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Abstract

Given their infrequent occurrence. supercell thunderstorms produce an inordinate
amount of death and damage.  As a result. they have been studied intensely for the past forty
vears.  Even so. numerous important questions concerning supercells remain.  One such
question regards tomadoes and observations of supercells that appear to be similar but exhibit
very different tornadic behavior. Recently. analyses of data trom the VORTEX project revealed
that the thermodynamic properties of the rear flank downdraft {RFD) may dictate whether or not
a supercell becomes tomadic. Since hydrometeors are thought to be an important driving force
tor the RFD. it ts postulated that they may be important to its thermodynamic properties and.
possibly. to tomadogenesis.

The role hook-echo hydrometeors play in driving RFDs is investigated by estimating
hook-echo hydrometeor types and amounts from polarimetric radar data and by using that
information to drive a relatively simple downdraft model.  Soundings for the individual cases
are used to initialize the downdratt model in order to replicate the environments of the storms as
closely as possible.

Since this effort and others like it require the quantitative utilization of radar data.
issues pertaining to this are explored. One common rescarch need is the estimation of radar
data on a rectangular Cartesian grid. An exploration of the coordinate transformation equations
reveals that the equivalent carth model. which is commonly used to compute the heights of
radar data. is not needed. The heights of radar data can be easily computed using commonly
applied assumptions without resorting to the equivalent earth model.

Moreover. properties of a new method for estimating radar data on rectangular

Cartesian grid are explored. This method. the adaptive Barnes (A-B) scheme. adapts to the

X1l



following characteristics of radar data: 1) the spacing of radar data depends on direction and 2)
radar data density systematically decreases with range. [tis found that the A-B scheme not only
adapts to these characteristics and thus affords the opportunity to retain more information when
analyzing radar data. but also avoids phase shifts of input waves and offers advantages for the
post-analysis computation of derivatives.  As is the case with any objective analysis technique.
the A-B scheme should be used with care in order to aveid misinterpretations of analysis results.

The study of the A-B scheme led to the difficult problem of response functions for
arbitrary weight functions and data distributions. A novel approach to this problem was
devised. with the principal result being that the local response function for distance dependent
weighted averaging schemes is the complex conjugate of the normalized Fourier transform of
the effective weight function.  This result provides a framework for eftorts like evaluating
observation network efficacy and applying the response tunction to filter design tor irregularly
spaced observations.

The simulations of hydrometeor driven RFDs show that hydrometeor fields inferred
from radar data are able to drive significant downdrafts without the influence of vertical
perturbation pressure gradients. Moreover. they reveal that abose the boundary layer supercell
environments are refatively resistant to downdratts whereas within the boundary layer they are
generally supportive of downdrafts. It appears that in many supercell environments relatively
large hail (21 cm in diameter) or vertical perturbation pressure gradients may be needed to drive
deep midlevel downdrafts that penetrate into the boundary layer. Because the boundary layer is
an important downdraft generation/intensification layer. uts ¢, profile appears to be important to
the surface RFD 6, deficit and. consequently. to tormadogenesis.  To further examine these
tssues, analyses using idealized soundings that represent multiple possible RFD environments

and analyses of the complete set of VORTEN cases are planned.
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Chapter 1: Introduction

Considering their infrequent occurrence. supercells'™ cause an inordinate
amount of death and damage (Moller et al. 1994). Often. supercells cause these through
severc winds (tomadic or otherwise) and hail.  Destructive supercell winds tend to
produce both loss of life and property. while destructive supercell hailfalls typically
result only 1n loss of property [hailfalls have. nevertheless. caused deaths (e.g.. Flora
1956. 6-9)]. Supercell tlooding may also cause loss of lite and property. Herein the
focus will be on severe winds produced by supercells.

Past supercell events underscore their destructive potential.  Two ot the more
deadly tornado outbreaks of the past 40 years. the Palm Sunday outbreak of 11-12 Apnl
1965 and the Superoutbreak of 3-4 Apnil 1974, both of which consisted of numerous
supercells. resulted 1n 256 and 315 (tomado-related) deaths, respectively (Grazulis
1993).  Destructive supercell winds also cause a great deal of property damage.
Grazulis (2001, p. 206) lists 16 U.S. tomadoes that occurred in the past 104 years that
caused 2 $200 muilhion 1n damage cach (values inflation adjusted to 1999). The most
damaging in this list. the 3 May 1999 tomado that affected the Oklahoma City.

Oklahoma. area. caused $1.2 billion 1n damage. These numbers are impressive

" Herein, a supercell 1s defined as a4 convective storm that has certain distinguishing charactenstics. The
most prominent charactenistic. a deep (significant traction of storm depth), persistent (relative 1o the
comective tme scale detined by the residence me ot an updratt parcel) mesocyelone. has been used in
most recent definttions of supercells (e.g.. Doswell and Burgess 1993). Other charactenstics, which in
this work are not rigorously entorced. include the requirements that mesocyclones have vertical vorticity
of at least 10 7 s ' and that the updratt and mesocyelone tvertical vorucity) are positevely correlated e.g..
Davies-Jones and Brooks 1993; Moller et al. 1994).

* Ity of historical interest to note that the ortginal use of the term “supercetl” by Browning (1962) alywo
indicated the persistence of storm charactenstics.  Originally, however. the persistent features were the
radar echo pattern and the airflow pattern, which was interred partially from the radar echo pattern
{Browning and Ludlam 1962).



considenng that they concern only individual tornadoes and do not include losses from
other damaging tormadoes that occurred in the sume outbreaks. Moreover. they only
concern supercell tomadoes and do not consider supercell straight-line wind events. the
damage from which 1s much tougher to quunlit‘_\'.:

Owing 1n part to the loss of hite and property associated with them, supercells
have been studied ntensely for approximately the past 40 years {cf. Rotunno (1993) for
a concise account of the history of supercell studies]. Even so. many scientific
questions  concerning  supercells remamn. Examples include: 1) what are the
hydrometeor structures (types and amounts) of hook echoes?. and 2) do hook-echo
hydrometeors play a signiticant role in dnving rear tlank downdrafts in supercells?
Both of these questions relate to severe supercell winds. with the fatter having particular
relevance to tornadogenesis.

It is behieved that. owing to recent developments in polanmetnic weather radar
technologies and apphcations (e.g.. Doviak and Zrmi¢ 1993: Straka et al. 2000).
stgnificant progress towards answering these questions can be made at this time. Straka
et al. (2000) have provided a thorough review of the utilization of polarimetric radar
(PR) data for classification and quantification of bulk hydrometeor fields. While
difficulties and ambiguities certainly exist. the use of PR data in combination with
physical insight (gained from previous observational and theoretical studies. cf.
appendix C) provides a valuable method for infermng bulk hydrometecor ficld

charactenistics.  Examples of successtul applications of this technique (deemed so

" Thus statement 15 based upon the tact that to quanuty this type of damage one needs to first venty that a
supercell caused 1. Since strurght-ine wind damage can result from vanous torms of convection,

to



through i situ ventication) include the studies of Bringi et al. (1986a.b). Balakrishnan
and Zmic (1990b). and Ramachandran et al. (1996).  As indicated by Straka et al.
(2000). a ftwr amount of confidence may be placed in PR-bused hvdrometeor
identifications while PR-based estimations of hydrometeor amounts are not as certain.
(For more information conceming the classification and quantification of bulk
hvdrometeor fields using PR data. see appendices C and D).

The purpose of this study 15 to investigate hvdrometeor distributions in hook
cchoes of supercells and kinematic. dynamic. and thermodynamics consequences
thereof. Because these etforts require the quantitative uttlization of radar data. aspects
of this are intensively studied in chapter 2. The interaction of hvdrometeors with rear
flank downdrafts 1s then examined in chapter 3. with a summary concluding this work

in chapter 4.

including squall hines, and since supercells are not always easy to idenuty (Moller et al. 1990; Doswell
and Burgess 1993). this 1s not a simple task.
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Chapter 2: Quantitative Utilization of Radar Data

2.1 Coordinate Transformation Equations for Weather Radars

2.1.1 Height and Great Circle Distance

The quanutative utihzation of radar data often requires knowledge of the
locations of radar data within the atmosphere. In this section the purpose is to
determine the above ground level height - and great circle distance s (¢f. Fig. 2.1) of a
radar datum for radars for which the elevaton € =0° s in a direction that is
perpendicular to the line emanating from the center of the earth through the radar. This
problem has been considered in detail by previous investigators (e.g.. Doviak and Zmié
1993. 14-28). A common approach to determining 2 and s 1s the use of the equivalent
carth model. which 1s comprised of two components (Shelleng et al. 1933; Bean and
Dutton 1966, 56-59; Doviak and Zmic¢ 1993, 18-21). The first is the assumption that
radar rays follow paths of constant curvature.  This occurs under the tollowing
condiions  (Doviak and Zrmi¢ 1993, 18-21): [) temperature and humidity are
honzontally homogencous (1.¢.. the atmosphere 1s sphenically stratified). 2) refractive
index n 15 smoothly changing [t.e.. within a wavelength the relative changes in
refractivity N, where N =(n - 1)x10°. are small]. 3) z<<a. where « is the radius of
the carth. and 4) n 1s linearly dependent upon height. The second component i1s the
transformation from the actual spatial configuration to one in which the ray path is
strarght. implving a “bending”™ of both the ray path and of the earth’s surface (ct. Fig.

2.1). In this spatial transformation the radius of a fictitious “equivalent™ earth s



determined so that - and s are essentially unchanged. With this model. Doviak and

Zmi¢ obtain the relations

c=lr e tka+ Y + 2r(ka+h)sind] - (ka) 2.0
and
. 030
v =k a)sin | —22 (2.2)
(kru)+ z

where r 1s range. &, is the constant in the cquivalent earth model (usually it is assumed
that k&, =4/3). and the situation where the (above ground level) antenna height &1, 1s
nonzero has been incorporated.

A fundamental assumption in the equivalent carth model 1s that radar rays
follow paths of constant curvature. [t will be shown herein that with this assumption the
hetght and great circle distance of a datum can be determined directly, without drawing
upon the equivalent-carth-model spatial transformation.

The problem 1s shown in Fig. 2.1. The assumption that radar rays follow paths
of constant curvature implies that the curved ray path from R to D (from the radar
location to the datum location) is an arc of a circle of radius r,. Doviak and Zmié obtain
the approximate relation tor this radius r =1/(-dn dz). (The assumption that radar
rays follow paths of constant curvature. therefore, 1s consistent with the assumption that
the refractive index is linearly dependent upon height.) Doviak and Zmic¢ (1993, p. 21)
indicate that a typical value of dn dz is —1/4a . sothat r =4a.

Armed with knowledge of r.. relations for : and s in terms of radar-measurable

parameters can be determined. The strategy tor determining - is to apply the law of



cosines to the tnangle ORD. To execute this strategy. however, one needs both »and r’.
The value of 7' can be obtained by noting. from the circle sector O'RD. that =r/2r .
With this,
r'=2rsin(r/2r). (2.3)
The value of  can be determined by noting that the angle between OR and RI s
/2 + 6 and thus that y =7/2+ 6 - 0. From the triangle with vertices at O, R. and
the mid-point of the line RD and the fact that O'R and RI are perpendicular,
O=f=r/2r. Thus. y=r/2+0 - r/2r and application of the law of cosines to the
triangle ORD results in
c= [r': +la+h) +2r(a+h )sin(@~r/2r )]l . (2.4a)
with r' given by (2.3),
Equation (2.4a) can be simplitied by noting that because r/2r = r/8a 15 very
small for typical weather radar applications (r<-300km). sin(r/2r )=r/2r and
r’ = r. With this simplification, (2.4a) is

=l e ) e 2 i Jsin@0 - rf2r )| - (24b)

(]

By expunding sin(€ —r/2r )=sin@cos(r/2r )~ cosOsin(r/2r ) and by making the

approximations cos(r/2r }=1 and sin(r/2r )=r/2r . (2.4b) becomes

:l'ﬁ +(a+h ¥ +2r(a+h )(sinO "LCOSO

:L »

Height values with i, =0km. ¢ =6370km. r =4a. and k =4/3 (consistent

-
J -a. (2.4¢)

with the assumption r =4a¢) have been computed using (2.1) and (2.4a-c).



Comparnisons for an altitude of approximately 20 km [not less than 20 km according to
(2.4a)] and for ditferent elevations are provided in Fig. 2.2. The altitude ot 20 km was
chosen since this 1s approximately the highest altitude of interest in weather-radar
applications and since differences (at a fixed elevation) between the vanious height
formulations increase with increasing altitude (range). As shown in Fig. 2.2, the
difterences between (2.1) and (2.4a) range from +8.8 m a1 0.0” elevation to +0.004 m at
90.0" elevation. Difterences between (2.4b) and (2.4a) range trom +1.03 m at 0.0°
elevation to +0.001 m at 90.0° elevation: differences between (2.4¢) and (2.4a) range
from +0.88 m at 0.0 elevauon to +0.004 m at 90.0 elevauon.  The new height
formulation (2.4a). therefore. agrees very closely with the standard formulation (2.1)
and (2.4b) and (2.4¢) are very good approximations to (2.4a).

The value of &, used in the above calculations was varied in order to determine
it the standard (2.1) and new (2.4a) formulations could be brought nto pertect
agreement. The attempt was unsuccessful. These two formulations are very nearly. but
not exactly. equivalent.

Removal of the r/2r term from (2.4b) or the r/2r cos@ term from (2.4¢)
results in the relation one would obtain 1f it were assumed that the ray-path 1s straight
(and thus that the atmosphere is non-refractive). The r"and r/2r terms in (2.4a) and
the r/2r terms in (2.4b.c). therefore. incorporate height corrections owing to
atmosphenc refractivity.

At the beginning of this investigation four conditions were established in order

to fucilitate height determination. The first of these conditions results in no refraction



of radar rays when ¢ = £90.0°. When € =+90.0° . then. the geometry pictured in Fig.
2.1 breaks down and the radar ray does not travel in a path of constant curvature. it
travels in a straight line. In that situation. when € =+90.0°. :=h, +r. and when
0=-90.0°. :=h, -r. Equatons (2.1 and (2.4¢) produce these results while (2.4a.b)
do not. Thus. (2.4¢) may be preferable 1o (2.4a.b) because it produces the correct
results when @ = £90.0° .

A relation for s can be obtained by applying the law of sines to the RD and OD
sides of tnangle ORD. The result is

rcos(@-r 2r )“

y=asin ‘ : (2.50)
a+ J
With the approximation r” = r . this becomes
Treos(@-r 2r )]
creos(@ - r 2r <
s=asin '; : (2.5b)

a+ i
. 4

Another relation for s results from an application of the law of costnes to the tnangle

ORD, with the result

F(u +h) +{a+z) - r':]

! 3 5.
S =deos (2.3¢)
L 2a+h Na+2)
The approximation r’ = r applied to (2.5¢) produces
S =ucos lath,) «la+) —r"“ (2.5d)
a+h )a+z) )

Vilues of s have been computed using (2.2) [with - computed using (2.1)].
(2.5a) [with Z computed using (2.4a)]. (2.5b) [with z computed using (2.4b)]. and (2.5d)

[with = computed using (2.4¢)]. [Note that (2.5a.c) are exact solutions and produce

.



equivalent results for elevations from -x/2+r/2r to /2 + r/2r . Equations (2.5a.c)
do not agree for elevations greater than 7/2+ r/2r and less than -7/2+r/2r

because the cos() function in the numerator of (2.5a.b) becomes negative in these
regions. This results in v values computed using (2.5a.b) being negative for elevations
greater than /2 + r/2r and less than —7/2+r/2r .| The h,. a. r.. and k, values that
were used are the same as those used in the height tests. Difterences between (2.2),
(2.5b.d) and (2.5a.¢) are plotted in Fig. 2.3 as a function of elevation for an altitude of
~20 km [not less than 20 km according to (2.4w)].  As with the height formulations.
differences. at a fixed elevation. between the great circle distance formulations increase
with increasing alutude (range). In contrast with the respective height tormulations, the
standard (2.2) and new (2.5a.¢) tormulations differ by what may be considered to be a
significant amount for some elevations. As shown in Fig. 2.3 at an altitude of ~20 km
the difference between (2.2) and (2.5a.¢) ranges trom +152.7 m at 0.0 elevation to -
12.22 m at 90.0 eclevauon. For clevations greater than about 8.5 (and an altitude of
~20 km). the magnitude of the difference between (2.2) and (2.5a.¢) is less than about
50 m. Differences between (2.5b.d) and (2.5a.¢). on the other hand. are much smaller.
As shown in Fig. 2.3, differences between (2.5b) and (2.5a.¢) range trom +12.77 m at
0.0- elevation to +4.88x10  m at 90.0° clevation. The corresponding ditferences
between (2.5d) and (2.5a.¢) are +12.78 m and -12.22 m. The new great circle distance
formulation (2.5a.c). therefore. contains some significant differences relative to the
standard formulation (2.2).  These differences are retlected in the approximations

(2.5b.d) since they are close approximations to (2.5a.¢).



As with the height formulations, the r"and r/2r terms in (2.5a). the r/2r term
in (2.5b). and the 7’ term in (2.5¢) incorporate corrections owing to atmospheric
refractivity. The approximation (2.5d) does not contain any refraction-correction terms.
While this approximation performs well without any of these correction terms. ignoring
these terms in (2.54) [1.e.. approximating r'cos(é - r/2r ) as rcos0 | does not result in
as accurate of an approximation. Differences between (2.5a) [with = tfrom (2.4a)] and
(2.5a) with refraction-correction terms ignored [with : from (2.4a)]. for an altitude of
~20 km. range from +531.45 m at 0.0 elevation to -81.5 m at 2.5 " elevation to -10.01 m
at 55.0 elevation to -12.22 m at 90.0 " clevation.

The no-retraction condition when € = £90.0° requires that s is zero. Equations
(2.2) and (2.5d) [when z1s calculated using (2.4¢)] satisfy this requirement while (2.5a-
¢) do not.  The coordinate-transformatton equations (2.4¢) and (2.5d), theretore, are
arguably the most useful because of their satistaction of the no-refraction condition
when ¢ =290.0° and because of their close adherence to the exact constant-curs ature
solutions.

[t 1s noted that s can be determined directly from radar-measurable parameters
without computing z. From the law of sines applied to the sides OR and RD of tnangle

ORD [the angle at Dis /2 = (sfa + 0 = r/2r ).

’ _ Y
| reosl0-r 2r) (2.64)

s=datan — .
a+h, +r'sin(@-r2r)]
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By expanding cos(@ - r/2r )=cos@cos(r/2r )+ sin@sin(r/2r )= cos@ + (r/2r )sin@ .
ignoring (r/2r )sin@ relative to cos@ . and applying the approximation r"=r . (2.6a)

becomes

s=atan” rc.osﬂ . (2.6b)
a+h, +rsin(@-r2r)

While (2.6b) sautsfies the no-refraction condition when € =+90.0°. it is not a very
good approximation to (2.5a.¢) and (2.6a). with difference values for an altitude ot ~20
km that are very close to those that result from approximating the r'cos(0 = r/2r ) in
(2.54) as rcos@. lgnonng the r/2r term in (2.6b) results in & much worse
approximation to (2.5a.¢) and (2.6a) at low clevations.

Shelleng ct al. (1933). who apparently advanced the use of the equivalent carth
model (Bean and Dutton 1966. p. 56). indicate that the spatial transformation utilized in
the equivalent earth model results in negligibly small errors.  The agreement between
(2.1) and (2.4a-¢) and (2.2) and (2.5a-d) turther confirms their conclusion. Moreover.
the agreement between (2.1) and (2.4a-¢) and (2.2) and (2.5a-d) validates the relations
obtained herein since the equivalent ecarth model relations perform well under standard
refractive conditions (Doviak and Zmi¢ 1993, p. 23). It may be argued. however, that
(2.4u-¢). (2.5a-d). and (2.6a-b) are preterable to (2.1) and (2.2) since they do not require
the slightly impertect spatial transformation utilized in the equivalent earth model and
since they are less complicated conceptually.

[t1s of interest to compare results obtained using (2.4¢) to those obtained using

2=h,+rsind (2.7

1



and

rsin()+£—-—cﬁs;0—. (2.8)
2(/\",(1)

[t}
=
+

]

Equation (2.7) results trom assuming that the carth is flat and that the atmosphere is
homogeneous (non-refractive). while (2.8) is a slight modification (4, has been
incorporated) of an approximation obtained by Bent et al. (1950). [To obtain (2.8).
Bent et al. (1950) utilized the equivalent carth model and made several simplifyving
assumptions.] Ditferences between (2.4¢) and (2.7) are shown in Fig. 2.4a. Except tor
low (< 157) elevations and moderate to large (> 60 km ) ranges. these difterences are
relatively small. At € =07, the no-refraction. tlat-carth model (2.7) provides unsavory
results since 1t indicates that data at this elevation are located at ground level. With the
assumed standard refractive conditions, however. the curvature of the carth’s surface
results in data with & =07 being located above ground level. On the contrary, (2.8)
correctly indicates that data collected at ¢ =0 are located above the carth’s surtuce. In
tfact. (2.8) provides a very good approximation to (2.4¢) (Fig. 2.4b). Figure 2.4b. 1n
addition to tllustrating the adequacy ot (2.8). scems to provide a clue concerning the

ongin of the shight differences between (2.8) and (2.4¢). Because the differences at

stmilar, 1t appears as if the <20 km dittferences in Fig. 2.4b result pnmanly from the
use. in (2.8). of the equivalent carth model spatial transtormation [and not tfrom the
other approximations applied to obtain (2.8)]. In any case, it 1s apparent that for

tropospheric data ( 2 <20 km ). (2.8) 1s an accurate approximation of (2.4¢) [and (2.1)].



whereas (2.7) provides less palatable results. especially at low elevations and moderate

to large ranges.
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FIG. 2.1 THustratton of the height - and greatcircle distance s

determination problem for a ray propagating in an atmosphere in which
the refractive index n decreases linearly with height. In this situation the
ray follows a path of constant curvature with a radius of curvature r.. R
denotes the radar location. /i, is the (radar) antenna height. r is the (slant)
range. D denotes the datum location. r' is the length of the chord RD. RI
denotes the ray path in a homogeneous (non-refractive) atmosphere, ;v is
the angle between the lines OR and RD. o is the angle between the lines
RD and RI. D' denotes the projection of the datum location to the carth’s
surface, « is the radius of the earth, O denotes the center of the earth, O
denotes the center of the circle that contains the arc RD, and £ is half of
the angle between O'R and O'D. For illustration purposes. features like
antenna height A, and the relative curvatures of the Earth's surface and of
the arc RD are not drawn to scale.
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Height Differences at z = ~20 km versus Elevation
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FIG. 2.2. Differences. as a function of elevation and at approximately 20 km altitude.
between radar data heights estimated using (2.1) and (2.4a-¢). The parameter values are
h,=0km . «=06370Kkm. r =4a.and &k, =4/3.
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Great-Circle Distance Differences at z = ~20 km versus
Elevation

(222500
—— (2 Shy-(2.5a.0

0O 2502500

Great-Chircle Distance Ditference (m)
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FIG. 2.3, Ditterences. as a function of elevation and at approximately 20 km altitude.
between radar-data great circle distances estimated using (2.2) and (2.5a-d). In (2.2) ¢
was computed using (2.1). in (2.5a.0) - was computed using (2.4a). in (2.5b) o was
computed using (2.4b). and in (2.5d) : was computed using (2.4¢). The parameter values
are i, =0Kkm. ¢ =0370Kkm. r =4da.and K, =4/3.
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FIG. 24, ) Differences between - values (km) obtained using the no-refraction, flat-carth
INR.FE: Eq. 12.7)] and the constant curvature, spherical earth. direct solution [CC.SE.DS: Eq.
(2.4¢)] models as a function of range and elevation. (b) Differences between - values (km)
obtained using the constant curvature, spherical equivalent earth, approximate solution
[CC.SEE.AS: Eq. (2.8)] and the constant curvature. spherical earth. direct solution [CC.SE.DS:
Eq. (2.4 models as a function of range and celevation. [n both ta) and (b) positive contours
are indicated by solid lines. negative contours are indicated by dashed lines, - =20km
{calculated using (2.40)f is indicated by the dotted line. the antenna height is /i, =0.0 km . the
carth radius is « =06370.0 km . the ray radius of curvature is r =4a. and the equivalent earth

radius «, =k a is a, =(4/3)a.
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2.1.2 Radar to Spherical Curvilinear Coordinates

When converting trom the radar coordinate system to an (x.v.2)-type of
coordinate system. the “flat-carth™ approximation is often used to determine x and v. In
this situation x and v are given by

X = §SIno (2.9)
and

v =5C050. (2.10)
where 01s azimuth. In the flat-carth approximation the carth’s surface is treated as a
planc (ct. Ayres 1954, p. 189). While this approximation may not generally result in
cgregious errors when working with radar data, errors could be significant for certain
applications [e.g.. relatng carth-relative features (hailswaths, tomado dumage paths,
et¢.) to storm structure]. Moreover. 1t is of interest to explore the results of using a
more contemporary model (sphenical instead of flat) for the earth’s shape.

The goal 1s to determine v, v, and - using r. 0. . «. radar lattude ¢, . and radar
longitude 4 . Relations for - (and s) have been provided in the previous section. In the
following 1t will be assumed that the azimuth ¢ =0° and elevation g =0° corresponds
to the +y-direction (north), the +x-direction is to the east, and positive rotation in r.¢
and r.0 surfaces is clockwise and towards the zenith, respectively.

In the coordinate system typically used in meteorology. x represents the distance
along latitude circles and v represents the distance along mendians (Dutton 1995, p.

230). With these conventions, the problem of determining x and v on a spherical earth

18



is illustrated in Fig. 2.5. Because the arcs RP,. P,D’. and D'R n Fig. 2.5 are all arcs of
great circles. RP,D"1s a sphencal triangle (Ayres 1954, p. 147). Note that RD’E is not a
spherical tnangle because ER is an arc of a small circle instead of a great circle (Ayres
1954, p. 147). As 1s customary in spherical tngonometry. both the angles and the sides
of the sphenical tniangle RP,D’ are expressed in angular measure (Ayres 1954, 148-149).
Three elements of RP,D". the vertex ¢ and the two sides 7/2 - ¢, and s/a. are
known. As will be subsequently shown. knowledge of P, and 7/2 - ¢, allows one to
determine x. ", and v (since the north pole P, is at one of the vertices of the spherical
tnangle RP,D’ the symbol P, 1s used to represent the spherical angle at that vertex).
From the law of cosines tor sides tor oblique spherical triangles (Ayres 1954, p. 168)
7/2 =@, =cos '[cos(x/2 - @, Jcos(s/u) + sin(m/2 = ¢ )sin(s/a)coso].  (2.11)
With knowledge of /2 - ¢, one can determine P, using the law of sines tor oblique

sphencal tnangles (Ayres 1954, p. 168):

P =sin",-Msino]. (2.12)
sin(mr 2-¢,) ]

Now that P, and 7/2 - ¢, are known, x. 1", and y can be determined. The
simplest value to determine is v. Because
v=alp, - )=dn/2-0, - (7/2-0,). (2.13)
V= a{/T/.’. -, —cos '[cos(m/2 - @, )cos(s/u) + sin(n/2 - @, )sin(.s'/a)cusol}.(?.. 14
where (2.11) has been utitized.
To determine x and . consider Fig. 2.6. in which the situation pictured in Fig.

2.5 i1s redrawn. By definition. the spherical angle P, is measured by the angle at O.
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which equals the angles at Og and Oy (Ayres 1954, p. 147). With this equivalence it is
apparent that x=R P and x'=R.P,. Expressions for R, and R, are readily
ascertained by considening Fig. 2.7. which is drawn in the plane defined by the points
0. Og. and E. From Fig. 2.7. R =acos(p,) and. analogously. R =acos(p,). The

relations tor x and +”. theretore. are

x=acos(g, )P, = acos(e, )sin '{——b—mml—)— sin @ (2.15)
Lsin(r 2-¢,) |
and
anls ]
X =acoslg, )P, = acos(g, )sin '(-—Mn—("\isino » (2.16)

|sin{r 2-¢,) ]
where (2.12) has been utilized.
It 1s useful to recognize that from the above information both 4, . the longitude
of the datum. and ¢, can be determined. The relatively tnvial relations are
A =4+ P (2.17)
and
o =x/2-(n/2-¢,). (2.18)
where the term in parentheses on the rhs of (2.18) is available from (2.11).
At this point it is appropriate to consider the possible dependencies of (2.11)-
(2.18) upon the azimuthal quadrant of the datum. (In Fig. 2.5 the cuase for quadrant 1 is
considered. Quadrants 1, 2. 3, and 4 are to the northeast. southeast. southwest. and
northwest, respectfully, of the radar location.) A simple check of the difterent

quadrants indicates that (2.11), (2.13), (2.14), and (2.18) hold regardless of the quadrant



of 0. The relation for P, is more complicated. Determination of the relaton for P, for
azimuthal quadrants 3 and 4 indicates that for these azimuthal quadrants a negative sign
should precede both the right-hand sides of (2.12). (2.15). and (2.16) and the P, termin
(2.17). It tums out, however, that this negative sign serves to keep P, nonnegative in
these quadrants. [In spherical trigonometry both the angles and the sides are considered
to be nonnegative (Ayres 1954, p. 146)]. Because in the third and fourth azimuthal
quadrants £, <4 . a negative P, value is appropriate tor the coordinate system used
herein. Consequently. (2.11)-(2.18) hold regardless of the azimuthal quadrant.

A comparison of results obtained using the tlat carth [(2.9-(2.1M] and the
sphencal earth [(2.16) and (2.13)] approximations. with v and : calculated using (2.5d)
and (2.4¢). respectively, is provided in Fig. 2.8, In this tigure ditferences are plotted as
a function of rand 0. which have been converted into polar v and v coordinates, and at

an clevation of ¢ =50 Becuuse difterences at a constant range increase with
decreasing elevation (increasing ). the differences in Fig. 2.8 are indicative of the
largest ditterences between the flat carth and sphenical earth models.  As 1s apparent in
Fig. 2.8a. (2.9) closely approximates (2.16). Maximum differences at r =200 km are
~0.016 km. Figure 2.8b. however. indicates that (2.10) is not as good of an
approximation to (2.13). Maximum differences at r = 200 km are ~2.21 km. while at
ranges of 25, 50, 100. and 150 km the maximum difterences are approximately 0.037.
0.143. 0.559, and 1.25 km. respectively.  [The difference of 0.143 km at r =50 km
corresponds roughly to the length ot a city block (0.134 km) and is nearly equal to the

magnitude of the difference between (2.4¢) and (2.7) at this range and elevation]. For



some applications. like relating earth-relatve features (hwlswaths. tornado damage
paths. etc.) to storm structure. differences of this magmitude may be important. For
typical weather radars with beamwidths of ~ 1.0° . however. these differences constitute
a fraction of the beamwidth and thus are not expected to be of significant consequence.
The differences in Fig. 2.8b. which are symmetnc abeut the mendian of the
radar. increase with range (and s). and are largest for the 90° and 270" azimuths. provide
clues concerning their principal cause. From this pattern, it appears as it the differences
in Fig. 2.8b may anse pnmanly trom the eftect tllustrated in Fig. 2.9, As is shown in
Fig. 2.9b, latitude lines on the earth’s surfuce curve toward the north pole. In the
sphenical curvilincar coordinate system. this results in data with 2 2 4 having v values
that are smaller than in the rectangular Cartesian case (Fig. 2.9a). Because this effect 1s
symmetnc about the meridian of the radar, increases with runge. and should be largest

for the 90" and 270" azimuths. it appears to explain the ditference pattern in Fig. 2.8b.



FIG. 2.5. The problem of determining the +. (', and v of a radar datum.
on a spherical earth. given the datum’s great circle distance s and azimuth
. the latitude and longitude of the radar ¢, and /£, . and the radius of the
carth ¢. The variable v is the distance from the meridian of the radar to
the meridian of the datum along the latitude circle of the radar. v is the
distance from the meridian of the radar to the meridian of the datum along
the latitude circle of the datum. and v is the distance from the latitude of
the radar to the latitude of the datum. Radar location is denoted by
R(¢, .4, ). P, indicates the north pole. D’ indicates the projection of the
datum location to the surface of the carth, £ indicates the intersection of
the meridian of the datum with the latitude circle of the radar. and ¢, 1s
the latitude of the datum.
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FIG. 2.6. The problem of determining the xand " of a radar datum. on
a spherical carth. given P,. The symbol A indicates the intersection of
the mendian of the radar with the equator, B is the intersection of the
meridian of the datum with the equator. (0 is the center of the earth,
R(¢ . 4,) is the radar location. £ is the intersection of the meridian of
the datum with the latitude circle of the radar. Oy is the intersection of
the plane associated with the radar latitude circle with the axis of the
carth, D is the projection of the datum location to the surface of the
carth, O, s the intersection of the plane associated with the datum
latitude circle with the axis of the carth. P, is the north pole. R, is the
radius of the radar latitude circle. and R, is the radius of the datum
latitude circle.
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FI1G. 2.7. The plane that includes the center of
the earth O. Ok (the intersection of the plane
associated with the radar latitude circle with
the axis of the carth). and E (the intersection of
the meridian of the datum with the latitude
circle of the radar). P, is the north pole. R is
the radius of the radar latitude circle, a is the
radius of the earth, and ¢, 1s the radar latitude.
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FIG. 2.8. () Differences between v values (km) obtained using the flat earth [FE. Eq. (2.9} and
the spherical carth [SE. Eq. (2.16)] approximations as a function ot azimuth and range. (b)
Ditferences between v values obtained using the flat earth [FE. Eq. (2.10)] and the spherical
carth [SE. Eq. (2.13)] approximations as a function of azimuth and range. In both (a) and (b) s
was computed using (2.5d) [with ¢ from (2.4¢)]. azimuth and range have been converted into
polar x and v values, positive contours are indicated by solid lines. negative contours are
indicated by dashed lines. the elevation is 8=35.0°, the radar longitude and latitude are
(A,.,)=(-97.81°.35.48°). the antenna height is h, =0.0 km. the earth radius is

« = 06370.0 km . and the ray radius of curvature is r = 4a.



a) Cartestan b) Earth
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FIG. 2.9. Horizontal surfaces in (a) a rectangular Cartesian coordinate system and (b) a
spherical curvilinear coordinate system (e.g.. the carth’s surface). R indicates the radar
location, D" is the projection of a datum location to the surface. 0 is azimuth, 4 is longitude
( 4, is the radar longitude). and @ is latitude ¢, is the datum latitude). The arrows indicate
the projection of a radar beam with 0 = 7/2 onto the surface and the dashed arc in b indicates

the latitude circle of the datum.
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2.1.3 Spherical Curvilinear to Radar Coordinates
With the (r.0.0)—(x.v.2) transformation relations established. it is prudent to
investigate the (x.v.z)—(r.0.0) transformation. In this case P, and n/2-¢, arc

casily ascertained from v or x" and v:

n2-@,=n/2-¢. - v/u (2.19)
and
Pz — (2.20)
©acos())
or
P =——"—— (2.21)

acos{e,)
At this point the vertex P, and the sides 7/2 - ¢, and 7/2 - ¢, of the sphencal tnangle
pictured in Fig. 2.5 are known. From the law of cosines for sides tor oblique sphencal
tnangles (Ayres 1954, p. 168).
sfa =cos Heos(m/2~ @, Jeos(m/2 - @, )+ sin(z/2 - ¢, )sin(z/2 - @, )cos(P )] .(2.22)
From the law of sines for oblique spherical tnangles (Ayres 1954, p. 168).

