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Abstract

Vegetation play a critical role in the interactions between atmosphere and biosphere.

CO2 fixed by plants through photosynthesis process at ecosystem scale is termed

as gross primary production (GPP). It is also the first step CO2 entering the bio-

sphere from the atmosphere. It not only fuels the ecosystem functioning, but also

drives the global carbon cycle. Accurate estimation of the ecosystem photosyn-

thetic carbon uptake at a global scale can help us better understand the global car-

bon budget, and the ecosystem sensitivity to the global climate change. Satellite

observations have the advantage of global coverage and high revisit cycle, hence,

are ideal for global GPP estimation. The simple production efficiency model that

utilize the remote sensing imagery and climate data can provide reasonably well es-

timates of GPP at a global scale. With the solar induced chlorophyll fluorescence

(SIF) being retrieved from satellite observations, new opportunities emerge in di-

rectly estimating photosynthesis from the energy absorption and partitioning per-

spective. In this thesis, by combining observations from both in situ and remotely

acquired, I tried to (1) investigate the GPP SIF relationship using data from obser-

vations and model simulations; (2) improve a production efficiency model (vege-

tation photosynthesis model, VPM) and apply it to the regional and global scale;

(3) investigate the GPP and SIF sensitivity to drought at different ecosystems; (4)

explore the global interannual variation of GPP and its contributing factors. Chap-

ter 2 uses site level observations of both SIF and GPP to explore their linkage at both

leaf and canopy/ecosystem scale throughout a growing season. Two drought events

happened during this growing season also highlight the advantage of SIF in early

drought warning and its close linkage to photosynthetic activity. Chapter 3 com-

pares the GPP and SIF relationships using both instantaneous and daily integrated

xxvi



observations, the daily GPP and satellite retrieved SIF are latitudinal dependent and

time-of-overpass dependent. Daily integrated SIF estimation shows better correla-

tion with daily GPP observations. Chapter 4 compares different vegetation indices

with SIF to get an empirical estimation of fraction of photosynthetically active radi-

ation by chlorophyll (fPARchl ). By comparing this fPARchl estimation with ecosys-

tem light use efficiency retrieved from eddy covariance flux towers, the light use ef-

ficiency based on light absorption by chlorophyll shows narrower range of variation

that can be used for improving production efficiency models. Chapter 5 investi-

gates the drought impact on GPP through the change of vegetation canopy optical

properties and physiological processes. Forest and non-forest ecosystems shows

very different responses in terms of these two limitation and need to be treated dif-

ferently in GPP modelling. Chapter 6 applies the improved VPM to North Amer-

ica and compared with SIF retrieval from GOME-2 instrument. The comparison

shows good consistency between GPP and SIF in both spatial and seasonal varia-

tion. Chapter 7 uses an ensemble of GPP product to explore the cause of hot spots

of GPP interannual variability. GPP in semiarid regions are strongly coupled with

evapotranspiration and show high sensitivity to interannual variation of precipita-

tion. The results demonstrate the importance of precipitation in regional carbon

flux variability.
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Chapter 1: Introduction

1.1 Background

Earth is Breathing. Every day, every hour, every minute, plants on earth are absorb-

ing carbon dioxide (CO2) through the photosynthesis and respiration processes.

Photosynthesis happens when there is light and suitable environment (tempera-

ture, humidity, etc.). The outcome of this process is so strong that changes the CO2

concentration in the boundary layer where the terrestrial and atmosphere interacts.

At a broader scale, since the Northern Hemisphere have larger land area and more

vegetation, during the Northern Hemisphere growing season (typically from May to

October), the global average atmosphere CO2 concentration will be dragged down

by around 10 ppm in equator and 15 ppm close to North Article Circle compared

to the winter time (Keeling et al., 1996). Because of the increasing vegetation activ-

ity in the Northern Hemisphere, this number is still increasing (Graven et al., 2013;

Gray et al., 2014; Zeng et al., 2014). As the CO2 is absorbed by the vegetation through

stomata, water loss is inevitable. This water loss, known as "Transpiration", together

with evaporation, consists a very important flux of the global water cycle. In some

humid regions, the transpiration from the vegetation is so strong that even changed

the local weather (Findell et al., 2011; Wright et al., 2017).

Gross primary productivity (GPP), the total plant photosynthesis at the ecosys-

tem scale, is the driving step of the terrestrial carbon cycle. Every year, about 120

Pg C enters the terrestrial ecosystem from the atmosphere (Beer et al., 2010). Most

of these carbons are released back to the atmosphere through autotrophic and het-

erotrophic respiration, while a small percentage is retained in the ecosystem which

either supports plant growth or is stored in the soil (Figure 1.1). Over the past years,

this amount of carbon is continuously increasing and offsets around 33% of the an-

1



thropogenic carbon emission (Le Quéré et al., 2015). Most of the increased carbon

stock is attributed to increased vegetation activity in the Northern Hemisphere be-

cause of the extended growing season, and the CO2 fertilization (Baldocchi et al.,

2016; Forkel et al., 2016; Graven et al., 2013; Keenan et al., 2016).
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Figure 6.1 |  Simplified schematic of the global carbon cycle. Numbers represent reservoir mass, also called ‘carbon stocks’ in PgC (1 PgC = 1015 gC) and annual carbon exchange 

fluxes (in PgC yr–1). Black numbers and arrows indicate reservoir mass and exchange fluxes estimated for the time prior to the Industrial Era, about 1750 (see Section 6.1.1.1 for 

references). Fossil fuel reserves are from GEA (2006) and are consistent with numbers used by IPCC WGIII for future scenarios. The sediment storage is a sum of 150 PgC of the 

organic carbon in the mixed layer (Emerson and Hedges, 1988) and 1600 PgC of the deep-sea CaCO3 sediments available to neutralize fossil fuel CO2 (Archer et al., 1998). Red 

arrows and numbers indicate annual ‘anthropogenic’ fluxes averaged over the 2000–2009 time period. These fluxes are a perturbation of the carbon cycle during Industrial Era 

post 1750. These fluxes (red arrows) are: Fossil fuel and cement emissions of CO2 (Section 6.3.1), Net land use change (Section 6.3.2), and the Average atmospheric increase of 

CO2 in the atmosphere, also called ‘CO2 growth rate’ (Section 6.3). The uptake of anthropogenic CO2 by the ocean and by terrestrial ecosystems, often called ‘carbon sinks’ are 

the red arrows part of Net land flux and Net ocean flux. Red numbers in the reservoirs denote cumulative changes of anthropogenic carbon over the Industrial Period 1750–2011 

(column 2 in Table 6.1). By convention, a positive cumulative change means that a reservoir has gained carbon since 1750. The cumulative change of anthropogenic carbon in the 

terrestrial reservoir is the sum of carbon cumulatively lost through land use change and carbon accumulated since 1750 in other ecosystems (Table 6.1). Note that the mass balance 

of the two ocean carbon stocks Surface ocean and Intermediate and deep ocean includes a yearly accumulation of anthropogenic carbon (not shown). Uncertainties are reported 

as 90% confidence intervals. Emission estimates and land and ocean sinks (in red) are from Table 6.1 in Section 6.3. The change of gross terrestrial fluxes (red arrows of Gross 
photosynthesis and Total respiration and fires) has been estimated from CMIP5 model results (Section 6.4). The change in air–sea exchange fluxes (red arrows of ocean atmosphere 

gas exchange) have been estimated from the difference in atmospheric partial pressure of CO2 since 1750 (Sarmiento and Gruber, 2006). Individual gross fluxes and their changes 

since the beginning of the Industrial Era have typical uncertainties of more than 20%, while their differences (Net land flux and Net ocean flux in the figure) are determined from 

independent measurements with a much higher accuracy (see Section 6.3). Therefore, to achieve an overall balance, the values of the more uncertain gross fluxes have been adjusted 

so that their difference matches the Net land flux and Net ocean flux estimates. Fluxes from volcanic eruptions, rock weathering (silicates and carbonates weathering reactions 

resulting into a small uptake of atmospheric CO2), export of carbon from soils to rivers, burial of carbon in freshwater lakes and reservoirs and transport of carbon by rivers to the 

ocean are all assumed to be pre-industrial fluxes, that is, unchanged during 1750–2011. Some recent studies (Section 6.3) indicate that this assumption is likely not verified, but 

global estimates of the Industrial Era perturbation of all these fluxes was not available from peer-reviewed literature. The atmospheric inventories have been calculated using a 

conversion factor of 2.12 PgC per ppm (Prather et al., 2012).

Figure 1.1: The global carbon cycle. All numbers are shown in Pg C year−1. This
figure is adopted from IPCC (2013)

Accompanied with the global warming, drought severity and frequency also in-

creased over the past years (Dai, 2012; Easterling et al., 2000b; Trenberth et al., 2013).

Other disturbances, e.g., flood, heatwave, fire, are also projected to increase in fre-

quency (Christidis et al., 2014; IPCC, 2013), and will have significant impacts on
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the GPP, hence the global carbon cycle (Ciais et al., 2005; Reichstein et al., 2013).

Understanding the climate change impact on global carbon cycle is critical to a bet-

ter projection of global warming and ecosystem functioning and services. Accurate

estimation of GPP of terrestrial ecosystems is the first step to solve this problem.

Multiple approaches have been made to estimate GPP including the process based

modeling approach and data-driven models. However, a large discrepancy still re-

mains (Anav et al., 2015), which make our projection of future global warming even

more difficult.

The study of plant photosynthesis has a long history. Photosynthesis combines

a series of biochemical processes starting from the capture of light by chlorophyll

molecules. From the energy perspective, the light absorbed by the chlorophyll ei-

ther forms the electron transport chain, be reemited as solar-induced chlorophyll

fluorescence (SIF), or be dissipated as heat (Govindjee, 2004). The electron trans-

port chain transfers the biochemical energy to the light independent reaction and

fix the CO2. Therefore, the observation of plant photosynthetical activity can be

based on two aspects, from the gas exchange, i.e., the CO2 fixation; or the energy

partition, i.e., electron transportation rate (ETR). Leaf chamber combined with gas

analyzer, or eddy flux measurements are based on the gas exchange (Figure 1.2).

However, the direct measurement of the ETR can be challenging. By using the pulse

amplitude modulation (PAM) technique, ETR can be indirectly calculated, which of-

fers a means to study the photosynthesis process through energy perspective (Genty

et al., 1989). Recently, many studies suggest that SIF positively correlated to ETR

at moderate or high level of solar radiation, which makes direct estimates of en-

ergy partition for plant photosynthesis possible (Yang et al., 2015). With the help

of hyper-spectral resolution spectrometers, this leaf level fluorescence measure-

ment can be extended to canopy or ecosystem level using unmanned aerial vehicles
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(UAVs) or satellites.

Gas Exchange Energy Partition

Plant photosynthesis

Leaf chamber
Li-6400

PAM 
fluorometer

Hyper spectral 
spectrometer

Eddy 
covariance

Canopy
Ecosystem level

Leaf level

Figure 1.2: Observation of plant photosynthesis at leaf or canopy/ecosystem level
using different techniques.

Based on these observations, scientists also developed different models to sim-

ulate plant photosynthesis. The models with equations representing each biophys-

ical or physiological process are known as process-based models, and the models

which based on empirical relationships are known as data-driven models. The most

well-known process-based model for GPP simulation is the Farquhar model Far-

quhar et al. (1980), which consider the leaf level plant photosynthesis as the mini-

mum of Rubisco carboxylation limited (Jc ) and Ribulose-1,5,-bisphosphate (RuBP)

regeneration limited (Je ) carbon assimilation. Both of which can be calculated with

Michaelis-Menten formed functions. Although these models have a explicit repre-

sentation of the processes during photosynthesis, they requires a lot of parameters

to drive the model. These parameters often varies in space and time (Xu & Baldoc-

chi, 2003; Lin et al., 2017; Wu et al., 2016), and may not be measured for all ecosys-

tems.

