THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

APPLICATION OF HYBRID MIXING RULES BASED ON THE CONFORMAL SOLUTION AND LOCAL COMPOSITION MODELS TO PREDICT THE THERMODYNAMIC PROPERTIES OF NONIDEAL SOLUTIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

> BY LUONG, TAI HIEP Norman, Oklahoma

APPLICATION OF HYBRID MIXING RULES BASED ON THE CONFORMAL SOLUTION AND LOCAL COMPOSITION MODELS TO PREDICT THE THERMODYNAMIC PROPERTIES OF NONIDEAL SOLUTIONS

Tar ame

APPROVED BY

DISSERTATION COMMITTEE

1984

LUONG, TAI HIEP

ALL RIGHTS RESERVED

ACKNOWLEDGMENTS

I would like to offer my sincere gratitude and appreciation to the following persons and organizations:

Professor K.E. Starling - for his guidance, inspiration, and encouragement throughout this research.

Professors L.L. Lee, C.E. Locke, J.F. Scamehorn, and S.D. Christian - for serving on my advisory committee.

Dr. T.H. Chung - for valuable discussions.

Dr. K.H. Kumar - for valuable advise, and encouragement.

Dr. S. Watanasiri - for valuable advise, discussions, encouragement and above all, friendship.

My parents, my sisters, and my brothers - for their love, understanding, support, and encouragement.

U.S. Department of Energy/Pittsburgh Energy Technology Center through grant # DE-FG22-80PC30249, and The Oklahoma Mining and Mineral Resources Pesearch Institute for financial support.

The Engineering Computer Network, and The University of Oklahoma Computing Service - for excellent computing support.

iii

TABLE OF CONTENTS

																Page
LIST C	DF TAB	LES .				-	• •	•	•	•		•	•	•	•	vi
LIST (OF ILL	USTRAT	IONS	• •		•	• •	•	•	•		•	•	•	•	viii
CHAPT	ER															
I.	INTR	ODUCTI	ON -	• •	• • •	•	• •	•	•	•		•	•	•	•	1
II.	FQUA	TION O	F STA	TE F	OR PU	IRE	FLU	ID	s	•		-	•	•	•	6
III.	PEVI	EW OF	тне с	ONFO	RMAL	sol	LUTI	้อง	MC	DDE	L.	-	•	•	•	10
17.	FOCY	L COHP	OSITI	ON HO	ODEL	9	49 0		ø	•	4 6	•		•		13
۷.	DEVE	LO P M EN'	T OF													
	LOCA	L COMP	OSITI	ON M	IXING	R	JLES	5 .	•	•		-	-	-	•	21
	5.1	Theor	etica	1 Ap	proac	:h		•	•	•		•		•	-	22
	5. 2	Empir	ical	Appro	oach	-		-	•	•		•	•	•	•	25
	5.3	Sensi	tivit	y of	Comp	posi	itic	а	Dej	pen	der	ce				
		to the	e Bin	ary 3	Inter	act	tior	P	ara	ame	ter	s	•	•	•	28
VI.	PRED	ICTION	SOF	THE :	THERS	IODY	(NA E	IIC								
	PROP	ERTIES	OF B	INAR	Y SYS	STER	is .	-	•	•			•	•	•	31
	6.1	Appli	catio	n to	Nonp	ola	ar-I	201	ar							
		Binar	y Sys	tems		•		• •	•	•			.•		-	34
	6.2	Appli	catio	n to	Pola	nr-I	?ola	T								
		Binar	y Sys	tems		•	• •	•	•	a		•	•	•		59
	6.3	Appli	catio	n to	Nong	0 01 a	1 - 1	lon	pol	lar	•					
		Binar	y Sys	tems		•	• •	•	•	•	• •	•	-	-	•	77

VII. PREDICTIONS OF THERMODYNAMIC PROPERTIES FOR MULTICOMPONENT MIXTURES 81 VIII. COMPOSITION DEPENDENCE OF THE 85 IX. PREDICTIONS OF LIQUID-LIQUID EQUILIBRIA 93 X. CONCLUSIONS AND RECOMMENDATIONS 102 APPENDICES A. EXPRESSIONS FOR DERIVED THERMODYNAMIC PROPERTIES B. EXPPESSIONS FOR DERIVED THERMODYNAMIC PROPERTIES C. DETAILED CALCULATIONS OF VAPOR-LIQUID D. SOUPCE LISTING OF HYBRID MIXING RULES

v

Page

LIST OF TABLES

TABLE

Page

II.1	Universal Constant ai and bi, to be Used	
	in Equation (4), for the Mean-Potential-	
	Model Four-Parameter Corresponding-States	
	MBWR Correlation	8
VI.1	Characterization Parameters for Nonpolar	
	Compounds for use with the Mean-Potential-	
	Model Equation of State	32
VI.2	Characterization Parameters for Polar and	
	Associating Compounds for use with the	
	Mean-Potential-Model Equation of State	33
VI.3	Temperature and Pressure Ranges, and Data	
	References for the Nonpolar-Polar Binary	
	Systems Studied in this Work	35
VI.4	Binary Interaction Parameters for Nonpolar-	
	Polar Binary Systems	38
VI.5	Results of Vapor-Liquid Equilibrium Predictions	
	for Nonpolar-Polar Binary Systems	44

VI_6	Temperature and Pressure Ranges, and Data	
	References for the Polar-Polar Binary	
	Systems Studied in this Work	64
VI.7	Binary Interaction Paramters for Polar-	
	Polar Binary Systems	66
VI.8	Results of Vapor-Liquid Equilibrium Predictions	
	for Polar-Polar Binary Systems •••••••	68
VI.9	Temperature and Pressure Ranges, and Data	
	References for the Nonpolar-Nonpolar Binary	
	Systems Studied in this Work	78
7I.10	Results of Vapor-Liquid Equilibrium	
	Predictions, and Binary Interaction Parameters	
	Nonpolar-Nonpolar Binary Systems	79
VII.1	Temperature and Pressure Ranges, and Data	
	References for the Ternary Systems Studied	
	in this Work	82
VII.2	Results of Vapor-Liquid Equilibrium Predictions	
	for Ternary Systems	83
IX.1	Temperature and Pressure Ranges, and Data	
	References for the Coal Fluid-Water Binary	
	Systems Studied in this Work	94
IX.2	Binary Interaction Paramters for Coal Fluid-	
	Water Systems (Liquid-Liquid Equilibrium)	96
IX.3	Pesults of Liquid-Liquid Equilibrium Predictions	
	for Coal Fluid-Water Systems •••••••	97

LISTS OF ILLUSTRATIONS

FIGURE

•

Page

1.	Local Composition Model	14
2.	Plot of ϵ_{χ} versus mole fractions	29
з.	P-X Diagram of Ethane-Acetone at 25. C	50
4.	P-X Diagram of Acetone-Cyclohexane at 25. C \ldots .	51
5.	P-X Diagram of Cyclohexane-Aniline at 70. C \ldots .	53
6.	P-X Diagram of Hethanol-1-Hethylnapthalene	
	at 275.1 C	55
7.	T-X Diagram of Methanol-n-Heptane at 1 amt	56
8.	P-X Diagram of n-Herane-Ethanol at 25. C	57
9.	P-X Diagram of Cyclohexane-n-Propanol at 55. C .	58
10.	P-X Diagram of n-Decane-Phenol at 120. C	60
11.	Saturated-Liquid Compositions in	
	Methane-Water System	61
12.	Solubility of Methane in Water at	
	Constant Pressure	62
13.	Saturated-Liquid Compositions in	
	Ethane-Water System	63
14.	P-X Diagram of CO2-Methanol at 25. C	70
15.	P-X Diagram of Acetone-Water at 100. C	71

.

16.	P-X Diagram of Acetone-Water at 150. C	72
17.	P-X Diagram of Acetone-Water at 200. C	73
18.	P-X Diagram of Acetone-Water at 250. C	74
19.	T-X Diagram of Water-n-Butanol at 1 amt	75
20.	P-X Diagram of Water-Phenol at 44.4 C	76
21.	Activity Coefficients of Methanol-Benzene	
	at 25. C	87
22.	Activity Coefficients of CO2-Methanol	
	at 25. C	88
23.	Activity Coefficients of Acetone-Water	
	at 110. C	39
24.	Excess Gibbs Energy for Methanol-Benzene	
	at 25. C	90
25.	Excess Gibbs Energy for CO2-Methanol	
	at 25. C	91
26.	Excess Gibbs Energy for Acetone-Water	
	at 100. C	92
27.	Mutual Solubility of Benzene and Water	98
28.	Mutual Solubility of Cyclohexane and Water	99
29.	Mutual Solubility of n-Hexane and Water	100
30.	Mutual Solubility of Ethylbenzene and Water	101

ABSTRACT

Mixing rules based on the local composition and onefluid models have been developed for use in the meanpotential-model Modified Benedict-Webb-Rubbin equation of state to accurately predict the thermodynamic properties of fluid mixtures. These hybrid mixing rules require three adjustable parameters for strongly nonideal binary mixtures and two parameters for less monideal mixtures. These hybrid mixing rules have been tested using a wide variety of binary mixtures: (1) nonpolar+polar systems, such as hydrocarbons with ketones, alcohols, and water; (2) polar+polar systems such as carbon dioxide+ methanol, water+acetone and (3) nonpolar+nonpolar systems such as benzene+hexane, ethane+nbutane, and methane+decane. Test results show that the hybrid mixing rules can correlate vapor-liquid equilibrium and mixture density data, for these strongly nonideal solutions, better than the conformal solution model. The hybrid mixing rules with the parameters obtained from the binaries have also been applied to multicomponent mixtures.

Activity coefficients and excess Gibbs free energy were calculated using the hybrid mixing rules. Results show that reasonable predictions for these properties can be

Х

obtained without their inclusion in the parameter determination process. The hybrid mixing rules with four adjustable parameters have been further applied to predict liquid-liquid equilibria for model coal compound+water systems. The prediction accuracy is close to the experimental uncertainty.

APPLICATION OF HYBRID MIXING RULES BASED ON THE CONFORMAL SOLUTION AND LOCAL COMPOSITION MODELS TO PREDICT THE THERMODYNAMIC PROPERTIES OF NONIDEAL SOLUTIONS

CHAPTER I

INTRODUCTION

For process design in the chemical and petroleum industries, the ability to accurately predict fluid-phase equilibria is vital for economic viability. The generalized thermodynamic correlations, with the aid of computers, have been developed to describe the behavior of the fluids over wide ranges of pressure, temperature, and composition. Although there are many correlations that can accurately predict the thermodynamic properties of pure fluids, the theoretical problem of describing the phase behavior of fluid mixtures is still largely unsolved. Predicting fluidphase equilibria had been achieved by using either activity coefficient models or equations of state with mixing rules. For highly nonideal solutions, the activity coefficient models work well at low and moderate pressure, since they are derived from an expression for the excess Gibbs free

energy of the mixture. However, these models have several difficulties at high pressure and near the critical region where supercritical components are involved in the mixtures. With the use of equations of state, the supercritical hypothetical standard state is avoided and in addition to fluid-phase equilibria, the other thermodynamic properties can also be obtained (Reid et al., 1977).

The most frequently used theory of mixing is the van der Waals' one-fluid model or the conformal solution model (CSM) (Peng and Robinson, 1976; Starling et al., 1977). This one-fluid theory equates the thermodynamic properties of the mixture to those of a hypothetical pure fluid (at the same temperature and pressure as the mixture) whose characteristic parameters are composition dependent and often determined by semi-empirical mixing rules (Lee et al., 1979). These mixing rules are quadratic in mole fraction. The conformal solution mixing rules are briefly reviewed in chapter III. For mixtures of nonpolar and slightly polar fluids, this model gives good results (Starling et al., 1977; Peng and Robinson, 1976). However, these standard mixing rules are often not applicable to mixtures containing highly polar and associating components. The inadequacy of these simple mixing rules is due to the size and shape asymmetry and intermolecular-potential asymmetry of the molecules. The nonrandomness of molecular configurations in space arises from the asymmetry of these nonideal solutions (Whiting and Prausnitz, 1982a). To take into account

nonrandomness in liquid mixtures, the local composition concept was developed. The physical meaning of local mole fractions will be explained in chapter IV.

Based on the local composition concept, Wilson (1964) proposed an expression for the excess Gibbs free energy (or, equivalently, activity coefficient equations) which can describe the vapor-liquid equilibria (VLE) for nonideal solutions, well removed from the mixture critical region. Due to Wilson's success, several attempts have been made to apply local composition concepts to activity coefficient models for describing fluid-phase equilibria of miscible and immiscible fluids (Renon and Prausnitz, 1968; Palmer and Smith, 1972; Nitta and Katayana, 1974; Novak et al., 1974; Tsuboka and Katayama, 1975; Nagata et al., 1975; Abrams and Prausnitz, 1975). Although the local composition concept has been known for some time, it was given little attention until recently. In 1979, Huron and Vidal successfully related the activity coefficient model with a mixing rule for the energy parameter 'a' in the Redlich-Kwong (RK) equation of state. This work has demonstrated that the equation of state with mixing rules which are based on the local composition concept can be extended to strongly nonideal solutions.

The successful application of the local composition model to the mixing rules has drawn wide attention and interest. Whiting and Prausnitz (1982ab) developed densitydependent mixing rules, based on the local composition

concept, for the attractive part of the van der Waals and the Perturbed Hard Chain (PHC) equations of state. Vachhani and Anderson (1982) empirically developed a local composition density dependent mixing rule for the energy parameter of the Soave RK equation of state. Mathias and Copeman (1983) developed density dependent local composition mixing rules for the extended Peng-Robinson equation of state. These studies have shown that mixing rules based on the local composition model work better for highly nonideal solutions than the conventional one-fluid mixing rules.

Pecently, at the University of Oklahoma, a mean-Modified Benedict-Webb-Rubbin (MPM-MBWR) potential-model equation of state has been developed for nonpolar, polar and associating compounds (Starling et al., 1983). This correlation can predict the thermodynamic properties of pure nonpolar, polar and associating fluids with reasonable accuracy over wide ranges of temperature and pressure. The MPN-MBWR is briefly presented in chapter II. The objective of this research is to develop mixing rules based on the local composition model, for the MPM-MBWR equation of state, to accurately predict the thermodynamic properties and phase behavior of mixtures containing nonpolar, polar and associating components. In this work the local composition concept has been used for formulating a mixing rule for the energy parameter in the MPM-MBWR equation of state. This mixing rule is a hybrid between two- and one-fluid models. The development of this mixing rule is presented in chapter

V. The hybrid mixing rules were successfully applied to predict vapor-liquid equilibria behavior for slightly and highly nonideal solutions. These highly nonideal solutions include hydrocarbon-alcohol, and hydrocarbon-water binary mixtures. The hybrid mixing rules were also extended to multicomponent mixtures. Results of these predictions are given in chapter VI and VII. In chapter VIII, the predicted excess Gibbs free energy and the activity coefficients of the binary mixtures were compared with the experimental data. The hybrid mixing rules were further tested on nearly immiscible fluids such as the mixtures of model coal compounds and water. Predictions of liquid-liquid equilibria for coal fluid-water systems are generally satisfactory. Results of these tests are given in chapter IX.

CHAPTER II

EQUATION OF STATE FOR PURE FLUIDS

The basic equation of state for pure fluids used in this work is a three-parameter corresponding-states MBWR equation (3PCS-MEWR) (Brule et al., 1982). The basic equation is:

$$z = 1 + \rho^{2} (E_{1} + E_{2} T^{2} - 1 - E_{3} T^{2} - 3 + E_{9} T^{2} - 4 - E_{11} T^{2} - 5)$$

+ $\rho^{2} (E_{5} - E_{6} T^{2} - 1 - E_{10} T^{2} - 2)$
+ $\rho^{2} (E_{7} T^{2} - 1 + E_{12} T^{2} - 2)$
+ $\rho^{2} (E_{7} T^{2} - 1 + E_{12} T^{2} - 2)$
+ $E_{8} \rho^{2} T^{2} T^{2} - 3 (1 + E_{4} \rho^{2}) \exp(-E_{4} \rho^{2})$ [1]

where

$$T^{*} = kT/\epsilon$$
 (2)

$$\rho^* = \rho \sigma^3 \tag{3}$$

and

$$E_{i} = a_{i} + \gamma b_{i} \qquad (4)$$

The universal constants a_i and b_j are the isotropic and anisotropic parts, respectively, and γ is the orientation factor which accounts for the nonsphericity of the molecules. The parameters ε/k and σ^3 are the energy and size parameters. The universal constants a_j and b_j are given in table II. 1.

For nonpolar and slightly polar fluids, the parameters ϵ/k and σ^3 were defined as:

$$\varepsilon = \varepsilon_0 = kT_c/1.2593$$
⁽⁵⁾

and

$$\sigma^{3} = 0.3189/\rho_{r}$$
 (6)

For polar and associating fluids, the meanpotential-model (MPM) was utilized to account for the polar and association effects. This has been done by making the energy parameter temperature dependent (Reed and Gubbins, 1973). Hence, the energy parameter becomes:

$$\frac{\varepsilon}{k} = \frac{\varepsilon_0}{k} + \frac{\kappa}{1} \tag{7}$$

where ε_0/k is due to the nonpolar contribution, and κ is the 'lumped' parameter for polar and association contributions. The size parameter is redefined introducing an empirical parameter λ as:

$$\sigma^3 = \lambda/\rho_c \tag{8}$$

From these definitions, equations (7) and (8) will reduce to

	•
Table	II. 1

Universal Constants a; and b; / to be Used in Equation (4) for the Mean-Potential-Model Four-Parameter Corresponding-States MBWR Correlation.

.

.

.

i 	8 <u>1</u>	bi
1	1_45907	0-32872
2	6-98813	-2.54399
3.	2.20794	11.3393
4	6-35929	0
5	4-59311	2.79979
Ó	5.06707	10.3901
7	11.6871	10.3730
8	9.22469	20.5388
9	0-094624	2.76010
10	1.48358	-3.11349
11	0.015273	0-18915
12	3.51486	0.94260

-

equations (5) and (6) of the original 3PCS formulation when κ is equal to zero and λ is set equal to 0.3189 for nonpolar and slightly polar compounds which have reduced dipole moments less than 0.3 (Starling et al., 1983).

The MPM correlation is an extension of the 3PCS correlation, and requires four characterization parameters: γ , σ^3 , ϵ/k and κ for polar and associating fluids.