N i I
0 —sm"r'"('{')""(”“ "’")]. (2.23)

" sin(y a) )

where this azimuthal value s labeled as ¢, (o-intermediate) because this azimuthal

value will oftentimes be located in the incorrect quadrant.  Information concerning the

quadrant of a datum s needed to determine its ¢.



Because of the nature of the sphencal curvilinear coordinate svstem.
determining the azimuthal quadrant of a datum is more complicated than in the case of
planc-tngonometry. Specifically. determining whether a datum is in either quadrant
two or three 1s more complicated than in the plane-tngonometry case. One cannot
simply use the test v <0 as in plane tngonometry. The reason for this complication is
illustrated m Fig. 2.9. In the case of a Cartesian coordinate system (Fig. 2.9a) the
projection of the 0=m/2 radar beam coincides with the +x-direction.  For the
coordinate system used herein (Fig. 2.9b). however. the projection of the 0 = /2 radar
beam coincides with the +x-direction only at the location of the radar R. This results in
negative v-values for data at azimuths slightly less than and equal to /2 and for data at
azimuths shghtly greater than and equal to 37/2. Consequently, the test v <0 would
incorrectly place some points that are 1n quadrants one and four nto quadrants two and
three. respectively.

The y-value v, that divides azimuthal quadrants one and two and three and tour
ts needed. It can be determined using (2.14) with 0 =7/2 or 0 =37/2. The result s

Vo= u{Jr/l -¢, -cos '[cos(n/2 -, )cos(x/a)l}. (2.24)
with the quantity s/« available from (2.22). For a given carth radius and radar location,
(2.24) provides the v-values that divide azimuthal quadrants one and two and three and
four as a function of the s/a values of the data. It can be scen from (2.24) that v, is
typically negative since, for 0<s/a<m/2. cos(n/2 ~ ¢, )cos(s/a) is nonnegative and

less thun cos(zz/2 - @, ). resulting in cos '[cos(m/2 - ¢, )cos(s/a)|> /2 - p, .



One may wonder it the test x <0 can also fail to correctly indicate whether a
datum 1s n either azimuthal quadrant three or four. Fortunately. this test does correctly
indicate a datum’s location within either azimuthal quadrant three or four. This can be
verified by considering (2.12) and (2.15) or (2.16). At 0 =0 and ¢ =7 . P, and thus x
and " equal zero. On either side of thesc azimuths the sign of both x and " varies
according to the sign of P,.

By recognizing that the sign of the argument to the sin '( ) function in (2.23)
vanes according to the sign of P,. by assuming that the sin ‘() function i (2.23)
produces the principal values. and by considering the case for each azimuthal quadrant.
one obtains the relation

0=o0, 20,y

[\

o=r-9 vy (2.25)

o=2r+0, tv<0.v2y.

nt

Thus. once P,. 7/2 - ¢, . and s/u are known. (2.23)-(2.25) are required to compute the
correct value of ¢.
A relation for r,
r= [(a +h ) (@) =2Aa+h Wa+ :)cus(.\'/a)]l :. (2.26)
arises from solving (2.5d) for r. In this equation s is available from (2.22). The

elevation of a datum can be determined from the relation

0 =sin”" (a+zy —(a+h) -r erf2r =
2r{a+h,)

- _ - Y0\ -
sin“[(‘ )+ b, + 2a) r}*ﬂ'/:’..

2r(a+h))




which anses from solving (2.4b) for # and uses r from (2.26). In the height
determination section 1t was stated that (2.4¢) and (2.5d) might be preterable to the
other relations because of their satistaction of the no-refraction condition when
0=190.0° and because of their close adherence to the exact constant-curvature
solutions. Consequently. (2.26) and (2.27) are provided with the assumption that (2.4¢)
and (2.5d) are used for (r.0.0)— (x.v.z) transtormations. Because of the difficulty
assoctated with solving for #in (2.4¢). #1n (2.27) 1s obtained from (2.4b). Since (2.4b)
and (2.4¢) are nearly equivalent (Fig. 2.2). with the largest difference for the conditions
of Fig. 2.2 bemng +29 ¢m, the consequences of using (2.4b) [instead of (2.4¢)] o
determine € are expected to be minimal. The only situation in which the use of (2.4b)
instead of (2.4¢) for the determination of #1s expected to potentially make a difference
1s when ris very small.

The relations obtained herein may farl in extreme circumstances.  Potential
failure conditions include:

1. If 7/2<0<37/2. where f1s expressed such that 0 <0 < 27 | v becomes negative
when calculated using (2.2) or (2.6b) because of the cosf term. This is an
unlikely problem because elevations are almost always reported in the range
-n/2<0<n/2.

it. 16 7/2+r 2r <O<3z/2+r/2r . where 6 is expressed such that 0<9< 2, s
becomes negative when calculated using (2.54.b) or (2.6a) because of the

cos{@ - r/2r ) term. Because elevations are almost always reported in the range
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-m/2<0< /2. this problem is likely to arise only for elevations very near
(within r/2r oty -1/2.

If ¢, = /2. the sphencal tnangle RP,D’ collapses into the arc of a great circle. In
that case 71/2-¢, =s/a and P, =90. Consequently. from (2.15) x=0. from
(2.16) A" 20 (assuming the values of o are reported such that 0< 0 < 27). and
from (2.13) v=-y. The physical meanings of x. x". and v break down in this
sttuation.  Moreover. a diviston by zero occurs in (2.20).  These relations.
theretfore, do not hold for the situation where the radar 1s at a pole.

It @, =x/2. division by zero occurs in (2.12), (2.15y, (2.16). and (2.21). These
refations do not hold in situations where data points may be at either of the poles.
It r2~0(a) the geometry of Fig. 2.5 breaks down. The relations provided
herein are intended for conditions in which r <<a .

If r=0.then :=h,. ¢, =¢,.and s =P, =x=x"=v=0. This results in division
by zero in both (2.23) and (2.27).

It O=+nr/2. z=h, +r [assuming (2.1) or (24¢) are usedj. ¢, =¢,. and

o

y=P =v=1=v=0 [assuming (2.2). (2.5d). or (2.6b) arc used]. This results 1n

division by zero in (2.23).

2.1.4 A Spherical Curvilinear Grid for the Spatial Objective Analysis of Radar

Data

The estublishment of a sphencal curvilinear gnid for the spatial objective

analysis of radar data requires careful consideration. It the gnd is established relative to



the radar location using v (2.15) and v (2.13) for east-west and north-south
displacements. then lines of constant north-south displucement will coincide with
latitude lines while hines of constant cast-west displacement will coincide with
mendians.  The drawback of this system is the convergence of mendians with
increasing latitude (decreasing latitude in the southern hemisphere).  Assuming the gnd
does not traverse either the equator or a pole. this convergence of mendians results in
lines of constant east-west displacement being closer to each other in the northemn pan
of the gnd (southern part for the southern hemisphere) than they are tn the southern part
of the gnd (northemn part for the southern hemisphere).

An alternative is to define the cast-west displacement using ¥ (2.16). In this
system, lines of constant north-south displacement sull coincide with latitude lines
while lines of constant cast-west displacement are roughly parallel to the mendian of
the radar. A difficulty anses. however. 1f one wishes to pertorm muluple-Doppler
analyses. In that situation. defining cast-west displacements using " results in lines of
constant cast-west displacement that are different tor cach radar (unless. of course. the
longitudes of the radars are equal). Consequently. even 1f the centers of the analysis
grids (at ground level) for the different radars were collocated. the gnds would not
coincide because the cast-west displacement lines are defined relative to the longitude
of cach radar.

A solution to this problem is to define cast-west and north-south displacements
relative to the center of the analysis gnd. It the east-west displacements are then
defined as the distance along the latitude circle of the datum (not the gnd center). lines

of constant north-south displacement coincide with latitude lines while lines of constant

'
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cast-west displacement are roughly parallel to the meridian of the center of the analysis
grid.  Note that in this coordinate system only the set of gnd points along v'=0 are
parallel to a mendian.

The relations for the east-west and north-south displacement of a datum relative
to the center of the gnd. x), and v . are obtained from the same reasoning used to
denive (2.13).(2.15). and (2.16):

X, =acos(e )4, - 4,) (2.28)

and
v =dlg, -g_). (2.29)
In (2.28) and (2.29) 4 1s the longitude of the center of the analysis gnd and ¢ 15 the

latitude of the center of the analysis grid. For the transformation (', . v, )= (r0.0).

it can be helptul to express (2.24) and (2.25) in terms of latitude and longitude

ditferences:
dlat, = v Ju=m/2- @, —cos '[cos(n/2 = @, )cos(s/a)l. (2.30)
0=0, P20.¢, —¢ 2dla,
o=n-0, ¢, -¢ <du (2.3h)

o=2r+0, P<0.¢, -¢ 2dlu.

[t 1s enlightening to note that the analysis gnd defined herein appears to be
equivalent to that used by Brown et al. (1981). As Brown et al. (1981) indicate. this
coordinate system is one in which each honzontal two-dimensional gnd level is part of
a sphenical surface. each ot which is concentric about the carth’s center.  Vertical

columns ot gnd points are normal to the earth’s surface (i.e.. are “radiating™ outward



from the carth’s center). The analyzed data can be displayed by deforming the analysis
gnd into a rectangular-Cartestan gnd. As noted by Brown et al. (1981). the errors that
result from this deformation are negligible because of the limited domain size

(horizontal extent typically less than ~60 km and vertical extent less than ~20 km).

2.2 Objective Analysis

Spatial objective analyses of radar data are oftentimes pertormed to estimate
radar data on a rectangular Cartesian gnd. Three important motivations tor doing so are
the removal of notse. the incorporation of radar data into numencal weather prediction
models. and phenomenological studies. The latter reason arises in part because the
analysts of radar data 1s simplified for coordinate systems that are aligned with physical
processes.  The melting of hydrometeors. for example. tends to progress as those
hydrometeors fall towards the Earth. This physical process is approximately aligned
with the -z direction but 1s not aligned with any of the directions of the sphencal
coordinate system that underhies most radar data.

Spatial objective analyses of radar data are used in this study to enhuance
analyses of physical processes. In the application of spatial objective analyses to radar
data numerous issues arose that deserved investigation. These issues are considered

presently.

2.2.1 The Adaptive Barnes Scheme
The investigation of a new filter for the objective analysis of radar data was

motivated by the following two fundumental characteristics of the spatial density of

oy
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radar data. 1) Data spacing depends on direction: Because data spacing in the radial
direction s fixed (e.g.. every 150 m) whereas data are spaced in the azimuthal and
clevational directions at angular intervals. data spacing depends on direction.  2) Data
density systematically decreases with increasing range: Data in the azimuthal and
clevational directions are collected at angular intervals and the distances associated with
these intervals increase with increasing range.

Because of these charactenstics it has been proposed (Askelson et al. 2000) that
the following weight funcuon be utilized 1n distance-dependent weighted averaging
(DDWA) spatial objective analyses of radar data:

I

I
wir 0,.0, .I\‘,.I\'o.l\‘,,):cxpi -
L A 4

. . . . th
where ry 1s the radial distance between the " analysis location and the Kk observation

1

location. o, and € arc the azimuthal and elevational differences between the "
analysis point and the k" observation. and A.. A, . and &, are the smoothing parameters
tn the radial. azimuthal. and elevational directions. respectively. With (2.32) the weight
assigned to an observation depends upon the differences in the coordinates of the
observation and the analysis point.  Moreover. the form of (2.32) allows the
specification of anisotropic weight functions. The weight function (2.32) is referred to
as both the adaptive-Barnes (A-B) weight function and the A-B filter.

The implications of using (2.32) have been thoroughly investigated. Because of
the timing of the work in this area. the decision was made to move forward with the
publication of this research, which i1s contained in Askelson et al. (2000). A briet

summary of their findings. taken directly from their conclusions section, is:



“1) The A-B filter can directly account for the dependence of radar data spacing on
direction and for the tendency of radar data density to decrease with range.
Within the confines of one-pass DDWA schemes. the A-B filter facilitates the
retention of the maximum amount of information.

2) Consistent with the amsotropy of radar data spacing. more information concerning
waves with short to medium wavelengths in the highly resolved direction can be
retatned by decrecasing the smoothing in that direction using the direction-splitting
design of the A-B filter. This occurs without egregious phase shifts or onentation
changes of input waves.

3) Because the weight assigned to an observation depends upon the ditferences in the
coordinates of the observation and analysis points. the A-B filter automatcally
adapts to the systematically decreasing radar data density with range. With the
A-B filter information content at close ranges does not have to be sucnticed
because of poor resolution at more distant ranges.

4) Windowing weight tunctions produces nnging in their response functions. Effects
on the main lobe of the one-dimensional, Barnes response function are small when
the weight function is windowed at or below 0.05.

5) For radar data, postanalysis gradient fields of analyses produced using an isotropic
weight function will generally suffer trom contributions by gradients in the
analysis weights.  Because of its consistency with radar data. the direction-
sphitting A-B filter, when applied away trom data boundaries and to radar data that
are at regular radial, azimuthal, and eclevational intervals, results 1n postanalysis

gradient fields that have virtually no contribution from gradients in analysis



weights. However. even when the additional restriction of collocated observation
and analysis points s imposed. postanalysis gradients are not equal to analyses of
gradients because of the scale factors associated with the sphencal coordinate
svstem of radar data.

6) The A-B tilter should be used with caution since imbalances in the data. including
preferential onentation of finescale structure and decreasing finescale structure
with range. can be retained by the A-B filter. The retention of these imbalances is
what ronically produces both the potentual benefits and detniments of the A-B
scheme. Potential detniments anse since retention of data imbalances could lead
unwary analysts to form incorrect conclusions concerning the phenomena being
studied. Isotropic schemes. at the cost of information loss, attempt to normahize
these timbalances.™

In the above summary. windowing at a certain level means treating the non-
normahized weight function as if it were zero when its value 1s below that level.
Because computational resources are tinite, limits must be placed on the amount of
information that 1s used to obtain analysis values. In DDWA objective analyses. these
fimits are enforced through windowing. The traditional strategy 1s to 1gnore data for
which the weight function is small since those data have little influence upon analysis
values. Windowing. through cither design or data limits. is inherent to most objective
analyses.

One finding that is not histed above 1s that for data with infinite and continuous
domains, the DDWA is a cross correlation, not a convolution. In this context cross

correlation is the composition of two tunctions as defined by Papoulis (1962, p. 244)



and Bracewell (2000. p. 4€). This distinction 1s important when considering the phase
modulations expenienced during DDW A objective analyvses (Askelson et al. 2000).

A frustration encountered duning this work was the response function for
arbitrary weight functions and data distrnibutions.  Lack of knowledge concerning this
1ssue precluded certain avenues of investigation.  Consequently. this issue has been

investigated. as discussed presently.

2.2.2 Response Functions for Arbitrary Weight Functions and Data Distributions

2.2.2.1 Introduction

Distance-dependent  weighted  averaging (DDWA) can be viewed as a
fundamental process in most of the objective analysis techniques that are commonly
employed in meteorology (Thiébaux and Pedder 1987, 5-6: Daley 1991, 30-31). In one-
pass schemes that use prescnbed distance-dependent weight functions (e.g.. Bames
1964). analysis values are produced directly through DDWA.  Furthermore, multiple-
pass schemes using presenbed  distance-dependent weight  functions  (successive-
correction schemes) can be rewntten as DDWA (Caracena 1987 Doswell and Caracena
1988).  Simularly, schemes that employ least-squares function fitting also obtain
analysts values through a process that is equivalent to DDWA (Thiébaux and Pedder
1987. 22-23; Duley 1991. p. 49). Staustical objective analysis schemes utilize the
spatial correlation structure of the vaniables used in the analysis to construct a DDWA
scheme that minimizes analysis-error variance. Varnational schemes. while possibly not
generally expressible in terms of DDWA. often utilize techniques that are equivalent to

DDWA to tacilitate solution (e.g.. Testud and Chong 1983).



Given the importance of DDWA to the spatial objective analysis techniques
used in meteorology. it 1s prudent to understand the effects DDWA has upon the data.
These effects can be expressed through the response function®. As typically defined in
meteorology. the response function is the ratio of the Founier transforms of the post- and
pre-analysis fields. Assuming one-dimensional fields and denoting (direct) Fourier
transforms  with non-script capital letters. the response function R (v) is
R (v)=F (v)/F(v). where F (v) 1s the Fourier transform of the analysis field f (x).
F(v) 1s the Fourier transform of the observation field f(x). and v denotes the

frequency dependence.  Herein. the one-dimensional (directy Founer transtorm s
defined to be F(v)=FT[f(x)]= I_t'(.\')cxp(— J2mx)dy. where j =+ —=1. The response

function 1s a generally complex-valued function that provides information concerning
amplitude and phase changes undergone during analysts.

The response tunction tor DDWA analyses of continuous, infinite data has been
understood for some ume (e.g.. Bames 1964). Observations, however. are rarely
continuous or 1nfinite: observations are typically discrete. bounded. and irregularly
distnibuted.  Of these three charactenstics. the discrete nature of observations is the
most straighttorward to address in terms of the response function. Numerous texts (e.g..
Hamming {998) and journal articles (e.g.. Jones 1972) examine the situation where the
observations are both regularly-distnbuted and collocated with the analysis points. A
common approach used to determine the response function in this situation is the

cigenfunction approach (e.g.. Weaver 1983, 259-260). The efticacy of this approach is

3 . . .
The response tunction is known by other names. including transter function and system function.
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diminished. however. when either the analysis points are not collocated with the
observations or the observations are wregularly distnbuted.

Pauley and Wu (1990) considered a special case of non-collocated analysis and
obscrvation points.  They determined the response function for the situation where
analysis points are located midway between observations that are discrete. regularly
distnbuted. and infinite in number. The case of irregularly distributed observations was
beyvond the scope of their investigation.

For wrregularly distributed observations. the response function can be viewed
from two standpoints.  The first standpoint 1s a domain-wide response function. which
15 some sort of average response function that charactenzes the domain-wide spectral
effects of an analysis.  Domain-wide response functions for specitic data-point
distributions have been investigated (e.g.. Yang and Shapiro 1973; Buzzi et al. 1991). as
have domain-wide response functions for random data-point distributions (Stephens and
Polan 1971).

The second standpoint 15 the local response tunction. which is the subject of this
study. As discussed by Thicbaux and Pedder (1987, p. 105) and Buzzi et al. (1991). the
response function for DDWA analyses of discrete. rregularly distributed data depends
upon both frequency and location. Others (e.g.. Jones 1972: Yang and Shapiro 1973:
Schlax and Chelton 1992) have denived the local response tunction for DDWA analyses
of discrete. irregularly distnbuted data by using what is termed here the back-
substitution approach. In this approach a spectral representation of the observation field
1s first substituted into an expression for a DDWA analysis. Then. the result of this

operation 1s manipulated to obtain the response ftunction.  Herein, an alternative
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approach. labeled the convolution-theorem approach and based upon the approach
outlined by Caracena et al. (1984). s utilized to obtain the response function for DDWA
analyses of discrete. irregularly distnbuted data.

The purpose here s to outline a method for determining the locai response
function for DDWA analyses of arbitranly distributed data using arbitrary weight
functions. In doing so. the response function for DDWA analyses of discrete.
irregularly-distnibuted data 1s derived.  Although this response function is the same as
that determined previously (e.g.. Jones 1972: Yang and Shapiro 1973: Schlax and
Chelton 1992). the method outlined herein 1s enhightening because of the additional
insights it provides. In order to provide a logical progression to the final result and to
clanfy 1ssues pertaining to a previous result obtained by Pauley (1990) (hencetorth
P90). the steps taken to obtain the response function for discrete, irregularty-distributed
data are retraced in the chronological order in which they were discovered.

Conscquently. the response function for continuous, bounded data is first derived and

distributed data 1s denved and tested 1n section 2.2.2.3.  An extension to multiple
dimensions i1s provided in section 2.2.2.4. Results are discussed in section 2.2.2.5 and

conclusions are presented in chapter 4.

2.2.2.2 Continuous, Bounded Data
2.2.2.2.1 The Problem
Whereas response functions for DDWA schemes applied to data away from data

boundanes are relatvely well understood (e.g., Pauley and Wu 1990). less 1s known



concerning the response functions for DDWA schemes applied near data boundaries.
Even though this topic has been the subject of past investigations by P90 and
Achtemeier (1986). problems with these earlier papers motivate further examination.

For one-dimensional. continuous. bounded data with boundanies at x; and xg. the

first-pass. DDWA analysis field f,(x) is given by

T,

J‘f(.\',,)u(.r‘, - x)dx, IJ'/'(.\"_ Jplx In{x, = x)dx,

fx)

_ S
J.n(.\'” - x)dx, (-v)
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to
‘s
'
~

where  f(x,) denotes the observations. w{x -x) is the weight function.

ooy

n(x)= In'(.\j, - x)dx, is the normalization factor. p(x.) is the pulse function given by

1 vy

X )= - TR (2.34)
rix <0 otherwise

x., depicts observation locations. and x depicts analysis locations.” With the substitution

’

X =x, —x,(2.33) becomes

J;f(.\' + 0 ) w(a )l j_/'(.\' + X ) plx+ X))y’
filx)= n(x) N n(x)

t9
o)
‘N
<

As indicated in (2.35). both n(x) and p(x +x’) are functions of x (position in the

analysis domain).

"It s noted that in DDWA analyses observation and analysis domains are distinct. This 1s true even
though theyv can share some, or even all, locations.




Examples of the dependence of n(x) on v [for the Gaussian weight function
given by w{x)=exp(-x"/a", ). with A", = 3] are provided in Fig. 2.10 for a continuous.
bounded case (Fig. 2.10a). three discrete. regularly-distnbuted cases (Fig. 2.10b). and a
discrete. irregularly-distnbuted case (Fig. 2.10¢). The dependence of n(x) upon both
analysts type (continuous versus discrete) and location x. as illustrated in Fig. 2.10.
requires some cxplanation. In the continuous case (Fig. 2.10a). n(x) is nearly constant
in the center of the observational domain at a value that agrees with the infinite domain
value 1f the boundanes are sutticiently removed from each other. decreases to halt the
infinite domain value at the boundanies. and shninks to near zero outside of these
boundunies.  This pattern anises because. as the analysis point tand weight function
peak) approaches and passes a boundary. the area under the portion of the werght
function that resides within the observational domain decreases.

The same pattern is also present in the discrete. regularly-distnbuted cases (Fig.
2.10b). In these cases. however, n(x) increases with decreasing data spacing [the data
spacing 1s 1.0 (dotted line). 0.5 (thin-dashed line). and 0.25 (sohd line)]. This can be
understood by considering that DDWA schemes produce weighted averages using. in
the one-dimensional discrete case. equations of the form

i f(\, )H.'(,\'”: _ .\‘)
f\(.\'): . . (236)

\

Y i, - )
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where f,(x) is the analysis field, f(x,) denotes the i™ observation. and N is the total

number of observations. As the data density increases. so does the number of times the



weight function is sampled. which leads to an increase in the normalization fuctor.
[This situation s similar to that of a running mean. As the data density increases. the
number of values within the averaging interval (the normalization factor for the running
mean) increases.] Because of this and because the Gaussian weight function is largest
for small values of x". peaks in n(x) are also expected 1n conjunction with clusters of
observations 1n the discrete. irregularly distnbuted case (Fig. 2.10¢).

The final aspect of Fig. 2.10 that requires explanation 1s the relative magnitudes
of n{x) for the continuous and the discrete cases. Despite the use of the same weight
function. n{x) values in the discrete cases often exceed those in the continuous case.
The reason for this can be ascertained by considering (2.36). Multiplication of both the
numerator and the denominator of (2.36) by Av =1 converts both into Riemann sums
(sums of products of function values and ntervals). while neither analysis nor
normalizaton-factor values are altered.  The Riemann sum in the denominator.
however. 1s generally an improper approximation to the integral of the weight function
because observational intervals are not generally equal to one. When the data spacing 1s
less than one. as 1s often the case (cf. Figs. 2.10b.c). intervals overlap and
overestimation results.  In the regularly distnbuted cases of Fig. 2.10b. the
normalization tactor can be converted into a proper Riemann-sum approximation of the
integral of the weight function by multiplying by the actual data spacing. Doing so tor
the cases in Fig. 2.10b results in all of the curves being nearly identical to that for the
case with a data spacing of 1.0 and to that for the continuous case.

In her equation (P2a) P90 expresses the tirst-pass. Barnes. DDWA analysis field

for one-dimensional. continuous. bounded data as



J'cxp[ »——{\:: },/’(.\' + X )y’
' (P2a)

J'cxp[ —: ]dx"
A
where ¢,(x) is the analysis field. exp(-x"/4)=w(x"4,) is the (Barmes) weight
function, and f(x + ") denotes the observations. [Equations from P90 are labeled with
a P tollowed by the corresponding equation number in P90). In order for (P2a) to be
consistent with (2.35). x; must equal x;, - x and x> must equal x, — x.

P90 denved the response tunction for the Barnes scheme applied to one-
dimensional. continuous, bounded data by taking the Fourer transtorm of (P2b).

Equation (P2b). which resulted from introducing a pulse tunction into (P2a). 1s

chp{ _',‘; Jlf(x + ) p(x )y’
A
g ()= —— - : (P2b)

Jesn "X a0

The pulse tunction in (P2b). however, was set up incorrectly. Data boundanies should
be expressed in terms of observation space—uv,, as used herein or X as used in Pauley
and Wu (1990). This means that the pulse function p(1’) in (P2b) should be wntten as
plx+x").as1n (2.35). The numerator on the rhs of (2.35) [and (2.33)]. therefore. is the
cross correlation of w(x) and the tunction f(x)p(x). denoted as w(x)®f(x) p(x). As
shown by Papoulis (1962, p. 244). w{x)*f(x) plx) =w(-x)= f(x)plx). where =
denotes convolution. This result can also be obtained directly by recognizing that the
numerators of (2.33) and (2.35) are the convolution of w(-x) and f(x)p(x). Thus, a

concise expression of (2.33) and (2.35) 1s
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u(ﬂ*f‘"ﬁ’ plx) - w(=x)* flx) plx) : (2.37)
n(x) n(x)

filv)=

Attempting to obtain the response function by taking the Fourier transform of
(2.37)°. which is the corrected version of (P2b). results i difficulties. Taking the

Founer transform of (2.37) produces

J'u( VN, (v - 5)dE (2.38)

where M (v)=FT|w(-x)= f(x)p(x)]. N, (v)=FT[l/n(x)]. & denotes frequency
dependence. and the product theorem (Weaver 1983, p. 73) has been applied. Using

the convolution™ (Weaver 1983, p. 72). similarity” (Bracewell 2000. p. 108). and
product theorems. M (v) can be expressed as M(v) (=v) J‘f w)dy "
where @ denotes trequency dependence. Substituting this result into (2.38) results in

F.(v) J’ IHw P(E - w)dw u(— )N, (v - 5)dE (2.39)

* The domarn of the analysis tield 1s considered to be continuous and nfimte; both within and outside of
the obseryation domain. analysis values are determined using (2.37). Consequently. Fourier theory tor
one-dimensional, continuous., infinite domains apphies to thes problem.

" The torm of the praduct theorem used here states that if two functions f(\) and g(v\'). the domains of
which are infinite and continuous. have Fourer transtorms given by F(r) and G(r). respectively, then
the Fourier transtorm of the product of f (1) and g(.r) 1s given by the convolution of F(r) and G(r).

* The torm of the convolution theorem used here states that 1if two functions f(.r) and g(x). the domains
of which are infinite and continuous. have Fourter transtorms given by F(r) and G(\-). respectively.,

m:.n the Fourer transtorm of the convolution of j( ) and g( ) s given by F(\')G(r).
" The one-dimenstonal stmilanty theorem states that it the Fourier transform of the infinite. continuous

L F(i).
ul d

domain tunction j( )1\ F( ) then the Founer transtorm of f(«u) 18
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The response function cannot be expressed explicitly using (2.39) because F(v) is
bound within convolution integrals. That is. F(v') cannot be taken outside the integrals
(de-convolved). preventing the solution for F (v)/F(v). Moreover. rearranging (2.37)
prior to applving the Founer transtorm does not help because the numerator on the rhs
of (2.37) 1s the cross correlation of w(x) and f(x)p(x). No matter how (2.37) is
expressed. upon application of the Founer transform. this cross correlation results in a
convolution between F(v) and P(v).

P90. however. did obtain an explicit expression ftor the response function
through a process similar to that outlined above. albeit as a consequence of the incorrect
specttication of the pulse tunction in (P2b). As stated above. the pulse function is used
to descnbe the distribution of the observations and thus 1s a function of observation
location, x, = x+x". P90 incorrectly casted the pulse function as a function of x’. the
local coordinate system centered on the analysis point x. Becuause of this error. the
pulse function in the normalization factor of (P2b) is not a function of x as it should be.

and so n(x) passes through the Fourier transform as a constant in P90."" Furthermore.

" The Fourier transtorm P(v) can be evaluated erther directly or through the evaluation ot the Founer
transtorm of the shitted pulse tunction, that 1s centered upon the onigin (e.g.. Bracewell 2000. p. 1371, and
the subsequent application of the shift theorem (Bracewell 2000, p. L1,

" In P90 the normalization factor was erroneously treated as a constant, with a value appropriate tor the
particular analysis location of interest (as explained turther in this. and in the following. sections). P90’
treatment did correct the error 1in Achtemeier (1986). 1in which (in etfect) the pulse function was not
included 1n the normalization factor and so led to a constant value of a(x). regardless of location. Even
so, P90"s treatment 1s inconsistent with (2.37) because of the previously described error that was made in
defining the pulse functuon.
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the (incorrect) numerator of (P2b) is a cross correlation of w{x)p(x) and f(x) I rather
than a cross correlation of w(x) and f(x)p(x) as in (2.37). The Fourier transform of
the latter binds F(v) within mtegrals and so does not readily lead to a response
function.

Interpretation is facilitated using the concept of a window. which is defined at
cach analysis point as the effective “view™ of the data. For one-dimensional.
continuous, bounded data. the window at an analysis point 1s the product of the pulse
function and the normalized weight function. p(x + x7)| _t')/n(.\')l. and cxtends from
X, —x o x, - x. Examples of unnormalized [i.c.. not divided by n(x)] windows for
this situation are provided in Fig. 2.1Ta. [It should be noted that this analysis holds tor
any w(x'). The w{x) in Fig. 2.11 is simply an example. which has been made
asymmetne in order to avord the implication of spectal charactenstics.]  As 1s obvious
from Fig. 2.11a. the analyses at points A and B “see™ the data through different
windows. [n fact. the window 1s generally different for each analysis point. If, on the
other hand, the analysis somehow would view the data through the same window at
cach analysis point (Fig. 2.11b). n(x) would be constant and the pulse function would
only depend upon . resulting in the numerator of the rhs of (2.37) being a cross
correlation of w(x)p(x) and f(x). Because of the fixed data boundaries at x; and xx.
however, the scenario pictured in Fig. 2.11b does not hold and the problem investigated

by P90 needs to be reexamined.

> P90 treated the numerator on the rhs of (P2b) as a comolunion of w,(x) and fiv) . where

w, (X)) = w4 peor . when it s actually a cross correlation of w, (x) and fix). The two operations
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would be equal if w, (-=x) =w,, (x). This does not hold. however. for (P2b).
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FIG. 2.10. Examples of the spatial dependence of the normalization factor n(x) for (a) a
continuous. bounded case. (b) three discrete, regularly-distributed cases. and (¢) a discrete.
irregularly-distributed case. Thick-dashed lines indicate observational domain boundaries in (a)
and (b) and the limits of the possible observation locations in (¢). with actual observation
locations in (¢) denoted by arrows. In (b), the dotted. thin-dashed. and solid lines are tor
observational spacings of 1. 0.5, and (.25, respectively. The figure in (2) corresponds to the
analysis results shown in Fig. 2.12 while (¢) corresponds to the analysis results shown in Fig.
2.13.  Data for (b) are courtesy of P. Pauley. The weight function for (a-<c) is
w(x)=exp(-x'/n, ). with &, = 3.



(a)

(b)

FIG. 2.11. Hustrations of two types of unnormalized [not divided by n(1)] windows for
DDWA unalyses of one-dimensional. continuous. bounded data.  «ar Examples of
unnormalized windows at points A and B for an actual analysis.  (b) Examples of
tequivalent) theoretical unnormalized windows at points A and B. In (a). the thick-dashed
line represents the pulse function. In (b, the thick-dashed line represents the pulse function
for point A and the thick-dotted line represents the equivalent pulse tunction at point B. In
both (4) and (by the solid line represents w{x’) for point A and the thin-dashed line
represents w( ') for point B. The w(1”) shown in (a) and (b) is not special: in this analysis

w(x’) is arbitrary.
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2.2.2.2.2 The Solution

This quandary can be resolved by defining a hypothetical analysis for which the
scenano in Fig. 2. 11b holds—that 1s. the same window applies across the entire analysis
domain. Owing to its equivalent treatment of data across the analysis domain, such an
analysts 1s called herein an “equivalent analysis”™. To produce an equivalent analysis for
this situation. consider the actual analysis at some point. like point A in Fig. 2.11.
Further. suppose that observations are available not just wirhin the observational domain
(r.e.. from x; 10 xg) but throughout the equivalent analysis domain (~o0.%). The
equivalent analysis field f',\(.\‘..\',(, =A) is then produced by using. throughout the
entire equinvalent analysis domain. the same weight and pulse tunctions tie.. the same
window) that are used in the actual analysis at point A. (The symbol x,,, represents the
reference location, m this case point A, for which a response function is desired.) In
this imaginary analysis. theretore. cach point in the infinite domain “sees™ the same
relative distnbution of observations as the actual analysis “sees™ at point A. Because of
its equal treatment across an anfinite domain, this construction allows an explicit
expression of the response function using Fourier theory for one-dimensional.
continuous. infinite data.

Mathematically, the equivalent analysis field can be expressed as

t, el kb

Jj'{.\'_, Juwlx, - x)dx,
fialvoy,, )= et . (2.40)
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Note that the hypothetical equivalent analysis value at each x is different tor each
equivalent analysis (i.e.. each reference location v,,). Because within each equivalent
analysis xg, vy, and v, are constant, the normalizaton factor in the denominator of
(2.40) 1s constant.  This 15 more obvious when (2.40) is transformed using the
substitution 1" = x - x . which results in

Uyt

It'( X O ) dy j/’(,\' + Y p o, ()Y

fiday )= — = (24D
o ‘ n, (x.,) n, (x..)

where

' ty

(v, )= ,““'("")‘["": Il’f.\(-\"--l'...)W(-\")tl\" (2.42)
1s the equivalent analysis normalization factor and the equivalent analysis pulse

tunction p, (v".x., ) is given by

, I v, —x, , Sv <€y, -,
podyox )= o R T (2.43)
' {0 otherwise

Because within cach equivalent analysis x,,, 1s constant, pf,\(.\",.r,‘, ) depends only upon
x". Consequently, for cach equivalent analysis. the numerator and denominator on the

rhs of (2.41) are
J-f(.\' + ) p (o, () dY = wl(x) pp(vox, Pef(x)

= w(=v)pp (-, )= fx)
:n'w(—.\' v ) f(x) (2.4

et

and
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n(x,. )= jw( I R 171 (2.45)

respectively. The “effective™ weight function w, (x.x_, )=w{x)p, (x.x_. ). which is
the product of the weight function and the pulse function. embodies the actual weights
that are applied to the observations during equivalent analyses [cf. (2.41)].