Another kind of models, the production efficiency models (PEM) or light use ef-

ficiency (LUE) models, are based on the concept that light is used at a constant rate
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by the plants to fix carbon dioxide (Monteith, 1972; Hilker et al., 2008). Previous

studies have shown that given longer period of time, the averaged LUE becomes

more stable, which suggest that these models can perform well at least for daily

to monthly time scale (Song et al., 2013). These models have very simple form, but

still considered different forms of environmental limitation (temperature, water, ra-

diation, etc). The resultant GPP can well capture the spatial, seasonal variation,

but most models does not perform well for the interannual variation (Anav et al.,

2015). Compared with the process-based models, LUE models omit many compli-

cated processes and just use an empirical LUE factor to include different kinds of

limitations (typically water and temperature). One critical issue is the difficulties

in models parameterization, as the empirical relationship may change for different

biomes, species, or even specific plants. Specifically, the maximum light use ef-

ficiency (ε0) is hard to parameterize as it varies both spatially and temporally. The

environmental limitations also face problems during drought or other disturbances.

How to improve the estimations of these parameters is critical to a better estimation

of GPP using LUE models.

The simulation of GPP has two major objectives. The first one is to investigate

the GPP response to the climate change related events, e.g., global warming, in-

crease drought frequencyintensity, plants adaptation and acclimation. The second

objective is to evaluate the global total carbon stock and its spatial and temporal

variation. For the first objective, a single site data with in situ measurements can be

used. Albeit lacking of spatial coverage, this site level simulations can still help us

understand the response of vegetation to climate change for a specific ecosystem.

To get a global total GPP simulation, we need to run the model at each grid box. The

driving data may not be directly measured for each grid box. The total GPP for all

the grid boxes can represent the total GPP at one specific time step. In this way, we
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can get the spatial variation of the global GPP. These two objectives are not mutually

exclusive, and they are often combined so that they can be used to investigate the

climate change effects on vegetation and the feedbacks of the vegetation to climate.

These are often called fully coupled Earth system models "online" mode.

Figure 1.3: NASA Earth Science Division Operating Missions (from NASA website).
This dissertation uses datasets from Terra, Aqua, OCO-2 satellites.

To use the models at global scale, global coverage datasets are necessary either

to drive the model or to validate the model outputs. Remote sensing play an very

important role to obtain data with a regional or global coverage. These satellite can

provide various information about the Earth systems including radiation, surface

temperature, precipitation, water storage, and most relevant to this dissertation, in-

formation about vegetation. Since vegetation have very distinct spectral signatures

in both the visible and near-infrared band, multi-spectral sensors onboard different

satellites can use these signatures to derive vegetation information.

Over the past years, a lot of vegetation indicators have been developed, the most

well-known ones, normalized difference vegetation index (NDVI) and enhanced
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vegetation index (EVI) uses the spectral signature of low reflectance in red band and

high reflectance in the near infrared band. These indices are sensitive to vegetation

physical and biophysical properties and can be good indicators for vegetation ac-

tivities. Specifically, vegetation reflectance at ∼ 531 nm is highly sensitive to pho-

toprotective xanthophyll cycle and can be used to estimate the light use efficiency

and track vegetation phenology (Gamon et al., 1992, 1997, 2016). Microwave remote

sensing also provide information about the vegetation water content (a proxy of

biomass (Liu et al., 2013)) since water in the vegetation has high dielectric constant

and will decrease the brightness temperature signal emitted by Earth surface at mi-

crowave band (Guan et al., 2017). Although this water content data or biomass data

cannot be directly used for GPP simulation, they can serve as a validation for plants

growth models. In addition to the reflectance in visible and near infrared band and

brightness temperature at microwave band, vegetation also emits a small amount

of energy as fluorescence in the red and near infrared band. This energy, albeit small

in total amount, can be detected by ultra high spectral resolution sensors onboard

some satellites. SIF can be retrieved using a signal decomposition algorithm based

on the solar Fraunhofer lines at ∼ 740 or 680 nm wavelengths (Joiner et al., 2016).

For most satellites that can be used for SIF retrievals (e.g., OCO-2, GOSAT), they are

designed for atmospheric column CO2 concentration retrievals. The atmospheric

CO2 data can be used for net ecosystem exchange (NEE) inversion, which also in-

clude information of photosynthesis activities at regional scale and the transporta-

tion of the traced gases. To conclude, with the development of new sensors and

technologies onboard the satellite, remote sensing can provide increasingly num-

bers of direct and indirect observations for carbon cycle related studies.

Although a lot of dataset have been derived from remote sensing and other types

of measurement, the GPP prediction from different models still have a very large un-
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certainty. Even for data driven models which uses similar input datasets, the GPP

accuracy is still not satisfactory (Wang et al., 2017; Sims et al., 2014; Yuan et al.,

2014b; Verma et al., 2014), especially during drought periods (Wagle et al., 2014;

Dong et al., 2015). This less satisfactory performance can be attributed to several

aspects: (1) Models are abstraction of the real world, and the data-driven models are

too simple to represent the real world processes. For example, based on plant phys-

iological studies, drought affects plant photosynthesis from a variety of ways, in-

cluding change of vapor pressure deficit that affect the stomatal conductance (Oren

et al., 1999); change of soil moisture that decreases the hydraulic conductance and

increased stomata sensitivity to VPD (Novick et al., 2016; Martinez-Vilalta & Garcia-

Forner, 2017). Plants also have various ways to adapt and compensate drought ef-

fect (CAM photosynthesis pathway, change of leaf inclination, etc.). Because data-

driven models do not have an explicit representation of these physiological pro-

cesses, they do not fully capture the plant responses to drought. (2) A numbers of

parameters are needed to drive the model, these parameters are mostly considered

stable either across ecosystems or non-variant along time. However, this assump-

tion either fails to consider the change of the plant species composition within a

ecosystem type, or the seasonal dynamic of vegetation growth stage. For example,

several studies have demonstrate that many photosynthesis related parameters are

related to the vegetation phenology (Xu & Baldocchi, 2003; Lin et al., 2017), or re-

lated to the leaf age and demography (Wu et al., 2017, 2016). The changes of these

variables directly affect the seasonal and spatial variation of GPP simulations. How-

ever, concurrent LUE models did not have good solutions for these problems. With

the accumulation of global eddy covariance (EC) flux tower dataset (Baldocchi et al.,

2001), solar induced chlorophyll fluorescence from both in situ canopy level and re-

motely sensed ecosystem level observations, we have access to unprecedently large
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amount of datasets of GPP observations from leaf, canopy, to ecosystem, continen-

tal and global scale. These observations also provide continuous coverage with a

temporal resolution from seconds to several days. For many satellite and in situ site

level observations, they can provide as long as decades of data, allowing us to inves-

tigate the interannual variation and response to extreme events and climate change

(Keenan et al., 2013; Zhang et al., 2014a).

1.2 Overall research objectives

The goal of this dissertation is to improve GPP estimations from multiple approaches

and explore the spatial, temporal, and interannual variability of GPP. Specifically,

this dissertation focuses on the data-driven approach. I use one specific LUE model,

the Vegetation Photosynthesis Model (VPM), as an example to improve the LUE

models. I also try to explore the possibility of using solar induced chlorophyll flu-

orescence (SIF) from both in situ observations and satellite retrievals as a direct

observation of GPP, and how to use SIF to improve the LUE models. Finally, I would

like to use these information and generate a global GPP dataset to explore the re-

gional and global GPP variation at different time scales. This dissertation involves

both in situ observations (e.g., vegetation biophysical and physiological parame-

ters), and model simulations (both data-driven and process-based) using a variety

of datasets. The ultimate goal of this dissertation is to improve the use of models

and data to get a better understanding of global carbon cycle and impact of climate

change.

1.3 Organization of the dissertation

My proposed dissertation will include six chapters as briefly outlined below:
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Chapter 2. Seasonal variation and drought responses of gross primary pro-

ductivity and solar induced chlorophyll fluorescence for a South Great Plain grass-

land. Many studies have showed that the relationship between GPP and SIF have

a very high consistency at seasonal scale. However, most of these studies are at ei-

ther forest or cropland, where drought rarely happens. In this chapter, I would like

to investigate the relationship between GPP and SIF at seasonal scale. The SIF and

GPP data will be obtained from both in situ observation and satellite retrievals. This

study will also investigate the drought effect on GPP and SIF, and the sensitivity of

SIF and optical vegetation indices to drought. The results of this study will provide

evidence to build models to simulate GPP and SIF at a seasonal cycle and allow us

to give early drought warning using satellite based SIF measurement.

Chapter 3. On the relationship between sub-daily instantaneous GPP and

daily total GPP: implication for SIF measurement. As most satellite measurements

are instant and does not represent the daily average value if a diurnal cycle exist for

the targeted variable. For both GPP and SIF, these two are both driven by the solar

radiation and the diurnal relationship changes across time. In this chapter, I would

like to investigate the relationship between instantaneous GPP and daily GPP, and

their relationship with the corresponding SIF measurements. This will help us bet-

ter understand the relationship between GPP and SIF, thus build new models to

predict GPP from SIF.

Chapter 4. Spatio-temporal convergence of maximum daily light use efficiency

based on radiation absorption by chlorophylls of the canopy. The maximum daily

light use efficiency is a very important parameter in production efficiency models

(PEMs) or light use efficiency (LUE) models. However, based on the light absorption

at different scales, the LUE can also vary significantly. I compare the LUE defined

at ecosystem, leaf and chlorophyll scales and try to find if the maximum daily LUE
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has less spatial and season variation at the scale which light is more directly used

for photosynthesis. This will help us parameterize LUE models and provide better

GPP estimates.

Chapter 5. Canopy and physiological controls of GPP during drought and

heat wave. GPP response to drought and heat wave is a critical issue in global car-

bon cycle under the background of increasing drought frequency. In this chapter,

I try to identify the two limitations of drought on photosynthesis, i.e., the canopy

and the physiological limitations. I would also like to explore the role of these two

limitations among different biome types. This will give us better understanding of

how drought affects plant photosynthesis and improve the GPP simulation during

drought and heat wave.

Chapter 6. Consistency between sun-induced chlorophyll fluorescence and

gross primary production of vegetation in North America. The relationship be-

tween GPP and SIF have been long studied and but mostly at leaf level or at ecosys-

tem level for cropland. In this chapter, I want to compare the GPP estimates from a

light use efficiency model, the vegetation photosynthesis model (VPM) with the SIF

observation from the GOME-2. This study will provide a new regional GPP prod-

uct (GPPV P M ) and help us better understand the GPP-SIF relationship at seasonal

scale.

Chapter 7. Precipitation and carbon-water coupling jointly control the inter-

annual variability of global land primary production. The interannual variation

(IAV) or the year to year variation of the terrestrial carbon uptake is very critical to

our understanding of the global carbon cycle under climate change. In this chapter,

by using the GPP estimates from multiple datasets, I would like to investigate the

hotspot where highest IAV of GPP can be found, and what is the possible reason for

this high GPP IAV. This study will help us better understand the water carbon cou-
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pling and the variability of carbon cycle under climate change.
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Chapter 2: Seasonal variation and drought responses of gross

primary productivity and solar induced chlorophyll fluorescence for

a South Great Plain grassland

Abstract

Semi-arid grassland ecosystems have high drought sensitivity and interannual vari-

ability of carbon fixation, therefore, play an important role in the global carbon cy-

cle. The compensatory effect of early start growing season and summer drought

accompanied with global warming also highlights the importance of accurately es-

timate seasonal dynamic of ecosystem photosynthesis. Chlorophyll fluorescence

(ChlF) has been demonstrated to be a promising technology in monitoring vegeta-

tion photosynthesis from a non-destructive way. However, the underlying mecha-

nism of its relationship with ecosystem total gross primary production (GPP) and

plant responses to drought is not clear. Using data from a integrated solar-induced

chlorophyll fluorescence (SIF) measurement system (FluoSpec) together with in

situ leaf level ChlF and assimilation measurement, we investigated the seasonal

dynamic and of SIF and other plant biophysical variables, and their responses to

drought. The results suggested that the light absorption by chlorophyll and en-

ergy partitioned to photochemistry can well track the leaf level assimilation rate.

The canopy level SIF variation can be explained to a large extent by radiation and

vegetation indices (r >0.83, p<0.001). Canopy level SIF also exhibited higher sensi-

tivity than optical vegetation indices and captured the midday depression during

drought period. The chlorophyll related vegetation (MERIS Terrestrial Vegetation

Index, MTCI) also showed larger decrease than enhanced vegetation index (EVI)

and normalized difference vegetation index (NDVI) after drought. The results of

this study highlighted the importance of using SIF to track the seasonal dynamic of
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vegetation photosynthetic activity and the physiological and canopy limitation of

drought.