CHAPTER III

REVIEW OF THE CONFORMAL SOLUTION MODEL

The one-fluid model or the so-called conformal solution model has drawn much attention from a theoretical and practical standpoint. This theory was proposed by wan der Haals (VDH) (1890) nearly a century ago. Although his equation of state is out of date, his theoretical idea is still used as a quideline to develop a better model for fluid mixtures. The conformal solution formalism assumes that a mixture can be treated as a hypothetical pure pseudosubstance. The hypothetical pure pseudosubstance concept permits the equations of state developed for pure fluids to be applied to mixtures. The VDW one-fluid theory also suggests that a fluid mixture is an assembly of molecules which are randomly distributed. Strictly, the VDW one-fluid mixing rules can be applied only to mixtures of nearly equal size molecules. Consequently, prediction for mixtures of differently sized accuracy is lost molecules. Compensating for this discrepancy, the VDW onefluid models have been modified over the years for the molecules which differ prediction of mixtures of

significantly in size and shape [Lee et al., 1979]. The following general mixing rules are the extensions of rules for isotropic conformal mixtures by Smith (1972) to the anisotropic molecular solutions (Lee et al., 1979):

$$\gamma_{x}^{k} \varepsilon_{x}^{l} \sigma_{x}^{m} = \sum_{ij} \sum_{ij} \gamma_{ij}^{k} \varepsilon_{ij}^{l} \sigma_{ij}^{m}$$
⁽⁹⁾

$$\gamma_{x}^{p} \varepsilon_{x}^{q} \sigma_{x}^{r} = \sum_{ij} \sum_{ij} \gamma_{ij}^{p} \varepsilon_{ij}^{q} \sigma_{ij}^{r}$$
(10)

$$Y_{x}^{u} \varepsilon_{x}^{v} \sigma_{x}^{w} = \sum_{ij} \sum_{j} \gamma_{ij}^{u} \varepsilon_{ij}^{v} \sigma_{ij}^{w}$$
(11)

The exponents k, 1, m, p, q, r, u, v, v in equations (9), (10) and (11) can be determined theoretically or empirically. In order to improve the predictions for mixtures of large molecular dissimilarities, Lee et al., (1979) determined these exponents empirically by fitting vapor-liquid equilibrium data. The optimal values of the exponents are k=0, 1=0, m=4.5, p=0, q=1, r=4.5, u=1, v=0 and w=3.5. Hence, the final formulation of the semiempirical mixing rules is:

$$\sigma_{X}^{4.5} = \frac{\Sigma\Sigma}{ij} x_{i} x_{j} \sigma_{ij} \qquad (12)$$

$$\varepsilon_{x}\sigma_{x}^{4.5} = \frac{\Sigma}{ij} x_{i}x_{j} \varepsilon_{ij} \sigma_{ij}^{4.5}$$
(13)

$$\gamma_{X}\sigma_{X}^{\sigma_{X}} \stackrel{\text{3.5}}{=} \frac{\text{II}}{\text{ij}} \stackrel{X_{i}X_{j}}{=} \stackrel{Y_{ij}}{\stackrel{\sigma_{ij}}{=}} \stackrel{3.5}{(14)}$$

With the combining rules:

$$\sigma_{ij} = \xi_{ij} \left(\sigma_i \sigma_j\right)^{\frac{1}{2}}$$
 (15)

$$\varepsilon_{jj} = \zeta_{ij} \left(\varepsilon_i \varepsilon_j \right)^{k_j} \tag{16}$$

and

$$r_{ij} = \frac{1}{2} (r_i + r_j)$$
 (17)

where ξ_{ij} and ζ_{ij} are binary interaction parameters. The component energy parameters ε_i and ε_j are determined from equation (7)

Expressions for enthalpy departure, entropy departure, fugacity coefficient and other properties can be derived from the compressibility factor expression via the classical thermodynamic relations (Reid et al., 1977). The derived thermodynamic properties expressions for conformal mixtures are given in appendix A.

These semiempirical mixing rules with the MPM correlation have been successfully applied to nonpolar and slightly polar mixtures, but they fail badly for mixtures containing highly polar and/or associating components such as water, alcohols, etc...

CHAPTER IV

LOCAL COMPOSITION MODEL

In a real fluid mixture, the motions, positions and orientations of the molecules are strongly affected by their neighboring molecules due to asymmetry in a complex mixture. The complexity of the mixtures may arise from size and shape asymmetry and intermolecular-potential asymmetry. FOI mixture containing several types of molecules having а significant differences in interaction energies, there are some molecule types which prefer to cluster around one particular molecule type rather than another. This causes an unequal spatial distribution of molecules of a given type in the mixture, in contrast to the conventional assumption that the molecules are randomly distributed. The nonrandomness of the molecular configurations in space is assumed due to the interactions between different kinds oť preferential molecules in the mixture. These intermolecular forces will cause the local mole fractions to differ from the bulk mole fractions. For a simple visualization of the physical meaning of local compositions, the following example is given (see Figure 1.). For a binary system, according to the

Molecule A
at center
A-cell

Molecule B at center B-cell

An equimolar mixture of A and B molecules

Cell Type	:		Α		В
Interaction energies	:	E _{AA}	and E _{BA}	e _{bb}	and E_{AB}
Number of molecules around central molecule	:				
A-molecules		n _{AA} :	2	n _{AB} :	4
B-molecules		n _{BA} :	3	n _{BB} :	3
Total	:		5		7
Local compositions	:				
×AA	E	2/5	= 0,40		
×BA	E	3/5	= 0.60		
× _{BB}	=	3/7	≖ 0.4 3		
× _{AB}	=	4/7	= 0.57		

Overall Compositions :

×A	÷	7/14	=	0.5
×в	=	7/14	=	0.5

Figure 1. Local Composition Model

two-fluid theory of Scott (1956), there are two types of cells: the A-cell which has a molecule of type A at the center with nearest neighbors of components A and B, and the B-cell which has a molecule of type B at the center, again with nearest neighbors of components A and B. The local mole fractions may be defined as:

$$x_{AA} = \frac{n_{AA}(L_{AA})}{n_{AA}(L_{AA}) + n_{BA}(L_{BA})}$$
(18)

$$x_{BA} = \frac{n_{BA}(L_{BA})}{n_{AA}(L_{AA}) + n_{BA}(L_{BA})}$$
(19)

$$x_{BB} = \frac{n_{BB}(L_{BB})}{n_{BB}(L_{BB}) + n_{AB}(L_{AB})}$$
(20)

anđ

$$x_{AB} = \frac{n_{AB}(L_{AB})}{n_{BB}(L_{BB}) + n_{AB}(L_{AB})}$$
(21)

where n_{jj} is the number of molecules of type j around a central molecule of type i within a spherical volume of radius L_{jj} , and x_{jj} is the local mole fraction of component j molecules surrounding a central molecule of type i. The

local compositions deviate from the overall compositions due to the strength of the A-B interactions relative to the A-A and B-B interactions (see Figure 1).

The local composition concept was originated from Guggenheim (1935, 1952, 1966). This concept was applied to regular solutions and considered only the first neighbor region in the lattice gas. Although the local composition model has been studied extensively using molecular dynamic calculations and Monte Carlo calculations (Nakanashi and Toukubo, 1979; Nakanishi et al., 1982; Panayiotou and Vera, 1981; Kemeny and Rasmussen 1981; Fischer and Lago, 1983; Lee et al., 1983; Hu and Prausnitz, 1983; Hoheisel et al., 1983), it is still a controversial theory. The post successful investigation of the theoretical foundations of the local composition model was obtained recently by Lee et by using statistical mechanics. al., (1983) Their statistical mechanical local composition theory not only yields a better understanding of the local composition shed light on the least-understood model, but also theoretical problem of liquid mixtures. From the statistical mechanical standpoint, Lee et al. (1983) defined the n_{ij} in a binary system as:

$$\pi_{AA}(L_{AA}) = \rho_A \int_0^{L_{AA}} d\mathbf{r} \ 4\pi \mathbf{r}^2 \ \mathbf{g}_{AA}(\mathbf{r})$$
(22)

$$n_{BA}(L_{BA}) \equiv \rho_B \int_{0}^{L_{BA}} dr \ 4\pi r^2 \ g_{BA}(r)$$
 (23)

$$n_{BB}(L_{BB}) \equiv \rho_B \int_0^{L_{BB}} dr \ 4\pi r^2 \ g_{BB}(r)$$
(24)

and

$$n_{AB}(l_{AB}) = c_A \int_{0}^{L_{AB}} dr 4\pi r^2 g_{AB}(r)$$
 (25)

where $g_{\frac{1}{1}j}(r)$ are the radial distribution functions for the fluid. Substitute the equations above into equations (18), (19), (20), and (21), the local mole fractions can be expressed in term of the radial distribution functions:

$$x_{AA} = \frac{\rho_{A} \int_{0}^{L_{AA}} dr \ 4_{\pi} r^{2} g_{AA}(r)}{\rho_{A} \int_{0}^{L_{AA}} dr \ 4_{\pi} r^{2} g_{AA}(r) + \rho_{B} \int_{0}^{L_{BA}} dr \ 4_{\pi} r^{2} g_{BA}(r)} = \frac{n_{AA}}{z_{A}}$$
(26)

$$x_{BA} = \frac{\rho_{B} \int_{0}^{L_{BA}} dr \ 4\pi r^{2} g_{BA}(r)}{\rho_{A} \int_{0}^{L_{AA}} dr \ 4\pi r^{2} g_{AA}(r) + \rho_{B} \int_{0}^{L_{BA}} dr \ 4\pi r^{2} g_{BA}(r)} = \frac{n_{BA}}{z_{A}}$$
(27)

$$x_{BB} = \frac{\rho_B \int_{0}^{L_{BB}} dr \ 4\pi r^2 g_{BB}(r)}{\rho_B \int_{0}^{L_{BB}} dr \ 4\pi r^2 g_{BB}(r) + \rho_B \int_{0}^{L_{AB}} dr \ 4\pi r^2 g_{AB}(r)} = \frac{n_{BB}}{z_B}$$
(28)

•

and

$$x_{AB} = \frac{\rho_{A} \int_{0}^{L_{AB}} dr \ 4\pi r^{2} g_{AB}(r)}{\rho_{B} \int_{0}^{L_{BB}} dr \ 4\pi r^{2} g_{BB}(r) + \rho_{A} \int_{0}^{L_{AB}} dr \ 4\pi r^{2} g_{AB}(r)} = \frac{n_{AB}}{z_{B}} \quad (29)$$

OT

$$x_{AA} = \frac{x_A}{x_A + x_B \Lambda_{BA}}$$
(30)

$$x_{BA} = \frac{x_B \Lambda_{BA}}{x_A + x_B \Lambda_{BA}}$$
(31)

$$x_{BB} = \frac{x_{B}}{x_{B} + x_{A}\Lambda_{AB}}$$
(32)

and

$$x_{AB} = \frac{x_A \Lambda_{AB}}{x_B + x_A \Lambda_{AB}}$$
(33)

where

$$\Lambda_{BA} = \frac{\int_{0}^{L_{BA}} dr \ 4\pi r^2 g_{BA}(r)}{\int_{0}^{L_{AA}} dr \ 4\pi r^2 g_{AA}(r)}$$
(34)

and

$${}^{\Lambda}_{AB} = \frac{\int_{0}^{L_{AB}} dr \ 4\pi r^2 g_{AB}(r)}{\int_{0}^{L_{BB}} dr \ 4\pi r^2 g_{BB}(r)}$$
(35)

and z_1 is the coordination number. From the above definitions, second and third neighbors have been ignored in the expressions of the local compositions. Λ_{BA} and Λ_{AB} can . further be defined as:

$$\Lambda_{BA} = \frac{V_{BA} \exp(-\beta W_{BA})}{V_{AA} \exp(-\beta W_{AA})}$$
(36)

and

$$\Lambda_{AB} = \frac{V_{AB} \exp(-\beta W_{AB})}{V_{BB} \exp(-\beta W_{BB})}$$
(37)

where \mathbf{v}_{ij} is the spherical volume, $(4/3 \pi) \mathbf{L}_{ij}^3$, and \mathbf{w}_{ij} is the mean potential of mean force of Kirkwood (1935). If the radii are chosen to be equal, $\mathbf{L}_{AA} = \mathbf{L}_{BA} = \mathbf{L}_{BB} = \mathbf{L}_{AB}$, the ratio $\mathbf{v}_{BA}/\mathbf{v}_{AA}$ and $\mathbf{v}_{AB}/\mathbf{v}_{BB}$ would be unity. The conservation equations in both cells are:

and

with the above equations the local composition equations can be rewritten as:

$$\frac{x_{BA}}{x_{AA}} = \frac{x_{B}}{x_{A}} \frac{\exp(-W_{BA}/RT)}{\exp(-W_{AA}/RT)}$$
(40)

and

$$\frac{x_{AB}}{x_{BB}} = \frac{x_A}{x_B} \frac{\exp(-W_{AB}/RT)}{\exp(-W_{BB}/RT)}$$
(41)

According to the above definitions, the local compositions are proportional to the overall compositions, weighted by Boltzmann factors whose arguments characterize the like and unlike two-body interactions.

CHAPTER V

DEVELOPMENT OF LOCAL COMPOSITION MIXING RULES

Accurate equation of state mixing rules for prediction of thermodynamic properties for a wide range of fluid mixtures have not yet been developed in spite of their importance in engineering and industry. Several mixing rules work well for simple fluid mixtures, but are less successful for complex mixtures. The main problem in the development arises from the liquid phase, which is neither completely random nor totally structured. To account for strongly nonideal solutions, the local compositions have been used for modeling the liquid phase activity coefficients. In calculating vapor-liquid equilibria, the activity coefficient models were applied only in the liquid phase where most of the nonidealities occur while the equation of used for the vapor phase which is less nonideal. state is The local composition model gives an effective treatment of the liquid structure. It contains information concerning the nonidealities and the unusual interactions of the molecules a mixture. Consequently, the local composition model in gives satisfactory results. to the successful Due

application of the local compositions for the activity coefficients, the local compositions have been used for modeling the equation of state mixing rules in recent years.

This chapter shows the development of local composition mixing rules for the MPM correlation from theoretical and empirical approaches. In this work, an empirical approach was used to develop mixing rules for the MPM correlation for practical reasons.

5.1 Theoretical Approach

Whiting and Prausnitz (1983a,b) treated the interaction energy \Re_{ij} in equations (40) and (41) as that is, the Helmholtz free energy. This was later verified by Lee et al., (1983), R_{ij} is defined from the Helmholtz free energy. Therefore, W_{ij} depends on density and temperature. Unlike Whiting and Prausnitz, who related R_i to the attractive part of the Helmholtz free energy, both the attractive and the repulsive contributions to the Helmholtz free energy are included in the evaluation of W_{ij} in this study. Consequently, the interaction energy W_{ij} can be determined from any equation of state, regardless of whether or not the equation of state can be separated into repulsive and attractive parts. Nevertheless, the method used for developing mixing rule in this section is in the spirit of that used by Whiting and Prausnitz. Assuming pairwise additive interactions, the total molar configurational

internal energy is:

$$\frac{U}{N} = x_1(x_{21} u_{21} + x_{11} u_{11}) + x_2(x_{12} u_{12} + x_{22} u_{22})$$
(42)

where u_{ij} is the molar internal energy of the two body interaction between molecules of type i and j. From the classical thermodynamic relations, the Helmholtz free energy can be obtained from:

$$\mathbf{U} = \frac{\partial (\mathbf{A}/\mathbf{T})}{\partial (\mathbf{1}/\mathbf{T})} | \mathbf{N}, \mathbf{V}$$
 (43)

By combining equations (40) through (43) and using $\Psi_{ij} = \alpha \lambda_{ij}$, the total internal energy can be expressed as:

$$\mathbf{U} = \frac{\begin{array}{c}2\\-\sum\\ \mathbf{J}\\\mathbf{z}\\\mathbf{z}\\\mathbf{z}\end{array}}_{j=1}^{2} \mathbf{x}_{j} \frac{\left|\frac{\partial \left(A_{ij}/T\right)}{\partial \left(1/T\right)}\right|}{\partial \left(1/T\right)}\right|} \mathbf{N}, \mathbf{V} \qquad \exp(-\alpha A_{ij}/RT)$$

$$\frac{\begin{array}{c}2\\ \mathbf{x}\\\mathbf{z}\\\mathbf{z}\end{array}}_{j=1}^{2} \mathbf{x}_{j} \exp(-\alpha A_{ij}/RT)$$

$$(44)$$

where α is defined as 2/z. From the Gibbs-Helmholtz relation, equation (43), the molar Helmholtz can be determined by:

$$A = T \int_{0}^{1} T d(1/T) U$$

.
$$= \frac{\mathbf{RT}}{\alpha} \sum_{i=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{i=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{i=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{i=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{i=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{j=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_{i=1}^{2} \frac{\mathbf{r}}{\mathbf{r}} \sum_$$

where, following whiting and Prausnitz, F_{ij} arises from the lower limit of the intergration at infinite temperature. For mixtures of equal sized molecules, $F_{ij} = 1$ is a reasonable assumption. Equation (45) can be rewritten as:

$$\frac{A}{RT} = \sum_{i=1}^{2} x_i \frac{A_i}{RT} - \frac{1}{\alpha} \sum_{i=1}^{2} x_i \ln \sum_{j=1}^{2} x_j F_{ij} \exp(-\alpha (A_{ij} - A_{ii})/RT)$$
(46)

The expression for the pressure P can be obtained by differentiating equation (46) with respect to specific volume v:

$$P = \sum_{i=1}^{2} x_{i}P_{i} - \frac{\sum_{i=1}^{2} \sum_{j=1}^{2} x_{i}x_{j} \left[\frac{\partial (A_{ij}-A_{ii})}{\partial v} \right]_{T,x} exp(-\alpha_{ij}(A_{ij}-A_{ii})/RT)}{\sum_{j=1}^{2} x_{j} exp(-\alpha_{ij}(A_{ij}-A_{ii})/RT)}$$

(47)

where P_i is determined at the temperature and density of the mixture. For pure fluid predictions, the second term vanishes and the first term becomes the pure fluid equation of state. These density-dependent local composition mixing rules were applied to predict vapor-liquid equilibria for several nonideal mixtures of similar size molecules (Luong, et al., 1983). The results were better than those obtained by the conventional conformal solution mixing rules. For mixtures of widely different sized molecules, these mixing rules encountered difficulties. The problems arise from the liquid density search, consequently it prohibits vaporliquid equilibria calculations. Therefore, these densitydependent local composition mixing rules are not applicable. The next section shows an empirical approach to apply the spirit of local compositions to the mixing rules for the MPM correlation.

5.2 Empirical Approach

This section shows a different method for extending the MPM correlation to mixtures. The local composition model was used for modeling the mixing rule for the characteristic energy parameter ε_{χ} . By analogy to the total configurational internal energy in equation (42) the characteristic energy parameter ε_{χ} of the mixture can be defined as:

$$\varepsilon_{x} = x_{1}(x_{21} \varepsilon_{21} * x_{11} \varepsilon_{11}) * x_{2}(x_{12} \varepsilon_{12} * x_{22} \varepsilon_{22})$$
⁽⁴⁸⁾

where ε_{ij} is the characteristic energy of the two body interaction between i and j molecules. Substituting the

local composition equations (38) , (39), (40) and (41) into equation (48), the expression for the energy parameter ε_{χ} for a binary system is:

$$\epsilon_{x} = \frac{x_{1}^{2} \epsilon_{11}}{x_{1} + x_{2} e^{(-\Delta_{12}/RT)}} + \frac{x_{1}x_{2}\epsilon_{12} e^{(-\Delta_{12}/RT)}}{x_{1} + x_{2} e^{(-\Delta_{12}/RT)}}$$

+
$$\frac{x_1 x_2 \epsilon_{21} e^{(-\Delta_{21}/RT)}}{x_2 + x_1 e^{(-\Delta_{21}/RT)}} + \frac{x_2^2 \epsilon_{22}}{x_2 + x_1 e^{(-\Delta_{21}/RT)}}$$

(49)

where

$$\Delta_{12} = W_{12} - W_{11} \tag{50}$$

$$\Delta_{21} = W_{21} - W_{22} \tag{51}$$

For multicomponent mixtures, equation (49) can be expressed as:

$$\varepsilon_{x} = \Sigma x_{i} \frac{\sum x_{j} \varepsilon_{ij} \exp(-\Delta_{ij}/RT)}{\sum x_{k} \exp(-\Delta_{ik}/RT)}$$
(52)

The mixing rule above for the energy parameter ε_{χ} introduces two more adjustable parameters $\Delta_{12} = (\Psi_{12} - \Psi_{11})$ and $\Delta_{21} = (\Psi_{21} - \Psi_{22})$, in addition to a binary parameter ζ_{ij} which arises from the combining rule for ε_{ij} in equation (16). This mixing rule can be reduced to the classical conformal solution mixing rule by a straightforward choice of parameters in which both Δ_{12} and Δ_{21} are set equal to 0.

The following conventional conformal solution mixing rules for σ_x^3 and γ_x were used in this work:

$$\sigma_{\chi}^{3} = \Sigma \Sigma x_{i} x_{j} \sigma_{ij}^{3}$$
⁽⁵³⁾

and :

$$\gamma_{x} \sigma_{x}^{3} = \Sigma \Sigma x_{i} x_{j} \gamma_{ij} \sigma_{ij}^{3}$$
⁽⁵⁴⁾

Equations (53) and (54) correspond to the use of the following values of exponents in equations (9) and (11), k=0, l=3, n=3, u=1,v=0 and v=3. These exponents were determined empirically using vapor-liquid equilibrium data. The combining rule equations (15) and (17) are also applicable to σ_{ij} and γ_{ij} .

