt et al. 1998)  29 mm (following Cintineo et al. 2012), aggregated 

over the nine hourly periods initially forecast (Fig. 2.1a) and the six afternoon update 

hours (Fig. 2.1b). 

Hourly probabilistic forecasts were tested with the goal of introducing 

probabilistic severe weather forecasts on time scales that are currently addressed only as 

needed operationally (e.g., severe thunderstorm/tornado watches). Breaking down a 

full-period outlook into hourly probabilities also tested seamlessly merging probabilistic 

severe weather outlooks to probabilistic severe weather warnings, consistent with the 

visions of FACETs (Rothfusz et al. 2014) and WoF (Stensrud et al. 2009). 

All participants individually generated the hourly forecasts using a web-based 

PHI tool (Karstens et al. 2014, 2015) to draw hazard probability contours (Fig. 2.2). 

Five laptops were available at each desk. If there were more participants than laptops at 

a desk, some participants worked in pairs to generate forecasts. Individual forecasts 

(Fig. 2.2a-e) were later compared to those issued by the desk lead (Fig. 2.2f). 

Participants subjectively evaluated the previous day’s short-term forecast issued by the 

desk lead on a 1-10 scale, with 10 being the highest rating, compared to a “practically 

perfect” forecast (Brooks et al. 1998; Hitchens et al. 2013), which is analogous to 

probabilities a forecaster would issue with prior perfect knowledge of the LSR 
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distribution (Fig. 2.2g). While preliminary LSRs provided the largest component of 

ground truth, MESH, watches, warnings, and observed composite reflectivity were also 

considered. 

The individual hazard desk’s Day 2 outlooks explored the feasibility of issuing 

individual hazard forecasts beyond Day 1, utilizing experimental extended CAM 

guidance. Currently, individual hazard forecasts are limited to Day 1 in SPC operations. 

The total severe desk also generated Day 2 forecasts, as is done operationally by SPC, 

but informed by experimental CAM guidance. Day 3 forecasts were occasionally issued 

by the total severe desk, depending on time constraints and the anticipated severity of 

Day 3. MPAS often heavily informed these extended forecasts, particularly because two 

prior runs encompassed a Day 3 outlook, allowing consideration of run-to-run 

consistency.  

The final forecasting activity of each day was an update to the earlier, 

participant-drawn forecasts informed by group discussion and updated data. Individual 

hazard participants updated their 2200-0200 UTC period, and the total severe 

participants updated their hourly forecasts from 2100-0000 UTC. Total severe 

participants also issued new hourly probabilities for 0000-0200 UTC.  

While issuing forecasts, participants had access to high-temporal resolution 

satellite imagery. 1-min visible and infrared satellite imagery from GOES-14 was made 

available experimentally to participants during SFE 2015 from 18 May – 11 June. This 

special 1-min imagery, known as Super Rapid Scan Operations for GOES-R (SRSOR), 

helps to prepare users for the very-high-temporal-resolution sampling capability of the 

GOES-R Advanced Baseline Imagery (Line et al. 2016). SFE 2015 participants 
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primarily utilized the 1-min satellite imagery to identify and track boundaries, assess 

cumulus cloud trends, and diagnose areas of convective initiation. 

b. Evaluations 

In addition to forecasting activities, each participant performed multiple 

evaluations of the previous day’s forecasts and model guidance. Participants rated the 

desk lead’s forecasts and numerical guidance on a scale of 1 (Very Poor) to 10 (Very 

Good) and commented on particular strengths and weaknesses. This evaluation 

subjectively assessed the skill of the first-guess guidance and the human-generated 

forecasts for all periods (i.e., each hourly forecast at the total severe desk was assigned a 

rating). Model evaluations focused on the accuracy of the forecasts in predicting severe 

convective threats (including considerations such as the mode and timing of convective 

initiation) by comparing forecasts of hourly maximum fields (e.g., UH) relative to 

LSRs, maximum MESH, and radar observations across the previous day’s domain. For 

ensembles extending to the Day 2 period, participants compared Day 2 guidance to Day 

1 guidance, to examine if the ensembles improved with shorter lead times. 

New experimental fields were also evaluated, such as hail guidance available in 

the WRF-ARW (Adams-Selin et al. 2014), tornado probabilities generated from the 

NSSL-WRF ensemble (Gallo et al. 2016), and pre-convective, model-generated 

environmental soundings from the UM and the NSSL-WRF. In SFE 2015, the WRF-

HAILCAST algorithm was implemented in the CAPS ensembles to predict hail size 

(Adams-Selin and Zeigler 2016). This algorithm is a modified version of the coupled 

cloud and hail model found in Brimelow et al. (2002) and Jewell and Brimelow (2009), 

which forecast the maximum expected hail diameter at the surface using a profile of 
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nearby atmospheric temperature, moisture, and winds. The WRF-HAILCAST model 

uses WRF-generated convective cloud and updraft attributes coupled with a physical 

model of hail growth to determine hail growth from five predetermined initial embryo 

sizes. Another hail size diagnostic, derived directly from the microphysical 

parameterizations and developed by G. Thompson (Skamarock et al. 2008), was new to 

SFE 2015 and was output by the NCAR ensemble.  

During SFE 2015, probabilistic tornado forecasts were generated from the 

NSSL-WRF ensemble using 2–5 km UH ≥ 75m
2
s

-2
 as a proxy for tornadoes, with 

varying environmental constraints on probability generation. The environmental 

constraints required the probabilities to reflect UH only at grid points where certain 

environmental criteria were met in the previous hour:  Lifted Condensation Level < 

1500m, ratio of Surface-Based CAPE to Most Unstable CAPE ≥ 0.75 (Clark et al. 

2012b), and Significant Tornado Parameter ≥ 1 (Thompson et al. 2003).  Gallo et al. 

(2016) elaborates on the probability generation details. Tornado reports from the LSR 

database were overlaid on the forecast probabilities for subjective evaluation, which 

considered the entire CONUS.  

Introduced in SFE 2014 and enhanced in SFE 2015 were three-dimensional 

animations of CAM output (Clyne et al. 2007).  The 3D images were generated from a 

600x600 km sub-domain of the CAPS control forecast chosen daily based on prior 

forecasts and 2D output fields.   Selected 3D animations were shown to participants 

during the daily weather briefing, allowing a deeper investigation of the processes that 

lead to potential severe weather threats. These four-dimensional depictions showed 

features such as local UH (calculated at each volume rendered in the visualization; 
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Brewster et al. 2016), near-surface radar reflectivity, and near-surface wind vectors 

(Fig. 2.3). Deep columns of UH indicated supercellular storms, while animation of the 

images showed the longevity of such columns: long-lived UH columns often indicated 

heightened tornado risk. 

The experimental forecasts for individual severe hazards were objectively 

evaluated in near real-time for SFE 2015, a continuation of efforts which had started in 

SFE 2014 (Melick et al. 2014).  For the probabilistic hail forecasts, side-by-side spatial 

plots and corresponding forecast verification metrics for both LSR and MESH were 

provided daily, allowing participants to test the usefulness of alternative verifying data 

sources.  For the current work, comparisons of MESH and LSR observational datasets 

for hail verification were made using the area under the receiver operating characteristic 

curve (ROC curve; Mason 1982) estimated using a triangular approach, which measures 

the ability of a forecast to discriminate between events (i.e., hail occurrence) and 

nonevents (i.e., no hail occurrence). ROC area values range from 0 to 1, with 1 

indicating perfect discrimination, and 0.5 indicating no forecast skill.  

The experimental, probabilistic hail forecasts for Day 1 and Day 2 full periods 

and the 4 h periods of 1800 UTC – 2200 UTC and 2200 UTC – 0200 UTC were 

verified using practically perfect forecasts, formed from the LSRs by applying a two-

dimensional Gaussian smoother (Brooks et al. 2003) to reports within 40km of a 40 km-

by-40 km grid box. For effective comparison against LSRs, similar practically perfect 

forecasts for MESH were produced by applying the same smoother to a separate set of 

derived severe hail events created by determining if MESH ≥ 29 mm (Cintineo et al. 

2012) at each grid point. To avoid inclusion of spurious hourly MESH tracks, the 



32 

presence of at least one cloud-to-ground lightning flash detected by the National 

Lightning Detection Network (Cummins et al. 1998) within a 40-km radius of influence 

(ROI) was also required. A 40-km ROI neighborhood maximum was then applied to the 

final analyses.  These quality control measures are similar in nature to those outlined in 

Melick et al. (2014). The components of the POD and the POFD were aggregated over 

the subdomains which had the highest severe weather potential for the given day across 

the experiment. In addition to the objective verification, participants commented on 

using MESH compared to LSRs for verifying probabilistic severe hail forecasts. 

In addition to evaluation of severe convective hazards, objective evaluation of 

the ensemble mean quantitative precipitation forecasts (QPFs) also took place during 

SFE 2015. The ensemble means were computed using the probability matching 

technique (Ebert 2001) over a domain encompassing approximately the eastern two-

thirds of the CONUS. This technique assumes that the best spatial representation of the 

precipitation field is given by the ensemble mean, and that the best probability density 

function of rain rates is given by the ensemble member QPFs of all n ensemble 

members.  

Objective evaluation of these mean fields used the equitable threat score (ETS; 

Schaefer 1990) for four quantitative precipitation forecast (QPF) thresholds. This 

analysis encompassed five of the six ensembles within the experiment. The ETS 

measures the fraction of observed and/or forecast events that were correctly predicted, 

adjusted for correct yes forecasts associated with random chance. The ETS was 

calculated using contingency table elements computed every 3 h (from forecast hour 3 

through forecast hour 36) from each grid point in the ensemble mean analysis domain, 
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using NCEP Stage IV precipitation data as truth. Forecasts and observations were 

regridded to a common 4 km grid prior to evaluation. An ETS of 1 is perfect, and a 

negative score represents no forecast skill. Probabilities of exceeding each threshold 

were computed by using the ratio of members that exceeded the specified threshold to 

the total number of members. These forecasts were evaluated using the ROC area, with 

probability thresholds ranging from 0.05-0.95 in increments of 0.05. 

 

2.3 Preliminary Findings and Results 

2.3.1 Evaluation of Short-Term Severe Forecasts 

a. 1-h Total Severe Forecasts 

Participants generally rated the hourly total severe forecasts highly (Fig. 2.4), 

with the updated afternoon forecasts garnering higher ratings than corresponding 

preliminary morning forecasts. These ratings encompass all individual hourly forecast 

ratings, and therefore include timing, placement, and magnitude error.  Afternoon 

updates allowed forecasters to shift both the magnitude and the location of the 

probabilities, which produced mixed subjective results in SFE 2015. As stated by a 4 

May participant: “21-22Z improved from morning due to pulling the probabilities 

southward. However, an increase in probs was not appropriate.” Though generally the 

afternoon updates occurred closer to the event, participants had difficulty forecasting on 

days when the convective mode was not yet apparent: “Shorter lead time no help in 

anticipating messy storm evolution.” (4 May). On other days, there was some evidence 

that the convective mode was more apparent by the time of update issuance: “Definitely 

an improvement from earlier. Convective mode was forecasted more accurately…” (7 
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May). According to participants, the variability within the ensemble of participant 

forecasts mostly came from varying probability magnitudes, rather than varying 

locations. Some participants mention the difficulty of calibrating themselves to issue 

appropriate one-hour forecast probabilities as a potential cause for the variability. Also, 

the afternoon updates to the forecasts often narrowed the envelope of participant 

forecasts, as ongoing convection often removed the convective initiation forecast 

problem.  

The mode forecasting problem was perhaps partially illustrated by the widening 

of the inter-quartile range (IQR) of the forecast ratings during the afternoon updates 

(Fig. 2.4). Difficulty in convective mode forecasting increases ratings’ variability, as it 

is difficult to discern to the hour when and if individual supercells will grow upscale 

into an organized mesoscale convective system (MCS). SFE 2015 also encompassed 

many days with complex, mixed-mode convection, leading to difficulty of forecasting 

on an hourly basis. A 4 May participant reflected: “There were also questions early 

about whether or not convection would occur across the entire frontal boundary, and 

this question did not seem fully resolved by the afternoon update”. Ultimately, overall 

afternoon forecast improvement was also subjectively noted: “The afternoon updates 

were able to trim false alarm areas and refine the major regions for higher 

probabilities” (3 June). 

b. 4-h Individual Hazard Forecasts 

Participants rated the preliminary 4 h individual hazard forecasts and the 

disaggregated first-guess hazard probabilities for 1800 UTC – 2200 UTC and 2200 

UTC – 0200 UTC. During the earlier period, experimental forecasts and the first-guess 
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guidance were often rated similarly, with a median rating difference of 0 for tornadoes 

and wind, and +1 for hail on a scale from -3 to +3 (Fig. 2.5). While the evening period 

experimental forecasts improved upon the earlier, first-guess guidance, most of these 

ratings reflected marginal improvement (i.e., 0 to +1). Participant comments also 

supported only marginal improvement, partially due to having relatively little updated 

model information available: “It was difficult to justify substantial updates to the 

afternoon forecast given a modicum of new information (i.e., the new information we 

had, small in nature compared to the larger set of data from the 0000 UTC cycle), did 

not warrant changes” (26 May).  

2.3.2 Comparison of Convection-Allowing Ensembles 

SFE 2015 provided the unique opportunity to compare multiple CAM ensemble 

designs of varying complexity. 3-h ETS scores of QPF for each ensemble across the 

experiment were positive, indicating that all ensembles showed positive forecast skill at 

each threshold and hour. The lowest QPF threshold (Fig. 2.6a) overall had the highest 

ETS scores, with the SSEF 3DVAR performing better than all of the other ensembles at 

all forecast hours, though the difference typically only showed significance for the first 

few hours, and then again at approximately 24 h from initialization. At the highest 

precipitation threshold (Fig. 2.6d), ETS score difference among the ensembles was 

largest in the first twelve hours of the forecast period, and had essentially vanished by 

forecast hour 18. The ROC areas at each threshold (Fig. 2.7) show a similar trend at all 

precipitation thresholds, although the dominance of the SSEF 3DVAR is less 

pronounced. Interestingly, however, these ROC area differences between the SSEF 

3DVAR and the other ensembles were often significant, particularly at the lower 
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thresholds. At the 0.10-in (Fig. 2.7a) and 0.25-in (Fig. 2.7b) exceedance thresholds, all 

ensembles (with the exception of the NCAR ensemble 3-h forecast) maintain skillful 

ROC areas. At higher thresholds the ensembles were less skillful, with the NCAR and 

SSEF EnKF ensembles having ROC areas less than 0.7 for most forecast hours when 

considering at least 0.50 in of precipitation (Fig. 2.7c) and only a handful of forecast 

hours for each ensemble system having skillful ROC areas at the 0.75 in threshold (Fig. 

2.7d). EnKF analyzed reflectivity was noted to be too low, suggesting that there may 

have been an error in the EnKF configuration. Additionally, differing ensemble 

background and data assimilation may have affected the score; for example, only 

limited sets of conventional observations were assimilated in the SSEF EnKF compared 

to other ensembles. ROC areas tended to decrease later in the forecast period at low 

thresholds, and had a slight decrease in the middle of the forecast period at higher 

thresholds.  Overall, the SSEF 3DVAR generally scored highest in the objective QPF 

metrics. 

Subjectively, the participants’ ratings of the Day 1 ensemble forecasts hourly 

maximum fields were again rather similar between ensembles (Fig. 2.8) excepting the 

SSEF EnKF, which was clearly the lowest-rated ensemble. The top-performing 

ensembles had a mean rating above six for the SFE, indicating that they provided useful 

severe weather guidance more often than not. As one participant commented, “Mostly 

agreeing forecasts which all did reasonably well. Some modest discrimination based on 

amount of false alarm” (14 May). Of the six CAM ensembles, the NSSL ensemble had 

a slightly higher mean and median rating than the other ensembles, which was 

significantly higher than the SSEF, SSEF EnKF, and the AFWA ensembles as 
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determined by a paired-sample t-test. The AFWA and NCAR ensembles had lower 

mean ratings than the SSEO, NSSL, and SSEF, but the difference did not reach 

significance. The only other significant difference between the mean ratings was that 

the SSEF EnKF was rated significantly lower than the NSSL, AFWA, and SSEO 

ensembles.  

 The Day 2 period (forecast hours 36-60) was less frequently objectively 

evaluated than the Day 1 period due to computational and data constraints, but the 

preliminary subjective results provide some insights. The AFWA and NCAR ensembles 

were more likely to have Day 2 forecasts rated similar to or better than their Day 1 

ratings compared to the SSEF 3DVAR or the SSEF EnKF, as illustrated by the AFWA 

ensemble on 21 May 2015 (Fig. 2.9). For this case, the Day 1 forecasts (Fig. 2.9b-d) 

placed the majority of the UH-based ensemble neighborhood severe probabilities too far 

north and offshore, away from the verifying LSRs, whereas the Day 2 forecasts (Fig. 

2.9e-g) encompass all LSRs. However, specificity of the Day 2 probabilities was also 

occasionally problematic : “One issue with the longer range forecasts is that areas seem 

more joined rather than separate, which is reasonable (expected) but still makes it not 

as good as the day 1” (3 June). Another participant stated that “at least for this date the 

ensemble sets not assimilating radar data do better from the Day 2 forecast over the 

Day 1 forecast. I’m guessing this would be more likely for cases in which convection is 

ongoing and the non-radar assimilating ensembles serve more utility as a medium 24-

48 range forecast.” (14 May). Overall, the extended CAM ensembles provided useful 

Day 2 severe weather guidance, although poor depiction of Day 1 convection can 

detract from the Day 2 forecasts. 
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2.3.3 Comparison and Evaluation of Convection-Allowing Deterministic Models 

a. Parallel Operational CAMs 

The parallel versions of both the NAM nest and the HRRR showed subjective 

improvements over the operational versions, while the parallel and operational NAM 

runs were given similar subjective ratings (not shown). The parallel HRRR showed a 

reduction in the warm, dry, afternoon bias compared to the operational HRRR, resulting 

in improved convective initiation forecasts (e.g., Fig. 2.10). The parallel HRRR became 

operational on 23 August 2016, displacing the operational version used during the SFE 

2015 timeframe, and the parallel NAM nest became operational on 8 September 2015. 

b. Met Office UM 

Participants compared the operational UM to the NSSL-WRF daily in SFE 2015. 

In addition to the 12-h to 36-h forecasts, the 1-h to 11-h forecasts were compared 

between the modelling systems to test which system better handled convective spin-up. 

Out of 133 responses, 55% rated the UM better than the NSSL-WRF, 23% rated the 

UM worse than the NSSL-WRF, and 22% said that they were the same in the first 

twelve hours of the forecast. These percentages were roughly the same when 

considering the 12- to 36-h period (132 total responses), with a slightly larger 

percentage (26% of responses) reporting that they were the same. Overall, the parallel 

UM (122 responses) was generally worse than (46%) or the same as (30%) the 

operational UM, and the 1.1-km UM (104 responses) was typically the same (43%) or 

worse (32%) than the 2.2-km.  

 Sounding comparisons between the NSSL-WRF and the operational UM (Fig. 

2.11) often showed striking differences. Throughout SFE 2015, capping inversions in 
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the operational UM were consistently more sharply defined than in the NSSL-WRF, 

more closely matching the observational soundings and consistent with the examples 

shown in Kain et al. (2016). Out of 89 total participant responses, 60 expressed that the 

UM soundings were better than the NSSL-WRF, while 19 felt the two were the same. 

Only 10 responses rated the NSSL-WRF soundings better than the UM. The structure 

and sharpness of the strong capping inversions were subjectively noted by participants 

as much better depicted in the UM than the NSSL-WRF: “UKMET is better. Depicts 

inversion temperature profile perfectly. This is the biggest difference.” (2 June). 

Although the UKMET has nearly double the vertical levels of the NSSL-WRF, Kain et 

al. (2016) state that merely increasing the vertical resolution of the NSSL-WRF does 

not negate this tendency. 

c. MPAS 

While no formal evaluation of the MPAS forecasts took place, the guidance was 

examined on a daily basis and used during the forecasting process. Two cases where 

useful convective-scale guidance to Day 3 and beyond are presented here, as a 

preliminary indication of the usefulness of MPAS in forecasting severe convection at 

longer time scales than most current convection-allowing guidance. Both days provided 

similar synoptic patterns conducive to a severe weather outbreak across the southern 

plains, with the eventual outcome heavily dependent on the presence of morning 

convection, related to the strength of the capping inversion. 

Several days in advance of 9 May 2015, the SPC Day 3 convective outlook 

outlined an area across Oklahoma and Kansas as having a moderate risk for severe 

storms.  In reality, during the late morning of 9 May, strong forcing for ascent combined 
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with a weak capping inversion led to widespread convection and associated cloud cover 

across much of western Oklahoma and Kansas, inhibiting afternoon destabilization.  

The early convection led to minimal CAPE (<1000 J/kg) across much of Oklahoma and 

Kansas (Fig. 2.12a).  Although severe storms did occur from Texas into western 

Kansas, because of the early storms the event as a whole ended up being less significant 

than what some earlier model guidance had suggested.  While forecasting a synoptic-

scale pattern favorable for widespread severe weather 3 days in advance of 9 May, the 

MPAS forecasts also indicated that widespread convection would develop early in the 

day on 9 May.  The impact of this early convection manifested in reduced CAPE 

simulated across Oklahoma and Kansas (Fig. 2.12c).  Thus, the scenario depicted by 

MPAS 3 days in advance was consistent with what occurred.   

The second case with a favorable synoptic pattern for severe weather in which 

MPAS provided useful extended range guidance was on 16 May 2015. Similar to 9 

May, the extent and intensity of the severe weather threat was uncertain, because it was 

not clear how much early convection would inhibit heating and destabilization in the 

warm sector.  Despite a shallow layer of clouds, a lack of widespread early convection 

allowed enough destabilization (Fig. 2.12b) to support a significant severe weather 

event and several long-lived tornadic supercells across the Texas Panhandle, Oklahoma, 

and Missouri.  The forecasts from MPAS 3 days in advance were consistent with this 

scenario, maintaining CAPE through early convection (Fig. 2.12d) and matching quite 

well the observed range of CAPE.  Furthermore, the MPAS forecasts depicted intense 

supercells forming in the warm sector around 2100 UTC beginning with the 93 h, Day 4 

forecast (Fig. 2.13e) and continuing through the Day 3 (Fig. 2.13d), Day 2 (Fig. 2.13c) 
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and Day 1 (Fig. 2.13b) forecasts. The location of the storms was initially too far east 

compared to observations (Fig. 2.13a).   Additionally, the timing of upscale growth was 

also well-depicted as far as four days in advance (Fig. 2.13k), clearly showing the squall 

line over central Oklahoma at 0355 UTC (Fig. 2.13g). The overall forecast scenario 

corresponded well to the observations, particularly regarding the mode and timing of 

mode evolution and again would have provided useful extended-range convective scale 

guidance to forecasters. 

2.3.4 Evaluation of New Diagnostics 

a. Hail Diagnostics 

Three days of WRF-HAILCAST were formally evaluated in SFE 2015, 

precluding robust conclusions. Compatibility issues resulted in the Thompson method 

only being available in the NCAR ensemble, and thus a direct comparison to the WRF-

HAILCAST implemented in the SSEF system was impossible. However, participants 

unanimously agreed that across the three cases the hail size forecasts provided 

additional useful information relative to more commonly used hourly maximum fields 

such as UH, prompting the inclusion of the new hail diagnostics in future SFEs. 

b. Tornado Diagnostics 

The distributions of subjective ratings assigned to the 24 h tornado probabilities 

by the individual participants suggest that incorporating environmental information 

results in an improved forecast over solely using UH (Fig. 2.14). None of the 

environmental filters (LCL, CAPE, STP, or combined) clearly stood out as the best 

method; however, they all generally improved upon the UH-only guidance.  Participants 

often noted that the incorporation of environmental information helped focus the area of 
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interest and reduce false alarm. However, they often felt that the probabilities were too 

high on a given day to directly translate into the current operational convective outlook 

categories (i.e., tornado probabilities of 30% on a day that SPC forecasters would not 

consider a “moderate” risk given the environment). 