2.1 Introduction

Plants uptake carbon through photosynthesis and provide food, fiber, and wood for

human beings (Beer et al., 2010). This carbon flux, known as gross primary pro-

ductivity at ecosystem level, also drives the ecosystem functioning. Over the past

decades, increasing vegetation carbon uptake offsets one third of the anthropogenic

CO2 emissions, most of which comes from the climate change-induced GPP in-

crease (Le Quéré et al., 2016). Plants benefit from the CO2 fertilization, extended

growing season caused by global warming (Zhu et al., 2016; Mao et al., 2016). On the

other hand, extreme climate events are also projected to increase in both frequency

and severity along with global climate change, which may greatly affect the carbon

sequestration (Ciais et al., 2005; Zhao & Running, 2010). Recent studies suggest that

semi-arid ecosystems contribute most of the interannual variability to the global

carbon uptake and is very vulnerable to extreme climate event such as drought or

heatwave (Ahlstrom et al., 2015; Poulter et al., 2014). A comprehensive understand-

ing of the vegetation photosynthesis response to climate change and disturbances

are critical to global carbon cycle.

Multiple approaches have been made to measure plant photosynthesis at dif-

ferent scales (Zhang et al., 2016e). At leaf scale or plant scale, static chamber com-

bined with gas analyzer are used to investigate the physiological processes includ-

ing the temperature sensitivity, stomatal conductance, etc. (Luo et al., 2001). When

extended to ecosystem level, eddy covariance technology has become increasingly

important to investigate the water, carbon, energy exchanges which are closely re-
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lated to the ecosystem productivity and respiration. Global flux network spanning

across various ecosystem types and long-term observation period greatly contributed

to both physiological and phenological studies (Baldocchi et al., 2001; Schimel et al.,

2015). These methods can be regarded as direct observations since they measure

the CO2 exchange, one of the most important substrates for the photosynthesis pro-

cess. At global scale, satellites that can monitor the CO2 column concentration have

been launched (Butz et al., 2011). They can act as a complementary data source

since the relative longer revisit cycle and sparse spatial resolution.

In addition to these CO2-based gas exchange measurements of GPP, scientists

also developed different indirect methods to estimate plant photosynthesis so that

GPP can be estimated at a larger scale. Ever since 1970s, people have found that

during the light reaction of photosynthesis process, when light is absorbed by the

chlorophyll pigments (Porcar-Castell et al., 2014), most light goes to photochem-

istry and provide ATP and NADPH for dark reaction; some energy dissipate as heat;

and a very small amount of energy is re-emitted as fluorescence. This small amount

of energy is known as chlorophyll fluorescence (ChlF). Previous studies use pulse

amplitude-modulated (PAM) technique to measure the chlorophyll fluorescence

(ChlF) at leaf level (Genty et al., 1989). PAM fluorometry has shown a close link-

age between ChlF and CO2 assimilation. This close linkage is explained by the ChlF

as an indicator of electron transportation rate (ETR), which is further used in the

Calvin Cycle (Krause & Weis, 1991). Many studies also showed that ChlF is very

sensitive to vegetation stress, e.g., drought, salinity, diseases (Christen et al., 2007;

Vankooten & Snel, 1990; Schreiber et al., 1995; Lichtenthaler & Rinderle, 1988).

In addition to PAM based ChlF measurement, recent studies have successfully

retrieved sun-induced chlorophyll fluorescence (SIF) from satellite, using hyper-

spectral resolution remote sensing spectroscopy, and the SIF caused in-filling of
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Fraunhofer Lines (Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2012).

This measurement does not trigger the plant response to saturating light, and can

reflect the plant photosynthesis at normal conditions. Many in situ and modeling

studies also show a clear positive correlation of CO2 assimilation or stomatal con-

ductance with SIF, because the heat dissipation increase with light under stress con-

ditions while the SIF and photochemistry declines simultaneously (Kooten & Snel,

1990). Although with the evidences from the leaf level that PAM measured ChlF is

sensitive to photosynthetic activities, at canopy level or ecosystem level, this rela-

tionship may be affected by many other factors, e.g., the canopy structure, the atmo-

spheric conditions. The direct comparison between the satellite retrieved SIF mea-

surement and the ChlF at leaf level is restricted because the different footprint sizes,

the inconsistent measurement time, and relative large errors for each individual

satellite measurement (Joiner et al., 2014). How to evaluate the SIF measurement

from canopy level and compare with satellite measurement, leaf level measurement

and the CO2 assimilation at different scales is vital to understand the mechanism of

plant photosynthesis and improve the accuracy of global carbon cycle.

Southern great plain (SGP) is one of the major agroecosystems in U.S. This re-

gion is also experiencing frequent droughts in recent years (Gu et al., 2007). The

SGP ecosystems are mostly in semi-arid and are sensitive to drought disturbances.

Drought of 2011 greatly decreases the vegetation productivity and caused more than

$5.2 billion loss. In many regions, the drought induced tree mortality also induced

huge ecological impact, especially on the carbon cycle (Anderegg et al., 2015). We

choose to investigate the GPP and SIF relationship for a typical grassland in SGP,

which can be a good representative of grassland in SGP and other regions that are

suspected to drought impact.

This study uses an integrated observation system to estimate photosynthesis us-
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ing both gas exchange and chlorophyll fluorescence measurement at different scale

(e.g., leaf, canopy, ecosystem). In this study, we try to answer the following ques-

tions which may greatly advance our knowledge about the seasonal cycle of photo-

synthesis processes and their responses to drought: (1) what are the seasonal vari-

ations of CO2 assimilation rate and chlorophyll fluorescence at leaf and ecosystem

scale and what are the relationship between them? (2) what controls the seasonal

chlorophyll fluorescence variations? (3) how do GPP and SIF respond to drought?

2.2 Materials and Methods

2.2.1 Site description

Kessler Atmospheric and Ecological Field Station (KAEFS) locates in the central of

Oklahoma, USA, approximately 28 km southwest of the University of Oklahoma,

Norman campus (Figure 2.1). KAEFS has a mixed grass prairie ecosystem with tall

grass prairie, woodland, riparian, and pastures. The major grass species include

switchgrass (Panicum virgatum), Indiangrass (Sorghastrum nutans (L.) Nash ), smooth

brome (Bromus inermis Leyss.), little bluesterm (Schizachyrium scoparium), etc.

The grass species composition changes within a growing season: C3 grasses (e.g.

smooth brome) make up a proportion of grass species during early and late grow-

ing season, while C4 grasses dominated the mid-growing season (May to July). The

annual average temperature is around 16°C, with a highest monthly average tem-

perature in July and August of 27°C, and a lowest in January of 3°C. The annual pre-

cipitation is around 850 mm, with higher precipitation in May and June. Summer

time (July and August) are often considered as dry season due to the lower precipi-

tation but higher temperature and evapotranspiration demand.
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2.2.2 Climate data measurement from Mesonet station and eddy covariance flux tower

site

Both the EC flux tower and the Mesonet station provide a variety of climate variables

measurements including air temperature, radiation, air humidity, wind speed, pre-

cipitation and soil moisture, since Mesonet site provide more robust and detailed

measurements for the climate variables. Unless specified, all climate variables in

this paper are from Mesonet measurements. The fractional water index (FRI) is a

unitless soil water indicator with 0.00 indicating very dry soil to 1.00 for soil at field

b
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Figure 2.1: The location of the study site. The integrated observation system in-
cludes a FluoSpec solar-induced chlorophyll fluorescence measurement site (b),
a eddy covariance flux tower site (c) and a Mesonet site (d).
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capacity (Schneider et al., 2003). It was calculated using three Campbell Scientific

229 - L sensors at 5cm, 25cm, and 60cm depth, which covers most of the root zone

for the grassland ecosystems (Illston et al., 2008). In 2017, two drought event hap-

pened during the growing season (Figure 2.2).
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Figure 2.2: The variation of air temperature (Ta), vapor pressure deficit (VPD),
precipitation, total daily radiation (Total Rad), and fractional water index (FWI)
at different depth (5cm, 25cm, 65cm) during the peak growing season from DOY
120 to 240. Five period of wet, dry and recovery are identified based on fractional
water index.
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2.2.3 Leaf level gas exchange and fluorescence measurements

Leaf level measurement were acquired every week using a LI-6800 portable photo-

synthesis system (LI-COR Corporate). LI-6800 is the succedent of the widely used

LI-6400 system. We used the fluorometer chamber which allows the simultane-

ous measurement of assimilation (A) and chlorophyll fluorescence (ChlF) using a

pulse amplitude modulation (PAM) technique. Each week, three switchgrass leaves

were chosen and A and ChlF were measured under ambient (400 ppm) and elevated

(1000 ppm) CO2 environment. Other environmental conditions are under control:

temperature is set to 25°C, relative humidity is set to 50%, photosynthetically active

radiation (PAR) is set to 2000 µ mol m−2 s−1. for each leaf, we made three assimila-

tion measurements together with three PAM ChlF measurements at both ambient

and elevated CO2 level.

The ChlF measurement can be used as an indicator of energy partitioning after

being absorbed by plants. After light is harvested by the antenna pigment chloro-

phyll, it will ends up in three destinations: (1) be used for photochemistry to fix

CO2 (φP ), (2) be dissipated as heat (or non-photochemical quenching, NPQ), and

(3) be reemmited as chlorophyll fluorescence (φF ). We further partitioned NPQ to

heat loss in light-adapted condition (φN ) and dark-adapted condition (φD ) (van der

Tol et al., 2014). These four processes compete with each other and summed up to

unity (Eq. 2.1).

φP +φN +φD +φF = 1 (2.1)

At steady state, the rate constant for these three process (κP , κN , κD , κF , respec-

tively) are invariant within a small period of time:
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φP = κP

κP +κN +κD +κF
(2.2)

φN = κN

κP +κN +κD +κF
(2.3)

φD = κD

κP +κN +κD +κF
(2.4)

φF = κF

κP +κN +κD +κF
(2.5)

when plant leaf is exposed to a saturating light (>8000 µmol m−2s−1), the reac-

tion center will close and κP drops to zero. This correspond to an increase of φF

which is termed as maximum fluorescence yield (φF
′
m

):

φF
′
m
= κF

κN +κD +κF
(2.6)

by combining Eq. 2.2, 2.5, and 2.6, Genty et al. (1989) demonstrate that the frac-

tion of light used for photochemistry can be estimated as:

φP = φF
′
m −φF

φF
′
m

(2.7)

In our study, φP is termed as φPSI I to be consistent with LI-6800 terminology,

and the φPSI I is recorded every time a leaf gas exchange measurement is recorded

by measuring the steady state fluorescence and 1 second of fluorescence under sat-

urating light.

Leaf level assimilation rate can then be calculated as:

A = PAR × f PAR ×φPSI I (2.8)
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2.2.4 Canopy level vegetation reflectance and solar induced chlorophyll fluorescence

measurement

We deployed a continuous canopy-level solar induced chlorophyll fluorescence mea-

surement system — FluoSpec at our station. This system consists two high spectral

resolution spectrometers, for SIF and vegetation reflectance measurements. The

first spectrometer, QE-Pro, was customized by OceanOptics, Inc., Dunedin, Florida

with a full width half maximum (FWHM) of around 0.04nm and a spectral range

from ∼730 nm to ∼788 nm. This spectrometer is used for SIF retrieval at ∼760 nm.

The second spectrometer, HR2000+ (OceanOptics, Inc., Dunedin, Florida), has a

FWHM of 0.5nm and a spectral range from ∼187 nm to ∼1105 nm. The spectral

measurement from this spectrometer can be used to calculate various reflectance

based vegetation indices:

EV I = 2.5× ρ860 −ρ655

ρ860 + (6×ρ655 −7.5×ρ470)+1
(2.9)

N DV I = 2.5× ρ860 −ρ655

ρ860 +ρ655
(2.10)

PRI = ρ531 −ρ570

ρ531 +ρ570
(2.11)

where the ρ with a number subscript represents the vegetation canopy reflectance

at this specific wavelength.