The hybrid mixing rules above for ε_{χ} , σ_{χ}^{3} and γ_{χ} , equations (52), (53) and (54), were used for the MPM correlation in this study. Three binary parameters ζ_{ij} , Δ_{12}

and Δ_{21} were required for strongly nonideal solutions (e.g., solutions of alcohols and hydrocarbons). For moderately nonideal mixtures (e.g., nonpolar mixtures), two binary parameters ξ_{ij} and ζ_{ij} were required, while Δ_{12} and Δ_{21} were set equal to 0. These binary parameters were determined from vapor-liquid equilibrium data for the binary systems. Although the mixing rule for ε_{χ} is based on the local composition model, it still lies within the one-fluid model because ε_{χ} is related to ε of the pure components by a set of mixing rules. Only the spirit of the local composition model is retained.

The derived thermodynamic properties relations for mixtures are given in appendix B.

5.3 Sensitivity of Composition Dependence to the Binary Parameters

The mixing rule, equation (52), requires three parameters ζ_{ij} , Δ_{12} and Δ_{21} to define the characteristic energy parameter ε_{χ} . The two additional binary parameters Δ_{12} and Δ_{21} provide flexibility to this mixing rule. Figure 2 shows the composition dependence of the energy parameter ε_{χ} for a binary system. Differences in values of Δ_{12} and Δ_{21} produce a variety of curves (e.g., the s shape curve). When Δ_{12} and Δ_{21} are set equal to 0, this mixing rule reduces to the quadratic mixing rule. Consequently, this mixing rule contains, as an optional possibility, the conventional

Figure 2: \mathcal{E}_{1} versus χ_{1}

mixing rule. Furthermore, at high temperature the exponent terms in this mixing rule approach unity, and the classical rule is again obtained. As a result, these two binary parameters give the energy parameter ε_{χ} a wide range of variations and possibly applicability to highly nonideal solutions.

CHAPTER VI

PREDICTIONS OF THERMODYNAMIC PROPERTIES OF BINARY SYSTEMS

The hybrid mixing rules (HER) with the meanpotential-model correlation were used to correlate the thermodynamic properties of several representative binary systems. These systems were categorized by their polarities such as nonpolar+polar, polar+polar and nonpolar+nonpolar binary mixtures. The vapor-liquid equilibria calculations were performed both at low and elevated pressure. The pure characterization parameters for used with the MPM correlation are given in table VI.1 and VI.2. To provide further perspective on the accuracy achieved by the hybrid mixing rules, the conformal solution model (CSM) with two binary parameters were also used in this research. The \cdots mixing rules developed in this work required two to three parameters for highly nonideal solutions. In this work the The adjustable parameters were determined from VLE data. regression technique developed by Britt-Luecke (1973) was used in the determination of the parameters for most of the binary systems with the exception of several binary mixtures wherein the regression method of Goin (1978) was used. The

Table VI.1

.

.

.

Characterization Parameters for Nonpolar Compounds for use with the Sean-Potential-Model Equation of Sate

•

Compound	Nv	€ ₀ /k*1.2593 (K)	9³/0.3189 (cc/gmole)	γ	<pre>%/1000 (K²)</pre>
Eydrogen	2.016	32.95	64.14	0.00	0.0
Bethane	16.042	190.69	99.50	0.01289	0.0
Ethane	30.07	305.40	148.0	0.09623	0.0
Propane	44.097	369.79	203.0	0.1538	0.0 .
n-Botane	58.12	425.7	255.0	0.1991	0.0
Benzene	78.115	562.09	257.97	0_298	0.0
Cyclohexane	34.163	553. 34	307.53	0.2159	. D. D
a-Merane	36.178	507 . 39	370.00	0.3054	0.0
Toluene	92.142	59 1. 72	315.29	0-2665	0.0
Bethylcyclohexane	98.189	572.09	368.0	0.233	0-0
n-Heptane	100.21	540.29	426.13	0.3499	0.0
Ethylbenzene	106. 16	617 .0 9	374.0	0.301	0.0
Ethylcycloherane	112,21	608.09	450.0	0-243	0.0
Tetralin	132 20	7 720.0	439.63	0.3232	0.0
n-Decane	142.27	6 617.56	602.01	0.4880	0.0
1-Bethylnapthalene	192.20	77 1. 98	445.91	0.3538	0.0
1-Ethylnapthalene	155.22	5 775 59	4480.7	0.3538	0.0
n-Hexadecane	226.43	717.22	975.44	0.7122	0.0

* The quantities in the parenthese are the units of the parameters.

Table VI.2

Characterization Parameters for Polar and Associating Compounds for use with the Mean-Potential-Model Equation of Sate

Compound	8v	€o/k (K)	σ ³ (cc∕gmole)	У	≮∕1000 (K ²)
Pater	18.015	547.40	16.900	0.3453	-11.123
Hydrogen Sulfide	34.076	291.12	30.105	0.0840	1-806
Carbon Dioxide	44.01	241.02	28.98	0.220	0.4153
fethanol	32.042	914_6	38.24	0.4218	2.781
Zthanol	45.069	383_4	52.12	0.4152	13.494
Propanol	60.096	413.5	67.79	0.5299	7.602
n-Butanol	74.123	419.8	86.91	0.6608	6.929
Phenol	94.113	509.3	86.54	0.2883	27.112
Diethyl Ether	74.123	373.9	89.01	0.281	-0.780
Acetone	58.08	407.3	68-82	0.3000	0.5268
2-Butanone	72.107	440-8	81.92	0_ 3 65	-6.057
Tetrahydrofuran	72.107	429.1	73.47	0.2144	0.916
Aniline	93.129	541.0	89 .7 9	0_2779	14.198
Pyridine	79.102	4993.7	75.9 5	0_237	0.705

algorithm for calculating VLE used in this work was described by Boston and Britt (1978).

6.1 Application to Nonpolar-Polar Binary Systems

The hybrid mixing rules (HMR) were tested using vapor-liquid equilibrium data for twenty-four nonpolar+polar binary mixtures. These binary systems аге hydrocarbons with ketones, aniline, alcohols, phenol and water. Each binary system, the names of the components, the temperature and pressure ranges of the data, and the references from which the data were taken are listed in table VI.3. The binary parameters determined from regression analysis of the VLE data are reported in table VI.4. Results of the fit are presented in table VI.5 in terms of percent average absolute relative deviations (% AARD). In general, the HMR gives better results than the CSM. Figure 3 shows the experimental and the calculated pressure-composition liagram for ethane-acetone system at 25 C. The solid lines represent the results from the HMR and the dashed lines are predicted from the CSM. The HMR yields better agreement between experimental and calculated values than the CSM. Although both types of mixing rules predicted accurately the vapor phase compositions, the HMR greatly improved liquid phase composition predictions. Figure 4 shows results for acetone-cyclohexane mixture which exhibits azeotrope. The HMR correctly and accurately predicted the azeotrope.

Table VI.3

.

.

Temperature and Pressure Nanges, and Data References for the Monpolar - Polar Binary Systems Studied in This Work.

Systens	Pro.	No. of	T range	P range	Data Beferences
		points	IC IC	atm	
(v) —					
		Hydrocar	bons and ((c	tores	
			سر این این جنه دنه این هارها ها ای		
Ethane-Acetone	ATB	8	298	4-39	Ohgaki et al. 1976
Acetone-Cyclohexane	VLE	23	298	0. 15-0. 32	Tasic et al. 1978
Cycloberane-	VLE	10	3 48~350	1	Donald et al. 1956
2-Butanone	ρ	9	298	1	Donald et al. 1956
	H	ydrocarb	ons and Ani	line	
Benzene-Aniline	ATE	22	343-363	0.23-0.68	Hosseini et al. 1963
Cycloherane-Aniline	AFB	18	343-363	0.32-0.67	Hosseini et al. 1963
Toluene-Aniline	VLE	40	353-373	0.09-0.67	Schneider 1960
Nethylcyclohexane- Aniline	AFE	43	353-373	0.24-0.92	Schneider 1960

g

Table VI.3 (Continued)

Systeas	Pro-	No. of	r range	P range	Data References
(1) (2)	***	points	A با به ها به به به به به به به	at#	
	ł	lydrocarb	ons and Alc	ohols	· .
Mathemal Dava and	-	0		0.04.0.04	
Hernano 7- Benzene	VL5 V19	9 19	3062		HVANY Et al. 1977
	ρ	35	293-313	1	Scatchard et al. 1946 Sumer et al. 1967 Scatchard et al. 1946
Hethanol-Toluena	VLE	10	336-344	1	Benedict et al. 1945
		27	293-313	1	Sumer et al. 1967
Hethanol-n-Heptane	VLE	9	331-338	1	Benedict et al. 1945
Hethanol- 1-Hethylnapthulene	VLE	48	521-573	12.9-119.0	Paulaitis 1983
Banzene-Ethanol	VLE	9	298	0.11-0.16	Smith et al. 1970
	VLE	9	328	0.47-0.62	Yuan et al. 1963
Ethanol-Cyclohegane	VLE	9	298	0.14-0.18	Hwang et al. 1977
· · · · ·	VLB	7	328	0.44-0.55	Scatchard et al. 1964
n-Hexane-Ethanol	VLE	9	298	0.19-0.25	Smith et al. 1970
	VLE	18	318-3 28	0.45-0.88	Kudryavtseva et al. 196
Bthanol-Toluene	VLB	9	328	0.26-0.32	Gmehling ot al.1977 b

36

Systems	Pro-	No. of	T range	P range	Data References
(1) (2)		points		at =	و بو م م م م م م م م م م م م م م م م م م
Benzene-n-Propanol	VLE	9	298	0.07-0.12	Hwang et al. 1977
	V LE	13	318	0.11-0.31	Gmehling et al. 1977 b
Cyclohexane~	VLE	9	298	0., 14-0, 18	Hwang et al. 1977
a-Propanol	VLE	17	328	0.18-0.5	Strubl et al. 1970
a-Propanol-	VLE	9	357-363	0.60-0.76	Gurukul et al. 1966
a-Heptane	ρ	9	303	1	Gurukul et al. 1966
Beazene-n-But. nol	VLE	46	290-403	0.06-2.90	Gmehling et al. 1977 c
foluene-n-Butanol	VLE	25	363-372	0.37-0.84	Gmehling et al. 1977 c
		Hydro	carbons and	Phenol	
Benzene-Pheuo l	VLE	28	353	0 - 23-0 - 97	Gmehling 1982
	VLB	12	343	0.31-0.69	Martin et al. 1933
a-Decane-Phenol	V L.B	15	393	0.20-0.26	Gmehling 1982
		Rydro	carbons and	vater	
Hethane-vater	VLE	90	373-613	200-10000	Olds et al. 1942 Culberson et al. 1951
Bthane-Vater	VLE	76	433-613	200-10000	Reamer et al. 1943 Culberson et al. 1950

Table VI.3 (Continued)

.

•

% VLE = Vapor-Liquid equilibrium, ρ = density, Pro. = Property

.

Tal	ble	٧ï.	13
-----	-----	-----	----

*******			د به دی زیا دی دی دی دی وی ده			
Systems (1) - (2)	* Mod e1	т (к)	د نj	۲	A 12 (cal/ymol)	A 21 (cal/gmol)
		Hydr	ocarbons a	and Ketones		
Ethane-Acetone	H.M.R. C.S.M.		1.00 00 0.98 58	0.9134 0.9404	-302.25	1166.42
Acetone- Cyclohexane	H.M.R. C. S. M.		1.0000 1.0980	0.9737 0.9016	-1350.14 -	-483.50
Cyclohexane- 2-Butanone	H.M.R. C.S.M.		1.0000 0.6182	0.9607 1.1523	-1104.30	- 303. 96
		Hydr	ocarbons a	nd Auiline		
Cyclohexane- Aniline	. H.M.R. C. S. M.		1.0000 0.9712	0.9231 0.9754	-544.49 -	633.45
Toluene- Aniline	H.M.R. C.S.M.		1.0000 0.9939	1.0000 0.9933	553.49	-308.73

Binary Interaction Parameters for Nonpolar-Polar Binary Systems

•

* 1.0.1 m	۴	 P		•
(K)	. ^s ij	`ij	Δ ₁₂ (cal/gmol)	21 (cal/gmol)
.R. . H.	1.0000 0.9919	1.0000 0.9937	110.70	119.61
.R. . H .	1.0000 0.9786	0.9384 0.9801	-249.95	223. 18
	аеl т (К) 	T \$ij (K)	Jel T §ij (ij) (K)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Hethanol-Benzene	H.M.R. C.S.N.	298.15	1.0000 0.7675	0.9536 0.9492	-1186.75	- 1164.57
	H.M.R. C.s.M.	309.15	¥.0000 0.7004	0.9507 0.9592	-963.37	- 1087.91
	H.M.R. C.S.M.	328.15	1.0000 0.7147	0.9416 0.9686	-294.12	-1012.22
Nethanol- n-Heptanc	H.M.R. C.S.N.		1.0000 0.7304	0.9166 0.9551	-881.60	-879.53 -
Nethanol- Toluene	H.M.R. C.S.H.		1.0000 1.2549	0.9175 0.8835	1627.55	- 372. 31

39

.

Table VI.	4	(Con	tin	ueđ)
-----------	---	------	-----	------

Systems	*	_		-		
(1) - (2)	Nodel	т (к)	ن <u>ن</u> j	ر نا	Δ ₁₂ (cal/ymol)	∆ 21 (cal/ymol)
Methanol- 1-Hethyl napthalene	H.M.R. C.S.M.		0.9047 1.0611	1.0000 0.7626	1559 . 32 -	54.88 _
n-Hexane- Ethanol	H.M.R. C.s.M.	298.15	1.0000 0.8775	0•9356 0•9838	-2197.44	99.34
	H.M.R. C.S.M.	318.15	1.0000 0.8331	0.9299 0.9787	-1925.47	39.44
	H.M.R. C.S.M.	328.15	1.0000 0.8407	0.9255 0.9684	-1496.88	30.96
Ethanol-	H.M.R.	298.15	1.0000	0.9481	-497.27	-1308.67
Cyclohexane	C.S.M.		0.6599	1.0136	-	-
	H.M.R. C.S.H.	323.15	1.0000 0.4180	0.9492 1.6357	-577.73	-1363.08
Benzene-Ethanol	H.M.R. C.S.M.	298.15	1.0000 0,7569	0.9563 0.9715	-1213.06	-196.31
	H.M.R. C.S.K.	328.15	1.0000 0.6096	0.9406 1.0635	-820.77	808.63
Ethanol-Toluene	H.M.R. C•S•N•		1,0000 1,2650	0.9440 0.9004	-608.93	-398.79

Table	VI.4	(Continued)

Systems	*		r 2	7			
(1) - (2)	te bon	т (К)	۲ ij	(ij	Δ ₁₂ (cal/gmol)	Δ ₂₁ (cal/gmol)	
Benzene-	H.M.R.	298.15	1.0000	0.9643	-1175.17	-484.59	
n-Propanol	C. S. M.		0.9272	0.9580	-	-	
	H.M.R.	318.15	1.0000	0.9607	-1401.61	120.28	
	C.S.H.		0.8582	0.9654	-	-	
Cyclohexane-	H.M.R.	298.15	1.0000	0,9578	-1492-14	- 31, 49	
n-Propanol	C. S. N.		0.8925	0.9604	-	-	
	H.M.R.	328.15	1.0000	0.9566	-1995.14	-241.86	
	C.S.H.		0.8538	0 . 96 14	-	-	
	H.M.R.		1.0000	09424	-578-31	- 1128. 33	
n-Heptane	C. S. N.		0.7341	1.0054	-	-	
	H.M.R.	262 45	1 0000	0 05 # 3	770 20	40.32	
n-Butanol	C. S. M.	303.13	0.7699	0.9543	-//9.28	-40.32	
	H.M.R.	373.15	1.0000	0.4591	-831-36	-807-92	
	C.S.M.		0.7642	0.9978	-	_	
	H.M.R.		1.0000	0-9412	-824-84	-2367 68	
n-Butanol	C. S. M.		0.9372	0.9597	-	-	

	Nodel	T	Š.,	٢,]	Δ,	Δ_1
(1) - (2)		(K)	1]	13	(cal/gmol)	(cal/gmol)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***		<b>4 4 4 6 6 6 6 6</b> 6		*********	
		lly dr o	carbons and	Phenol		
Depress Oter al	нмр		1 0000	0.0000	1004 00	
peuseus-blenoI	C. S. H.		0.9896	0.9912	-1804.90	-
n-Decane-Phenol	H.M.R.		1,0000	0.9101	3319.93	-628.90
	C . S. M.		0.9476	0.9493	-	-
		Hydro	carbons and	vater		
Nethane-Water	H.M.R. C.S.N.	310.92	1.0000 0.8205	0.7513 0.9269	3040.41	3431.63
	H.M.R. C. S. N.	344.26	1.0000 0.8324	0 <b>.7493</b> 0.9351	3188.80	2399.24
	H.M.R. C.S.M.	377.60	1.0000 0.8320	0 <b>.7304</b> 0.8900	3682.69	2083.65 -
	H.M.R. C.S.M.	410.93	1.0000 0.8507	0.6932 0.9450	4401.27 -	2034.53
	H.M.R. C.S.M.	444.26	1.0000 0.8573	0.6643 0.9550	5202.46	2014,98

•

.

Systems	*	æ	87	7	*			
(1) - (2)	Hou et	(K)	^{\$} ij	<b>`</b> ij	Δ 12 (cal/gaol)	Δ ₂₁ {cai/gmol}		
Ethane-Water	H.M.R. C.S.N.	344.26	1.0000 0.7196	0.6227 0.3885	1716.94	1488.96		
	H.M.R.	373.60	1.0000	0.6078	1868.42	1290.58		
	C.S.M.		0.7323	0.4180	-	-		
	H.M.R. C.S.H.	410.93	1.0000 0.7843	0.6000 0.6694	2056.75	1105.56		
	H.M.R. C.S.M.	444.26	1.0000 0.8389	0.5980 0.8530	2146.63	913.19 -		

1

The guantities in the parentheses are the units of the parameters.

.

.

*H.M.R. = Hybrid Mixing Rules

C.S.M. = Conformal Solution Model

	©	4) & & & & & & & & & & & & & & & & & & &	н <b>С С С С</b> () (2) (2) (2) (2) (2) (2) (2) (2) (2)	ه وي هو دي زيد ت ديد د			*		
SYBLEBS aqaaaqaaaqaa	Hod el	Ŧ		و وعطور در در در در در		% AARI	) 		
		-	6						•
(1) - (2)		, K	<b>.</b> ( <b>P</b>	K 1	<b>K</b> 2	X 1	¥ 2	Y	¥ 2 13.38 14.50 9.52 28.75 3.92 6.07
내 티 그 티 프 프 프 드 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프	***			نينون نونون نونون نونون نونون نونون نونون نونون نونون نونون نونون نونون نونون نونون نونون نونونونون نونونون نونونونونونونونونونونونونونونونونونونونو			*****	••••	<b>.</b> 
		Hydr	ocarbons	and Kot	ODES				
Bthang-Acetono	H.M.R. <b>C.S.M.</b>			3. 14 7. 98	11.70 43.63	3.25 11.11	8.92 24.13	0.26 0.27	13.38 14.50
Acetone- Cyclobexane	H.M.R. <b>C.S.S.</b>	÷		4 <b>。95</b> . 10 <b>。35</b>	6.10 84.14	3.22 13.41	4.36 30.27	3.33 19.82	9.52 28.75
Cycloberane- 2-Butanone	H.M.R. C. S. H.		0.081 23.88	1.02 7.94	5.61 5.41	2.61 9.68	8.27 8.72	2.05 5.46	3.92 6.07
		Bydr	ocarbons	and Ani	line				
Cycloboxa <b>ac-</b> Aniling	H.M.R. <b>C.S.H.</b>	. •		6. 1 <b>0</b> 10. 7 <b>3</b>	10.81 21.01	6.50 11.41	11.86 20.44	0.07	6.01 9.68

## Results of Vapor-liquid Equilibrium Predictions for Nonpolar-Polar Binary Systems

44

.

.