2.3.5 Hail Verification Comparisons 

 When participants evaluated MESH as verification for probabilistic severe hail 

forecasts, rather than LSRs, responses were generally positive. A participant said on 4 

May: “Assuming that MESH is reasonably representative of what actually occurred, it 

definitely helps fill in areas between local storm reports.” Many participants 

commented that the MESH provided verification in low population density areas such 

as eastern Colorado (Fig. 2.15a, b), where obtaining even a single report to verify a 

warning may be difficult.  Participants “liked the spatial and temporal details much 

better” (7 May), and noted that in these locations when reports did occur, MESH often 

also diagnosed large hail (Fig. 2.15c, d). However, participants were unsure of directly 

comparing LSRs and MESH, stating: “…Hard to say how well it does in verifying when 

not comparing hail sizes in MESH to actual LSR observed hail sizes…”. Ortega et al. 

(2009) performed a concentrated verification of MESH tracks, but a larger-scale 

verification database does not yet exist. Wilson et al. (2009) found that MESH performs 

best at values greater than 19 mm, which would include all severe hail, although they 

advise against using MESH alone as a form of synthetic verification; MESH has also 

been found to overforecast hail size (Wilson et al. 2009, Cintineo et al. 2012). Cintineo 

et al. (2012) find that Heidke skill scores are maximized in a comparison of MESH to 

high-resolution ground-truth reports of severe hail when a threshold of 29 mm is used. 
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Further, Melick et al. (2014) has suggested that MESH tracks can be useful as an 

independent dataset to supplement hail LSRs. Consequently, the positive response from 

participants recommends an objective look at MESH verification over the daily 

subdomains.  

Objective verification of the experimental hail forecasts with practically perfect 

forecasts generated by MESH (17 cases) and LSR (23 cases) at different periods via 

ROC area (Fig 2.15e) showed that whether MESH or LSR verified the forecasts best 

was dependent on the time period examined. Looking at the full period Day 1 forecasts, 

LSRs had a higher POD and approximately the same POFD as the MESH, leading to a 

higher ROC area. Conversely, the Day 2 full period forecasts show both higher POD 

and higher POFD when verified using the MESH, rather than the LSRs. The four hour 

outlooks generally performed better than the daily outlooks in both verifications. This is 

particularly evident in the 22-02Z time frame, when convective initiation was less of a 

forecast problem. These results suggest that the hail forecasts are typically able to 

distinguish the area of hail. However, ROC areas do not take into consideration the 

reliability of the forecasts, which was a large factor in participants’ subjective ratings of 

the verification methods. Indeed, participants noted the higher “practically perfect” 

probabilities were often generated using the MESH tracks (Fig. 2.15d) compared to the 

LSRs (Fig. 2.15b): “Practically perfect probabilities from MESH seemed overestimated 

compared to the report probabilities” (19 May). This may be because participants 

aren’t used to seeing MESH-derived practically perfect probabilities. However, these 

higher probabilities did not seem to dampen the participants’ enthusiasm for using 

MESH as a verification metric. One participant on 27 May stated, “Even if a slight 
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oververification [sic] given its construction, the use of MESH for verification seems to 

be an improvement on this day”.  

2.4 Summary and Discussion 

Overall, SFE 2015 succeeded in testing new forecast products and modelling 

systems to address relevant issues in predicting hazardous convective weather. The 

sheer volume of daily numerical weather guidance examined throughout SFE 2015 was 

unprecedented, and the real-time, operational nature of the experiment emphasized the 

need for tools that forecasters can use to summarize large volumes of information when 

forecasting severe convective weather. The innovative nature of the experiment gave 

participants access to cutting-edge, operationally-relevant research from multiple 

institutions, evaluating six CAM ensembles, three deterministic Met Office CAMs, a 

deterministic CAM with forecasts extending out to five days (MPAS), parallel versions 

of current operational models, and new diagnostic techniques for hail size and tornado 

occurrence. The experiment found that parallel versions of the HRRR and the NAM 

Nest improved upon the current operational versions, providing strong evidence to 

support implementation of the experimental parallel modeling systems. Additionally, 

CAMs were found useful when issuing Day 2 forecasts, providing mode insight for 

medium-range severe convective forecasts. Day 2 forecasts occasionally rated more 

highly than the corresponding Day 1 forecasts, although participants noted that Day 2 

forecasts started from ensembles assimilating radar data can be affected if the Day 1 

convection is poorly handled, essentially relying on them as a medium-range forecast. 

The SFE also helped to determine that applying environmental filters to explicit UH 
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diagnostics improved guidance for probabilistic tornado forecasting compared to using 

UH only with the NSSL-WRF ensemble. 

Increased participant interaction was a key component of SFE 2015. Using 

laptops in the experiment allowed participants to submit individual, rather than group 

consensus, evaluations and allowed for personalized feedback. The usage of the PHI 

tool on individual laptops allowed for more participant engagement, as they drew their 

own short-term forecasts. These short-term forecasts performed well objectively and 

subjectively, suggesting that moving these products into operations is feasible, fulfilling 

an Operational Product and Service Improvement goal. These forecasts benefited 

greatly from the availability of the CAM guidance, particularly the hourly forecasts of 

total severe. To make such reliable forecasts without CAM guidance would have been 

difficult.  

Annual SFEs in the HWT have a long history of impacting National Weather 

Service operations, but oftentimes one has to consider a multi-year period to get a full 

measure of these impacts. For example, SFE 2010 contained one CAM ensemble 

provided by CAPS, and was just beginning to evaluate hourly maximum fields such as 

UH and simulated 1 km AGL reflectivity. These fields tested in SFE 2010 are now 

considered key output parameters in operational CAMs and are used worldwide, 

showing how the SFEs succeed in research-to-operations efforts. Since that SFE, grid 

spacing has decreased, and the number and availability of CAM ensembles has greatly 

increased. SFE 2015 allowed its participants to study the behavior of these ensembles, 

bolstering their knowledge of the latest forecasting techniques. SFE 2015 also provided 

researchers with knowledge of how the many NWP guidance options provided to 
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forecasters are perceived, in addition to information about how comparable these 

ensembles are at the height of the spring convective season.  

 SFE 2015 highlighted areas requiring future study through verification efforts in 

conjunction with the NOAA Applied Science Activities goals. Participant comments on 

using MESH in addition to LSRs for hail verification suggest that MESH tracks may be 

a good future verification source, albeit after a larger comparison database is compiled 

between MESH and LSRs. The tendency of hail guidance to either overforecast (WRF-

HAILCAST) or underforecast (Thompson) hail sizes, and the overforecasting tendency 

of the tornado probabilities noted by participants highlights that more work is needed 

regarding individual hazard diagnostics. Future work focusing on individual hazard 

diagnostics is planned to compare the diagnostics between ensembles and to current 

SPC forecasts for individual hazards. Finally, the striking difference between the Met 

Office CAMs and the NSSL-WRF in representing strong vertical gradients in 

temperature and moisture near capping inversions demonstrates that work is still needed 

to hone the accuracy of vertical profiles. 

 With SFE 2015 complete, future SFEs can build off the lessons learned therein. 

Surprisingly, though the six ensembles in SFE 2015 were configured differently, the 

ensembles’ performance according to both objective and subjective measures was quite 

similar. This result led to a focus in SFE 2016 on uncovering how differences in 

ensemble configuration affect model performance with regards to severe convective 

weather using the recently developed Community Leveraged Unified Ensemble (CLUE; 

Clark et al. 2016). The CLUE consisted of 65 members provided by a number of 

institutions, all of which had the same domain, grid-spacing, and output fields. These 



47 

members were divided into a number of sub-experiments for directly comparing 

configuration strategies (i.e., multi-core vs. single core, multi-physics vs. single physics, 

3DVAR vs. EnKF, ensemble size sensitivity). By minimizing as many differences as 

possible between the members, it is hoped that CLUE will help inform key ensemble 

configuration decisions, providing valuable guidance for operational CAM ensemble 

design.  
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Tables 

Table 2.1 NSSL-WRF ensemble specifications. All members use the WRF single-

moment microphysics (WSM6; Hong and Lim 2006), the Mellor-Yamada-Janjić 

(MYJ; Mellor and Yamada 1982; Janjić 1994, 2002) planetary boundary layer 

(PBL) scheme, and the Noah (Chen and Dudhia 2001) land surface model (LSM). 

For radiation, all members use the Rapid Radiative Transfer Model (RRTM; 

(Mlawer et al. 1997; Iacono et al. 2008) longwave radiation and Dudhia (Dudhia 

1989) shortwave radiation schemes. 

 

Ensemble 

Member 

Vertical 

Levels 

Initial 

Conditions 

Lateral 

Boundary 

Conditions 

Microphysics PBL  

Cn 35 00Z NAM 00Z NAM WSM6 MYJ 

2 35 00Z GFS 00Z GFS WSM6 MYJ 

3 35 21Z em_ctl 21Z em_ctl WSM6 MYJ 

4 35 21Z nmb_ctl 21Z nmb_ctl WSM6 MYJ 

5 35 21Z nmb_p1 21Z nmb_p1 WSM6 MYJ 

6 35 21Z nmm_ctl 21Z nmm_ctl WSM6 MYJ 

7 35 21Z nmm_n1 21Z nmm_n1 WSM6 MYJ 

8 35 21Z nmm_p1 21Z nmm_p1 WSM6 MYJ 

9    35 21Z nmb_n1 21Z nmb_n1 WSM6 MYJ 

10  35 21Z nmb_p2 21Z nmb_p2 WSM6 MYJ 
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Table 2.2 SSEF ensemble specifications. All members use RRTMG radiation schemes. 

Microphysics schemes used include Thompson (Thompson et al. 2004b), 

Predicted Particle Properties (P3; Morrison and Milbrandt 2015), Milbrandt and 

Yau (M-Y; Milbrandt and Yau 2005), and Morrison (Morrison and Pinto 2005, 

2006). Member 18 uses microphysics with two-category ice; all other P3 members 

use one-category ice. Planetary boundary layer schemes not previously defined 

include Yonsei University (YSU; Hong et al. 2006), Thompson-modified YSU 

(YSU-T), and Mellor-Yamada-Nakanishi-Niino (MYNN; Nakanishi and Niino 

2004, 2006). Member 16 (Thompson ICLOUD=3) accounts for the sub-grid scale 

clouds in the Global RRTM (RRTMG) radiation scheme based on research by G. 

Thompson. Italicized members compose the HWT baseline SSEF.  

 

Ensemble 

Member 

Vertical 

Levels 

Initial 

Conditions 

Lateral Boundary 

Conditions 

Microphysics PBL 

Cn 51 00 UTC ARPSa 00 UTC NAMf Thompson  MYJ 

c0 51 00 UTC ARPSa 00 UTC NAMf Thompson MYJ 

m3 51 cn + nmmb-

p2_pert 

21 UTC SREF 

nmmb-p2 

P3 MYNN 

m4 51 cn + nmmb-

n2_pert 

21 UTC SREF 

nmmb-n2 

M-Y YSU 

m5 51 cn + nmm-

p1_pert 

21 UTC SREF 

nmm-p1 

Morrison  MYNN 

m6 51 cn + nmmb-

n1_pert 

21 UTC SREF 

nmmb-n1 

M-Y MYJ 

m7 51 cn +nmmb-

p1_pert 

21 UTC SREF 

nmmb-p1 

P3 YSU 

m8 51 cn + em-

n1_pert 

21 UTC SREF em-

n1 

P3 MYJ 

m9 51 cn + em-

p2_pert 

21 UTC SREF em-

p2 

M-Y MYNN 

m10 51 cn + nmmb-

n3_pert 

21 UTC SREF 

nmmb-n3 

Morrison YSU 

m11 51 cn + nmmb-

p3_pert 

21 UTC SREF 

nmmb-p3 

Thompson YSU 

m12 51 cn + nmm-

n3_pert 

21 UTC SREF 

nmm-n3 

Thompson MYNN 

m13 51 cn + nmm-

p2_pert 

21 UTC SREF 

nmm-p2 

Morrison MJ 

m14 51 00 UTC ARPSa 00 UTC NAMf Thompson MYNN 

m15 51 00 UTC ARPSa 00 UTC NAMf Thompson YSU-T 

m16 51 00 UTC ARPSa 00 UTC NAMf Thompson 

ICLOUD=3 

YSU-T 

m17 51 00 UTC ARPSa 00 UTC NAMf M-Y MYJ 

m18 51 00 UTC ARPSa 00 UTC NAMf  P3-cat2 MYJ 

m19 51 00 UTC ARPSa 00 UTC NAMf P3 MYJ 

m20 51 00 UTC ARPSa 00 UTC NAMf Morrison MYJ 
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Table 2.3 SSEF EnKF ensemble specifications. 

 

Ensemble 

Member 

Vertical 

Levels 

Initial 

Conditions 

Lateral 

Boundary 

Conditions 

Microphysics PBL 

enkf_cn 51 enk_m1a 00 UTC NAMf Thompson MYJ 

enkf_m6 51 enk_m2a 21 UTC SREF 

nmmb-n1 

M-Y MYJ 

enkf_m9 51 enk_m6a 21 UTC SREF 

em-p2 

M-Y MYNN 

enkf_m10 51 enk_m8a 21 UTC SREF 

nmmb-n3 

Morrison YSU 

enkf_m5 51 enk_m10a 21 UTC SREF 

nmm-p1 

Morrison MYNN 

enkf_m4 51 enk_m12a 21 UTC SREF 

nmmb-n2 

M-Y YSU 

enkf_m3 51 enk_m17a 21 UTC SREF 

nmmb-p2 

P3 MYNN 

enkf_m8 51 enk_m23a 21 UTC SREF 

em-n1 

P3 MYJ 

enkf_m7 51 enk_m26a 21 UTC SREF 

nmmb-p1 

P3 YSU 

enkf_m12 51 enk_m37a 21 UTC SREF 

nmm-n3 

Thompson MYNN 

enkf_m11 51 enk_m39a 21 UTC SREF 

nmmb-p3 

Thompson YSU 

enkf_mn_th

om 

51 enfamean_th

om 

00 UTC NAMf Thompson MYJ 

enkf_mn_w

sm6 

51 enfamean_w

dm6 

00 UTC NAMf WSM6 MYJ 

enkf_3dvar_

thom 

51 3dvar_thom 00 UTC NAMf Thompson MYJ 

enkf_3dvar_

wsm6 

51 3dvar_wdm6 00 UTC NAMf WSM6 MYJ 
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Table 2.4 SSEO specifications as of 12 August 2014 

 

Ensemble 

Member 

Vertical 

Levels 

Initial 

Conditions 

Lateral 

Boundary 

Conditions 

Microphysics PBL Grid 

Spacing 

NSSL WRF-

ARW 

35 NAM NAM WSM6 MYJ 4 km 

EMC HRW 

WRF-ARW 

40 RAP GFS WSM6 YSU 4.2 km 

EMC HRW 

WRF-ARW; 

12-h time lag 

40 RAP GFS WSM6 YSU 4.2 km 

EMC HRW 

NMMB 

40 RAP GFS Ferrier 

updated 

MYJ 3.6 km 

EMC HRW 

NMMB; 12-h 

time lag 

40 RAP GFS Ferrier 

updated 

MYJ 3.6 km 

EMC 

CONUS 

WRF-NMM 

35 NAM NAM Ferrier MYJ 4 km 

EMC 

CONUS 

NAM NEST 

60 NAM NAM Ferrier-Aligo MYJ 4 km 
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Table 2.5 AFWA ensemble specifications. Land initial conditions for each member are 

from the NASA Goddard Space Flight Center Land Information System (LIS; 

Kumar et al. 2006, 2007). The PBL schemes include the BouLac (Bougeault and 

Lacarrère 1989) and the updated asymmetric convective model (ACM2). 

Members use either the Noah or the Rapid Update Cycle (RUC; Smirnova et al. 

1997, 2000, 2015) land surface model. Microphysics schemes include the WRF 

double-moment microphysics (WDM6; Lim and Hong 2010) and the WRF 5-class 

single-moment microphysics (WSM5; Hong et al. 2004). 

 

Ensemble 

Member 

Vertical 

Levels 

 

Initial 

Conditions 

Lateral 

Boundary 

Conditions 

Microphysics PBL 

1 27 UM UM WSM5 YSU 

2 27 GFS GFS Morrison BouLac 

3 24 GEM GEM WDM6 YSU 

4 21 GEM GEM Ferrier BouLac 

5 21 UM UM WDM6 ACM2 

6 24 GFS GFS Thompson ACM2 

7 24 GEM GEM Morrison YSU 

8 24 GFS GFS Ferrier YSU 

9 27 UM UM Thompson ACM2 

10 21 GFS GFS WSM5 ACM2 
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Table 2.6 Parallel Operational CAM specifications. Initial and lateral boundary include 

the GFS and the Rapid Refresh (RAP) model (Benjamin et al. 2016). 

 

Model Vertical 

Levels 

 

Initial 

Conditions 

Lateral 

Boundary 

Conditions 

Microphysics PBL 

ESRL/GSD 

HRRR (op) 

51 RAP v2 RAP v2 Modified 

Thompson 

MYNN 

ESRL/GSD 

HRRR (parallel) 

51 RAP v3 RAP v3 Thompson-

Eidhammer 

Modified 

MYNN 

EMC HRW 

WRF-ARW 

(op) 

40 RAP v3 GFS WSM6 YSU 

EMC HRW 

WRF-ARW 

(parallel) 

50 RAP v3 GFS Modified 

WSM6 

YSU 

EMC HRW 

WRF-NMMB 

(op) 

40 RAP v3 GFS Ferrier 

Updated 

MYJ 

EMC HRW 

WRF-NMMB 

(parallel) 

50 RAP v3 GFS Ferrier 

Updated 

MYJ 

EMC CONUS 

NAM Nest (op) 

60 GFS NAM Ferrier-Aligo MYJ 

EMC CONUS 

NAM Nest 

(parallel) 

60 GFS NAM Ferrier-Aligo MYJ 
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Table 2.7 Daily activity schedule in local (CDT) time 
0800 – 0845:  Evaluation of Experimental Forecasts & Guidance 

Subjective rating relative to radar evolution/characteristics, warnings, and preliminary reports 

and objective verification using preliminary reports and MESH 

Individual Hazards Desk Total Severe Desk 

 Day 1 & 2 full-period probabilistic 

forecasts of tornado, wind, and hail 

 Day 1 4-h period forecasts and guidance 

for tornado, wind, and hail 

 Days 1, 2, & 3 full-period probabilistic 

forecast of total severe 

 Day 1 1-h period forecasts and guidance for 

total severe 

0845 – 1115:  Day 1 Convective Outlook Generation 

Hand analysis of 12Z upper-air maps and surface charts 

 Day 1 full-period probabilistic forecasts 

of tornado, wind, and hail valid 16-12Z 

over mesoscale area of interest  

 Day 1 4-h probabilistic forecasts of 

tornado, wind, and hail valid 18-22 and 

22-02Z* 

 Day 1 full-period probabilistic forecast of 

total severe valid 16-12Z over mesoscale 

area of interest  

 Day 1 1-h probabilistic forecasts of total 

severe valid 18-00Z* 

1115 – 1130:  Break 

Prepare for map discussion and discuss relationship/translation from probabilities to watch 

1130 – 1200:  Map Discussion 

Overview and discussion of today’s forecast challenges and products 

Highlight interesting findings from previous days 

1200 – 1300:  Lunch 

Brief EWP participants at 1245 

1300 – 1400:  Day 2 Convective Outlook Generation 

 Day 2 full-period probabilistic forecasts 

of tornado, wind, and hail valid 12-12Z 

over mesoscale area of interest 

 Day 2 or Day 3 full-period probabilistic 

forecasts of total severe valid 12-12Z over 

mesoscale area of interest 

1400 – 1500: Scientific Evaluations 

 Convection-allowing ensemble 

comparison (reflectivity and  hourly 

maximum fields):  SSEO, AFWA, 

NSSL, SSEF, SSEF EnKF, NCAR 

EnKF. 

 EMC parallel CAM comparison 

(reflectivity): NAM Nest, HiResW, 

HRRR 

 Met Office CAMs: vertical resolution 

 SSEF 3DVar vs. EnKF Comparison: impact 

on first few hours of control forecast 

 Model forecasts of explicit hail size: 

HAILCAST, Thompson 

 MPAS 

1500 – 1600:  Short-term Outlook 

 Update 4-h probabilistic forecasts of 

tornado, wind, and hail valid 22-02Z* 

 Generate 1-h probabilistic forecasts of 

tornado valid 22-02Z 

 Update and generate 1-h probabilistic 

forecasts of total severe valid 21-02Z* 

* Denotes forecasts also made by participants using the PHI tool on laptops. 
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Figures 

 

Figure 2.1 Reliability diagrams generated for SFE 2014 hourly probabilistic forecasts 

for (a) the nine initial hourly forecasts and (b) the six afternoon updates. The black 

dashed line indicates perfect reliability, and the colored numbers over the x-axis 

correspond to the number of forecasts with at least one forecast of that probability 

magnitude. From Coniglio et al. (2014). 
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Figure 2.2 (a-e) Five participant forecasts, (f) one SPC forecaster forecast, and (g) the 

practically perfect forecast valid 2300 UTC 19 May 2015 – 0000 UTC 20 May 

2015. Probabilistic contours indicate the likelihood of any type of severe weather 

(tornado, wind, or hail) during the forecast period. Overlaid red dots are tornado 

LSRs, green dots are hail LSRs, and dark green triangles are significant hail (hail 

diameter ≥ 2 inches) LSRs. 
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Figure 2.3 3D visualization of forecasted storms valid 0100 UTC on 28 May 2015, 

looking to the northwest from western Oklahoma and showing near-surface wind 

vectors (white), near surface radar reflectivity (2D color shaded field), and UH 

(red positive, blue negative).   County boundaries are in white and state 

boundaries are in yellow.   
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Figure 2.4 Distribution of subjective ratings (1 to 10) for the preliminary hourly 

experimental forecasts (left; 2100-0000 UTC) issued at 1600 UTC compared to 

the final experimental forecasts (right; valid 2100-0000 UTC) issued at 2100 

UTC.  The boxes comprise the interquartile range of the distributions and the 

whiskers extend to the 10th and 90th percentiles. Outliers are indicated by red plus 

symbols. 
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Figure 2.5 As in Fig. 2.4, except for the distribution of subjective ratings (-3 to +3) of 

the experimental forecasts compared to the first-guess guidance for tornado, hail, 

and wind during the 1800-2200 UTC (left) and 2200-0200 UTC (right) periods. 