Using (2.44). (2.41) can be expressed as

.,'L‘(_\,“\Arr' ): ( )pft( XX, )*f(‘) - “'m( . n—r) ,( ‘ (2-‘6)

Il,.\(.\'m ’ ”i_\(".m )

This expression illustrates an important difference between the actual and equivalent
analyses.  In the actual analysis (2.37). the pulse function is assoctated with the
observation ftield  f(x): m the equivalent analysis (2.46). the pulse function 1s
associated with weight function w(x). The equivalent analysis construct results in the
pulse tunction moving across the convolution symbol.

The Founer transform of (2.46) and the application of the convolution theorem
produce the response function

,“[._\ ("' "-r ' [‘T[“(" M "{/ )]

(2.47)
F(\‘) nl \( rer )

R (v, )=

where the fact that n“(.\‘,ﬁ) is constant for each v, has been used. The term
Fl"[w(,,, (-x.x,, )| can be expressed 1n a more useful torm by using the similanty
theorem. the definition of the Fourier transform. and the definition of p, (v.x, ).

From  the  similanty  thecorem.  1f Fr[wm (. l =W, (v.x, ). then

N
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F'l"[n;,, (- x.x, )]: W, (- vox, ). Using the detinitions of the Founer transtorm and of

I’;;.('\'--\’,,,, )W, (v.x,..) can be expressed as

T R Foe 1
W. ()= Iw(.t)cos( 2mw)dy + j{ - Iu(‘r)sin(lm'.\')dt . (2.48)
[ PR T L [ X,

Substituting -v for v in (2.48) to get FF[n;,,(—.\'..t,(, )]. as dictated by the similanty

theorem. and inserting the result into (2.47) produces

LU SO U Ve,

'fu'(.\' Jeos(2mx)dy - J.“{“ )sin(2mx fddx

R{v.x . )= g . (2.49)
A, ) L P

This 1s the response function tor DDWA analyses of one-dimensional. continuous.
bounded data. The only assumption concemning the weight function is that the mtegrals
in (2.40)-(2.42) and (2.44)-(2.49) exist. A well-known (e.g.. Caracena et al. 1984
Achtemeier 1986: P90) consequence of data boundaries is indicated in (2.49). when
data are bounded. the response function depends upon the weight function w{x), the
frequency v, and the location x,, .

At this point it 1s instructive to refate this result to that of P9O. P90 applied the
Founer transform to (P2b) and then utilized the convolution theorem and the pulse
function defimtion for (P2b) to obtain an explicit expression for the response function.
It has already been shown [cf. (2.39)] that when the correct version of (P2b), namely
(2.37). is used. this methodology does not result in an explicit expression tor the
response function. How, then. did P90 obtain an explicit expression for the response

function? The answer is that the incorrect definition of the pulse function in (P2b)

N
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emulates equivalent analyses. To examine the local response function for analysis
points located at or near a boundary. P90 utlized a pulse function that fixed the
boundanes relative to cach analysis point.  The difficulty i1s. in DDWA analyses
boundaries relate to observation. rather than analysis. locations. The concept of an
equivalent analysis. as in (P2b). allows the boundanies to be specified relative to
analysis locations.

With the incorrect definition of the pulse function. the normalization factor in
(P2b) is constant and the pulse function depends only upon x'. In fact. with

Y =x —-x, and x.o=x,-x, . P90's response tunction (P4), which in shghtly

modified form is given by
I\;-( x)eos(2mv)dy Iu'( o)sin(2mnx)dy
Rvx, )=— + i . (P4)
J‘u'( )y I w{x)dv

[ L.

1s equivalent to (2.49). This equivalence 1s somewhat puzzling, however, since P90
incorrectly regarded (P2by as a convolution rather than a cross correlation. which should
lead to a negative sign in the imaginary term in (P4). P90 does not give sutficient detail
in the denvation of (P4) to definitively resolve this sign problem. It is possible that a
sign error was made when P90 set up the Fourier integrals. If so, this error resulted in

(P90) obtaining the correct response function. Another possibility is that the alternative
definition of the (direct) Fourier transform £, (v)= .[f(,r)cxp(jlm'x)dr was used

and that no sign error was committed when the Fourier integrals were set up.

Considening that Pauley and Wu (1990) used the same (direct) Fourier transform as
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used herein. however, this seems unlikely. In any case. despite the pulse function
problems. if (P2b) were correctly treated as a cross correlation. it the Founer integrals
were correctly set up. and 1f the same (direct) Founer transform were used. (P4) would
be equivalent to (2.49). The incorrect treatment of (P2b) as a convolution leads to a
sign error in the imaginary term of the response function. The consequence 1s a
ditference in the sign of the phase shitt undergone during analysis. as tllustrated

presently.

2.2.2.2.3 Verification
The application of the similarity theorem in the derivation of (2.49) resulted in a
change 1n the sign of the imagminary term.  Consequently, (2.49) 1s the complex
conjugate  of  FT[w, (x.x., )]/n,, o) =w (eox, )/ () =W olvx, ) and s
denoted here as H’\'(\'..r,‘,, ). The important result that the local response function is the
complex conjugate of the normalized Fourier transform of the effective weight function
1s succinctly expressed as
Rlvox  J=Wilv.x ) (2.50)
In (2.50). W (vox,, )=W e, ) - W, (vox ).
Using the definition of the response tunction. the Founer coctticients of the
equivalent analysis field can be expressed in polar form as
Folvox, )= FOW Gox, Jexplip,,, v o, )l (250
where |F(v} and ]W\'(v,.\',(, ) are the magnitudes of F(v) and W.{v.x_) and

@py =g F(v) By (v). B (V)] and
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Poer = urg[W\'(v.x,ﬂ kW e lrx, ).-W, mlrx )] are the phases. or arguments. of

F(v)and W/ (v.x,,)."" Using (A10) from appendix A, f, (x.x,, ) can be written as

' 2 .
j;“(-\l-"m )_—_ J‘ m'F(r]'W\ (1\ ]cos(lmzr + P =P ,)d\-. (2.52)

=)
where 0"(v) is O except for at v=0. where it is |. and the fact that

Y

o =~¢, . . has been utilized. Equation (2.52) shows exactly what happens to
cach Founer coefticient dunng an analysis. Dunng an analysis. the amplitude of each

Founer coefticient i1s modified by the tactor

D

W, J= W o )= Wb, P oW (e, (
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and the phase of cach Founer coetticient s altered by
— = —arg(W e EW L e W e, (2.54)
The response tunction (2.49) can now be ventfied by using it to predict analysts
values and by companng these predicted analysis values to actual analysis values
obtained using (2.33) or (2.36). This has been accomplished using “observation™ ftields

of the torm

to
1
‘H

flx,)=Acos(2m x,). (2.
where A, 1s the amplitude and v, > 0 is the trequency of the input field. To perform

these tests, knowledge of F,.(v) and F,_ (v) is needed to evaluate |[F(v) and ¢,

" The representation of the argument function arg 1n the form arg|F(v) F, (v) F, (v)] means the
argument of Fv) . which depends upen £, (v) and F,, (v). The argument of Fiv) 1s the angle ¢, .

s

such that [F{v)cosg, s the real partof Fivy and [Flvfsing, s the imaginary part of Fu):its the

'
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[since (2.52) 15 to be utilized. only v values greater than or equal to zero are of concern].

For the input field (2.55) with v, > 0. F,_(v)= %o‘(r -v )and F_(v)=0. where o(x) is

Al

the Dirac distribution (Bracewell 2000. 74-85)."*" These result in |F(v) =

and ¢, =0.7. depending upon whether A, 1s positive or negative. respectively. For
the input tield (2.55) with v, > 0. theretore, (2.52) becomes

: ( - ):U\IW'(' s : ‘(’m"+7 - ) 2.56

}‘L\ "."r" l‘ \ ' N ‘,"‘r,r COsC ;'\ an ' q)“\'. [ A (""' )

P v

where the sifing propenty of the Dirac distribution. Io‘(.\'—u)/'(.\'hl.\':f(a)

(Bracewell 2000, p. 79). has been exploited and the fact that 0"(v )=0 if v, = 0 has
been utilized.  Because the response in (2.49) and (2.50) is valid only at v=u .
f, (x.x,.) values from (2.56) are relevant to the actual analysis values only when
X =ux,, 1n(2.56).

Actual and predicted analysis fields tor x, =0, v, =10, A =1, v =1/3, and

w{x)=exp(- v’ /a, ). with A, =3 are shown in Fig. 2.12a. This figure confirms the

angle n the complex plane that the vector. onginatng trom zero and ending at Fovy . makes with the

POSITIVE X-aXI>.

Sle—v )= 25l - ).

ulf

" The real component of F(v) for an input tield given by (235015 F (v)=

. AL .
which can be expressed as F,_(v) = T‘)(M -|v |). Since the one sided spectrum 1s being utihized (v 20)

=
and since v, > 0. the second term s zeroand £ (v) = = olv -+ ).

" The terms Dirac distribution and comb distribution (next section) are used nstead of the terms Dirac
delta-function and comb tunction since. strictly speaking. these are not tunctions, but are distriburions (or
generalized functions).  Distribution theory s bevond the scope of this study.  Fortunately. for the
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veracity of (2.49) since it shows that the predicted analysis values (plus-sign symbols),
obtained using (2.49). match the actual analysis values (solid line).

Predicted analysis values obtained using a response function derived under the
incorrect assumption that DDWA entails convolution. instead of cross correlation. are
illustrated by the thin-dashed line in Fig. 2.12a.  As this line indicates, this incorrect
response function. given by (P4) with a negative sign preceding the imaginary
component. does not correctly predict analysis values. The difference between (2.49)
and this incorrect response tunction can be understood by noting that a repetition of the
above analysis for the incorrect response tunction results in a positive. rather than
., 1In (2.52) and (2.56). The response function that

ncgatve. sign in front of ¢,

results from incorrectly treating DDWA as a convolution correctly  specities the
amplitude modulation and the phase shitt magnitude but incorrectly specities the sign of
the phase shitt. It results in an incorrect response function that i1s the complex conjugate
of the correct response function (2.50).

The amplitude W, (v v, ) (solid line. left axis). phase ¢, . (thin-dashed
line. nght axis). and ideal-amplitude (dotted line. left axis) modulations for the test
illustrated in Fig. 2.12a are shown in Fig. 2.12b. The ideal amplitude modulation ts the
response function for infinite. continuous data and is thus also referred to as the ideal
response function. [For the weight function used in these tests. the ideal response

function ts i’(.(\')=cxp[—h"t(m'):] (Barmes 1964).] As Fig. 2.12b indicates. the

operations used heremn the distributions considered behave much like funcuons.  For those who are
interested. Bracewell (2000) provides a relatuvely strarghttorward introduction to distribution theory.
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response 1s nearly ideal in the central portions of the observational domain. For x <~ 3
and x 2~ 7 however. the boundanes affect the analysis and force non-ideal results.
The phase shifts experienced near and outstde of the observational domain
boundunes are particularly illuminating.  Since positive values of ¢, . result in
shifting the input wave to the nght while negative values of ¢, . result in leftward
shifts {cf. (2.56)]. 1t is apparent that near the boundaries the analysis obtains information
from towards the center of the observatnonal domain. This also holds true outside of the
observational domain up to a certarn distance trom the domain boundaries. At that
point the phase shift changes trom =180° to +180°. with the phase-shitt values
oscillating with increasing distance from the domain boundanes. These oscillations
result from the constraint that - 180° < ¢, .. ... <1807 . which was imposed during the
calculations.  This constraint does not necessanly produce the correct value of
@y, .. Stoctly speaking. any @, =@+ n(360%). where ~180° < ¢ <180° and
n is an integer, could be considered valid at any point since 360° -increment changes in

. do not alter the results of (2.56). Within the observational domain it appears
Woh o0 pp

as 1f the restricted ¢, ,, , , values are correct since the analysts does not need to look
very far away to obtain information. This 1s not true. however. for analysis points
outside of the observational domain. Consider the situation at x =12, where (the

restricted) ¢, ., =-08.09". Since the nearest information s two units away. which

corresponds to 240° for this wave (wavelength of 4 =3). it seems that the correct

phase shift value at this point is +291.31°. Note that this value implies a physically



plausible nghtward migration of information for this point.  From reasoning that is
supported by the phase shift values near the data boundanes. consequently. it appears
that the correct phase shift values for points outside of the observational domain result
tfrom incrementing the restricted phase shift values by an appropriate multiple of 360°.
To the nght dletty of the observational domain. the corrected phase-shift values increase
(decrease) monotonically with increasing distance from the rightmost (leftmost) data
boundary.

The interpretation of analysis consequences in terms of the amplitudes and
phases of the Founier components. therefore, factlitates understanding.  For the analysis
illustrated 1in Fig. 2.12. for example. extrapolation is achieved by shifting information
contained within the observational domain to pomts outside of the observational
domain. This statement. moreover, appears to be fundamental to all extrapolations. A
further consequence of the extrapolation illustrated i Fig. 2,12 1s decreasing tilterning
with increasing extrapolation distance. This 1s indicated 1in Fig. 2.12b by the increasing
amplitude modulation with increasing distance from the observational domain. It is not

known if this 1s a fundamental attribute of all extrapolation schemes.



FIG. 2.12. «ay The input field (dotted line) and actual (solid line). response-function predicted
tplus-sign symbols). and complex conjugate response-tunction predicted (thin-dashed line)
analysis fields tor a DDWA analysis of one-dimensional. continuous. bounded data. (b) The
amplitude (solid line. left axis) and phase (thin-dashed line. right axis) modulation tunctions and
the ideal response function tdotted line, left axis) for the test shown in ta). In both tay and (b
the thick-dashed lines indicate the observational domain boundaries. The observational field is
given by f(x)=A cos(2m x). with A =1. v =1/3. and the weight function is given by

W(_\)=L‘XP(— \':/I\'d ) with N, = 3.
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2.2.2.3 Discrete, Irregularly-Distributed Data
2.2.2.3.1 Derivation

For simplicity, the problem considered 1s again one-dimensional.  In this
situation. the analysis field f,(x) 1s determined using (2.36). which is repeated here for

convenience and s

i flx, w{x, - x)

fi(x)= —— : (2.57)

Z wix L - )

where f(v ) denotes the i™ observation and .V is the total number of observations.
(Note that this denvation is designed for the case where the number of observations is
finite. It could easily be modified for analyses involving an infinite number of
observations.) As tn Caracena et al. (1984) and Pauley and Wu (1990). the observation
locations cun be described using a comb distnbution (rather than a pulse tunction).
Comb distnbutions are typically defined (e.g.. Weaver 1983, p. 131) as infinite trains of
cqually-spaced Dirac distnbutions.  In this case. however. the irregular data spacing
requires What 1s called here an trregudar comb distnbution. which ts given by

icomb(x )= Z()'(,\',, -x, ). (2.58)

1
where o(x) is the Dirac distribution. The sifting property of the Dirac distribution,

together with (2.58). allows (2.57) to be expressed in the form

| j‘_/‘(.\", Jicomb(x Jw(x, — xX)dx,
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A
where the normalization factor n(x) is given by n(x) = Z wix, —x).
i
With the substitution " = x - x.(2.59) can be rewritten as

J'f(.\' + x)icomb(x + X" )u{x’)dy’

filx)= e . (2.60)

As in the bounded. continuous case, both n(x) and comb(x + x') depend upon v. In
this situation, the numerators of {2.59) and (2.60) are
wO* f(icomb{ ) = wi-x)= f{x)icomb{v). Thus. a succinet expression for (2.59)
and (2.60) 1s

)= w(— )= f(xhcomb(y) . 2.60)
n(x)

Attempting to determine an exphicit expression tor the response function by taking the

Fourier transform of (2.61)'" produces
F(v)= [ME)N, (- Hds. (2.62)
where M (v) = FT{uw(-x)* f(x)icomb(x)]. N, (v)=FT|l/n{x)]. ¢ denotes frequency

dependence. and the product theorem has been applied.  Using the convolution,

similarity,  and  product  thcorems, M(v) can  be  expressed s

R i . N
* As in the case for continuous. bounded data. the domain of thrs analysis field 1s considered to be
continuous and infinite.
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MHWY=W(-v) IF(u/)lCOMB(\' —y)dy' . where ¥ denotes frequency dependence.

v -
Substituting this into (2.62) results in
- (W

F.(v)= J' [

J‘“F(l//)lCOMB(,f - l//)dw}u’(—._f)‘\',(v -S)ds . (2.63)
R PR

As with (2.39). the response function cannot be expressed explicitly using (2.63).
Morcover. rearranging (2.61) prior to applying the Founer transform does not help
produce an explicit expression for the response function,

Agan. the artifice of an equivalent analysts allows the determination of the local
response tunction. Consider the hypothetical situation in which the observation field is
known everywhere and an equivalent analysis field ff,\(-"--‘l.» ) 1s produced using. for all
points 1n the equivalent-analysis domain (-oo,00), the same relative distribution of
observations and werghts that s used to produce an actual anaivsis value at the point
x,.. The non-weight component of the window through which the observations are
“seen” s, an this case. a shiding irregular comb. as opposed to the shiding pulse function
employed carlier 1n the cquivalent analyses of continuous. bounded data.  This
equivalent analysis tield s given by

I flx+ x)icomb, (¥.x,, )Jw(x")dy’

folvx, )=+ . (2.64)
"f‘.\(".lcr )

" The Fourer transform of the product of a function f{x) and a comb distribution can be interpreted
using the stfung property of the Dirac distribution. as shown in Bracewell (2000, p. 138). In the case
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where

\ 1

nlx,. )= Z wlv, —x )= J.icomb,_, (x'.x,, (X))’ (2.65)
-1

is the equivalent analysis normalization factor and the equivalent analysis irregular

comb distnbution s

icomb, (¥.x_, )= i ()'[.\" ~(x, -x,, )] (2.66)

[
Within cach equivalent analvsis x,, and nm(.\',(,) are constant and icomb, (¥ x,,.)

depends only upon x". Hence. in this situation the numerator and denominator of (2.64)

are
I/'(.\‘ + 3 )icomb, (vox, ) dy” = wix)icomb,  (v.x,, & f(x)
=w(-x)icomb, (- v.x , )* f(x)
=w, (-v.x,, )* f(x) (2.67)
and
n (v, )= J'wr,, (x.x,, )dv. (2.68)
respectively. The effective weight function w, (xv.x,, )= w(x) icomb, (x.x_ )

embodies not only the structure of the weight function but also the distribution of the

observations about the point v, .

where f(1) = 1. this produces the Fourter transform of the comb distnibution.  For the comb distribution

\

aiven by (2,38 ICOMB(v) = Zc\p(— Jim).
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The following determination of the response function proceeds as in the
continuous. bounded case. With (2.67). (2.64) can be expressed as

£, - w(-— .\')icomhu(—.\'. X, )¢ f(x) _ M (-x.x,, )* f(x) . (2.69)
n,., (.\',” ) n,‘\(.\'m )

As in the continuous. bounded case. (2.69) illustrates an important difference between
the actual and equivalent analyses. In the actual analysis (2.61). the iregular comb
distnibution 1s associated with the observation tield f(x): in the equivalent analysis
(2.69). the irregular comb distribution 1s associated with the weight tunction w(x). The
cquivalent analysis construct, in a manner similar to that in the continuous. bounded
case. results in the irregular comb distribution moving across the convolution symbol.
The Founer transform of (2.69) and the application of the convolution theorem

produce the response function

(2.70)

o F, vy, FT[WI,,(—.\'..\',,, )]
i, )= e T e

where the fact that n, (v, ) 1s constant for each x,,, has been used. The similanty
theorem indicates that if FT[n",,, (v.x, B W (v.x,). then

FT[w., (-x.x,, )]=W, (=v.x_, ). Using the definitions of the Fourier transform and of

er

icomb, (x.x,, ). W_(v.x_, ) can be expressed as (see footnote 17)

et

\
W, (vox, ) =Y wly, -x, JeosPm(x, - x,, )|
-1

( (2.71)

O XTI I

01
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Substituting -v for v in (2.71) to get Fr[u;,,(—.r..\;l,, )] as dictated by the similanty

theorem. and inserting the result into (2.70) produces

\
Zw(.\j” -x,. Jeos[2m(x, - x|
oo

II“(.\',’, )

- Z wix i o )sin[lm'(.\‘ P O )I
. ol
=)

(2.72)

,lﬁ\(";w' )
As 1n the case for continuous. bounded data. the response tunction for DDWA analvses
of discrete. irregularly-distnibuted data depends upon the weicht function wix). the

frequency v, and the location x, ..

2.2.2.3.2 Verification

The response function (2.72) is tested by using it to predict analysis values and
by compuaning these values to actual analysis values obtained using (2.57). As in the
continuous. bounded case. the input to these tests 1s prescribed by (2.55). Furthermore.
since 1n this  case i{(r..\',r, )= FT[W(" (—.\'..\',r, )] nu(,\'m )= H'\'(v..\',,, ). as in the
continuous. bounded cuase [(2.49) and (2.50)]. the analysis from (2.50) to (2.56) applies
here also. In this case. of course. W, (v.x, ) is given by (2.72) rather than by (2.49).

Actual and predicted analysis fields for A =1, v =1/5. N=20. and
w(x)=exp(-x°/a, ). with &, =3, are shown in Fig. 2.13a. (Each x, was obtained
using a pseudo-random number generator and was restncted such that x, <x < x,.

with x, =0 and x, =10.) |In this figure the limits of the possible x, values are
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indicated by thick-dashed lines. the input field is indicated by the dotted line.
observations are indicated by diamond symbols. observation locations are indicated by
the small arrows at the top of the figure. the analyzed field is indicated by the solid line.
and the predicted [using (2.56)] analysis values are indicated by the plus-sign symbols.
As this figure shows. (2.72) is correct since it predicts actual analysis values.

The amplitude [W.{v.x,.} and phase ¢, . . modulations for the test

tlustrated 1in Frg. 2.13a are shown in Fig. 2.13b. Except for the arrows that indicate
observation locations along the top of this tigure. the elements of Fig. 2.13b are as in
Fig. 2.12b. with the amplitude modulation field (left axis) indicated by the solid line. the
phase modulation ficld (nght axis) indicated by the thin-dashed line. and the deal
amplitude modulation field. orideal response. (left axis) indicated by the dotted line. In
this case. amplitude modulations are generally far from ideal and significant phase
shifts are common. (The presence of significant phase shifts in Fig. 2.13b s consistent
with the misalignment in Fig. 2.13a of the maxima and minima of the input and analysis
ficlds.) Figure 2.13 illustrates well the impact an irregular observational distribution
can have. When observations are irregularly distnbuted. the response can be far from
ideal both within and outside of the observational domain limits.

The phasec shift values that are outside of the observational domain limits in Fig.
2.13b behave similarly to the phase shift values that are outside of the observational
domain limits tn Fig. 2.12b. Because the ¢, , values plotted in Fig. 2.13b were

restricted as they were in Fig. 2.12b. ie. such that -180°<¢, , . <180°. the

extrapolation phase shift discussion of section 2.2.2.2.3 applies here as well. A plot of
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corrected ¢, , , values would thus indicate monotonically increasing (decreasing)
phase shifts with increasing distance to the nght (left) of the nghtmost (leftmost)
observational domain limit.  As with the continuous. bounded case. extrapolation is
achieved by shitung information contained within the observational domain to points

outside of the observational domain.
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FIG. 2.13. ta) The input field (dotted line). observations (diamond symbols). and actual «solid
line) and response-function predicted tplus-sign symbols) analysis fields for a DDWA analysis
of one-dimensional. discrete. irregularly-distributed data.  (b) The amplitude (solid line. left
axis) and phase tthin-dashed hine. right axis) modulation functions and the ideal response
function (dotted line. left axis) for the test shown in (a). In both (a) and (b) the thick-dashed
lines indicate the limits of possible observation locations and the arrows denote actual
observation locations.  The observational tield is given by f(x)= A cos(2n v). with A =1,

v =1/5. and the weight function is given by w(v)=exp(-= v /a7, ). with &, =3,
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2.2.2.4 Extension to Multiple Dimensions
2.2.2.4.1 Derivation

The purpose 1s to extend the general response function framework to
multidimensional problems. To illustrate how this can be accomplished. the simplest
multidimensional problem. that concerning two dimensions. is considered here. The
extension to three or more dimensions can be accomplished by generahizing the
methods presented herein.

In this analysis the direct Founer transtorm ot f(x. v) 1s detined to be
Flunv)=FT[f(x.v)]= I J’/'(,\‘. viexpl- j2a(ux + vv)|dydy . (2.73)

. . o - - B -
where ¢ and v denote frequency and j=v-1. The comresponding indirect Fourner

transtorm 1s defined by
fla.v)= I '[F(u.\')cxp[jlﬂ(u.\‘ +vv)|dudy . (2.74H

To illustrate the application of the general response function framework in two-
dimensions, the two-dimens:onal. discrete, irregularly-distnibuted case 1s analyzed. To
proceed. the expression for distance-dependent weighted averaging (DDWA) analyses
of such data must be cxpressed in a form to which Fourier theory for infinite,
continuous data can be applied.  The DDWA analysis of discrete, irregularly-

distributed. two-dimensional data can be expressed as

74



where f.(x.v) is the analysis field. f(x,.v_ ) denotes the i™ observation. N is the total

number of observations. and w{x -~ x.yv, - v) 1s the weight function. To manipulate

(2.75) nto the desired form. the two-dimensional impulse symbol (Bracewell 2000. p.

89).

1s required. This impulse symbol 1s defined (cf. Bracewell 2000) such that
[ Jrotevdvav =1
and

| j I:J(.\' —a.v=b)f(x.v)didy = fla.b).

“ ot

Thus latter siting property means that (2.75) can be expressed as

I J‘j'(.\;,. V) :icomb(.\‘“‘ vow(x, —ay, = v)dy dy

f(ey)

n(x.v)

where
Ay
“trcomb(x v )= Z O, - x, v, - y)

[

Al

and n(x, v) is the normalization factor given by n{x, v) = Z w(x, —vwy, —v).

=1

(2.76)

(2.7

(2.78)

(2.79)

(2.80)



With the substitutions "= x, —x and v = v - v.(2.79) can be rewritten as

I I_t'(x + X v+ ) icomblx + X v+ V) () d dy

filvy)=—""= . (2.81)
n{x.v)

The numerator on the rhs of (2.81) 1s the two-dimensional cross correlation of w{x. v)
with  the composite  function  f(x.v) “icomb(x, v) and is  denoted  as
WL V)% ®f(x v) icomb(x, v). By substituting  w(x.v)=w_(-x.-y). thereby
defining w (x. v) = w(-x. - v). and by subsequently performing the change of vanables
X=y+y and Y=v+y, one obtains the result
WL W R (v v) Slcomb(a, v) = w(= .- v)EE f( ) ficomb(a, v) . where ** denotes a
two-dimensional convolution (Bracewell 2000, p. 331). Thus. (2.81) can be expressed
as

w(= .= v)Ex £ v) icomb(x, v) ' (2.82)

filv. )= n(x.y)

Attempting to determine an explicit expression ftor the response function by
taking the Fourner transtorm of (2.82) fails because the Fourier transform of f(x. v)
becomes bound within convolution integrals. preventing one from obtaining
R(uv)=F (u.v)/F(u.v). One can obtain the response function. however. if the
concept of an equivalent analysis 1s applied. Consider the hypothetical situation in
which the observation field 1s known everywhere and an equivalent analysis field
folx \\\,) is produced using. for all points in the equivalent-analysis domain,

the same relative distnbution of observations and weights that is used to produce an
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actual analysts value at the point (\ V. ). The non-weight component of the window
through which the observations are “seen” is. in this case, a sliding. irregular. two-
dimensional comb distribution. This equivalent analysis field is given by

foleyox, . v, )=

v ()Y Ay (2.83)

ret

j I.f(.\' + X v+ ) Cicomb, (¥ v x

n(x,.v.,)

where

A
n, {x,,.v,. )= Z wlv, —v,..v, -v.)
I

(2.84)

=t

J J.:lcomb,_\(.\". Vo oy, () dYdy

Y -

"

and

\
“icomb, (¥ vy v, )= Z Ol (v, = oy =, v ) (2.85)

!
Recognizing that the numerator on the rhs of (2.83) 1s a cross-correlation and using the
same transformation  between a  two-dimensional  cross-correlation and a  two-
dimensional convolution that was used previously. (2.83) can be expressed as

w(-x.— ) icomb, (-x.=v.ox,, v )EEf(ay)

(2.86)
”f.\("”«" . _\‘r,! )

»,.[“.\ ('\-' -‘.' '\'ru A .“rr/ ) =

Note that in the equivalent analysis (2.86) “icomb, (x.v.x,,.v, ) is associated with
w{x.v). whereas in the actual analysis (2.82) “icomb(x. v) is associated with f(x.v).

The equivalent analysis results in the two-dimensional irregular comb distnbution
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moving across the convolution symbol. which s the key alteration that enables the
determination of the response function.

Taking the Fourier transtorm of (2.86) and applying the convolution theorem for
two-dimensional Fourier transforms'” (Bracewell 2000, p. 332).
B FT[M(— x.=¥)icomb, (- x.-v.x,,.v,, )]
- n,_.(,\',r, VL )

_ FT[W(_, (= x.~ LI S Y )l

n v, v,.,)

R (w.v.ox,, . v, )
(2.87)

where w, (- x.—v.x . v, )=w(-x.-v) icomb, (- .- v.x,..v..). The similarity
theorem for two-dimensional Fourier transforms'” (Bracewell 2000, p. 332) states that if
Frlw., (xovox,, v, )= W e, oy ), then

ret

FT[n',,,(~.\'.—'\'..\',‘,.'v,', )| = W.o(-u.-v.x,

re

.¥,.. ). From the definmtions of the two-
dimensional Founer transform and of “icomb, (v.v.x, . v, ).

W (v, v, )=

\
Z wle, —xv,, v, - v, )cos{lfr[u(.\‘ B S Rt SOOI )[} (2.88)
ol
. |
+ j{— Z u'(_\j,, -X,.V, Ty, )sin{llf[u(x R )+ r(y_,_ -V, )I}(
cod J

" The two-dimensional convolution theorem states that 1f two functions f(v.v) and ¢{v.v). the
domains of which are fintte and continuous, have Fourter transtorms given by F(u.v) and Glu.v).
respectively. then the Fourier transtorm of the convolutton ot f{v.v) and ¢(x.v) 15 given by
Fluv)Gluv).

" The two-dimensional similanity theorem states that 1t the Fourier transform of the infinite. continuous

. i . . o | ‘U v
domain function f{v.v) 1s F(u.v). then the Fourier transform of f{ax.bv) 1 ]_/—‘ F( -. [—) ,
b d >
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Substitution ot -« for 1« and -v for v in (2.88). as dictated by the similanty theorem, and
insertion into (2.87) results in

R (. v, X, .V, ) =

AY
Z“{"'-w —X., .V, -V )COS{L’[[H(.\',” -x,, )+l -y, )!}
P

(2.89)

n,, (\ -V )

( \

ji— Z wlv, -, v, - v )sin{lfr[u(.\',” —x )ev(y, - v, )]}l{
) '

n fx v
This 15 the response function for DDWA analyses of discrete. irregularly-distnbuted.

two-dimensional data.

2.2.2.4.2 Verification

As In the one-dimensional case. the local response function s the complex
conjugate of the normalized Founer transtform of the etfective weight tunction, which in
two dimensions is succinctly expressed as

Rluvox,, . v, ) =Wluv.x,, v, ) (2.90)

In (2.90) Woluovov,, v, =W, (v x,, VL - W, ,m(u.\',_r,‘,, N ).  where

re
W (evox,, . v, )= FT[WM (v.vox,, v, )]/nf‘\(.\'m v ).
From the definition of the response function. the Founer coefficients of the
equivalent analysis field can be expressed in polar form as

'H)_

[F(u.v )ﬂW\' (u,v..\'m . ‘exp[j((ol‘m_” ST Il

., (te.v, X, .V
(29
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where |F(u.v) and EW\'(u.r..\',,,.,\',,,] are  the magnitudes of F(u.v) and

Woluvox, . v,,) and ¢, and ¢ are the phases of F(u.v) and

' Woti o c, vt

W luvox,, . v, ). Using (B12) of appendix B and (2.91). f, (x.v.x, .v..) can be

wntten as

Cea e 4
folvovox oy, )= o F (W vy, v, )X
fsleyt v ‘I,,.‘Ulw”(v)' (e ffl v ) (2.92)

cos[lfz(u.\' SO P ,]}dudr.
where O"(v) 1s 0 except for at v=0. where 1t is 1. and the fact that

o, ==¢, ... . . hasbeenutilized. As inthe one-dimensional case. (2.92)

oo,
shows exactly what happens to cach Founier coetticient duning an analysis. Duning an
analysis, the amplitude of cach Founer coefticient 1s modtified by the factor

iW\'(u. v v =W vy )
(2.93)

. 2
= [“'\ Re (“- v, -‘Av,.r N .\.rc‘l )- + “V\ Im(“’ v. "‘r.' N -\"r' )- ]
and the phase ot each Fournier coefticient 1s altered by

_(r”u\:,“ N

(2.94)
- urg[H'\ (evex,, v, W levox,, oy, W vy Ly )l.

where  arg(W, (woveox, v JW (evx, v, WW (v x, Ly )] means the
argument of W (u.\'..\',‘,, V.., ). which depends upon W . (u. VXLV, } and
“’\ Im (“' V. ".’('f . .\‘r." )

To venty (2.89), an nput tield similar to that used tor discrete. iregularly-

distnbuted. one-dimensional data is used:
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fla v )=Acos|2r(uex +v v ). (2.95)

In (2.95) A, is the amplitude and u, and v, are the input frequencies. For the input field

(3

95). I‘Rk,(u.r):% M- vy )+%:0‘(u +u . .v+v ) and F_(v)=0. which can

be venitied by insertion into (2.74. These result in

[Fluwv)= l—} O - v—v )+ @ Olu+u v+v)and ¢, =0.7.depending upon

whether A, 1s positive or negative, respectively. For these tests both u, and v, are greater
than zero. Since in (2.92) v > 0. only the first term in [F(u.v) contributes and thus for
an nput of the form (295} and for y, and v, both greater than zero (2.92) becomes

,;\(\ _V.-\','_, N ) =
’ (2.96)
lA ”W\ (vox,, v, ncos[llr(ll_\' V) EQ P ]

where the sifting property of “d(x.v) has been exploited and the fact that 0" (v )= 0 if
v, = 0 has been utilized. Because the response in (2.89) is valid only at (x,, . v, ).
f, (x.vox,, . v ) values from (2.96) are relevant to the actual analysis values only
when (v, v)= (\ Y ) in (2.96).