Systems	malat	<b>#</b>				% AAR	. # D	-	
	800 e1	T K	ρ β		K 2	X 1 	¥ 2	Y 1	Y 2 1.88 1.92 6.54 6.80 2.52 4.42 1.16 21.09
Toluene- Aniline	H.M.R. C.S.H.			0.86 0.58	1.96 1.74	0.86 0.57	1.85 1.60	0.17 0.16	1.88 1.82
Benzeno- Abilino	H.M.R. C.S.H.			1.02 1.07	4.55 4.82	1.04 1.09	<b>4.</b> 38 4.43	0.06 0.07	6.54 6.80
Methylcyclo bezano-Anilino	H.M.R. C.S.N.			3. 62 7. 74	6.24 11.70	3.77 8.37	7.40 12.14	0.12 0.20	2.52 4.42
		8 Y	drocarbon	s and Al	cohols				
Nethanol-Benzene	H.M.R. <b>C.S.H.</b>	298.15	1.27 18.12	2. 91 22. 15	3.28 18.76	3.11 58.50	4.48 [°] 20.98	0.87 19.50	1.16 21.09
	H.M.R. C.S.N.	308.15		4.84 20.16	3.54 22.72	4.62 30.18	5.14 22.18	2.17 18.79	3.13 20.19
	H.M.R. <b>C.S.M.</b>	328.15		3, 51 20, 35	2.96 17.12	2.48 28.78	1.81 21.16	1.44 15.70	2.30 20.15
Hethanol- n-Heptane	H.M.R. C. S. H.			2.34 20.80	9.04 26.17	1.41 25.18	5.21 14.18	1.65 14.18	<b>5.</b> 32

.

.

:

Systeps		************	9 <b>48 49 49 49 49 49</b> 49 49 49 49 49	å % AARD					
(1) (2)	Hodel	T	en e	ی بی بی بی بی اور	K 2	··· x 1	X 2	Y .1	¥ 2
Bethanol- Toluong	H.M.R. C. S. H.		2.57 38.72	3.05 32.68	12.80 43.00	2.90 41.92	11.14 30.08	0.66 6.26	5.81 10.06
Nothanol- 1-Rethyl aapthaloae	H.M.R. C. S. H.			4.03 12.03	10.81 30.05	4.47 13.31	12.66 21.60	0_66 0_69	12.72 9.50
n-Hexane- Bebarol	H.M.R. C.S.M.	298.15		0.70 23.69	15.94 46.07	4.75 36.01	12.68 25.97	2.13 15.96	5.39 16.22
	H.M.R. <b>C.S.M.</b>	318.15		0- 06 22- 69	12.08 42.17	4.21 21.85	9.44 26.16	1.15 10.34	3.11 22.93
	H.M.R. <b>C.S.H.</b>	328.15		2.72 21.36	6.91 27.29	2.68 23.45	5.27 41.03	3.20 17.83	5.85 14.12
Ethanol- Cyclobexane	H.M.R. C.S.H.	298.15		3.79 32.34	3.92 19.58	1.71 39.87	2.70 25.23	3.19 18.42	2.06 10.70
	H.M.R. C•S• <b>H•</b>	323.15		2.79 76.76	3.04 27.32	1.35 39.73	3.17 32.05	2.13 14.43	1.90 16.80
Benzene-Ethanol	H.M.R. C•S•M•	298.15		3.09 8.12	6.11 13.81	1.26 8.12	3.67 27.02	2.90 6.18	4.01 12.00
	H.M.R. C.Ş.M.	328.15		3.63 7.17	5.24 12.72	3.44 7.23	6.89 26.68	1.44 6.32	2.98 11.98

•

Table VI.5 (Continued)

Table VI.5 (Continued)

Systers	M - 3 - 3	-			% AARD				
(1) (2)	1900 91	T K	••••••••••••••••••••••••••••••••••••••	مود با مرد	K 2	X 1	¥ 2	Y 1	¥ 2
Bthanol-Toluene	H.M.R. C.S.B.		2.24 36.31	1. 84 20. <b>15</b>	5.18 32.97	1.17 15.19	4.94 51.35	1.32 7.37	4.46 14.39
Benzene- n-Propanol	H.M.R. C.S.B.	298.15		¥.09 VO.79	3.21 17.66	1.16 11.39	1.76 13.79	0.75 5.07	2.87 5.80
	H.M.R. C.S.M.	318.15		2.01 7.66	6.81 15.61	1.19 8.85	2.68 14.19	1.54 1.78	5.07 5.25
Cycloberane- A-Propanol	H.M.R. <b>C. S. H.</b>	298.15		1. 14 17. 92	2.23 36.92	1.01 18.65	1.43 18.54	0.55 7.50	2.62 8.58
	H.M.R. C. S. M.	328.15		7.09 13.76	11.68 25.94	6.73 14.98	6.73 41.52	2.05 10.50	3.30 14.42
n-Propanol- n-Hoptane	H.M.R. C.S.M.		3.03 21.07	4。63 12。53	11.87 10.40	3.68 21.85	8.89 12.01	2.35 11.71	2.47 11.65
Toluene- n-Butanol	H.M.R. C.S.M.	363.15		5.41 5. <b>80</b>	4.70 5.44	2.90 4.39	2.73 5.51	5.05 6.34	3.53 6.47
	H.M.R. C. S. H.	373.15		1.81 2.39	1.43 2.96	1.77 2.20	2.02 3.33	1.72 2.82	2.19 2.94

47

арананотереја зафс Спољет	****	P <b>4 8 4 6 4 6</b> 6 6 6 6 6	<b>.</b>	ا قا <b>ری د</b> ی بیا اورد می اید ا		<b></b>	**************************************		
 }}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Hodel.	T	60 68 63 40 63 63 64 6	دى دى ئەر		% AAr			
(1) - (2)		K	ρ	[( 1	K 2	x 1	¥ 2	Y 1	¥ 2
Benzeno- a-Butanol	H.M.R. C.S.M.	· · ·		4.31 6.19	7.37 11.13	5.91 7.56	8.26 11.04	2.24	10.23 12.91
		Hydroc	carbons a	nd Phone	<b>01</b>				
Beazeae-Pherof	H.M.R. C. S. N.			1.7 <b>3</b> 3.5 <b>3</b>	11.49 8.27	1.79 3.63	6.88 10.73	0.13 0.15	9.21 13.24
n-Docano-Phonol	H.M.R. C.S.4.			6.50 13.21	11.68 31.52	7.38 23.99	13.36 67.64	3.47 8.26	8.68 21.51
		Нудгос	arbons a	nd unter					
Nethang-Sater	H.M.R. C. S. H.	310.92		1.95 8.20	4.78 11.10	1.97 9.70	0.004 0.03	0.005 0.01	4.78 11.08
···	H.M.R. C.S.M.	344.26		1.92. 9.51	1.93	1.98 11.45	0.004 0.03	0.008 0.03	1.93 7.56,
	H.M.R. C. S. H.	377.60		1.56 9.32	1.16 4.99	1.55 11.40	0.003 0.04	0.02 0.06	1.16 4.96

Table VI.5 (Continued)

Systems (1) - (2)	Nodel	Р	وي ہے ت ت ت ت عو	9) <b>11 10 10 4</b> 49 49	******	% AAR	D	. 4 # # # # # # #	
	5 2 4 5 5 6 5 4 [] (/ / 6 2	. R 	6 ()	K 1	K 2	X 1	X 2	¥ 1	¥ 2
Nethane-Dater	H.M.R. C.S.N.	410.93		2.46	3.26 4.83	2.43 8.00	0.003 0.03	0.19 0.12	3.27 4.10
	H.M.R. C.S.H.	444.26		1.20 7.92	<b>4.7</b> 4 4.12	1.41 9.11	0.003 0.005	0.66 0.36	4.74 4.10
Bthane-Vater	H.M.R. C.S.H.	344.26		2.29 17.35	7.11 18.98	2.38 25.08	0.002	0.03 0.08	7.11
H.M. C.S.	H.M.R. C.S.H.	373.60		3.71 16.14	5.09 15.08	3.84 21.38	0.004 0.02	0.07 0.19	5.09 15.06
H.M.R. <b>C.S.H.</b>	H.M.R. C.S.H.	410.93		6.77 16.78	3.39 12.88	6.68 23.64	0.008	0.19 0.33	3.40 12.83
· ·	H.M.R. . <b>C.S.H.</b>	444.26		12.22 13.50	3.47 16.06	11.03 17.30	0.01 0.04	0.69 0.68	3.48 [°] 15.59

Table VI.5 (Costinued)

в

One set of parameters was used to calculate the density for total temperature range of density data

.

2 ( [calc - exp] / exp ) # 100 . % AARD =



THE P-X DIAGRAM OF THE ETHANE-ACETONE SYSTEM AT 25.0 C



THE P-X DIAGRAM OF THE ACETONE-CYCLOHEXANE SYSTEM AT 25.0 C

Although the CSM could also describe the azeotropic phase behavior, it predicted an azeotrope at wrong conditions. For cyclohexane-2-butancne system, in addition to VLE, the mixture density was also calculated. The CSM gives poor results for both VLE and density. For mixture density the \$ AARD from the CSM is 23.8 % and from HMR is 0.08 %. The agreement in density prediction from HMR is gratifying when no experimental density data were used to obtained the binary parameters.

Figure 5 shows a representative nonideal systems of hydrocarbons with aniline. Again good fits were obtained by the HAR. Toluene-Aniline and Benzene-Aniline systems are ideal solutions. These mixtures contain molecules similar in size and shape, the only difference is their polarities. Both types of mixing rules fitted the VLE data very well (see table VI.5). There is a significant change in the nonideality of the cyclohexane-aniline system compared with systems, benzene-aniline toluene-aniline OF since cyclohexane is a cyclic aliphatic hydrocarbon and benzene, toluene and aniline are aromatic compounds.

Hydrocarbon-alcohol mixtures are typically strongly nonideal solutions. The alcohols represent an important group of polar and associating compounds. Most of these binary mixtures have azeotropes. These systems are difficult to correlate. For the systems with azeotropic phase behavior, the binary parameters are temperature dependent. It is not possible to use one set of binary



THE P-X DIAGRAM OF THE CYCLOHEXANE-ANILINE SYSTEM AT 70.0 C

the parameters over a wide range of temperature with exception of methanol-1-methylnapthalene system which posses no azeotropic phase behavior, one set of parameter was used for all temperature range (see Figure 6). However, with temperature dependent parameters, the HMR represented well these nonideal mixtures (see table VI.5). For methanolbenzene, methanol-toluene and n-propanol- n-heptane systems, the mixture densities were also well predicted by the HMR. Good agreement can be obtained for mixture density of methanol-benzene systems by using one set of parameter over a wide range of temperature in contrast to VLE property. Figure 7 shows results for nonideal system (methanol-nheptane) with minimum boiling temperature. Figures 8 and 9 show results of nonideal aixtures (n-hexane-ethanol, cyclohexane-n-propanol) with maximum vapor pressure. For these systems the HMR gives accurate results for all composition ranges. On the other hand the CSM is totally inadequate for representing such highly nonideal systems. also shows the VLE calculations, near the Figure 7 concentrated methanol compositions, are strongly affected when the pure methanol calculated vapor pressure is in error. The improvement can be made by redetermining the pure equation of state parameters to match the experimental vapor pressure at this particular temperature.

For mixtures of hydrocarbons and phenol, two binary mixtures including benzene-phenol and n-decane-phenol systems were tested. Figure 10 shows results for n-decane-



THE P-X DIAGRAN OF THE METHANOL-1-METHYLNAPTHALENE SYSTEM AT 275.10 C



THE T-X DIAGRAM OF THE METHANOL-N-HEPTANE STSTEM -AT ATMOSPHERIC PRESSURE



THE P-X DIAGRAM OF THE N-HEXANE-ETHANOL SYSTEM AT 25.0 C







THE P-X DIAGRAM OF THE N-DECANE-PHENOL SYSTEM AT 120.0 C
phenol mixture with maximum azeotropic pressure. The phase behavior of these nonideal systems were quite well represented by the HMR.

The methane-water system shown in Figures 11-12 is another strongly nonideal system. Figure 11 shows the saturated-liquid compositions for methane-water system at elevated pressure. The HMR gives better predictions than the CSM. As shown in Figure 12, at constant pressure, the minimum solubility of methane in water occurs within the temperature range. This minimum exists at 160 F. The HMR is able to reproduce this phase behavior. Figure 13 shows the experimental and calculated VLE for ethane-water system. The RMR predicted VLE for this system with reasonable accuracy. The results for this system are less accurate than those for methane-water mixtures, since ethane is less soluble in water than methane.

Overall, the HMR was applied with satisfactory results for nonpolar-polar binary systems, while the CSM yields poor results for these nonideal systems.

#### 6.2 Application to Polar-Polar Binary Systems

The HME also was applied to mixtures containing only polar and/or associating compounds. Table VI.6 lists ten such binary systems studied in this work. The binary parameters determined from VLE data are reported in table VI.7. A summary of results is presented in table VI.8. The



## SATURATED-LIQUID COMPOSITIONS IN METHANE-WATER SYSTEM

FIGURE 11



## SOLUBILITY OF METHANE IN WATER AT CONSTANT PRESSURE

FIGURE 12

. .



## SATURATED-LIQUID COMPOSITIONS IN ETHANE-WATER SYSTEM FIGURE 13

## Table VI.6

•

Temperature and Pressure Ranges, and Data References for the Polar - Polar Binary Systems Studied in This Work.

Systems		Pro.	No. of	'T range	P range	Data References	
(1)	(2)		points	K	at 0		
Carbon dio: Methanol	kide-	VLE	29	298-313	2.15-76.0	Katayawa et al. 1975 Ohgaki et al. 1976	
Diethyl Eth Nethanol	her-	VLE	28	<b>303-</b> 329	0.24-0.92	Gmehling et al. 1980	
Tetrahydroi n-Propanol	Euran-	VLE	11	345-367	1	Yoshikawa et al. 1980	
n-Propanol- n-Butanol	Ð	VLE	7	37 <b>3-</b> 388	1	Gay 1927	
Acetone-Wat	ter	VLE	75	373-523	1.09-66.6	Griswold et al. 19	
Hydrogen Su Water	ilfide-	VLE	47	310-43434	100-3000	Selleck et al. 1952	
Water-Pyrid	line	VLE VLE	<b>13</b> 28	323 343-363	0.10-0.15 0.23-0.85	Ibl et al. 1954 Audou et al. 1957	
Methanol-Wa	iter	VLE P	137 55	298-416 298-323	0.05-5.00 1	Gmehling et al. 1977a Mikhail et al.1961	
Water-n-But	anol	VLE	20	365-387	1	Kato et al. 1970	
Water-Phenc	1	VLE	22	317	0.01-0.09	Weller et al. 1963	

64

.

## Table VI.7

Systens	Nodel	r			Δ	Δ
(1) - (2)		(K)	"ij	'ij	12 (cal/ymol)	-21 (cal/gmol)
Carbon Dioxido- Nethanol	H.M.R. C.S.N.		1.0000 0.9859	0.9265 1.0081	-568.21	1528.33
Diethyl Ether~ Nethanol	H.M.R. C.S.M.		1.0000 0.9693	0 <b>.9334</b> 1.0204	910.45 -	982.05
Tetrahydrofuran- n-Propanol	H.M.R. C.S.M.		0.9745 0.9957	0 <b>.9965</b> 0.9 <b>790</b>	0.0	0.0
n-Propanol- n-Butanol	H.M.R. C.S.M.		0.9910 1.0014	0.99A3 0.9942	0.0	0.0
Acetone-Nater	H.M.R. C.S.M.	<b>373.</b> 15	1.0000 0.9967	0.9428 1.0543	406.18	-411.05
	H.M.R. C.S.M.	423.15	1.0000 0.9870	0。93 <b>12</b> 1。0404	611.93	-613.05
	H.M.R. C.S.M.	473.15	1.0000 0.9756	0.9288 1.03 <b>20</b>	790.50	-823.29
	H.M.R. C.S.H.	523.15	1.0000 0.9688	0 <b>.9192</b> 1.02 <b>18</b>	1038.92	-1045.86

``

## Binary Interaction Parameters for Polar-Polar Binary Systems

.

Systeas	*****		ی ہے ہے تا ہے ان اور میں میں اور			
(1) - (2)	Nodel	т (К)	¥ij	۲ _{і j}	Δ ₁₂ (cal/gmol)	Δ 21 (cal/guol)
Hydrogen Sulfide- Water	H.M.R. C.S.M.		0.8568 0.9528	1.0000 1.0880	-403.83	215.21
Water-Pyridine	H.M.R. C. S. N.	323.15	1.0000 0.9755	0.9751 0.9925	-1286.53 -	-2424.18
	H.M.R. C.S.N.	343.00	1.0000 0.8796	0.9671 1.0154	-1334.98	-1327.86
	H.M.R. C <u>.</u> S.N.	363.00	1.0000 0.9263	0.9609 0.9874	-1429.19 -	- 1230.63
Nethanol-Nater	H.M.R. C.S.M.		1.0000 1.0075	0.9542 1.0300	- 1257.73	186.89 -
Vater-n-Butanol	H.M.R. C.S.M.		1.0000 0.6945	0.9128 1.1143	-1596.57	-2299.98
Water-Phenol	H.M.R. C.S.M.		1.0000 1.2574	0.8650 0.9125	-1489.32	6628.10

## Table VI.7 (Continued)

#### Table VI.0

.

## Results of Vapor-Liquid Equilibrium Predictions for Polar-Polar Binary Systems

Systems			<b> </b>	<b>الله کار</b> الله الله الله الله الله الله الله الل		% AAR	D		
(1) - (2)	NOGET	K	ρ	[[ ]	K 2	I 1	¥ 2	Y 1	¥ 2
Carbon Dioxide~ Hethanol	H.M.R. C. S. N.			3.26 10.34	9.39 43.48	3.60 12.00	6.30 22.78	0.09 0.11	9.71 11.55
Diethyl Bther- Hethanol	H.M.R. <b>C. S. H.</b>			5. 89 7. 5 <b>5</b>	6.84 9.26	5.52 8.26	8.52 10.32	1.76 2.26	3.94 10.00
Tetrahydrofuran- a-Propanol	H.M.R. <b>C.S.N.</b>			0., 5 <b>2</b> 0., 5 <b>7</b>	6.22 6.37	2.50 2.57	1.45 1.47	2.66 2.71	7_49 7_69
n-Propanol- a-Butanol	H.M.R. C. S. M.			0.03 0.03	2.87 3.02	3.05 3.17	2.61 2.74	3.05 3.17	5.60 5.89
Acetone-Nater	H.M.R. C.S.N.	373.15		6.4 <b>2</b> 23.4 <b>3</b>	3.10 31.01	8.33 19.41	3.30 18.44	2.28 19.12	1.65 22.68
	H.M.R. C.S.N.	423.15		ნ. 4 <b>3</b> 21. 0 <b>7</b>	6.67 29.82	5.20 21.09	5.97 18.43	1.82 15.07	1.80 26.80
	H.M.R. C.S.H.	473.15		3。2 <b>2</b> 20. 5 <b>8</b>	3.83 32.74	6.75 20.57	4.34 19.60	4.34 20.16	2.28 21.92

Table VI.8 (Continued)

Systens			ى تى تى ھى ھى ھى ھى ھە تى تە	ی <b>دی دی دی دی دی دی</b> در ا		% AAR	D	******	
(1) - (2)	uodet	ĸ	ρ		к 2	х 1	¥ 2	¥ 1	¥ 2
다 다 다 다 파 라 라 다 두 <b>다 속 나 다 다 다 두 두</b>			<b>4월 43 월) 월 18 4</b> 3 13	<b>مله دله الله دليه</b>					
Acotono-Vator	H.M.R. <b>C• S• H•</b>	523.15		9. 41 27. 74	2.55 31.70	7.00 28.37	2.01 22.14	4.16 18.20	0.96 24.42
Hydrogen Sulfide- Dater	H.M.R. C.S.N.			6. 40 10. 23	8.12 11.84	6.38 21.58	0.31 0.61	0.54 0.84	8.29 11.94
Uator-Pyridine	H.M.R. <b>C. S. H.</b>	323.15		2 <b>. 21</b> 9 <b>. 93</b>	7.52 22.06	3.02 23.48	13.02 12.67	1.84 11.70	4.58 7.92
	H.M.R. C.S.M.	343.00		2. 21 9. 46	5.27 15.41	2.13 15.41	5.42 31.92	1.29 9.92	3.04 17.82
	H.M.R. C. S. H.	363.00		¥. 26 10. 06	5.60 11.26	1_48 23_99	6.86 16.92	1.12 9.72	1.88 10.37
Nethanol-Vater	H.M.R. C•S•H•		1.60 1.88	4 <b>. 74</b> 4 <b>. 80</b>	7.34 6.36	7.36 7.35	6.67 9.45	3.49 3.38	9.31 10.70
Nater-a-Butanol	H.M.R. <b>C. S. M.</b>			3.56 18.59	14.81 30.45	2.94 19.29	10.28 30.46	1.76 18.57	5.23 31.10
Vater-Phenol	H.M.R. C•S•M•			7. 58 26. 40	19.16 76.83	7.08 44.39	15.22 84.86	0.18 0.88	9.86 58.12

.