The top row is the initial morning forecasts, and the bottom row is the afternoon 

update, which only took place for the 2200 UTC – 0200 UTC period.  
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Figure 2.6 ETS scores for 3 h ensemble probability-matched mean fields at four QPF 

exceedance thresholds: (a) 0.10 in; (b) 0.25 in; (c) 0.50 in; and (d) 0.75 in. Different 

colored lines represent the different models, and colored stars indicate a significant 

difference between the SSEF 3DVAR ensemble and the ensemble corresponding to that 

color. 
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Figure 2.7 ROC area scores for 3 h ensemble probability-matched mean fields at four QPF 

exceedance thresholds: (a) 0.10 in; (b) 0.25 in; (c) 0.50 in; and (d) 0.75 in. Different 

colored lines represent the different models, and colored stars indicate a significant 

difference between the SSEF 3DVAR ensemble and the ensemble corresponding to that 

color. 
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Figure 2.8 Distribution of subjective ratings (1 to 10) for the ensemble hourly maximum 

field forecasts compared to local storm reports for each ensemble. Mean 

subjective ratings are indicated by a vertical line. The dashed line indicates the 

mean of both the SSEF (3DVAR) and the SSEO subjective ratings. 
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Figure 2.9 (a) As in Fig. 2.4, except for the distribution of subjective ratings (-3 to +3) 

for the Day 2 ensemble forecasts compared to the Day 1 forecasts, valid for the 

same time period. As an example, the AFWA Day 1 (b)-(d) and Day 2 (e)-(g) 

forecasts of 4-h ensemble maximum UH (b, e), ensemble neighborhood 

probability of UH ≥25 m
2
s

-2
 (c, f), and ensemble neighborhood probability of UH 

≥100 m
2
s

-2
 (d, g) valid 1800-2200 UTC on 21 May 2015.  The severe reports 

during this 4-h period are plotted as letters in each panel (T for tornado, W for 

wind, and A for hail). 
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Figure 2.10 Simulated reflectivity forecasts valid at 0300 UTC on 21 May 2015 from 

the (a) 1500 UTC operational HRRR, (b) 1500 UTC parallel HRRR, and (c) 

observed reflectivity.  Simulated reflectivity forecasts valid at 2200 UTC on 14 

May 2015 from the (d) 1500 UTC operational HRRR, (e) parallel HRRR, and (f) 

observed reflectivity. 
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Figure 2.11 24 h forecast soundings valid 15 May 2015 for the OUN station from (a) 

the NSSL-WRF control member and (b) the UKMET 2.2-km model. The 

observed sounding is plotted in purple in each panel. 
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Figure 2.12 CAPE and CIN from SPC’s mesoanalysis valid at (a) 2100 UTC 9 May 

2015 and (b) 2100 UTC 16 May 2015. CAPE contour levels (red) are 100 J/kg, 

250 J/kg, 500 J/kg, 1000 J/kg and then are spaced every 1000 J/kg. Light blue CIN 

indicates CIN less than -25 J/kg, and dark blue shading indicates CIN less than -

100 J/kg.  69 h MPAS forecasts of CAPE and 0-6 km shear vectors beginning at 

30 kts, valid (c) 2100 UTC 9 May 2015 and (d) 2100 UTC 16 May 2015. 
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Figure 2.13 Composite reflectivity observations from (a) 2100 UTC on 16 May 2015 

and (g) 0400 UTC on 17 May 2015. MPAS (b) 21 h, (c) 45 h, (d) 69 h, (e) 93 h, 

and (f) 117 h composite reflectivity forecasts valid on 16 May 2015 at 2300 UTC 

and (h) 28 h, (i) 52 h, (j) 76 h, and (k) 100 h composite reflectivity forecasts valid 

on 17 May 2015 at 0500 UTC.  
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Figure 2.14 Subjective ratings of 24 h tornado probabilities generated from the NSSL-

WRF ensemble requiring four different environmental criteria, along with UH ≥ 

75m
2
s

-2
. Each set of probabilities received 121 ratings total. Adapted from Gallo 

et al. (2016). 
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Figure 2.15 Individual hazard desk SPC forecaster’s hail forecasts for 2200 UTC on 5 

May 2015 to 0200 UTC on 6 May 2015 (a, c) verified against practically perfect 

forecasts generated using (b) hail LSRs (green dots) and significant hail LSRs 

(dark green triangles) and (d) MESH tracks. Full periods encompass 1600 UTC – 

1200 UTC the following day. The blue hatched area is indicative of severe hail 

(≥2”). (e) ROC curves showing the accumulated verification results for all of SFE 

2015 using LSRs and MESH. 
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Abstract 

 Hourly maximum fields of simulated storm diagnostics from experimental 

versions of convection-permitting models (CPMs) provide valuable information 

regarding severe weather potential. While past studies have focused on predicting any 

type of severe weather, this study uses a CPM-based Weather Research and Forecasting 

(WRF) ensemble initialized daily at the National Severe Storms Laboratory (NSSL) to 

derive tornado probabilities using a combination of simulated storm diagnostics and 

environmental parameters. Daily probabilistic tornado forecasts are developed from the 

NSSL-WRF ensemble using updraft helicity (UH) as a tornado proxy. The UH fields 

are combined with simulated environmental fields such as lifted condensation level 

(LCL) height, most-unstable and surface-based CAPE (MUCAPE and SBCAPE, 

respectively), and multi-field severe weather parameters such as the significant tornado 

parameter (STP). Varying thresholds of 2–5 km updraft helicity were tested with 



71 

differing values of σ in the Gaussian smoother that was used to derive forecast 

probabilities, as well as different environmental information, with the aim of 

maximizing both forecast skill and reliability. Addition of environmental information 

improved reliability and the critical success index (CSI) while slightly degrading the 

area under the receiver operating characteristic (ROC) curve across all UH thresholds 

and σ values. Probabilities accurately reflected the location of tornado reports, and three 

case studies demonstrate value to forecasters. 

 Based on initial tests, four sets of tornado probabilities were chosen for 

evaluation by participants in the 2015 National Oceanic and Atmospheric 

Administration/Hazardous Weather Testbed from 4 May – 5 June 2015. Participants 

found the probabilities useful and noted an overforecasting tendency.  

 

3.1  Introduction 

High-resolution convective-permitting models (CPMs) are increasingly part of 

an operational forecaster’s severe weather toolbox (Fowle and Roebber 2003; Weiss et 

al. 2006; Coniglio et al. 2010; Sobash et al. 2011; Clark et al. 2012a; Schwartz et al. 

2015a). These CPMs generally have grid spacing of 4 km or less, allowing them to 

represent bulk properties of convective circulations, skillfully differentiate convective 

modes (Fowle and Roebber 2003; Done et al. 2004; Weisman et al. 2008), and provide 

unique guidance using  hourly maximum fields of simulated storm diagnostics (Kain et 

al. 2010). Spring Forecasting Experiments (SFEs) taking place in the National Oceanic 

and Atmospheric Administration (NOAA)’s Hazardous Weather Testbed (HWT) 

examine how well experimental CPMs can provide guidance to forecasters (Clark et al. 
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2012a). At the SFEs, researchers and forecasters discuss forecaster needs and current 

capabilities of CPMs, fostering greater understanding between research and operational 

communities. Input from forecasters to the research community allows for subjective 

information about perceived guidance value, rather than relying solely on objective 

measures of verification. 

Murphy (1993) discusses three types of “goodness” that a forecast can possess: 

(1) the agreement between the forecast and the forecaster’s conceptual model 

(“consistency”); (2) the correspondence between the forecast and observations 

(“quality”); and (3) the usefulness of the forecast to the end user (“value”). While 

objective measures asses the quality of the probabilities, feedback from SFE 

participants helps to improve the consistency of the probabilities, as well as the value of 

the probabilities to the forecaster. As tools for the forecaster, guidance should be 

consistent and valuable; working with SFE participants allows for modifying the 

probabilities to achieve these objectives while maintaining forecast quality.  

Forecasters already use ensembles of coarser-resolution models, such as the 

Short-Range Ensemble Forecast (SREF; Du et al. 2014), to assess forecast uncertainty. 

Computing capabilities continue to improve, to the point where NOAA’s 

Environmental Modeling Center plans to implement an operational, CPM-based 

ensemble in the near future (University Corporation for Atmospheric Research 2015). 

Compared to convection-parameterizing ensembles, CPM-based ensembles have been 

shown to provide better guidance in terms of precipitation forecast skill. Clark et al. 

(2009) found that the skill gained by upgrading ensembles to convection-permitting 

resolutions more than made up for the skill lost by decreasing the number of ensemble 
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members. However, exploring the effectiveness of CPMs at forecasting severe hazards 

is a relatively new endeavor. Updraft helicity (UH), a product of vertical vorticity and 

updraft speed, is described by: 

 

 
1

0

z

z

dzwUH  ,   (3.1) 

 

where z0 and z1 are the user-defined layer of the atmosphere, w is updraft speed, and ζ is 

the vertical vorticity (Kain et al. 2010). UH has been used to create probabilistic hazard 

guidance for any type of severe weather and skillfully distinguished severe weather 

events from non-severe weather events (Sobash et al. 2011). This skill is likely due to 

the detection of persistent midlevel mesocyclones – a characteristic of supercells, which 

cause a large percentage of severe weather reports (Duda and Gallus 2010). Indeed, 

hourly maximum UH correlates well with observations of mesocyclones (Kain et al. 

2010).    

While UH is a good predictor for severe hazards, it is not necessarily a good 

proxy for tornadoes when used alone. Like in reality, simulated mesocyclones often 

form in environments unfavorable to tornadogenesis (Clark et al. 2012b). Therefore, if 

generating tornado probabilities from UH alone, large areas of false alarm will occur in 

areas with unfavorable environments. However, adding environmental criteria for 

probability generation could reduce the false alarm area, increasing the precision of the 

tornado probabilities by combining the existence of simulated mesocyclones with 

environmental information conducive to tornadogenesis. This study focuses on 

combining model-generated rotation in the form of UH with environmental parameters 
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conducive to tornadogenesis as identified by numerous previous studies (Rasmussen 

and Blanchard 1998; Thompson et al. 2004a; Grünwald and Brooks 2011; Grams et al. 

2012) to generate probabilistic forecasts of tornadoes.  

Previously, high-resolution UH has been combined with coarser-resolution 

environmental information to separate the tornado threat from the hail and wind threat. 

Jirak et al. (2014) used the Storm-Scale Ensemble of Opportunity (SSEO; Jirak et al. 

2012a), a CPM ensemble produced by the Storm Prediction Center (SPC), for UH fields 

and the 40 km SREF for environmental parameters, to extract individual hazard 

probabilities. The combination of large-scale environmental information with the small-

scale UH diagnostic is shown to provide skillful tornado guidance, with some 

overprediction of hail and wind threats (Jirak et al. 2014). This study aims to investigate 

the benefits of combining UH with environmental parameters taken from the same 

model in generating probabilistic tornado forecasts. Probabilistic forecasts reflect both 

uncertainty in the exact location of the storms as well as whether or not an individual 

storm will produce a tornado.  Several objective verification metrics assess the quality 

of the forecast probabilities, as well as examination subjective comments provided by 

participants in the 2015 SFE.  

Section 3.2.1 of this paper will describe the ensemble system and the parameters 

used to generate the tornado probabilities. Section 3.2.2 will elaborate upon the 

probability generation methodology, and section 3.2.3 will explain both the objective 

and subjective verification methods. Section 3.3.1 evaluates the quality of the tornado 

probabilities through objective verification metrics. Differences in probability 

generation methods will be highlighted by three case studies in section 3.3.2. Section 



75 

3.3.3 will describe the subjective evaluation that took place, including common themes 

noted by the SFE 2015 participants. Finally, a summary and discussion of the results 

along with conclusions and suggestions for further research are provided in section 3.4.  

 

3.2 Data and Methodology 

3.2.1 The NSSL-WRF ensemble configuration 

Since fall 2006, SPC forecasters have used output from an experimental, 4 km 

version of the Weather Research and Forecasting model (WRF; Skamarock et al. 2008) 

generated by the National Severe Storms Laboratory (NSSL) using the Advanced 

Research core WRF (WRF-ARW), known hereafter as the NSSL-WRF (Kain et al. 

2010). This model runs twice daily, at both 0000 UTC and 1200 UTC. Nine additional 4 

km WRF-ARW members with varying initial conditions are run at 0000 UTC, 

composing an ensemble of ten members known as the NSSL-WRF ensemble. Eight of 

the members are initialized at 0000 UTC using 3h SREF forecasts initialized at 2100 

UTC for initial conditions and corresponding SREF member forecasts as lateral 

boundary conditions. The remaining member uses the 0000 UTC National Center for 

Environmental Prediction (NCEP) Global Forecast System (GFS) analysis for initial 

conditions and the corresponding NCEP GFS forecast as lateral boundary conditions. 

Physics parameterizations amongst all members are identical, using the Mellor-

Yamada-Janjić (MYJ; Mellor and Yamada 1982; Janjić 2002) planetary boundary layer 

scheme, WRF single-moment six-class (WSM-6; Hong and Lim 2006) microphysics, 

the Noah (Chen and Dudhia 2001) land-surface model, the Rapid Radiative Transfer 

Model (RRTM; Mlawer et al. 1997) longwave radiation and Dudhia (Dudhia 1989) 
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shortwave radiation scheme (Table 3.1). The NSSL-WRF ensemble began running in 

February 2014. Each ensemble run includes 35 vertical levels and was integrated 36 h 

over the CONUS starting at 0000 UTC. For this study, the period from 1200 UTC to 

1200 UTC the following day is considered (forecast hours 12 to 36).  

Two spring seasons are examined herein: 1 April – 30 June 2014 and 1 April – 

30 June 2015. Ensemble membership changed slightly in that time period, with two 

members initialized from EM SREF members switched for two members initialized 

from NMB SREF members. This change occurred because SPC forecasters noticed that 

the EM SREF members were much less dispersive than the other sets of SREF model 

cores, resulting in a clustering of members and a subsequent decrease in the ensemble 

variability. Thus, a switch to more NMB SREF members was hoped to increase spread 

and improve reliability. The change in ensemble membership was tested by comparing 

reliability diagrams for each year using the consistent members and reliability diagrams 

for each year using all of the members. Reliability diagrams plot the forecast probability 

versus the observed relative frequency, and only small differences occurred through the 

addition of the varying members to the constant members. This change did not have 

significant effects on the composition of the generated probabilities. Thus, the change in 

two members does not significantly affect the overall forecast probabilities, and the 

years are combined throughout the following verification.    

3.2.2 Probability generation 

Probabilities based on the NSSL-WRF ensemble were generated using the 2–5 

km hourly maximum UH (Kain et al. 2010), defined by integrating the vertical vorticity 

times the updraft velocity for the 2–5 km above ground layer (e.g., Kain et al. 2008). 
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These hourly maximum variables contain the maximum value of UH at a given point 

for each hour, providing insight on trends in storm intensity and movement hour-by-

hour. Hereafter, UH will refer to the hourly maximum quantity. Probabilities were 

generated following Hamill and Colucci (1998). For each case, the daily maximum 

value of UH is found at each gridpoint for each member. Next, for each gridpoint a 

distribution of UH values is created using the value of maximum UH within a 40 km 

radius for each member. Probabilities are found by determining where the chosen 

threshold of UH (e.g. 25 m
2
s

-2
) is within this distribution. If the threshold is greater than 

all members forming the distribution, the Gumbel distribution (Wilks 2011) is used. The 

resulting probabilities are smoothed using a Gaussian kernel density weighting function, 

whose weights are calculated by: 
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    (3.2) 

where σ is the user-defined standard deviation in units of km and Δx is the grid-spacing. 

Varying σ results in different levels of smoothness in the resultant probability fields – 

the higher the σ, the smoother the probability fields.  

The first aim of this study is to determine the optimal σ for the Gaussian kernel 

and the optimal UH value. Previous studies have found that UH greater than or equal to 

40 m
2
s

-2 
generated reliable probabilities of any severe report (Sobash et al. 2011). To 

focus on the tornado problem rather than on the any severe problem, five thresholds of 

hourly maximum UH were examined beginning at 25 m
2
s

-2
 and increasing to 125 m

2
s

-2
 

at 25 m
2
s

-2
 intervals. While Sobash et al. (2011) found a relatively large smoothing 
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radius of 200 km to best discriminate severe events from nonevents, it is expected that 

in the current study usage of an ensemble framework allows for a smaller optimum σ 

because the ensemble members will account for much of the spatial uncertainty. This 

differs from the Sobash et al. (2011) study, in which the Gaussian kernel accounted for 

all spatial uncertainty.  

The first set of verification statistics for probabilities with varying UH and σ 

without environmental information provided a baseline against which probabilities 

incorporating environmental information were compared. While the UH is an hourly 

maximum variable, the environmental variables were instantaneous and assumed to be 

representative of the environment into which the storm was moving. To assign values of 

environmental parameters to values of maximum UH at each gridpoint for each 

member, the hour of the maximum UH during the period of interest was determined. 

Then, the environmental information for the previous hour was used for that point. If 

the environmental information were below certain thresholds, the UH was not included 

in the probability generation (i.e., UH was set to zero). The environmental variables 

from the previous hour of the maximum UH were used in three different combinations. 

One combination, designed to eliminate elevated storms [where the inflow is drawn 

from an above-surface unstable layer; Colman (1990)] as well as high-based storms, 

required the ratio of surface-based convective available potential energy (SBCAPE) to 

most-unstable convective available potential energy (MUCAPE) to be at least .75, and 

the lifted condensation level (LCL) height to be below 1500m AGL. These 

requirements helped ensure that the storm inflow originated in the near-surface layer 

and that cloud bases would be relatively low.  The values of .75 and 1500m were 
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chosen based on Clark et al. (2012b), where these values were found to successfully 

identify UH in environments supportive of elevated and high-based storms. In another 

combination, the fixed-layer significant tornado parameter (STP; Thompson et al. 2003) 

was required to be greater than one. Thompson et al. (2003) designed the STP to 

discriminate significant from non-significant or non-tornadic environments (Thompson 

et al. 2003), utilizing the surface-based convective available potential energy 

(SBCAPE), 0–6 km bulk shear (SHR6), 0–1 km storm relative helicity (SRH1), and the 

surface-based lifting condensation level (SBLCL):  

 

].1000/)2000)[(150/1)(20/6)(1500/( 2211 mMLLCLmsmSRHmsSHRJkgSBCAPESTP  

 (3.3) 

 

Since a value of 1 or greater indicates an environment supportive of significant 

tornadoes, it was selected as the threshold for this study. Because this study is verifying 

all tornadoes, both significant and non-significant, requiring STP to be at or greater than 

one may seem too stringent. However, based on the results (shown later), it still slightly 

over-predicts tornado occurrence. The final combination of environmental parameters 

used both prior combinations of environmental parameters: SBCAPE to MUCAPE ratio 

greater than .75, LCL heights below 1500 m, and STP greater than one. Each UH 

threshold and smoothing radius were tested for these three sets of environmental 

parameters.  

3.2.3 Verification 

Objective verification of the forecasts was conducted using reliability diagrams 

(Wilks 2011), receiver operating characteristic (ROC) curves, the area beneath the ROC 
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curves and the Critical Success Index (CSI). The area under the ROC curve measures 

the ability of a forecast to discern the outcome of a binary event, and is computed by 

plotting the probability of detection (POD), defined as: 

 

misseshits

hits
POD


   (3.4) 

 

against the probability of false detection (POFD), defined as: 

 

negativescorrectalarmsfalse

alarmsfalse
POFD


  (3.5) 

 

at specified levels of probability: .5%, 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 

30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and 95%. 

Computing these statistics for smaller increments at low probabilities than high 

probabilities follows SPC tornado probability forecasts and accounts for large 

differences in area between low probability thresholds. The area under this curve is 

computed using the trapezoidal method (Wandishin et al. 2001), and ranges from 0 to 1. 

A value of 1 is a perfect forecast, a value above .5 is considered to have positive skill, 

and a ROC area of .7 is considered the lower limit of a useful forecast (Buizza et al. 

1999). To test the statistical significance of the difference between ROC areas from two 

forecasts, resampling was done following Hamill (1999). Cases were randomly assigned 

to one of the two forecast methods (i.e., UH only vs. UH and STP) 1000 times to create 

a distribution of ROC area differences. If the ROC area differences calculated using the 
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two forecasting techniques lies outside the 95% confidence interval, they were deemed 

significant.  

While ROC curves determine the discriminating ability between events and 

nonevents, the shape of the ROC curves is unaffected by probability magnitude and 

therefore not impacted by biased probability forecasts. To visualize the bias in the 

forecasts, reliability diagrams were generated by plotting the forecast probability 

against the observed relative frequency. A diagonal line represents a forecast probability 

equal to the observed relative frequency (i.e., perfect reliability). Values above (below) 

the diagonal represent underforecasting (overforecasting), where the observed relative 

frequency is higher (lower) than the forecast probability.  

The final metric considered, CSI, is the number of correct “yes” forecasts 

divided by the total number of hits, misses, and false alarms: 

 

alarmsfalsemisseshits

hits
CSI


 (3.6) 

 

It is a score often used in rare events (Wilks 2011), and is therefore an appropriate score 

to consider in tornado forecasting. Scores range from 0 to 1, with 1 being a perfect 

score. Visualization of CSI is through performance diagrams (Roebber 2009). 

Performance diagrams plot the POD versus the Success Ratio, which is defined as: 

 

alarmsfalsehits

alarmsfalse
RatioSuccess


1 (3.7). 
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False alarms divided by hits plus false alarms is also known as the false alarm ratio, or 

FAR. Lines of constant reliability are plotted as dashed lines, and lines of constant CSI 

are plotted as solid, curved lines.  

These measures were applied across the eastern two-thirds of the CONUS (Fig. 

3.1). Verification was based on the Local Storm Reports (LSR) database for each day, 

as generated by the SPC. Reports filtered by the SPC were used to attempt to remove 

duplicate reports of the same tornado. While the tornado report database is flawed 

(Verbout et al. 2006; Doswell et al. 2009), underreporting has been reduced in current 

decades (Brooks and Doswell 2002) and utilizing the location of reported tornadoes for 

verification emphasizes the utility of CPM ensembles in highlighting spatial areas of 

concern.  Only the starting points of tornado paths are used to assign locations of the 

reports, and tornado path length is not considered. Verification was performed on the 4 

km grid of the NSSL-WRF and observed reports were mapped to the 4 km grid and 

treated as yes/no binary events, where a yes occurred if a tornado report was within a 40 

km radius. 

 Subjective verification of the forecasts took place at the Experimental Forecast 

Program of the Spring Forecasting Experiment at the Hazardous Weather Testbed from 

4 May – 5 June 2015. During this experiment, participants were presented with forecast 

probabilities and overlaid LSR tornadoes from the period of interest. The forecasters 

were then asked to assign ratings to the forecasts on a scale from 1 (Very Poor) to 10 

(Very Good), and to provide specific comments about the forecasts and the methods of 

incorporating environmental parameters into the probabilities. They could also explain 

why they assigned the ratings they chose for each forecast.  
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3.3 Results 

3.3.1 Objective Verification 

Objective verification of the probabilities utilized the ROC curve, the area under 

the ROC curve, and reliability diagrams. ROC areas were first computed for the 

probabilities that solely incorporated UH (Fig. 3.2). The impact of changing the UH 

threshold and the σ value of the Gaussian kernel were tested. As the threshold of UH 

was increased, the ROC areas decreased at all σ levels, likely due to the probability of 

detection (POD) decreasing more quickly than the probability of false detection (POFD) 

as the UH threshold increases. However, the ROC areas remained above 0.7 for all 

thresholds and σ values. Decreases in ROC area were greater above the UH threshold of 

50 m
2
s

-2
, decreasing by ~0.01 or less from 25 m

2
s

-2
 to 50 m

2
s

-2
 and from 0.01–0.03 for 

each 25 m
2
s

-2
 of UH added to the threshold past 50 m

2
s

-2
. Differences in ROC areas 

between thresholds separated by 25 m
2
s

-2 
were not statistically significant, but 

differences in ROC areas between thresholds separated by 50 m
2
s

-2
 were significant. 

Increases in the σ value had smaller effects on the ROC area than increases in the UH 

thresholds. In general, as the σ value increased, (more smoothing; example given in Fig. 