Test results for A =1, u =1/4. v =1/10. and w(x.y)=exp(-x/x, - v /x ).
with A=A =2, are provided in Fig. 2.14. From Figs. 2.14b.c it is apparent that the
analysis field and response-function predicted analysis field appear to be equivalent. In
fuct. the greatest difference between these two fields has a magnitude of 1.00136x10°",
which s within the expected accuracy for single-precision computations. This correct

prediction of analysis values. therefore, verifies (2.89).
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Of particular interest are the differences between the actual analysis (Fig. 2.14b)
and the analysis field for infinite, continuous data (Fig. 2.14d).  As these indicate. the
actual analysis 1s far from replicating what is obtained in the 1deal situation of infinite.
continuous data.  Figures 2.14b.d. coupled with the amplitude (Fig. 2.14¢) and phasc
(Fig. 2.14t) modulations. illustrate how strongly the distribution of the observations
atfects the analysis. It the data were infinite and continuous. the amplitude modulation
would have a constant value of 0.24 and the phase modulation would be zero. Instead.
the amplitude modulation varies significantly. having a maximum of 0.937 and a
minimum of 0.015. and the phase modulation 1s considerable over much of the analysis
domain. The causes of these non-ideal amplitude and phase modulations and. thus. of
an analysis field that difters significantly tfrom the 1deal case. are the irregular
distnibution of the discrete observations and the data boundaries.  Considening that on
average there are about 2.3 observations per wavelength of the input wave, the irregular
distnbution of the observations should strongly aftect analysis fidelity. In fact, in the
nomenciature of Doswell and Caracena (1988). this 1s an 1nadequatelv-sampled wave.
When the wave 1s well-resolved. 1in which case the number of observations per
wavelength meets or exceeds 12 (Doswell and Curacena 1988). the analysis resembles
the ideal analysis much more closely. although the eftects of the data boundanes are

still significant (not shown).



a)
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!

FIG. 2.14. The (a) input field. (b) analysis field. (¢) response-function predicted
analysis field. «d) analysis field for infinite, continuous data, (e) amplitude
modulation. (f). phase modulation. and (g) observation distribution for a DDWA
analysis  of  two-dimensional.  discrete, irregularly-distributed  data. The
observational field is given by f(x.v)=A cos[2z(u x +v v)]. with A =1,
u, =1/4.and v =1/10, and is sampled at the 40 random locations (restricted to be
in the domain [-5.5|x[-5.5]) shown in (g). The weight function is given by
wlv.v)=exp(-x'/a, - v /x ). with &, =& =2. In (e) the theoretical amplitude
modulation is the amplitude modulation that would be realized for infinite,
continuous observations.
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2.2.2.5 Discussion

As indicated in section 2.2.2.1. the response tunction can be viewed from either
a domam-wide or a local perspective. In some situations. like the use of a fixed weight
function 1n the DDWA analyses of continuous. infinite data. these are equivalent.
Generally. however. they are not. The local response function concerns spectral effects
at a particular location while the domain-wide response function denotes some sort of
average response. This s a very important distinction. as illustrated presently. For the
purpose of illustrating this distinction. the domain-wide response function is defined as
being composed of the domain-wide average amplitude and phase modulations.™
Given this. consider Fig. 2,120 In Fig. 2.12b. the average of the phase modulations s
zero. From a phasc-shift standpoint. this implies a good analysis (no domain-wide
phase shift). This 1s a misleading measure of analysis quality. however. since local
phase shifts are sigmificant both near and outside of the observauonal domain
boundaries. In fact. the impuct of these phase shitts 1s apparent in the differences in the
locations of the extremes of the analysis and input fields near the boundanes of the
observational doman (Fig. 2,124, The local response function. therefore, appears to be
a supernior measure of local analysis fidehty.

Ditferences between domain-wide and local response functions are also
illuminated by the fuactors that affect post-analysis Fourier content. which can be
examined using (2.39), (2.63). (2.49). and (2.72). Equation (2.39) indicates that for

continuous, bounded data the post-analysis, domain-wide Fourier content results from

* This measure of the domain-wide response function 1s simular to one of the forms suggested by Buzzi et
al. (1991).  In their torm. however, they applied the averaging operator prior to the calculation of
amphitude and phase.
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three steps: 1) the convolution of the input Fourier content with the Fourier transtorm of
the pulse tunction, 2) the multiplication of the result of 1) with the Fourier trunstorm of
w(- x}. and 3) the convolution of the result of 2) with the Fourier transform of 1/n(x).
Equation (2.63) indicates that the situation is much the same for discrete. irregulariy-
distributed data. the only difference being that the input Fourier content is first
convolved with the Fourier transtorm of the irregular comb distribution. Consequently.
the analysis scheme atfects the post-analysis. domain-wide Fourier content through the
Founer content of both w{~x). the retlecuion ot the weight function about x =0, and
I/n(x). the inverse of the normalization factor. The observation distribution affects the
post-unalysis. domain-wide Founier content through the Fourier content of the pulse
function (continuous, bounded data) or irregular comb distribution (discrete. irregularly-
distnibuted data) and the Fourier content of 1/n(x) [both the analysis scheme and the
observation distribution aftect n(x)]. The post-analysis, local Founier content. defined
here to be the Founer content under the conditions of an equivalent analysis, is
specitied by either (2.49) or (2.72). From the analyses preceding these equations [cf.
(2.47) and (2.70]. 1t 1s apparent that the post-analysis. local Fourier content results from
two steps: 1) the convolution of the Founer content of w{- x) with the Founer content
of either p, (- x.x,. ) or icomb, (- x.x ) and 2) the multiplication of the result of 1)
with F(l')/n,_‘(.\',‘,, ). As opposed to the situation for post-analysis, domain-wide
Fourier content. the normalization factor has a relatively minor affect on the post-

analysis, local Founier content since it only serves to normalize that Founier content.
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Equations (2.39). (2.49). (2.63). and (2.72) provide a basis for studying the
effects observation distributions and analysis schemes have upon response functions.
While a ngorous exploration of this topic is bevond the scope of this work. a brief
indication of research progress 1s appropnate.

The effects rectangular windows have on domain-wide spectral content are
discussed in both textbooks (c.g. Weaver 1983, 134-137: Hamming 1998. chapter 5)
and articles (e.g.. Caracena et al. 1984). as are the etfects infinite regular comb
distnbutions have on domain-wide spectral content (e.g.. Weaver 1983, 131-134:
Pauley and Wu 1990). The impact of finite regular comb distnbutions has also been
considered (e.g.. Caracena et al. 1984). With respect to local spectral content, the
impact of pulse functions (Achtemeier 1986: Pauley 1990). infinite regular comb
distnbutions (e.g.. Pauley and Wu 1990). finite regular comb distnibutions (e.g.. Jones
1972). and fimte irregular comb distributions (e.g.. Jones 1972 Schiax and Chelton
2002y have all been considered to varying degrees.

The etfects weight functions have on Founer content have been considered by
numerous investigators (e.g.. Bamnes 1964; Stephens 1967: Koch et al. 1983). However,
the role the normalization tactor plays in domain-wide spectral content. as indicated by
(2.39) and (2.63). has not been considered previously.

As discussed in section 2.2.2.1. the response function (2.72) has been denved in
one form or another by others (Jones 1972: Yang and Shapiro 1973: Thiébaux and
Pedder 1987. p. 105: Buzzi et al. 1991: Schlax and Chelton 1992). To obtain the
equivalent of (2.72), these investigators substituted a spectral representation of the

observation field into their expressions for DDWA analyses and subsequently
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manipulated that result. This “back-substitution method” ditfers from the “convolution-
theorem approach’ used herein.  Since both techniques produce the saume response
tunction. one may contend that little has been gained in this exposition. On the
contrary. 1t s argued that the convolution-theorem approach provides insights into
DDWA analyses that are not available from the back-substitution method. Specitically,
1) the convolution-theorem approach provides an infrastructure for interpreting both the
separate and combined impacts that data distnbutions and weight functions have upon
analyses and 2) the convolution-theorem approach illustrates exactly what the local
response tunction for DDWA analyses 1s: the local response function is the complex
conjueate of the normalized Fourter transform of the effective wetght function.

Simtlarly. the response tunction (2.89) has been denved previously (Buzzi et al.
1991).  As in the onc-dimensional case. the convolution-theorem approach has the
advantages of providing an infrastructure for interpreting the impacts data distributions
and weight functions have upon analyses and of illustrating exactly what the local
response function for (two-dimensional) DDWA analyses 1s.  In two dimensions, the
local response function is as it 1s in one dimension—the complex conjugate of the
normalized Founer trunstorm of the effective weight function.

While other methods for interpreting the response tunction exist (e.g.
Achtemeter 1986). the most straightforward interpretation seems to be in terms of
amplitude and phuse modulation as descnibed in detail in this study. With this
approach. the eftects of a DDWA analysis scheme are descrnibed quite simply by how
the analysis scheme changes the intensity of input waves (amplitude modulation) and by

how the analysis scheme moves input waves around (phase modulation). Because in



real DDWA analyses the inhomogeneous distribution of observations generally results
in phase shifts (Pauley 1990, Buzzi et al. 1991). phase modulation information should
be included in addition to amplitude modulation information in the evaluation of
response functions.  Unfortunately. as Buzzi et al. (1991) indicate. phase modulation
has received less scrutiny than it would seemingly warrant. Its importance has been
increasingly  noted. however. in numerous analyses and discussions, including
Achtemeier (1986). Pauley (1990). Buzzi et al. (1991). Carr ct al. (1995). and Askelson
ct al. (2000). In tact. Buzzi et al. (1991) provide 1llustrations of amplitude and phase
modulations (their Figs. 3 and 4) that are essentially of the same form as Figs. 2.12 and
2.13 of this study.

The technique outlined herein has numerous potential applications. The most
obvious 1s the evaluation of the amplitude and phase fidelity of DDWA analysis
schemes.  In this regard, an interesting use would be the evaluation of the filtering
propertics of statistical objective analysts (SOA) schemes. It would be particularly
interesting to determine whether SOA schemes. in their procurement of @ DDWA
analysis that mimimizes analysis-error vanance. also minimize phase shifts.

Another potential use ts the evaluation of observation networks. Doswell and
Lasher-Trapp (1997) have suggested the use of the gradient of the normalization factor
to charactenize the degree of irregulanity of observation networks. It seems that phase
modulation could be used in much the sume manner since nonzero phase shifts anse
from the inhomogeneity of observation distributions. A potential complication,
however. would be the tn2m ambiguity in the determination of phase shift values,

which s discussed in section 2.2.2.2.3.
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Amplitude modulation could also be quite useful in the evaluation of
observation networks. Its principal utihity 1s probably its ability 10 indicate how well
DDWA schemes retain signal while repressing noise (e.g.. Jones 1972: Schlax and
Chelton 2002). By charactenzing filtenng potential. the technique outlined herein
could be especially useful for networks that are limited in both extent and number of
observations. for which the determination of network viability is particularly difficult.

It 1s noted that the technique outlined in this study s sufficiently general so that
it should be applicable to arbitrary weight functions and data distnibutions as long as the
concomitant integrals and summations are defined.  Exiension to situations where
combinations of discrete and continuous data are available should be possible by
combining pulse functions and comb distributions.

Finally. an exciting potential use 15 1n the design of filters that will rephcate
prescribed amplitude and phase modulations as closely as possible given an observation
distnibution. This could be a very usetul tilter design technique. especially censidering
the difficultes in applying SOA to situations where error covariances are uncertain or
background estimates are unavatlable. Work on the design of such a filter 1s currently

underway.



Chapter 3: Interactions of Hydrometeors with Rear Flank
Downdrafts

3.1 Background

Numerous theories exist for supercell tomadogenesis [in an unpublished
manuscript. Rasmussen and Straka (1997) outline 11 tomadogenesis hypotheses).
Recently. the roles downdrafts. especially the rear flank downdraft (RFD) (Lemon and
Doswell 1979). may play have received more attention (e.g.. Walko 1993: Davies-Jones
and Brooks 1993: Davies-Jones 2000). Davies-Jones (1982) sparked increased interest
in the downdratt when he found that 1t probably plays a cntical role in establishing
vertical vorticity near the ground.  As Davies-Jones (1982) and Davies-Jones and
Brooks (1993) reason. in an environment with negligible background vertical vorticity
an “in. up. and out” circulation dnven pnmanly by forces aloft could not establish
signifticant vorticity near the ground since 1n this process parcels that obtain vertical
vorucity are sigmificantly elevated. To produce. n this type of circulation, significant
vertical vortuaity near the ground through updraft ultuing of honzontal vorticity, an
abrupt upward turming of strecamlines. strong pressure gradients. and large vertical
velocities are needed near the ground. [Alternatively, eddies could transport vertical
vorticity downward against the flow. This process. however, has not been observed
fe.g.. Walko 1993).] While these teatures do anse in updrafts in axisymmetric tomado
models, 1t is doubttul that they anse in supercells without the influences of downdrafts
(Davies-Jones and Brooks 1993). [These features can be present along gust fronts and

can result in significant near ground vertical vorticity in updrafts (e.g.. Adlerman et al.
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1999). For these gust fronts to anse, however. downdrafts are generally needed.] Thus.
1t seems that downdrafts may be crucial to tomadogenesis.  Specifically. the RFD is a
principal downdraft suspect in the toradogenesis mystery. Incriminating evidence
includes observations of low-level cyclonic-anticyclonic vorticity couplets straddling
the RFD and hook echo (suggesting vorticity production by the RFD through tilting)
Just prior to and at the ime of tomadogenests [e.g.. Fig. 4 of Brandes (1978) and Figs. 9
and 10 of Dowell and Bluestein (1997)]. and observations showing that supercellular
tomadoes typically torm along the interface of the updraft and the RFD (e.g.. Lemon
and Doswell 1979). Moreover. simulations indicate that RFD air tlows into areas of
low-level rotation (Wicker and Wilhelmson 1995 Adlerman et al. 1999) and both
observational (e.g.. Lemon and Doswell 1979: Brandes 1981) and numencal (e.g..
Adlerman et al. 1999) studies show that the evolution of low-level rotation and the RFD
are linked.

A partial understanding of RFD dynamics can be gained through the
consideration of the vertical component of the equation of motion expressed in the
perturbation thydrostatic base state) form:

LA B RUSRNY

aw | +F.. (3.1
d p, 02 0, c,p, )

In (3.1) perturbations are indicated by single-pnimes. the base state is indicated by a
subscript zero, w s vertical velocity, p is density. p is pressure. : is the vertical
coordinate. ¢ 1s the acceleration due to gravity, € is virtual potential temperature, ¢ 1$

the specitic heat of dry air at constant volume. ¢, is the specific heat of dry air at
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constant pressure. r,, 1s the total hydrometeor mixing ratio (cloud r,. rain r,. and ice r,).
and F. represents the viscous and eddy stress terms (e¢.g.. Houze 1993, 35-36). The

first and second (of three total) terms on the rhs of (3.1) are the vertical gradient of the

perturbation pressure tield and the buovancy B =¢ 0—'-—4-——— r, |. respectively.
\ 0 (.;; pu

(In the buoyancy term 1t 1s assumed that the hydrometeors are talling at their terminal
velocities and thus that the drag that they exert upon an air parcel is equal to their
weight. resulting in the r, term.) As indicated in (3.1). the RFD may be driven by
vertical perturbation pressure gradients. buoyancy. viscous and eddy stresses (believed
to be of secondary importance to this problem). or a combination thereof.

Numcrous investigators have illustrated the importance of vertical perturbation
pressure gradients to supercell evolution.  As background tor the consideration of these
studies. 1t 1s noted that with the anelastic assumption

Vipv)=0 (3.2)
(v1s vector veloaity) and the assumption that Conolis torces are insignificant [relatively
good approximations for deep convection (Kiemp and Rotunno 1983: Emanuel 1994,
§1.3)]. the pressure perturbation field p” can be split into two components py, and p), .
The pressure perturbation owing to buovancy py, i1s defined by

vip = daB) (3.3)

B (')_
whereas the pressure perturbation owing to dynamic forcing pj, is defined by

Vop, ==V(p,v-Vv)+ V- (pF). (3.4)
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where F 1s the viscous and eddy stress vector (¢f. Klemp and Rotunno 1983: Houze
1993, §7.2). With this decomposition. (3.1) can be expressed as

dw

:_L%*(_LQE&+B + F . (3.5)
dr 2 0z . Py d: ‘

[n this form, the first term on the rhs of (3.5) represents dynamic forcing [related to the
flow field and to viscous and eddy stresses. (3.4)] while the second term represents the
net forcing due to buoyancy.

Rotunno and Klemp (1982, 1985) and Weisman and Klemp (1984) have
underscored the importance of dynamic forcing to supercell updraft maintenance and
cvolution.  Rotunno and Klemp (1982) found that dynamic pressure perturbations
resulting from the impingement of sheared environmental flow upon the updraft
(termed heremn hinear pressure forcing) can favor night moving storms in veenng wind
profiles (thus expluining why right moving storms are tavored in these wind profiles).
Further. Rotunno and Klemp (1982, 1985) found that dynamic forcing plays a
fundamental role in supercell splitting while both Weisman and Klemp (1984) and
Rotunno and Klemp (1985) found it to also be important to supercell propagation.
Weisman and Klemp further found that in addition to being important on supercell
updraft periphenies. dynamic forcing can be significant (responsible for up to ~60% of
the updraft magnitude) in supercell updraft cores.

With regard to downdrafts, Klemp and Rotunno (1983) simulated what they
termed an “occlusion downdraft” that arose at the time of tow-level gust front occusion
and that was driven primanly by dynamic pressure perturbations (owing to strong low-

level rotation). They found the occlusion downdraft to be distinct from the storm scale
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rear flank downdratt. Wicker and Wilhelmson (1995) and Adlerman et al. (1999) also
simulated occlusion downdrafts that were forced by dynamic pressure perturbations. In
their studies the occlusion downdraft was either initially distinct from the RFD and then
subscquently merged with it (Wicker and Wilhemson 1995) or it developed on the
castern fninge of the RFD (Adlerman et al. 1999).

Evidence indicates that dynamic pressure perturbations may also play a role in
dniving the storm scale RFD. Both Brandes (1984) and Hane and Ray (1985) display
retrieved pressure perturbation fields that support this statement. The principal cause of
these downward-directed pressure perturbation  forces is probably linear pressure
forcing. which was elucidated by Rotunno and Klemp (1982) and was considered by
Lemon and Doswell (1979) to be the mechanism that may initiate storm scale RFDs.

Even though. as the foregoing discussion indicates, dynamic pressure
perturbations provide sigmficant up- and downdraft forcing in supercells. they do not
solely dictate vertical motions within these types of storms. In tact, buoyancy forcing is
considered by many to be the primary forcing mechanism of the storm scale RFD (e.g..
Browning 1964: Bames 1978ab: Lemon and Doswell 1979 Brooks et al. 1994
Adlerman et al. 1999), although further rescarch is needed to conclusively prove this
assertion. The evidence tor this conclusion is oftentimes buased upon the association
between the RFD and precipitation in the rear-flank. Dowell et al. (1997), however. do
provide evidence that buoyancy is principally responsible for the storm scale RFD 1n
one of the storms (the Woodward storm) they analyze.

The negative buoyancy associated with storm scale RFDs is thought to be

provided pnncipally by hydrometeors. Hydrometeors produce negative buovancy




through € (cooling through melting. sublimation. and evaporation) and through their
drag (r,; in B).

Hydrometeors are capable of dnving itense downdrafts. In fact. in their
comprehensive review Knupp and Cotton (1985) found that precipitation-driven
downdrafts are among the largest and strongest downdrafts associated with convective
clouds. Some relatively simple. one-dimensional downdraft models have successtully
elucidated hydrometeor-driven downdraft properties. These models have evolved from
steady state models (Hookings 1965: Kamburova and Ludlam 1966: Das and Subba
Ruo 1972: Betts and Silva Dias 1979) to tme-dependent models (Srvastava 1985,
1987). Key findings of these eftorts include 1) cooling by evaporation 1s most efticient
when the raindrops are small (e.g.. Hookings 1965: Snvastava 1985). 2) cooling by
melting s more etticient when the we-hvdrometeors are small (Snivastava 1987). 3)
downdratt descent 1s oftentimes somewhere between dry and moist adiabatic (e.g.. Das
and Subba Ruo 1972). and 4) downdrafts are more vigorous the closer the
environmental temperature profile 15 to dry-adiabatic (e.g.. Kamburova and Ludlam
1966). the smaller the hydrometcors are. and the larger the hquid- and ice-water
contents are (e.g.. Snvastava 1987).

In addition to its mere existence. thermodynamic propertics of the RFD also
appear to be important to tomadogenests (Markowski et al. 2002).  Analyses of
VORTEX (Rasmussen et al. 1994) data have indicated that surface RFD air associated
with strong supercellar tornadoes (>F2 intensity and lasting >5 minutes) 1s relatively
buovant (€ and &  deficits relative to the environment typically <2 K and <4 K,

respectively) while surtace RFD air associated with non-tomadic supercells tends to
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have littie buoyancy (¢ and @ deficits relative to the environment typically >3 K and
>10 K. respectively).”' These findings led Markowski et al. (2002) to conclude that
cvaporative cooling and entrainment of potentially cold. midlevel air may play smaller
roles in the formation of RFDs associated with tornadic supercells as compared to those
associated with nontornadic supercells.

The purpose of this research 1s to infer kKinematic and thermodynamic properties
of RFDs assoctated with tornadic and non-tomadic supercells. Spectfically. answers to
the tollowing questions are sought: 1) How strongly do hook-ccho hydrometeors drive
the RFDs of tomadic and nontomadic supercells and 2) Could hydrometcors aftect
tormadogenesis  through  their modulation of RFD  strength and  thermodynamic
properties” In order to answer these questions (at least tentatively), polunmetne radar
(PR) data are used to infer properties (phase. size distribution, amount) of hydrometeor
populations observed within the hook echoes of tornadic and nontomadic supercells.
This information 1s then used to dnve a one-and-a-halt-dimensional downdraft model
stmilar to that descnibed by Srmivastava (1985, 1987). With these results. the kinematie
and  thermodynamic  properties  of  hook-echo-hydrometcor-driven  model-RFDs
assoctated with tomadic and nontormadic supercells can be analyzed and compared. A
descniption of both the one-and-a-halt-dimensional downdratt model and the PR-based

hydrometeor classification and quantification techniques used herein follows.

' Markowski et al. (2002) used the 8 =01 + 61r -r ) defimtion of virtual potential temperature.

where ¢ 1s potential temperature and r, v water vapor mixing rato.  Since T =T{l = .6lr ). this

NN
L e [ Do ! . .
defimtion difters trom the 6 =T Lu | detinition of virtual potential temperature, where R, s the

P
gas constant for dry air and py 1s a reterence pressure. by the quanuty -6, .
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3.2 1.5D Downdraft Model
3.2.1 Dynamics

The dynamic framework of the one-and-a-half-dimensional downdraft model
used herein follows that of Asar and Kasahara (1967). Ogura and Takahashi (1971). and
Ogura and Tuakahashi (1973). The downdraft s assumed to be circular and to have a
time- and herght-independent radius ¢. Relevant equations are expressed in cylindrical
coordinates (r./4.z). are wntten in tlux form using the continuity equation, and then

averaged over the area of the downdraft. By defining

_ l 4 lTrou .
A=— \rdrd/ . (3.0)
i . J:» , J.u{
- l [ 4 .
A =— j.-\ de atr=ua. (3.7)
R S
A=A-4, (3.8)
and
AT=A-A (3.9)

where A 1s a general quantity. relations for the rate of change A can be obtained. The
relation for w is

- e ":
w2 wliv + =i (W -w,)+ B (3.10)

or 9J: a d
where « is the lateral mixing coetticient and it is assumed that there is no vertical
motion in the environment of the downdraft. The first term on the nght hand side of

(3.10) 1s advection. the second is mixing owing to lateral eddy exchange. the third is



dynamic entrainment (required to satisfy mass continuity). and the fourth is buoyancy.
Buoyancy is computed from

B-—-g{%“’——-r,,J. (31D

where r; 1s the total hydrometcor mixing ratio. the subscript zero indicates
environmental values. and the perturbation pressure contribution has been dropped
since no mechanism exists for its computation in this model (Ogura and Takahashi
1971). By using the relation between 7, and #, to relate the difterential of 7, to that of
.. 1t can be venfied that the form of buovancy in (3.11) 1s consistent with the form
discussed in §3.1.

Radial inflow/outtlow on the boundary of the downdraft « 1s diagnosed from

the continuity equation

i=-4 (3.12)

- a ( i dp, aw]
—_—— — |
hl - -
2Up, dz dI .
The dynamic entrainment term for a general vanable A 1s computed. following Asai and

Kasahara (1967). Ogura and Takahashi (1971). and Ogura and Takahash (1973),

according to

A=A u, <0 (3.13)
A=A afa, >0.

This results in dilution of the downdraft when there is intlow tfrom the environment and
no cffect on the downdratt when there is outflow to the environment. Mixing is
parameterized tn the form of lateral eddy exchange terms. but is restncted to the

honzontal since vertical mixing 1s neglected in this model.

104



The conservation equations for the other prognostic variables have forms similar

to (3.10). The thermodynamic equation is

T ("_ \ 4,2 _ -
95=—W[‘?—r+n 2 ) 2 (F T ) L (3.14)

X o: J a da ' <,

il
|
~

where [ 15 the dry adiabatic lapse rate. ¢ is the specific heating rate. and ¢, 1s the heat

capacity of dry air.™ Diabatic processes that contnbute to ¢ include thermal diffusion

between hydrometeors and their environments and are discussed in the next section.
The conservation equations for water vapor mixing ratio r, and cloud water

mixing ratio r, are

or _JF Q. 2 . . .
"._._:—'“'(._;_ “.l(r _r.u)-‘-_“.x(r. _r.u)+‘s’\ ond (313)
ot J: d d .
and
oF _JoF e 2. L .
.—I:_.“'._‘— “‘.1,: f_",v"j —'7.1)+‘s'. wond (3l6)
ot J: d a

where  S. g and S, g are sources/sinks  for  r and  r, owing  to
condensation/evaporation (discussed 1n the next section). In (3.16). the tall speeds of
cloud droplets are 1gnored and the environment 1s assumed to be non-cloudy.

Because details of rain and graupel/hail size distnbutions may be very important
to downdraft properties. the prognostic vanables for rain and graupel/hail are number
concentration densitiecs—the number of hydrometeors of a certain size per unit volume
per unit size interval. The prognostic equations can be derived by applying Leibnitz's

rule and the divergence theorem (c.g.. Reddy and Rasmussen 1990, 97-103) to a

" The weak dependence ot ¢, on water vapor muang ratio s ignored.
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population of hydrometeors of the same size. Following the same set of operations that

are applied to the other vanables. the equations become

IN(D VD) Gip 2oy
‘ ()(, ) =_(W_\.”)2‘_(-_r)+.\'(1),)_‘:_%-—1 wN(D)
z Po a~ a 317
) - -~ — L dv
+iﬁ.,[1v(0,)— ‘V.x(Dr )]+ ‘V(Dv )-(% t+ S\u[),‘ cvap + S\u[’.' neit
and
()L—V— l) ; ()A_V- [) — C 'va
g \l):-(“ _‘\"’) () l’i) ; r([)“")_‘_‘_%)’L—:(LWE;V(D'm)
Jt l . os a L(318)

2 [— - — Jv,.,
s = H,z [‘\(1)( ) - \ ([):" )] + 'V([)\"’ )(—(';—i - ‘S N ond * s VDL et
d g o -

where V(D) 1s the number of drops of diameter D, per unit volume per unit size

interval, v, 18 the terminal velocity of a raindrop. S, | is a source/sink of N(D,)

cvap

owing to evaporation, S is a source/sink of V(D,) owing to the complete

Moy nant
melting of ice hydrometeors, AV(DM) 1s the number of graupel/huil of diameter Dy, per

unit volume per umit size interval. v, 1s the terminal velocity of a graupel/hailstone.

S, e 18 @ source/sink of N(DM) owing to condensation/evaporation, and
So ) wen 18 @ source/sink of ;V([)m) owing to melting.  As with cloud water, the

environment is assumed to contain neither rain nor graupel/hail.  In addition.
condensation onto raindrops is not included since. relative to cloud droplets. the growth
rate of raindrops by condensation is quite small (this issue is discussed turther in the

next section).  Finally. it 1s noted that (3.17) contains the extra term N(D, )(dv, /d3)
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relative to the similar equation given by Ogura and Takahashi (1973) because here a

dependence of terminal velocity on altitude is included. as illustrated presently.

3.2.2 Microphysics
3.2.2.1 Terminal Velocities

The terminal velocities of raindrops can be estimated using multiple technigues.
These include the Davies number approach (e.g.. Davies 1945: Berry and Pranger 1974
Beard 1980). the Beard (1976) approach. and adjustment factor approaches (Beard
1977. Beard 1980: Beard 1985). As Foote and Du Toit (1969) point out. the Davies
number approach 1s stnctly valid only for ngid bodies. tor which the drag coetticient C))
depends only upon the Revnolds number Vo™ This motivated Beard (1976) to
develop a more ngorous method for determining terminal velocities of raindrops.
Unfortunately. this approach is quite complex. Consequently. Beard (1977, 1980. 1985)
investigated an altermmative approach in which changes in terminal velocities owing to
changes in air density and viscosity can be ecasily incorporated using adjustment factors.
[n this study. the relation used to determine the terminal velocity of raindrops v, 1s

v (D, p)=v, (D Xp, /o) (3.19)

where v, 1s the terminal velocity at a reference density @, D, is in mm, and v, and v,

areinms’. The v ,(D,) relation used in (3.19) is

= The termunal velocity of a hydrometeor v, 1s the fall speed at which the drag force £, balances the
buoyancy force of the hvdrometeor Fgyy. For steady. axisymmetric tlow and tor a ngid body. Pruppacher

and Klett (1997 section 10.2.2) show that the drag torce can be expressed as £, = %;?\':.4 C...where p

1> the density ot the wir, A, s the cross section of the hydrometeor normal to the arr flow. and Cp, depends
only upon the Reynolds number N, = pDv /. with D being hydrometeor diameter and 7 being the

107



v (D) =(9.65 - 10.3exp(-0.6D. ). (3.20)
which s the terminal veloctty relation obtained by Atlas et al. (1973) that closely fits
the Gunn and Kinzer (1949) data. Since the Gunn and Kinzer (1949) data are for an air
density of 1.2 kg m™. o has this value in (3.19). The m value is set at 0.45. which falls
approximately in the middle of the range of m values (0.4 to 0.5) suggested by Beard
(1985) and represents a compromise between the values appropnate tor small drops
(~0.4) and for large drops (~0.5). The torm (32.19) 1s a simplified version of the
adjustment factor approach. It 1s expected to be the quite accurate for most raindrops
but to incorporate significant errors for drops smaller than about | mm in diameter. The
method for determining ruindrop termunal velocities encapsulated tn (3.19) and (3.20)
represents a compromise between complex. highly accurate techmques (e.g.. Beard
1976) and simple. maccurate techniques that do not include adjustments for changes in
atmosphenc conditions. It requires only one equation for the calculation of ruindrop
terminal velocities. as opposed te the several that are required 1n the accurate form of
the adjustment tactor method (Beard 1980). In addition. in (3.20) 1t incorporates a
dependence upon D, that i1s much more accurate than power-law relations and yet s sull
convenient when computing moments of raindrop size distnbutions that involve vy,

The terminal velocities of hailstones and graupel are even more complicated. At
first sight. the problem seems to be simplified by the ngidity of these hydrometeors,

which seemingly makes Davies number approaches viable. While this is true for

dynamic viscosity. The buoyancy force of a hydrometeor 1s given by £, =(p - p, V', ¢ . where gy, and

Vi are the density and volume of the hydrometeor. respectively.
* This statement regarding convenience s based upon the expectation of using erther gamma or
exponential distnibutions as models for raindrop size distributions.  In that case. as with power-law

108



hailstones and graupel that are not experiencing significant changes owing to wet
growth, melting. etc.. the wide vanety of graupel/hailstone shapes alters Cp-NVg.
relations and complicates the picture.  Furthermore. melting also significantly alters
terminal  velocities and  presumably  Cp-NVg relations of graupel and hailstones
(Rasmussen and Heymsfield 1987). These complications imply that accounting for ail
effects in the calculation of the terminal velocities of graupel and hailstones is a
daunting task.

The most sophisticated techniques for computing terminal velocities of graupel
and hail (e.g.. Beard 1980: Rasmussen and Hevmstield 1987. Bohm 1989) use the
Davies number approach. in which the pivotal step is the application of an effective C))-
Ve relation. Herein, a simplified adjustment tactor approach similar to (3.19) s used.
An important component of this approach is the relation for terminal velocities at the
reference density ¢b. To provide guidance concerning this relation, v-Cp, and Cp-Nige
relations are examined subsequently.

As indicated earlier in footnote 23. the terminal veloctty of a hvdrometeor is
reached when the drag torce balances the buoyancy force of the hyvdrometeor. This
balance results in

r’ _ ' 2
_ '_("’h__"’)_‘_‘] , (3.21)
l)-"' (‘[, _J

th

relations tor v, (3.20) enables the use of the gamma function in the computation of moments ot raindrop
size distributions involving v,

109




where vy, is the terminal veloaity of the hailstone and o, and V), are the density and
volume of the hailstone. respectively. Since p << p, . p1s typically dropped tfrom the
numerator. resulting in

-pl Q
PAC,

(3.22)

For hail that 1s spherical. an assumption that 1s applied to both hail and graupel in this

study. (3.22) becomes

D", (3.23)

where Dj, 1s the diameter of the hailstone.

From (3.23). 1t 15 apparent that it Cp, 1s constant. vy depends upon D!~
However. theory for the drag coefticient of spheres (Abraham 1970), results for graupel
and hailstone models (Macklin and Ludiam 1961; List and Schemenauer [971: List et
al. 1973). and studies of actual graupel and hailstones (Heymstield 1978. Matson and
Huggins 1980. Knight and Heymsfield 1983) indicate that tor hailstones having
diameters  smaller than ~25 ¢m () generally decreases with V.. Since
Nee =PD v, /0. where nis the dynamic viscosity, Ng, should increase with Dy, all else
(0 and » being equal. Thus. € should decrease with increasing Dy, all else being
equal. and vy, should have a greater than square root dependence upon Dy, In fact, a
fairly simple Cp- Vg, relation that holds roughly tor the diameter range of 0.05 0 2.5 ¢m
is C, =aN,, [cf. (B3) of Rusmussen and Heymsfield (1987). Matson and Huggins

(1980). and Beard (1980)]. Inserting this into (3.23) results in
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v, :u""""’[ iﬁ%ﬁ]:"'/, RN/ KA o IR (3.24)
S

which agrees with the findings of Beard (1980) conceming correction factors for an
assumed Cp-NVg, relation of the form C,, = aV,, . With typical values of b being 0.2
(3.24) illustrates that for Cp-Vi, relations typical of hailstones. vy, does have a greater

than square root dependence on D, In fact. with b = -0.2, v, is proportional to D;*" .
Cunously. both Matson and Huggins (1980) and Knight and Heymsfield (1983)
obtain v,;-D;, relations that are not consistent with their Cp)-Ng. relations. Matson and

Huggins (1980) obtain v, (ms 'J=11.450!" (cm) and Knight and Heymsficid (1983)

S A LAMR

obtain v, (m's ')=8.4450"“ (cm). To be consistent with their Ch-Ne relations. they
should have D, exponents of (.64 and 0.84, respectively.