.

;

data correlation can be significantly improved by using the HMR. Figure 14 shows good agreement between experiment and calculated compositions using the HMR for carbon dioxidemethanol system. The carbon dioxide molecules and methanol are different in size, shape and polarity. molecules Therefore the mixture of these components produces exotic phase behavior. In Figure 14, the CSM fails badly when the nonideality occurs at the composition of CO2 greater than 0.6. Good fits were obtained at both 25 C and 40 C using the HMR with one set of parameters. Figures 15-18 show the results for acetone-water system at four temperature. The HMR yields accurate results up to the critical point for this nonideal system with azeotropes. As shown in theses figures the CSM has a tendency towards predicting false phase-splitting. Similar observation was also noted by Huron and Vidal (1979). Figures 19 and 20 show water-n-butanol and water-phenol systems. The same patterns can be seen in these figures. Good predictions were obtained from the HMR, predictions were obtained from the CSM. Though poor tetrahydrofuran-n-propanol, n-propanol-n-butanol, and methanol-water systems contain polar and associating compounds, these mixtures are only slightly nonideal. The ideality of these systems is reflected in their activity coefficients. The activity coefficients of these components in the mixture do not differ substantially from unity. As a result, both types of mixing rules give good predictions for VLE and mixture density (see table VI.8).



THE P-X DIAGRAM OF THE CO2-METHANOL SYSTEM AT 25.0 C

. .











THE P-X DIAGRAM OF THE ACETONE-WATER SYSTEM AT 200.0 C



THE P-X DIAGRAM OF THE ACETONE-HATER SYSTEM AT 250.0 C



THE T-X BIAGRAM OF THE HATER-N-BUTANOL SYSTEM AT ATMOSPHERIC PRESSURE



THE P-X DIAGRAM OF THE WATER-PHENOL SYSTEM AT 44.4 C

For the polar-polar binary systems, again the HMR is able to describe phase behavior with reasonable accuracy.

6.3 Application to Nonpolar-Nonpolar Binary Systems.

The applicability of the HME was also tested for nonpolar-nonpolar systems. Table VI.9 lists these systems. The binary parameters are given in table VI.10 together with the results for K value predictions. For the nonpolar mixtures of nearly equal size molecules such as cyclohexane-toluene, ethane-n-butane and propane-n-butane, the CSM and the HMR (with  $\Delta_{12} = \Delta_{21} = 0$ ) give good results. For mixtures of differently sized molecules, the HNR with two binary parameters was totally inadequate. Three parameters were needed to adequately correlate the data. The CSM can adequately represent these systems using only two binary parameters. The CSM is applicable to nonpolar mixtures regardless of mixture component molecular size.

The HMR is adequate for nonpolar mixtures but that HMR with  $\Delta_{ij}$  =0 is not adequate for mixtures of systems with greatly differing molecular sizes.