3.3) the ROC area increased slightly. However, at low UH thresholds, increasing σ past 

50 km decreased the ROC area. The same effect at high UH thresholds was seen at σ 

past 100 km, suggesting a less skillful forecast. ROC area changes caused by σ variation 

were one to two orders of magnitude smaller than the changes caused by adjusting the 

UH threshold. In fact, differences in the ROC area between σ of 20 km and σ of 200 km 

show no statistically significant difference at any UH threshold. Thus, the variation in 
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the UH threshold has a larger influence on the ROC area than the smoothing level. This 

ROC area behavior is similar to the results of Sobash et al. (2011), who also found that 

ROC area decreased with increased UH threshold and generally increased with 

increasing σ.  

 The same pattern occurs when the probabilities incorporate environmental 

information. ROC areas for varying levels of σ and UH (Fig. 3.4) show that 

environmental filtering decreases the ROC area in most instances, but the ROC area 

remains above 0.8 for all cases except for UH ≥ 125 m
2
s

-2
, the highest UH threshold 

tested. The ROC area decrease depends on the filtering method, UH threshold, and σ 

value. The LCL/CAPE ratio method shows the smallest difference from the UH-only 

probabilities, with an average difference across all σ values and all UH thresholds of -

0.005. Indeed, in two cases (UH ≥ 25 m
2
s

-2
/σ = 50 km and UH ≥ 50 m

2
s

-2
/σ = 100 km) 

the environmental information increases the ROC area compared to UH-only. However, 

neither of these differences were statistically significant, nor were other differences 

between the LCL/CAPE ratio method and the UH-only method across the σ and UH 

producing the largest average differences. The differences become larger and 

statistically significant for the STP method when compared to the UH-only method, 

with an average difference across all σ values and UH thresholds of -0.035. The 

difference from the UH-only method widens for the LCL/CAPE ratio/STP method at -

0.039, while the difference between the LCL/CAPE ratio/STP method and the STP 

method is quite small, reflecting the large dependence on STP. The differences are 

larger across all methods for larger UH thresholds, often at the 0.01 order of magnitude. 

Therefore, the environmental information incorporated generally has as much of an 
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impact on the ROC area metric as the selection of UH threshold, and more of an impact 

than the selection of σ.   

 Figure 3.5 visualizes example ROC curves for five varying UH thresholds using 

four methods of probability generation. The σ of the Gaussian kernel is fixed at 50 km 

for Fig. 3.5, as 50–100 km is the range above which most ROC areas began to decrease 

for a given threshold. Generally, POD and POFD decrease as the UH threshold 

increases, because more events are being missed at higher UH thresholds. While it may 

seem counterintuitive that environmental information causes lower ROC areas, the 

curves show that most of the information loss occurs at low probabilities (i.e., less than 

0.5%). Since events are rare, missing one event causes a large decrease in POD at very 

low thresholds. At operational probability thresholds (i.e., 2%+), the environmental 

information causes slight improvement in the POFD which is then offset by the 

decrease in POD at low probability levels.  

 While the ROC areas are highest for low thresholds of UH, they are heavily 

influenced by correct negatives, which compose a large portion of the data for tornadoes 

on a high-resolution grid. Thus, CSI was examined to provide a metric that excludes 

correct negatives. Performance diagrams (Fig. 3.6) show that the addition of 

environmental information increases the CSI at ranges used by the SPC operationally: 

2%, 5%, 10%, 15%, 30%, and 45%. CSI also improves as UH thresholds increase.  

While all values considered are far from a perfect forecast of 1, they are similar to the 

results of Sobash et al. (2011), and roughly what is expected from high-resolution 

verification of very rare events such as tornadoes. Finally, CSI shows improvement with 
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additional environmental information, with the LCL/CAPE ratio/STP method often 

having the highest CSI at a given probability level. 

 The effect of changing σ is pronounced when considering the reliability 

diagrams for the UH-only probabilities (Fig. 3.7). For small values of σ, all forecast 

probabilities are much larger than the observed relative frequency, indicating 

overforecasting. This overforecasting persists as σ is increased, but the degree of 

overforecasting lessens with increased σ. For larger σ (Fig. 3.7e-f) the overforecasting is 

minimized for most levels, but sample size begins to limit the number of higher forecast 

probabilities, starting around a UH threshold of 75 m
2
s

-2
. Since the ROC areas of each σ 

level were statistically indistinguishable and a limited sample size occurred at high 

probability thresholds, the UH and σ combination used in SFE 2015 was selected as the 

more computationally efficient σ of 50 km and a UH threshold of 75 m
2
s

-2
 to maintain 

reliable high probabilities. Though these high probabilities are larger than what is 

currently operationally forecasted, the reliability of these probabilities combined with 

the relatively high ROC areas suggest skillful forecasts. 

 This chosen threshold (σ of 50 km and UH of 75 m
2
s

-2
) is compared amongst all 

methods of probability generation (Fig. 3.8). Incorporation of the environmental 

information greatly increases the reliability, particularly at higher probability values. As 

it is harder for the probabilities to meet all environmental criteria (recall that the fixed-

layer STP consists of four separate parameters), fewer ensemble members will meet the 

criteria in a given neighborhood. This dampens the magnitude of the probabilities and 

leads to a reduction in overforecasting. The environmental criteria also reduce the 

spatial area encompassed by the probabilities. The reduction in spatial area will be more 
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fully illustrated in the case study examples given in Section 3.2.2b. As can be seen in 

Fig. 3.8b, incorporating LCL height and the CAPE ratio increases the reliability at high 

forecast probabilities. However, only a slight increase occurs at the lower magnitudes. 

When the STP is considered, as in Fig. 3.8c and Fig. 3.8d, the reliability increases for 

all magnitudes of probability, and the overforecasting is more uniform than in both Fig. 

3.8a and Fig. 3.8b.  

 When these results are compared to probabilities generated without UH, instead 

requiring that STP ≥ 1, vast overforecasting occurs at all levels, and large swaths of 

very high probabilities occur (Fig. 3.9). These results emphasize the need for multiple 

methods of evaluating the probabilities, as the ROC area from both spring seasons is 

0.90, similar to that found with solely using UH. However, the large swaths of high 

probability seen on individual days (Fig. 3.9a) demonstrate how difficult it would be to 

use these probabilities as a first guess forecast, as extremely high probabilities 

encompass much of Texas and Oklahoma. There is also a very sharp gradient in 

probabilities, reflecting the larger overforecasting problem illustrated by the reliability 

diagram (Fig. 3.9b).  

Forecasters develop intuition about various models and products; these statistics 

may help calibrate forecasters. The high probabilities in all cases involving 

environmental parameters demonstrate high observed relative frequency, occasionally 

even underforecasting high probability events. While the sample size at high 

probabilities is fairly small, when high probabilities occur, a tornado is relatively likely 

and forecasters can proceed with heightened awareness. The high values of ROC area 
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found across all probabilities also indicate that these forecasts can successfully 

distinguish areas of tornado occurrence from areas without tornado occurrence.  

3.3.2 Example cases 

Three example cases are discussed in this section. The first case was a typical 

synoptic setup for spring in the southern Plains, with ample CAPE, strong shear, and 

relatively little convective inhibition, spawning multiple tornadoes across southern 

Oklahoma and northern Texas. These tornados were well-depicted by the probabilities. 

The second case is a late spring case, taking place in the northern Plains with a 

secondary area of focus across the mid-Atlantic. This case had more tornadoes than the 

first case, and demonstrates the performance of the probabilities in less climatologically 

favored regions for tornadoes. The final case demonstrates a day where the probabilities 

had difficulty pinpointing the area of highest tornado risk, instead portraying a broad 

area of false alarm, with the tornado reports occurring away from the highest magnitude 

of probabilities. While it is unwise to judge the quality of probabilistic forecasts based 

on individual days, these probabilities are meant to be tools for forecasters. As such, the 

potentially operational end products are presented here. These case studies further 

emphasize the operational potential of these forecasts. 

a. 19 MAY 2015  

On 19 May 2015 at 1200 UTC, a 500 hPa shortwave trough progressed across 

the Great Basin area, with a 500hPa speed maximum of 55–60 kt located over Arizona 

and New Mexico (Fig. 3.10). At 850 hPa (not shown), moist air was advected 

northwestward from the Gulf of Mexico, and dewpoints across Oklahoma and northern 

Texas reached 10°C–14°C. While this setup is often associated with outbreaks of severe 
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weather across the southern Plains (Corfidi et al. 2010; Mercer et al. 2012), this case 

was complicated by the presence of ongoing convection across the Texas Panhandle. 

On this day, a slight risk was issued by the SPC despite the high values of shear and 

potential for large CAPE, largely due to the morning convection and subsequent cloud 

cover, and a lack of an elevated mixed layer as discussed in the 1630 UTC Day 1 

convective outlook. This case took place during SFE 2015, and both experiment leaders 

and participants agreed that the convective mode, evolution, and timing were 

particularly difficult to forecast due to the ongoing storms and mixed numerical 

guidance regarding convective mode. Many models showed multiple mesoscale 

convective systems (MCSs) moving across the region of interest during the day, but 

some suggested that supercellular storms would form in the warm sector ahead of the 

ongoing convection and south of an east-west oriented surface stationary front.  

This front progressed slowly northward throughout the day, and tornadic 

supercells formed after the passage of the weak MCS generated by the morning 

convection. These supercells grew upscale into a second MCS that stretched across 

Oklahoma into northern Texas. Behind these supercells, surface heating was able to 

initiate a third MCS over the Texas Panhandle late in the day, which eventually caught 

up to and merged with the second MCS into an east-west oriented MCS located along 

the stationary front. A few supercells also initiated off of the Davis Mountains in 

southern Texas, far from the morning convection. At the end of the day, 29 tornadoes 

were reported across Oklahoma and Texas. 

Clearly, this was a difficult day to forecast specific hazards. The mixed-mode 

signal suggested that wind, hail, and tornado threats were possible. The tornado 
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probabilities provided an excellent first guess for the locations of the tornado reports 

(Fig. 3.11). UH-only probabilities (Fig. 3.11a) broadly highlight northern Texas and 

southern Oklahoma, as well as a secondary area of concern associated with the Davis 

Mountains.  The highest probabilities were centered along the Red River, which forms 

the border between southern Oklahoma and northern Texas, and the highest magnitudes 

were ~45%. This bullseye was where the highest concentration of tornado reports 

occurred. The LCL and SBCAPE/MUCAPE ratio method (Fig. 3.11b) maintained the 

high magnitude of probabilities around the Red River, but correctly diminished the high 

probabilities of the UH-only method across the Texas Panhandle. The low-end 

probabilities generally encompassed the same area as the UH-only probabilities, but 

magnitudes decreased (Fig. 3.11b). The STP method (Fig. 3.11c) greatly reduces the 

magnitude of probabilities far from the bullseye while maintaining high probabilities in 

the bullseye, although the magnitude of the probability reduction is less than with the 

SBCAPE/MUCAPE ratio method. The area of false alarm initially present across the 

Texas Panhandle (Fig. 3.11a,b) is also greatly reduced by the STP method. Finally, the 

method with LCL height, CAPE ratio, and STP decreases the probabilities the most, and 

provides the greatest correspondence of the probabilities with the location of the 

tornado reports (Fig. 3.11d). The secondary bullseye of higher probability across the 

Texas Panhandle is greatly diminished, while the area of higher probability remains 

present across the Davis Mountains.  

The high magnitude of the probabilities along the Red River is maintained in all 

methods of tornado forecast generation, showing that incorporating environmental 

information maintains the high risk of tornadoes across this area. This contrasts with the 
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area of relatively high probabilities across the Texas Panhandle, which was greatly 

reduced by using the environmental information. While the broad area encompassed by 

the probabilities remained consistent, the highest risk was shifted toward the 

observations through the addition of the environmental information, and highlighted the 

area of highest tornado risk despite mixed signals regarding the convective mode, 

evolution, and timing of the day’s storms.  

b. 27 JUNE 2015 

 On 27 June 2015, a 500 hPa trough at 1200 UTC was across the Mississippi 

valley (Fig. 3.12). 250 hPa wind speeds (not shown) were high considering the location 

and time of year, reaching over 100 kt ahead of the main trough axis. Two separate 

areas of tornadic storms formed: one across the eastern Dakotas and one across the Mid-

Atlantic and the Carolinas. The SPC issued an enhanced risk across both areas, and 

encompassed most tornado reports within either the enhanced or the slight risk area. 

The SPC noted in their 1630 UTC convective outlook that the warm front in the east 

provided backed wind profiles capable of supporting rotating storms, as well as steep 

lapse rates and strong upper level winds associated with the shortwave trough evolving 

from Canada into the Dakotas. However, the weak anticipated low-level wind shear 

caused uncertainty with regards to the tornado risk due. By the end of the event, 35 

tornadoes were reported, with a majority of the tornadoes occurring across North 

Dakota into Minnesota.  

 On this day, the probabilities highlighted the northern system (Fig. 3.13). The 

probabilities emphasized tornadic risk across the Dakotas, while maintaining low risk 

across the Mid-Atlantic. The orientation of the probabilities in both cases also closely 
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matched the orientation of the reports, suggesting that the synoptic setup was accurately 

portrayed. Comparing Fig. 3.13a and Fig. 3.13d demonstrates the reduction in both 

magnitude and areal coverage of probabilities provided by adding environmental 

information. The difference plots shown in Fig. 3.13b and Fig. 3.13c show that the STP 

method in this case caused a much larger reduction than the LCL/CAPE ratio method. 

The STP method also eliminates the area of false alarm in Alabama. While all of the 

northern tornado reports remain within the envelope of probabilities with all 

environmental criteria (Fig. 3.13d), the focus of the tornado probabilities in the Mid-

Atlantic is much more northerly than the reports. Though the mid-Atlantic probabilities 

encompassed two of the tornado reports, on this day many of the North Carolina 

tornadoes were missed.   

 This case is discussed to demonstrate that the probabilities are useful across the 

United States; wherever the environmental conditions are favorable for tornadogenesis 

and UH is present within the ensemble, probabilities will ocur.   

c. 28 MAY 2015  

On 28 May 2015, a shortwave trough was located across the Rocky Mountains, 

with several smaller shortwave impulses along the larger trough axis. One such 

shortwave impulse ejected from northern Oklahoma, with another impulse set to eject 

northeastward over Texas throughout the day (Fig. 3.14). Upper-level wind speeds at 

the trough’s base were approximately 55–65 kt at 250 hPa (not shown), and low level 

moisture was abundant. Prior convection left remnant outflow boundaries across 

Kansas, Oklahoma, and Texas, and the Storm Prediction Center’s 1300 UTC and 1630 

UTC convective outlooks noted their potential as foci for convective initiation later in 
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the day. Despite morning convection, storms initiated along the outflow boundaries and 

produced one tornado before they quickly grew upscale into a large MCS that spanned 

Texas, while farther northward isolated supercells across western Kansas also grew 

upscale into clusters. The supercells in Kansas produced a string of tornado reports, as 

did supercells near the Oklahoma/Colorado border.  

Probabilities on this day suggested a widespread region of risk from southern 

Nebraska south to the Texas-Mexico border (Fig. 3.15a). These probabilities exceeded 

30% across most of Texas. While one report did occur in this area, the majority of 

reports took place away from the area of highest probabilities. In addition, false alarm 

was present across most of Oklahoma and Texas. Again, usage of the environmental 

information decreased the probabilities (Figs. 3.15b,c). The decrease in probabilities 

using the LCL/CAPE ratio method (Fig. 3.15b) was fairly uniform across Texas and 

Oklahoma, but lowered the probabilities where most of the tornado reports occurred. 

The STP method (Fig. 3.15c) reduced the probabilities much more than the LCL/CAPE 

ratio method did, but again the highest-magnitude reductions were near the actual string 

of reports. The large area of false alarm remained over Oklahoma and eastern Texas, 

and was not reduced much by the inclusion of environmental information. When all of 

the environmental information is included in the probabilities (Fig. 3.15d), a large area 

of false alarm persists, particularly in south-central Texas, far from the majority of the 

reports. In addition, one of the tornado reports included in the UH-only method (Fig. 

3.15a) now is outside the envelope of probabilities.  

This case highlights the difficulties of calculating probabilities in MCS 

situations. While the mode is often easily discernable when looking at simulated 
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reflectivity, the presence of UH within the squall lines and the presence of ingredients 

conducive to tornadogenesis in systems presents a difficult problem. Further, MCSs 

occasionally do produce tornadoes, and ideally probabilities would reflect this potential. 

It is beyond the scope of this work to lower the probabilities when the expected mode is 

linear in nature, while maintaining probabilities that reflect the MCS tornado threat.  

3.3.3 Subjective Verification 

Subjective verification of the tornado probabilities took place during SFE 2015, 

from 5 May – 4 June 2015. Each participant was asked on a daily basis to rate the four 

probabilities from the previous day generated using a UH threshold of 75 m
2
s

-2
 and a σ 

of 50 km. In the case of Monday, the most active day from the previous weekend was 

considered. These ratings ranged from 1 (Very Poor) to 10 (Very Good), in response to 

the question: 

“Subjectively rate the NSSL-WRF 24 h tornado probabilities using a 

rating scale of Very Poor (1) to Very Good (10).  We are testing the use 

of updraft helicity as forecast by the NSSL-WRF ensemble to derive 

tornado probabilities at time and space scale consistent with SPC 

outlooks.  UH ≥ 75 is used as a proxy for tornadoes and various methods 

are tested to only consider UH in environments typically supportive of 

tornadoes.”      

 

Incorporation of environmental information produced higher mean subjective 

ratings (Fig. 3.16) over the UH-only method for the 24 h probabilities. Of the 22 days of 

evaluation, the LCL/CAPE ratio method had or was tied for the highest average rating 

on 9 days, the STP method and the LCL/CAPE ratio/STP method had or were tied for 

the highest average rating on 8 days, and the UH only method had or was tied for the 

highest average rating on 6 days. UH only and LCL/CAPE ratio were rated the same on 

four days, and the STP and LCL/CAPE ratio/STP method were rated the same on seven 
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days. Thus, many participants saw a strong similarity between the STP and the 

LCL/CAPE ratio/STP method, although the STP method peaks at a higher rating than 

the LCL/CAPE ratio/STP method. 

Overall, the participants’ comments described some common themes. Most of 

the participants found the guidance to be useful, and noted that the incorporation of 

environmental information focused the area of interest and reduced false alarm as per 

the aim of this study, with multiple comments such as:  

“All products capture the area, axis, and grouping of the tornado reports 

very well. The naive UH probabilities show too much false alarm area in 

SW Oklahoma, but the additional filters correct that area very well.” 

 

These comments suggested that forecasters would like to have the probabilities 

available when they are forecasting, and that they would glean information at-a-

glance, rather than mentally integrating all of the ensemble data upon which 

these probabilities are based. 

The participants’ main concerns were the high magnitude of probabilities on 

multiple days and displacement of the “bullseye” of high probabilities from eventual 

tornado reports on multiple days. The high magnitude of the probabilities correspond to 

relatively high risk categories as assigned by the SPC, resulting in comments such as: 

“Several reports occurred outside of the bullseye of tornado probs, and 

there were only a few tornadoes in the area in Oklahoma that had probs 

over 30%, even with the most discriminating filters. 30% is high risk, and 

the reports did not seem like a high risk day to me.” 

 

However, from the objective verification discussed previously, high magnitudes are 

only slightly overforecast according to the reliability diagrams.  

 Adding environmental information did occasionally have a downside, as was 

noted in the 27 June 2015 case study; the STP-inclusive probabilities were occasionally 
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noted by the participants as too limiting, and excluding tornado reports that the less 

restrictive methods maintained within low probabilities: 

“Large false alarm areas.  However the two tornado reports were near the 

high probability areas.  After filtering, the Wyoming tornado was missed 

although the false alarm area was greatly reduced.” 

 

Forecasters have different opinions about whether it is more important to not 

miss events or to reduce false alarm, and through the SFE the probabilities were 

rated by forecasters with a mix of these views.  

 Finally, the participants noted the difference between days with few tornadoes 

and days with more tornadoes; namely, that marginal days posed more difficulties due 

to the weaker environmental parameters naturally present on those days: 

“Some displacement from the area where reports occurred. Max 

probability value ~ 4X greater than the density of storm reports - so the 

parameter is running quite hot. Missed event, which probably is more a 

miss of the underlying forecast than any aspect of the parameter space 

shown. The filters that included STP reduced the max values, which for 

this event moved closer to observed report density.” 

 

Since the probabilities are mostly ingredients-based, it is to be expected that the 

days with less favorable environments would produce fewer tornadoes, and that 

the probabilities would have difficulty pinpointing exactly where these tornadoes 

would occur.  

 Overall, the participant comments were positive and reinforced the results 

produced through objective analysis while providing insight into how a 

forecaster might utilize these probabilities operationally. They also highlighted 

areas of potential improvement and concerns, which will be taken into account in 

future work. 
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3.4 Summary and discussion 

High-resolution models are a very useful resource for forecasters, but the 

amount of information available from these models continues to grow while the amount 

of time a forecaster has often is fixed. This work attempts to provide a “first guess” 

forecast of tornadoes from the high-resolution NSSL-WRF ensemble. Information 

output by the ensemble, such as UH, STP, LCL height, and SBCAPE/MUCAPE ratio 

are synthesized into probabilities. The first question addressed by this study asks which 

UH threshold and σ value maximized both reliability and skill in forecasting tornadoes. 

Utilizing the area under the ROC curve, CSI, and reliability diagrams, this study 

suggests a UH threshold of 75 m
2
s

-2
 maximizes reliability, while producing graphics of 

similar smoothness to those already issued operationally and maintaining a high ROC 

area. Lower thresholds of UH were also considered, but produced large areas of 

overforecasting. However, all thresholds of UH produced less overforecasting than what 

was found when considering environmental information, such as STP, without 

considering UH. Small smoothing radii greatly overforecasted and produced noisy 

graphics; using a larger σ ensures that the probabilities are not tied to specific UH tracks 

within the model.  

When our results are compared to the calibrated tornado forecasts of Jirak et al. 

(2014), they demonstrate higher CSI at UH thresholds above 25 m
2
s

-2
. As Jirak et al. 

(2014) used calibrated probabilities based on historical relative frequencies, these 

probabilities have the advantage of higher CSIs while not requiring historical report 

information. Reliabilities between the two studies were comparable, and both performed 

more poorly than the SPC Day 1 Outlooks reported by Jirak et al. (2014). However, the 
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addition of higher-resolution ensemble data appears to improve the CSI of these 

uncalibrated probabilities beyond the calibrated probabilities using coarser-resolution 

environmental information, suggesting that the higher-resolution environmental 

information benefits the probabilities.  

 The second question of this study asked whether the incorporation of 

environmental information to UH information would improve the probabilities. While 

ROC areas decreased slightly with the addition of environmental information across all 

UH and σ thresholds, CSI increased. ROC area reduction is thought to be due to lower 

skill at very low probability thresholds and the large influence of correct negatives, as 

supported by the CSI. However, the inclusion of environmental information reduced the 

area of false alarm in many individual cases, STP generally more so than LCL height 

and CAPE ratio. The inclusion of environmental information also led to an 

improvement in reliability across all cases.  

Subjectively, this finding was supported by participants during SFE 2015, in 

their comments and their ratings, which favored the probabilities incorporating 

environmental information over the UH-only probabilities. Both verifications suggest 

that high-resolution environmental information helps distinguish tornadoes from other 

severe convective hazards. Subjective evaluation also suggests that these probabilities 

are useful to forecasters, particularly from SFE 2015 participant comments. The 

integration of environmental parameters with UH values into one map of probabilities 

saves forecasters time and effort. To that end, three case studies are presented in which 

the probabilities could give forecasters an idea of tornado threat. An overwhelmingly 

mixed-mode day and a day with the potential for tornadoes in a climatologically less-
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favored area for tornadoes than the central Great Plains show the ability of the 

probabilities to handle a multiple tornadic scenarios. A third case demonstrates 

weaknesses of the probabilities, and provides focus of the future work. 