As indicated earlier. o simplified  adjustment  tuctor approach s used o
determine the terminal velocities of graupel and hail.  In the simplified adjustment
factor approach used herein,

v Do p)=v (D Ko, p)" (3.25)
where vy, 15 the terminal velocity of a graupel or hailstone. vy ts the terminal velocity
of a graupel or hailstone at the reterence density . and Dy, is the diameter of a graupel
or hailstone. For this method to perform well. it is important that an accurate vy
relation 1s used.  As indicated in the above discussion, such a relation should depend

approximately on D) for graupel and hailstones having diameters between 0.05 to 2.5

** Knight and Heymsfield (1983) obtaned A = -0.367. Matson and Huggins (1980) obtaned b = -0.1689.
and (B3) of Rasmussen and Heymstield corresponds to b =-0.19.
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c¢m. Since this size range encapsulates most of the graupe!l and hail considered in this
study (see below). this dependence 1s appropriate here. Interestingly. empirical terminal
velocity relations for graupel and hail tend to have exponents that are either above or
below this value (Pruppacher and Klett 1997. section 10.5.2).  Morcover. slight
inconsistencies between vi-Dy and Cp-Nre relations anse in studies of hailstone
charactenstics (Matson and Huggins 1980: Knight and Hevmstield 1983). It seems that
these may result from scatter in the onginal data. In fact. by drawing a curve to the
Matson and Huggins (1980) v,,-0);, data that scems to represent those data better than
their least squares fit. the following v g-D., relation was obtained:

v, )= 116D (3.26)

where vigo is in m's ' and Dy, i1s in em. This vy relation is more in line with what 1s
expected from both theory and observations of Cp-Ng. curves.  Since the evidence
concerning these curves 1s quite extensive and since observational scatter likely
compromised empincal vi-Den relations. (3.26) 1s used to calculate graupel and
hailstone terminal velocites. Because (3.26) is from the Matson and Huggins (1980)
data. o in (3.25) is their 0.993 kg m ' value. The value of m in (3.25) is set at 0.42.
which is represents a compromise between the adjustment factor appropnate for
relatively small graupel (0.34 for ~0.05 ¢m diameter graupel) and the adjustment factor
for large hail (0.5).7

Although melting significantly impacts terminal velocities of graupel and hail
(Rasmussen et al. 1984b). no etforts like those ot Rasmussen and Heymsfield (1987)

were made to adjust for these effects. Once a graupel or hailstone completely melts, it



1s added to the raindrop population and falls with the appropriate terminal velocity.
Although this approximates a naturally smooth terminal velocity transition with an

abrupt one. 1t 1s expected that the consequences for these modeling efforts are minor.

3.2.2.2 Microphysical Processes

The source/sink term that is considered first 1s S, .oo4. the source/sink of r,
owing to condensation/evaporation. This term 1s handled using the Soong and Ogura
(1973) saturation adjustment scheme. with saturation vapor pressure given by equation
(4.4.13) of Emanuel (1994). In this scheme. supersaturated air is adjusted to the point
of saturation. with the excess water vapor condensing into cloud water. Alternatively. if
cloud water 1s present and the air is not saturated. that cloud water 1s depleted until 1t is
cither completely gone or the air s saturated. [t s noted that when supersaturated
conditions occur. all excess water vapor 1s assumed to condense onto cloud drops. as in
Ogura and Takahashi (1971). The justitication for this simplitication is that the growth
ratc of raindrops 1s much smaller than the growth rate of cloud drops. For graupel/hail
condensation still occurs. which means that if supersaturated conditions anse. total
water mass 1s not conserved. The impact of this is likely small owing to the relatively
small condensational grewth rates of graupel/hail (which are nonetheless important to
the energy balance of each hailstone). It is of no consequence here. however. since
saturated conditions do not anise in these simulations.

The Sn e term 15 compnised of  contnbutions  owing 1o

condensation/evaporation ot ¢loud drops. which 1s handled using saturation adjustment,

* These values were determined ustng g, 3 and Table 1 of Beard (1980).
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cvaporation of raindrops. and condensation/evaporation of melting graupel/hail. The
evaporation rate of raindrops is calculated using

W _ 4 p L[ e (3.27)
dt p.R D\T T )

where g, is the density of liquid water. R, the gas constant for water vapor. D, is the
diffusivity of water vapor in air. f, 1s the ventlation coefficient for mass. ¢ and T are
the (model) vapor pressure and temperature (the values in the environment of a

raindrop). and ¢, and 7T, are the saturation vapor pressure and temperature at the surface

of a raindrop (Rogers and Yau 1989, chapter 7). The relation of Hall and Pruppacher

(1976).
’ . SR _ .
o - 013.25mb
D =(2.11x10 *m's ') r__| { 101323 mb | (3.28)
| 273.15K ) p j
1s used to compute £,. The venulation coetficient for mass £, 1s computed using
1.0+0.108X7 X <14
/o= oX ‘ (3.29)

0.78 +0.308X  l4<X

where X, = N N, . with Ny the Schmidt number and Ny, the Reynolds number for a
raindrop (Beard and Pruppacher 1971 Pruppacher and Rasmussen 1979).  Since
curvature and solute eftects are small for raindrops (ct. Rogers and Yau 1989. chapter
6). they are 1gnored in the computation of ¢,, The ruindrop temperature 7, 1s assumed
to be equal to the thermodynamic wetbulb temperature 7,,. which is a commonly
applied simplification (c.g.. Snivastava 1985). Regarding this simplification, Snvastava
and Coen (1992) wum that 7, and 7, can difter by several degrees celsius. This 1s

substantiated by the comparnisons of T, and 7, provided by Ludlam (1980). which show
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that while T, and T, are nearly equivalent for most conditions. differences on the order
of a degree Celsius can occur.  Although the impact of this assumption s likely very
small. 1t will be considered in future work.

To compute the contnbution of raindrop evaporation to S, . one could
compute raindrop evaporation rates as described above, convert these values into rates
of changes of mass. compute the total amount of evaporation in a model time step tor
cach raindrop size. sum the contnibutions trom all raindrop sizes. and convert this result
to a mixing ratio change by dividing by the (model) dry-air density. This 1s not the
approach taken herein. however. since in addition to computing S, . One also needs

can be computed by relaing S, to the

to compute §

Nl evap T TN avap

evaporation rates of individual raindrops given by (3.27). The relation s

.
N(D ) —=1. (3.30)
J

as given by Ogura and Takahashi (1973). It can be denived by applyving the Leibnitz

DD,

rule to IAV( D )dD! . which 1s a constant since evaporation (and condensation) does

n. D,

rrun

not alter the total number of hydrometeors. The contrnibution of raindrop ¢vaporation to

Sr conds Snevap ram. 18 Obtained by computing S, e and subsequently summing the

effect of evaporation across the raindrop size distribution:

Z(S\/lh,t:up )_\D, { ’ED:[)». )
S =-- - (3.31)

A _evaporan —

Py

where AD. is the width of the i raindrop si1ze bin and p; 1s the density of the dry air.



Betore proceeding. it 1s noted that melting graupel and hail are modeled as
having cores composed of ice water and air inclusions surrounded by liquid water coats.
as observed by Rasmussen et al. (1984b). In addition. graupel and hailstones are
assumed to be sphencal. with sphencal cores and sphencal water coats.  This
assumption may seem unjustified considening the observations of Rasmussen et al.
(1984b). Because the equations that are used to obtain condensation and melting rates
of graupel and hail are formulated in terms of equivalent radii. however. this is the
correct approach (Rasmussen et al. 1984ab: Rasmussen and Heymstield 1987).
Srivastava (1987) also assumed that graupel and hailstones are sphencal. with sphencal
cores and spherical water coats.

Condensation/evaporation for graupel/hail 1s computed using the relations of
Rasmussen and Heymstield (1987). which apply only for melting graupel and hal.™
These relations are based upon both expenmental and theoretical studies and together
comprise the most complete treatment of the subject to date.  The equation for
condensation/evaporation of graupel/hail has a form similar to (3.27) and 1s given by

dm, 2 { ¢
- v [ ulfn

dt R

£ ta] (3.32)
T T

en

where my; is the total mass of a graupel/hailstone. Dy, ., 1s either the total diameter of
the melting graupel/hailstone Dy, (diameter of the unmelted portion plus the diameter of
the liquid water coat) or the diameter of the unmelted portion D, (composed of ice and
air). e,y 18 the saturation vapor pressure at the surface of the melting graupel/hatlstone.

and T, 1s the temperature at the surface of the melting graupel/hailstone.  The exact
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torm of dmy/dr depends on the Reyvnolds number of the graupel/hailstone.  For all
Reynolds numbers except those in the range 3.0x10%-6x10°, Ty, is 273.15 K: for
Reyvnolds numbers in the range 3.0x 10°-6x10°. T, is determined by solving an implicit
equation for T, derived by Mason (1956). For Reynolds numbers 1n the range 2.5x 107
6x10°. f. 1s computed using (3.29). Outside this range. f, exhibits different
dependencies owing to convective effects within the liquid water coat. shedding. or
enhanced ventilation owing to surface roughness effects. For Reyvnolds numbers greater
than 6x10°. D,, is used because nearly the entire water coat 1s shed. Otherwise. Dy, 15
used.

The contribution of graupel/hail condensation/evaporation 10 S. cond- Sa cond 2he
1s simply the sum of the contributions from all of the graupel/hail bins

5 1( d"l’;—' } N(p,. )ap,
| 3 ‘ | | (3.33)

Teeolond b T _—

’)‘[

In (3.33). AD_, 1s the width of the 1™ graupel/hail size bin.
The source/sink of .V([)‘,,:) owing to condensation/evaporation. S, 18

casily calculated once condensation/evaporation growth rates are known from (3.32).
Since the condensation/evaporation of graupel/hail does not alter the total number of

graupel/hail.

S -9 N(D )‘ID""* (3.34)
MDY cond - ()Drh ! vh (I[ N b

* This 15 a hmutation of this model. which was designed tor downdratts 1n which the graupel and hail are
melting. This model cannot presently be used tor situations in which the graupel/hatl are not melung.
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with dD, /dt. the rate of change of D, owing to condensation/evaporation. computed

from

4

dD , 2 dm,
&t mp.D, dr
The density of liquid water is needed 1n (3.35) because the condensation/evaporation
growth of a melung graupel/hailstone occurs on its liquid water coat.
sources/sinks of N(D,) and AV(I)M)

To compute $

N et

and S,

D, el
owing to the complete melting of graupel/hail. one must track the amount of ice 1n a
melung graupel/halstone. This 1s accomplished by computing f, .. the mass fraction of
ice in a melung graupel/hanlstone. From the definition of £ .. 1ts rate of change is

it T
AT UL LY (3.36)

dr m, dtm dt

o)

where mi, ts the mass of the ice core and dmi/dr 1s avairlable from (3.32). The rate of
melung of the 1ce core dm/dr s computed from the energy balance of the
graupel/hanlstone tollowing Rasmussen and Heymstield (1987). The three processes
important  to  this energy  balance are conductive heating, heating  owing to
condensation/evaporation, and melung/freezing. The conductive heating rate of a single
graupel/hatlstone Q, 4, 1s given by

Q. =2, k f(T-T,) (3.37)

I ERT? BT
where &, 1s the thermal conductivity. £, 1s the ventilation coetticient for heating. and the

units of Q. 4, are J st

The thermal conductivity &, is computed using the Beard and
Pruppucher (1971) relation

k (T)=2.382x10 " +7.032x10 °T. (3.38)
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where &, has units of J m" s K" and T is in °C. The ventilation coefficient for heating
generally has the same dependence as f. with the Prandtl number Ny, replacing the
Schmudt number Vs, (Pruppacher and Klett 1997, p. 541). Thus.

. _J1LO+0.108X; X, <id4
71078 +0308X, 14<X,

where X, =V, VN, . The evaluation Ty fi. and Dy, in (3.37) follow the same
Reynolds number rules as for Ty, fi. and Dy, in (3.32). With the conductive heating
rate (3.37) and the condensational heating rate given by L (f )(dm\,,, /dt). where L(T)
1s the enthalpy of vaporization at T, the heat balance of a graupel/hailstone results in

(Rasmussen and Heymstfield 1987)

r im
dm _ l 0. L (7},, )c m., ;
dr L.(273.15K)] dr |

(3.39)

where L(273.15 K 1s the enthalpy of fusion at 27315 K. At first glance it appears as if
(3.39) neglects heat storage effects since all excess heating goes towards melting the ice
core and none s applied towards altering the thermul structure of the melting
graupel/hailstone.  However. because the equations of Ruasmussen and Heymsticld
(1987) are ventied against observations. heat storage etfects are implicitly included in
(3.39). Whether heat storage is included or not, its impact appears to be minimal (Pellet
and Dennis 1974).

The computation of f, ,, can be accomplished in an Eulenan framework in the

following manner. First, allow V(D ) to evolve through the dynamic terms in (3.18)

e

(1.e.. excluding the source/sink terms). Then. for each location and cach graupel/hail
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bin that has a nonzero AV(DK,,_). estimate the f ,, that a particular graupel/hailstone
started with at the previous time step betore arriving at that location. Then. (3.36).
(3.32). and (3.39) are used to estimate the current value of f; ,,. If £, ,, drops below zero.
these graupel/hailstones are removed trom .V(I)M) and redistributed into N(D,). In

this process. mass is conserved so as to conserve loading and internal energy. This is

-

the manner in which § and one of the two terms in § are computed.

N0 el MDD, et

term exists because the melting of the ice core of a

A second S, L,
graupel/hatistone results in a change in Dy, owing to the differences in the densities of
the hquid water coat and the ice core.  Since during melung the total number of
graupel/hail 1s conserved. this second term, § .. 1s computed from

S el

(3.40)

where dDy;, /dt 1s the rate of change of Dy, owing to melting. dD., ./dt is computed

from

D’ | di

dD,, :[E\l[ P, - P, J{ 1 ]dm_, ' (3.41)
7 :
where g, 1s the density of the core. Equation (3.41) can be derived by equating the rate
of change of the mass of the core 10 the rate of change of the mass of the water coat.
The only source/sink term in (3.10)-(3.18) that 1s not specified is ¢. the specitic
heating rate. which is composed of three terms. The first is the specific heating rate

owing to condensation/evaporation of cloud water. This term is handled in the
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saturation adjustment scheme. The second term is the specific heating rate owing to the
evaporation of raindrops. This term is

W

=-3 JL\ (r.). (3.42)

~

qc\.m rain noeap r.un[

The third term s the specific heating rate owing to the concomitant
condensation/evaporation and melting/freezing of graupel/hailstones. The only portion
of this energy balance that contributes to this term is conduction since this is the
mechanism by which o graupel/hailstone  exchanges thermal energy with 1ts
environment. Consequently. this term 1s

0. N, ),

q g ch —

p

(3.43)

3.2.3 Initialization
3.2.3.1 Environmental Initialization

In order to pertorm downdratt expenments. the model must be tnitialized using
appropriate environmental soundings. While this may seem like a strarghttforward task,
ditticulues do anse. Thus, a description of the methods used is provided here.

First, data from mandatory and significant levels at which total pressure p.
temperature 7. and dewpoint temperature 7, are available are retricved from a sounding.
Then. the hypsometric equation is used to calculate the altitude of each of these levels.
The hypsometric equation is based on the hydrostatic assumption and the equation of

state and is given by



R, —
Z.=Z +—=T In(p/p.). (344
Lo

where
T = J’T; dlnp/ Idlnp. (3.43)
N [ op

Z represents geopotentiai hcight.:x R, is the dry gas constant (287.04 J kg ' K

).
£, =9.80665 m s T, 1s virtual temperature. and subscripts | and 2 represent two
levels in the atmosphere (1 represents a smaller altitude than 2). The altitude of cach
level 1s computed even though altitude estimates are provided in many of the soundings
in order to ensure hydrostatic consistency within the model.

To compute altitudes. information concerning the vanation of 7, between levels
ts required. The assumption that 7, vanes linearly with Inp between levels.

Tr.-T,
 r——=———=—({Inp-Inp). (3.46)
In r. - lnpl
ts Justified by both theoretical considerations [cf. Richner and Viatte (1995) and
reterences theremn] and by our companisons of computed [assuming (3.16)] and

provided (computed using the full-resolution radiosonde data) mandatory-level

geopotential heights. With (3.45) and (3.46). (3.44) becomes

R, T,
Z.=2 +—"[L:—;)In(pl/p:). (347)
8 - :

The altitudes of sounding levels where p. T and 7}, are available are calculated using

(3.47).
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At this point one must estimate p. 7. r.. and T, at the model locations z,, using
the p. T. and T, values at the sounding locations Z. First. vapor pressure ¢. r.. and T, are
computed at the sounding locations. Then. using the assumption that 7, varies lincarly
with Inp between sounding levels [(3.46)]. the height z,, of a model point that lies
between sounding levels Z, and 7.y 1s related. through (3.47), to the temperature and
pressure fields by

(2. = 7))

. h)
)[In(pl/p)l'f.’.T‘ ln(p;,/p)-ﬁ—'[—‘,——:(). (3.48)

In(p. p .,
where p 1s the pressure at 2. Since evervthing in (3.48) but p 1s Known. this quadratic

cquation can be solved tor p. resulting in

fr . — : ZQn I —T" ( y 1‘
rF T+ ‘ (z, -Z)]
expl R, In(p p..) | et
e T |
1’ , 1
p= L nlrp.) ! 349)
) (7 )]
¢ (2 - .
ex u oo r =1
| r PL kT ,

The solution for p must spht according to whether or not 7. 1s equal to 7, 1n order to
avotd division by zero {(3.48) 1s no longer quadratic in this case]. Calculations show
that the negative root in (3.49) preduces viable values.

With p known at the model points, environmental 7, values are determined by

linearly interpolating T, as a function ot Inp from the sounding data. At this point, the

* The geopotenual heights computed herein are treated as actual heights. Considening the relatively
small heights (< 5 km) of the model domain. this approximation results in negligible errors te.g.. List
1951, 217-223).



environmental vanables that remain to be determined are T and r.. These cannot be
determined directly from T, since only one piece of information is available concerning
two values. In order to close this problem. the assumed linear vanation of T, with Inp is
utilized. By utilizing the approximation 7. = T(l +.608r. ) and through some algebraic
manipulation, it can be shown that the assumption that 7, varies lincarly with lnp s
consistent with linear vanations of T and r. with Inp. Consequently, environmental T
values are determined by lincarly interpolating them as a function of Inp from the
sounding data. Environmental r, values are then calculated using

T T-1
r=————.
le-T T

where & = R, /R . with R, the gas constant for water vapor (461.5 J kg 'K ).

3.2.3.2 Microphysical Initialization

The first step required in the microphysical inttialization of this model is the
assumption of size distnibutions for rain and graupel/hail. This is necessary in order to
reduce the degrees of freedom associated with size distnbutions to a manageable
number that can be inferred using radar data. A common form used for the distnbution

of rain 1s the gamma distnbution

L9V
(v ]

N(D,)=N, D exp(-\,D,). (3.50)

I4

where D, 1s the equivolume diameter (the diameter of a spherical drop that has the saume

volume as an actual drop). N(D,) s the number of drops of diameter D, per unit
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volume per unit size interval.™ Ny, is the intercept. u, 1s the shape parameter. and A, is
the slope (Ulbrich 1983) (subscript r indicates rain). Another common form used for
raindrop size distributions is the exponential distnibution (Battan 1973, §7.2). which is
described by (3.51) with 4 =0. Herein. it is assumed that raindrop sizes are
distnbuted exponentially.

For hail. the Cheng-English exponential distribution (Cheng and English 1983
Cheng et al. 1985). in which the intercept and slope are related. has gained some
acceptance and will be used herein.  [Note that numerous studies (¢.g.. Federer and
Waldvogel 1975: Xu 1983: Cheng and English 1983: Cheng et al. 1985) indicate that
hail 1s exponentially distributed. although exceptions (power law. gamma) have been

documented (Auer 1972: Ziegler et al. 1983).] The relation between the intercept and

)

slope that is used is that of Cheng et al. (1985). N, =(100m ‘'mm' "' ).A*". with Nog,

in m mm' and \, in mm ' (the subscript ¢hs ndicate graupel/hatl).  Strictly
speaking, the Cheng-English distribution holds only for hail, for which D > 5 mm.
There 1s evidence. however. that graupel (for which D < 5 mm) are also exponentially
distnibuted (Xu 1983;. Thus. graupel are assumed to have an exponential distribution
and are furthermore constrained to have N, and .\ values that are equal to those of the
hail size distribution. This results in a single distribution that describes the sizes of both
graupel and hail. [The assumption of matching, exponential hail and graupel size
distnbutions 1s a fairly common one that has been utilized in numerous other

computational efforts (e.g.. Lin et al. 1983; Bringi et al. 1986a.b: Avdin and Zhao

1990).]

* As a matter of comvenience. equivolume diameter D, will often be referred to as simply diameter.
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In order to relate PR data to size distribution parameters. information concerning
raindrop and graupel/hail shapes. canting. and incidence angles (essentially clevation
angles) is needed. Raindrops are assumed to have equilibnium shapes approximated by
oblate spheroids [shown by Wamer and Hizal (1976) to be a good approximation] with
axis ratios that vary with size according to the relation found by Green (1975). The
degree to which raindrops assume equilibnium shapes is controversial. From an
analysis of arrcraft data. Chandrasekar et al. (1988) found that the oscillations of
raindrops are slight (oscillation amplitudes ot [0% of the axis ratio). Zmi¢ and Doviak
(1989) showed that oscillations of this magnitude minimally aftfect polanmetnic
measurements.  From surtace observations in heavy showers (Jones 1959: Jameson and
Beard 1982) and a model of colhsionally-induced raindrop oscillations (Beard et al.
1983). however. indications are that in moderate to heavy raintall collisionally-induced
oscillations can result in raindrop shapes that deviate from equilibrnium (and toward
sphenaity).  Moreover. Andsager et al. (1999) found that even without collisions
ratndrops may oscillate (apparently from resonance with vortex shedding) strongly
cnough to alter average raindrop shupes towards sphericity.  Since the impacts
oscillations have on raindrop shape are not fully understood and since ditferences are
not expected to have a large impact on the results of this study. equilibrium shapes are
assumed for raindrops. In addition. raindrops are assumed to experience no canting
(Beard and Jameson 1983) and are treated as though the incidence angle is zero [a good
approximation tor the low-elevation data used herein (Stapor and Pratt 1984: Jameson
1987)].  Graupel/hail are assumed to be sphenical (see appendix C). With this

assumption, canting and incidence angles are relatively unimportant.
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[nformation conceming maximum and minimum raindrop and graupel/hail
diameters is also required for the microphysical initialization of this model. (With this
information. two degrees of freedom remain for the interaction of raindrop populations
with electromagnetic energy while one remains for graupel/hail populations. Thus. only
two measurands are needed to initialize rain and only one is required to initialize
graupel/hail.) - For raindrops. the minimum diameter D, nn is 0.2 mm while the
maximum diameter D, q,, 1s equal to the approximate spontaneous breakup size limit of
8.0 mm (Komabayasi et al. 1964). The minimum raindrop diameter 1s based upon the
definition of raindrops (or. more precisely, dnizzie drops). The maximum raindrop
diameter. on the other hand. is believed to be realistic not so much because
collisionally-induced breakup 1s relatively inactive (thus allowing spontancous breakup
to dictate maximum drop size). but because 1n the raindrop-containing hook echoes
considered here the production of large raindrops through the melting of graupel and
hatl 1s believed to be significant (e.g.. Conway and Zmi¢ 1993).  For graupel/hail.
D

=0.05 mm and D, =9.0 mm. The maximum graupel/hail diameter is set

1 omun N
so that a parametenzation of shedding would not be needed: Rasmussen et al. (1984b)
found that ice particles with diameters smaller than 9 mm do not shed while melting. In
future work. shedding will be incorporated in the model and larger hailstones will be
allowed.

The PR-based hydrometcor classitication and quanufication techniques that are
used herein are partially descnbed in appendices C and D. To quantfy the rain and
graupel/hail fields. the retlectivity factors at honzontal polarization for rain Z, and ice

(graupel/hail) Z,, and the reflectivity factors at vertical polanization for rain Z,, and ice
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Z., must be determined. Then Zy.. the differential reflectivity owing to rain. can be
esumated. With the assumptions concerning raindrops. Ny, and .\, of raindrop size
distnbutions depend only upon Z,, and Z;k, (Seliga and Bringi 1976). Furthermore,
with the assumptions conceming graupel/hail. only Zy, 1s needed for the initialization of
graupel/hail.

Two methods are empolyed to estimate Zy,. Zi. Z,,. and Z,, from PR data. As
discussed in appendix C. the measured reflectivity factor at horizontal polanzation Z,
and the differential reflectivity Zpg [Z,,(dB)=Z, (dBZ)-Z (dBZ). where Z, is the
reflectivity factor at vertical polarization] are used to compute the reflectivity ditference
Zpp (dBZ). which 1s defined by

Z,=W0log(Z, -7 )=10logl(Z, +Z. ) —(Z, +Z ). (3.52)

where Z, >7Z . 7 =7, +7, . 7 =7,+7Z . and lincar-units (c.g.. mm’ m )
reflectivity  values  are used. [Equation  (3.52) can  be  expressed  us
Zp =7, +10log(t =10 7+ ). where Z,, >0 dB. Zyp is in dBZ. 7, is in dBZ. and Zx
1s in dB.] For raindrop size distnbutions conforming to the gamma distribution,

Golestani et al. (1989) found that

2, (dBZ)=uZ,, +b. (3.53)
where 7, (dBZ)=10log(Z, - Z ) is the Zpp comresponding to rain and « and b are
constants. Observations from regions dominated by rain have confirmed the validity of
(3.53) (Golestani et al. 1989; Meischner et al. 1991; Conway and Zmi¢ 1993; Carey and
Rutledge 1996: Tong et al. 1998). By using (3.52). (3.53). and the key assumption that

the ice-water hydrometeors are effectively isotropic with respect to reflectivity factor
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(see appendix C) sothat Z, =7, and Z,, =Z,,, . one can obtain Z,, from Z, and Z,.
With this. one can determine 7, (and Z,, and Z.,).

The second method for separating Z, wnto 7y, and 7, 1s also discussed in
appendix C. It was introduced by Balaknshnan and Zmié¢ (1990a) and. as with Zp.
depends upon the ice hydrometeors being essentially isotropic with respect to honzontal
and vertcal polanzation states.  In this method. however. 1t is presumed that the ice
hydrometeors do not affect the specitic ditferential phase Kpp (see appendix C). Then,
the uulization of Kpp-R and R-Z,,, relations. where R 1s rainrate. produces an estimate of

1360
)t

. From the R=37 (K, Kp-R relation proposed by Sachidananda and Zmi¢
(1987 and the Marshall-Palmer 7, =200R'" R-Z;, relation (Marshall et al. 1955),

Balaknishnan and Zmi¢ ( 1990a) obtained

' N

Z, =64840(K,,.) ™. (3.54)
where Z,, 1s in mm" m ' and App is in km ' [with Z, in dBZ (3.54) is
Z,, =13.86log(K )+ 48.12. which 1s consistent with (3.57) below].

From the two Z;, esiimates available from these two methods. Z,,. (tfrom Z;p)

and Z,, (from Kpp). we calculate F ... the fractional contribution of ice to Z, from Zpp. as

F. = /j““ . (3.55)
zZ,
and F;. the tractional contribution of ice to Z, from Kpp. as
. Z,. <
Fo==. (3.56)
Z,

with the reflectivities having linear uaits. It is not clear which of these is better. Error

sources for F,. estimates include measurement errors in Z;, and Zpg [Tong et al. (1998)
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show that the standard error of Zpp is nearly equivalent to that of Z,]. raindrop size
distnbutions that do not conform to the range of gamma distnbutions considered by
Golestani et al. (1989)™. graupel and hailstones that are not isotropic with respect to
reflectivity. and the use of non-calibrated coefficients in (3.53)."' Error sources for Fi
estimates include measurement errors in Ky, tnaccuracies in the assumed Kpp~R and R-
Zy, relations owing to vanations in raindrop size distributions [more severe for R-Z,
relations (Doviak and Zmi¢ 1993, p. 234)]. and graupel and hailstones that are not
isotropic with respect to difterential phase. Based on the work of Balaknishnan and
Zmic (1990a). Straka et al. (2000) argue that F; should be supenor to F.. because
anisotropic graupel/bail atfect Kpp less than they affect Zpg [see Figs. S and 6 and
assocrated text of Balaknishnan and Zmic (1990a)]. While this s true. the utility of Fy
relative to £ 1s decreased by two factors. The first 1s the dependence of F; upon an R-
Zy, relation. These relations seem to suffer more from raindrop size distribution
vantability than do 7,,-Zp, relations (see preceding footnote). The second is the
accuracy with which Ay can be estimated. Because the Ky algorithm used herein s
stmilar to the NSSL K),p algonthm (Brandes et al. 2001). the standard deviation of Ky
[SD(K»p)] estimates for Cimarron radar data is 0.12 t0 0.3 * km ' (Ryzhkov and Zmi¢

1996: Brandes et al. 2001). The upper SD(K,p) value of 0.3 > km ' equals the expected

¥ Golestami et al. (1989) state that their hinear Z,,-Zpp, relation was obtained by varving gamma-
distribution parameters over a wide runge. Thes do not, however, indicate the extents of those ranges.
Measurements (Golestani et al. 1989: Meischner et al. 1991; Conway and Zrmi¢ 1993; Carey and
Rutledge 1996 Tang et al. 1998) and disdromieter-based calculations tAydin and Ginidhar 1992 indicate
that linear Z,,-Zpp, relations are typical and may extend to gamma-distributions that may not have been
considered by Golestan et al. (1989).

! The coefficients in the Z,,-Zpp, relation depend upon calibraton (Conway and Zrnié 1993). Because of
the number ot cases considered here. however, the determination ot coetticients tor each case s not



Kpp value for Z =40.92 dBZ. where Z,,, 1s esimated from the Z,,-Kpp relation of
Balaknshnan and Zmi¢ (1990a)

Z. =1386log(K,,)+48.17. (3.57)
with Z;,, in dBZ and (one-way) Kpp in -~ km ' [as noted earlier. (3.57) is consistent with
(3.54)]. For Z, =45 dBZ. SD(K,,)=0.3 - km™' is about half of the expected Kpp
value. Vanations of 0.3 °~ km ' about Z_ =45 dBZ. K, =06 ~ km™ produce
F. =061 (K,.,=03 km"Yand F =00 (K, =09 km') when the expected
value 1s F, =0.0. Kpp nosiness at small Zis. therefore. significantly limits the utility
of Fy tor small Z;s. In companson. with @ =0.876 and h =9.482 dB. ¥1 dBZ errors
in Zpp [equal to the expected standard error for Z;, (Zmi¢ et al. 1993; Doviak and Zmi¢
1993, 128-129). which Tong et al. (1998) show to be a vahid approximation] for
Z,=45 dBZ. Z,.=40546 dBZ (Z,,=1929 dB) results in F =0.18

(Z,, =39.546 dBZ) and F =0.0 (Z,, =41.546 dBZ) when the expected value is

F =00 2 Based upon this rather simple error analysis, the fractional contnbution

teasible. Consequently, averages ot the values reported tn the literature (see appendix C) are used. These
are @ =0.876 and h =9.482 dB.

 Note that tor physical realizability. when these methods indicate that Z,, >Z, and thus that Z,, 1»
negative (inear units), Z,, and Z,, are set such that Z,, = Z, and Z,, = 0.0 mm® m’.

" Another way of looking at the impacts measurement errors have upon £ 1 to consider how | dBZ
changes in Z, or Z, attect F.. A-1dBZ errorin Z, with Z,, =435 dBZ. Z,, = 43.071 dBZ imeaming the
measured Z, v 44 dBZ) produces F. = 0.4 when the expected value s F. =0.0. On the other hand. a
+1 dBZ errorin Z, with Z,, =45 dBZ. Z,, =43.071 dBZ tmeaming the measured Z, s 44.071 dBZ)
produces F. =042 when the expected value s F. =00, These examples are chosen so as 10
maximuize the errors 1in F.. The same may be done for the F; example. A +1 dBZ error in Z, coupled
witha -0.3 * km™" error in Kpyp tor Z,, =45 dBZ. K5p =0.6 * km™ (meaming the measured Z, and Kpp
values are 46 dBZ and 0.3 ° km''. respectively. produce F, =0.69 when the expected value 18
F, =00.

1

131



of iwce o Z,. F..1s herein esuimated by averaging Fi- and F; 1f Z, 250 dBZ and by
weighting F.. four imes more than F; 1if Z_ <350 dBZ.

With an esumate of F,. measurements of Z; and Z;k. and the assumption that
graupel/hatl are 1sotropic with respect to retlectivity (Z, = Z ). Z,,. Zpg,. and Z;, can be
estimated. As indicated carlier. these are the estimates that are needed to initialize the
raindrop and graupel/hail size distnbutions. The dependence of Z,,, and Z;x, on V,, and
A, for truncated. exponential raindrop size distributions has been investigated (Seliga
and Bringi 1976: Seliga and Bringi 1978: Seliga et al. 1979: Seliga et al. 1981). Curve
= 8.0 mm results produce

fits to their D

may

A =31187, ", (3.58)

IR

<<y

N, = (3.59)
where .\, 1s in mm . Zogeis in dB. Vo, 1s inm ‘mm ', and Zi- 18 1n dBZ. The curve
(3.58) 1s consistent with the theoretical result of Ulbrnich and Atlas (1984) but differs
moderately from the disdrometer-based result of Seliga et al. (1986). These curve fits
are used to imtialize the rain field.

The inittalization of graupel/hail requires one more piece of information bevond
that provided by 7, and the assumptions concerning size distribution. shape. canting,
incidence angles. and maximum and minimum sizes. This extra piece of information is
the electromagnetic wetness of the graupel/hail.  Because the model downdrafts are
generally imtizhized at levels below the melting level. the graupel/hail at these levels are
expected to have coatings of liquid water owing to melting (e.g.. Rusmussen et al.

1984b). The backscattering of melting graupel and hail has been investigated (e.g..