The FluoSpec system uses two optical fibers and one shutter (FOS-2×2-TTL,

OceanOptics, Inc.) to switch the light path so that the spectrometers can measure

the solar irradiance and vegetation radiance in turns. One of these two optical fibers

with a opaline glass cosine corrector (CC-3, OceanOptics, Inc.) is mounted facing up

to the sky to get the downwelling irradiance of the sun; the other bare optical fiber
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with a field of view (FOV) of 25° is facing down to get the upwellling radiance of the

vegetation. The vegetation in the FOV of the bare fiber is dominated by switchgrass

(>80%). The shutter can be controlled by the spectrometer and switches between

these two fibers, so that each spectrometer can get observations of both irradiance

and radiance measurements.

Both spectrometers are controlled by a Raspberry Pi 3 (RP3) and the measure-

ment cycle is conducted every 15 minutes between 6:00 to 20:00 everyday. With in

each measurement cycle, two spectrometers operate in turns, and get 5 pairs of ir-

radiance and radiance measurements. The 5 pairs of irradiance and radiance are

conducted in turn to minimize the effect of change in radiation. All measurements

use optimum integration time that maximize the signal to noise ratio. For a de-

tailed operating procedure, please refer to the Appendix text 2.1 and Figure 2.A.1.

The code used to control the spectrometers are available online (https://github.

com/zhangyaonju/seabreeze_control). The two spectrometers are radiometric cal-

ibrated using a light source (HL-2000-CAL, OceanOptics, Inc) in the lab before the

growing season. The system is also calibrated using a white reference every two

months after being deployed to the field.

The Original data we get from these two spectrometers are digit number (DN)

values, these DN values were then processed with a dark current calibration and a

non-linearity corrections, before converting to absolute radiance or irradiance. Af-

ter we get the absolute irradiance and radiance, we can use the spectral fitting meth-

ods (SFM) to calculate SIF (Meroni et al., 2009). The relationship between irradiance

(E(λ)) and upwellling radiance (L(λ)) is affected by the fluorescence emission (F (λ)

red and far-red spectral range) and reflectance (r (λ)). Both of which are regarded as
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a linear function of wavelength λ in oxygen A (O2A) band.

L(λ) = r (λ)×E(λ)

π
+F (λ)+ε(λ) λ ∈ [759.00,767.76] (2.12)

2.2.5 Leaf and canopy biophysical parameter measurements

For each leaf we measured during the growing season, we also use a CCM-300 chloro-

phyll content meter (Opti-Science, Inc) and measure the chlorophyll content at five

different places along the leaf (Gitelson et al., 1999). The average of those five val-

ues were considered the chlorophyll content for that leaf. Every time, at least three

leaves were measured and represent the average chlorophyll content for that day.

We also used the LAI-2200C (LI-COR) to measure the leaf area index (LAI) near

the FluoSpec Site. Five individual measurements were averaged to represent the av-

erage LAI for the site. Both the leaf level measurements and the LAI measurements

were obtained in the morning between 9:00 to 12:00.

2.2.6 Contributing factors for the seasonal variation of canopy SIF

At canopy scale, SIF at a specific wavelength can be represented as a function of

APAR, fluorescence efficiency (φF ) and the escape factor ( fesc ) (Joiner et al., 2014):

SI F = PAR × f PAR ×φF × fesc (2.13)

sometimes the last two factors are combined together and termed yi eld . Since canopy

level gross primary productivity (GPP) can also be calculated as:

GPP = PAR × f PAR ×LU E (2.14)
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where LUE represent the light use efficiency which convert the radiation to photo-

chemical carbon fixation. Since both SIF and GPP shared the APAR (=PAR×fPAR),

we used several vegetation indices to investigate how much variance of SIF can be

explained by each component. This will help us better understand the relationship

between SIF and GPP and can be used to improve the LUE models.

2.3 Results

2.3.1 Seasonal variation climate and vegetation photosynthesis at different scales

Figure 2.3 shows the seasonal dynamic of the canopy level SIF and vegetation in-

dices measurement combined with the leaf level chlorophyll fluorescence, gas ex-

change and biophysical measurements. A very strong seasonal dynamic of canopy

SIF can be observed, while all three vegetation indices only tracks the start of the

growing season. When comparing three vegetation indices, NDVI showed relative

stable day to day variation while EVI showed larger fluctuation and MTCI exhibited

largest. These fluctuations are mostly continuous therefore may not be affected by

the weather conditions, on the other hand, they may represent higher sensitivity to

the plant pigments changes while the canopy structure remains unchanged.

We further compared the correlation between SIF and the proxies of APAR. These

proxies of APAR are calculated based on PAR at 750 nm (as a proxy of PAR) and

different vegetation indices (as proxies of fPAR). Figure 2.4 shows that all three in-

dices have very significant correlation with SIF. A clear upper bounary can be found

for these comparisons, the slope of which corresponds to the maximum SI Fyi eld .

Points below this upper bourdary have a lower SI Fyi eld can may be caused by stress.

These mostly happens in the mid- to late-growing season. We try to added the aver-

age of FWI as a stress indicator into the APAR term, but the correlation only slightly
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increases.

2.3.2 Relationship between chlorophyll fluorescence and CO2 assimilation

We compared the leaf level photochemical yield of photosystem II (φPSI I ) with as-

similation rate (A) for all leaf level measurements across the growing season (Figure

2.5). We found that when comparing φPSI I directly with A, a clear lower boundary

●
●
●

●●●●●
●
●

●
●●

●
●

●
●

●●

●
●

●●

●
●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●
●

●

●

●

●●

●

●
●
●

●

●

●
●●

●●

●

●
●
●

●
●

●
●

sifdoy

0.
0

0.
2

0.
4

0.
6

M
ea

n 
da

ily
 S

IF
(m

W
 m

−2
sr

−1
nm

−1
)

●●●
●●

●●●●
●●●

●●●
●

●
●

●●
●
●●●●●

●●●
●●●

●
●●●

●
●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●● ●●
●●●●●●●●●●●●

sifdoy

●●●●
●
●●●●

●
●●

●●●
●

●

●●
●
●

●●
●●●

●●●●
●●●●

●●
●●●

●
●●

●

●
●●●

●●●●●●●●●
●●

●●●●●
●●●

●
●●●●

●

● ●●●●●●●
●
●●

●●
●
●●●

●●
●●●

●
●
●
●
●
●
●
●●

●●
●

●●●●●●●●
●

●
●
●●●●

●

●●●●●●●

●

●●
●●

●●
●●●

●
●
●●

●

●
●

●
●●

●●●
●●

●

●

●

●●
●●●

●
●●

●
●
●

0.
0

0.
2

0.
4

0.
6

0.
8

N
D

V
I o

r 
E

V
I

●●●
●●

●●●●●●●
●●●●

●
●●●●●●●●●

●●
●●●

●

●●●●
●●●

●●
●

●
●
●
●●

●
●
●●●●●●●●●●●●●●●●●

●
●●●

●
●● ●

●●●
●●●●

●
●
●●●●●●●

●●●●
●
●●●●●●●

●●●●●●●●
●
●●●●●●●●●●●●

●●●
●●●

●
●●●

●
●
●
●●

●
●

●
●●

●

●●

●●

●
●●

●
●● ●●

●●●●●●●●●●
●●

sifdoy

0
1

2
3

M
T

C
I

●

●

●

NDVI
EVI
MTCI

Index

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

0
10

20
30

40

r=0.67   p<0.001

A
ss

im
ila

tio
n 

ra
te

(µ
m

ol
 m

−2
s−1

)

Index

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

Φ
P

S
II

0.
0

0.
1

0.
2

●

●

A    
ΦPSII

Index

●

●

●

● ●

●

●

●
● ● ● ●

●
●

●

●

● ●

●
●

●
●

●
●

●

● ●

●

● ●

0
20

0
40

0
60

0

C
hl

. c
on

te
nt

(m
g 

m
−2

)

● ●
● ●

●

●

●

●

● ● ● ● ● ●

● ●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

0
2

4
6

Apr−1 May−1 Jun−1 Jul−1 Aug−1 Sep−1

LA
I

(m
2  m

−2
)

Figure 2.3: The seasonal variation of canopy level mean daily SIF, three vegetation
indices (NDVI, EVI, MTCI) from FluoSpec system and leaf level assimilation rate,
photochemical yield (φPSI I ) and chlorophyll content. And the leaf area measure-
ments for the vegetation near the FluoSpec site.
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can be observed, most of which are in the mid growing season. While for early (dark

blue) or late (dark red) growing season, the A is much lower when same percent of

energy is partitioned for photochemistry. When we compared the A with the prod-

uct of φPSI I and chlorophyll content, the correlation increased and the upper dots

merged into the linear relationship.
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Figure 2.4: Comparison between the SIF and the product of PAR at 750 nm (as a
proxy of PAR) and VI (as a proxy of fraction of PAR). (a) NDVI, (b) EVI, (c) MTCI.
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Figure 2.5: (a) Comparison between the chlorophyll fluorescence estimated pho-
tochemical yield (φPSI I ) and the corresponding leaf level gas exchange at differ-
ent time of the measurement. (b) comparison between the product of photo-
chemical yield and chlorophyll content (φPSI I×Chl. content) and the leaf level
gas exchange.
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2.3.3 Vegetation response to drought using SIF and optical vegetation indices

We also assessed the drought impact on SIF and various vegetation indices by com-

paring the diurnal variation for the five phase of drought as identified by FWI in

Figure 2.2. A summary of the climate conditions for the five periods can be found

in Table 2.1. The two drought events are mostly caused by low soil moisture while

the air temperature and VPD is not extremely high. It should also be noted that the

first drought event (D1) only depleted the surface soil mosture (5cm), and the av-

erage of FWI is still high (0.64), while for the second drought event (D2), both the

surface soil and root zoon soil moisture greatly decreased and created a stress for

the vegetation.

Table 2.1: The start and end time of the five period and the average climate vari-
ables (maximum temperature, average VPD, and average FWI) for each period.

Wet period 1
(W1)

Dry period 1
(D1)

Recovery period 1
(R1)

Dry period 2
(D2)

Recovery period 2
(R2)

Start (DOY) 156 170 188 205 224
End (DOY) 165 179 197 214 233

Average Tmax

(°C)
30.1 32.1 33.6 33.4 31.0

Average VPD
(hPa)

10.2 13.2 10.8 12.7 7.0

Average FWI 0.93 0.64 0.87 0.36 0.98

Figure 2.6 showed the diurnal variation of SIF and other vegetation indices for

clear and cloudy day. SIF mostly followed the diurnal variation of the solar radiation

for the first three period (W1, D1, R1) during the clear day, while no clear pattern can

be found for cloudy days. It can be seen a clear decrease of SIF for the D2 and R2.

A detailed daily and diurnal vairation can be found in Figure 2.A.3. When excluded

the contribution from diurnal variation of PAR, the product of fPAR×SI Fyi eld also

showed much lower value compared to the first three period. And it can be seen
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that the fPAR×SI Fyi eld exhibited a "U" shaped with close to normal values for early

morning and late afternoon during D2. However, the fPAR×SI Fyi eld was alwasys

lower than average from early morning (Figure 2.6(b)).

All vegetation indices showed slight decrease for the D2 and R2 period. For the

first three period, the difference if minor except PRI (Figure 2.6(c-f)). The cloudy

days exhibited a similar pattern while the diurnal variation of the indices are much

smaller. The MTCI showed a higher sensitivity with a 24% decrease for the R2 com-

pared to NDVI (12%) and EVI (15%) which may indicate a decrease of the chloro-

phyll or the greenness of the leaves. PRI exhibited an asymmetrical pattern at a

diurnal scale, and the low or high values for the 5 periods are different compared to

other indices.

2.4 Discussion

2.4.1 Seasonal variation of vegetation photosynthetic capacity and relationship with

biophysical variables

The importance of the pigments in the leaves in controlling the seasonal variation

of canopy photosynthetic capacity have been emphasized by many previous studies

(Wu et al., 2016; Croft et al., 2017; Alton, 2017; Gitelson et al., 2014). Our studies sug-

gested that the assimilation rate at leaf level can be improved when considering the

total light absorption by chlorophyll in addition to the energy partitioning for pho-

tochemistry. Some other studies suggested that the photochemical yield can track

the seasonal variation of the ecosystem photosynthesis (Yang et al., 2016). How-

ever, the relationship between the seasonal variation of GPP and ChlF estimated

photochemical yield is different for spring and autumn. This can be explained by

the variation of the leaf area and the photosynthetic pigments concentration in the
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leaves. However, the variation of these variables may also correlate with the sea-

sonal variation of photochemical yield, therefore the seasonal GPP variation also

exbihited relatively high correlation with photochemical yield without consinder-

ing the variation of PAR absorption by the photosynthetic tissues.