 Future work includes ongoing collaboration with SPC forecasters on using UH 

and STP to generate empirically calibrated probabilities. Preliminary results suggest 

that these probabilities could provide very different guidance from the method 

described in this study. Future work will also focus on exploring the relationship 

between model-generated STP and STP obtained from the ROC re-analysis of tornado 

events, as well as the relationship between model-generated UH and the radar-observed 

rotational velocity of storms. Future probabilities will be tested in upcoming SFEs and 

objectively analyzed, to provide the best possible “first guess” tool for forecasters in 

their pursuit of an accurate tornado forecast.  
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Tables 

Table 3.1 A summary of the NSSL-WRF ensemble configurations with differing lateral 

boundary conditions and initial conditions.  All members use WSM6 

microphysics, Dudhia shortwave radiation, RRTM longwave radiation, the Noah 

land surface model, and the MYJ boundary layer. Members with years in 

parentheses by the ensemble member were only part of the ensemble for that year. 

Aside from the control NSSL-WRF member and _GFS member, members are 

initialized using 3 h SREF member forecasts initialized at 2100Z for the initial 

conditions and lateral boundary conditions. 

 

Ensemble 

Member 

ICs/LBCs Microphysics PBL Radiation Land-

surface 

1 00Z NAM WSM6 MYJ RRTM/Dudhia Noah 

2 00Z GFS WSM6 MYJ RRTM/Dudhia Noah 

3 21Z em_ctl WSM6 MYJ RRTM/Dudhia Noah 

4 21Z nmb_ctl WSM6 MYJ RRTM/Dudhia Noah 

5 21Z nmb_p1 WSM6 MYJ RRTM/Dudhia Noah 

6  21Z nmm_ctl WSM6 MYJ RRTM/Dudhia Noah 

7 21Z nmm_n1 WSM6 MYJ RRTM/Dudhia Noah 

8 21Z nmm_p1 WSM6 MYJ RRTM/Dudhia Noah 

9   (2015) 21Z nmb_n1 WSM6 MYJ RRTM/Dudhia Noah 

10 (2015) 21Z nmb_p2 WSM6 MYJ RRTM/Dudhia Noah 

11 (2014) 21Z em_n1 WSM6 MYJ RRTM/Dudhia Noah 

12 (2014) 21Z em_p1 WSM6 MYJ RRTM/Dudhia Noah 
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Figures 

 

 
 

Figure 3.1 The model domain for the NSSL-WRF ensemble. The shaded region shows 

where objective verification measures were computed. 
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Figure 3.2 ROC areas for tornado probabilities formed using differing σ values and UH 

thresholds. Different UH thresholds are shown in different colors. All ROC areas 

are for probabilities formed without incorporation of environmental information. 
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Figure 3.3 Tornado probability maps valid from 1200 UTC 19 May 2015 – 1200 UTC 

20 May 2015 for a UH threshold of 75 m
2
s

-2
 and a Gaussian kernel of (a) σ = 

20km and (b) σ = 200km. Probabilities are shaded contours, and tornado reports 

are overlaid black inverted triangles with cyan borders. 
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Figure 3.4 ROC areas for tornado probabilities formed using differing σ values and UH 

thresholds. Different colors represent different UH thresholds. ROC areas are 

from probabilities incorporating (a) LCL ≤ 1500 m and SBCAPE/MUCAPE > .75, 

(b) STP ≥ 1, and (c) LCL ≤ 1500 m, SBCAPE/MUCAPE > .75, and STP ≥ 1. 
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Figure 3.5 ROC curves for σ = 50, four different methods of probability generation, and 

five different UH thresholds: (a) 25 m
2
s

-2
, (b) 50 m

2
s

-2
, (c) 75 m

2
s

-2
, (d) 100 m

2
s

-2
, 

and (e) 125 m
2
s

-2
. ROC curves show the probability of detection (POD) vs. the 

probability of false detection (POFD). Different colors represent methods of 

probability generation, and ROC areas are listed beside the legend. The dashed 

diagonal represents the ROC curve that a random forecast would create, and is a 

reference for comparison.   
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Figure 3.6 Performance diagrams with σ = 50 corresponding to differing UH thresholds: 

(a) 25 m
2
s

-2
, (b) 75 m

2
s

-2
, and (c) 125 m

2
s

-2
. Colored curves represent the POD 

plotted vs. the success ratio (1-FAR) at all probability levels forecasted, and the 

colored dot highlights 15% probability. Dashed lines are of constant bias, and 

curved lines are of constant CSI. Probability methods include: UH only (black); 

LCL < 1500 m and SBCAPE/MUCAPE > .75 (blue); STP ≥ 1 (green); and LCL < 

1500 m, SBCAPE/MUCAPE > .75, and STP ≥ 1 (red). 
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Figure 3.7 Reliability diagrams for tornado probabilities solely incorporating UH > 75m

2
s

-2
 and 

Gaussian smoothing kernel σ values of: (a) σ = 20 km, (b) σ = 30 km, (c) σ = 40 km, (d) σ 

= 50 km, (e) σ = 100 km, and (f) σ = 200 km. The dashed black line indicates perfect 

reliability, area above the line indicates underforecasting, and area below the line 

indicates overforecasting. Histograms in the corner show the percentage of samples in 

each forecast probability bin, with the 0% bin excluded for clarity due to its 

overwhelming majority of samples. 
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Figure 3.8  Reliability diagrams for tornado probabilities with a UH threshold of 75 

m
2
s

-2 
and Gaussian smoothing kernel σ values of σ =50 km for (a) no additional 

environmental information; (b) LCL < 1500 m and SBCAPE/MUCAPE > .75; (c) 

STP ≥ 1; and (d) LCL < 1500 m, SBCAPE/MUCAPE > .75, and STP ≥ 1. The 

dashed black line indicates perfect reliability. 
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Figure 3.9 (a) Tornado probability map valid from 1200 UTC 19 May 2015 – 1200 

UTC 20 May 2015 generated solely using STP ≥ 1 and σ = 50 km, with tornado 

reports as overlaid black inverted triangles with cyan borders and (b) the 

reliability diagram for Spring 2014-2015 for probabilities using solely STP ≥ 1. 

The dashed black line indicates perfect reliability. 
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Figure 3.10 A 500 hPa map valid at 1200 UTC on 19 May 2015. Solid black lines are 

isobars, dashed red lines are isotherms, and blue barbs are 500 hPa wind speed 

and direction. Pressures (purple), temperatures (red), and dewpoints (green) at 

observation points are also shown. Obtained from the SPC website: 

www.spc.noaa.gov/exper/archive/event.php?date=20150519. 

 

  

file:///C:/Users/Burkely/Desktop/Work/Paper%20Drafts/www.spc.noaa.gov/exper/archive/event.php%3fdate=20150519
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Figure 3.11 (a) Tornado probability map valid from 1200 UTC 19 May 2015 – 1200 

UTC 20 May 2015 for a UH threshold of 75 m
2
s

-2
 and σ = 50 km generated using 

solely UH and (d) including environmental information. Probabilities are shaded 

contours, and tornado reports are overlaid black inverted triangles with cyan 

borders. (b) and (c) are difference maps between probabilities generated solely 

using UH and (b) requiring LCL < 1500 m and SBCAPE/MUCAPE > .75; (c) 

requiring STP ≥ 1. Dashed contours are drawn every 2%, starting at 0%. Negative 

numbers indicate a reduction in probability compared to (a). 
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Figure 3.12 A 500 hPa map valid at 1200 UTC on 27 June 2015. Solid black lines are 

isobars, dashed red lines are isotherms, and blue barbs are 500 hPa wind speed 

and direction. Pressures (purple), temperatures (red), and dewpoints (green) at 

observation points are also shown. Obtained from the SPC website: 

www.spc.noaa.gov/exper/archive/event.php?date=20150627. 
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Figure 3.13 (a) Tornado probability map valid from 1200 UTC 27 June 2015 – 1200 

UTC 28 June 2015 for a UH threshold of 75 m
2
s

-2
 and σ = 50 km generated using 

solely UH and (d) including environmental information. Probabilities are shaded 

contours, and tornado reports are overlaid black inverted triangles with cyan 

borders. (b) and (c) are difference maps between probabilities generated solely 

using UH and (b) requiring LCL < 1500 m and SBCAPE/MUCAPE > .75; (c) 

requiring STP ≥ 1. Dashed contours are drawn every 2%, starting at 0%. Negative 

numbers indicate a reduction in probability compared to (a). 
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Figure 3.14 A 500 hPa map valid at 1200 UTC on 28 May 2015. Solid black lines are 

isobars, dashed red lines are isotherms, and blue barbs are 500 hPa wind speed 

and direction. Pressures (purple), temperatures (red), and dewpoints (green) at 

observation points are also shown. Obtained from the SPC website: 

www.spc.noaa.gov/exper/archive/event.php?date=20150528. 
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Figure 3.15 (a) Tornado probability map valid from 1200 UTC 28 May 2015 – 1200 

UTC 29 May 2015 for a UH threshold of 75 m2s-2 and σ = 50 km generated using 

solely UH and (d) including environmental information. Probabilities are shaded 

contours, and tornado reports are overlaid black inverted triangles with cyan 

borders. (b) and (c) are difference maps between probabilities generated solely 

using UH and (b) requiring LCL < 1500 m and SBCAPE/MUCAPE > .75; (c) 

requiring STP ≥ 1. Dashed contours are drawn every 2%, starting at 0%. Negative 

numbers indicate a reduction in probability compared to (a). 
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Figure 3.16 Subjective ratings of the tornado probabilities by participants in SFE 2015 

for: (a) UH only; (b) requiring LCL < 1500 m and SBCAPE/MUCAPE > .75; (c) 

requiring STP ≥ 1; and (d) requiring LCL < 1500 m, SBCAPE/MUCAPE > .75, 

and STP ≥ 1. Ratings encompassed twenty-four cases. 
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Abstract 

Attempts at probabilistic tornado forecasting using convection-allowing models 

(CAMs) have thus far used CAM attribute [e.g., hourly maximum 2–5 km updraft 

helicity (UH)] thresholds, treating them as binary events—either a grid point exceeds a 

given threshold or it does not. This study approaches these attributes probabilistically, 

using empirical observations of storm environment attributes and the subsequent 

climatological tornado occurrence frequency to assign a probability that a point will be 

within 40 km of a tornado, given the model-derived storm environment attributes. 

Combining empirical frequencies and forecast attributes produces better forecasts than 

solely using mid- or low-level UH, even if the UH is filtered using environmental 

parameter thresholds. 
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 Empirical tornado frequencies were derived using severe right-moving 

supercellular storms associated with a local storm report (LSR) of a tornado, severe 

wind, or severe hail for a given significant tornado parameter (STP) value from Storm 

Prediction Center (SPC) mesoanalysis grids in 2014–2015. The NSSL-WRF ensemble 

produced the forecast STP values and simulated right-moving supercells, which were 

identified using a UH exceedance threshold. Model-derived probabilities are verified 

using tornado segment data from just right-moving supercells and from all tornadoes, as 

are the SPC-issued 0600 UTC tornado probabilities from the initial Day 1 forecast valid 

1200 UTC–1159 UTC the following day. The STP-based probabilistic forecasts 

perform comparably to SPC tornado probability forecasts in many skill metrics (e.g., 

reliability) and thus could be used as first-guess forecasts. Comparison with prior 

methodologies shows that probabilistic environmental information improves CAM-

based tornado forecasts.   

 

4.1 Introduction 

 Discriminating a tornado threat from an overall severe convective threat poses a 

unique forecast challenge. Forecasters incorporate knowledge of internal storm 

dynamics and environments conducive to tornadogenesis, a thorough understanding of 

current observations, and numerical weather prediction (NWP) to forecast tornadoes. 

Until very recently, NWP has been too coarse to depict specific storm modes, but recent 

expansion of computational resources has enabled models that explicitly depict 

convection and can thus provide specific information on mode, initiation, and evolution 

(Kain et al. 2008; Clark et al. 2012a). 



119 

 Several parameters have been associated with environmental conditions 

supportive of supercells, which can produce tornadoes. Supercell environments require 

enough convective available potential energy (CAPE) to maintain convection and 

strong deep-layer shear to create midlevel rotation (Weisman and Klemp 1982, 1984, 

1986; Weisman and Rotunno 2000). Supercells produce all types of severe convective 

weather (defined herein as hail  2.54 cm in diameter, thunderstorm wind gusts  25 m 

s
-1

, and tornadoes). However, distinguishing which storms in an environment will 

become tornadic is more difficult than determining if environmental conditions could 

support supercells, and remains a large forecast challenge (Anderson-Frey et al. 2016). 

Environments conducive to supercell-based tornadogenesis typically have low lifted 

condensation levels (LCLs) and high 0–1 km storm-relative helicity (SRH; Rasmussen 

2003; Craven and Brooks 2004; Thompson et al. 2012). Thompson et al. (2003) 

combined these parameters into the fixed-layer significant tornado parameter (STP), 

which attempts to distinguish significantly tornadic (EF2+) environments from non-

tornadic environments. The formulation was then updated by Thompson et al. (2012) to 

incorporate convective inhibition (CIN) and effective shear terms: 

𝑆𝑇𝑃 =  
𝑀𝐿𝐶𝐴𝑃𝐸

1500 𝐽 𝑘𝑔−1
∗

𝐸𝐵𝑊𝐷

20𝑚𝑠−1
∗

𝐸𝑆𝑅𝐻1

150𝑚2𝑠−2
∗

(2000𝑚−𝑀𝐿𝐿𝐶𝐿)

1000𝑚
∗

(200+𝑀𝐿𝐶𝐼𝑁)

150𝐽𝑘𝑔−1
, (4.1) 

where MLCAPE, MLCIN and MLLCL are the CAPE, CIN and LCL calculated 

using the lowest 100 hPa mean parcel, EBWD is the effective bulk wind difference, and 

ESRH1 is the effective storm relative helicity [calculated using the Bunker et al. (2000) 

storm motion estimate]. If the STP is  1.0, the environment is more supportive of 

significant tornadoes.  
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STP as a composite parameter also better discriminates between weak and 

significant right-moving supercellular (RM) tornadoes than individual thermodynamic 

or kinematic parameters (Thompson et al. 2013). Smith et al. (2015) examined tornadic 

storms from 2009–2013 within 101 miles of a WSR-88D, creating conditional 

probabilities of maximum hourly tornado intensity based on the maximum STP within 

80 km of each tornadic storm. Larger STPs yielded generally stronger tornadoes in a 

grid point hour, further extending the application of STP as a discriminatory parameter. 

 While potential storm environment evolutions depicted by convection-

parameterizing NWP helps forecasters understand large-scale environmental conditions, 

key storm characteristics depend on smaller-scale features such as boundaries 

(Markowski et al. 1998; Boustead et al. 2013) and storm-to-storm interactions (e.g., 

Klees et al. 2016). These fine-scale details, which CAMs can depict, often determine 

how convective mode and subsequent hazards evolve (Fowle and Roebber 2003). 

CAMs also supply storm-scale metrics such as hourly maximum updraft helicity (UH; 

Kain et al. 2010), which has been successfully used as a midlevel (Kain et al. 2008; 

Clark et al. 2012b) and low-level (Sobash et al. 2016b) mesocyclone-scale rotation 

diagnostic. Swaths of positive UH typically indicate simulated right-moving supercells 

(similarly, swaths of negative UH typically depict simulated left-moving supercells). 

Since supercells often generate severe weather reports, UH can indicate severe storm 

occurrence in both deterministic (Sobash et al. 2011) and ensemble frameworks (Sobash 

et al. 2016a).  

Extending UH application from severe convective forecasting to tornado 

forecasting has begun in recent years. Taking a countrywide perspective, daily 
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accumulated UH swaths positively correlate with total tornado path length over the 

CONUS (Clark et al. 2013). On an individual storm level, Sobash et al. (2016b) argue 

that 0–3 km UH can serve as a tornado proxy by showing that simulated storms with 

strong low-level mesocyclone-scale rotation occur in simulated environments with STP 

and individual kinematic and thermodynamic parameters similar to observed proxy 

soundings from tornadic storm environments. Combining UH and environmental 

information can also help parse the tornado threat from the overall severe convective 

threat (Jirak et al. 2014; Gallo et al. 2016). Since simulated mesocyclones often occur in 

environments unfavorable to tornadogenesis (Clark et al. 2012b), environmental criteria 

can reduce false alarms by limiting probabilistic tornado forecasts to favorable 

environments (Rasmussen and Blanchard 1998; Rasmussen 2003; Thompson et al. 

2003; Grünwald and Brooks 2011; Grams et al. 2012; Thompson et al. 2012; Thompson 

et al. 2013). Indeed, both coarse-scale (Jirak et al. 2014) and fine-scale (Gallo et al. 

2016) environmental information demonstratively improves tornado guidance skill 

beyond forecasts generated solely using UH.  

This work blends CAM environmental and storm-scale output with observed, 

empirical frequencies of a tornado of any intensity given environmental characteristics 

from right-moving supercells. Smith et al. (2015) developed initial frequencies from 

environmental tornado climatologies, which Thompson et al. (2017) improved upon by 

determining the frequency of a tornado given a right-moving supercell [as defined by 

Smith et al.( 2012)] with a Local Storm Report (LSR) using data from 2014 and 2015. 

By applying these observed frequencies to the NWP output, this study creates forecasts 

resembling Storm Prediction Center (SPC) convective outlooks using a paradigm that 
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represents each point as having a probability of tornado occurrence rather than 

assuming a tornado if deterministic attribute thresholds are exceeded. This process was 

also designed to reduce the over-forecasting seen in prior probabilistic tornado forecasts 

(Jirak et al. 2014; Gallo et al. 2016; Sobash et al. 2016b) by constraining the magnitude 

of the probabilities to observed frequencies roughly based on the environmental 

probabilities from Thompson et al. (2017). The forecasts produced by this methodology 

are also compared to other methods of probability generation described in the literature, 

including using 2–5 km UH or 0–3 km UH as a tornado proxy sans environmental 

information [as in Sobash et al. (2016b)], or by requiring 2–5 km UH exist in an 

environment exceeding a threshold of STP [as in Gallo et al. (2016)].   

 Section 4.2.1 of this paper describes the modified STP used throughout this 

study, which is a surface-based parcel and fixed-layer shear version of the effective-

layer STP (Thompson et al. 2012). Section 4.2.2 describes the empirical climatological 

frequency generation, while section 4.2.3 outlines the ensemble system and 

probabilistic forecast generation algorithm. Sections 4.2.4 and 4.2.5 specify SPC 

forecasts and objective verification metrics used in this study, respectively. 

Determination of the optimum STP percentile composes section 4.3.1, while section 

4.3.2 compares four probability generation methods and the 0600 UTC SPC forecasts. 

Case studies in Section 4.3.3 illustrate the daily tornado probabilities on two high-end 

days and a more marginal day. Finally, Section 4.4 summarizes and discusses the results 

and future research directions. 
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4.2 Data and Methodology 

4.2.1 STP Formulation 

 The STP calculation herein uses surface-based parcels and fixed layer 

calculations within the effective-layer STP equation (Thompson et al. 2012): 

𝑆𝑇𝑃 =  
𝑆𝐵𝐶𝐴𝑃𝐸

1500 𝐽 𝑘𝑔−1
∗

𝑆𝐻𝑅6

20𝑚𝑠−1
∗

𝑆𝑅𝐻1

150𝑚2𝑠−2
∗

(2000𝑚−𝑆𝐵𝐿𝐶𝐿)

1000𝑚
∗

(200+𝑆𝐵𝐶𝐼𝑁)

150𝐽𝑘𝑔−1
, (4.2) 

where the SBCAPE, SBLCL, and SBCIN are the surface-based CAPE, LCL, and CIN. 

As in the fixed-layer STP, the CAPE and LCL height are calculated from surface-based 

parcels due to availability constraints within the NSSL-WRF ensemble, and the shear 

and SRH are computed from fixed layers. Similar to the effective-layer STP, the 

modified STP includes CIN, albeit calculated from the surface-based parcel rather than 

the 100 mb mixed layer parcel. Additionally, the capping terms (e.g., if SHR6 < 12.5 

kts, the SHR6 term is set to zero) are taken from the effective-layer STP. This STP 

formulation utilizes improvements within the effective-layer STP while balancing the 

computational expense of running a CONUS-wide CAM ensemble (i.e., the inability to 

calculate the effective-layer inflow for each grid point and time on a 4-km grid 

efficiently). 

4.2.2 Tornado Frequency Calculation 

 The climatological frequency of tornado occurrence was calculated following 

Thompson et al. (2017), but using the modified STP formulation described in Section 

4.2.1. LSRs from 1 February 2014–31 December 2015 were filtered in three ways: (1) 

all tornado reports were filtered by maximum EF-scale per 40-km grid hour
1
, (2) all 

hail/wind reports were required to meet effective bulk wind difference (Thompson et al. 

                                                 
1
 This study does not use intensity information; this step was performed such that the most intense 

tornado supported by each environment was used. 
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2007) criteria (> 20 kt for 2014, > 40 kt for 2015
2
), and (3) a convective mode filter 

ensured that only right-moving supercells and right-moving marginal supercells were 

included. The supercell definition required an azimuthal velocity difference of  10 m s
-

1 
across less than ~7 km throughout more than one quarter of the storm’s depth for at 

least 10–15 minutes (Smith et al. 2012). After filtering, 1202 tornadic cases and 5422 

non-tornadic cases were used to generate the climatological frequencies. To ensure 

separation of the training and testing dataset, weekly frequencies were generated 

withholding the reports for that week. Each week’s frequencies were then used in 

probability generation. This cross-validation technique (Elsner and Schmertmann 1994) 

has previously been applied to surrogate severe probabilities (Sobash and Kain 2017). 

Hourly SPC objective analyses (Bothwell et al. 2002) provided the nearest 40 km grid 

point modified STP assigned to each event. The weekly climatological tornado 

frequency in each STP bin equaled the tornadic storm count divided by the total number 

of storms in that bin (Fig. 4.1). Variability in the equations was largest at high STP 

values, which have more limited sample sizes than lower STP values. 

 

4.2.3 Probabilistic Forecast Generation 

Probabilistic tornado forecasts were generated using output from a 4-km 

horizontal grid-spacing ensemble based around an experimental version of the Weather 

Research and Forecasting model (WRF; Skamarock et al. 2008), generated by the 

National Severe Storms Laboratory (NSSL) using the Advanced Research core WRF 

                                                 
2
 The more strict effective bulk wind difference criteria for 2015 was estimated to reduce the number of 

potential 40-km grid hour events by ~35% for 2015 based on 2014 data, thereby reducing workload while 

capturing a majority of the low-level circulations within the sample. For further details, see Thompson et 

al. (2017). 
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(WRF-ARW) and known as the NSSL-WRF (Kain et al. 2010). The NSSL-WRF 

ensemble contains the NSSL-WRF and nine additional members with varied initial 

conditions and lateral boundary conditions (Gallo et al. 2016; Clark 2017; Table 4.1). 

Ensemble runs began in February 2014, and produce forecasts to 36-h beginning at 

0000 UTC. Probabilistic tornado forecasts were generated for the spring seasons 

(defined as 1 April–30 June) of 2014 and 2015; seasonal statistics are aggregated over 

that time. The probabilistic forecasts herein are intended as automated first-guess 

tornado forecasts for 12–36 h lead time covering the Day 1 period defined by the SPC.   

Ensemble membership shifted slightly between June 2014 and April 2015, 

exchanging two members initialized from Eulerian mass (EM) Short-Range Ensemble 

Forecast (SREF) members for two members initialized from Non-hydrostatic Multiscale 

Model on the B-grid (NMB) SREF members. This change occurred when SPC 

forecasters noticed tight clustering within the EM SREF members compared to other 

subsets. The ensemble membership shift has minimal impact on subsequent tornado 

forecasts (Gallo et al. 2016), and therefore the 2014 and 2015 spring seasons are 

combined. 