Kerker et al. 1951 Herman and Battan 1961). Results indicate that the backscattering
cross section of a melting graupel/hailstone lies between that of an all ice/air
hydrometeor (electromagnetically dry) and that of a liquid hyvdrometeor of the same size
(electromagnetically wet). Thus,

p )+ flo (D, V- (D, .p). 3.60)

ulome i

o (D

al o

D .p)=0(D

dowa aiowe *

where o, (D, . .D,.p0,) is the backscattering cross section of a water-coated ice/air

hydrometeor of diameter D, ... D, 1s the thickness of the water shell. p,; 1s the density
of the ice-air hydrometeor, @ (D, . .p.) 1s the backscattering cross section of an
ice/air hydrometeor having diameter D, and density p,. o, (D . ) 1s the
backscattering cross section of a hiquid hydrometeor having diameter D,,,,,. and fis the
clectromagnetic wetness. By relating this to the equivalent retlectivity 7, that 1s

obtained with weather radars. ™ it is shown in appendix D that

) A’ 2 v e . ) \- ' ’
Z,=—— | (i—J‘ (L= f)D" . N(D, . )dD, . +
Kin. a_. \p
o Tt . (3.61)
[ro,. ~b, )b,
Do O,
where |K|'=0.176 and |K_ | =0.93 are related to the refractive indices of ice (/) and

liquid water (w) (see appendix D). p, is the density of ice. and it 1s assumed that melt-

water does not penetrate into the ice/air hydrometeors (the ice/air hydrometeors are not

* The Z, that 1 typreally obtamned with weather radars 1s more accurately labeled Z... the equivalent
reflecivity factor at horizontal polanization.  This 15 beciause Z 15 determuned using the weather radar
equation, which requires assumptions concerning the scattering behavior ot hydrometeors. [t s typically
assumed that Rayleigh scattering applies and that the hvdrometeors are composed of liquid water. Since
these assumptions are not always vahd. Z,, 1» what s actually obtained.  When dealing with horizontal



porous). The results of Herman and Battan (1961) indicate that for Rayleigh scatterers
and for a fixed radar wavelength, f depends upon both D, and D, ... Assumung that p,,
and p, are independent of D,, ... defining f as

n,. n,

j/ D" N(D,. D, .

Y

J‘[) | N(D, . }dD,

I).l -

and inserting the Cheng-English size distnibution results in

/- =lonm w02 771D

K| {;_H

L

a0, L )-/1aD, . . )]

B 1
o ; . - . 6 3 .
where y(u.x)= J‘u t* Ut s the incomplete gamma function, Zi, 1s 1n mm' m "\ s

o)

- { : : :
inmm .and D, ., guand D, e are in mm. This can also be expressed as

r ) N D, o, ., .
Z =N, 1 f+(l- ,.)f‘_lﬂ’ £, 1. J'[)“ Lexpl-A, D, . JdD . . (3.64)
{ L P

which 15 more amenable to solution [for example. if .\ <O, then difficulties arise in

evaluating .\ ;™ (resolved below) and the incomplete gamma functions in (3.63)].

With knowledge conceming values of Zy,. Nogi f . [K.[ o [K.["« Prae Pie Die_mine

and Dy v, ma. (3.64) can be solved for A, The Z, values are determined as discussed

above. In order to avoid problems for small or negative Ay, values, the Cheng et al.

polarization, the Z, and Z, in appendix D become Z,, and Z,, and 2, = Z,, - Z,, . (The Z,, used heretn iy
really an equivalent Z,,.)



(1985) Nyen-\, relation is truncated at A, =02 mm ' (approximately the smallest .\,
of their data). resulting in

P03 m mm' A <02mm
T T H100m T mm )AL A, 202mm "

N n

(3.65)

As indicated above. fdepends upon both D, and D, ..,. This raises the question
of approprate values for D,. Because PR methods that depend upon isotropy of
graupel and hail are utilized herein. consistency requires D,;, values that are small
enough so that water-coated 1ce-air hydrometeors are nearly spherical.  According to
Chong and Chen (1974). water-coated ice-air hydrometcors are nearly sphencal if
D, <~02 mm. Thus. 1t 1s assumed in most calculations that D =0.1 mm for
graupel and hal that are larger than D, .. ... For graupel/harl that are smaller than
Do e Dogs imualized in a ditterent manner. This ts necessary because water coats
D, thick are not possible tor very small graupel since they require more mass than s
available from the whole particle. To avoid this problem. the ratio of the mass of the
water coat /m,,, to the mass of the total hydrometeor m,;, is held constant for graupel/hail
that are smaller than D, .., ... It is not immediately obvious as to what would be an
appropnate value for this ratio. A high value means that the small melting particles are
principally composed of liquid water while a low value means predominance of ice
water. The requirement of polarimetric i1sotropy does not help here since for small
particles the deformation 1s minimal. even for all liquid-water hydrometeors
(Pruppacher and Beard 1970).  Without much physical guidance, an  arbitrary

foo w=m [m, =0.3 value is used. This corresponds to the water coat mass fraction

._.
(Y]
‘N



tor D, =0.1 mm. D, =10 mm [with p, =870 kg m * (see below)]. Thus. the

values of D, are determined using

13

|  les )

D,. D, .|— .

b - i | Bt =1, ),
|
|

<l.0mm

wlowa

(3.66)

0.1mm D, . 21.0mm

where the relation for D <1.0 mm results from the definition of f,, . p. is the
density of hiquid water. and D =1.0 mm. With the vanation of D, established.

estimations of f are now possible.  Analysis of the 10-cm wavelength results of
Herman and Battan (1961) indicates that f changes monotonically from ~0.74 to ~0.4
for water coated 1ce air hydrometeors having diameters ranging from 2 to 10 mm and
water shells 0.1 mm thick. Moreover. this vanation 1s roughly tincar with f,, .. which
1s consistent with the findings summarized by Battan (1973, §5.1).  Because
hydrometeors smaller than D, .., . have a constant f,, .. they may. based on the above.
be expected to have a nearly constant f value. From the results summanzed by Battan
(1973, §5.1). f =~0.85 appears appropriate for the small hydrometeors. Given (3.62)
and (3.66), the value of f 1s some sort of compromise between the values for the larger
(> Dygue ) and smaller (< D, ..) hydrometeors. The appropriate value of f

N(D, . ) with D,,... Because of the

adowe

depends upon the distribution of both fand D°

sixth-power weighting in D° N(D_ . ). it is expected that f will be affected most

strongly by relatvely large graupel/hailstones [see. for instance. Doviak and Zmi¢

(1993. §8.3.2)]. Thus.an f =0.6 valuc is used in all computations.
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upon temperature (¢.g.. Gunn and

The weak dependencies of (K I and (K|

East 1954) are ignored. with |K | =0.176 and |K_ | =0.93 values used. Similarly. the

weak temperature dependence of p, is ignored. with the p =920 kg m * value used
[corresponds to a temperature of =20 “C (Pruppacher and Klett 1997, 79-80)].

The p, =870 kg m " value is generally used. This is toward the low end of the
values typically observed for hailstones (English 1973) and is consistent with the values
reported by Braham (1963) for graupel particles collected durning Project Whitetop
(Braham 1964). It is believed that the Bruham (1963) graupel density values are
relevant to the current study because the cases considered herein are from the same
geographical region {Oklahoma in this study and Missoun in the Braham (1963) study]
and. due to their relatively warm cloud bases [as in the Project Whitetop study (Koenmig
1963: Braham 1964: Braham 1986)]. should have relauvely more (high-density) trozen
droplets that develop into graupel (and hail) (Koemg 1963 Braham 1964: Knight
1981). This (relatively high) p, value 1s also consistent with the previous assumption
that the ice/air hydrometeors are not porous. which was used to obtain (3.61).

As stated previously., D =0.05 mm and D =9.0 mm. These do not

en mun o man
necessanly correspond exactly to Di,ue mn and Dy, mov. The Cheng-English
distnbution applies to dry hailstones since. after collection at the ground. they were
stored 1n dry 1ce (Cheng and English 1983). This would freeze any hiquid water either
in, or on the surface of. the hailstones. (The frozen water presumably would not have
the same density as that of the ice/air hydrometer. Since most of the frozen water is

expected to have been shook lose when the hailstones were collected, this 1s expected to



be of little importance.) Because of the difference in the densities of ice/ur
hydrometeors and liguid water. water-coated ice/air hydrometeors do not have the same
diameters as they did when they were dry (prior to melting). In other words.

zD . The Cheng-English distnbution corresponds to D,, .., while in the

it i
model the appropriate diameters are D,, ... In these experiments. however. initial water-
coat mass fractions are assumed to be relatively small (< 0.3) for all sizes (as per the
previous discussion conceming D). As a consequence. D, =D, . with

maximum relatuve ditfferences between D, .., and D, ... being ~1.4%. Theretore. the
Cheng-English distribution 1s assumed to hold for the water-coated ice/air hydrometeors

=0.05 mmand D, . =9.0 mm.

and ttis assumed that D —

3.2.4 Boundary Conditions, Initial Conditions, Solution Methods, and Parameters

At the upper and lower boundanes. all model vanables. excluding . are
allowed to evolve through the various processes outlined above. For #w . rigid boundary
conditions are apphed. with w =0 at the upper and lower boundanes.

At time zero, all model fields. except tor rain and graupel/hail at one altitude.
are equal to environmental values. Diagnosed rain and graupel/hail fields are inserted at
one altitude. that at which they are observed. at each time step (including time step
zero). This is consistent with steady hydrometeor production in the storms. Situations
in which the hydrometeor fields dnving the RFD evolve are not considered.

For tomadic cases. observations just prior to the development of the most

significant tornado in cach data set (not shown) were used. For nontornadic cases,




observations at the time of the strongest low-level mesocyclone. as estimated from
Doppler radar data (not shown). were used.

Because of the relative simplicity of the approach used herein. three-
dimensional analysis fields are not needed. Consequently. the objective analysis
techniques that are developed in chapter 2 and are usetul in applications that require the
quantitative utilization of radar data are not applied in this particular investigation.

Generally. the model 1s dniven using hydrometeors fields from relatively low
alutudes (~1.5 km AGL). There are several reasons for this. As will be shown, above-
boundary-layer storm environments are refatively stable to (model) downdrafts dniven
by precipitation fields typical of this data set.  In tuct. deep above-boundary-layer
downdrafts may depend upon the presence of relatively lurge hatl (> 1.0 ¢m diameter).
Without these relatively large halstones. a shallow downdraft in which all of the
smaller hailstones melt 1s produced above the boundary layer. Since this model does
not include relatively large hal. in part because of uncertainties 1n identitying
maximum hail size from polanmetric radar data, model downdrafts are initialized using
data from relatively low alutudes. This way. because the largest hailstones will likely
have melted to the point that they are much closer to the maximum size used in the
model. more realistic graupel/hail fields are used 1n the lowest part of the troposphere.
which appears to be a very important layer.

Finite differences are used. They are forward in time, upstream for advection
terms. and centered in space for non-advection terins. The gnd spacing 1s 0.1 km and

the ume step is 0.5 s. The finite differences. gnd spacing. and time step are all similar



to those used by Snvastava (1985. 1987). Tests were performed to ensure numerical
convergence.

Fifty rain and graupel/hail size bins are used. Following Ogura and Takahashi
(1971). « =0.1. The radius of the downdrafts a is set at 3 km. Ths is approximately
in the middle of the size range given by Knupp and Cotton (1985) for precipitation-

driven downdratfts.

3.2.5 Verification

First. zero forcing was applied to the model to check model veracity. The
results at 7 = 10 minutes are shown in Fig. 3.1. The model dnft at this point. at which
the maximum downdraft magnitude is 0.01 m s ', is minimal. Some drift does occur.
however, and amplifies with time (not shown). From its structure. this dnift appears to
be from weak numerical stabilities that are not completely controlled. perhaps because
in the case of zero forcing lateral mixing and dynamic entrainment are minimal.
Considening that single-precision anthmetic s used and that the case illustrated 1in Fig,
3.1 1s 1200 steps into the simulation, the performance 1s quite good.

The second test 1s a companson to the results of Srivastava (1987) that are
tllustrated in his Fig. 7 and shown here in Fig. 3.2, In this case. graupel and hail
conforming to a  Marshall-Palmer  size  distribution  with  parameters
Ny =8000m 'mm™ and A, =1.7mm" are released from an altitude of 4 km AGL in
an environment having a temperature lapse rate of 7 °C km''. a surface temperature of
28 “C. a surface pressure of 870 mb. a constant relative humidity of 70<%. and a

temperature at the release point of O °C.  Because this model can only handie
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graupel/hail that are melting. graupel/hail had to be released from 3.5 km AGL in these
tests. While this will undoubtedly produce ditterences hetween the results of Srivastava
(1987) and those obtained here. they are expected to be relatively minor since most of
the meluing occurs once the graupel/hail have fallen about 0.5 km (Fig. 3.2).

Figure 3.3 shows the results of this comparison simulation at 1 = 2000 s. In this
and subsequent plots of vertical velocities. the w =0 at z = 0 boundary condition is
omitted. The reason for this 1s the absence of perturbation pressures and the use of an
upstream advection scheme means that this boundary condition is not dynamically
communicated to the model domain.  Consequently, ploting # =0 at 7 = 0 would be
purely cosmetic and would imply something that 1s not dynamically enforced.
Theretore. this boundary condition 1s not depicted.

Somewhat surpnisingly. the results illustrated in Fig. 3.3 ditter signiticantly trom
those obtained by Snivastava (1987). For these conditions Stivastava (1987) simulated
a downdraft that 1s strongest near the ground and that has a maximum strength of about
[1.3ms ' Here. the downdraft is strongest aloft (2.3 km AGL) and has a maximum
strength of 5.62 ms'. Moreover, i Srivastava’s simulation the downdraft strengthens
with decreasing altitude. while here the downdraft exhibits more complicated structure.
The simulated rain and graupel/hail fields do tollow the same patterns, but the peuk of
the rainwater mixing ratio r, is much smaller here (~1.2 ¢ kg'') than in Snvastava’s
simulation (~3.2 ¢ kg''). While some of this difference could result from differing
altitudes and thus dry-air densities at which these peaks occur. it is doubttul that this 1s
the main cause since the peaks occur at nearly the same altitudes (1.6 km AGL here and

~2.2km AGL in Srivastava’s simulation).
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One may suspect that the difference in the graupel/hail release altitudes is the
causc of these large differences. This is not likely. however. for the reason given
carlier: most of the meltng occurs from 3.5 km AGL and down. In fact. the cause is a
difference in model formulation.  The most important ditference between this model
and that of Snivastava (1985, 1987) is Snvastava does not include dynamic entrainment.
To see whether this 1s the cause of these differences. a test was performed in which
dynamic entrainment was tumed off. The results of this test. shown in Fig. 3.4, are
quite close to those of Snvastava (1987). The peak downdraft magnitude is 10.6 m s l
as compared to Snivastava's 11.3 m s'; the peak r, 1s 1.975 g kg while Srivastava’s
peak 1s 3.2 ¢ kg ' (If the peak 7, value 1s adjusted for density difterences owing to the
ditference of the heights of the peuks (1.4 km AGL here versus 2.2 km AGL in
Snvastava), then the peuk r, values are within 1.08 ¢ kg'']. The vertical profiles of r,
and r, are similar in shape. They differ. however. in the altitude of the r, peak. In
addiion, the vertical downdratt profiles also have some differences.  In Snvastava
(1987). the downdraft intensifies all of the way to the ground while here the downdraft
intensifies down to about 1.6 km AGL and then weakens from there to the ground.
Considenng the multitude of physical processes involved. the agreement between this

stmulation and Snvastava's is excellent.
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FIG. 3.1. Model results at ¢+ = 10 minutes for the case of zero forcing.
Downdraft strength in m s is plotted on the abscissa and height AGL in
km is plotted on the ordinate. The thick. dashed. grey line indicates the
precipitation insertion altitude (at which no precipitation was inserted for
this simulation). The 00 UTC 14 June 1998 Norman. Oklahoma sounding
was used for this test. Maximum downdraft magnitude is 0.0l ms”'.
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FIG. 3.2. ta) Vertical velocity (m s') versus height below the release
altitude (my of graupel/hail. (b) Same as (a) except for mixing ratio of rain
(WATER) und graupel/hail (ICE) (g kg'n.  The —000 m height
corresponds to the surface.  Labels beside plots indicate the times of the
simulated values. In (b, a steady state is reached by 1200 s and thus later
times are not displayed. [From Srivastava (1987).]  Courtesy of the
American Meteorological Socierv. Copyright 1987
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FIG. 3.3. (2) As in Fig. 3.1 except for model results at r = 2000 seconds for
the Srivastava (1987) comparison (see text for details concerning the
parameters used in this comparison). (b) As in (a) except for mixing ratios
of rain (r.; solid line) graupel/hail (r,: dashed line). and cloud (r.: dotted
line)in g kg'".
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FIG. 3.4. As in Fig. 3.3 except dynamic entrainment is turned oft.
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3.3 Results
3.3.1 ‘High" Altitude Release

Before comparing tornadic and nontornadic cases. it is enlightening to consider
results for a high altitude release. where the adjective “high” is used because compared
to subsequent simulations the release point of the precipitation is high. The results of
such an experiment are shown in Fig. 3.5. The data for this case are from the hook echo
of the tomadic supercell that affected the Oklahoma City. Oklahoma. area on 13 June
1998.*

At first graupel and hail dominate the precipitation field. Upon insertion, they
begin melung and produce a downdraft.  They melt into raindrops tairly quickly,
however, and the downdraft dissipates.  Sigmificant downdraft does not appear again
unttl the hydrometeors reach the boundary layer. at which point the evaporation of
raindrops dnives the downdraft. It appears. therefore. that in this environment the
production of downdratt above the boundary fayer depends strongly upon the presence
of graupel and hail.  Above the boundary layer. evaporation of rain 1s not sufticient to
dnive a significant downdratt.

The altitude-dependence of the ability of evaporation of rain to drive downdrafts
can be understood by considering the sounding for this case (Fig. 3.6). In the boundary
layer, where evaporation of rain 1s effective in dniving a downdraft, the lapse rate is dry

adiabatic.  Since precipitation-dnven downdrafts descend somewhere between dry and

* The parameters tor this case are: 2= 3.7 km AGL. Z, =41.0dBZ. Z;x = 3.7dB. Kyp = 0.1 " km LF.
00.F, =079, F =0.16. Z., = 40.25 dBZ. Zps, =4.96 dB. A, =0.986 mm™'. N, = 9266.3 m 'mm". Z,,
32.98dBZ.and A, = 3.0l mm’
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moist adiabatically (Das and Subba Ruao 1972). the environment offers minimal
resistance to the downdratt there. Above the boundary layer. the environmental lapse
rate 1s between the moist and dry adiabatic lapse rates. There. the environment is more
resistant to downdrafts. This temperature structure is quite typical of many supercell
environments. including those tor the cases analvzed herein. Consequently. it appears
as 1f above-boundary-layer downdrafts in supercell storms may depend strongly upon
graupel and hail.

In this simulation. hail diameters are less than or equal to 9.0 mm. Larger hail
would take longer to melt and thus could possibly support a much deeper downdratt
above the boundary layer. Larger hail is not included here principally because of
uncertainties 1n the determination of maximum hailstone size using polanmetnc radar
data. (Additionally. the inclusion of larger hail would require a parametenzation of
shedding.). Given this uncertainty, 1t was decided to mitialize downdrafts using data
from relatively low altitudes. At these altitudes the largest hailstones will likely have
melted to the point that they are much closer to the maximum size used in the model.
Thus. the graupel/hail fields obtained at lower altitudes shouid be more reulistic and are
In a position to drive downdratts from just above and through the boundary layer. As a
consequence of this approach, these results are not expected to hold for situations in
which graupel and hail are able to dnve downdrafts through a deep layer and into the

boundary layer.
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(a)

(b)

FIG. 3.5. (&) Vertical velocity (m s'') versus altitude (km AGL) for the
high-altitude. 13 June 1998 simulation. In order to decrease the impact of
buoyancy oscillations. model results are averaged over a five minute
interval from ¢ = 1050 to r = 1350 seconds (centered on ¢ = 20 minutes).
The sounding used to initialize the environment is the 00 UTC 14 June
1998 Norman. OK. sounding. (b) As in (a) except for mixing ratios of rain
(r,; solid line) graupel/hail (r . dashed line), and cloud (r,; dotted line) in g
kg''. Thick. dashed. grey lines indicate the precipitation insertion altitude.
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along the ordinate, temperature ¢ 'Cy is along the abscissa. and winds (knots) are
plotted on the right.



3.3.2 Polarimetric Cases

The cases considered here are listed in Table 3.1. There are four tomadic (25
May 1997, 13 June 1998. 4 Oct. 1998. and 3 May 1999) and three nontornadic (18 June
1992. 19 Sept. 1993. and 8 June 1998) cases. While this analysis is tar from being able
to give significant results in a statistical sense. it 1s hoped that the patterns that arise can
be applied to a wider group of storms.

For these simulations. the sounding that was closest to the storm time and
location 1s generally used.  Exceptions are when soundings had been moditied by
comvection.  Of the tour tomadic cases. two. 25 May 1997 and 3 May 1999, had
soundings that appeared to have been significantly modified by convection.  For 25
May 1997, convection appears to have signiticantly cooled and moistened the
atmosphere near the surface (Fig. 3.7by. Because sounding structure strongly affects
downdrafts (see the previous section). the sounding from the previous was used for this
case (Frg. 3.7a). This s far from an optimal solution. However. other options. like
interpolating conditions from surrounding soundings or using predicted soundings.
scem less palatable. At least with this approach the simulated downdraft occurs within
an actual sounding. It is hoped that the synoptic setting the day before the event was
similar to that the day of the event and thus that the use of the previous day’s sounding
produces reasonable results. For 3 May 1999, the proximity of the convection appears
to have altered the 00 UTC 4 May 1999 Norman, Oklahoma, sounding (Fig. 3.8b).
Compared to the 18 UTC sounding obtained six hours carlier, temperatures are

significantly greater in a layer centered near 800 mb. This suggests the influence of



compensating sinking motions around the convection. Because of the alteration of the
lapse rate of temperature in the boundary layer. this strongly atfects the low-level
downdratt. The 18 UTC sounding (Fig. 3.8a). therefore. is used in the simulation (the
radar data for this case are from 2242 UTC 3 May 2002).

Norman, Oklahoma. soundings are unavailable for the day of the nontornadic 18
June 1992 case. Consequently. the 00 UTC 19 June 1992 Stephenville, Texas.
sounding is used (Fig. 3.9a). It s hoped that this sounding adequately approximates the
environment of the 18 June 1992 supercell studied here. The use of the previous dayv's
Norman. Oklahoma. sounding produces similar results.  As in the 25 May 1997 case.
the proximity sounding for 8 June 1998 (Fig. 3.9b) appears to indicate significant
cooling near the surface owing to convection. The previous day’s sounding is therefore
used in this simulation. In addition. polanmetnc radar data tor the 8 June 1998 casce are
avatlable only at about 0.5 km AGL. For the results shown here the estimated 0.5 km
AGL precipitation fields were inserted at 1.5 km AGL so that the simulated downdratt
might draw air from above the boundary layer downward. Because the precipitation
was mettective at doing so. however, the results tor 0.5 and 1.5 km AGL insertion
points are nearly equivalent below 0.5 km AGL.

Simulated downdratt profiles for the four tomadic cases for which polarimetric
radar data are available are shown in Fig. 3.10. With the exception of the 4 October
1998 case, the protiles look similar. In the 4 October 1998 case. the hydrometeor tields
appear to be too weak to dnve sigmticant downdratt in this model. In the other cases. a
short burst in downdraft strength is followed by a zone of little to no downdraft, which

ts then followed by strengthening downdraft in the boundary layer. The initial bursts in
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downdraft strength likely result from rapid evaporation of small raindrops and rapid
melting of small graupel/hail (Hookings 1965:. Snvastava 1985, 1987). Once these
small hydrometeors evaporate and melt. the stability of the above-boundary laver
environments significantly weakens the downdrafts. Downdrafts then strengthen again
in the boundary layer where the environments are much less resistant to downdrafts.

Simulated downdraft profiles for the three nontornadic cases for which
polanmetnic radar data are available are shown in Fig. 3.11. These profiles are similar
to those for the tornadic cases in Fig. .10, As with the tormadic cases, one of the
nontornadic cases. 19 September 1993, appears to have had hydrometeor fields that
were oo weak to dnve significant downdraft in this model. In the other two cases. the
initial downdratt bursts, subsequent weakening. and final strengthening in the boundary
layer are apparent. Owing to the similanty between these downdraft protiles and those
tor the tomadic cases. it is concluded that the low-level RFDs 1in tomadic and
nontornadic supercells may not differ significantly in their Kinematic structure.

Further insight into Kinematic structures of modeled downdrafts can be gained
by considenng a typical buoyancy profile (Fig. 3.12). At the hydrometeor insertion
point the total buoyuncy is slightly negative and appears to be dnven principally by
loading. As the incipient downdraft sinks in a resistant environment. the total buoyancy
becomes positive and rather large. The main contributor to these positive buoyancies is
1s temperature differences relative to the environment (thermal buoyancy). This is
consistent with the earlier analysis of the high-altitude release simulation performed
using the same sounding. The stability of the environment above the boundary layer

results in the downdraft descending relatively warm compared to the environment. This



1s especially enhanced in areas where the environmental lapse rate is small or even
negative (implying increasing temperatures with height). as is the case here in the laver
centered near 830 mb (Fig. 3.6). In the boundary laver. the dry adiabatic environmental
lapse rate allows the thermal buovancy. in concert with loading and r, buoyancy. to
dnve a significant downdraft.

Differences between downdraft and environmental #, and ¢, values for the
tormadic cases are depicted 1in Fig. 3.13. These differences are computed as downdraft
value minus environmental value. As in Markowski et al. (2002).° the f, values are
actually pseudoequivalent potential temperature . values (Emanuel 1994, §4.7) that
are computed using the formula denved by Bolton (1980). Because the #, used herein
differs from that used by MSRO2 by the term -68r, (footnote 21) and because 1,
differences are generally larger. attention is focused on £, deficits.

The £, differences for the nontornadic cases are shown in Fig. 3.14. Most of the
profiles in Figs. 3.13 and 3.14 are similar. with relative minima in ¢, differences near
the surtace. relative maxima in ¢, ditferences just above the surtace. and relative
minima above those. Three of the tour tornadic cases have surtace £, deficits that are
less than the 4 K threshold observed by MSRO2 and two of the three nontornadic cases
have surtace #, deficits that are greater than 4 K. Thus, five of the seven cases support
the finding of MSRO2 that the surface RFDs in tomadic and nontormadic supercells are
thermodynamically diftferent.  However, the difterences between the tomadic and
nontornadic cases in this study are not overly great. For instance, average ¢, differences

for the lowest 0.5 km in the tormadic cases are -0.12 K for 25 May 1997, -5.06 K for 13



June 1998, -1.1 K for 4 October 1998, and -1.9 K for 3 May 1999. Avecrage 6,
difterences for the lowest 0.5 km in the nontoradic cases are -3.83 K for 18 June 1992,
-1.99 K tor 19 September 1993. and -1.98 K tor 8 Junc 1998. While the low-level
nontornadic model downdrafts do appear to be potentially cooler on average than their
tornadic counterparts. the differences are not large. Of course. sensitivity to the
thermodynamic properties of the fow-level RFD could be such that these fairly small
ditferences translate into very large ditferences in tornado development.

Although on average the difterences between tornadic and nontornadic cases are
not great. two of the cases are significantly ditferent and may be indicative of an
important distinction between tomadic and nontornadic supercells.  The #, and 6,
difterences for these two cases, 25 May 1997 (tomadic) and 19 June 1992
(nontornadic). are shown in Figs. 3.15 and 3.16 along with their corresponding
soundings and environmental 4, profiles. In the 25 May 1997 case the low-level
downdraft €, 1s very close to and even greater than that of the environment (Fig. 3.15a).
In the 19 June 1992 case. on the other hand. the low-level downdratt 6, is significantly
lower (more than 4 K cooler) than that of the environment (Fig. 3.16a). From Figs.
3.15b and 3.16b it appears as these cases differ pnmanly because of their environmental
0, profiles. In the tomadic 25 May 1997 case €, decreases slowly with height in the
boundary layer whereas in the nontomadic 19 June 1992 case #, decreases rapidly.
Consequently. the downdraft in the nontornadic 19 June 1992 case 1s much more able to

bring low ¢, values down to the surtace.

* Henceforth this paper will be referred to as MSRO2. which stands for Markowski. Straka. and
Rasmussen (2002).
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The differences in these boundary laver #, protiles result from differences in
their boundary layer moisture profiles. In the tornadic 25 May 1997 case water vapor
mixing ratio r, 1s nearly constant up to the top of the boundary laver. which appears to
located where the lapse rate of temperature ceases to be dry adiabatic at ~900 mb. In
the nontornadic 19 June 1992 case. r. decreases with height throughout the boundary
layer. Since dry-adiabatic. constant-r, lavers have constant #,. the f. profiles of these
dry-adiabatc boundary layers are determined by their r, profiles.

It seems. therefore. that the boundary-layer #, profile may be important to
tomado development.  In supercell environments the boundary layer. which is an
important downdraft genesis/intensitication region. is often dry adiabatic (or nearly so).
Conscquently. the vertical structure of r, in the boundary laver appears to be an
important vartable modulating ¢, deficits and thus tomado development.  All else being
cqual, tomado development should be tavored when the boundary luyer temperature
and r, structure 1s such that 7, 1s constant or even increases with height. Thus. a dry-
adiabatic. constant r, boundary layer having an inverted-V structure should tavor
tomado development. On the other hand. tomado development should not be favored it
r. decreases significantly with height in a dry adiabatic boundary layer.

These conclusions. of course. must be qualified by the hmitations of this study
and also by Kknown requirements for tomado development.  For instance. if the
precipitation field and/or dynamic forcing successfully bring air trom above the
boundary layer to the surface. then the vertical structure of #, in the boundary layer may
be relatively unimportant.  Since relatively large hail may be required to do this, this

study cannot properly address this situation.  Moreover. a constant-f/, boundary layer



that 1s quite dry will have a high LCL. Despite its constant-#, structure. its high LCL

will mean that tormado development 1s unhikely (Rasmussen and Blanchard 1998).



TABLE 3.1. Parameters for cach of the polarimetric cases. Cases above the dashed line are tornadic and cases below the dashed line are
nontornadic.  Double dashes indicate that the value is not relevant. The Fujita rating and duration (in minutes) of cach tornado that

developed soon after the times of the data used in the simulations are indicated in parentheses in the form Fujita rating/duration.

CASE - AGL Z VA Ky F, F. F, i, VAT A, N, i Aen
tkm) dBZ) By ( km D WdBZ) By mmH m 'mmY WdBZ) mm Y
25 May 1997 (F2/4) 1.8 510 2.7 1.1 0.0 041 021 50.0 KR 1.19 233.27 4414 1.2
13 June 1998 (F2/3) 1.4 52.0 15 28 0.0 0.0 0.0 S2.0 35 1.27 583.5 -- --
S
4 Oct. 1998 (F3/1 T 1.28 40.0 228 0.5 0.0 0.0 0.0 J0.0 228 1.74 424.93 -- --
3 May 1999 (F3/25) 1.8 425 2.5 0.35 0.0 015 003 4237 2.0t 1.57 325.73 27.24 4.76
18 June 1992 1.5 47.0 1.8 0.2 0.1 086 025 4574 2063 1.50 676.43 41.02 1.58
19 Sept. 1993 1.47 325 1.68 0.15 0.0 0.0 0.0 325 1.65 218 420.74 -~ --
& June 1998 .52 49.5 1.5 0.65 0.27 06 033 4775 25 1.62 142092 44.71 1.13
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FIG. 3.7. As in Fig. 3.6 except for the (a) 00 UTC 25 May 1997 and (b)
00 UTC 26 May 1997 Norman, OK. soundings.
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FIG. 3.10. As in Fig. 3.5a except for the tornadic (a) 25 May 1997 case, (b) [3 June 1998 case
(low altitude). (¢) 4 October 1998 case. and (d) 3 May 1999 case. The soundings used are a)
00 UTC 25 May 1997 Norman, OK. (b) 00 UTC 14 June 1998 Norman. OK. (¢) 00 UTC 5
October 1998 Norman, OK. and (d) [8 UTC 3 May 1999 Norman. OK.
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FIG. 3.11. As in Fig. 3.10 except for the nontornadic () 18 June 1992 case. (b) 19 September
1993 case. and (¢) 8 June 1998 case. The soundings used are (a) 00 UTC 19 June 1992
Stephenville. TX. (by 00 UTC 20 September 1993 Norman, OK. and (¢) 00 UTC 8 June 1998
Norman. OK.
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FIG. 3.12. Buoyancy (m s *) versus altitude (km AGL) for the 13 June 1998 (low
alutude) simulation. The buoyancy variables plotted are the total buoyvancy B
(solid line with asterisks). the buosancy owing to temperature ditferences
relative  to the environment B_T (solid line). the buoyancy owing o
hydrometeor loading B_ldg (dashed line). and the buoyancy owing to water
vapor mixing ratio differences relative to the environment B_r, (dotted line).
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FIG. 3.15. (1) As in Fig. 3.13a. (b) Environmental ¢, profile for the 00 UTC 25 May 1997
Norman. OK sounding (¢) used in the 25 May 1997 simulation.
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3.3.3 Effects of Within-Hook Variability

In the selection of the radar data that were used to drive the |.5-dimension
downdratt model. care was taken to choose values that are charactenstic of the
respective hook echoes.  Bret oscillations and spikes were ignored.  Values were
preterentially taken from regions having larger 7, values since these regions should
provide the strongest forcing of the RFDs. Values were taken from both the necks and
tips of the hook echoes.

An important question 1s whether vanabihity in the hydrometeor ficlds of hook
cchoes can significantly affect RFDs.  Previous research concerming precipitation-
driven downdratts (e.g.. Hookings 1965: Snivastava 1985, 1987: Proctor 1989) indicates
that the properties ot hydrometeor fields should be important to RFDs. To answer this
question. however. tests using soundings tor tormadic and nontornadic storms should be
pertormed. A parameter space study of the etfects of difterent hvdrometeor size
distnbutions, microphysical processes. ete.. on RFDs 1s bevond the scope of this study
but 15 planned for the tuture. At the present time. etfects of hydrometeor vanability
within an observed hook echo are considered.

The hook echo that is considered 1s that from the tornadic 4 October 1998 case.
Of those studied. this hook echo exhibited the greatest vanability in terms of both 7,
and Zpg. Three simulations, the parameters for which are shown in Table 3.2, were
pertormed. The first simulation in Table 3.2, the “control” simulation, corresponds to

that performed for the 4 October 1998 case in the previous section. The other two are
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for a region of relatively high Z, and low Z;x and a region of relatively low Z, and high
Zopg.

Results for vertical velocity are shown in Fig. 3.17. The control simulation and
the low Z;-high 7 simulation produce ncarly the same results. The high Z-low Zy
simulation. however. produces a much stronger downdraft that reaches a maximum of
220ms ! as compared to -0.6 m s ' in the control simulation. The rounded shape of
downdraft profile from the high Z;-low Zpg simulation is similar to that observed in the
high alutude simulation (Fig. 3.5). Consequently. it appears as 1f the melting of graupel
and hail 1s important in the production of this stronger downdratt.