Although the PAM based ChlF estimation can be used for photochemistry yield

calculation, the satellite retrieved SIF is different and cannot be directly used to de-

rive this photochemistry yield. However, as we have pointed out in the method, SIF

signal shared the APARchl term with GPP and the variation of SI Fyi eld also closely

related to the variation of the LUE (Guanter et al., 2014; Guan et al., 2016). In ad-

dition, under unstressed condition, SI Fyi eld and LUE are reltively constant when

radiation is moderate. However, many recent studies suggested the variation of the

escaping coefficient ( fesc ) is strongly wavelength dependent and are needed to pro-

vide better GPP estimation when radiation quality (direct or diffuse) is considered

(Goulas et al., 2017; Liu et al., 2017b).

Our canopy level SIF measurements showed that a majority of the variation can

be explained by the proxy of APARchl . Three vegetation indices did not exhibited a

significant difference in explaining the variation. The addition of FWI does not sig-

nificantly increase the predictive power, which may be caused by three reasons: (1)

the uncertainty related to the observations, especially SIF. Since the QE-Pro spec-

trometer usually have long integration time (from seconds to maixmum of 30 sec-

onds), changing the illumination condition will cause unstable or biased SIF re-

trievals. (2) the limitation of the soil water condition on photosynthesis is non-

linear. Soil water becomes a limiting factor unless a threshold is reached and the

limitation may be also ralated to air temperature and/or VPD. (3) within a diurnal

cycle, φF also changes with the change of irradiance. This process is related to the

optimazation of energy partition for photosynthesis and will affect the SIF-APARchl
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relationship (Porcar-Castell et al., 2014). However, for satellite observations, the

overpass time mostly corresponds to higher radiation and the variation ofφF is lim-

ited.

2.4.2 Solar induced chlorophyll fluorescence as an indicator of vegetation drought

stress

Drought limits photosynthesis from both the physiological control, which is re-

lated to the stomatal closure (Flexas & Medrano, 2002), decrease enzyme activity

and mesophyll conductance (Grassi & Magnani, 2005), as well as the canopy con-

trol, which is related to the decrease leaf area or the decreased pigments in the leaf

(Zhang et al., 2016f). It is very important to separate these two controls so that both

process can be modeled individually and precisely. The two drought events hap-

pened in year 2017 give a very good chance to investigate how different severity

drought events can be detected by SIF, and what information is embeded in the SIF

signal during the drought and recovery period.

The canopy control is related to the longer term changes either related to the

leaf area or the pigments, while the physiological control is more instantly respon-

sible to the environmental changes within a diurnal cycle. The first drought event

triggered neither the canopy nor the physiological limitation. Although the root

zone soil moisture also declined, plants still get enough water for transpiration. The

follow-up recovery period (R1) also experienced higher SIF values and no drought

lagecy effects. The second drought event (D2) sustained a much longer period with

low soil water content. However, the limitation during drought were mostly physio-

logical since the early morning still had a relatively high fPAR×SI Fyi eld while during

the midday, SI Fyi eld dropped because of environmental stress and recovered in the

late afternoon. Since the second drought is more severe, it also exhibited a lagecy
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effect, which decreased the fraction of PAR being absorbed. And during the R2 pe-

riod, the physiological control is limited and did not induced an obvious midday

depression of fPAR×SI Fyi eld .

Previous studies that focused on the canopy limitation during drought most

uses LAI or NDVI as a indicator of canopy change (Ji & Peters, 2003; Ciais et al., 2005;

Reichstein et al., 2007). However, the canopy change which controled the light ab-

sorption caused by drought can be separated to two category: (1) change of total

leaf area and (2) change of pigments within each leaf. Both of which contribute to

the light absorption by the photosynthetic pigments of the entire canopy and are

more related to the canopy photosynthetic capacity. In our study, we found differ-

ent responses of vegetation indices. The chlorophyll related vegetation indices (EVI,

MTCI) showed higher sensitivity during the R2 period than the leaf area related VI

(NDVI) (Zhang et al., 2016f; Dong et al., 2015; Wagle et al., 2014). When the leaves

become brown after a drought, the leaf quantity does not change much while the

chlorophyll concentration declines significantly. This is also supported by our in

situ LAI and chlorophyll content measurements. However, the decrease is still not

strong enough when compared with a 39% drop of fPAR×SI Fyi eld . Some of which

may be also attributed to the drop related to SI Fyi eld . These results are also consis-

tent with previous studies which showed satellite retrieved SIF signal can be a good

indicator for soil moisture during drought period (Sun et al., 2015).

2.5 Conclusion

Solar induced chlorophyll fluorescence have proved to have great potential to track

the seasonal variation of the photosynthesis activities. In this study, using the ob-

servations from both the leaf level ChlF and canopy level SIF, we have shown that
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the seasonal variation of leaf level assimilation can be imporved by incorporating

the chlorophyll content in the leaf. The canopy level SIF can be well explained by

the absorption of PAR by chlorophyll, and environmental stress including soil water

content are responsible for lower SIF values.

Canopy level SIF also showed higher sensitivity to drought stress than optical

vegetation indices. SIF signal contains the information of both physiological and

canopy limitation on photosynthesis. The lagecy effect of drought stress also changed

the photosynthetic pigments in the leaf and can be tracked by both SIF and vege-

tation indices. The results of this study demonstrated the advantage of SIF in mon-

itoring the drought impact on vegetation photosynthesis than tradational optical

vegetation indices and suggested that in situ and satellite retrieved SIF can be used

as benchmarks to improve earth system models in tracking the seasonal variation

of GPP and drought responses.
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2.A Appendix

2.A.1 Data acquisition using SpecFluo system and processing

The FluoSpec system is a integrated canopy reflectance and solar-induced chloro-

phyll fluorescence measuerement system. It uses a Raspberry Pi 3 micro computer

as the controller and which is customizable and energy efficient.

A program written in C language using the "seabreeze" library is used to con-

trol the two spectrometers. A detailed operation process is shown in Figure 2.A.1.

The major difference between the two spectrometers is that the QE-PRO is equiped

with a Thermoelectric cooler (TEC) and a internal shutter. The TEC can adjust the

temperature to ±30°C from the ambient. The operating temperature for QE-PRO is

set to -10°C to get higher accuracy. Since ice on the charge-coupled device (CCD)

will greatly affect the spectrum measuerement, in every measuerement cycle, the

TEC is first heated to 20°C to evaporate possible water on CCD. The internal shutter

will also close to get two dark measurement using the optimum integrating time for

both irradiance and radiance measurement.

The post-processing of the raw digit number (DN) value to irradiacne and ra-

diance includes several steps. (1) Dark current correction. For HR2000+, we used

the average of electrical dark values as the dark current, and were subtracted from

all DN values. For QE-PRO, the dark current measurement are the corresponding

dark measuerement with the internal shutter closed. (2) Non-linearity correction.

Both HR2000+ and QE-PRO uses a 7 order polynomial to correct the non-linearity,

the correction factors were obtain from each spectrometer. The final irradiance and

irradiance values were calculated using the equation below:

IP =CP ×
(

SP

T × A×dLP

)
(2.A.1)
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where Ip is the spectral flux density at wavenumber P , CP is the calibration file ob-

tained using a light source during the radiometric calibration. SP is the sample

spectrum after dark and non-linearity correction. T is the integration time. A is

the collection area and dLP is the wavelength spread.
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Figure 2.A.1: A work flow for FluoSpec system to obtain irradiance and radiance
measurement of the canopy from HR2000+ and QE-PRO.
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Figure 2.A.3: The seasonal and diurnal variation for SIF during the peak growing
season. The SIF is separated for (a) clear day and (b) cloudy day since SIF is greatly
affected by the solar radiation.
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Chapter 3: On the relationship between sub-daily instantaneous and

daily total gross primary production: implications for interpreting

satellite-based SIF retrievals

Abstract

Spatially and temporally continuous estimation of plant photosynthetic carbon fix-

ation (or gross primary production, GPP) is crucial to our understanding of the

global carbon cycle and the impact of climate change. Besides spatial, seasonal

and interannual variations, GPP also exhibits strong diurnal variations. Satellite

retrieved solar-induced chlorophyll fluorescence (SIF) provides a spatially contin-

uous, but temporally discrete measurement of plant photosynthesis, and has the

potential to be used to estimate GPP at global scale. However, it remains unclear

whether the seasonal time series of SIF snapshots taken at a fixed time of the day

can be used to infer daily total GPP variation at spatial and seasonal scales. In this

study, we first used GPP estimates from 135 eddy covariance flux sites, covering a

wide range of geographic locations and biome types, to investigate the relationship

between the instantaneous GPP (GPPi nst ) and daily GPP (GPPd ai l y ) on the sea-

sonal course for different times of the day. Latitudinal and diurnal patterns were

found to correspond to variations in photosynthetically active radiation (PAR) and

light use efficiency (LUE), respectively. We then used the Soil-Canopy Observation

Photosynthesis and Energy Balance (SCOPE) model and the FluxCom GPP product

to investigate the instantaneous and daily SIF-GPP relationships at five flux tower

sites along a latitudinal gradient and at a global scale for different biome types. The

results showed that daily SIF had a stronger linear correlation with daily GPP than

instantaneous SIF at the seasonal scale, with an instantaneous to daily SIF conver-

sion factor following the latitudinal and seasonal pattern driven by PAR. Our study

39



highlights the necessity to take the latitudinal and diurnal factors into consideration

for SIF-GPP relationship analyses or for physiological phenology analyses based on

SIF.

3.1 Introduction

Photosynthetic carbon fixation by plants is the most influential CO2 flux connecting

the atmosphere and the biosphere. Every year, approximately 120 Pg carbon is fixed

by the terrestrial ecosystems through photosynthesis, providing food and materi-

als for human beings while also largely driving the global carbon cycle (Beer et al.,

2010). The underlying ecophysiological mechanisms controlling this biochemical

process have been long studied, mostly at the leaf or molecular scale (Farquhar

et al., 1980; Krause & Weis, 1991). Actual estimation of the photosynthetic exchange

flux at the ecosystem scale, also known as gross primary productivity (GPP), only

became practical in the 1990s with the emergence of the eddy covariance (EC) tech-

nique (Baldocchi et al., 2001). EC flux towers measure the net ecosystems exchange

(NEE) which can be further partitioned into GPP and ecosystem respiration (Lass-

lop et al., 2010; Reichstein et al., 2005; Wohlfahrt & Gu, 2015). These ground obser-

vations have been critical to the development and testing of models used to simu-

late GPP at a larger scale, but the performance of these models is still not satisfac-

tory, with large discrepancies existing among different models (Anav et al., 2015).

Using observations as a constraint can help to improve the model performance so

that models may better predict the global carbon cycle under future climate scenar-

ios (Luo et al., 2011; Peng et al., 2011b). However, different types of GPP variations

need to be taken into consideration when conducting this model-data fusion.

Plant photosynthesis is powered by light and affected by numerous environ-
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mental factors and plant phenological phases. Its variation is often characterized

by four aspects: (1) Diurnal variation: as the solar radiation has a diurnal cycle, it

directly affects the incoming energy and carbon assimilation of plants. Other envi-

ronmental or physiological variables affecting stomatal conductance and CO2 up-

take, such as air temperature, vapor pressure deficit (VPD), or leaf water potential

also show diurnal cycles. (2) Seasonal variation: driven by the climate (e.g., temper-

ature, water availability, radiation) seasonality and plant phenology, it represents

one of the most important components of GPP overall variability. Most in situ and

remote observations are also conducted at this scale. (3) Spatial variation: due to

the spatial distribution of plant species, latitudinal pattern of incoming solar radi-

ation, topography, and spatial variations in climate and soil properties, GPP also

exhibits strong spatial variations. (4) Interannual variation: usually driven by cli-

mate anomalies and land cover changes, it is one order of magnitude smaller than

other types of variations and are therefore the most challenging level for models to

simulate accurately (Verma et al., 2015).