 This work compares four methods of probabilistic forecast generation. Method 1 

uses 2–5 km UH  75 m
2
s

-2
 as a coarse proxy for tornado occurrence from the daily 

maximum UH field of each member, as in Gallo et al. (2016) and following the Hamill 

and Colucci (1998) method for calculating probabilities. Each member has a 

distribution of UH values from the daily maximum UH within a 40 km radius of a 

point, and probabilities are generated by determining where 75 m
2
s

-2
 occurs within the 

distribution. Methods 2 and 3 are similar, but use 2–5 km UH  75 m
2
s

-2
 only at points 
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where the preceding hour had STP  1 or use 0–3 km UH  33 m
2
s

-2
, respectively. The 

0–3 km threshold was chosen by determining the percentile of 2–5 km UH 

corresponding to 75 m
2
s

-2 
during the study period and the subsequent value of 0–3 km 

UH at that percentile. These three methods are derived from those previously explored 

in the literature, and solely use output from CAM ensembles.  

The final probabilistic tornado forecast method (i.e., Method 4) combines 

ensemble information and the observed climatological frequencies described in Section 

2b (Fig. 4.2). First, forecast hours 12–36 of each ensemble member are checked for 2–5 

km UH  25 m
2
s

–2
, indicating a right-moving supercell (Clark et al. 2013; Gallo et al. 

2016; Sobash et al. 2016a). If a gridpoint exceeds the UH threshold, the STP from the 

prior hour is collected from every point where the threshold is exceeded within a 40-km 

radius, creating a STP distribution at each gridpoint and for each hour. From these STP 

distributions, a percentile value is extracted and assigned to the gridpoint and hour. The 

percentiles examined herein are the 10
th

, 25
th

, 50
th

, 75
th

, 90
th

, and 100
th 

(maximum 

value). Once each gridpoint and hour has a STP value the daily maximum STP is 

assigned to the point, representing the most favorable environment over a 24-h period. 

The climatological frequency values are then used to assign a STP-based tornado 

probability at that gridpoint. The calculated climatological frequency values (Fig. 4.1) 

represent the centerpoint of their bins, and linear interpolations between the bin centers 

assign frequencies between centerpoints. 

The final step averages the individual member probabilities and smooths the 

resultant field using a Gaussian kernel density weighting function with weights 

determined by: 
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where σ is the user-defined standard deviation in km and Δx is the grid spacing. 

Varying  were tested (not shown), and  = 50 km creates a field of comparable 

resolution to SPC tornado probabilities.   

4.2.4 SPC Forecasts 

 All ensemble probabilities were verified in conjunction with the initial SPC Day 

1 tornado probabilities issued at 0600 UTC (valid 1200 UTC–1159 UTC the following 

day) to compare the skill of the first-guess probabilities and initial SPC tornado 

forecasts. For these probabilities to become a useful first-guess forecast, the resolution 

and accuracy should resemble the SPC forecasts. The SPC issues 0600 UTC tornado 

forecasts using information from 0000 UTC, making them the most applicable 

comparison to the first-guess forecasts since the ensemble initializes at 0000 UTC. The 

outlooks herein were largely independent of the NSSL-WRF ensemble probabilities, as 

the ensemble fields were unavailable to forecasters producing the 0600 UTC outlooks. 

The SPC probabilities were regridded to the NSSL-WRF grid before verification, 

ensuring consistency between the ensemble and SPC forecasts.  

4.2.5 Verification 

 Verification occurred across approximately the eastern two-thirds of the 

CONUS (Fig. 4.3). All probabilities (NSSL-WRF and SPC) were considered only 

within this domain and over the 182 days of April–June 2014 and 2015. Tornado path 

data were georeferenced to the 4-km grid of the NSSL-WRF ensemble and treated as 
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binary yes/no events. Yes events occurred if a tornado passed within 40 km of a point. 

Though the severe report database has documented shortcomings regarding tornado 

reports (Doswell and Burgess 1988; Brooks et al. 2003; Verbout et al. 2006; Doswell et 

al. 2009) and hail reports (Blair et al. 2017), more low-magnitude tornadoes have been 

reported in recent decades (Brooks and Doswell 2001).   

Two subsets of the tornado database were considered for this project. The first 

subset included tornado path data from all modes of parent convection. The second 

subset solely included tornadoes produced by either right-moving supercells or marginal 

right-moving supercells (RM tornadoes). Since the new methodology derives 

probabilities from observed climatological frequencies of RM tornadoes, applying the 

forecasts to the second subset is truer to the underlying data than using them as 

forecasts of all tornadoes. Comparing the verification methods may help determine 

whether the probabilities are appropriate as tornado forecasts or should solely be 

considered a forecast of RM tornadoes. The other methods previously documented in 

the literature were also verified with both datasets. 

Forecasts were verified using reliability diagrams (Wilks 2011), performance 

diagrams (Roebber 2009), and the area under the receiver operating characteristic 

(ROC) curve, which measures the ability of a forecast to discern an event from a non-

event by plotting the probability of detection (POD) against the probability of false 

detection (POFD) at different thresholds. POD and POFD were generated using a 

standard 2 X 2 contingency table and defined as: 

misseshits

hits
POD


 , (4.4) and 
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negativescorrectalarmsfalse

alarmsfalse
POFD


 . (4.5) 

One POD and one POFD were defined for each probabilistic tornado forecast threshold 

that the SPC issues: 2%, 5%, 10%, 15%, 30%, 45%, and 60%. The model forecast 

verification occurred at these thresholds to enable comparisons. The area under the 

curve was then computed using the trapezoidal method (Wandishin et al. 2001). ROC 

areas range from 0.0 to 1.0, where 1.0 indicates a perfect forecast, and 0.5 is the skill of 

a random forecast. Generally, a score of 0.7 or higher is considered skillful (Buizza et 

al. 1999). Both seasonally aggregated and daily ROC areas were computed.  

The ROC area difference between the SPC forecasts and ensemble forecasts was 

tested for statistical significance using resampling, following Hamill (1999). All cases 

were randomly assigned to one of the two forecasts, seasonally aggregated ROC areas 

were calculated for the two groups, and the difference was computed 1000 times to 

create a ROC area difference distribution. Significant ROC area differences between the 

SPC forecasts and the NSSL-WRF ensemble forecasts fell outside of the 95% 

confidence interval of this subsequent distribution. 

Reliability diagrams plot the observed relative frequency against the forecast 

probability, providing information about bias to supplement the ROC areas, which are 

insensitive to bias. A perfect forecast follows the 45° diagonal: when there is a 40% 

probability of a tornado, a tornado observation occurs in four out of ten forecasts. The 

SPC’s forecasts largely occur at low probabilities, and are only issued at specific 

thresholds: forecasters typically assume some higher probabilities exist within the 

contours that do not exceed the following threshold. For example, the 15% contour may 

contain probabilities as high as 29.99%, since 30% is the next probabilistic contour 
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issued. Thus, SPC forecasts by design under-forecast according to the reliability 

diagram, resulting in values that are above the diagonal. Conversely, over-forecasting 

results in values beneath the diagonal.   

Performance diagrams visualize four different statistical metrics including the 

Critical Success Index, defined as: 

alarmsfalsemisseshits

hits
CSI


 . (4.6) 

This is typically a rare event score (Wilks 2011), and has verified prior tornado 

forecasts (Gallo et al. 2016; Sobash et al. 2016b). It ranges from 0.0 to 1.0, with 1.0 

being a perfect score. Performance diagrams plot POD versus Success Ratio (SR), 

defined as: 

alarmsfalsehits

alarmsfalse
RatioSuccess


1 , (4.7) 

with lines of constant CSI and bias to aid in interpretation. The false alarms divided by 

hits plus false alarms is otherwise known as the false alarm ratio, or FAR. Reliability 

information at each threshold can also be extracted (i.e., ideally a SR of 15% would 

occur at the 15% forecast threshold). 

 

4.3 Results 

4.3.1 STP Percentile Sensitivity 

The seasonally aggregated SPC 0600 UTC tornado forecasts had a ROC area of 

0.824 for all tornadoes and 0.865 for RM tornadoes (Table 4.2), showing that the SPC is 

more skillful at forecasting RM tornadoes than tornadoes from other convective modes. 

However, both subsets easily exceed the 0.7 criteria determining a skillful forecast. 
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Similarly, the ensemble-based probabilities achieved skillful ROC areas for all tested 

percentiles, ranging from a low score of 0.845 for probabilities using the 10
th

 percentile 

of STP and verified on all tornadoes to a high score of 0.921 for probabilities using the 

maximum STP and verified on RM tornadoes (Table 4.2). Across all percentiles, 

verification on RM tornadoes scored higher than verification on all tornadoes, 

indicating that the forecasts were more adept at discerning areas of RM tornadoes. 

Given the underlying climatological frequencies and the strong correlation between UH 

and supercells, the probabilities were expected to particularly highlight areas where RM 

tornadoes may occur. Higher percentiles attained significantly higher ROC areas than 

the SPC, likely due to their broader coverage as a harsh penalty is imposed by the ROC 

area when missing a tornado report (Gallo et al. 2016).  

ROC curves for all STP percentiles had higher POD and POFD than the SPC 

forecasts, particularly at lower forecast thresholds such as 2% (Fig. 4.4a,d). The curves 

also showed that the increase in ROC area at higher STP percentiles comes mostly from 

increased POD at the 2% and the 5% threshold. Above the 5% threshold, the POD and 

the POFD were nearly indistinguishable from the SPC’s forecasts. Thus, STP-based 

ensemble forecasts could provide forecasters with objectively skillful first-guess 

tornado probabilities, particularly for RM tornadoes, with the understanding that at low 

thresholds the improvement in POD is accompanied by a slightly higher POFD. The 

largest difference between verifying with all tornadoes and RM tornadoes stemmed 

from the POD difference at low forecast thresholds, with all forecasts having a higher 

POD for RM tornadoes than for all tornadoes.  
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A day-to-day comparison between the ROC areas illustrated another 

operationally relevant facet of the probabilities (Table 4.2). For the lower percentiles of 

STP, the SPC probabilities had a higher ROC area than the NSSL-WRF ensemble 

probabilities and vice versa slightly over one-third of the time. Remaining cases had a 

tied ROC area of 0.5, which occurred when no tornadoes happened or when tornadoes 

occurred entirely in regions below 2% forecast probabilities. The percentage of days the 

NSSL-WRF ensemble ROC area exceeded the SPC ROC area was highly dependent on 

the percentile of STP used to generate the NSSL-WRF ensemble probabilities. The 

NSSL-WRF ensemble most often scored higher than the SPC when ensemble 

probabilities were generated using the maximum percentile. Conversely, the SPC most 

often scored higher than the NSSL-WRF ensemble when ensemble probabilities were 

generated using the 10
th

 percentile. These results were consistent between both 

verification datasets, suggesting that some days only non-RM tornadoes occurred within 

the 2%+ probability. The higher the percentile of STP used to generate the ensemble 

probabilities, the higher the percentage of days the ensemble scored higher than the 

SPC, likely because increased coverage of the probabilities missed fewer tornadoes.  

 Since the ROC area solely distinguishes events from non-events, forecast 

reliability is key in determining the practical usefulness of the probabilities. Reliability 

diagrams showed that the ensemble-based probabilities closely resembled the SPC 

forecasts when they were generated using the 10
th

 percentile of STP (Fig. 4.4b,e). 

Higher percentiles over-forecasted all tornadoes, especially at low probabilities (Fig. 

4.4b); only the 10
th

 percentile forecast was nearly reliable until the 30% forecast 

probability. When forecasting RM tornadoes over-forecasting increased, and the 10
th
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percentile remained most reliable (Fig. 4.4e). The increase in over-forecasting when 

looking at RM tornadoes compared to all tornadoes was expected, since the RM 

constraint ensures fewer tornadoes in the verification dataset.  

 Performance diagrams allow a closer examination of individual probabilistic 

forecast thresholds. Since tornadoes rarely occur, the ideal forecast would contain a 

majority of tornadoes with limited false alarm, leading to a SR equal to the probability 

at each probability threshold. At nearly all percentiles and probability thresholds, the 

ensemble forecasts had a higher POD and a lower SR than the SPC probabilities (Fig. 

4.4c,f). An exception occurred with the probabilities generated using the 10
th

 percentile 

of STP for the 10% or 15%  threshold, when the ensemble forecasts had higher PODs 

and higher SRs than the SPC forecasts. SPC forecasts of 10% and 15% are reserved for 

high-impact days, and so these thresholds warrant special attention.  

Performance diagram results were consistent between all tornadoes (Fig. 4.4c) 

and RM tornadoes (Fig. 4.4f), but the RM tornadoes generally had a lower CSI despite 

having an increased ROC area.  Since RM tornadoes are a subset of all tornadoes, when 

verifying solely on RM tornadoes the false alarm and correct negatives will increase, 

the misses will decrease, and at best the number of hits will remain the same (if the 

probabilities are encompassing all RM tornadoes) or decrease. In a rare event scenario, 

false alarms are often the largest term in the CSI (compared to hits and misses), and the 

increased false alarm of verifying on RM tornadoes decreases the CSI. False alarms 

affect CSI more than the ROC area because the CSI does not incorporate correct 

negatives. False alarms are incorporated in the ROC area through the POFD, which is 
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overwhelmingly dominated by correct negatives in the rare-event scenario. The ROC 

area is instead sensitive to the POD, and increases because of the decreased misses.  

4.3.2 Probability Generation Method Comparison 

 The probabilities generated using the 10
th

 percentile of STP were the most 

reliable while maintaining high skill, so those forecasts were compared with other 

methodologies of probability generation (Gallo et al. 2016; Sobash et al. 2016b). From 

this point, the STP-based probabilities denote the probabilities computed using the 10
th

 

percentile of STP. Seasonally aggregated ROC areas between the 0–3 km UH-only, 2–5 

km UH-only, and STP-based probabilities were similar, while the filtered 2–5 km UH 

had a much lower ROC area. However, neither the filtered 2–5 km nor the STP-based 

method were statistically significantly different from the SPC forecasts for either 

verification dataset (Table 4.3). Across both verifications, ROC curves of the UH-only 

methods had higher POD and POFD at low probability thresholds (Fig. 4.5). The 

filtered 2–5 km UH method had lower POFDs than the other methods accompanied by a 

much lower POD than the other methods and the SPC forecasts. The STP-based 

probabilities had a slightly lower POD than the UH-only methods, but also had a lower 

POFD that more closely resembles the SPC forecasts. The most obvious difference 

between the RM tornado verification and the all tornado verification was that the RM 

tornadoes produced higher ROC areas than the all tornado dataset across all methods, 

mostly due to an increase in POD at low thresholds. Otherwise, the results were 

consistent between verifications.  

The percentage of days each method achieved a higher ROC area than the 0600 

UTC SPC probabilities varied greatly, from a low of 28.6% for the filtered 2–5 km UH 



135 

verified against RM tornadoes to a high of 50.0% for the 0–3 km probabilities verified 

against all tornadoes (Table 4.3). The STP-based probabilities more often outscored the 

SPC than the filtered 2–5 km UH, but less often than the two UH-only methods. 

Overall, most daily forecasts were skillful for both verifications, although some days 

had large spread between the methods showing that method choice had a large impact 

on forecast skill (Fig. 4.6). Marginal days, in which one or two tornadoes occurred on 

the edge of the forecast area, were often the most impacted by method choice. In those 

cases, increased coverage (occurring with more widespread UH and less environmental 

criteria) achieved a higher ROC area by covering more “tornado event” points. 

Additionally, STP-based probabilities typically scored higher than filtered 2–5 km UH 

probabilities, suggesting that incorporating STP probabilistically generated a better 

forecast than using STP as an additional binary criterion. The shift to higher scores for 

RM tornadoes (i.e., more points in the upper right corner of the graph) occurred due to 

an overall improvement in ROC areas for both the SPC and the NSSL-WRF ensemble. 

Methods differed immensely in their reliability (Fig. 4.7). High SPC forecast 

probabilities are rare, and unnecessarily high first-guess ensemble probabilities can 

mislead forecasters trying to anticipate the severity of a day (Gallo et al. 2016). Vast 

over-forecasting occurred in the methods solely using UH despite their high ROC areas, 

and verification using only the RM tornado dataset exacerbated this signal. Filtering the 

2–5 km UH probabilities by requiring STP  1 improved reliability, but still over-

forecasted. The STP-based probabilities, however, were remarkably reliable, 

particularly when forecasting RM tornadoes. The SPC was also extremely reliable for 

both verification methods. Indeed, the SPC forecasts achieved nearly perfect reliability 
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up to 15% when forecasting RM tornadoes, while the STP-based probabilities over-

forecasted at 10% and below. Clearly, using empirical observations as a basis for the 

probabilistic tornado forecasts improved reliability over the other methods, which solely 

rely on an ensemble and Gaussian smoother to moderate the probabilities.  

A performance diagram illustrates verification statistics at SPC forecast 

thresholds (Fig. 4.8). At the 2% level the UH-only and STP-based methods have similar 

SRs, although the STP-based method had higher CSI and lower POD than the UH-only 

methods. However, beginning at the 5% level, all methods except the STP-based 

probabilities have much higher POD and lower SR than the SPC forecasts. At the 10% 

and 15% threshold, the STP-based probabilities have higher CSI, POD, and SR than the 

SPC forecasts for all tornadoes and for RM tornadoes, although the increase in SR was 

larger for all tornadoes than for RM tornadoes. As the probability threshold increases, 

so do the discrepancies between the methods, with the UH-based methods having much 

higher POD and much lower SRs than the SPC and the STP-based method and 

corresponding to their high bias.  

4.3.3 Case Studies 

To demonstrate how the probabilities appear to a forecaster, three case studies 

are now presented. The first illustrates a high-impact day, with high probabilities and 

multiple tornadoes. The second highlights an area where forecast upscale growth 

contained embedded supercells, emphasizing that these probabilities are intended as a 

tool for forecasting supercellular tornadoes. The final case occurred on a more marginal 

day, and had a relatively large false alarm area. 

a. 28 APRIL 2014 
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Late April 2014 saw a multi-day outbreak spanning from the Great Plains to the 

east coast, with the most tornadoes occurring on 28 April. In fact, this day had the 

largest number of tornadoes (121) of any day in our dataset. Four of these tornadoes 

caused fifteen deaths across Mississippi, Alabama, and Tennessee. On the 28
th

, a 500 

mb closed low was located over Nebraska and a negatively tilted shortwave trough 

stretched from the central Great Plains into eastern Oklahoma and Louisiana. At the 

base of this trough, a 500 hPa jet streak with wind speeds exceeding 80 kt existed over 

Arkansas and moved eastward throughout the day. Thermodynamic parameters were 

also favorable, with MLCAPE exceeding 2000 Jkg
-1

 where tornadoes would later occur. 

Objectively analyzed STP ranged from 3.0–6.0 in the area of interest (not shown).  

The SPC forecasted this event well in advance, issuing a Day 3 moderate risk. 

The SPC’s 0600 UTC tornado probabilities (Fig. 4.9a) had a broad area of 15% 

probability, corresponding to a “moderate” categorical risk. The 2000 UTC update to 

this forecast increased the tornado probabilities to 30% (not shown), leading to a 

categorical upgrade to high risk. The 0600 UTC SPC-issued probabilities successfully 

captured the largely RM tornado reports for that day, and most of the tornadoes 

occurred in the upper-tier probabilities. The NSSL-WRF ensemble also highlighted the 

Southeast, with high ensemble STP and abundant UH, creating high probabilities for all 

methods (Fig. 4.9b-e).  

 This case demonstrates the value of restricting the maximum probability using 

observed frequencies. Initially, using midlevel rotation (Fig. 4.9b) or low-level rotation 

(Fig. 4.9d) alone created extremely high probabilities both within and well outside the 

region with numerous tornadoes. The over-forecasting of the 2–5 km UH probabilities 
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(Fig. 4.9b) was not tempered much by requiring STP  1 (Fig. 4.9c), since high STP 

was abundant. However, the STP-based probabilities (Fig. 4.9e) had a maximum 

magnitude equivalent to the SPC’s updated forecast: 30%, which is categorically 

equivalent to a high risk, although they had lower probabilities than the other methods 

within the region containing numerous tornadoes. All forecasts on this day had ROC 

areas above 0.95 (Fig. 4.9f).  

b. 3 JUNE 2014 

The second case contained mixed modes, where clusters of supercells produced 

most of the tornadoes. A vigorous short-wave trough was initially located across the 

north-central plains, with strong 250 hPa wind speeds (not shown). According to the 

0600 UTC convective outlook, severe convection was expected to occur near a warm 

front. The forecast environment had ample shear and sufficient CAPE to support 

rotating storms. Isolated, high-based storms were anticipated initially, but much NWP 

guidance showed fast upscale growth into one or more mesoscale convective systems 

(MCSs). As a result, a 10% tornado threat was highlighted by the 0600 UTC SPC 

convective outlook (Fig. 4.10a), along with a 45% damaging wind threat (not shown). 

Although upscale growth occurred, many of the storms retained supercellular 

characteristics early in their convective life cycle. Six RM tornadoes and one non-

supercellular tornado resulted. 

As in the previous case, the 2–5 km UH (Fig. 4.10b) and the 0–3 km UH (Fig. 

4.10d) had vast swaths of probability exceeding 60% (the highest possible tornado 

probability contour issued by the SPC), including in areas outside of the region with 

several tornadoes. However, the probabilities captured the tornado in western Kansas, 
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which was missed by the 0600 UTC outlook (the 1630 UTC outlook extended the 2% 

probabilities into western Kansas). Capturing that tornado report increased ROC area 

for those probabilities at the significant expense of increasing the forecast probabilities 

across the region (Fig. 4.10f). Forecasters might have excessive difficulty determining 

the appropriate magnitude of the probabilities given this over-forecasting, as was seen 

in Gallo et al. (2016). Incorporating environmental information by requiring an 

exceedance of STP reduced the probabilities somewhat (Fig. 4.10c), but the peak 

magnitude remained above 60% and the Kansas tornado was now outside the 2% 

contour, decreasing the ROC areas. The STP-based probabilities (Fig. 4.10e), however, 

handled the magnitude of the event best of any automated probabilities, although the 

highest probabilities occurred east of the area with the most tornadoes. The highest 

probability contour was only one category higher than the official SPC forecast on this 

day, making them the most useful first-guess of any ensemble probabilities as the 

forecaster would not have to mentally calibrate the probabilities to typical operational 

values. Verifying solely on RM supercells doesn’t have much of an effect on this case, 

although a slight decrease in the SPC’s ROC area was caused by no longer counting the 

non-supercellular tornado in southwestern Illinois. This case also demonstrates the 

struggle the probabilities have with mode, in that UH swaths associated with MCSs can 

produce areas of false alarm, as seen across Illinois in all ensemble-generated methods. 

c. 5 MAY 2015 

The third case examined herein demonstrates how these probabilities are best 

used for forecasting RM tornadoes, and shows the difficulties they may have on more 

weakly forced days. According to the SPC 0600 UTC convective outlook, a shortwave 
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trough was forecast to evolve across the CONUS throughout the period of interest. 

Ongoing thunderstorms were expected to limit the instability across the central High 

Plains. A sharpening dryline and remnant boundaries from the morning convection were 

anticipated as the focus of the subsequent severe convection. Such mesoscale detail 

poses a forecasting challenge to humans and NWP alike, making this a difficult day to 

forecast. Effective bulk shear was noted by the SPC as sufficient for supercells with a 

tornado threat east of the dryline, leading to an area of 5% tornado probability across 

the Texas Panhandle and a broader area of 2% stretching southward, where shear was 

weaker (Fig. 4.11a). Subsequent outlooks reduced the area of 5% and eventually shifted 

it southward (not shown). 