Results for 1, and #, difterences are shown in Fig. 3.18.  As in the case of
vertical velocity. the control simulation and the low Z,-high Z;x simulation produce
ncarly the sume results. The high Zj-low Zpx simulation produces larger ¢, difterences
except at the ground. where the #, ditference 1s approximately equal to that in the
control simulation. Therefore. 1t 1s apparent that #, differences are also sensitive to the
propertics of the hydrometeor tield.

This very limited set of simulattons illustrates that RFDs are hkely sensitine to
the properties of the hvdrometeor ficlds that drnive them.  As expected. increased
hydrometeor loading and greater amounts of graupel/hail can be more effective at

driving the RFD uand at bringing lower-6), air downward towards the surface.
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TABLE 3.2. As in Table 3.1 except for the hook-echo variability simulations for the 4 October 1998 case. The first
row is for the “control” simulation. the second is for the high Z,-low 7, simulation. uand the third is for the low Z,-

high 7k stimulation.

- AGL 7 7 Koy F, I F, Z VAT A, N, i, A
(hm) (dBZ) By km Y WBZy  WB) (mmy m mm W@BZ) (mm Y
1.25 40.0 228 0.5 0.0 0.0 0.0 40.0 225 1.74 42493 -- --
1.34 37.0 0.8 0.009 051 0.95 0.6 430 23K 1.67 620.14 44.79 1.12
1.29 310 1.2 0.4 0.0 0.0 0.0 3.0 1.2 274 173041 -- .
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(C)

FIG. 3.17. As in Fig. 3.10 except for the 4 October 1998 hook echo variability simulations listed
in Table 3.2, Results are for the (a) “control” simulation presented in Fig. 3.10. (b) relatively
high Z, and low Z,; region. and (¢) relatively low Z; and high Z;, region.
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FIG. 3.18. As in Fig. 3.17 except for differences between downdraft and environmental 6, (solid
line) and @, (dashed line) values. Differences are computed as downdraft value minus
environmental value.



3.3.4 VORTEX Cases

A subsct of the VORTEX cases analyzed by MSRO2 1s studied here. Three
tornadic and three nontornadic cases were randomly chosen for study. To initiahze
these simulations, soundings from MSRO02 and radar observed 7, values are used.
Because polanmetnc radar data are not avatlable for these cases. a spectrum of possible
hydrometeor types is considered by performing three simulations for cach case: mixture
of rain and graupel/hatl (mix). all rain (rain). and all graupel/hail (ice). 1t s hoped that
the vanety of downdrafts produced might encompass the actual downdraft.  The
parameters for the etghteen simulations are provided in Tables 3.3 and 3.4,

[t 1s noted that because this model works only if the graupel and hail are melting.
in two of the nontornadic cases (Sidney. NE and Carlsbad. NM) precipitation had to be
inserted below 1ts observation alutude. In the Sidney. NE case the impact is expected to
be minimal since the insertion altitude 1s only 0.1 km below the observation altitude. In
the Carlsbad. NM cuse. however. the difference between insertion and observation
alutude s large (2.7 km).  Unfortunately, for this case the lowest-altitude radar data
intercepts the hook echo at a relatively high altitude (4.8 km). The discrepancy between
insertion and observation altitude may have important consequences in this case.
espectally 1f the tnsertion-altitude Z;, was signiticantly ditferent trom the observation-
alutude Z;,. It not. then the difference between the insertion and observation altitudes
may be unimportant since significant downdraft may have commenced only once
meltuing ensued (the forcing of the downdraft by loading and sublimation of graupel and

hail would likely have been relatively weak).
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Vertcal velocities for the nontornadic mix simulations are shown in Fig. 3.19.
The mix. ran. and 1ce simulations are similar tor each of the nontomadic cases.
Consequently. only the mix results are shown. A comparison to Figs. 3.10 and 3.11
shows that the structure of these downdrafts is similar to that simulated in the
polarimetric cases.

Vertical veloctties for tomadic simulations are shown in Fig. 3.20. Some
significant difterences between the mix. rain. and ice simulations arose in the tomadic
cases. In Fig. 3.20. the simulation that produced the strongest downdratt for cach case
ts presented.  As with the polanimetnc cases. no consistent differences in the downdraft
structures of the tomadic and nontornadic are apparent.

Differences between downdraft and environmental 6, and #, values tor
nontornadic and tornadic cases are depicted in Figs. 3.21 and 3.22, respectively. For the
nontornadic cases. the £, differences at the surtace are relatively large. although the
large differences for the Carlsbad case are restricted to a very narrow surface layer. In
additton. the surfuce f,. ditterences tor two of the three nontomadic cases. Jetmore and
Nazareth. are also large. These results are consistent with the tindings of MSR02, who
found that #, differences were relatively large for both nontornadic cases and weakly
tomadic (defined as) cases.”  The strongly tomadic case. Allison, has a small ¢,
difference at the surface. This, too. 1s consistent with the findings of MSRO2. who

found that surtace é, deficits were generally small for strongly tornadic supercells.

¥ MSRO2 defined weakly tornadic events as those that produced FO-F1 tornadoes that persisted for 3
minutes or less. They defined strongly tornadic events as those that produced F2 or greater intensity
tornadoes that lasted at least S menutes.



For the Allison case. however. MSRO2 did observe large #, deficits (up to 18 K)
in the surface RFD. Reasons for the difference between the simulation performed here
and the observations can be surmised by considering the environmental #, profile (Fig.
3.23) and the (strongest) simulated downdraft for this case (Fig. 3.20b). In the
stmulation. precipitation was inserted at an altitude that would enable the transport of
low #, air to the surface. However. because the simulated downdraft subsided at about
1.3 Km AGL and then resumed in the boundary laver. it was not able perform this
transport. ~ Since f, 1s nearly constant 1in the lowest 1.3 km of this sounding. the
simulated downdraft produced a surface #, difterence close to zero. The observation of
large #, deficits in the surface RFD of the Allison storm indicates that air from the
clevated. low-f, reservoir was drawn to the surface.  This could have been
accomplished 1t. perhaps.  larger  hailstones  or  dvnamically-induced  pressure
perturbations contributed to a stronger downdratt above the boundary laver. The role
larger hailstones play in transporting mid-level. low-, air to the surface will be
investigated in future work.

A companson between the surface 6, differences observed by MSRO2 and those
modeled herein s provided in Table 3.5, The model results are generally close to the
range of observed values. Exceptions are the Allison case. which has already been
discussed. and the Sidney case. in which the mix simulation produced a 6, difference
5.4 K higher than the maximum #, difference that was observed. Considering the
simplicity of the downdraft model. uncertainties in determining environmental
conditions. and the difficulties involved in obtaining complete measurements of the

surtace RFD, the agreement between observations and model results is encouraging.
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Sensitivities that arose in the Jetmore and Nazareth simulations are illustrated in
Figs. 3.24 und 3.25. For the Jetmore case. the rain simulation (Fig. 3.24a.b) produced a
downdratt that 1s three times stronger and a surtace 6, deficit that is ~14 K greater than
in the ice simulation (Fig. 3.24c.d).  This illustrates that the strength and
thermodynamic properties of precipitation-driven downdrafts can be quite sensitive to
the charactenstics of the precipitation that drives them. One might also conclude that
the evaporation of rain 15 more cfficient at dnving low-level downdrafts than the
melting of graupel and hail.  This does not necessarily follow from these results.
however. because the mixing ratios of the rain and hail fields are not the saume at the
insertion level.  Because the rain and graupel/hail fields are esumated using
observations of Z;. this 1s the quantity that the precipitation fields in the two simulations
have in common at the insertion level. The run and graupel/hail fields produce the
same 7, value but do not have the sume mixing ratio. In fact. at the insertion level the
mixing ratio of graupel/haitl 1n the 1ce simulation is about half the mixing ratio of ruin in
the rain simulation.

The sensitivity illustrated in Fig. 3.25 1s partucularly interesting.  The Nazareth
rain and mix simulations produce downdrafts that have similar maximum intensities.
Their structures, however. are significantly different at low altitudes. In the mix
simulation the downdraft weakens considerably at ~0.4 km AGL and then accelerates
towards the surface. In the rain simulation the downdraft weakens more gradually from
0.6 km AGL to the surtuce without the acceleration at very low altitudes. These
ditferences in low-level downdraft structure have a large impact on low-level #,

difterence profiles. as is apparent in Fig. 3.25. For instance. the surface ¢, difference in
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the mix simulation 1s -2.7 K whereas the surface f, difference in the rain simulation is
-126 K.

Dynamic entrainment may be an important factor in the creation of the
dissimilar low-level #, difterence profiles in Fig. 3.25. In the mix simulation the
deceleration at ~0.4 km AGL slows the descent of the low-#, air from above. Owing to
continuity. the subscquent downdraft acceleration then results in entrainment of
environmental air that dilutes the low-#, air in the downdraft. This dilution contributes

to much smaller low -level ¢, deficits.
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TABLE 3.3. As in Table 3.1 except for three nontornadic VORTEX cases. Parameters for three simulations, mixture of rain and
For cases in which the precipitation insertion altitude
differs from the observation altitude. the observation and insertion altitudes are given in the form observation altitude/insertion

graupel/hail. rain only. and graupel/hail only. are provided for cach case.

altitude.
(‘l\SE N A(;L Z;, Z;m ,\ym' ,, ,",‘ ,". Z;,, X,,,,-, /\, Nﬂr Zh: A,:i;
(hm) WBZ)  WByY  ( km ) WBZy W gmmy m'mmY  WB2) (mm Y
23 45.0 1.0 03 030 061 043 4255 195 1.93 1695.47 41.35 1.54
8 June 1995
Elmwood. OK 23 450 2.0 0.6 0O 00 00 350 20 1KY 257928 - -
23 150 00 0.0 1.0 10 10 ; - ; 45.0 1.1
2827 300 06 0.01 037 05 04 278 105 301 1760.39 20.0 5.25
19 May 1998
Sidney. NE 2x27 00 11 0.1 00 00 00 300 1.1 201 ARRRKY -
2827 300 00 0.0 1.0 10 1o . - 30.0 3.82
4.8/2.1 175 0.7 0.1 043 0S3 045 3393 1130 2S5 2140.71 34.0 278
20 May 1999
Carlsbad. NM - g¢0 1 375 1.5 0.2 00O 00 00 375 1.5 233 2255.00 - .-
I8/21 315 00 0.0 1.0 1O 10 ; ; - 375 21
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TABLE 3.4, As in Table 3.3 except for three tornadic VORTEX cases. As in Table 3.1, the Fujita rating and duration (in minutes) of

cach tomado are indicated i parentheses in the form Fujita rating/duration.

CASE - AGL Z;, Z{m A’[w ’, I'V,‘ I‘., Z!,, Z])Rr /\, N:J, Zh, /\‘.;,
(km) (dBZ) B (¢ km Y WdBZ)  WdB)Y (mm "y m 'mmy WBZ) gmm h
1.8 45.0 1.0 0.3 039 0061 043 4255 195 (.93 160547 34135 1.54
16 May 1995
Jetmore. KS 1.8 450 20 0.6 00 00 00 450 20 (.89 2579.28 - -
(FO/5)
[.& 450 00 0.0 10 10 10 ; - - - 35.0 1.1
24 50.0 1.2 0.8 030 052 040 3736 254 159 1171.1 3658 0.9
8 June 1995
Alison. TX 24 500 24 15 00 00 00 SO0 24 106 29727 - -
(14/40)
24 SO0 0.0 0.0 10 10 10 ; ; - 50.0 000
1.5 50.0 1.2 0.8 030 052 040 4736 254 159 1171.1 3658 09
2 June 1999
Nazareth, TX 1.5 SO0 24 1.5 00 00 00  S00 24 1.66 29727 ; -
(O
1.5 SO0 00 0.0 1O 10 1.0 - - 500 -0.00
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FIG. 3.19. Vertical velocity (m s'') versus altitude (km AGL) for the mix simulations for the ta)
8 June 1995 Elmwood. OK. (b) 19 May 1998 Sidnev. NE. and (¢) 26 May 1999 Carlsbad. NM.
nontornadic VORTEX cases.  [n order to decrease the impact of buoyancy oscillations, model
results are averaged over a five minute interval from ¢ = 1950 to ¢ = 2250 seconds (centered on ¢
= 35 minutes). Thick. dashed. grey lines indicate the precipitation insertion altitude.
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FIG. 3.20. As in Fig. 3.19 except for the (2) 16 May 1995 Jetmore, KS. rain simulation. (b) 8
June 1993 Allison. TX. rain simulation. and (¢) 2 June 1999 Nazareth. TX. rain simulation.
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FIG. 3.21. As in Fig. 3.19 (mix simulation results for nontornadic VORTEX cases) except for
differences between downdraft and environmental ¢, (solid line) and ¢, (dashed line) values.
Ditferences are computed as downdraft value minus environmental value.
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FIG. 3.22. As in Fig. 3.21 except for the (1) 16 May 1995 Jetmore. KS. rain simulation. (b) 8
June 1995 Allison. TX. rain simulation. and (¢) 2 June 1999 Nazareth, TX. ratn simulation.
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F1G. 3.23. (a3 Environmental 6, profile for the 8 June 1995
Allison. TX. case (b) and the associated sounding. Sounding
courtesy of P. Markowski.



TABLE 3.5. Compurison between the ¢, differences observed by Markowski et
al. (2002) and those modeled herein (for model results shown in Figs. 3.19-3.22).
The 0, differences are computed as downdraft value nunus environmental value.
The dashed line separates the tomadic VORTEX cases from the nontomadic
VORTEX cases.  Fujita rating and duration (minutes) of cach tornado are
indicated in parentheses in the form Fujita rating/duration.

Case Observed Surtace 6, Modeled Surface 0,
Difterences (K) Differences (K
Elmwood. OK 12,10 -8.0 -8.0
Sidney. NE 13510935 4.1

Curlsbad. NM .0t +3.0 -5.0
Jetmore. KS lf:l)/i) -l();l to -10.1 | -10.7
Allison. TX ¢(F4/40) 1921022 0.0
Nazareth. TX (FO/1) -12.210-8.2 -12.6
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FIG. 3.24. Vertical velocity {ta) and (o)f and 4, and ¢, difference values [(by and (d)] as in Figs.
319 and 3.21. Results from the Jetmore rain simulation are in (a) and (b) while those from the
Jetmore 1ce simulation are in (¢) and (d).
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FIG. 3.25. As in Fig. 3.24 except for the Nazareth rain simulation [(a) and (b} and the Nazareth
mix simulation {(¢) and (d)].
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3.4 Discussion

In their comprehensive review of downdrafts. Knupp and Cotton (1985) list
precipitation-driven downdraft velocities as ranging from 1 to 13 ms”'. The downdrafts
stmulated herein uré skewed towards smaller values but are consistent with this range.
While this is reassuring. the validity of these simulations cannot be assured without a
comprehensive set of i sine measurements. which is not available.  Surface
observations are avarlable for the VORTEX cases. however, and the simulation results
generally agree with those observations,

Above the boundary laver. supercell environments are otten relatively resistant
to precipitation-driven downdrafts. This resistance results from dow ndraft descent and
the environmental temperature profile (e.g.. Figs. 3.6. 3.7a, 3.8. 3.9, and 3.23b) being
between dry and moist adiabatic (Das and Subba Rao 1972; Srivastava 1987). This is
consistent with the finding of previous studies [e.g.. Kamburova and Ludlam (1966).
Girard and List (1975), Harms (1977). Snavastava (1987), and Proctor (1989)] that
downdraft intensity depends strongly on environmental stubility.  As the stability of the
environment increases. the downdraft temperature nises relative to the environment and
the downdraft weakens.

Highly stable layers are often present in supercell environments just above the
boundary layer (Figs. 2.8a and 3.23b). These lavers deter mid-level downdrafts from
penetrating into the boundary layer and. thus. deter midlevel, low-#, air from reaching

the surtice.

189



In supercell environments. downdrafts tended to develop and accelerate readily
within the boundary layer (Figs. 3.5, 3.10-11. 3.19-20). The dryv-adiabatic lapse rate
that 1s typically present in these boundary layers provides minimal resistance to the
downdrafts.

The relatve stability above the boundary laver and instability within the
boundary laver to precipitation-driven downdrafts may explain why MSRO2 found that
surtace RFD parcels onginated from within ~1 km of the surface in many of the
VORTEX cases. This study shows that in the absence of other processes (e.g.. effects
of larger hail or pressure perturbation forces) hook-echo hvdrometeor fields will often
be unable to torce midlevel air to the surtface. Of course. a major limitation (to be
addressed in tuture work) is the lack of larger hail 1n the downdratt model.

The lack of differences between tormadic and nontomadic downdraft verucal
velocity protfiles 1s consistent with the observation that. with the exception of the
tormado itselt. tornadic and nontornadic supercells often have similar low-level wind
fields (e.g.. Trapp 1999. MSRO02). It the tilting of honizontal vorticity by the RFD is
important to tornadogenesis. then a distinguishing wind field charactenstic may be the
intensity of an RFD. The results of this study. however. are nsufticient to support or
retute this hypothesis.

MSRO2 tentatively concluded that “Evaporative cooling and entrainment of
midlevel potentially cold air play smaller roles in the formation of RFDs associated
with tormadic supercells compared to nontornadic supercells.”  The findings of this
study support their conclusion and suggest that RFDs that reach the ground are often

generated or at the very least sigmficantly intensitied within the boundary layer. If
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generated within the boundary laver. then the surtace #, deficit 1s limited by the
minimum #, value within the boundary layer. If midlevel air 1s able to penetrate to the
surface. then intensification of the RFD within the boundary laver should result in
significant dilution of this air through dynamic entramment.™ If either generation or
intensification occurs 1n the boundary layer. then the boundary layer ¢, protile will be
cntical to the surface #, deficit. It appears. therefore. that the boundary layer 6, profile
may be important to tornadogenesis.

These results indicate that the environment plays a large role in determining the
low-level thermodynamic charactenstics of precipitation-dnven RFDs. This does not
mean. however. that precipitation charactenstics are umimportant. On the contrary. the
sensitivity tests of §3.3.3 and the VORTEX simulations (33.3.4) indicate that properties
of precipitation-dnven downdrafts can be quite sensitive to the charactenstics of the
precipitation fields that dnve them.  This suggests that knowledge of hook echo
hydrometeor fields could be very useful in anticipating the tomnadic potental of a
supercell storm.

[t 1s interesuing that in the VORTEX simulations significant sensitivity was
observed in the weakly tomadic cases but not in the nontornadic cases or in the strongly
tornadic case. [t s possible that the environments of nontornadic and strongly tormadic
storms are such that the RFD has similar thermodynamic charactenstics at the surface
tor a vanety of hook-echo hydrometeor ficlds. The tormadic tate of these storms may be
ordained by their environment. In the same vein. the environments of weakly tomadic

storms may be such that the surface thermodynamic charactenstics ot the RFD depend

™ This assumes that the downdratt maintains roughly the same cross-sectional area. [t >0, then continuity
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strongly upon the properties of the hook-echo hydrometeors. If the right conditions are
met. tornadogenests can ensuc.

The results of this study are generally consistent with the observations of
MSRO2X. This 1s encouraging since 1t suggests that a simple model like the one used
herein might be usetul in forecasting (or nowcasting) surface RFD charactenstics and.
potentially. tomado hkelthood. The etficacy of such an approach could be significantly
imited. however. by uncertainties concerning important parameters like maximum
hailstone size and the environment in which a storm resides.

Limitations of this work include the following:

1) the absence of larger (> 9 mm diameter) hatlstones in the stmulations.
2y dittficulues in determining actual downdraft environments,
3) uncertainties in the estimation of precipitation charactenstics.

4) the simple 1.5 dimensional framework of the downdraft model,

N

the absence of perturbation pressure ettects. and
6) the limited number of cases studied.

Because of these limitations, the results of this study must be considered with caution.
The above hmitations need to be examined to evaluate their importance.  Plans are
already underway to examine one and three.

Issue two is a well known problem for which there is no simple solution. First,
there 1s the i1ssue of mesoscale vanability (see. for example. MSROZ and references
cited therein). Because mesoscale vanability may be significant, it is difficult to know

whether any of the soundings used are representative.  Moreover. for some cases

requires downdratt accelerations to be accompanied by the intake of environmental ar.
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soundings from either the previous day or an adjacent site were used because of
convective contamination of the soundings closest to the storms. This exacerbates this
problem for these cases.  Alternatively. forecast soundings could have been used.
These. however. have their own set of uncertainties (accuracy of predicted cap strength.
lapse rates above the boundary layer. etc.). Neither choice 1s optimal. Herein.
alternative observed soundings were used because at least with this approach the
modeled downdratts occur in an actual sounding.

[n addiion to mesoscale variability. the 1ssue of convective contamination is
cnitically important. When given the choice of a proximity sounding that exhibits little
(01 NO) convecuve contamination or a convectively altered sounding, which should be
used as the environmental sounding for an RFD? It can be argued that either may be
more representative of the RED environment.  For instance. 1t the rear of the storm s
strongly ventilated by the environmental tlow. then the proximity sounding may be
more appropriate.  On the other hand. if this 15 not the case. then the alterations of the
proximity sounding by the storm may be important in defining the true environment of
the RED. This 1s a ditficult 1ssue for which there is no easy answer.  Herein. non-
contaminated environments were used. In future work. idealized soundings that
represent multiple possibilities will be used. With this approach, the issue of convective
contamination will be explored and the issue of mesoscale variability will be alleviated.

Regarding 1ssue four. this simple downdraft model was used in order to scale
down the problem so that 1t wus more manageable.  While the second and third

dimensions are undoubtedly fundamentally 1mporant to supercell processes. 1t 1s



believed that many of the important features of RFDs can be elucidated by focusing on
processes occurring in the vertical direction.

Concerning five. this study shows that hook-echo hydrometeors can drive RFDs
without pressure perturbations. [t has been shown {e.g.. Klemp and Rotunno (1983)]
that the perturbation pressure field can have important impacts on the RED. [n fuct, the
impacts of the perturbation pressure field can be at least on the same order of the
impacts of hvdrometeors [e.g.. Klemp and Rotunno (1983): Houze (1993. §7.1)]. The
lack of perturbation pressure fields. therefore, s a significant limitation of this work. A
complete understanding of the RFD will require comprehension of the roles of
hydrometeors. the pressure tield. and their interactions.

Limitation six s the standard mitation nnate to all studies like this one.
Indisputably. more cases are needed to venfy or refute the findings of this study.
Towards this goal. an analyvsis of the complete set of VORTEX cascs 1s planned.

These uncertainties mean that none of the modeled REDs can be viewed as
replicating the true RFDs that occurred in any of the cases. However. by using this set
of radur and environmental data attention has been focused on a subset of the large
parameter space that applies to this problem. It 1s hoped that in doing so this eftort has

identified physical processes that are important to both the RFD and toradogenesis.
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Chapter 4: Conclusion

Polanmetnc radar data have been utilized to investigate properties of
precipitation-driven rear flank downdrafts.  Because this required the quantitative
utihzation of radar data. aspects of this have been studied.

It has been shown that the commonly-used assumption that radar rays follow
paths of constant curvature can be utilized to compute heights and great circle distances
of rudar data without resorting to the equivalent-carth model. The new technique
produces results similar to those obtained using the equivalent-carth model but may be
preferable since 1t utilizes a less complicated model for the propagation of radar rays.

The transformation equations tor a spherical curvilinear coordinate system have
also been denved. [t 1s known that these equations have been denved previously by
others (R, Brown 2000. personal communication).  Because they have not been
published 1n the formal hterature. however. the intent is to do so as a service to the
meteorological community.

The objective analysis of radar data has been investigated. The first effort in
this vein regards an analysis technique. named the adaptive Bames (A-B) scheme, that
automatically adapts to the charuacteristics of radar data. This work has already been
published. The conclusions. taken directly from Askelson et al. (2000). are

“1) The A-B filter can directly account for the dependence of radar data spacing on
dircction and for the tendency of radar data density to decrease with range.
Within the confines of one-puss DDWA schemes, the A-B filter facilitates the

retention of the maximum amount of information.




4)

Consistent with the anisotropy of radar data spacing. more information concerning
waves with short to medium wavelengths in the highly resolved direction can be
retained by decreasing the smoothing in that direction using the direction-splitung
design of the A-B filter. This occurs without egregious phase shifts or orientation
changes of input waves.

Because the weight assigned to an observation depends upon the differences in the
coordinates of the observation and analysis points. the A-B filter automatically
adapts to the systematically decreasing radar data density with range. With the
A-B filter information content at close ranges does not have to be sacntficed
because of poor resolution at more distant ranges.

Windowing weight functions produces ringing in their response tunctions. Effects
on the main lobe of the one-dimensional. Barnes response tunction are small when
the weight tunction i1s windowed at or below 0.05.

For rudar data. postanalysis gradient tields of analyses produced using an isotropic
weight tunction will generally suffer from contributions by gradients in the
analysis weights.  Because of its consistency with radar data. the direction-
splitting A-B filter, when applied away from data boundaries and to radar data that
are at regular radial. azimuthal. and elevational intervals, results in postanalysis
gradient ficlds that have virtually no contribution from gradients in analysis
weights. However, even when the additional restriction of collocated observation
and analysis points is imposed. postanalysis gradients are not equal to analyses of
gradients because of the scale tuctors associated with the sphenical coordinate

system of radar data.
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6) The A-B filter should be used with caution since imbalances in the data. including
preferential onentation of finescale structure and decreasing finescale structure
with range. can be retained by the A-B filter. The retention of these imbalances 1s
what ronically produces both the potential benefits and detniments of the A-B
scheme. Potential detnments anise since retention of data imbalances could lead
unwary analysts to form incorrect conclusions concemning the phenomena being
studied. Isotropic schemes. at the cost of information loss. attempt to normalize
these imbalances.”

In the investigation of the A-B scheme. the issue of response functions tor
arbitrary weight functions and data distributions arose.  The subsequent investigation
proved truittul. The conclusions are:

1) The local response function for DDWA schemes s the complex conjugate of the
normalized Founer transform of the eftective weight funcuon.  Compiex
conjugation anses because DDWA 1s. in general. a cross correlation, not a
convolution. Normalization 1s imposed by the DDWA normalization factor. The
eftective weight function is the product of the weight function and the function, or
generalized tunction (also called a distribution). that describes the distnibution of
the observations.

2) To obtain the local response function by way of the convolution theorem the
concept of an equivalent analysis is needed. In an cquivalent analysis a
hypothetical analysis field is produced by using. throughout the entire domain. the

same weight function and data distribution that apply to the point of interest. This
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4)

3

0)

7

8)

artifice enables the convoiution-theorem based derivation of the response function
by altering the mathematical form that describes the analysis field.

The local response function generally depends upon the weight function,
frequency. and location.

Response tunctions can be eloquently descrnibed in terms of the amplitude and
phase modulations of the input waves.

Boundanes signiticantly atfect response functions. In their vicinity they produce
significant phase shifts and appreciable alterations of umplitude modulations
relative to the ideal response tunction. which holds tor continuous. infinite data.
Phase shitt information provides a straightforward interpretation tor extrapolation.
[t illustrates the movement., or shift. of information that scems to be fundamental
to all extrapolation schemes. Dunng extrapolation analysis values are produced
by taking information and moving ir to the analysis locations.

Irregular data spacing can result in significant phase shifts and significant
departures from the ideal amplitude modulation.  The degree of filtering at a
particular frequency can be either greater or less than that imposed under ideal
conditions.

The framework tor determining the local response function is also valid in two
dimensions. It appears as if the extension to three or more dimensions can be

accomplished by simply generalizing the methods utilized herein
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The conclusions regarding precipitation-driven RFDs are

1) Hook-echo hydrometeor fields inferred from radar data are able o dnve
significant downdrafts without the influence of vertical perturbation pressure
gradients.

2) Supercell environmenis are often relatively resistant to downdratts above the
boundary layer and supportive of them within the boundary laver.

3) In many supercell environments. large hail or vertical perturbation pressure
gradients may be needed to produce deep midlevel downdrafts that penetrate into
the boundary laver.

4) In supercell environments 1t appears as if RFDs are typically erther generated or
intensitied significantly within the boundary layer. Consequently. the boundary
laver ¢, profile appears to be very important to the surface RFD #, deficit and.
from the tindings of Markowski et al. (2002), to tornadogenesis.

5) In some supercell environments  precipitation-dnven RFEDs  are  relatively
insensitive to the charactenstics of the precipitation fields that dnve them while i
other environments significant sensttivity exists.

In closing. 1t 1s noted that this research has raised some important questions and
has in the process opened some new rescarch avenues. Regarding response tunctions
for arbitrary weight tunctions and data distnbutions. etforts to apply the response
function 1n filter design are already underway. Moreover. the incorporation of larger
hail in the 1.5 dimension downdraft model is already being planned. [t 1s hoped that
these research efforts will not only build upon the foundation luid betore them by

countless others, but also serve in the toundation tor future endeavors.
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Appendix A: Amplitude and Phase Representation of Fourier
Content

The Founer content of a real tunction f(x) can be expressed in terms of the
amplitudes and phases of the one-sided spectrum. The starting point for this derivation

1s the (indirect) Founer transform
flx)= | I;'(1-)cxp(j2m'_\')dl'. (Al)
where
F(v)= | ff(.\')cxp(— Jamx)de = F, (v)+ jF, (V). (A2)
An important property of F(v). for f(x) real. 1s that it is hermitian (Bracewell 2000.

13-14). which means that

Fo(v)=Fe (=)
I“lm(r) == Flm(—")'

(Ad)

Under the appropnate conditions (discussed at the end of this denvation). the

integral in (Al) can be split at v = 0 to produce
f(x)= J.I"(\')cxp(j.’.m'.\')d\' + IF(l')cxp(jlmzt)d\'. (A4)
v = Va0

By considening the integrand in the first integral of (A4) it is obvious that (A4) can be

wrtten as

fx)= '[F(v)cxp(jlltv.\') + F(-v)exp(- j2mx)dv, (AS)

-0



a result that can be obtained mathematically through the substitution « = -v in the first
integral in (A4). Moreover. F(v) and F(-1v) can be expressed in polar coordinates as
. : ML .
F)= (R0 + F (07| el | (A6)
and
. - : - AT .

F(-v)=[F )+ F,00] explion, . (A7)
where ¢, | =arg[F(vLF (v).F, (V). @, . =arg[F(-v). F (v).~ F,(v)]. and (A3)
has been utilized.™' [Note that v is restrcted to be greater than or equal to zero from
(AS) onward 1n this denivation.] Because @, |, =—-¢, . (AS) can be written, using

(A6) and (A7), as
flx)= I [l’k,.(\'): + I'},“(v)"]! explicmx + @, )+ expl- j(2mx + 0, v (A8)

"

Since ¢ " +¢ " =2cos0. (A8) simplities o

fla)= [ 2B 0 + Fuor ] cos2m - g, Jav. (A9)

. )
This result 1s valid for many situations that are encountered. It 1s not vahd.

however, when the mean value of f(x) 1s not equal to zero. In that case.
f(U;:L j_t(.r)dv jtl\'J J.d\'zcmo(O) [the ratio of the integrals must be

considered in the sense of a limit as the integration limits approach teo while the Dirac
distrbution anises from definition (Bracewell 2000, 74-106)]. Insertion of this result

into (A1) produces f(x)=C, + OF. where OF represents the contribution from the



other frequencies (other than the frequency 0) and the sifting property of the Dirac

[

distribution, j‘c)'(.\'—u)_/'(.\‘)tlv=f(u) (Bracewell 2000. p. 79). has been applied.

v

Insertion of this result into (A4) or (A9). on the other hand. produces f(x)=2C, + OF.
[For a concrete example. consider what happens when f(x) = C. where C is a constant.
Then. F{v)=Cd(v). (A1) produces f(x)=C. and (Ad) or (A9) produce f(x)=2C ]
The reason for this discrepancy is the split of the (indirect) Fourier transtorm at v = 0.
Normally. this would have no impact since the value of the integrand at one location
usually does not alter the value of the integral (differences must normally be spread out
over a finite range). Here. however, the Founier transforms of elements such as periodic
and constant functions (over infinite domains) are of theoretical interest. To deal with
these Founer transtorms. distnbutions like the Dirac distnbution are needed. When the
Dirac distnbution 1s utilized. its sifting property can result in differences in integrands at
individual points being of consequence. This is what occurs at v = 0 in the above
example. To correct for the above problem. the magnitude in (A9Y) is altered by the
appropriate factor, resulting in
Ce s s

flx)= jm[ﬁ“(")" + le(r):] “cos(2mx + @, v (A10)

v )

where 0"(x) is defined as in Bracewell (2000, p. 87)

0‘“(.\‘)2{ " (AlD

M See tootnote 13.



It is noted that the adjustment in (A10) could be rendered unnecessary by adapting the

convention I()'(.\')d.\':

. which 1s mentioned by Bracewell (2000, p. 104). Herein.

19| —

the convention Io‘(.\')d.\' =1 1s used.

The tundamental result of this analysis 1s that the real tuncuon f(x) can be
- ~
expressed in terms of the amplitudes [F(v) :[f'&_(\')' + F,m(\')'] and phases

@, =arg[F(v) F (v). F,, (v)] of the one sided (v 2 0) Fourier coctticients.



Appendix B: Amplitude and Phase Representation of Two-
Dimensional Fourier Content
The Fourter content of a real function f(x.v) can be expressed in terms of the
amplitudes and phases of its Fourier coefticients. The approach for obtaining this result
herein 1s much the same as that used for one-dimensional data. The starting point for

this dervation is the (indirect) Fourier transtorm
flav)= | I 4 J:I’(u.\')cxplj?.fr(u.\' +vv)|dudv . (B
where
Flu.v)= | J | J‘._/'(.\‘. viexpl- j2r(ux +vv)|dvdy = F () + jF, (u.v).  (B2)

The hermitian property described by Bracewell (2000, 13-14) for one-dimensional
Fourter transforms extends to two-dimensional Founer transforms. This means that for
f{x.v) real.

Foluv)=F, (-u.-v)

Folmunv)=F, (u.-v)

‘ (B3)
F luv)==F (-u.-v)
F o (-uv)=-F, (u.-v).

which are easily ventied using (B2).

The integral in (B1) can be split to produce
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om0

flxoyv)= J' IF(u.r)cxp[le(:u+\'_\')Idlulv

L

+ I IF(M. v)expl j2a(ux + vy )| du dv

0 - (BJ)
+ J‘ _[F(u. r)cxp[j.’.fr(u.\ + vy ) du dv
0 4 -
+ I jF(u. v)expl j2r(ux + vy )] du dv.
By applying the change of vanables «=-s. v =-r to the third and fourth double

integrals in (B4) and changing the directions of integration in the resultant integrals. the
third double integral can be combined with the second and the fourth double integral
can be combined with the first to produce

fleov)= j JI’(u. viexpl j 2t +vv)| + F(—u. - v)exp|— j2r(ux + vv)|duav
o eon (BS)

t

+ I J‘l’(u.r)cxp[jlfr(u.\' +vv)| = Fl=u.=v)expl- j2mlux + vv)|du dv.