For some methods, e.g., the eddy covariance (EC) technique, a single site can

capture ecosystem to landscape-scale diurnal, seasonal, and interannual variations

because the measurement is continuous at a high sampling frequency (Aubinet

et al., 2012). However, EC sites are spatially dispersed and cannot provide spatially

continuous measurements (Schimel et al., 2015). In contrast, remote sensing tech-

nologies usually have high spatial coverage with polar orbiting (low Earth orbiting,

LEO) satellites, while the continuous temporal sampling is generally not possible.

For LEO satellite platforms, we can only get from zero to possibly a few observa-

tions per day depending on the swath width of the instrument and latitude (mul-

tiple observations per day with a single instrument are only possible at high lati-

tudes and with a wide swath instrument, e.g. (Guanter et al., 2015)). If observing
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conditions are not favorable, e.g., owing to clouds or aerosols, a valid observation

may not be present over several days (Sims et al., 2005). For optical remote sensing

that uses vegetation indices (VIs) to quantify vegetation canopy and leaf properties

that change relatively slowly, usually over the course of weeks to months, this low

sampling frequency is adequate to quantify the spatial, seasonal and interannual

variations (Guan et al., 2015; Huete et al., 2006; Zhang et al., 2016d). The diurnal

variation of satellite observed VI (an indicator of vegetation greenness) or canopy

coverage is mostly caused by leaf inclination or bidirectional reflectance (Los et al.,

2005). As long as the satellite overpass time is stable, these effects are minor and a

VI measurement at most time of the day (when the satellite and solar zenith angles

are low) may be a good proxy of the VI for that day (Chen 1996). However, as the

sun-sensor geometry also gradually changes at seasonal scales, seasonal dynamics

of VIs should take this effect into consideration, especially in tropical regions where

backscattering and forward scattering shift within a year (Bi et al., 2015; Morton

et al., 2014).

Following the successful retrieval of solar-induced chlorophyll fluorescence (SIF)

signals from satellite sensors (Frankenberg et al., 2011; Joiner et al., 2013, 2012;

Guanter et al., 2012), we have access to a new type of vegetation observation, which

is based on energy re-emitted by plants rather than reflected. SIF is a small amount

of energy re-emitted during the light reaction of the photosynthesis process (Baker,

2008; Porcar-Castell et al., 2014). Studies have shown that it is highly correlated

with the energy absorbed by chlorophyll pigments and the photosynthetic electron

transport (Zhang et al., 2014b, 2016e). Like GPP, SIF is also driven by photosyn-

thetically active radiation (PAR), and has a strong diurnal cycle embedded within

the seasonal, spatial, and interannual variations. Previous studies attempted to use

satellite-based SIF to estimate GPP, however, this relationship was only tested at
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individual sites for cropland or broadleaf forest (Guanter et al., 2014; Wagle et al.,

2016; Yang et al., 2015). Moreover, these studies mostly compared satellite derived

instantaneous SIF with the daily GPP. The discrepancies between the underlying dif-

ferent temporal scales, i.e., instantaneous SIF observation at satellite overpass time

vs. daily integrated GPP, so far have not been fully evaluated.

Previous studies have shown that SIF and GPP are linked through the photon

partitioning after absorption by plant chlorophyll (Genty et al., 1989). Absorbed

photons undergo three different pathways (i) forming the electron transport chain

and chemical energy further used for the Calvin Cycle (φp ), (ii) being dissipated as

heat (φd ), or (iii) being reemitted as fluorescence (φ f ). These mechanisms can be

used to build up the link between instantaneous GPP and SIF (Damm et al., 2010;

van der Tol et al., 2014, 2009). Many studies have investigated these relationships at

the scale of sub-seconds to minutes, but the spatial and seasonal variation of this

relationship remains unclear (Porcar-Castell et al., 2014). In addition, because SIF

measurements from satellites are usually not continuous over time, we still need to

understand the scale conversion from instantaneous to daily sums, i.e., whether a

snapshot of photosynthetic activity at a specific time of the day can represent the

daily total carbon fixation at both spatial and temporal (seasonal and interannual)

scales. Sims et al. (2005) and Ryu et al. (2012) showed that the midday value of GPP

or ET can be a representative of daily or 8-day value. But those studies only fo-

cused on a limited number of sites and the MODIS overpass time (10:00 11:00 and

13:00 14:00). As the satellites from which SIF retrievals can be made have differ-

ent overpass times (Figure 3.1), it is unclear how that can affect the relationships

between instantaneous SIF and daily GPP at different locations.

This study aims to fill those gaps with both observations and modeling approach:

we used eddy flux data from 135 sites, covering a wide range of geographical regions
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and biome types, the global GPP product from FluxCom, and SIF from Global Ozone

Monitoring Experiment 2 (GOME-2) and Orbiting Carbon Observatory 2 (OCO-2),

to explore the instantaneous-daily relationship among GPP, PAR, light use efficiency

(LUE) and SIF. In particular, we focused on the following questions which have not

yet been addressed: (1) What is the relationship between the daily total GPP and in-

stantaneous GPP at different times of day (TOD) and different locations? (2) What

is the cause of these spatial and temporal patterns? (3) Does SIF also exhibit these

spatio-temporal patterns and how does this affect our interpretation of the SIF-GPP

relationship?

3.2 Materials and Method

3.2.1 GPP from FLUXNET data base and preprocessing

We used eddy flux data from 135 sites covering a large variety of biome types. The

flux dataset was acquired from the FLUXNET 2015 release (December 2015, http:
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Figure 3.1: Schematic graph showing the diurnal course of GPP or SIF normalized
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are also indicated.
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//fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The spatial distribution and the

information about each site can be found in Appendix (Figure 3.A.1, Table 3.A.1).

This dataset was processed using a standardized protocol, which enabled us to make

a cross-site comparison (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-

processing/). To answer the question whether the seasonal cycle of instantaneous

GPP (GPPi nst ) at a certain time of day can represent the seasonal cycle of the daily

GPP (GPPd ai l y ), we used both the original half-hourly data and the daily data. The

half-hourly data were aggregated into 2-hour bins from 6:00 am to 6:00 pm to rep-

resent the GPPi nst . A rigorous data quality check was applied during this aggrega-

tion process: 1) Only the half-hourly and daily data in the weeks with more than

75% of valid (not gap-filled) radiation and net ecosystem exchange (NEE) observa-

tions were used. 2) To reduce the uncertainty related to the NEE partitioning, we

compared the GPP estimates from both the daytime method (light response curve;

Lasslop et al. (2010)) and the nighttime method (nighttime NEE as respiration; Re-

ichstein et al. (2005)) at weekly scales. The GPP estimation was considered unbiased

only if the GPP from both methods were within 20% of each other, in which case GPP

was then calculated as the average of both methods. We did not use the original

half-hourly data as it would generate too many GPPi nst −GPPd ai l y comparisons;

six two-hour bins were enough to get the diurnal change of their relationship.

3.2.2 Relationship between instantaneous and daily GPP at seasonal scale across

sites

The relationship between daily GPP (GPPd ai l y ) and instantaneous GPP (GPPi nst )

can be built for each day using a conversion factor (γGPP ):

γGPP = GPPd ai l y

GPPi nst
(3.1)
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This conversion factor can be calculated for each site each day at seasonal scale.

If γGPP at one site has little variation across time, it indicates that GPPi nst can rep-

resent GPPd ai l y at temporal scale. Similarly, if γGPP has little variation across sites,

it indicates that GPPi nst can represent GPPd ai l y at spatial scale. For simplicity, we

built linear regressions with zero intercept between GPPd ai l y and GPPi nst for each

site at seasonal scale; a high R2 indicates γGPP is seasonally stable for a given site

and γGPP can be calculated as the regression slope (Figure 2.2). The variability of re-

gression slopes (γGPP ) across sites is indicative of the variability of the relationship

across space.

3.2.3 Relationship between instantaneous and daily LUE at seasonal scale across

sites

LUE is a very important parameter that connects light absorption by the ecosystem

and the carbon fixation through photosynthesis (Monteith, 1972). The instanta-

neous and daily light use efficiency (LU Ei nst and LU Ed ai l y , respectively) are de-

fined as follows:

LU Ei nst = GPPi nst

f PAR ×PARi nst
(3.2)

LU Ed ai l y =
GPPd ai l y

f PAR ×PARd ai l y
(3.3)

The GPPi nst and APARi nst were also averaged over 2-hours from 6:00 am to 6:00

pm local time for each site. Within one day, the diurnal variation of the fraction of

the PAR absorbed by the canopy (fPAR) is relatively small (Fensholt et al., 2004) and

is neglected. Following the definition of γGPP , we can also define the γLU E , i.e., the
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ratio of LU Ed ai l y over LU Ei nst .

γLU E = LU Ed ai l y

LU Ei nst
=

GPPd ai l y

APARd ai l y

GPPi nst
APARi nst

≈
GPPd ai l y

PARd ai l y

GPPi nst
PARi nst

= ELU Ed ai l y

ELU Ei nst
(3.4)

Similarly, we did not calculate γLU E for each day, but used the regression slope

between daily and instantaneous ecosystem LUE (ELU Ed ai l y =GPPd ai l y /PARd ai l y

and ELU Ei nst = GPPi nst = APARi nst , respectively) for each site. The use of ELUE

rather than LUE avoided the uncertainties related to the calculation of fPAR.

3.2.4 Analytical conversion from instantaneous to daily APAR

Both SIF and GPP are driven by the incident solar irradiance and therefore both

exhibit a diurnal cycle. Thus, the relationship between the daily APAR (APARd ai l y )

and instantaneous APAR (APARi nst ) is very important to determine the relationship

between SI Fd ai l y and SI Fi nst , and GPPd ai l y and GPPi nst . As diurnal changes in

incoming solar radiation are mostly determined by the solar zenith angle (SZA), we

can calculate the conversion factor between APARi nst and APARd ai l y (γAPAR ) as

below:

LU Ei nst = GPPi nst

f PAR ×PARi nst
(3.5)

This approach did not consider the minor diurnal variation of fPAR and the cloud

and atmospheric scattering effect on PAR. The cos(SZ A)d ai l y can be calculated fol-

lowing the method documented in Frankenberg et al. (2014):

LU Ei nst = GPPi nst

f PAR ×PARi nst
(3.6)

The SZA for each site was calculated using the "RAtmosphere" package (https://

cran.r-project.org/web/packages/RAtmosphere/index.html) in R language (https:
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//www.r-project.org/). The "SZA" function can calculate the SZA of a specific loca-

tion based on its latitude, date, and local time of day. The instantaneous SZA was

calculated at a local time between 7:00 to 17:00 with a time-step of two hours corre-

sponding to the mid-time of each GPP aggregation bin. The cos(SZ A)d ai l y was cal-

culated numerically as the integral of cosâĄą(SZ A(t ))d t at a 10-minute time-step.

Similarly, we used a linear regression between cos(SZ A)d ai l y and cos(SZ A)i nst to

estimate γAPAR at different times of the day (TOD). The regression was forced to

pass through the origin and the regression slope represented γAPAR for a specific

location. Because SZA is a function of local time and latitude, γAPAR only varies

with time and latitude.

3.2.5 SCOPE model simulation

To investigate the relationship between instantaneous and daily SIF (SI Fi nst and

SI Fd ai l y , respectively), and the GPP and SIF relationship both at bi-hourly and daily

scales, we used the SCOPE model (van der Tol et al., 2014, 2009) to simulate both

SIF and GPP. To test whether γSI F (SI Fd ai l y /SI Fi nst ) also has a latitudinal pattern

similar to GPP, we selected five grassland or savannas sites (DK-ZaH, US-Ivo, DK-

Eng, US-Var, CG-Tch) along the latitude where the cosines of latitudes of these sites

are close to 0.2, 0.4, 0.6, 0.8, and 1 (Table 3.A.1, Figure 2.A.1). We chose the grass-

land/savannas biome types since they are broadly distributed at different latitudes

and their canopy structure is relatively simple.

Chlorophyll a + b content (Cab) and maximum carboxylation rate (Vcmax) and

the leaf area index (LAI) are the most influential parameters for simulating SIF and

GPP with the SCOPE model (Verrelst et al., 2015; Zhang et al., 2016b). For Cab, we

followed the method used in previous studies (Zhang et al., 2014b, 2016b). The

Cab was inversely estimated from a lookup table generated by the forward simu-
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lation of the PROSPECT model with a large number of parameter combinations.