While the UH-only methods had lower probabilities than in the prior two cases, 

they still showed areas of 10% (2–5 km UH-only; Fig. 4.11b) and 15% (0–3 km UH-

only; Fig. 4.11d), which are typically used by the SPC on high-end days. These 

probabilities encompassed all of the tornadoes that occurred on 5 May, with the 

exception of the non-RM tornado in Oklahoma. Filtering the UH by requiring STP  1 

decreased the area of false alarm in Oklahoma, but just excluded the tornadoes that 

occurred in central Texas and maintained the high-magnitude false alarm in southern 

Texas (Fig. 4.11c). Using the STP-based probabilities decreased the false alarm overall, 

and the maximum probability magnitude matched that of the SPC: 5%. Probabilities 

across southern Texas were especially reduced. However, the area highlighted by the 

5% was in southwestern Oklahoma, which had no tornadoes, and some of the southern 

tornadoes were excluded.  
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This case shows how different daily statistics can be when verifying RM 

tornadoes vs. all tornadoes. The SPC’s ROC area increased greatly, from 0.84 to 0.96 

(Fig. 4.11f), as the only tornado not in the SPC’s forecast area was non-RM. Such 

increases emphasize the importance of capturing all of the reports to ROC areas in a 

rare-event scenario such as tornado forecasting, which is also demonstrated by 

comparing the increase in ROC area among the forecast methods. All methods showed 

some increase in ROC area when verifying on RM tornadoes as compared to all 

tornadoes, but the increase for the 0–3 km UH-only probabilities was much greater than 

the increase in the filtered 2–5 km filtered UH probabilities (Fig. 4.11f). The only 

tornadoes not captured by the 0–3 km UH-only probabilities were non-RM, so 

excluding them from verification greatly increased the ROC area despite substantially 

over-forecasting. However, the exclusion of the non-RM tornadoes in the filtered 2–5 

km UH probabilities led to fewer misses and more correct negatives, which would 

respectively increase the POD and decrease the POFD. Nevertheless, since the forecast 

still excludes most of the RM tornadoes (some of the tornadoes likely occurred within 

40 km of the edge of the 2% probabilities), the ROC area did not increase by much. 

 

4.4 Summary and Discussion 

Forecast probabilities generated using combined ensemble output and observed 

climatological tornado frequencies performed comparably to the SPC 0600 UTC 

forecasts for all tornadoes and solely RM tornadoes. These model forecasts are designed 

for quick forecaster interpretation by summarizing relevant environmental and 

convective ensemble parameters into one graphic. Additionally, the ensemble forecasts 
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currently become available for the 1300 UTC forecast updates, allowing forecasters to 

adjust the magnitude and location of the 0600 UTC tornado probabilities if they think 

the ensemble forecast probabilities add value. Incorporating this method into other 

ensembles would even allow the probabilities to be available in time for the initial Day 

1 forecast at 0600 UTC, and is the subject of ongoing work. 

These probabilities are the first to incorporate observed climatological 

frequencies given environmental parameters, unlike other ensemble-based tornado 

forecast techniques to date. The climatological frequencies calibrate the tornado 

probability given model-based storm environments and attributes, improving upon the 

idea of using thresholds of simulated environmental values, as is seen in Gallo et al. 

(2016). Calibrating on the STP magnitude presumes that tornado occurrence in a high-

STP environment when a supercell is present is more probable, all else being equal. By 

calculating the probability using the value of environmental STP, the probabilities 

provide more information than a simple threshold exceedance paradigm. To construct 

the probabilities and ensure that the environmental STP remains free of storm 

influences, each point and time has a unique STP distribution. The probabilities are 

calculated by taking different percentiles of this distribution, finding the maximum 

resultant STP throughout the day, and assigning the probability based on the 

climatological frequency to that point and ensemble member. Once all ensemble 

members have a probability field, a Gaussian-smoothed member average yields the final 

values.  

Of the different percentiles of STP used for probability generation, the 10
th

 

percentile had the highest reliability while maintaining high ROC areas and was 
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compared to other probabilistic forecast generation methods. The methods tested herein 

produced vastly different statistics. Using solely 2–5 km UH or 0–3 km UH as proxies 

for tornado occurrence produced large ROC areas as seen in previous studies (Jirak et 

al. 2014; Gallo et al. 2016; Sobash et al. 2016b), capturing many tornado events but 

over-forecasting. While the exact probability calculation method using the 0–3 km UH 

differed from Sobash et al. (2016b), using a UH threshold that produced the most 

reliable forecasts also misses many tornado events as evidenced by the relatively low 

ROC areas in Sobash et al. (2016b). Since these probabilities are to be operational 

forecasting tools, the 0–3 km UH threshold selected herein minimized missed events at 

the expense of perfect reliability.  

Statistically, the STP-based probabilities resembled the 0600 UTC tornado 

forecasts issued by the SPC more than any other method, when verified by all tornadoes 

or solely by RM tornadoes. While the UH-only methods captured more tornado events 

than the STP-based probabilities (i.e., higher ROC areas), both low-level and midlevel 

UH over-forecasted threat areas and magnitude. Incorporating environmental 

information by requiring STP  1 increased reliability compared to solely using UH, but 

excluded some tornadoes, lowering the ROC area and still over-forecasting. The STP-

based probabilities scored high ROC areas by increasing the POD with a slight increase 

in the POFD at the low forecast thresholds that compose most of the SPC’s forecasts. 

They also drastically reduced over-forecasting, with relatively reliable forecasts at most 

probabilistic thresholds, especially when considering all tornadoes. Until NWP models 

can directly resolve tornado-like vortices with finer grid-spacing, environmental 

information still adds value to tornado forecasts at ~3–4 km grid spacing. 
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On a day-to-day basis, the STP-based probabilities often performed comparably 

to the SPC forecasts, while the opposite was true for probabilities determined using a 

threshold of STP. The STP-based probabilities achieved these higher ROC areas while 

issuing lower probabilities, as shown in the case studies. Since these forecasts are 

designed to be available and can be considered a first-guess for operational forecasters 

(with caveats of the ensemble correctly forecasting the convective mode and 

environment), magnitudes that are more accurate save forecasters from trying to 

mentally calibrate unrealistically high probabilities. For example, forecasters on 3 June 

2014 could have seen the potential for supercellular tornadoes, despite the forecasted 

upscale growth into linear convective modes. With this guidance, it may have been 

easier to determine that embedded supercells were a threat within the large storm 

clusters, although the UH generated by the linear MCSs would lend caution to the 

veracity of the underlying tornado probabilities. Indeed, only one non-RM tornado 

occurred after the line grew upscale. 

The case studies also demonstrate limitations of using environmental parameter 

thresholds. On 28 April 2014, STP was abundant throughout the domain of concern, so 

limiting the probabilities by requiring that STP exceed one still created widespread high 

probabilities. On 3 June 2014, high STP occurred even after the storms grew upscale, 

leading to high probabilities east of where most tornadoes occurred. However, using the 

STP-based method, the probabilities were lowered and somewhat constrained. This 

method also decreased the magnitudes of the probabilities in less severe cases such as 5 

May 2015 and focused the probabilities on the RM tornadoes, although weakly forced 

cases remain challenging.  
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The probabilistic paradigm discussed herein generates a probabilistic forecast 

from each ensemble member before averaging those forecasts. Therefore, this 

methodology is applicable to deterministic forecasts and ensembles of multiple sizes 

and implementation in such ensembles is the subject of future work. Future work will 

also extend these forecasts to differing modes and tornado intensities, perhaps 

developing similar probabilities for tornadoes with quasi-linear convective systems or 

forecasting the probability of a significant tornado. Further work also remains in 

isolating mode: a great improvement to these probabilities would eliminate the false 

alarm produced by UH from MCSs, which are far less likely to produce significant 

tornadoes than supercellular modes. Additionally, the data examined herein covered 

only spring seasons; in order for these probabilities to be increasingly validated by 

forecasters, applicability across seasons must be tested. While these probabilities are 

running daily online (at www.nssl.noaa.gov/wrf/newsite) and anecdotally appear to be 

useful outside of the peak convective season, formal operational evaluation has yet to 

occur. 
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Tables 

Table 4.4.1 Specifications for the NSSL-WRF ensemble. All members use WSM6 

microphysics, Dudhia shortwave radiation, RRTM longwave radiation, the Noah 

land surface model, and the MYJ boundary layer. Members with years in 

parentheses by the ensemble member were only part of the ensemble for that year. 

Aside from the control NSSL-WRF member and _GFS member, members are 

initialized using 3 h SREF member forecasts initialized at 2100Z for the initial 

conditions and lateral boundary conditions. 

 

Ensemble 

Member 

ICs/LBCs Microphysics PBL  Radiation Land-

surface 

1 00Z NAM WSM6 MYJ RRTM/Dudhia Noah 

2 00Z GFS WSM6 MYJ RRTM/Dudhia Noah 

3 21Z em_ctl WSM6 MYJ RRTM/Dudhia Noah 

4 21Z nmb_ctl WSM6 MYJ RRTM/Dudhia Noah 

5 21Z nmb_p1 WSM6 MYJ RRTM/Dudhia Noah 

6 21Z nmm_ctl WSM6 MYJ RRTM/Dudhia Noah 

7 21Z nmm_n1 WSM6 MYJ RRTM/Dudhia Noah 

8 21Z nmm_p1 WSM6 MYJ RRTM/Dudhia Noah 

9   (2015) 21Z nmb_n1 WSM6 MYJ RRTM/Dudhia Noah 

10 (2015) 21Z nmb_p2 WSM6 MYJ RRTM/Dudhia Noah 

11 (2014) 21Z em_n1 WSM6 MYJ RRTM/Dudhia Noah 

12 (2014) 21Z em_p1 WSM6 MYJ RRTM/Dudhia Noah 
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Table 4.4.2 Area under the ROC curve statistics for ensemble-generated forecasts based 

on differing percentiles of STP. Bolded seasonally aggregated areas under the 

ROC curve are statistically significantly different from the SPC area under the 

ROC curve at =.05. Numbers outside parentheses were verified using all 

tornadoes; within the parentheses used solely RM tornadoes. Percentages in the 

rightmost two columns may not add to 100 due to ties in ROC area, which 

occurred when both the SPC and the NSSL-WRF scored ROC areas of 0.5. 

 

STP 

Percentile 

Seasonally 

Aggregated ROC area 

Percentage of Days 

NSSL-WRF ROC area 

> SPC ROC area 

Percentage of Days 

SPC ROC area > 

NSSL-WRF ROC area 

10
th

  0.845 (0.879) 33.5 (29.1) 36.3 (32.4) 

25
th

 0.855 (0.889) 34.6 (32.4) 35.2 (29.1) 

Median 0.868 (0.902) 35.2 (33.0) 34.6 (28.6) 

75
th

  0.878 (0.911) 40.7 (37.4) 30.2 (25.3) 

90
th

  0.884 (0.916) 43.4 (39.6) 27.5 (23.1) 

Maximum 0.890 (0.921)  48.4 (40.7) 23.1 (22.0) 

SPC 0.824 (0.865)  --- --- 
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Table 4.4.3 Area under the ROC curve statistics for different methods of generating 

ensemble-based probabilities. Bolded seasonally aggregated areas under the ROC 

curve are statistically significantly different from the SPC area under the ROC 

curve at =.05. Numbers outside parentheses were verified using all tornadoes; 

within the parentheses used solely RM tornadoes. Percentages in the rightmost 

two columns may not add to 100 due to ties in ROC area, which occurred when 

both the SPC and the NSSL-WRF scored ROC areas of 0.5. 

 

  

Method 

Seasonally 

Aggregated ROC 

area 

Percentage of Days 

NSSL-WRF ROC area 

> SPC ROC area  

Percentage of Days 

SPC ROC area > 

NSSL-WRF 

2–5 km UH, 

Unfiltered 
0.867 (0.900) 39.6 (43.4) 23.6 (26.9) 

0–3 km UH, 

Unfiltered 
0.889 (0.919) 50.0 (43.4) 22.5 (22.0) 

2–5 km UH, 

Filtered by STP  

1 

0.810 (0.848) 29.7 (28.6) 37.4 (30.8) 

STP-based, 10
th

 

Percentile 
0.845 (0.879) 33.5 (29.1) 36.3 (32.4) 

SPC 0.824 (0.865)  --- --- 
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Figures 

 

Figure 4.1 The climatological frequency of tornadoes given a right-moving 

supercellular storm associated with a LSR and a given modified fixed-layer STP 

using all data from 1 February 2014–31 December 2015 except the week indicated 

in the legend. Week 1 begins on 30 March 2014, week 14 begins on 29 June 2014, 

week 15 begins on 29 March 2015, and week 28 begins on 28 June 2015.  
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Figure 4.2 A schematic outlining the process of the probabilistic forecast generation. 

Rectangular boxes indicate decision points. 
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Figure 4.3 A subset of the model domain for the NSSL-WRF ensemble showing where 

objective verification measures were computed (shaded region). 
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Figure 4.4 Summary statistics for different percentiles of STP used to calculated the 

STP-based NSSL-WRF ensemble probabilities: seasonally aggregated ROC 

curves for (a) all tornadoes and (d) RM tornadoes annotated with the areas under 

the ROC curve, reliability diagrams for (b) all tornadoes and (e) RM tornadoes, 

and performance diagrams for (c) all tornadoes and (f) RM tornadoes. Colors 

represent percentiles of STP used in probability generation. Black lines and 

symbols represent the SPC 0600 UTC forecasts. In (a) and (d), the thin black line 

indicates the performance of a random forecast, while in (b) and (e), it represents 

perfect reliability. In (c) and (f), the different symbols represent the different 

probability thresholds: Circles, squares, stars, triangles, and diamonds represent 

2%, 5%, 10%, 15%, and 30%, respectively. Black dashed lines are lines of 

constant bias, while solid black lines are lines of constant CSI. 
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Figure 4.5 ROC curves for different probabilistic tornado forecasting methods, 

annotated with the area under the ROC curve for RM tornadoes (all tornadoes). 

Different colors represent the different methods. Solid lines are verified using only 

RM tornadoes, while dashed lines are verified using all tornadoes. The dotted 

black line indicates the ROC area of a random forecast. 
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Figure 4.6 Daily ROC areas for the 0600 UTC tornado probabilities and NSSL-WRF 

ensemble-generated tornado forecasts using various methods of probability 

composition for (a) all tornadoes and (b) RM tornadoes. Each color represents a 

different method. The dashed line indicates equivalent scores for the SPC and the 

NSSL-WRF ensemble. 
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Figure 4.7 Reliability diagrams for different probabilistic tornado forecast methods. 

Different colors represent the different methods. Dashed lines are verified on all 

tornadoes and solid lines are verified solely on RM tornadoes. The dotted black 

line indicates perfect reliability. The shaded region represents where categorical 

forecasts currently issued by the SPC are reliable (e.g., the 2% forecast 

encompasses areas from 2%-4.99%). 
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Figure 4.8 Performance diagrams for the forecast tornado probabilities. Different colors 

indicate different probability thresholds. Green, brown, yellow, red, pink, purple, 

and blue represent 2%, 5%, 10%,  15%, 30%, 45%, and 60%, respectively. Filled 

shapes are verified on all tornadoes; hollow shapes are verified on RM tornadoes. 

Black dashed lines are lines of constant bias, while solid black lines are lines of 

constant CSI. 
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Figure 4.9 Forecast tornado probabilities for 28 April 2014 (a) issued at 0600 UTC by 

the SPC and generated with the NSSL-WRF ensemble, using (b) 2–5 km UH  75 

m
2
s

-2
, (c) 2–5 km UH  75 m

2
s

-2
 moving into an environment with STP  1, (d) 0–

3 km UH  33 m
2
s

-2
, and (e) the 10

th
 percentile of STP from the hour previous to 

2–5 km UH  25 m
2
s

-2
. All (orange) and RM (black) tornado paths are overlaid. 

(f) Daily ROC areas for the SPC and NSSL-WRF ensemble probabilities using the 

median STP on 28 April 2014. Different colors represent different methods. The 

dashed line indicates equivalent scores for the SPC and the NSSL-WRF ensemble. 

Filled circles are verified on all tornadoes and hollow circles are only verified on 

RM tornadoes. 
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Figure 4.10 Forecast tornado probabilities for 3 June 2014 (a) issued at 0600 UTC by 

the SPC and generated with the NSSL-WRF ensemble, using (b) 2–5 km UH  75 

m
2
s

-2
, (c) 2–5 km UH  75 m

2
s

-2
 moving into an environment with STP  1, (d) 0–

3 km UH  33 m
2
s

-2
, and (e) the 10

th
 percentile of STP from the hour previous to 

2–5 km UH  25 m
2
s

-2
. All (orange) and RM (black) tornado paths are overlaid. 

(f) Daily ROC areas for the SPC and NSSL-WRF ensemble probabilities using the 

median STP on 03 June 2014. Different colors represent different methods. The 

dashed line indicates equivalent scores for the SPC and the NSSL-WRF ensemble. 

Filled circles are verified on all tornadoes and hollow circles are only verified on 

RM tornadoes. 
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Figure 4.11 Forecast tornado probabilities for 5 May 2015 (a) issued at 0600 UTC by 

the SPC and generated with the NSSL-WRF ensemble, using (b) 2–5 km UH  75 

m
2
s

-2
, (c) 2–5 km UH  75 m

2
s

-2
 moving into an environment with STP  1, (d) 0–

3 km UH  33 m
2
s

-2
, and (e) the 10

th
 percentile of STP from the hour previous to 

2–5 km UH  25 m
2
s

-2
. All (orange) and RM (black) tornado paths are overlaid. 

(f) Daily ROC areas for the SPC and NSSL-WRF ensemble probabilities using the 

median STP on 5 May 2015. Different colors represent different methods. The 

dashed line indicates equivalent scores for the SPC and the NSSL-WRF ensemble. 

Filled circles are verified on all tornadoes and hollow circles are only verified on 

RM tornadoes. 
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Abstract 

Probabilistic ensemble-derived tornado forecasts generated from convection-

allowing models often use hourly maximum updraft helicity (UH) alone or in 

combination with environmental parameters as a proxy for right-moving (RM) 

supercells. However, large false alarm areas can occur from UH swaths associated with 

nocturnal mesoscale convective systems (MCSs), which climatologically produce fewer 

tornadoes than RM supercells. This study incorporates UH occurrence and timing with 

the forecast near-storm significant tornado parameter (STP) to calibrate the probability 

of a tornado. To generate the probabilistic forecasts, observed climatological 

frequencies of a tornado given a RM supercell and STP value are applied to the model 

output in three ways, two of which incorporate UH timing information. One method 
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uses the observed climatological frequency for a given 3-hr window to generate the 

probabilities. Another normalizes the observed climatological frequency by the number 

of hail, wind, and tornado reports observed in that 3-hr window compared to the 

maximum number of reports in any 3-hr window. The final method is independent of 

the time of UH occurrence and uses the observed climatological frequency 

encompassing all hours. The normalized probabilities reduce the false alarm area 

compared to the other methods, but have a smaller area under the ROC curve and 

require a much higher percentile of the STP distribution to be used in probability 

generation to become reliable. A case study demonstrates that the normalized 

probabilities focus on the most likely area for RM supercellular tornadoes, decreasing 

the false alarm generated by UH associated with nocturnal MCSs.  

 

5.1 Introduction 

The addition of convection-allowing model (CAM) ensembles to the suite of 

available numerical guidance provides severe convective forecasters guidance on 

convective mode when generating forecasts (Kain et al. 2008; Clark et al. 2012a). 

Indeed, as computing power increases, ever more guidance is becoming available to 

forecasters (Gallo et al. 2017a). As such, summary products for severe convective 

forecasters have been developed using storm-scale metrics alone and in combination 

with environmental information (Sobash et al. 2011; Gallo et al. 2016; Loken et al. 

2017; Gagne et al. 2017). Many of the products include a measure of hourly maximum 

updraft helicity (UH; Kain et al. 2010), a storm-scale rotation metric which indicates a 
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forecasted midlevel mesocyclone and is often used as a proxy for a right-moving (RM) 

supercell (Naylor et al. 2012).  

 Since supercells produce many severe convective storm reports, UH has been a 

focus in forecasting severe convection (Sobash et al. 2011; Sobash et al. 2016a; Loken 

et al. 2017). Efforts have recently expanded from forecasting any type of severe 

convection to specific hazards (Gallo et al. 2016; Gagne et al. 2017) by including 

environmental parameters. One such parameter, the significant tornado parameter 

(STP), was developed by Thompson et al. (2003) and adapted by Thompson et al. 

(2012) to reflect environmental parameters important to tornadogenesis. STP was 

formulated using reanalysis soundings, but is a common environmental parameter in 

numerical weather prediction forecasts.  

Smith et al. (2012) and Thompson et al. (2017) developed climatologies of 

tornado occurrence given a RM supercell and a STP value. These climatologies were 

used by Gallo et al. (2017b) to generate probabilistic tornado forecasts using a 10-

member CAM ensemble with varying initial and lateral boundary conditions, based on a 

4-km experimental version of the Weather Research and Forecasting (WRF; Skamarock 

et al. 2008) model run at the National Severe Storms Laboratory (NSSL), known as the 

NSSL-WRF ensemble (Gallo et al. 2016; Clark 2017). These probabilities were 

calibrated by empirical climatological frequencies, resulting in skillful forecasts of 

tornadoes from RM supercells (RM tornadoes) that overforecast tornado occurrence 

slightly (Gallo et al. 2017b). This probability generation method was more reliable and 

skillful than other methods of probabilistic forecast generation that treat the UH 

occurrence and the STP value as thresholds to be exceeded, rather than treating each 
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point probabilistically. Those forecasts also generated large false alarm areas linked to 

mesoscale convective systems (MCSs), which are less likely to produce tornadoes than 

supercells (Smith et al. 2012). This work attempts to use the observed climatology and 

timing of UH occurrence to reduce the false alarm areas from UH associated with 

MCSs.  

Section 5.2.1 briefly describes how this study adapts the methodology of Gallo 

et al. (2017b) using normalization techniques, and section 5.2.2 describes the data and 

verification metrics used. Section 5.3.1 shows the aggregated statistical results, while 

section 5.3.2 gives an example case study. Finally, section 5.4 presents conclusions and 

ideas for future work.   

 

5.2 Data and Methodology 

5.2.1 Probabilistic Forecast Generation 

Probabilistic forecasts were generated following the technique of Gallo et al. 

(2017b), which incorporates empirical environmental frequencies of a tornado given a 

RM supercell and a modified STP value (Fig. 5.1; black line). The modified STP is 

defined by: 

𝑆𝑇𝑃 =  (
𝑆𝐵𝐶𝐴𝑃𝐸

1500𝐽𝑘𝑔−1
) ∗ (

𝑆𝐻𝑅6

20𝑚𝑠−1
) ∗ (

𝑆𝑅𝐻1

150𝑚2𝑠−2
) ∗ (

2000𝑚−𝑆𝐵𝐿𝐶𝐿

1000𝑚
) ∗ (

200𝐽𝑘𝑔−1+𝑆𝐵𝐶𝐼𝑁

150𝐽𝑘𝑔−1
) (5.1) 

 

where SBCAPE, SBCIN, and SBLCL are the convective available potential energy 

(CAPE), convective inhibition (CIN), and lifted condensation level (LCL) at the 

surface, respectively, SHR6 is the 0-6 km shear, and SRH1 is the 0–1 km storm-relative 

helicity. This STP utilizes the capping functions from the effective-layer STP [e.g., if 

SHR6 < 12.5 m s
-1

, that term is set to 0; Thompson et al. (2012)] while recognizing the 
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inability to efficiently calculate the effective inflow layer at every point within the 

CAM ensemble. The tornado occurrence frequencies utilize 1202 tornado reports and 

5422 hail or wind reports occurring from February 2014–December 2015 (Thompson et 

al. 2017; Gallo et al. 2017b) and are calculated by dividing the number of tornado 

reports from RM supercells [using Smith et al. (2015)’s  RM supercell definition] by the 

number of hail, wind, and tornado reports from RM supercells in each STP bin.  