### Table VI.9

	~~~~~~~		ین دی شہ جہ سہ کہ کہ کا کہ جہ سے س	~	
Systems	Pro.	No. of	T range	P range	Data References
(1) - (2)		points	n 		
Benzene-Cyclohexane	VLE	22	298-3 52	0.12-1.00	Donald et al. 1958 Tasic et al. 1978
Benzene-Hexane	VLE	23	298- 328	0.15-0.63	Smith et al. 1970 Yuan et al. 1963
Cyclohexane-Toluene	VLE	31	354-381	1	Hyers 1956
Methylcyclohexane- Toluene	VLE	31	333-373	0.19-1.00	Schneider 1961
Ethane-n-Butane	VLE	19	192- 199	3-50	Wichterle et al. 1970
Propane-n-Butane	VLE	17	362- 392	20-37	Kay 1970
Methane-Ethane	VLE	42	338-393	34-54	Mebra et al. 1965
Nethane-Tetralin	VLE	14	543-665	30-223	Sebastian et al. 1979
Nethane-n-Decane	VLE	11 .	54 3- 583	50-125	Lin et al. 1979
Hethane-n-Hexadecane	VLE	10	543-704	30-200	Lin et al. 1980
Hydrogen-Propane	V.LE	16	298- 348	34-204	Trust and Kurata 1971
Hydrogen-n-Butane	VLE	60	338-394	11-170	Klink et al. 1975

Temperature and Pressure Ranges, and Data References for the Nonpolar - Nonpolar Binary Systems Studied in This Work.

Table VI.10

.

Results of Vapor-Liquid Equilibrium Predictions, and Binary Interaction Parameters for NonPolar-NonPolar Binary Systems

Mada I	ξ	7			% AARD	
HOQ e 1	۲ ij	ij	Δ ij (cal/guol)	∆ ji (cal/gmol)	К 1	К 2
H.M.R. C.S.N.	0.9800 0.9787	0。9692 0。9817	0.0	0.0	3.70 3.54	3.12 3.07
H.M.R. C.S.M.	0.9414 0.9459	0,9953 0,9947	0.0	0_0	0.98 0.90	1.53 1.57
H.M.R. C.S.M.	0.9349 0.9877	1.0084 0.9910	0.0	0_0	0.76 0.69	2.07 1.80
H.M.R. C.s.H.	1.0190 1.0079	0.9848 0.9906	0.0	0.0	1.53· 1.09	2.13 2.22
H.M.R. C.S.M.	0.9704 1.0019	1.0111 0.9869	0.0	0.0	1.45 1.92	1.14 2.50
H.M.R. C.S.M.	0. 98 18 0. 9989	0.9800 0.9494	0.0	0.0	1.26 2.88	1.98 3.12
H.M.R. C.S.N.	1.0105 1.0054	1.0479 0.9792	0.0	0.0	0.89 0.98	5.57 5.09
	Hodel H.M.R. C.S.N. H.M.R. C.S.M. H.M.R. C.S.M. H.M.R. C.S.M. H.M.R. C.S.M. H.M.R. C.S.M. H.M.R. C.S.M.	Nodel ξ H.M.R. 0.9800 C.S.N. 0.9787 H.M.R. 0.9414 C.S.N. 0.9459 H.M.R. 0.9349 C.S.M. 0.9877 H.M.R. 0.9377 H.M.R. 0.9377 H.M.R. 0.9389 H.M.R. 0.9704 C.S.M. 1.0079 H.M.R. 0.9704 C.S.M. 1.0019 H.M.R. 0.9818 C.S.M. 0.9989 H.M.R. 1.0105 C.S.N. 1.0054	Nodel \$\mathbf{ij}\$ \$\mathbf{ij}\$ H.M.R. 0.9800 0.9692 C.S.N. 0.9787 0.9817 H.M.R. 0.9414 0.9953 C.S.M. 0.9459 0.9947 H.M.R. 0.9349 1.0084 C.S.M. 0.9349 1.0084 C.S.M. 0.9349 0.9910 H.M.R. 0.9770 0.9910 H.M.R. 1.0079 0.9946 C.S.M. 0.9704 1.0111 C.S.M. 1.0019 0.9869 H.M.R. 0.99818 0.9800 C.S.M. 0.9989 0.9494 H.M.R. 1.0105 1.0479 C.S.N. 1.0054 0.9792	Nodel ξ_{ij} ζ_{ij} Δ_{ij} (cal/guol)H.M.R.0.98000.96920.0C.S.N.0.97870.9817-H.M.R.0.94140.99530.0C.S.H.0.94590.9947-H.M.R.0.93491.00840.0C.S.H.0.98770.9910-H.M.R.1.01900.98480.0C.S.H.1.00790.9906-H.M.R.1.00190.98480.0C.S.H.1.00790.9906-H.M.R.0.97041.01110.0C.S.H.1.00190.9869-H.M.R.0.99180.9800-H.M.R.1.00190.9869-H.M.R.1.00190.98000.0C.S.H.1.00190.9800-H.M.R.1.01051.04790.0C.S.N.1.00540.9792-	Nodel ξ_{ij} ζ_{ij} Δ_{ij} Δ_{ji} H.M.R.0.98000.96920.00.0C.S.N.0.97870.9817-H.M.R.0.94140.99530.00.0C.S.M.0.94590.9947H.M.R.0.93491.00840.00.0C.S.M.0.98770.9910H.M.R.0.93491.00840.00.0C.S.M.0.98770.9910H.M.R.1.01900.98480.00.0C.S.M.1.00790.9906H.M.R.0.97041.01110.00.0C.S.M.1.00190.9869H.M.R.0.98180.98000.0-H.M.R.1.01051.04790.00.0C.S.M.1.00540.9792	Hodel ξ ij ζ ij A_{ij} (cal/guol) A_{ji} (cal/guol) K i i (cal/guol)H.M.R.0.98000.96920.00.03.70C.S.N.0.97070.98173.54H.M.R.0.94140.99530.00.00.98C.S.N.0.94590.99470.90H.M.R.0.93491.00840.00.00.76C.S.M.0.98770.99100.69H.M.R.1.01900.98480.00.01.53C.S.M.1.00790.99061.09H.M.R.0.97041.01110.00.01.45C.S.M.1.00190.98691.92H.M.R.0.90180.98000.00.01.26C.S.M.1.00190.98000.00.01.26C.S.M.0.99890.94942.88H.M.R.1.01051.04790.00.00.89C.S.N.1.00540.97920.98

Systems	Nodol		7	_		%	AARD
(1) - (2)	HOUE1	^و ij	ij	Δ ij (cal/gmol)	∆ ji (cal/gmol)	к 1	K 2
Nethane-Tetralin	H.M.R. H.M.R. C.S.M.	1.0181 1.1025 1.0778	0.8168 1.0000 0.8168	0.0 1374.26	0.0 1956.37	20.00 7.75 6.50	19.12 9.80 8.50
Methane-n-Decane	H.M.R. H.M.R. C.S.M.	1. 2622 1. 1531 1. 1078	1.3947 1.0000 0.8540	0.0 1953.23 -	0.0 19132.96 -	17.24 2.61 2.31	19.24 7.38 4.85
Hethane- n-Hexadecane	H.M.R. H.M.R. C.S.M.	1. 1460 1. 0000 1. 1323	1.8050 1.5497 0.7618	0.0 -1214.69 -	0.0 90.73	26.53 12.50 7.73	50.60 13.70 9.63
Hydrogen- Propane	H.M.R. H.M.R. C.S.M.	1. 1040 1. 1222 1. 0773	1.5800 1.0000 1.2863	0.0 -8130.78 -	0.0 3404.01 -	10.97 6.13 7.14	15.43 7.89 12.60
Hydrogen- n-Butane	H.M.R. H.M.R. C.S.M.	1.1550 1.1600 1.1029	1.6650 1.0000 1.3286	0.0 2762.00 -	0.0 16473.00 -	10.67 2.89 4.83	17.30 12.30 13.81

Table VI.10 (Continued)

•

.

.

CHAPTER VII

PREDICTIONS OF THERMODYNAMIC PROPERTIES FOR MULTICOMPONENT MIXTURES

This section illustrates the extension of the HMR to multicomponent systems by considering n different types of cells in the fluid, where n is the total number of components in the fluid mixture. A molecule of type i is at the center of each cell (i=1,2,.... n). Four ternary mixtures were studied each consisting of two hydrocarbous (cycloherane, benzene, n-hexane, toluene anđ methylcyclohexane) and one polar and associating compound (aniline, ethanol). The list of systems are presented in table VII.1, together with the ranges of the data used and the data references. Predictions of VLE behavior for each . system were achieved by performing isothermal flash calculations. The parameters for each of the pairs of components were those determined from fitting the binary VLE data. These binary parameters were reported in table VI.4 and VI.10. No ternary parameters were required. The results are given in table VII.2. Generally, the HMR yields better results than the CSM. The CSM predicted K- values and

Table VII.1

Temperature and Pressure Ranges, and Data References for the Ternary Systems Studied in This Work.

			، د		
Systells	FLO.	NO. OI points	r range K	r range atm	Data Kererences
(1) (2) (3)	فوقات و وقا		**	4	
Cycloherane- Aniline- Benzene	VLE	10	343	0.34-0.69	Podder 1963
Hethylcyclohexane- Aniline- Toluene	VLE	25	353-373	0.32-0.90	Schneider 1961
n-Hexane- Ethanol- Benzene	VLE	42	328	0.54-0.88	Yuan et al. 1963
Toluene- Cyclobexane- Ethanol	VLE	10	323	0.32-0.50	Zharov et al. 1968

.

.

Tab.	Le v	'II.	2

. .

Hodel % AARD Systems والمراجعة فياد وترافية بمراجع بالمراجع بالمراجع والمراجع X (1) - (2) - (3)ĸ К Х X Y Y Y ĸ 2 3 4 2 3 2 3 1 1 ---------------------_____ _____ . 2.17 2.65 2.35 2.93 2.91 0.14 Cycloherane-H.M.R. 4.01 4.91 0.17 16.00 13.93 Aniline-C.S.H. 12.61 4.28 8.24 9.24 0.37 16.12 0.44 Benzene H.M.R. 7.62 2.08 3.79 6-91 2.02 0.18 0.15 Methvl 3.61 2.96 C.S.H. 6.94 6.59 2.88 8.42 13.85 2.36 0.83 11.46 0.99 cycloherane-Aniline-Toluene . H.M.R. 7.79 8.81 10.74 7.07 8.31 7.88 10.32 4.59 5.19 n-Hexane-35.24 21.54 49.27 19.41 C.S.M. 41.00 21.98 9.44 Ethanol-15.85 7.3 Benzene H.M.R. 6.17 8.37 12.02 10.60 11.91 17.78 11.36 3.15 Toluene-2.58 14.94 29.25 33.77 21.52 47.45 43.61 26.33 C.S.H. 2.00 Cycloherane-9.65 Ethanol

,

.

Results of Vapor-Liquid Equilibrium Predictions for Ternary Systems

phase compositions for cyclohexane-aniline-benzene and methylcyclohexane-aniline-toluene systems with reasonable accuracy. However, results were not as good for the mixtures containing ethanol. This decrease in accuracy is probably due to the difference in size, shape and polarity between ethanol and aniline molecules. However, the results generally indicate reliable predictions of VLE for multicomponent systems using the HMR.

CHAPTER VIII

COMPOSITION DEPENDENCE OF THE EXCESS GIBBS FREE ENERGY

From an equation of state, the fugacity coefficient of component i in the mixture ϕ_i , and in the pure state ϕ_i^* at the same temperature and pressure as the mixture can be calculated (see appendix A and B). The activity coefficient of component i in the mixture can be defined as:

$$\begin{array}{c} \Phi_{1} \\ \Gamma = ---- \\ i \\ * \\ \Phi_{i} \end{array}$$
(55)

and the excess Gibbs free energy can be expressed as:

$$G = RT \Sigma \mathbf{x} \ln \Gamma$$
(56)

The excess properties, for example the excess Gibbs free energy, although important, are often not used in the development of theories and physical properties correlations describing gas and liquid behavior, since PVT and VLE data usually are sufficient. When the excess Gibbs free energy and/or activity coefficient data are not included in determining the binary parameters, the calculated fugacity coefficients may differ from experiment, even though the calculated fugacity coefficients in the liquid phase are the same as those in the wapor phase. Figures 21-23 show comparisons of experimental and calculated activity coefficients for some selected binary systems. Figures 24-26 show the composition dependence of the excess Gibbs free energy. For highly nonideal solutions such as methanolbenzene mixture, the activity coefficients at the dilute compositions are substantially different from unity (see Figure 21). The HMR is able to reproduce the data while the CSM fail badly. These effects are reflected in the excess Gibbs free energy predictions (see Figure 24). When the activity coefficients approach unity, the difference between these calculations essentially indistinguishable. are Figures 21-23 indicate the VLE calculations in this work using the HMR did not falsify the activity coefficients and Figures 24-26 show good predictions of excess Gibbs free energy for the total composition range using the HMR, without including these data in the fit. The prediction accuracy for VLE is commensurate with that obtained for excess Gibbs free energy.

ACTIVITY COEFFICIENTS OF THE METHANOL-BENZENE SYSTEM AT 25.0 C

ACTIVITY COEFFICIENTS OF THE CO2-METHANOL SYSTEM AT 25.0 C

ACTIVITY COEFFICIENTS OF THE ACETONE-WATER SYSTEM AT 100.0 C FIGURE 23

EXCESS GIBBS ENERGY FOR THE METHANOL-BENZENE SYSTEM AT 25.0 C

EXCESS GIBBS ENERGY FOR THE CO2-METHANOL SYSTEM AT 25.0 C

EXCESS GIBBS ENERGY FOR THE ACETONE-WATER SYSTEM AT 100.0 C

CHAPTER IX

PREDICTIONS OF LIQUID-LIQUID EQUILIBRIA

A water-rich liquid phase will form when the water present in a hydrocarbon mixture exceeds its solubility limit. The presence of this free-water phase in the process stream poses adverse effects such as corrosion. Therefore. the knowledge of hydrocarbon-water nutual solubility is very important in the petroleum, synthetic fuels, chemical and petrochemical industries. To provide further perspective of the applicability of the HMR, it was tested using liquidliquid equilibria (LLE) data for coal fluid-water systems. Table IX-1 lists seven representative model coal compound+water binary mixtures. Generally, LLE is very difficult to describe. This difficulty is due to the differences in the solubilities of hydrocarbons and water in two liquid phases. The water-rich phase is almost pure water, and the hydrocarbon-rich liquid phase can contain a significant amount of water. Four parameters were fit to the HMP, and two parameters were fit to the CSM. Several attempts were made to add more parameters to the CSM, but the physical meaning of the obtained binary parameters was

Table IX.1

Temperature and Pressure Ranges, and Data References for the Coal Fluid - Water Binary Systems Studied in This Work.

Systems		Pro.	No. of points	T range K	P range	Data References	
(1)	~~ (2)		points.	۲. 	d, L 2	*****	
Benzen	eVater	LLE	6	313-473	0 . 3- 30. 20	Tsonopoulos et al. 1982	
Cycloh	erane-Water	LLE	8	313- 482	0.3-30.00	Tsonopoulos et al. 1982	
Hexane	evater	LLE	б	310-473	()。45-35,1	Tsonopoulos et al 1982	
Ethylb	enzene-Water	LLE	6	373-804	1.0-85.0	Brady et al. 1982	
Bthylc Water	yclohexane-	LLE	6	37 3-804	1.0~87.0	Brady et al. 1982	
1-Neth Vater	ylnapthalene-	LLB	6	37 3-804	2.0-63.2	Brady et al. 1982	
1-Ethy Water	lnapthalene-	LLE	б	37 3-804	2.0-63.0	Brady et al. 1982	

1 LLE = Liguid-Liguid Equilibrium

.

lost, and the prediction results were not satisfactory. The binary parameters are reported in table IX.2. Results are given in table IX.3 in terms of average absolute relative deviation for predicted mole fractions. Significant improvements over the CSM were obtained using the HMR. Figures 27-30 show the experimental and calculated LLE for four selected systems. The CSM is not able to predict LLE, while the HMR is adequate for LLE calculations.
Table IX.2

.

Binary Interaction Parameters for Coal Pluid-Water Systems (Liquid-Liquid Equilibrium)

Systels	Wa 2a 1	1,0			_	
(1) - (2)	uodet	^k ij	ر نا	Δ 12 (cal/gmol)	Δ 21 (cal/gmol)	
Benzene-Water	H.M.R. C.S.H.	0.6938 0.5578	0.7239 0.1310	4431.71	176.52	
Cyclohexane-Water	H.M.R. C.S.H.	0.3158 0.5943	0.6190 0.1568	-34.00	7541.40	
Hexane-Water	H.M.R. C.S.H.	0.1000 0.5712	0.6224 0.1423	7768.46	4.12	
Bthybenzene-Water	H.M.R. C.S.N.	0.2341 0.5319	0.6878 0.4679	5040.95	418.86	
Et hylcyclohexane-Water	H.M.R. C.S.M.	0.1000 0.5629	0.5763 0.1137	7476.78 -	155.24 -	
1-Netbylnapthalene-Water	H.M.R. C.S.H.	0.2682 1.3601	0.9088 0.9167	-258.19	-2459.91 -	
1-Ethylnapthalene-Water	H.M.R. C.S.M.	0.2000 1.1273	0.9085 0.8565	-270,95	-2829.23	

.

Table II.3

.

· ·

و

Systems				Rodel			% AARD
(1)	-	(2)				\$ I 1	б Х 2
Benzene-W	ater			H.M.R C.S.H .	•	3.86 50.46	12.93 337.12
Cyclohexa	ne-Water			H.M.R C.S.M.	•	11.4 6 173.00	18 .59 1431-66
Нејаре-Ја	ter			H.M.R. C.S.B .		11.37 2137.44	14,79 1139,23
Ethybenze	ne-Water			H.M.R. C.S.H.	•	24.68 777.25	14 _07 1015 - 66
Etbylcycl	oherane-W	iter		H.M.R. C.S.M.	•	27.58 116.31	28.36 3361.88
1-Methyln	apthalene-	Water		H.M.R. C.S.E.	•	29.54 6870.10	14 . 74 3899 . 06
1-Etbylna	pthalene-N	ater		H.M.R. C.S.M.		27 .77 5949.70	12.3 3 3833.06
<pre>\$ Mole fra Mole fra</pre>	ction of c	component	1 in 2 in	liquid liquid	phase	2	

Results of Liquid-Liquid Equilibrium Predictions for Coal Pluid-Hater Systems

MUTUAL SOLUBILITY OF BENZENE AND HATER

FIGURE 27

FIGURE 28

MUTUAL SOLUBILITY OF N-MEXANE AND WATER

PIGURE 29

FIGURE 30

CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

The local composition model was used to develop a mixing rule for the characteristic energy parameter ε_{χ} in the MPM correlation. The mixing rules for the size parameter σ_{χ}^3 and the orientation parameter γ_{χ} were based on the conventional one-fluid model. Consequently, the mixing rules for the MPH correlation contain characteristics of both one and two-fluid models. These hybrid mixing rules with the MPM correlation were successfully applied to predict vapor-liquid equilibria and mixture density for binary mixtures of components differing significantly in size, shape, structure and polarity.

Nonpolar-polar binary systems including hydrocarbons with ketones, aniline, alcohols, water and polar-polar binaries such as acetone-water, carbon dioxide-water and water-phenol were well represented by these hybrid mixing rules. On the contrary, the conformal solution model was not able to accurately describe the phase behavior of these highly nonideal solutions. For slightly nonideal solutions such as propane- n-butane, cyclohexane-toluene, both types

of mixing rules gave good VLE predictions. The hybrid mixing rules were also extended to multicomponent systems without requiring additional parameters. These hybrid mixing rules with the parameters obtained from the binaries were tested for VLE calculations for ternary systems such as cyclohexane-aniline-benzene and n-hexane-ethanol-benzene. The prediction accuracy for these ternary systems is commensurate with that obtained for the binaries. The hybrid mixing rules were further applied with satisfactory results to predict liquid-liquid equilibria for coal fluid-water systems such as benzene-water, 1-methylnapthalene-water and ethylbenzene-water. The conformal solution model could not predict liquid-liquid equilibria behavior accurately.

The calculated activity coefficients from the HPH correlation with the hybrid mixing rules were also studied. The excess Gibbs free energy was also predicted with reasonable accuracy by the hybrid mixing rules.

A significant point in this study is that the hybrid mixing rules, which are based on one and two-fluid models can accurately predict fluid-phase equilibria for many types of mixtures corresponding to different types of phase behavior.

In order to be applicable in industry, correlations must be relatively simple and convenient to use. It is recommended that the binary parameters needed in the present correlation be correlated as functions of temperature for mixtures with azeotropic phase behavior and that the

parameters be further generalized so that the hybrid mixing rules may be more conveniently applied to multicomponent mixtures.

يعبرو

·

NOMENCLATURE

Roman

•

A - A	Helmholtz free energy departure
A	Helmholtz free energy
Е i	generalized ith equation-of-state parameter
a _i , b	universal constant in expression for E
Í,	fugacity of the ith component in a minture
f ⁰ i	standard-state reference fugacity
^g ij	radial distribution function
g ^E	excess Gibbs free energy
н – н	enthalpy departure
k	Boltzmann constant (1.38054 x 10^{-23} J/K)
^L ij	nearest neighbor distance
n _{ij}	nearest neighbor number of molecules of type i
	surrounding the central j molecule
N	total number of molecules
P	absolute pressure
P	ideal gas pressure
R	Ideal gas constant
т	absolute temperature
т	reduced temperature

Roman

.

тс	critical temperature
s - s	entropy departure
"ij	molar internal energy
a	total internal energy
۷	specific volume
▼ _{ij}	spherical volume
A 0	ideal gas volume
* _{ij}	local mole fraction
* _i	total mole fraction
₩ _{ij}	mean potential of mean force
Z	coordination number
Z	compressibility factor

Greek

α	nonrandomness parameter
Υ	molecular orientation parameter
Г	activity coefficient of the ith component
	in a mixture
ε	characteristic molecular-energy parameter
к	polar and association parameter
Ęij Gij Δ12	
Δ21	binary interaction parameters
ρ	density
ρ*	reduced density
ρ _c	critical density

σ	characteristic molecular-size parameter					
Ф _і	fugacity coefficient of the ith component in					
	a mixture					
Φ [*] _i	fugacity coefficient of the ith component in					
	a pure state at the same T, and P of the mixture					

LITERATURE CITED

Abrams, D.S., and J.M. Prausnitz, AIChE, 21, 116 (1975). Andon, R.J.L., J.D. Cox, and E.F.G. Herington, Trans. Far. Soc., 53, 410 (1957). Benedict, M., C.A. Johson, E. Solomon, and L.C. Rubin, Frans. of Amer. Ins. of Chem. Eng., 41, 4 (1945). Boston, J.F., and H.I. Britt, Comp. Chem. Eng., 2, 109 (1978). Srady, C.J, and G.M. Wilson, Water-Hydrocarbon Liquid-Liquid-Vapor Equilibrium Measurements to 530 F, Reseach Report, RR-62, Gas Proc. Ass. (1982). Britt, H.I., and B.H. Luecke, Technometrics, 15, 233 (1973). Brule, M.R., C.T. Lin, S. Watanasiri, and K.E. Starling, AIChE, 28, 616 (1982). Culberson, C.L., and J.J. MacKetta Jr., Petro. Frans., AIME, 192, 223 (1951). Cilberson, O.L., and J.J. MacKetta Jr., Petro. Trans., AIME, 189, 319 (1951). Donald, M.B., and K. Ridgway, Chem. Eng. Sci., 5, 188 (1956). Donald, M.B., and K. Ridgway, J. App. Chem., 8, 403 (1958). Fisher, J., and S. Lago, J. Chem. Phys., 78, 5750 (1983). Gay, L., Chim. Ind., 18, 187 (1927). Gnehling, J., J. Chem. Eng. Data, 27, 4, 371 (1982). Smehling, J., U. Onken, and H.W. Schulte, J. Chem. Eng. Data, 25, 1, 29 (1980). Gnehling, J., U. Onken, "Vapor-Liquid Equilibrium Data Collection", DECHEMA Chemistry Data Series: Frankfurt,

Vol. I, part1 (1977a).

- Smehling, J., U. Onken, "Vapor-Liquid Equilibrium Data Collection", DECHEMA Chemistry Data Series: Frankfurt, Vol. I, part2a (1977b).
- Gmehling, J., U. Onken, W. Arlt, "Vapor-Liquid Equilibrium Data Collection", DECHEMA Chemistry Data Series: Frankfurt, Vol. I, part2b (1977c).
- Goin, K.H., "Development of Equation of State for Fluid-Correlation Methodology for Thermodynamic and PVT Properties, Including a Case Study for Water," Ph.D. Thesis, The University of Okalahoma, Norman OK (1978).
- Sriswold, J., and S.Y. Wong, Chem. Eng. Prog. Sympos. Series, 48, 3, 18 (1952).
- Suggenheim, E.A., Proc. R. Soc. (London), Ser. A, 148, 304 (1935).
- Guggenheim, E.A., Mixtures, Oxford Jniv. Press, London
 (1952).
- Guggenheim, E.A., Applications of Statistical Mechanics, Oxford Univ. Press, London (1966).
- Gurukul, M.K.A., and B.N. Baju, J. Chem. Eng. Data, 11, 4, 501 (1956)
- Hoeisel, C., Ber. Bunsen. Phys. Chem., 85, 1054 (1981).
- Hosseini, S.M., and G. Schneider, Z. fur Phys. Chem. Neue Folge, 36, 137 (1953).
- Hu, Y., E.G. Azevedo, and J.M. Prausnitz, The molecular basic for local compositions in liquid mixture model. To be published. (1983).
- Huron, M.J., and J. Vidal, Fluid Phase Equil., 3, 255 (1979).
- Hwang, S. C., and R.L. Robinson, Jr., J. Chem. Eng. Data, 22, 3, 319 (1977).
- Ibl, N.D., G. Daenliker, and G. Trurempler, Helv. Chim. Acta, 37, 1661 (1954).
- Katayana, T., K. Ohyaki, J. Maekawa, M. Goto, and T. Nagano, J. Chem. Eng. Japan, 8, 2, 89 (1975).
- Kato, H., H. Konishi, and M. Hirata, J. Chem. Eng. Data, 15, 3, 435 (1970).

Kay, W.B., J. Chem. Eng. Data, 15, 1, 48 (1970).

- Kemeny, S., and P. Rasmussen, Fluid Phase Equil., 7, 197 (1931).
- Kretschmer, C.B., and R. Wiebe, J. Amer. Chem. Soc., 71, 1793 (1949).
- Kudryavtseva, L.S., M.P. Surarev, Z. Prikl. Khim., 36, 1471 (1963).
- Lee, L.L., T.H. Chung, and K.E. Starling, Fluid Phase Equil., 12, 105 (1983).
- Lee, T.J., L.L. Lee, and K.E. Starling, ACS Adv. Chem. Ser., 182, 125 (1979).
- Luong, T.H., et al., "Development of a Thermodynamic Properties Correlation Framework for the Coal Conversion Industry. Phase III.", Third Semi-Annual Report, The U.S. Department of Energy, Pittsburgh Energy Technology Center (1983).
- Martin, A.R., and C.M. George, J. Chem. Soc. (London), 1413 (1931).
- Mathias, P.M., and T.W. Copeman, Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept, preprint, private communication (1983).
- Hehra, V.S., and T. George, J. Chem. Eng. Dev., 10, 4, 307 (1965).
- Mikhail, A.Z., and W.R. Kimel, J. Chem. Eng. Data., 6, 4, 533 (1961).
- Myer, H.S., Ind. Eng. Chem., 48, 6, 1104 (1956).
- Nagata, I., T. Yamada, K. Goto, and K. Kazuma, J. Chen. Eng. Japan, 8, 71 (1975).
- Nakanishi, K., S. Okazaki, K. Ikari, F. Higuchi, and H. Tanaka, J. Chem. Phys., 76, 629 (1982).
- Nakanishi, K., and K. Foukubo, J. Chem. Phys., 70, 5848, (1979).
- Nitta, T., and T. Katayama, J. Chem. Eng. Japan, 7, 381 (1974).
- Novak, J.P., P. Vonka, J. Suska, J. Matous, and J. Pick, Coll. Czech. Chem. Comm., 39, 3593 (1974).

Ohjaki, K., and T.Katayama, J. Chem. Eng. Data., 21, 1, 53 (1976). Ohgaki, K., F. Sano, and T. Katayama, J. Chem. Eng. Data, 21, 1, 55 (1976). Olds, R.H., B.H. Sage, W.N. Lacey, Ind. Eng. Chem., 34, 10, 1223 (1942). Palmer, J.A., and D.B. Smith, Ind. Eng. Chem. Proc. Des. Dev., 11, 114 (1972). Panayiotou, C., and J.H. Vera, Can. J. Chem. Eng., 59, 501 (1981). Paulaitis, M.E., Private communication, (1984). Pang, D.Y., and D.B. Robinson, Ind. Eng. Chem. Fund., 15, 59 (1976). Polder, C., Z. fur Phys. Chem. Neue Folge, 39, 79 (1963). Reamer, J.H., R.H. Olds, B.H. Sage, and H.N. Lacey, Ind. Eng. Chem., 35, 7, 790 (1943). Reed, I.M., and K.E. Gubbins, Applied Statistical Mechanics, McGraw-Hill, New York (1973). Reid, R.J., J.M. Prausnitz, and T.K. Sherwood, Properties Properties of Gases and Liquids, 3rd Ed., McGraw Hill, New York (1977). Penon, H., and J.M. Prausnitz, AIChE, 14, 135 (1968). Scatchard, G., and F.G. Satkiewicz, J. Amer. Chem. Soc., 86, 130 (1964). Scatcharl, G., S.E. Nood, and J.M. Mochel, J. Amer. Chem. Soc., 58, 1957 (1946). Schneider G., Z. fur Phys. Chem. Neue Folge, 24, 165 (1960). Schneider G., Z. fur Phys. Chem. Neue Folge, 27, 171 (1961). Scott, R.L., J. Chem. Phys., 25, 193 (1956). Selleck, F.T., L.T. Carmichael, and B.H. Sage, Ind. Eng. Chem., 44, 3, 2219 (1952). Smith, V.C., and R.L. Robinson, Jr., J. Chem. Eng. Data, 15, 3, 391 (1970).

. .

Smith, W.R., Can. J. Chem. Eng., 50, 271 (1972).

- Starling, K.E., L.L. Lee, K.C. Mo, C.H. Twu, et al., "Self Consistent Correlation of Thermodynamic and Transport Properties", Final Report GRI/AGA/BR-111-1/77-35, Gas Research Institute and American Gas Association, Arlington, VA (1978).
- Starling, K.E., L.L. Lee, et al., "Development of a Thermolynamic Properties Correlation Frame Work For the Coal Conversion Industry", Final Report, The U.S. Department of Energy, Pittsburgh Energy Technology Center (1983).
- Strubl, K., V. Svobola, R. Holub, and J. Pick, Coll. Zzech. Comm., 35, 3004 (1970).
- Sumer, K.M, and A.R. Thompson, J. Chem. Eng. Data, 12, 4, 489 (1967).
- Tasic, A., B. Djordjevic, D. Grozdanic, N. Afgan, and D. Malic, Chem. Eng. Sci., 33, 189 (1978).
- Tsonopoulos, C., and G.M. Wilson, High temperature mutual solubilities of hydrocarbons and water. I. benzene, cyclohexane, and n-hexane. AIChE (1982).
- Isuboka, F., and T. Katayama, J. Chem. Eng. Japan, 8, 181 (1975).
- Vachhani, N.H., and T.F. Anderson, Mixing rules based on the two-fluid theory for representing highly nonideal systems with an equation of state, preprint, private communication (1982).
- Weller, R., H. Schumberth, E. Leibnitz, J. Prakt. Chem, 21, 234 (1963).
- Whiting, W.B., and J.M. Prausnitz, Fluid Phase Equil., 9, 119 (1982a).
- Whiting, W.B., and J.M. Prausnitz, Ind. Eng. Chem. Fund., (1982b).
- Wichterle I., and R. Kobayashi, Momography, Rice Univ. Houston (1970).
- Wilson, 3.M., J. Am. Chem. Soc., 86, 127 (1964).
- Yoshikawa, Y., A. Takagi, and M. Kato, J. Chem. Eng. Data, 25, 4, 344 (1980).
- Yuan, K.S., and B.C.-Y. Lu, part I, J.C.K. Ho, and B.C.-Y. Lu,

part II, A.K. Keshpande and B.C.-Y. Lu, part III, J. Chem. Eng. Data, 8, 4, 549 (1953).

.

Zharov, V.T., A.G. Morachevsky, L.G. Shapil, and T.A. Buevich, Zh. Prikl. Khim., 41, 2443 (1968).

APPENDIX A

EXPRESSIONS FOR DERIVED THERMODYNAMIC PROPERTIES USING THE CSM

The classical thermodynamic relationships for enthalpy departure and Helmholtz free energy departure are given by:

$$H - H^{0} = -RT^{2} \int_{0}^{p} \left(\frac{\partial Z}{\partial T}\right)_{p} \frac{dp}{p} + RT(Z - 1) \qquad (A-1)$$

and

$$\frac{A-A^{\circ}}{RT} = \int_{0}^{0} (Z-1) \frac{do}{\rho} - \ln \frac{V}{V^{\circ}} \qquad (A-2)$$

Other thermodynamic properties are related to $H - H^0$ and $A - A^0$ through the following relations:

$$S - S^{\circ} = \frac{H - H^{\circ}}{T} - \frac{(A - A^{\circ})}{T} - R(Z - 1)$$
 (A-3)

RT ln
$$\frac{f_{\tilde{1}}}{P^{\theta}y_{i}} = \frac{\partial}{\partial n_{1}} (A - A^{\theta}) \Big|_{T, V, n_{j} \neq i}$$
 (A-4)

Equations (A-1) through (A-4) show that once H = H and A = A are evaluated, the other thermodynamic properties can be readily calculated.

Enthalpy Departure

In terms of reduced temperature T^* , and reduced density ρ^* , equation (A-1) becomes:

.

$$\frac{H - H^{0}}{RT} = -T \int_{0}^{0} \pi \left(\frac{\partial Z}{\partial T^{*}}\right)_{\rho} \left(\frac{dT^{*}}{dT}\right) \frac{d\rho^{*}}{\rho^{*}} + (Z - 1) \qquad (A-5)$$

.

Prom equations (2), (13), (16) and (7)

$$T^* = kT/e_{x}$$

$$\sigma_{x}^{ss}e_{x} = \Sigma\Sigma x_{i}x_{j}\sigma_{ij}^{ss}e_{ij}$$

$$e_{ij} = \zeta_{ij}(e_{i}e_{j})^{1/2}$$

$$e_{i} = e_{ij} + k \times_{i}/T$$

Differentiating T^* and ϵ ,

$$\frac{dT^{\star}}{dT} = \frac{k}{\epsilon_{\chi}} \left(1 - \frac{T}{\epsilon_{\chi}} \frac{d\epsilon_{\chi}}{dT}\right)$$
 (A-6)

$$\frac{d\varepsilon_{x}}{dT} = -\frac{k}{2\sigma_{x}^{so}T^{2}} \Sigma \Sigma x_{i} x_{j} \sigma_{ij}^{s} \zeta_{ij} (\varepsilon_{i} \varepsilon_{j})^{-1/2} (\varepsilon_{i} \kappa_{j} + \varepsilon_{j} \kappa_{i})$$
(A-7)

$$\frac{dT^{\star}}{d\tau} = \frac{k}{\varepsilon_{\chi}} \left(1 + \frac{T^{\star}}{2\sigma_{\chi}^{4.5}\tau^2} \Sigma x_i x_j \sigma_{ij}^{4.5} \zeta_{ij} (\varepsilon_i \varepsilon_j)^{-1/2} (\varepsilon_i \kappa_j + \varepsilon_j \kappa_i) \right)$$
(A-8)

Differentiating Z from equation (1), with respect to \tilde{T} , then integrating, equation (A-5) becomes:

$$\frac{H - H^{0}}{RT} = \left[-T \frac{dT^{*}}{dT}\right] \left[\rho^{*}(E_{2}T^{*-2} + 3E_{3}T^{*-4} - 4E_{9}T^{*-5} + 5E_{11}T^{*-6}) + 0.5\rho^{*2}(E_{6}T^{*-2} + 2E_{10}T^{*-3}) + 0.2\rho^{*5}(-E_{7}T^{*-2} - 2E_{12}T^{*-3}) + \frac{3E_{6}T^{*-4}}{E_{4}} \left(e^{-E_{4}\rho^{*2}}(1 + 0.5E_{4}\rho^{*2}) - 1)\right] + (Z - 1)$$

(A-9)

Substituting (λ -8) into (λ -9), the final expression for H - H can be obtained.

Fugacity

In terms of reduced density, equation (A-2) becomes:

$$\frac{A - A^{0}}{RT} = \int_{0}^{p^{*}} (Z - 1) \frac{dp^{*}}{p^{*}} - \ln \frac{V}{V^{0}}$$
 (A-10)

Substitute Z, from equation (1), into equation (A-10), then integrate, equation (A-10) becomes:

$$\frac{A - A^{0}}{RT} = \rho^{*}(E_{1} - E_{2}T^{*-1} - E_{3}T^{*-3} + E_{9}T^{*-4} - E_{11}T^{*-5}) + 0.5\rho^{*2}(E_{5} - E_{6}T^{*-1} - E_{10}T^{*-2}) + 0.2\rho^{*5}(E_{7}T^{*-1} + E_{12}T^{*-2}) - E_{6}T^{*-3}e^{-E_{4}}\rho^{*2}(\frac{1}{E_{4}} + 0.5\rho^{*2}) + \frac{E_{6}T^{*-3}}{E_{4}} - \ln\frac{V}{V^{0}}$$
(A-11)

From equations (12), (13) and (14)

$$\sigma_{x}^{4.5} = \sum_{ij} \sum_{x_{i}x_{j}} \sigma_{ij}^{4.5}$$

$$\varepsilon_{x}\sigma_{x}^{4.5} = \sum_{ij} \sum_{x_{i}x_{j}} \varepsilon_{ij} \sigma_{ij}^{4.5}$$

$$\gamma_{x}\sigma_{x}^{3.5} = \sum_{ij} \sum_{x_{i}x_{j}} \gamma_{ij} \sigma_{ij}^{3.5}$$

And from equation (A-4), the fugacity of the ith component in a mixture can be obtained by differentiating equation (A-11), with respect to n_{+} :

$$\ln\left(\frac{fi}{x_{i}f_{i}^{\dagger}}\right) = \frac{H - H^{\circ}}{RT} - \frac{S - S^{\circ}}{RT} + \overline{R}_{i}(Z - 1) + \overline{V}_{i}\left[\frac{H - H^{\circ}}{RT} - (Z - 1)\right] / (1 - \frac{T}{\varepsilon}\frac{d\varepsilon}{dT})$$

$$\stackrel{\circ}{\to} \rho^{\pm}[\overline{B}_{1,i}-\overline{B}_{2,i}]^{\pm -1} - \overline{B}_{3,i}]^{\pm -3} + \overline{B}_{9,i}]^{\pm -3} - \overline{B}_{11,i}]^{\pm -5}]$$

$$+ \frac{\rho^{\pm 2}}{2} [\overline{B}_{5,i} - \overline{B}_{6,i}]^{\pm -1} - \overline{B}_{10,i}]^{\pm -2}] + \frac{\rho^{\pm 5}}{5} (\overline{B}_{7,i}]^{\pm -1} + \overline{B}_{12,i}]^{\pm -2})$$

$$+ \overline{B}_{8,i}]^{\pm -3}[1 - e^{-B}4^{\rho^{\pm 2}} - \frac{1}{2}B_{4}\rho^{\pm 2}e^{-B}4^{\rho^{\pm 2}}]/B_{4}$$

(A-12)

where f_i^0 is the standard-state reference fugacity, taken to be unity. The derivatives in equations (A-12) are:

$$\overline{B}_{j,i} = \frac{\partial B_{j}}{\partial n_{i}} | T, V, n_{k \neq i}$$

$$= b_{j} \frac{\partial Y_{x}}{\partial n_{i}} |_{T, V, n_{k \neq i}}$$

$$= b_{j} Y_{x} \left[2(\frac{\Sigma x_{m}Y_{m_{i}}\sigma_{m_{i}}^{3.5}}{Y_{x}\sigma_{x}^{3.5}} - 1) - \frac{3.5}{3} \overline{R}_{i} \right]$$
(A-13)

$$\overline{R}_{i} \equiv \frac{1}{\sigma^{3}} \frac{2\sigma^{3}}{2n_{i}} |_{T,V,n_{k\neq i}}$$
$$= \frac{6}{4.5} \left[\frac{\sum_{m} x_{m} \sigma_{m_{i}}^{4.5}}{\sigma_{x}^{4.5} - 1} \right]$$

(A- 14)

$$\overline{V}_{i} \equiv -\frac{1}{T^{*}} \frac{\partial T^{*}}{\partial n_{i}} \left| T, V, n_{k \neq i} \right|$$

$$= 2 \left[\frac{\sum_{m} x_{m} \varepsilon_{m} \sigma_{m}}{\sum_{m} \varepsilon_{x} \sigma_{x}} - 1 \right] - \frac{4.5}{3} \overline{R}_{i}$$

(A-15)

•

APPENDIX B

.

EXPRESSIONS FOR DERIVED THERMODYNAMIC PROPERTIES USING THE H.M.R.

Using the NMR, Equations (A-1) through (A-6) and (A-9) through (A-12) are still applicable. From equatica (52)

$$\varepsilon_{x} = \Sigma \times_{i} \frac{\sum x_{j} \varepsilon_{ij} \exp(-\Delta_{ij}/RT)}{\sum x_{k} \exp(-\Delta_{ik}/RT)}$$

Equation (1-7) becomes:

$$\frac{d\varepsilon_{x}}{dT} = -\frac{k}{2T^{2}} \Sigma x_{i} \frac{\sum_{j \neq ij} (\varepsilon_{i}\varepsilon_{j})^{-1/2} (\varepsilon_{i}\kappa_{j} + \varepsilon_{j}\kappa_{i})e^{-\Delta_{ij}/RT}}{\sum_{k} e^{-\Delta_{ik}/RT}}$$

$$+ \frac{1}{T^{2}} \Sigma x_{i} \frac{\sum_{j \neq ij} (\Delta_{ij}/R)e^{-\Delta_{ij}/RT}}{\sum_{k} e^{-\Delta_{ik}/RT}}$$

$$- \frac{1}{T^{2}} \Sigma x_{i} \frac{(\sum_{j \neq ij} e^{-\Delta_{ij}/RT}) (\sum_{k} (\Delta_{ik}/R)e^{-\Delta_{ik}/RT})}{(\sum_{k} e^{-\Delta_{ik}/RT})^{2}}$$
(B-1)

From equations (52), (53) and (54)

$$\epsilon_{x} = \Sigma \times_{i} \frac{\sum x_{j} \epsilon_{ij} \exp(-\Delta_{ij}/RT)}{\sum x_{k} \exp(-\Delta_{ik}/RT)}$$

$$\sigma_{x}^{3} = \Sigma \Sigma x_{i} x_{j} \sigma_{ij}^{3}$$
$$\gamma_{x} \sigma_{x}^{3} = \Sigma \Sigma x_{i} x_{j} \gamma_{ij} \sigma_{ij}^{3}$$

The derivatives in equation (A-12) become

.

•

$$\overline{B}_{j,i} = \frac{\partial B_{j}}{\partial n_{i}} | T_{v}V_{v}n_{k\neq i}$$

$$= b_{j}\frac{\partial \gamma_{x}}{\partial n_{i}} | T_{v}V_{v}n_{k\neq i}$$

$$= b_{j}\gamma_{x} \left[2(\frac{\sum x_{m}\gamma_{m}\sigma_{m}^{3}}{\gamma_{x}\sigma_{x}^{3}} - 1) - \overline{R}_{i} \right]$$

$$\overline{R}_{i} = \frac{1}{\sigma^{3}} \frac{\partial \sigma^{3}}{\partial n_{i}} | T_{v}V_{v}n_{k\neq i}$$

$$= 2 \left[\frac{\sum x_{m}\sigma_{m}^{3}}{\sigma_{x}^{3}} - 1 \right]$$
(B-2)
(B-2)
(B-2)
(B-3)

$$\overline{\mathbf{V}}_{i} \equiv -\frac{1}{T^{*}} \frac{\partial T^{*}}{\partial n_{i}} | \mathbf{T}, \mathbf{V}, \mathbf{n}_{k\neq i}$$

$$= \frac{1}{\varepsilon_{x}} \begin{bmatrix} \frac{-\Delta_{ij}/RT}{\sum_{j \in ij} e} + \sum_{j \in ij} x_{m} \frac{-\Delta_{m}/RT}{\sum_{j \in ij} e} + \sum_{j \in ij} x_{m} \frac{\varepsilon_{m}}{\sum_{j \in ij} e} + \sum_{j \in ij} x_{m} \frac{\varepsilon_{m}}{\sum_{j \in ij} e} + \sum_{j \in ij} x_{m} \frac{\varepsilon_{m}}{\sum_{j \in ij} e} + \sum_{j \in ij} \frac{-\Delta_{m}/RT}{\sum_{j \in ij} e} + \sum_{j \in ij} \frac{1}{\sum_{j \in ij} e} + \sum_{j \in ij} \frac{1$$

+
$$\Sigma \times_{m} \frac{(\Sigma \times_{j} \varepsilon_{mj} e^{-\Delta_{mj}/RT}) (e)}{(\Sigma \times_{k} e^{-\Delta_{mk}/RT})^{2}} - \varepsilon_{\chi}$$
(B-4)

APPENDIX C

Table C.1

Detailed Calculations of Vapor-Liquid Equilibria from the H.M.R. (see table VI.4 and Pigure 3)

.

Ethane(1)-Acetone(2) Hixture Data from Ohgaki et al., 1976

N	T (R)	P(PSIA)	X1 (EXP)	X1 (CAL)	DEV %	Y1(EXP)	Y1 (CAL)	DEV %
12335678	536.67 536.67 536.67 536.67 536.67 536.67 536.67 536.67	69.674 142.683 255.665 382.741 487.597 516.651 525.645 570.938	0.0427 0.0915 0.1720 0.2826 0.4485 0.5770 0.6919 0.9268	0.0416 0.0910 0.1774 0.2977 0.4603 0.5604 0.6571 0.9642	-2. 421 -0. 588 3. 099 5. 371 2. 651 -2. 864 -5. 024 4. 039	c. 9371 0. 9647 0. 9769 0. 9809 D. 9819 0. 9816 0. 9821 0. 9 841	0.9359 0.9662 0.9787 0.9831 0.9842 0.9843 0.9843 0.9843 0.9906	-0.122 0.153 0.184 0.229 0.243 0.268 0.268 0.229 0.666
N	T (R)	P(PSIA)	X2 (EXP)	X2 (CAL)	DEV %	¥2 (EXP)	¥2 (CAL)	dev S
12345678	536.67 536.67 536.67 536.67 536.67 536.67 536.67 536.67	69.674 142.683 256.665 382.741 487.597 516.651 525.645 570.938	0.9573 0.9084 0.8279 0.7174 0.5515 0.4230 0.3081 0.0732	0.9583 0.9089 0.8221 0.7022 0.5396 0.4395 0.3429 0.0357	0.108 0.059 -0.644 -2.115 -2.156 3.906 11.290 -51.143	0.0629 0.0352 0.0231 0.0191 0.0181 0.0183 0.0179 0.0159	0.0640 0.0337 0.0212 0.0168 0.0157 0.0156 0.0157 0.0093	1.831 -4.236 -7.811 -11.768 -13.211 -14.376 -12.290 -41.250

.

N	T (R)	P(PSIA)	K1 (EXP)	K1 (CAL)	DEV S	K2(EXP)	K2 (CAL)	DEV 🕺
1	536.67	69.674	21.946	22.463	2.35	0.06571	0.06684	1.72
2	536.67	142.683	10.532	10.611	0.74	0.03875	0.03709	-4.23
3	536.67	256.665	5.676	5.515	-2-82	0.02790	0.02589	-7.21
4	536.67	382.741	3.470	3.301	-4.88	0.02662	0.02400	-9.86
5	536.67	487.597	2.189	2.137	-2.34	0.03282	0.02911	-11.29
6	536.67	516.651	1.701	1.756	3.22	0.04326	0.03565	-17.59
7	536.67	525.645	1.419	1.497	5.53	0.05810	0.04564	-21.44
8	536.67	570.938	1.061	1.027	-3.24	0.21721	0.26120	20.25

NPTS = 8

% AARD OF K₁ 3.14 % AARD OF K₂ 11.70 % AARD OF X₁ 3.25 % AARD OF X₂ 8.92 % AARD OF Y₁ 0.26 % AARD OF Y₂ 13.38

Table C.2

1

Detailed Calculations of Vapor-Liquid Equilibria from the CSM (see table VI.4 and Figure 3)

.

Ethane(1)-Acetone(2) Mixture Data from Ohgaki et al., 1976

N	T (R)	P(PSIA)	X1(EXP)	X1(CAL)	DEV 🛠	Y1 (EXP)	Y1 (CAL)	DEV 🛪
1	536.67	59.674	0.0427	0.0432	1.389	0.9371	0.9360	-0.115
2	536.67	142.683	0.0915	0.0922	0.691	0,9647	0.9651	0.143
3	536.57	256.665	0.1720	0.1734	0.765	0.9769	0.9783	0.153
4	536.67	382.741	0.2826	0.2817	-0.299	0.9809	0,9825	0.170
5	536.67	487, 597	0.4485	0.4423	-1.363	0.9819	0.9833	0.146
6	536.67	516.651	0.5770	0.8696	50.719	0.9816	0.9845	0.292
7	536.67	525.645	0.6919	0.8940	29.216	0.9821	0.9854	0.345
B	536.67	570.938	0.9268	0.9683	4.485	0.9841	0.9924	0.848
N	T (B)	P(PSIA)	X2 (EXP)	X2(CAL)	DEV 🕺	¥2 (EXP)	Y2 (CAL)	DEV %
1	536.67	69.674	0.9573	0.9567	-0.062	0.0629	0.0639	1.723
2	536.67	142.683	0.9084	0.9077	-0.069	0.0352	0.0338	-3.926
3	536.67	256.665	0.8279	0.8265	-0.159	0.0231	0.0216	-6.486
4	536.67	382.741	0.7174	0.7182	0.117	0.0191	0.0174	-8.756
5	536.67	487.597	0.5515	0.5576	1.108	0.0181	0.0166	-7.963
6	536.67	516.651	0.4230	0.1303	-69.184	0.0183	0.0154	-15.679
7	536.67	525.645	0.3081	0.1059	-65.611	0.0179	0.0145	-18.954
8	536.67	570.938	0.0732	0.0316	-56.795	0.0159	0.0075	-52.507

N	T(R)	P(PSIA)	K1 (EXP)	R1 (CAL)	DEV 🗙	K2(EXP)	K2 (CAL)	DEV 🕺
1	536.67	69.674	21.946	21.620	-1.48	0.06571	0.06688	1.78
2	536.67	142.683	10.532	10.475	-0.54	0.03875	0.03725	-3.85
3	536.67	256.665	5.675	5.641	-0.60	0.02790	0.02613	-6.33
4	536.67	382.741	3.470	3.487	0.47	0.02662	0.02426	-8.86
5	536.67	487.597	2.189	2.222	1.53	0.03282	0.02987	-8.97
6	536.67	516.651	1.701	1.132	-33.45	0.04326	0.11838	173.62
7	536.67	525.645	1.419	1.102	-22.34	0.05810	0.13692	135.67
8	536.67	570.938	1.061	1.024	-3.48	0.21721	0.23877	9.92

- NPTS = 8
- AARD OF K₁
 7.98
 AARD OF K₂
 43.63
 AARD OF X₁
 11.11
 AARD OF X₂
 24.13
 AARD OF Y₁
 0.27
 AARD OF Y₂
- 14.50

Table C.3

Detailed Calculations of Mixture Density from the H.M.R. (see table VI.4)

Nethanol(1)-Benzene(2) Mixture Data from Sumer and Thompson, 1967

H	T (R)	P (PSIA)	I 1	DEN (EXP)	DEN (CAL)	🛪 DEV
				LBHOLE	/CU.PT.	
1	527.670	14.696	0.1104	1.3454	1.3557	0.76593
2	527.670	14.696	0.2208	1.2667	1.2623	-0.34265
3	527.670	14.696	0.3185	1.1946	1.1801	-1.21118
4	527.670	14.696	0.4251	1.1147	1.0919	-2.04594
5	527.670	14.696	0.5233	1.0402	1.0125	-2.66380
6	527.670	14.696	0.6324	0.9543	0.9271	-2.85713
7	527.670	14.696	0.7237	0.8807	0.8579	-2.59210
8	527.670	14.696	0.8171	0.3039	0.7895	-1.79023
9	527.670	14.696	0.9091	0.7264	0.7245	-0.27197
10	536.670	14,696	0.1673	1,3022	1,3158	1.04579
11	536.670	14.895	0.2570	1.2244	1.2312	0.55474
12	536.670	14.696	0.3783	1.1374	1.1377	0.02230
13	536.570	10.695	0.5060	1.0377	1.0331	-0.43757
94	536.670	14.696	0.6295	0.9412	0.9355	-0.60779
15	536.670	14.696	0.6313	0.9397	0.9341	-0.60481
16	536.670	14.696	0.7460	0.8503	0.8469	-0.39094
17	536.670	14.696	0.8765	0.7486	0.7522	0.48397
18	545.670	14.696	0.1103	1.3619	1.3727	0.79627
19	545.670	14.696	0.2206	1.2822	1.2786	-0.27907
20	545.670	14.696	0.3182	1.2097	1.1957	-1.16483
21	545.670	14.696	0.4248	1.1281	1.1065	-1.91536
22	545.670	14.696	0.5230	1.0519	1.0262	-2.44245
23	545.670	14.696	0.6322	0.9647	0.9396	-2.60537
24	545.670	14.696	0.7234	0.8908	0.8696	-2.38582
25	545.670	14.696	0.8169	0.8132	0.8002	-1.60496
26	545.670	14.696	0.9090	0.7349	0.7342	-0.09416
27	563.670	14.696	0.1103	1.3776	1.3900	0.90272
28	563.670	14.696	0.2205	1.2965	1.2952	-0.10107
29	563.670	14.696	0.3182	1.2237	1.2113	-1.01467
30	563.670	14.696	0.4248	1, 1424	1, 1211	-1.85650
31	563-670	14.696	0.5230	1.0655	1.0399	-2-39758
32	563.670	14.696	0.6321	0.9777	0.9523	-2,59249
33	563-670	14,696	0.7234	0.9015	0.8813	-2.23475
34	563-670	14,696	0-8169	0.8231	0.8110	-1-47713
35	563.670	14-696	0.9090	0.7437	0.7441	0.04749
22	202010		0.0000		VOITTI	

% AARD

No. Points 35

1.27

.

Table C.4

Detailed Calculations of Mixture Density from the CSM (see table VI.4)

Bethanol(1)-Benzene(2) Hixture Data from Sumer and Thompson, 1967

N	T (R)	P (PSIA)	I 1	DEN (EXP)	DEN (CAL)	🛪 DEV
				LBHOLE	/CU.FT.	
1	527.670	14.696	0.1104	1.3454	1.2780	-5,009
2	527.670	14.696	0.2208	1.2667	1.1219	-11.43
3	527.670	14.696	0.3185	1.1946	0.9967	-16.56
4	527.670	14.696	0.4251	1.1147	0.8765	-21.36
5	527.670	14.696	0.5233	1.0402	0.7837	-24.66
6	527.670	14.696	0.6324	0.9543	0.7042	-26.20
7	527.670	14.696	0.7237	0.8807	0.6598	-25.08
8	527.670	14.696	0.8171	0.8039	0.6371	-20.74
9	527.670	14.596	0.9091	0.7254	0.6384	-12.11
10	536.670	13,595	0.1573	1.3022	1.2031	-7.511
11	536.670	14.696	0.2670	1.2244	1.0676	-12.80
12	536.670	14.696	0.3783	1.1374	0.9328	-17.99
13	536.570	14.596	0.5060	1.0377	0.8037	-22.54
14	536.670	14.696	0.6295	0.9412	0.7106	-24.50
15	536.670	14.696	0.6313	0.9397	0.7095	-24.50
16	536.670	14.696	0.7460	0.8503	0.6565	-22.79
17	536.670	14.696	0.8765	0.7486	0.6395	-14.57
18	545.670	14.696	0.1103	1.3619	1_2939	-4.991
19	545.670	14.696	0.2206	1.2822	1.1361	-11.39
20	545.670	14.696	0.3182	1.2097	1.0096	-16.54
21	545.670	14.696	0.4248	1.1281	0.8879	-21.28
22	545.670	14.696	0.5230	1.0519	0.7940	-24.52
23	545.670	14.696	0.6322	0.9647	0.7135	-26.04
24	545.670	14.696	0.7234	0.8908	0.6685	-24.95
25	545.670	14.696	0.8169	0.8132	0.6456	-20.61
26	545.670	14.696	0.9090	0.7349	0.6469	-11.97
27	563.670	14.696	0.1103	1.3776	1.3100	-4.910
28	563.670	14.696	0.2205	1.2965	1.1504	-11.26
29	563.670	14.696	0.3182	1.2237	1.0223	-16.46
30	563.670	14.696	0.4248	1.1424	0.8992	-21.28
31	563.670	14.696	0.5230	1.0655	0.8042	-24.52
32	563.670	14.696	0.6321	0.9777	0.7229	-26.05
33	563.670	14.696	0.7234	0.9015	0.6774	-24.85
34	563.670	14.696	0.8169	0.8231	0.6542	-20.51
35	563.670	14.696	0.9090	0.7437	0.6556	-11.84

S AARD N

No. Points 35

18.13

APPENDIX D

SOURCE LISTING OF HYBRID MIXING RULES SUBPROGRAM

, x ,idx subroutine es10 (t ,ncp • P ,iwork \$,ijwork ,kvl ,kphi **, k**h \$,kdiag , kg ,ks , kv ,nds \$,phi , h ,s ,vio • 9 \$ **,**dh ,dvio ,ds ,dg ,dphi \$,ker) C-Note*** ker=0 No error in root search С С =1 Vapor root problem =2 С Liquid root problem С implicit real*8 (a-h, o-z) common /espm/tstm,vstm,gstm compon /hsrvb/hxx,sxx,ri,vi,bji common /pengy/pesp(4) common /dengy/pery(2) common /alpha/alfa1(4),alfa2(4),alfa3(4) common /ppglob/ pref,tref,rgas common /global/nh,in common /ncomp/ ncc common /codo/ mc common /tcbwr/ bwrtc(2) common /vcbwr/ bwrvc (2) common /bwrgma/ bwrgma(4) common /bwrkv/ bwrkv (4) coamon /bwrkt/ bwrkt (4) common /esbwrg/ bwrgij(4) common /bwrkvp/ bwrkvp (4) common /bwrktp/ bwrktp(4) common /bdkdt/ bdkdt (4) common /bdktii/ bdktii(4) common /dexdt/dexdt(4) common /ttt/temp conmon /bwrcon/ alph1,alph2,alph3,conv,cont common /eoshwr/ eos(10) common /esroot/ klflag, kvflag, pressl, pressv logical lv, ldv, lh, ldh, lg, ldg, lphi, ldphi, lsx, lhx, ldhx, ldvx logical 1s, 1ds dimension x(ncp), idx(ncp), phi(ncp), dphi(ncp) dimension ai(12), bi(12) dimension di(15),fij(4) data ai/1.45907d0,4.98813d0,2.20704d0,4.86121d0,4.59311d0, 1 5.0670700,11.487100,9.2246900,.946240-1,1.4885800,.152730-1,