The 8-day Enhanced Vegetation Index (EVI) and MERIS Terrestrial Chlorophyll In-

dex (MTCI (Dash & Curran, 2004)) for those five sites were used as inputs and Cab

was inverted at 8-day intervals. All other climate inputs were obtained from the flux

tower measurements, and the LAI was obtained from the MODIS LAI product using

the Oak Ridge National Laboratory MODIS global subsets tool with a footprint of 5

km to match with that of MTCI (https://modis.ornl.gov/cgi-bin/MODIS/GLBVIZ_

1_Glb/modis_subset_order_global_col5.pl). The maximum carboxylation rate at 25

°C(Vcmax) were set to constant for each site following previous studies (52µmol m−2

s−1 for C3 grass and 30 µmol m−2 s−1 for C4 grass) (Kattge et al., 2009; Wullschleger,

1993; Zhang et al., 2016b). Other unspecified parameters were set to their default

values in SCOPE v1.61 (https://github.com/Christiaanvandertol/SCOPE).

3.2.6 Comparison of satellite retrieved SIF and GPP at global scale

Since SIF can also be expressed as a function of APAR (SIF=APAR×FE, FE: fluores-

cence efficiency), we can approximate SI Fd ai l y from SI Fi nst by assuming that FE

has little variation at a diurnal scale. This is a first-order approximation since two

contributing factors of FE, namely quantum yield for fluorescence (φ f ) and escape

coefficient for near-infrared SIF ( fesc , how much SIF emitted by individual leaf can

escape the canopy without being re-absorbed by other leaves) have a much smaller

variation compared to the diurnal variation of PAR (data not shown). The SI Fd ai l y

can be approximated as:

LU Ei nst = GPPi nst

f PAR ×PARi nst
(3.7)
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where SI Fi nst is the satellite retrieved SIF and PARd ai l y is analytically estimated

from SZA, PARi nst can be estimated from the SZA when the observation was made,

which is embedded in the GOME-2 and OCO-2 SIF product. We did not use the

PARi nst for the satellite overpass time (e.g., 9:30 am for GOME-2 and 1:30 pm for

OCO-2) since that overpass time only applies for equator, higher latitudes may have

some variation. In this study, we used both the GOME-2 SIF v26 product from the

MetOp-A satellite (Joiner et al., 2013, 2016), and the OCO-2 SIF Lite product (B7101r)

(Frankenberg et al., 2014). The MetOp-A satellite has an overpass time of 9:30 am

and SIF was retrieved around the wavelength of 740 nm using a principle compo-

nent analysis algorithm (Joiner et al., 2013). These retrievals had a footprint of 40

km × 80 km (40 km × 40 km after 15 July 2013) and were further aggregated to a

0.5°× 0.5° monthly gridded product. The OCO-2 SIF was retrieved around 757 nm

using an iterative least squares fitting technique. Each day, around 100000 sound-

ings were collected on land with a footprint of 2 km × 1.3 km. We aggregated the

raw SIF retrievals to monthly 0.5°× 0.5° gridded product following the quality check

instructions. Since this dataset only became available since September 2014, it can-

not be directly compared with GPP dataset. We used 2 year of data (2015, 2016) to

calculate the average SIF of each month. In this way, we ignored the interannual

variation and just focused on the seasonal variation.

We used the monthly GPP product from FluxCom with a spatial resolution of

0.5°× 0.5°. The FluxCom GPP was generated using three machine learning algo-

rithms, combined with GPP estimated from the daytime method (Lasslop et al.,

2010) and nighttime method (Reichstein et al., 2005) from the EC flux towers, and

the remote sensing VIs and meteorological variables (Jung et al., 2017; Tramontana

et al., 2016). The averaged GPP from 6 methods (3 machine learning algorithm × 2

partitioning methods) between 2007 and 2013 were calculated to match the GOME-

50



2 SIF data availability. To compare with the OCO-2 SIF, GPP from 2007 to 2013 were

used to calculated the average GPP for the 12 months since these two products do

not have overlapping period. Because monthly gridded OCO-2 SIF do not cover the

entire global land surface due to the satelliteâĂŹs orbit, we masked the GPP with

OCO-2 SIF for the corresponding months before comparison.

To compare the SIF-GPP relationship within each biome type, we aggregated the

MODIS MCD12C1 land cover product (https://lpdaac.usgs.gov/dataset_discovery/

modis/modis_products_table/mcd12c1) to 0.5°× 0.5° spatial resolution to match

with GPP and SIF. For each 0.5°× 0.5° gridcell, we calculated the percentage of each

land cover type. Only the gridcells dominated by one land cover type (more than

80%) were considered as "pure" gridcells and used for further analysis (Zhang et al.,

2016d). Since the northern hemisphere and southern hemisphere have different

growing season, SIF and GPP were averaged within each biome type for each hemi-

sphere.

3.3 Results

3.3.1 Comparison between instantaneous GPP and daily GPP at seasonal scale

Figure 3.2 shows a comparison between GPPd ai l y and GPPi nst at seasonal scale for

the Tchizalamousite site in the Congo (CG-Tch) as an example. All GPPi nst values

at different times of the day (TOD) generally followed the variation of GPPd ai l y , and

the γGPP was also relatively stable across time for TODs between 8:00 16:00 (Figure

3.2(a, b)). The regression analysis between GPPd ai l y and GPPi nst also showed a

similar pattern: TOD with less γGPP variation exhibited a higher R2 and the regres-

sion slope between GPPd ai l y and GPPi nst corresponded to the value of γGPP . This

confirms the feasibility of using regressions between GPPd ai l y and GPPi nst to in-
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vestigate the seasonal and spatial variations of γGPP . Using the correlation analysis

between GPPd ai l y and GPPi nst from all 135 sites at a seasonal scale, we gathered

information of the coefficient of determination (R2) and the regression slopes for

each site. For most sites, GPPi nst showed a good correlation with GPPd ai l y , espe-

cially for GPPi nst between 8:00 to 16:00 (Figure 3.3a). The correlation was lower

for very early morning and late afternoon, but the average R2 values for these two

periods were still higher than 0.8. The regression slopes between GPPd ai l y and

GPPi nst also varied for different TODs. The averages of regression slopes slightly

declined from early morning to midday and increased afterwards. For the period

between 8:00 to 16:00 when GPPd ai l y and GPPi nst relationships were stronger, the

regression slopes also showed less variation. We also explored the spatial patterns of

the regression slopes between GPPd ai l y and GPPi nst , by comparing the regression

slopes with the cosine of the latitude for each site (Figure 3.4). The regression slopes

increased from tropical regions (cos(latitude) = 1) to polar regions (cos(latitude) =

0) for most TODs. Between 8:00 to 16:00, the regression slopes between GPPd ai l y

and GPPi nst can be approximated as a function of cos(latitude), with relatively high

R2 during the midday period (0.81 and 0.87). Biome types did not show much ef-

fect on this relationship. Using the analytical approach based on the calculated SZA

(Eq. 3.5), we obtained the γAPAR at each latitude. The resultant black lines in Fig-

ure 3.4 generally well-predicted this latitudinal pattern, especially between 8:00 to

16:00. The R2 between GPPd ai l y and GPPi nst also exhibited a latitudinal pattern

that could be predicted by the analytical solution of APAR variation (Figure 3.A.2).
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TOD 10−12
y=0.36*x

R2 =0.95
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TOD 12−14
y=0.36*x

R2 =0.96
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TOD 14−16
y=0.41*x

R2 =0.93
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TOD 16−18
y=0.94*x

R2 =0.76

Figure 3.2: Seasonal variation of (a) GPPi nst , GPPd ai l y , and (b) γGPP of differ-
ent time of day from a savanna flux tower site CG-Tch. (c) The regression be-
tween GPPd ai l y and GPPi nst from different times of the day (TOD). R2 and the
regression slope for each TOD are shown at the top left corner and will be used
for cross-site statistics. Large gaps in 2007 and 2009 are observations that did
not pass the quality checks. Note that the units for GPPd ai l y (g C m−2 day−1) and
GPPi nst (µmol CO2 m−2 s−1) are different.
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3.3.2 Comparison between sub-daily instantaneous LUE and daily LUE at seasonal

scale

Figure 3.5 shows the comparison between the instantaneous LUE and daily LUE for

each site at the seasonal scale. Except for the early morning and late afternoon,

LU Ei nst values were generally highly correlated with LU Ed ai l y , and this correlation

was highest during the middle of the day (10:00 14:00). The regression slopes be-

tween LU Ed ai l y and LU Ei nst were also relatively stable for TODs when R2 values

were high. In addition, the slope showed an "U" shape along time with the low-

est value being reached during the middle of the day (Figure 3.5b). The regression
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Figure 3.3: Boxplots of bi-hourly (a) coefficient of determination (R2) and (b) lin-
ear regression slope between the daily and instantaneous GPP (γGPP ) at seasonal
scale across 135 flux tower sites. The linear regressions were forced to pass the
origin. The unit of the instantaneous GPP was converted from µmol CO2 m−2 s−1

to g C m−2 day−1 so that the regression slope is unitless.
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slopes were close to 1 around 10:00 or 14:00, which indicated that the LU Ei nst at

those times can be an approximation of LU Ed ai l y . The difference between the fit-

ted γGPP curve (red) and simulated γAPAR curve (black) at different TODs in Figure

3.4 can be explained by the diurnal change of the LU Ed ai l y and LU Ei nst relation-

ship (γLU E ). This diurnal change of γLU E is caused by light saturation of GPP as

shown in Figure 3.6. GPP increases almost linearly with APAR until a light saturat-

ing period is reached, when GPP becomes less responsive to radiation (Figure 3.6b).

This lead to lowest LUE values close to midday, when incident PAR and APAR are
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Figure 3.4: Latitudinal distribution of regression slopes between daily and instan-
taneous GPP (γGPP ). All biome types (shown in different colors) are aggregated to
forest (ENF, EBF, DNF, DBF, MF), shrubland (WSA, OSH, CSH), grassland (GRA,
WET, SAV), and cropland (CRO), as shown in different colors. For the full names
of the biome types, please refer to the Appendix Table 3.A.1. Black lines repre-
sent the relationship derived from the analytical approximation for γAPAR and
cos(latitude). The red dashed lines represent the fitted logarithmic regressions
for all sites and not shown in (a) and (f ) since the relationship was not significant.
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the highest (Figure 3.6a). The light response curve also suggests that the LU Ei nst

around 9:00 and 15:00 solar time is close to the LU Ed ai l y . This explains the overlap

of the fitted γGPP and simulated γAPAR curves during 8:00–10:00 and 14:00–16:00;

and the higher γGPP between 10:00 14:00 over the latitudinal gradient (Figure 3.4).

3.3.3 Comparison between simulated instantaneous and daily SIF from the SCOPE

model

To explore whether the instantaneous SIF (SI Fi nst ) and daily SIF (SI Fd ai l y ) also ex-

hibit a similar latitudinal pattern, we used the SCOPE model and simulated both SIF

and GPP for five grassland (or savannas) sites, which cover a wide latitudinal range.

The model was run at 30-minute intervals for one year to be consistent with the EC
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Figure 3.5: Comparison between bi-hourly LU Ei nst and LU Ed ai l y across flux
tower sites at the seasonal scale. For each site, the correlation and regression
slope between LU Ed ai l y and LU Ei nst (γLU E ) at seasonal scale were calculated.
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data. The simulated GPP and SIF data generally agreed well with the EC tower de-

rived GPP and the SIF retrievals from the GOME-2 satellite instrument (Figure 3.A.3,

3.A.4).