. 0

which cun be wnitten as
flxov)= I jF(u.\‘)cxp{jlmu\' + v )]+ F(—u. —v)expl— j2m(ux + vv)|dudv. (B6)

Morcover, F(u.v) and F(—u.—v) can be expressed in polar coordinates as
. T . . .
Fluv)= [FRL_(u.r)' + Fhu(u.r)'] cxp[j(pm \,]z [f(u.r)lcxp(j(pm.”l (B7)
and

expljo,, . .| B8

F(-u.-v)= [F&_(u.v): + Flm(u.t'):]l :cxp[j(ph,“_\,I:IF(u.x-)



where 1F(1¢.\~)(:[Fﬂc(u.\'):+1-' (14.\'):]]: s the magnmitude of  Flu.v).

Im
@, =arg|Fluv) F () F(uv)],
¢, . . =arg[F(-u.~v)F (—u.—v).F, (—u.-v)]. and (B3) has been utilized."'
(v and.  thus.

Since.  from (B3). ¢, ,  =arg|F-u-v)iF )~ F

Im

®, =-¢, . . .(B8) can be wntten as

F(—u.—r):!F(ll.r)!cxp[— o, .l (B9)

[nsering (B7) and (BY) into (B6) produces

flx.v)=
et (B10)
I J-]'I‘(u. \'ﬂ(cxp{jllﬂ(u_\' )@, ”1» cxp{— j[.’_/‘r(u.\‘ V) + @, _‘]})t/ll(/\'.
Since ¢ "+ ¢ " =2cos0 . (B10) simplitics to
flxov)= I J‘le-'(u.v){cos[?_ﬂ(u.\' )+, “]dudv. (Bl

As 1n the onc-dimensional case. an adjustment to (B11) 1s required. However.in
contrast to the one-dimensional case where the adjustment was required only at a point,
the adjustment here 1s required along the line v =0. Because the behavior at the point
(1e.v) =(0.0) 1s slightly different from the other points on this line. it is considered first.

When the mean  value  of flx.v) IS not  equal o zero,

%' The representation of the argument tunction arg i the form arg Flev ) Fy (w.v) Fy (e.v)] means the

(t.v). The argument of Fuov) s the

v

argument ot Fueev) . which depends upon F_{u.v) and F
angle @, . such that [Fluavfeose, | > the real part of Fuevy and |[Fluov)ksing, |, 1s the
imaginary part of Foue.vd st the angle in the complex plane that the vector. onginating trom zero and

ending at Fuev) . makes with the positive v-axas.

I



B

F(0. 0)—{ J- j/ xLv cl\d\/ I I(hd\] J. I(l\d\ . C. “0(0.0) [the ratio of

the integrals must be considered 1n the sense of a limit as the integration limits approach
+oo while the Dirac distribution anises from the definition of the Dirac distnbution and
from the relation ~O(u.v) = O(u)o(v) (Bracewell 2000, 74-106)]. Insertion of this result

into (B1) produces f(x.v)=C_ +OF. where OF represents the contribution from the

other frequencies [other than the frequency (0.0)] and the sifting property of ~o(x. v).
'f J':o'( v—a.v=b)flx.v)dvdy = f(a.b). has been applied. Insertion of this result

into (B11). on the other hand. produces f(x.v)=2C_ +OF. Consequently. the
magnitude of the zero frequency component is too large by a factor of two when (B11)
15 used. The same problem anses for the other points along the line v =0. To illustrate

this. consider the situation where the iput s given by f(x.v) = A cos[27(u x + v v)].

Olu~u v-v )+ % O(u+1u.v+v ) and F, (v)=0. which

ldl;-’

In this case F (u.v)=
can  be venfied by insertion nto  (BI). When v =0. (BI) produces
flxov)=Acos(2mex) while {(BI1) produces f{x.v)=2A cos(2mex). which 1s too
large by a factor of two. Tests for points away from the line v = 0 indicate that (BI1) 1s
correct for those points. Consequently. an adjusted form of (B11) that produces results

consistent with (Bl) 1s

5
flrv)= I Im][:(u.rﬂcosllf[(m+1'_\')+¢7hu”]dzulv, (B12)
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where 0"(x) is defined as in Bracewell (2000. p. 87)
o'(x)= | '. (B13)

The tfundamental result of this analysis s that the real function f(x.v) can be
s L
expressed in terms of the amplitudes [F(uw.v) = [ch(u.v)’ + F,m(u.\')'] and phases

@, ., . =arg|Flu ). F (u.v). F,, (1e.v)] of the halt-plane (v > 0) Fourier coefficients.
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Appendix C: The Classification and Quantification of Bulk
Hydrometeor Fields Using Polarimetric Radar Data

The purpose is to acquaint the reader with polarimetric variables and with
standard techniques that are used to classify and quantity bulk hvdrometeor
charactenstics.  The emphasis is upon polarimetric vanables collected using the

Cimarron radar (Zahrai and Zmié 1993).

C.1 Polarimetric Variables Collected with the Cimarron Radar

The polanmetnc vanables collected using the Cimarron radar include Zi. Zpg.
lp.(0). and o,,. The vanable Z, (dBZ) is the reflectivity factor at honzontal
polanzation (the polarization 1s determined by the electnc component of the
clectromagnetic wave) and. since many radars utilize horizontally polarized waves, is

the reflectivity factor that has customarily been used 1n meteorology. Itis given by

7, =72 —u{r)+ OES . (Ch
where Z," is the intrinsic Z, (depends only upon the properties of the scatterers in the
radar resolution volume), «, (r) is the two-way attenuation at horizontal polanization (a
function of range r). and OES stands for other error sources. Provided that all of the
scatterers are of the sume thermodynamic phase and are small enough such that they
behave as Rayleigh scatterers [ D, /A <16 . where D,y is the equivalent diameter of the
hydrometeor tor honzontally polanzed waves and « is the radar wavelength (Doviak

and Zmi¢ 1993, p. 35)]. 2" s



D D i
-4 - . |
A

77 =10log =2 [a(D.)N(D, D, . (C2)
L”lkf TR £ R,

K| is a factor related to the complex refractive index of the scatterers (~0.93 for

where
liquid hydrometeors and ~0.18 for ice hydrometeors). o(D.,) is the backscattening
cross section for honzontally polarized waves. and N(D_,) is the hvdrometeor size
distnbution.  The attenuation ¢, (r) is related to the one-way. specific attenuation at

honzontal polanization A, (dB km™') by
alr)=2 jAArwdH. (C3)

Because «r, (r) generally 1s not known. 1t 1s assumed to be zero when the radar equation
ts solved tor Z; and is thus a source of error.  [Note that with polanmetne radars
reasonable estimates of ¢, (r) in rain can be obtained using 0, (Bringi et al. 1990)).
Other error sources (OFS) include system noise. calibration errors.  sidelobe
contamination. and statistical uncertainty of the esiimate (Doviak and Zmié 1993, 54,
74-75. 197, 125-129).

The ditterential retlectivity Z;x 1s equal to the difference. in dB. between Z, and
Lo Ly =24, -7 ). with Z being the reflectivity factor at vertical polanzation.
Relations for Z, are equivalent to those tor Z;, [(C1)-(C3)]. with subscript-vs replacing
the subscnipt-hs. Ditferential reflectivity can be expressed as

Lo =2y —a, (r)+ OFES . (CH

“DR dp
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where Z;; is the intrinsic Zpg. &, (r) is the two-way ditferential attenuation, and OES
again stands tor other error sources. The two-way ditferential attenuation «, (r) is
related to the one-way. specific attenuations for honzontally and vertically polanized

waves A, and A, through the relation

«, (r)=2 I[ A=A ()dr =2 J-A‘,;,(r')dr'. (CS)

0 [
where A (r) (dB km '} is the one-way. specitic differential attenuation. As in the case
for Zi. e, (r) is not generally known and thus is a source of error 1n 7, estimates [1f
O, 18 available. one can obtain reasonable estimates of ¢« (r) in ramn (Bringi et al.
1990)]. Other error sources tor Zpg include system noise. mismatched main-lobe power
patterns (Pomun ct al. 1988). mismatched sidelobe power puatterns, and statistical
uncentainty 1in the estimate (Doviak and Zmié 1993, 54. 197, 146-147).

The magnitude of the correlation coefticient at zero lag ip, (0} measures the
magnitude of the correlation. at zero time lag. of returned honzontally and vertically
polarized signals. It can be expressed as

0, (0) =lp, (Of" + ES . (C6)
where |p, (O)™ is the intrinsic |p, (0) and ES stands for error sources. Because
|p,.(0) depends upon power measurements. errors aftecting 7, and Z, can also atfect
|p,.(0). Balaknshnan and Zmi¢ (1990b) specifically noted the potenual sidelobe
contamination and low signal to noise ratios (SNRs) have for degrading the quality of

|0, (O} measurements.  Liu et al. (1994) illustrated the effects spectral shape, SNR.

227



phase noise (non-constant phases of transmitted waves), and the spatial phase pattern of
the transmitted signal (primanly within the main lobe) have upon [p, (0). For the
estimation method used with the Cimarron radar (Zahra and Zmi¢ 1993). Liu et al.
(1994) found that non-Gaussian spectra. low SNR (<20 dB). and high phase noise (>
~57) can signiticantly degrade {p, (0).

The polanmetnc vanables discussed to this point depend upon backscattering
properties of hydrometeors. The difterential phase between returned honzontally and
vertically polanized signals 0,,,.. however. depends pnmaniy upon forward scattering
properties of hydrometeors. [t can be expressed as

O, =0 +05, +0 + ES (C7)

”t

where 0,0 1s the system. or imitial (r =0). 9,,,.. 05, 1s the 0, owing to the intervening

propagation medium between the radar and the sample volume. o 1s the backscatter

differenuial phase. and £S stands tor error sources. The (two-way) ditferential phase
int

o ts related to the (one-way) intrinsic specific differential phase K, through the

relation

or, = > jk;:;.u')a/. (C8)

ron
The specific difterential phase Kpp results trom forward scattering by hydrometeors
[depends upon hydrometeor properties, like oblateness (e.g.. Jameson 1985)) and is
very useful in rainfall estimation (¢.g.. Zmi¢ and Ryzhkov 1996). Consequently, 9, 1s
typically measured so that estimates of Kpp can be obtained. The backscatter

differential phase o results from backscattering properties of hydrometeors and is
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indicative of resonant scattering (e.g.. Bringi et al. 1996). It can be estimated through
iterative range filtenng of ¢, (Hubbert and Bnngi 1995). Error sources for ¢,,
include system noise (Sachidananda and Zmi¢ 1986). nonuniform beamtilling
(Ryzhkov and Zmi¢ 1998). sidelobe contamination (Sachidnanda and Zmi¢ 1987). and
statistical uncertainty of the estimate (Sachidananda and Zmié 1986).

Within the meteorological community. the level of understanding of the
processes that result in o, (0} and Kpp ts relatively low compared to that for 7, Z..
and. thus. Z;¢ Gi.c.. the transmitted wave produces electric dipoles in hyvdrometeors
which then radiate clectromagnetic energy back to the radar).  For |p, (O).
decorrelation. or the lack thereof. 1s what provides most of the usetul information. In
rain. |p, (O} 1s very high (> ~0.97) (Doviak and Zmi¢ 1993, p. 271). Decreased
correlation s expected for more diverse hydrometeor sizes, shapes. canting angles. and
types as well as for increasing hail size and diversity ot o (Balauknishnan and Zrni¢
1990b).  Decreased i, (O) values anse when the co-vanaton between backscatter
fields for honzontally and verucally polanzed waves decreases (1.e.. when tluctuations
in Z, do not correspond as well to fluctuations in Z, and vice-versa).  As indicated
carlier. the specific differential phase App results from forward scattering by
hydrometeors. Specifically. 1t results because the frequency of an electromagnetic wave
is independent of the medium while the speed is not (the speed of an electromagnetic
wave tn @ medium is smaller than in a vacuum). From the relation between wave speed
v, frequency f. and wavelength 4. v = Af | it is apparent that in a medium the wavelength

must be smaller than in a vacuum. When. for instance, horizontally and verticaily

7‘\()



polarized waves travel through hydrometeors whose major axes are in the honzontal
plane (wider than they are tall). the honzontally polanzed wave is slowed more than the
vertically polanzed wave and. thus. its wavelength is smaller than that of the vertically
polanzed wave. This results in the honzontally polarized wave having to go through
more phasce (more degrees) than the vertically polanized wave when traveling through
these hydrometeors. The situation for hydrometeors whose major axes are in the
vertical plane 1s just the opposite. This 1s the physical cause of the differential phase

0/ and is what i1s typically measured using 0,,,..

C.2 Physical Bases for the Classification of Bulk Hydrometeor Types
Using Polarimetric Radar Data

The determination of bulk hydrometeor types using radar has been a long-
standing goal of meteorologists. With polanzation diversity radars. this feat 1s much
more attatnable (Straka et al. 2000). Bulk hydrometeor types can be inferred using
polanzation diversity radars because of hyvdrometeor properties that result in identifiable
polanmetnc signatures.  Straka et al. (2000) have provided a comprehensive review of
this topic' '; herein the purpose 1s to provide a bnef summury so as to acchimate the
reader.

A balance between surface tension, acrodynamic pressure, and hydrostatic
pressure results in raindrops having tlattened equilibnum shapes (approximately

oblate). with the degree of tlattening (eccentricity) increasing with size (Beard and

_
&

! Other principal works 1n this area include Liu and Chandrasekar (2000). Vivekanandan et al. (1999).
Zrmi¢ and Ryzhkos (1999). Straka (1996). Aubagnac and Zrnié (1995). Holler et al. (1994). Zrnic et al.
(1993), Doviak and Zrnic (1993, 239-271). Hall et al. (1984). and Hall et al. ¢1980).



Chuang 1987).F Moreover. raindrops tend to fall with their minor axes vertical.
Because of their oblateness and preterred orientation. raindrops backscatter relatively
more honzontally-polarized power than vertically-polarized power and thus produce
positive Zpg values [0.5 to 4.0 dB are likely values (Doviak and Zmié¢ 1993, 248-252,
27D, In addition. the oblateness and preferred orientation of raindrops results in
positive Ay values [0 to 10~ km ™" are likely values (Doviak and Zmi¢ 1993. p. 271)).
Modeling and observational studies (e.g.. Balakrishnan and Zmi¢ 1990b) indicate that
in pure rain |0, {0} values are high (> ~0.97).

In contrast to raindrops. dry graupel and small ( D <2cm) hail have irregular
shapes and often tumble.  As a consequence. they usually sppear to be tsotropic to the
honzontal and vertical polanzation states (Bringi et al. 1984). This. combined with
decreased Zpg sensitivity to shape for ice water relative to liquid water, results in Zp
values for dry graupel and hail that are typically less than | dB (Herzegh and Jameson
1992).  Observations have ndicated that larger hailstones (those with equivolume
diameters ot ~1.5 ¢m or greater) can produce 7 values of -0.5 dB or less (e.g.. Zmic et
al. 1993).  Proposed explanations for these observations include hailstones that are
falling with their major axes pnmanly vertical (e.g.. Zmié¢ et al. 1993). resonant
scattering from large (equivolume diameter greater thun ~4.0 ¢cm) hailstones whose
major axes are pnmartly honizontal (e.g.. Aydin and Zhao 1990). three-body scattering
(Hubbert and Bringt 2000). and antenna illumination differences for horizontally and

vertically polarized waves (c.g.. Pointin et al. 1988). Owing to their relatively low

“* Beard and Chuang 1987) indicate that nternal circulations and electric stress may also affect
equihibrium raindrop shapes.



concentrations. near isotropy. and relatively weak dielectric constants, dry and wet"”
graupel and hail produce small (< ~1.5 ° km™") Kpp values (Balakrishnan and Zmi¢
1990a: Straka et al. 2000). Because of the relative smoothness of and luck of resonant
scattering by graupel and small (D < 2c¢m) hail. the amount of decorrelation resulting
from these hydrometeors is expected to be limited {|p, (0)>~0.92] (Straka et al.
2000). Giant (D >4cm). wet hailstones with random canting angles can produce
significant decorrelation [~06<|p, (0f<~095]. while smaller
(~2em<D<~4cm). randomly oriented wet hailstones are expected to result in
~0.88<[p, (0y<~095. Spongy hail with D=2c¢m can produce [p, (0¥=0.92
while spongy hatl with D > ~4.3c¢m canresultin ~ 0.84 <{p, (0} <~ 0.96. Morcover.
giant hailstones. which can have relatively large (~0.1) protuberance-to-diameter ratios.
can produce sigmticant decorrelation [|p, (O} = 0.92 ] (Balaknishnan and Zmi¢ 1990b).
Rain-hail-graupel  mixtures and mixed-phase  hydrometeors (e.g.. melting
graupel with we-water cores and liquid-water shells) produce polarimetric signals that
are often intermediate between the signals resulting from the individual hydrometeor
species.  Exceptions include Zpg values resulting from melting graupel and small hail
and |p, (0) values of mixtures. When graupel and small hail melt. both tori and shells
(depending upon the degree of melting) of liquid water form around ice-water cores
(Rasmussen ct al. 1984b).  Because the ice-water cores discourage breakup. these

mixed-phase hydrometeors can have axis ratios comparable to those of the largest

% Provided either the amount of melung s limited or the we-particle 1s large (D - -15 ¢cm) so that water
coatings are thin (Rasmussen et al. 1984b).
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raindrops ( D = 0.8 cm ) and can thus produce very high (>5 dB) Z;k values (Rasmussen
et al. 1984b: Aydin and Zhao 1990: Ryzhkov and Zmi¢ 1995b). In muxtures.
Balakrishnan and Zmi¢ (1990b) found that |0, (0} values can be significantly
depressed (<0.95). especially when the retumed powers from the different types of
hyvdrometeors are comparable.

Because of their low densities and small dielectric constants, snow crystals and
aggregrates produce relatively weak polanmetne signals [Z,, €~ 3dB. although
sometimes larger. |p, (0)2~0.95. except for wet crystals and aggregates (as low as
0.5)and K,, <~1°km '|. Much work remains to be done concerning the utilization
of polanmetric radar data to infer properties ot buik snow-crystal and aggregate tields

(Straka et al. 2000).

C.3 Estimation of Quantitative Bulk Hydrometeor Information

The Zi. Zok. |0, (0). Kpp. and o of bulk hydrometeor fields are. in themselves,
quantitative information.  For analysis. modeling. and other purposes. however. other
types of quantitative information (e.g.. rainrates. contents. fall velocities, etc.) are
desired. A logical step in the estimation of these quantities is the determination, in
hydrometeor mixtures. of the polanimetric values associated with the ditferent
hvdrometeor types.

The hydrometeor mixture that has received the most intense scrutiny is the
rather common rain-hail-graupel mixture. Two methods exist for separating the total

reflectivity factor at honzontal polarization Z, into those for rain Z;,, and hail (ice) Z,.



The first method was introduced by Golestani et al. (1989) and utilizes the reflectivity
difference Zpp (dBZ). which is defined as

Zoyp=10log(Z, -Z )=10log[(Z,, +Z.)-(Z +Z )| (CY)
mC9 £, >Z .72 =2,+7Z, .72 =7_,+7_ .where Z,and Z,, arc the retlectivity
factors at vertical polanzation for rain and hail (ice). respectiveiy. and the reflectivity
factors have units of mm" m™". By assuming that raindrop size distnbutions contform to
the gamma distnibution (Ulbrich 1983) and by varying the parameters thereot. Golestani
ct al. (1989) obtained the relation

Z, UBZ)=uZ,, +b. (C1h
where 7, (ABZ)=10log(Z,, - Z ) s the Z;p corresponding to rain and « and b are
constants.* Observations from regtons dominated by rain have contirmed the vahdity
of (C10) (Golestani et al. 1989: Meischner et al. 1991: Conway and Zmi¢ 1993: Carey
and Rutledge 1996: Tong et al. 1998). With the key assumption that the ice-water
hydrometeors are ctfectively sotropic with respect to reflectivity factor and thus that
L,=2,. 2, =Z,., and through (C9) one can obtain Z,, from Z, and Z,. With this.
one can determine 7, (and Z,, and Z,,).

The second method for separating Z, into Z;, and Z, was introduced by

Balaknshnan and Zmi¢ (1990a) and. as with Z;,p. depends upon the ice hydrometeors

“* From their rainfall observations Golestant et al. (1989) obtained « = 0.84 and b =13.0 dB. Because

Zpp depends upon radar calibration. however, « and & may be ditterent tor each data set. Other published
values of a and b anclude ¢ =064, »=1473 dB tor 1< Z,, <20and a =087. b=10.1 dB for

20<Z,, <352 (Aydin and Gindhar 1992), « =0.88. b =8.05 dB (Conway and Zrmic 1993). « =091,
b =8.51 dB (Carey and Rutledge 1996). and a =0.87. b =7.85 dB (Tong et al. 1998). The Aydin and
Gindhar (1992 values are tor C-band. while values from the others are tor S-band.  Avdin and Gindhar
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being essentially isotropic with respect to honzontal and vertical polarization states. In
this method. however. it is presumed that the ice hvdrometeors do not affect Kpp.
Utihzation of Kjp-R and R-Z,, relations. where R is rainrate, then produces an estimate
of Zi. From the R=37.1(K,.)" KpR relation proposed by Sachidananda and
Zmic (1987) and the Marshall-Palmer 7, = 200R'" R-Z,, relation (Marshall et al.
1955). Baluknishnan and Zmi¢ (1990a) obtained

Z., =64840(K,,) . (CL1)
where Z,, is in mm” m and Kppisin km ' Methods tor separating rain and hail-
graupel contnibutions to |p, (0} have not been developed. On the other hand. since o
results from resonant scattering. 1t 1s expected to be negligible for S-band radars unless
graupel or hail are present (Straka et al. 2000).

Other hydrometeor mixtures (¢.g.. graupel and snow crystals, snow crystals and
aggregates. etc.) have not received as much attention as rain-hail-graupel mixtures. The
separation of polarnimetric values according to hydrometeor type may be more ditticult
for these mixtures because of forward- and  back-scattening  similanties of  the
constituent hydrometeors.

Among the bulk hydrometeor quantitics desired are rate R (units of depth
time '), content M (units of mass volume ‘). and fall velocity V' o(units of distance
time™'). Because of its tremendous hydrologic utility, a great deal of attention hus been

focused upon the use of polarimetric data to estimate R (¢.g. Rvzhkov and Zmi¢ 1995a).

(1992) provide S-band values that are nearly equivalent to their C-band values, with ¢ =064. 6 =148
dBtor l<Z,, <20 and «=088. h =100 dBfor 20<Z., <352.
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Relatively less attention has been given to other quantities. like M and V. although they
have been considered (e.g.. Conway and Zmi¢ 1993: Jameson and Caylor 1994:
Ryzhkov and Zmi¢ 1995a: Ryzhkov et al. 1998). Straka et al. (2000) provide a
comprehensive review of relations that can be used to estimate quantities like R. M. and
V' from polanmetnic vanables.

The relations between polanmetric vanables and quantities like R. M. and V
generally require assumptions concerning the hvdrometeor size distributions. The most
popular distnbutions are exponential (e.g.. Marshall and Palmer 1948) and gamma (e.g..
Ulbrich 1983)." Exponential distrbutions are four parameter distributions (minimum
and maximum diameters Dpp and Dy, intercept N, and slope .\) while gamma
distnibutions depend upon five parameters (minimum and maximum diameters Dy, and
Dyyv. matercept Vo, slope AL and shape parameter w).  With some very reasonable
assumptions. parameters ot exponential and gamma distnbutions can be estimated using
polunmetne vanables.  The hydrometeor types of primary concern are rain and
graupel/hail. For rndrops. D, =0 mmand D, =8 mm (Komabayasi et al. 1964).
With knowledge of ruindrop shape as a function of size (¢.g.. Beard and Chuang 1987).
Zy and Zpg can be used to determine the remaining two parameters N, and A of the
exponential distribution (Seliga and Bringi 1976: Seliga and Bringt 1978: Seliga et al.
1979). It instead 1t is assumed that the raindrops conform to the gamma distribution.
then Z,. Zpg. and Kpp can be used to determine V. A. and ¢ (Aubagnac and Zmic

1995). For graupel/hail. the Cheng and English (1983) exponential distribution [also



sece Cheng et al. (1985)]. in which the intercept and slope are related. has gained some
acceptance.  With assumptions concemning  graupel/hatl Dy, Do shape (e.g..
spherical). and onentation. only one parameter, Z,. is needed to determine the

parameters of the Cheng-English distnibution.

¢ Exponential and gamma distributions can be expressed as V(D) = NV, D* exp(- AD). where N(D) 1s
the number of drops of diameter D per unit volume per unit size interval. N, ts the intercept. u 15 the shape
parameter. and A is the slope. In the exponental distribution. 4 =0.



Appendix D: Reflectivity Factor of Snow, Graupel, and Hail
(Ice/Air Mixtures) and of Melting Graupel and Hail (High
Density Ice/Air Mixtures with a Water Coating)

The weather radar equation can be expressed as

_ ('
P(r)==1. (D1)

Ty

R_Q:Q,'i:cmﬂ]:

- - 15 a constant. # 1s the reflectivity, and ry is range. The
(47) (16In2)/ -

where C =

reflectivity s
0D "
n=|o(D)N(D)dD, (D2)
H n
where D s diameter. Dy, and Dy, are the mmmmum and maximum particle diameters,
respectively. o 1s the backscattering cross section, and V(D) is the size distribution.
For sphencal particles that are small relative to the radar wavelength such that Ravleigh

: 21
scattening applies.

K| D°, (D3)
where A4 is the radar wavelength, K = (& —1)/(¢ + 2). £=m" is the dielectric constant,

and m =n - jnk is the complex retractive index (Battan 1973, §4.5: Doviak and Zmié

1993, p. 35). Inserting (D3) and (D2) into (D1). we have

"' The requirement tor Rayleigh scattering by sphencal. hiquid-water drops s D < A/16 (e.g.. Battan
1973, §4.7; Doviak and Zrni¢ 1993, p. 35), where 4 s the radar wavelength.  For sphencal, solid-water
tice) hydrometeors. the requirement 1s D < A/4 (Battan 1973, §4.7; Jumeson and Johnson 1990, p. 329).



a8

ArlP(r,)

L (D)
T CIKY
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non.
where Z 1s the retlectivity tuctor and it 15 assumed that all of the particles have the same
K value. This works fine if we are dealing with hydrometeors that are all liquic water
or that are all sohd ice. If a hyvdrometeor is composed of a mixture tice/air, water/ice.
etc.). then determination (and definition) of Z 1s more complicated.

If a hydrometeor is composed of a mixture, its dielectric constant (and. thus. K)
depends upon the relative amounts and dielectric constants of the materials in the
mixture (Bohren and Battan 1980).  As Bohren and Battan discuss. there are several
functions for determining eftective dielectnie constants.  They show that for ice/air
mixtures. the Debye (1929) relation that estimates the ice/air mixture dielectne constant
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where V' is volume and subscript as and /s indicate air and ice. respectively. performs
well. [It does not generally pertorm well, however. for water/ice mixtures (Bohren and
Battan 1980)]. Because €, =1 [at a pressure of 1013.25 mb and temperature of 20 C.
€, = 1.00059 (Sears et al. 1987, p. 612)] while the real part of ¢, 1s about 3.168 (Battan

1973: §4.6). the first term on the rhs of (D3) can be neglected and

- Voo -1
A’,,-F"’ lzf , J[F

: Fhl + 2 \ "tl + " ’ t‘i + 2

PV
= — JI\ (D6)

Vo+V

The backscattering cross section for an (assumed sphencal) ice/air mixture particle is

thus



. 7[5 . 2 6 ”5{ " \’ P H
0.0, )= T K, D, = | .jllxl'Dm . (D)
A AWV +V

el N

where p,, is the density of the ice/air particle [p, =(m +m )/(V +V ). where m, and
m, are the masses of the ice and air. respectively]. (The dependence of 6, upon D,, and

P Will soon  become apparent.) Since a sphencal shape 1s  assumed.

I 6 : P
DM:{;}(\;IH;) and

-

U,,,(D.‘w/),;):”'zf{ ) \i:II\'J\:. (D8)

hS

This can be expressed in terms of D,. the diameter of a sphere of (solid) ice having

: o
volume V.. With V :?[)_‘ . (D8) becomes
\

K|'D". (DY)

T N 2
oD, .p ==K, D, =—
A ;

The backscattering cross section of an ice/air hydrometeor. therefore. is equal to the
backscatterning cross section ot a sphertcal. solid-ice hydrometeor that occupies the sume
volume as the 1ce in the ice/uir hydrometeor. [From the data of Gunn and East (1954),
|K{|: =0.176 . which agrees with the 0.18 value quoted by Doviak and Zrmi¢ (1993. p.
36) and with the value quoted by Smith (1984).] The equi-ice-volume diameter D, is

related to D, and p,, through

Du:(pm _p.x) - DM[)‘" . (Dlo)

D' =
(p,-p,) o,

where p, and p, are the densities of ice and air. respectively. Calculations indicate that

the approximation in (D10) is accurate to within roughly 2.5% of D’ for extreme
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conditions of p, =13 kg m . p =9320 kg m ', and £,=500 kg m . For
p,=100.0 kg m™ and p,=5000 kg m . the accuracies are 1.2% and 0.12%.
respectively. It is noted that the approximation in (D10) corresponds to ignoning the
mass of the air in the ice/air mixture.

In meteorology the convention is to detine the reflectivity factor of ice/air

RN

a

.

oo
hydrometeors as 7, = J’.V(D‘ JD" dD, instead of as
n o,

@ cat

[N(D, DD, . This way.

il

n D, oD, o
the vanabihity of the dielectnic constant is cast into the retlectivity factor and thus one
dielectric constant (and. thus. one A is used. This 1s similar to what i1s done with virtual
temperature and the gas constant.

Marshall and Gunn (1952) introduced the 1dea of collapsing an ice hydrometeor
into a sphere having a density of 1 gcm  (akin to melting the particle). Since the same

mass of ice must be present whether the density is that of 1ce (0.92 ¢cm Hor | gem

. ’ ) \- , 2 . o
D' = /—‘}I D! . where p, =1 gem . Inserting this into (D9).
oA

<

o, (D,.p)=2Ik D, =’f—;|K:|"(-"—'} D! . (D)
A A \[);

The backscattering cross section of an ice/air hydrometeor. therefore. 1s also equal to
the backscattering cross section of a spherical. solid-ice hydrometeor that has the same
D

mass as the ice in the ice/air hydrometeor, a density of [ gem .~ and a K given by

"* The diameter of this ficutious 1ce hydrometeor is equal to that of the melted hydrometeor since 1t has
the same mass as the 1ce in the tee/ar hydrometeor and the density of iquid water
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K, =K 2] <118k =0.208. (D12)
/).‘ 4

This K value 1s the same as that quoted by Smith (1984) and agrees with the value
calculated using the K /p =K /p =C, (C, 1s a constant) approximation of Marshall
and Gunn (1952) and the data tfrom Gunn and East (1954).

Consequently. there are two possible definitions for the reflectivity factor of

D o0 0. D

snow (and dry graupel and hail), 7 | = I.\'(l) D dD and 7 | = J"V(l). D! dD, .

0 !

It seems that the Z,, defimition 1s preterable because it does not require the artitice of 1 ¢
cm ice. This artifice is usetul in practice, however, since 1) can be castly esiimated
by melung the ice/arr hydrometeor. The determination of D, is not as casy. For
practical applications, one can determine Dy and scale it by (o, /p )" to determine D,
and thus 7, [thus. in (DI1) the (p,/p )" factor 1s assoctated with D, instead of with
K11

For ice/air hydrometeors,

nono T
Z,= [ND)D"dD = £nbln) (D13)
o oh 7 CK |

When data are collected using weather radars, 4. 7z and C are known and ry and P(r,)
are measured. Since 1t 1s not known whether rain or snow (graupel. hail. etc.) ts being
“=0.93=|K,|" value s typically assumed. Thus. one obtains an

observed, the |K

cquivalent retlectivity tactor Z, defined by
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7 = L= 7. (D14)

It all of the hvdrometeors are ice/air mixtures. then

no.p N
» O 1% '- -
Z,= [Nt dD SLAPS (D15)
bob L
For a mixture of liquid and 1ce/air hydrometeors.

A— 2
Z, + | ’I,Z_., =Z,. (Dl6)

IA’ '-

i
where 7, 1s the reflectivity factor of rain.

It 15 noted that the above analysis 1s essentially drawn from Marshall and Gunn
(1952) and Smuth (1984). The purpose here was to combine relevant portions of their
work 1nto a cohesive exposition.

The situation for melting graupel and hatl 1s more complex. The investigations
of Kerker et al. (1951) and Herman and Battan (1961) indicate that refatively thin (~0.1
mm) water shells rapidly increase the backscattering cross sections of melting graupel
and hail towards the values of liquid-water spheres of the saume size. The results of
Herman and Battan (1961) can be expressed as

we * D\n‘/‘)uz ) = (T ([)x.x e ‘/):nx ) 'f' ]‘[0» ([).u wa ) - (r..x(l)u:.m '/):.x )l' (Dl7)

. il

c. .. (D

Y

where @, (D, .. .D,.p,) is the backscattering cross section of a water-coated ice/air
hydrometeor of diameter D, ... D, is the thickness of the water shell. o (D, . .p,) is
the backscattering cross section of an ice/air hydrometeor having diameter D,,,., and

density p.. 0, (D, ., ) is the buckscattering cross section of a liquid hydrometeor having

diameter Dy ... and f s the fractional backscattering cross section relative to the
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difference in the backscattering cross sections of all liquid water and p,.-density ice
spheres of diameter D,,.,. In this context. then. the backscattering cross section of a
water coated ice/air hydrometeor is expressed in terms of uts diameter D,,... This
depends upon the diameter and density of the itial ice/air hydrometeor D, ., and .,
and upon 0, through the relation

p.D, . ~p,-p XD, -D,)) =p.D] . . (D18)

where p., s the density of hquid water. (If D, <<D_ .then D, =D, . .) The

results of Herman and Battan (1961) indicate that for Rayleigh scatterers and a fixed
radar wavelength the fin (D17) depends upon D, and weakly upon D, ... One caveat
1s that in past studies hike those of Kerker et al. (1951) and Herman and Battan (1961)
the melung graupel or hailstone was considered to be composed of solid ice. In (D17).
an approximation that strictly holds for solid 1ce hydrometeors coated by water shells is
extended to ice/air hydrometeors that are coated by water shells.  This approach is
believed to be valid since the transition from ice to liquid-water backscattering can be
viewed as resulting trom increasing shielding (by the hiquid-water coat) of the e from
the incident radiation (Herman and Buattan 1961). The same behavior is expected for

-

K|™ of the underlying matenal

1ce/air hydrometeors covered by water shells. with the
smaller owing to the presence of air. (Note that if the onginal ice/air hydrometeor is
porous. then melt water will soak into the hydrometeor before collecting on the surtace.

[n this case. the l\’l: of the underlying hydrometeor is that of an ice/water mixture.)

The reflectivity of a mixture of liquid hydrometeors and water-coated ice/air

hydrometeors is thus
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n= Jo.. DD .p)ND, )dD, +§—ij’_‘jlz,. (D19)
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With (D9). (D10). and (D14), (D19) becomes

(D20)
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