```
2 3.5148640 /
      data bi /.32872d0,-2.64399d0,11.3293d0,0d0,2.79979d0,10.3901d0,
     1 10.3730d0,20.5388d0,2.7601d0,-3.11349d0,.18915d0,.94260d0 /
С
С
         initial calculations
С
      temp=t
      ker=0
      rt=rgas*t
      pbrt=p/rt
С
         set multiple data set index to be added to component index
С
C
      ids 1=ncc* (nds-1)
      ids2=ncc*ids1
С
         set logical variables which control calculation
С
С
      lv=kv.eq.1.or.kv.eq.3
      ldv=kv.gt.1
      lh=kh.eq.1.or.kh.eq.3
      ldh=kh.gt.1
      lg=kg.eq.1.or.kg.eq.3
      ldg=kg.gt.1
      ls=ks.eq.1 .or. ks.eg.3
      lds=ks.gt.1
      1phi=kphi.eq.1.or.kphi.eq.3
      ldphi=kphi.gt.1
      lsx=kg.ge.1.or.lphi.or.ls
      lhx=lh.or.lg.or.kphi.ge.1
      ldhx=1dh.or.1dphi.or.1ds
      ldvx=ldv.or.ldhx
С
         calculate mole fraction averaged quantities
С
С
      vstma=0d0
      tstm=0d0
      gstm=0d0
C
      do 200 i=1,ncp
      is=idx(i)
      xi=x(i)
      loci=ncc* (is-1) +ids2
      locii=loci+is
      xisq=xi*xi
      vstma=vstma+xisq*bvrkv(locii)
      gstm=gstm+xisq*bwrgij(locii)
      if (i.eq.ncp) go to 210
      j1=i+1
      xi2=2d0*xi
С
         do 200 j=j1,ncp
         js=idx(j)
```