 To apply these frequencies to a CAM ensemble, NSSL-WRF ensemble forecasts 

initialized at 0000 UTC and extending to 36 hours were used. Following Gallo et al. 

(2017b), hourly forecast values of UH and STP were extracted. For each member and 

forecast hour between 1200 UTC and 1200 UTC the following day (spanning forecast 

hours 12–36), each gridpoint was checked for UH exceeding 25 m
2
s

-2
 anywhere within 

a 40 km radius as a proxy for a RM supercell. If UH exceeded this threshold, the point 

STP value from the previous hour was added to a distribution of UH at that gridpoint. 

Next, a percentile of the distribution was selected as the representative STP value for 

that forecast hour. The daily maximum STP value from this process was then input into 

the empirical climatological frequencies, resulting in a probability for that point and 

member. An average of the probabilities at each grid point was taken across all 

members, and smoothed using a Gaussian kernel to generate a final probabilistic field 

similar to the SPC’s probabilistic forecasts. 

When this methodology used the observed climatological frequencies generated 

independent of time, often UH swaths associated with nocturnal MCSs produced false 

alarm areas (Gallo et al. 2017b). While RM tornado reports show a steep peak during 

the afternoon hours, overnight hours contain only a small fraction of reports (Fig. 5.1). 
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However, the diurnal UH cycle maintains UH throughout the evening hours at even 

high thresholds. Thus, to reduce false alarm two methods of incorporating timing 

information through the climatological frequencies were applied.  While Gallo et al. 

(2017b) calculated the probabilities using an equation independent of the report 

occurrence time, this study broke apart the climatological frequencies using a moving 

three-hour time window centered on the hour of interest (Fig. 5.2a). This approach will 

be known as the non-normalized time-dependent method. The other method 

incorporated the frequency at each hour and the total number of hail, wind, and tornado 

reports occurring in that window as compared to the maximum three-hour window by 

weighting each hour according to the number of reports occurring therein. The three-

hour window containing the most reports (2300 UTC) had a weight of one (Fig. 5.2b). 

This approach will be known as the normalized time-dependent method. The final 

approach follows the method of Gallo et al. (2017b), utilizing frequencies calculated for 

the entire day, and will be called the daylong method. Additionally, the daylong 

probabilities interpolated between STP bins, whereas the time-dependent probabilities 

did not due to a smaller sample size for the three-hour windows. 

5.2.2 Verification Metrics and Data 

Ensemble-generated forecasts were verified alongside the 0600 UTC forecasts 

from the Storm Prediction Center (SPC), since the ensemble probabilities are designed 

as operational first-guess tornado forecasts and ideally would behave comparably to the 

SPC forecasts. Verification metrics used include the area under the receiver operating 

curve (ROC area; Mason 1982), reliability diagrams, and performance diagrams 

(Roebber 2009). The ROC area describes how forecasts discriminate areas of event 
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occurrence from areas of event non-occurrence by plotting the probability of detection 

(POD) vs. the probability of false detection (POFD), but contains no bias information. 

Reliability diagrams plot the observed frequency vs. the forecast probability, 

complementing the ROC areas. Performance diagrams visualize four different 

contingency-table-based metrics, including the bias, the success ratio (SR), the POD, 

and the critical success index (CSI), which is often used as a rare-event score. (Wilks 

2011). Statistics were generated at each of the probability thresholds forecast by the 

SPC: 2%, 5%, 10%, 15%, 30%, 45%, and 60%. Verification statistics were computed 

across 182 days in the 2014 and 2015 spring seasons, defined as April–June, over 

approximately the eastern 2/3 of the CONUS. Observed tornado path data were 

regridded to the 4 km NSSL-WRF ensemble grid prior to verification, and treated as 

yes/no events. A yes event occurred if a tornado passed within 40 km of a point, 

consistent with the SPC’s forecast probabilities.  

 

5.3 Results 

5.3.1 Seasonal Performance Statistics 

The most reliable probabilities with sufficiently high ROC areas were compared 

between each method. ROC areas for all percentiles of the daylong and the non-

normalized time-dependent probabilities were higher than the SPC forecasts, while all 

of the normalized time-dependent probabilities had lower ROC areas than the SPC (in 

most cases because the POD was lower than the SPC with a very similar POFD; not 

shown). Differences between ROC areas of STP percentiles within each forecast 

method were minimal, contrasting with the reliability, which varied greatly within 
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methods and between methods. Thus, the most reliable percentiles for each method 

were chosen for comparison: the 10
th

 percentile for the daylong (Fig. 5.3a) and non-

normalized time-dependent (Fig. 5.3b) probabilities, and the 75
th

 percentile for the 

normalized time-dependent probabilities (Fig. 5.3c). The ROC areas were very similar 

between methods, excepting the normalized time-dependent probabilities which had a 

lower ROC area than the other methods due to both decreased POD and POFD (Fig. 

5.3d). The reliability of these four methods was also similar, and all reliably forecasted 

RM tornadoes up to the 15% threshold (Fig. 5.3e).  

 A performance diagram shows that the CSI of the normalized time-dependent 

probabilities is consistently higher than the other methods, despite a lower ROC area 

(Fig. 5.4). For example, at the 2% threshold, its POD is much lower than the other 

methods, with a slight increase in SR. At the 5% threshold, the SPC has the highest 

POD of any forecast, but also has a lower SR than either set of time-dependent forecast 

probabilities. At the higher-impact 10% and 15% probabilities all methods have similar 

PODs, but the first-guess probabilities have less false alarm than the SPC forecasts. The 

10% forecast threshold also has the highest CSIs of any forecast threshold. 

 While the seasonally aggregated statistics show highly similar forecast methods, 

the aim of incorporating the time of UH occurrence is to reduce the nocturnal MCS-

associated false alarm. To determine the impact of the timing information, probabilities 

were also generated using all methods for each hour and averaged across the domain. 

The diurnal cycle of the daylong and the non-normalized time-dependent probabilities 

maintained areas of probability throughout the nocturnal hours, while the normalized 

time-dependent probabilities showed a sharp decrease from the afternoon peak that 
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resulted in nearly zero probability overnight (Fig. 5.5). The non-normalized time-

dependent probabilities increased the afternoon probabilities as compared to the 

daylong probabilities, and the normalized time-dependent probabilities increased the 

afternoon probabilities even further, likely due to the different percentiles of STP used 

to generate the probabilities. The peaks of the average probabilities are offset from the 

peak report time, and this is speculated to be due to the probabilities being evaluated 

only over the spring season, while the diurnal cycle of reports utilized data from 

February 2014 through December 2015.  

5.3.2 Case Study: 29 June 2014 

A case study illustrates the forecast improvement provided by including the time 

of UH occurrence in the probability generation, particularly in reducing the threat from 

nocturnal MCSs. 29 June 2014 had a surface low-pressure center evolving across the 

south-central High Plains, with ample low-level moisture ahead of the main low. The 

0600 UTC convective outlook from the SPC mentions appreciable uncertainty in the 

storm coverage and timing, making this a case where forecasters could use first-guess 

tornado guidance that reduces false alarm from non-favorable convective modes. The 

SPC highlighted a 10% tornado threat across the Iowa/Missouri border, with a broad 

5% extending north through Wisconsin and west to the middle of Nebraska (Fig. 5.6a). 

A few initial supercells developed near a residual outflow boundary, but a complex 

storm evolution with multiple mergers ensued and a MCS developed around 0300 UTC. 

The tornado threat was primarily associated with the supercellular storms; twelve RM 

tornadoes occurred out of fourteen total tornado reports. All ensemble-generated 

probabilities have the same magnitude as the 0600 UTC SPC forecasts: 10% (Fig. 5.6b-
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d). However, the placement and extent of the 10% probabilities differ. The daylong 

probabilities and the normalized time-dependent probabilities both have a broad swath 

of probabilities extending into Illinois and a secondary area of probabilities across 

Kentucky, whereas the normalized time-dependent probabilities correctly eliminate this 

area because the UH was occurring at 0300–0600 UTC (Fig. 5.6e). The normalized 

time-dependent probabilities actually also increased the probabilities where tornadoes 

occurred, resulting in a better forecast on this day. 

 

5.4 Summary and Discussion 

Probabilities were developed that consider the time of UH occurrence within an 

ensemble and the climatological frequency of a tornado given the existence of a right-

moving supercell. These probabilities address a shortcoming of prior first-guess 

forecasts, which often had false alarm associated with UH produced by nocturnal 

MCSs. Weighting the timing information by the overall number of reports during a 

given three-hour window further lessens the nocturnal false alarm, as the most heavily 

weighted time occurs in the same window as the majority of reports: around 0000 UTC. 

The normalized time-dependent probabilities had lower ROC areas than any other 

method, likely because the reduction in area covered by the probabilities decreased the 

POD. Since tornadoes are rare events, missed events greatly affect the statistical scores. 

The CSI of the normalized time-dependent probabilities suffered less from missed 

events, reflecting the improvement in reducing false alarm. Overall, the normalized 

time-dependent probabilities performed well, particularly at high probabilistic 

thresholds, which often have larger potential impacts than the lower, more common 
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thresholds. At these higher thresholds, the normalized time-dependent probabilities 

maintained as high or higher PODs than other forecast methods, while also maintaining 

high SRs. The diurnal cycle of the normalized time-dependent probabilities more 

accurately reflects the diurnal report cycle than the other probabilities do, decreasing the 

nocturnal false alarm area compared to the UH occurrence. Reducing the false alarm 

generated by UH from nocturnal MCSs via the timing of UH occurrence focuses the 

forecast on areas at a risk of supercellular tornadoes, remaining true to the underlying 

climatological frequencies used to generate the probabilistic forecast while providing 

forecasters with a skillful and reliable first guess tornado forecast.  
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Figures 

 
Figure 5.1 Report, UH, and STP diurnal distributions. Plots begin at forecast hour 13, 

corresponding to 1300 UTC on the day of the forecasts and end at forecast hour 

36, corresponding to 1200 UTC on the following day.  
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Figure 5.2 (a) Climatological frequency of tornado occurrence given a RM supercell, 

time of day, and STP value based on data from February 2014–December 2015. 

Each colored line represents the center of a 3-hour time window. (b) The 

climatological frequencies of tornado occurrence normalized by the maximum 

number of hail, wind, and tornado reports in a given three-hour window. 
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Figure 5.3 Reliability diagrams for different percentiles of STP used to formulate (a) the 

daylong probabilities, (b) non-normalized time-dependent probabilities, and (c) 

the normalized time-dependent probabilities. The diagonal represents perfect 

reliability, and the shaded area shows where SPC forecasts can be considered 

reliable. (d) ROC curve, with the diagonal representing a forecast with no skill, 

and (e) reliability diagram for the SPC and selected percentiles of each 

probabilistic forecast generation method, with the shading and diagonal as in (a) – 

(c). 
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Figure 5.4 Performance diagram for the three different methods of probability 

generation and the SPC. Green, brown, yellow, and red shapes represent the 2%, 

5%, 10%, and 15% forecast threshold, respectively. Dashed lines are of constant 

bias, and solid curved lines are lines of constant CSI. FAR stands for the false 

alarm ratio. 
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Figure 5.5 The diurnal cycle of report frequency, UH frequency, and average 

probability over the verification domain for each forecast method.  
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Figure 5.6 Tornado forecasts for 29 June 2014 from (a) the SPC, (b) the daylong 

probabilities, (c) the non-normalized time-dependent probabilities, and (d) the 

normalized time-dependent probabilities. Black lines show the tracks of RM 

tornadoes, while orange lines represent non-RM tornadoes. (e) Ensemble 2–5 km 

UH  25m
2
s

-2
, color-coded by hour of UH occurrence. The circle highlights a 

large area of nocturnal UH reduced by the normalized probabilities. 
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Chapter 6: Conclusions and Future Work 
 

6.1 General Conclusions 

As convection-allowing models (CAMs) and ensembles proliferate, the amount 

of information available to forecasters continually increases. However, forecasters must 

still follow a strict operational schedule for product issuance, and may not be able to 

incorporate all of the available information from NWP into their forecasts. Since CAMs 

have been shown to provide useful guidance regarding convective initiation, evolution, 

and mode (Kain et al. 2008; Clark et al. 2012a), forecasters focused on severe 

convection should be able to easily utilize the information from increasingly 

sophisticated CAMs.  

In particular, the availability of convective mode information via storm-scale 

rotation metrics such as updraft helicity (UH) has the potential to greatly benefit 

forecasters, as it has been shown to provide reliable guidance regarding the occurrence 

of severe convective weather in the form of wind, hail, or tornadoes (Sobash et al. 

2011). Since tornadoes have a large societal and economic impact (Simmons and Sutter 

2011), being able to differentiate the tornado threat from the general severe convective 

threat would benefit forecasters by enabling them to better prepare the general public 

and partners such as emergency managers for potential impacts. The storm-scale 

metrics unique to CAMs can be combined with more traditional environmental fields 

used in an ingredients-based method of forecasting (Doswell et al. 1996), adding to a 

forecaster’s tornado prediction toolbox. 

By distilling environmental characteristics conducive to tornadogenesis and 

storm-scale rotation metrics, this work generated first-guess tornado probabilities aimed 
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at operational forecasters. Testing the probabilities in a real-time, operational 

framework such as the Spring Forecasting Experiments (SFEs) conducted in NOAA’s 

Hazardous Weather Testbed allowed for instant feedback from forecasters, as well as 

model developers and researchers. This work began with a simple evaluation of how 

UH, a mesocyclone-scale rotation diagnostic, could be used as a coarse proxy for 

tornadoes. From that initial step, environmental information was added through 

increasingly complex methodologies. The initial attempt at limiting the influence of UH 

to regions with favorable environmental parameters to tornadogenesis shifted after 

feedback from forecasters in the SFEs indicated that the magnitudes of the probabilities 

were too high. The probabilities resulting from that feedback treated each point as 

having a probability of tornado occurrence based on the model storm environment 

attributes, rather than assuming a tornado once a threshold of UH occurred. A second 

round of feedback affecting this work occurred in SFE 2017, when many participant 

comments indicated that the updated probabilities were too high in nocturnal MCS 

situations. That feedback motivated the incorporation of timing information into the 

probabilities, to focus the probabilities on right-moving (RM) supercells, which more 

often occur during the afternoon and evening. The research-to-operations, operations-

to-research framework was fundamental in developing the hypotheses in this 

dissertation, which are resolved as follows: 

Adding high-resolution information to constrain tornado probabilities to areas 

that are environmentally favorable to tornadogenesis will result in more skillful 

probabilities than solely using 2–5 km UH. 
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Subjectively and objectively, forecasts that incorporate environmental 

information are found to be more successful than forecasts using only UH in all metrics 

except for the area under the ROC curve. This hypothesis was tested by comparing 

forecasts that used UH  75 m
2
s

-2
 alone, forecasts that used UH  75 m

2
s

-2
 only where 

the environment in the previous hour had an LCL height less than 1500 m and a 

SBCAPE/MUCAPE ratio of .75 or greater, forecasts that used UH  75 m
2
s

-2
 only 

where the environment in the previous hour had a STP of one or greater, and forecasts 

that used UH  25 m
2
s

-2
 and assigned a probability of a tornado based on empirical 

climatological frequencies. These thresholds were chosen to (1) rule out elevated and 

high-based storms, which were less likely to produce a tornado, (2) focus on areas with 

favorable conditions for tornadogenesis, and (3) make use of observed tornado 

frequencies and look beyond a threshold exceedance paradigm. 

Objectively, the addition of environmental information improved the reliability 

of forecasts over the 182 cases examined. Improvement in the reliability occurred 

whether the information was incorporated as an additional threshold criterion or was 

incorporated probabilistically. The CSI generally also saw an improvement when 

environmental information was used. The decrease in the ROC area compared to using 

UH information only is largely due to a decrease in POD. This decrease in ROC area 

was less prevalent when focusing on RM supercellular tornadoes. However, ROC areas 

of all sets of probabilities remained above the 0.7 threshold of a skillful forecast. 

Subjectively, participants in SFE 2015 often rated the probabilities incorporating 

environmental information higher than the probabilities without environmental 

information, as the probabilities that only used UH often had magnitudes that were too 
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high. Since UH indicates mesocyclones, the high false alarm generated by using a 

threshold of UH as a coarse tornado proxy was expected.   

Incorporating observed tornado frequencies given a right-moving supercell will 

provide more accurate and reliable probabilities than those generated solely using 

model-derived information. 

Similar to the previous hypothesis, this hypothesis was tested by comparing 

probabilistic forecasts generated using UH  75 m
2
s

-2 
where STP  1 in the previous 

hour and forecasts generated using UH  25 m
2
s

-2
 where a probability of tornado 

occurrence was assigned based on the STP value in the previous hour. Empirical 

frequencies of a tornado given a RM supercell and a Local Storm Report (LSR) were 

used to assign the probability of a tornado at every point in the second set of 

probabilities, limiting the magnitude to observed frequencies. This approach therefore 

decreased some of the over-forecasting problem that occurred in the approaches that 

solely used model-derived information, resulting in more reliable forecasts than the 

forecasts that required a threshold of UH and STP. Other statistical metrics showed 

better scores for the probabilistic approach as well. The area under the ROC curve for 

the forecasts using the empirical frequencies was higher than the ROC area for the 

forecasts using thresholds of UH and STP. This result shows that not only were the 

forecasts that used empirical information more reliable, they also better discerned 

between areas of tornado occurrence and non-occurrence. In other words, the 

probabilities that solely used thresholds of UH and STP had less accurate forecasts and 

more over-forecasting than the probabilities that incorporated the empirical frequencies. 



182 

Tornado probabilities generated using a convection-allowing ensemble can be 

used operationally as first-guess tornado forecasts and have similar verification 

statistics to initial probabilistic tornado forecasts issued by the Storm Prediction Center 

(SPC) at 0600 UTC. 

To test this hypothesis, six methods of probability generation were compared to 

initial probabilistic tornado forecasts issued by the SPC: three methods used solely 

model-derived information, while three other methods incorporated empirical 

frequencies. Of the three methods that incorporated empirical frequencies, two of those 

methods used information about the time of UH occurrence. Probabilities were 

evaluated only at probabilistic forecast thresholds used by the SPC, enabling an apples-

to-apples comparison between the methods. The SPC forecasts were extremely reliable 

at all forecast thresholds and maintained skillful ROC areas with high PODs and low 

POFDs. Of the first-guess forecasts evaluated herein, the forecasts with the highest 

ROC areas also suffered from severe over-forecasting, to the point where they were not 

useful as first-guess probabilities for SPC forecasters. In particular, the UH-only 

forecast methods and the method that incorporated a threshold of STP over-forecast 

drastically. The methods incorporating the environmental frequencies performed more 

similarly to the SPC forecasts, with ROC areas that were statistically the same as the 

SPC’s, and had comparable reliabilities. The similarity in the statistics between the SPC 

forecasts and the probabilities that incorporated empirical frequencies support the 

hypothesis that these probabilities could be used operationally as first-guess tornado 

forecasts. For actual operational usage, the probabilities will need to be incorporated 
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into an ensemble that produces first-guess forecasts prior to 0600 UTC, and this is the 

subject of ongoing work. 

Incorporating temporal information regarding UH occurrence will reduce areas 

of false alarm linked to nocturnal MCSs, which often produce UH in NWP but do not 

often produce tornadoes. 

 The incorporation of timing information via weighting of probabilities reduced 

nocturnal false alarms, supporting this hypothesis. By taking into account the timing of 

the UH as well as the distribution of hail, wind, and tornado LSRs, normalized 

probabilities were created that reduced nocturnal false alarm. This result was shown 

from generating the probabilities for each hour and plotting the diurnal cycle of average 

probability for each forecast method. A reduction in nocturnal probability was found in 

the normalized probabilities, and no such reduction occurred in the probabilities that did 

not incorporate UH timing information. The non-normalized method of incorporating 

UH timing information, which did not utilize the diurnal report distribution, amplified 

the afternoon peak in probability compared to the daylong probabilities, but maintained 

probability overnight. The normalized probability method is considered a workaround 

for the mode problem posed by nocturnal MCSs, but it will dampen signals from 

nocturnal supercells that may be tornadic. 

  

6.2 Directions for Future Research 

The analysis herein focused on the most common severe weather season in the 

Great Plains of the United States: April through June. Thus, the applicability of these 

probabilities across seasons is unknown and should be the focus of future work. 
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Verification of the probabilities also encompassed the entire eastern two-thirds of the 

CONUS, and smaller regions were not considered. Therefore, future work could also 

examine how these probabilities perform in different regions, as Sobash and Kain 

(2017) did for probabilities of any type of severe convective hazard.  

As mentioned previously, the probabilities herein were applied to the NSSL-

WRF ensemble, so forecasts were only available after the initial 0600 UTC SPC 

forecasts had been issued. While the probabilities were then able to inform updates to 

the forecast, having the probabilities available from the start of the forecast process 

would ultimately be more useful. As such, work is ongoing to incorporate these 

probabilities into the High-Resolution Ensemble Forecast, version 2 (HREFv2), an 

operationalized version of the SPC’s Storm Scale Ensemble of Opportunity (SSEO). 

When applied to the HREFv2, the probabilities can be updated twice daily, and become 

available prior to the initial forecasts. Besides being adaptable to different ensemble 

configurations, the probabilities could also be applied to deterministic forecasts. Since 

the ensemble provides some smoothing to the probabilities herein, a different Gaussian 

kernel may be needed for deterministic forecasts to achieve probabilities at a similar 

resolution to the current SPC forecasts.  

Additionally, while the normalized probabilities provide a passable workaround 

for the mode problem, more explicit detections of convective mode could be 

incorporated into future forecasts. Specifically, object-based verification and detection 

methods could be applied to reflectivity and UH fields to determine a forecast 

convective mode, and the probabilities could be applied accordingly. Since these 

probabilities are based upon and designed to forecast RM supercells, detection of mode 
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would ensure that they are applied solely to simulated RM supercells. Furthermore, the 

database from which the climatological frequencies are generated contains modes 

besides RM supercells; additional probabilities could be generated for MCS objects 

based on the frequency of a tornado given an MCS and a certain value of STP.  

Besides STP, there are many other environmental variables that could influence 

tornadogenesis. One way to find the key ingredients to forecasting tornadoes from 

CAM ensembles is to feed a multitude of variables through a machine-learning 

algorithm to determine which variables have the most influence on the number of 

tornadoes in any given day. Since the variables in question would be known 

meteorological variables, this process could give forecasters insight into which model-

produced environmental or storm-scale attributes could have an influence on simulated 

storms. Such an approach could provide a fruitful partnership between statistical models 

and operational forecasting. 

Since some of the variables produced by CAM ensembles are difficult to 

directly observe (e.g., UH), verification of these fields is difficult. More work is needed 

to understand the link between UH and observed mesocyclone-scale rotation strength, 

particularly since grid spacing has a large influence on UH intensity. Extreme values of 

UH tend to draw the eye of those using CAMs and CAM ensembles, and therefore the 

link between UH and observed storms needs to be more closely studied to gain a better 

understanding of how the simulated correlates to the observed.  

 Finally, the continuous feedback between researchers and forecasters in 

developing this work was a crucial component that should be incorporated into future 

studies. Developing forecast products that are skillful and operationally useful is an 
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imperative task in the field of meteorology, and soliciting forecaster opinions 

throughout the research process strengthens the final products immeasurably.  
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