```
xij=xi2*x(j)
         locij=loci+js
         vstma=vstma+xij*bvrkv(locij)
         gstm=gstm+xij*bwrgij(locij)
С
 200
      continue
С
 210
      vstm=vstma**(1d0/alph1)
      vstm2=vstm**alph2
      vstm3=vstm**alph3
      gstm=gstm/vstm3
      fi_{1}(1) = 1d0
      fij(2)=1d0
      fij(3) = 1d0
      fij(4) = 1d0
      tst=0d0
      do 55 i=1,ncp
      loij=ncc*(i-1)+i
      tes1=0d0
      tes2=0d0
      do 56 j=1,ncp
      loc=ncc*(i-1)+j
      tes=r(j) *fij(loc) *dexp(-pesp(loc)/t)
      tes1=tes1+tes=byrkt (loc)
      tes2=tes2+tes
56
      continue
      tst=tst+x(i) *tes1/tes2
55
      continue
      tstm=tst
С
         calculate reduced temp and powers
С
С
      tr1=tstm/t
      tr2=tr1*tr1
      tr3=tr2*tr1
      tr4=tr3*tr1
      tr5=tr4*tr1
С
С
         calc bwr params
С
      b1=ai(1)+gstm*bi(1)
      b2= (ai(2) +gstm*bi(2)) *tr1
      b3=(ai(3)+gstu*bi(3))*tr3
      b4=ai(4)
      b5=ai (5) + gstm*bi (5)
      b6= (ai (6) +gstm*bi (6) ) *tr1
      b7= (ai(7) +gstm*bi(7)) *tr1
      b8=(ai(8)+gstm*bi(8))*tr3
      b9= (ai(9) +gstm*bi(9)) *tr4
      b10=(ai(10)+gstm*bi(10))*tr2
      b11=(ai(11)+gsta=bi(11))=tr5
      b12=(ai(12)+gstm*bi(12))*tr2
```

С

```
calc coeffs of density in compr eqn
С
С
      trh 1= b1-b2-b3+b9-b11
      trh2=b5-b6-b10
      trh5=b7+b12
С
         solve for appropriate vol root using vproot or lgroot
С
С
      iflag=1
      k=4
      dpdv=-1000.d0
      vcm=vstm/(dsgrt(alfa1(1)*alfa1(2)))
      vlim=vcm/4d0
      vcmech=vcm
      vcut=vlia
      if (kvl.eq.2) vcut=1.2d0*vcm
С
         if (ncp .eq. 1 .and. kvl .eq. 1) kvflag=-1
         if (ncp .eq. 1 .and. kvl .eq. 2) klflag=-1
С
      go to (220, 230) , kvl
С
С
      vapor properties calculation
С
                                   ,7lia
 220
                                            ,vcmech ,vcut
      call vproot (k
                           ,iflag
                                                             3
                                   z 7
     9
                          зP
                                            ,pcalc ,dpdv
                                                             3
                           ,kdiag
     2
                   iprog
                                   )
      go to (250,250,250,260,270), k
С
С
      liquid properties calculation
С
 230
      call lgroot (k
                          ,iflag
                                   ,vlia
                                            ,vcmech ,vcut
     1
                   t
                          , P
                                   , V
                                            ,pcalc ,dpdv
                                                             ,
     2
                   iproq
                          ,kdiaq
                                   )
      go to (250,250,250,260,270), k
С
         pressure and dpdv calc
С
С
 250
      rhr=vstm/v
      rhr2=rhr*rhr
      rhr3=rhr2*rhr
      rhr4=rhr3*rhr
      rhr5=rhr2*rhr2*rhr
      rhr6=rhr5*rhr
      rhr7=rhr6*rhr
      rhr8=rhr7*rhr
      b4rh=b4*rhr2
      b4rhe=dexp(-b4rh)
      rhr1t=rhr*trh1
      rhr2t=rhr2*trh2
      rhr5t=rhr5*trh5
      rhret=b8*rhr2*b4rhe
      z=1d0+rhr1t+rhr2t+rhr5t+rhret*(1d0+b4rh)
```

rtbv=rt/v pcalc=z*rtbv if (iflag.ne.2) go to 878 go to 871 878 dpdv=-rtbv/v* (1d0+2d0*rhr1t+3d0*rhr2t+6d0*rhr5t+rhret* 1 (3d0+b4rh*(3d0-2d0*b4rh))) 871 go to (220,230), kvl С С convergence not achieved C 270 ker=kvl if (kdiag .lt. 2) go to 260 err=pcalc/p-1d0 write (nh,100) p,err format (6x, 30 hvolume convergence failed; p = d11.4, 18h fract ern 100 1 in p = d12.4С calculation of common terms С С 260 if (mc.eq. 1.or.mc.eq. - 1) go to 320 dlz=dlog(z) ron=1d0/v write (6,6666) z, ron C **c**5666 format(1x,'z,r',2g15.6) dlpr=dlog(pcalc/pref) pbrt=pcalc/rt b8b4e=b8/b4*b4rhe rbv=rgas/v b4rher=1d0/b4rhe dro=rhr1t+rhr2t/2d0+rhr5t/5d0+b8/b4*(1d0-b4rhe-0.5d0*b4rh*b4rhe) su0=0d0 su1=0 d0 do 75 i=1,ncp lop=ncc*(i-1)+ise1=0d0 se2=0d0 se3=0d0 se4=010 do 76 j=1,ncp lok=ncc*(i-1)+jses=r(j)*fij(lok)*derp(-pesp(lok)/t) se1=se1+ses* (bdkdt(lok) -& derdt(lok)*bwrkt(lok)) se2=se2+ses se3=se3+ses*burkt(lok) se4=se4+ses*dexdt (lok) 76 continue su0=su0+x (i) *se1/se2 su1=su1+x(i) *se3*se4/se2/se2 75 continue sht=(su0+su1)/tstm+1d0С С calculation of dv
if (.not.ldvr) go to 300 if (iflag.eq.2) 1 dpdv=-rtbv/v*(1d0+2d0*rhr1t+3d0*rhr2t+6d0*rhr5t+rhret* 2 (3d0+b4rh*(3d0-2d0*b4rh))) dpdt=rbv*(1d0+rhr*(b1+2d0*b3-3d0*b9+4d0*b11) 2 1 +rhr2*(b5+b10)-rhr5*b12-2d0*rhret*(1d0+b4rh)) dv=-dpdt/dpdv С C calculation of enthalpy and its temp deriv С 300 if (lhx) go to 879 go to 872 879 hx=rt*((rhr*(b1-2d0*b2-4d0*b3+5d0*b9-6d0*b11) 1 +rhr2*(b5-1.5d0*b6-2d0*b10)+rhr5*(1.2d0*b7+1.4d0*b12 2 +b8b4e*(3d0/b4rhe-3d0-b4rh*(5d-1-b4rh))) 3 *sht+(z-1d0)*(1d0-sht))hxx=hx872 if (mc.ne.0) go to 320 if (.not.ldhx) go to 310 dhdt=rgas*(rhr*(b1+8d0*b3-15d0*b9+24d0*b11) 1 +rhr2* (b5+2d0*b10) -1.4d0*rhr5*b12 2 -2d0*b8b4e*(3d0/b4rhe-3d0-b4rh*(5d-1-b4rh))) dhdv=-rtbv* (rhr*(b1-2d0*b2-4d0*b3*5d0*b9-6d0*b11) 1 >2d0*rhr2*(b5-1.5d0*b6-2d0*b10)*rhr5*(6d0*b7*7d0*b12) *rhret*(5d0+b4rh*(5d0-2d0*b4rh))) 2 dhx=dhdt+dv#dhdv С С calculation of entropy С 310 if (lsx) go to 881 do to 873 sx=rgas*((-rhr*(b1+2d0*b3-3d0*b9+4d0*b11) 881 -5d-1*rhr2* (b5+b10) +2d-1*rhr5*b12 1 +2d0*b8b4e*(b4rher-1d0-5d-1*b4rh))*sht-dro*(1d0-sht) 2 3 +dlz-dlpr) SXX=SX C C C calculation of fugacity coeffs and temp derivs С С C-----------------С 873 if (kphi.le.0) go to 320 С С begin calc of comp dep bwr consts С b1=bi(1) b2=bi (2) *tr 1 b3=bi (3) *tr3 b5=bi (5)

С

b6=bi (6) ≠tr1

```
b7=bi (7) *tr1
      b8=bi (8) *tr3
      b9=bi (9) *tr4
      b10=bi(10) *tr2
      b11=bi(11)*tr5
      b12=bi(12) +tr2
      b8b4e=b8/b4*b4rhe
С
С
         calculation of common terms
C
      zmo=z-1d0
      hxrt=hx/rt
      trh 1= rhr * (b1-b2-b3+b9-b11)
      trh2=rhr2*(b5-b6-b10)
      trh5=rhr5*(b7+b12)
С
         calc coeffs of comp derivs of vst,tst,gma for fug
С
С
      if (.not.lphi) go to 410
      coeff0=hrrt-sr/rgas-dlpr
      if (kvl.eq. 2) coeff0=coeff0-dlog(p/pcalc)
      coeffv=hxrt-zmo
      coeffr=zmo
      coeffb=trh1+5d-1 rh2+2d-1 trh5+b8b4e (b4rher-1d0-5d-1)
C.
С
         calc coeffs of comp derivs of vst,tst,gst for fug deriv
С
 410
      if (.not.ldphi) go to 420
      hxrtt=hxrt/t
      coefd 0=-h xrtt
      fn=z/t-pbrt *dv
      coefd v=-hxrtt+dhx/rt+fn
      coefdr=-fn
      fnt=rhr*((b2+3d0*b3-4d0*b9+5d0*b11)
     1
          +5d-1*rhr2* (b6+2d0*b10)-2d-1*rhr5* (b7+2d0*b12)
     2
          - b8b4e* (b4rher-1d0-5d-1*b4rh))
      fnv=trh1+trh2+trh5-b8b4e*(1d0+b4rh)
      coefdb=fnt/t-fnv*dv/v
С
С
         calculation of fug coeffs and temp derivs
С
420
      rt1=2d0/alph1
      bjt1=2d0/vstm3
С
      do 430 i=1, ncp
      lopi=ncc*(i-1)+i
      is=idx(i)
      loci=ncc=(is-1) +ids2
С
         vsti=0d0
         asti=0d0
         tsti1=0d0
         tsti2=0d0
```

133

```
tsti3=0d0
          tsti4=0d0
          do 440 j=1,ncp
          lopj=ncc*(j-1)+j
          js=idx(j)
          locij=loci+js
          xj=x(j)
          vsti=vsti+xj*bvrkv (locij)
          gsti=gsti+xj*bwrgij(locij)
          tss1=0d0
          tss2=0d0
          do 441 k3=1,ncp
          ko = ncc * (j-1) + k3
          ses1=x (k3) *fij (ko) *dexp (-pesp (ko) /t)
          tss1=tss1+ses1*bwrkt(ko)
          tss2=tss2+ses1
441
          continue
          ky=locij
          if (locij.eq.2) kw=3
          if (locij.eq.3) ky=2
          tsti1=tsti1+xj*fij(locij) *bwrkt(locij)
          *dexp (-pesp (locij) /t)
     1
          tsti2=tsti2+xj*fij(locij)*dexp(-pesp(locij)/t)
          tsti3=tsti3+zj*fij(ky) *burkt(ky)
      1
          #deup (-pesp (kw) /t) /tss2
          tsti4=tsti4+xj*fij(kw) *dexp(-pesp(xw)/t) *tss1/tss2/tss2
 440
          continue
С
      ri=rt1* (vsti/vstma-1d0)
      vi= (-tstm+tsti1/tsti2+tsti3-tsti4)/tstm
      vi=vi/sht
      bji=hjt1*gsti-(2d0+alph3*ri)*gstm
        calc of fug. coef. of zalpha
C
С
      if (1phi) go to 3333
      go to 3322
3333
      phi(i)=coeff0+ri*coeffr+vi*coeffv+bji*coeffb
      write (6,4444) i, phi(i), x(i)
C
C4444
       format(1x,'i,fi',i5,2g15.6)
3322
      if (ldphi) dphi(i)=coefd0+ri*coefdr+vi*coefdv+bji*coefdb
 430
      continue
      vio=v
С
С
          return output quantities as requested
С
 320
      h=h x
      if (lv) vio=v
      if (ldv) dvio=dv
      if (lh) h=hx
С
      if
         (1dh) dh=dhx
      if (1g) g=hx-t*sx
      if
          (ldg) dg=-sx
      if (ls) s=sx
```

```
if (lds) ds=dhr/t
      h=hx
      S=SX
С
      return
      end
      subroutine es11
C-----
                     module title - initialization of CSM-3PCS-MBWR
C
implicit real*8 (a-h,o-z)
      common /ppglob/ pref,tref,rgas
      common /ttt/t
      common /alpha/alfa1(4),alfa2(4),alfa3(4)
      common /ncomp/ ncc
      common /tcbwr/ bwrtc (2)
      common /vcbwr/ bwrvc (2)
      common /bwrgma/ bwrgma(4)
      COBMON /bwrkv/ bwrkv (4)
      common /bwrkt/ bwrkt(4)
common /bdkdt/ bdkdt(4)
      connon /esburg/ burgij(4)
connon /burkyp/ burkyp(4)
conmon /burktp/ burktp(4)
      common /bdktii/ bdktii(4)
      common /pengy/pesp(4)
      common /dengy/ pery(2)
      common /dexdt/dexdt(4)
      common /bwrcon/ alph1,alph2,alph3,conv,cont
      data alph1d, alph2d, alph3d/3.0d0, 3.0d0, 3.0d0/
С
         set constants from data
      alph1=alph1d/3.d0
      alph2 = alph2d/3.d0
      alph3=alph3d/3.d0
      do 120 i=1, ncc
      in=i
      dmi=alfa3(in)/t
      tci=bwrtc(in)/alfa2(in)+dmi
      vci=bwrvc(in) #alfa1(in)
      gmai=bwrgma (in)
      loci=ncc*(i-1)
      locii=loci*i
      burkvp(locii)=1d0
      bwrktp(locii) =1d0
С
         do 120 j=i,ncc
         jn = j
         dm j=alfa3(jn)/t
         tcj=bwrtc(jn)/alfa2(jn)+dmj
         vc j=bwrvc(jn)*alfa1(jn)
```

135

```
gmaj=bwrgma(jn)
         ji=ncc*(i-1)+j
         vji=bwrkvp(ji)
         vstij=vji*vji*vji*dsqrt (vci*vcj)
         bwrkv(ji)=vstij**alph1
         bdkdt(ji)=0.530*bwrktp(ji)*(tcj*dmi+tci*dmj)/dsgrt(tci*tcj)
         bwrkt(ji)=bwrktp(ji)*dsqrt(tci*tcj)
bwrgij(ji)=5d-1*(gmai+gmaj)*vstij**alph3
     ij=ncc*(j-1)+i
     bwrkv (ij) =bwrkv (ji)
     bdkdt (ij) =bdkdt (ji)
     bvrkt (ij) =bvrkt (ji)
     bwrgij(ij)=bwrgij(ji)
120
     continue
     pesp(1) = 0d0
     pesp(4) = 0d0
     pesp(2) = pery(1)
     pesp(3) =pery(2)
     dexdt (2) = pery (1) /t
     derdt (3) = pery (2) /t
     dexdt(1) = 0d0
     dexdt(4) = 0a0
     continue
     return
     enđ
```