Using the SCOPE model, we found that SIF also followed a similar latitudinal

pattern driven by the seasonal variation of PAR. Since we only used one year of data,

the γGPP values for the five sites were sometimes higher than the fitted relationship

for some times of day. However, for 8:00 10:00 and 14:00 16:00 when the fitted γGPP

was close to the analytical γAPAR , the regression slopes for simulated SIF from the
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Figure 3.6: (a) Dynamic of sub-daily GPP, APAR, and LUE, and (b) the relation-
ship between APAR and GPP at sub-daily scale. One clear day (June 13th, 2014) of
data from the US-WCr site is used as an example. The GPP is estimated from the
daytime (light response curve) method. All the indicators are normalized by their
maximum values. The two vertical dashed lines in (a) indicate the time at which
LU Ei nst equals to LU Ed ai l y . The slopes of the solid lines in (b) represent LU Ei nst

(GPP nor mali zed
i nst /APARnor mali zed
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five sites were close to that of simulated GPP. For 10:00 14:00 when the fitted γGPP

was higher than the analytical γAPAR , the regression slopes for simulated GPP were

also higher than those of simulated SIF. Unlike GPP, which has a light saturation

period that makes the fitted γGPP deviate from the γAPAR during the midday, SIF did

not show much light saturation and directly followed the γAPAR latitudinal pattern.

We further compared the relationship between the simulated instantaneous SIF

and the daily total GPP at the seasonal scale for these five sites (Figure 3.5). The

linear relationships between GPP and SIF were usually stronger at midday for low

to mid- latitude sites, i.e., CG-Tch, US-Var, DK-Eng. But this advantage was not

evident for higher latitude sites (DK-ZaH). The daily total SIF and daily total GPP
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Figure 3.7: Latitudinal pattern of regression slopes between daily and instanta-
neous SCOPE simulated GPP, SIF, and GPP derived from EC tower (open circles).
Only one year of data is used (Figure 3.A.3). The red dashed line is from the fitted
relationship between daily and instantaneous GPP from EC towers as shown in
Figure 3.4. The black lines represent the γAPAR from the analytical estimation.
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had the highest correlation. For C3 sites (except CG-Tch), the regression slopes for

SIF and GPP exhibited a smaller variation for early morning and late afternoon (CV

= 0.18 and 0.12 for 6:00 8:00 and 16:00 18:00, respectively). While during midday, the

variation was larger (CV = 0.31 and 0.27 for 10:00 12:00 and 12:00 14:00, respectively).

When comparing SI Fd ai l y with GPPd ai l y , the regression slopes for all C3 vegetation

sites tended to converge to a constant value (0.066, CV = 0.10).

3.3.4 GPP-SIF comparison at global scale

Figure 3.9 shows the comparison between SI Fi nst from GOME-2 and OCO-2 and

SI Fd ai l y from analytical approximation with GPP from FluxCom. The SI Fd ai l y showed

a slightly higher linear correlation (R2=0.94±0.08 for GOME-2 and R2=0.94±0.11 for

OCO-2) with GPP than SI Fi nst (R2=0.92±0.11 for GOME-2 and R2=0.88±0.17 for

OCO-2). Except savannas in the southern hemisphere for GOME-2 (0.963 vs. 0.961)

and evergreen needleleaf forest in the northern hemisphere for OCO-2 (0.986 vs.

0.983), all other biome types’ coefficient of determination are higher for SI Fd ai l y

than SI Fi nst . In addition, the regression slopes among all the biome types for both

hemispheres had smaller variation for SI Fd ai l y than SI Fi nst . The use of SI Fd ai l y

rather than SI Fi nst showed better improvement of the GPP-SIF relationship for OCO-

2 than for GOME-2.

3.4 Discussion

3.4.1 The relationship between daily GPP and instantaneous SIF across space and

time

The spatial and seasonal relationship between GPPd ai l y and satellite observed SI Fi nst

is complicated because both SIF and GPP are driven by solar radiation and have di-
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Figure 3.8: Scatter
diagrams showing the
relationship between
the instantaneous
(upper panels) and
daily (bottommost
panel) SIF with daily
GPP as computed
with the SCOPE
model for the five
sites (color coded)
as indicated in the
legend. The solid lines
with different colors
represent the linear
regression between
SIF and GPP.
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urnal and seasonal cycles. In this study, using data from multiple flux tower sites,

which cover a large spatial extent, we investigated the key issues for estimating spa-

tial and seasonal GPP dynamics using satellite-retrieved SIF signals.

To link GPPd ai l y with SI Fi nst , we use:

LU Ei nst = GPPi nst

f PAR ×PARi nst
(3.8)
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Figure 3.9: Comparison between SI Fi nst and SI Fd ai l y from GOME-2 (a, b) and
OCO-2 (c,d) with GPP from FluxCom. Only the biome types with more than 100
gridcells were analyzed. Each point represents the average of SIF or GPP for all
the gridcells within this biome type for each month for northern or southern
hemisphere. For GOME-2, altogether 84 months are used; for OCO-2, 12 months
are used (see methods). The solid lines represent the linear regression for north-
ern hemisphere and the dashed lines represent that for southern hemisphere.
The insets show the boxplot of the coefficients for all the regressions. For the full
names of the biome type, please refer to the Appendix Table 3.A.1
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In our study, we have demonstrated that the γAPAR is related to the latitude,

which is controlled by the seasonal change of day length. As the latitude increases

from tropical to polar regions, the day length during the growing season also in-

creases. The instantaneous PAR observation will be close to the average daily PAR

during the polar daytime (during the peak growing season in summer), but will be

much larger when sun only illuminates for half of the day. We also demonstrated

that the variation of γLU E is related to the observation time mostly caused by the

light saturation of photosynthesis. The combination of γAPAR×γLU E can explain

the latitudinal and diurnal pattern of the GPPd ai l y -GPPi nst relationship. For a spe-

cific satellite, we do not need to take γLU E into consideration as the observation

time is often stable (except for the Polar Regions where multiple observations may

be obtained within one day), but the latitudinal pattern of γAPAR still needs to be

considered. However, when comparing GPP with SIF data from different satellites,

the observation time will affect the γLU E and needs to be taken into account. This

means that the GPP-SIF relationship derived from one satellite cannot be directly

applied to another if the overpass times of the satellites are different.

Simulations using the SCOPE model suggest that γSI F tends to follow γAPAR

during midday (Figure 3.7). This is consistent with the relatively stable fluores-

cence yield (φ f ) under high light intensity found in previous studies (Lee et al.,

2015; van der Tol et al., 2014). But a larger variation of φ f may occur during the

shift from low to high irradiance, i.e., when the non-photochemical quenching be-

gins to take effect and the negative correlation between φ f and φp shifts to posi-

tive (Porcar-Castell et al., 2014). The relatively stable φ f under high light intensity

can also explain the higher GPP-SIF correlation during midday (10:00 14:00) than

early morning or late afternoon for low latitude sites (Figure 3.8). However, this

advantage is not evident for higher latitude sites, where the growing season in sum-
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mer is characterized by a very long daytime length and the PAR is already/still high

at 6:00 8:00 and 16:00 18:00. The regression slopes between GPPd ai l y and SI Fi nst

also had relatively larger variations for midday than early morning or late afternoon,

which may be related to the light saturation: lower latitude sites are more likely to

be light-saturated during the midday than higher latitude sites. It should also be

noted that current version of the SCOPE model did not consider the relationship

between nitrogen content (or chlorophyll a+b) and maximum carboxylation rate

(Vcmax) (Ollinger et al., 2008; van der Tol et al., 2009), therefore the GPP-SIF rela-

tionship may be better evaluated with a variable Vcmax value.

The relationships between LU Ei nst and fluorescence efficiency (F Ei nst , includes

the information of both φ f and the escape coefficient) are still unclear at the sea-

sonal and spatial scale (Porcar-Castell et al., 2014). Recent modeling studies sug-

gested a nonlinear SIF GPP relationship at half-hour scale and a strong linear rela-

tionship at daily and 16-day scale (Damm et al., 2015b; Zhang et al., 2016b). Our

comparison between the GOME-2 SIF and FluxCom GPP also showed higher corre-

lation when using the SI Fd ai l y value. The variations of the regression slopes across

biome types may be related to the C3-C4 species composition (Guan et al., 2016;

Liu et al., 2017a), average cloud cover during the growing season which affects the

direct/diffuse radiation (Gu et al., 2002), canopy characteristics which affect the en-

ergy partitioning in different layers and SIF re-absorption, and environmental limi-

tation of photosynthesis (temperature, water, etc.). These factors together with the

latitudinal pattern need to be taken into account when interpreting the relationship

between the satellite-based SI Fi nst and GPPd ai l y at spatial and seasonal scales. In

addition, since the midday SIF signal is stronger and the F Ei nst is more stable and

close to the daily average, satellites SI Fi nst observations with a midday overpass

time may have a more linear relationship with GPPd ai l y than those with a morning
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or afternoon overpass (Figure 3.10).
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Figure 3.10: Schematic diagram showing the relationships between PAR, APAR,
SIF and GPP at sub-daily and daily scales. The F Ed ai l y and F Ei nst relationship is
close to a constant only under high light intensity, e.g., mid-noon. Abbreviations:
PAR: photosynthetically active radiation; APAR: absorbed photosynthetically ac-
tive radiation; fPAR: fraction of absorbed photosynthetically active radiation; FE:
fluorescence efficiency; SIF: solar-induced chlorophyll fluorescence; LUE: light
use efficiency; GPP: gross primary production; TOD: time of day.

3.4.2 Potential uncertainty for phenological analysis using GOME-2 SIF

As SIF is a measure of energy and has strong diurnal dynamics, the interpretation

of SIF signals at seasonal scale should also be taken with caution. This is directly

related to phenology studies, which used SIF as an indicator of vegetation activ-

ity (Jeong et al., 2017; Joiner et al., 2014; Walther et al., 2016). Previous phenology

studies either used leaf/canopy development or seasonal change of plant physio-

logical properties (e.g., GPP, APAR) (Migliavacca et al., 2015; Piao et al., 2006; Wu &

Chen, 2013; Zhou et al., 2016). The leaf/canopy development measurement can ei-

ther come from in situ observations (Fu et al., 2015) or satellite-based VIs (Zhang
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et al., 2003). For the satellite-based VI studies, the start of the growing season is

usually determined by detecting the maximum change of rate of VI (second order

derivative equals to zero) (Wang et al., 2015; Wu & Liu, 2013; Zhang et al., 2013a), or

using a threshold (Cong et al., 2013; Zhang et al., 2016c). Since VIs have little diurnal

variation, the VIs obtained from different overpass times on a seasonal course can

be regarded as the seasonal vegetation growth. In contrast, SIF is a measurement

of the energy, and its seasonal variation is controlled by both the seasonal variation

of incoming solar radiation, the leaf phenology (fraction of energy being absorbed)

and the photosynthetic physiology (fraction of light being emitted as SIF). The con-

tribution from solar radiation is higher at high latitude since PAR at a specific time of

day also has large seasonal variations. Therefore, phenology derived from satellite-

based SIF measurements cannot be directly compared with phenology derived from

VI measurements.

Another question is whether SIF-based phenology can be comparable with GPP

or net ecosystem exchange (NEE) based phenology (physiological phenology)? As

concluded above, daily SIF has a strong linear relationship with daily GPP within

each specific site and should have an advantage over VI at high latitude evergreen

ecosystems. When doing phenology analysis, each pixel is analyzed in the temporal

domain therefore the latitudinal pattern of instantaneous to daily conversion can

be ignored. Then the question becomes whether the conversion from the SI Fi nst to

SI Fd ai l y is stable across seasons? Figure 3.11(a) shows that the correction factor for

GOME-2 and OCO-2 overpass time is not stable even during the growing season for

the site US-Ivo. This correction factor has larger variations at higher latitudes, and

differs for different satellite overpass times, which may explain the different phe-

nology retrievals of using GOME-2 SIF and GOSAT SIF for boreal forest (Jeong et al.,

2017). To reconcile the discrepancy between SIF and VI observations (Walther et al.,
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2016), we can either calculate the SIF normalized by the incoming solar radiation at

the satellite overpass, represented by the cosine of the solar zenith angle (cos(SZA)).

SIF/cos(SZA) will be a measure of fPAR×F Ei nst and can be used for leaf/greenness

based phenology estimation. Alternatively, we can convert the satellite measured
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Figure 3.11: (a) Relationship between instantaneous PAR at GOME-2 and OCO-
2 satellite overpass and the daily average PAR for site US-Ivo (latitude=68.49°N).
Correction factor for (b) GOME-2 and (c) OCO-2 at different latitude throughout
the year. These correction factors were calculated only considering the PARi nst -
PARd ai l y relationship.

66



SI Fi nst to SI Fd ai l y using Eq. 3.7, which will be closely linked to the daily GPP. This

will give another robust estimation of the photosynthetically active period that can

be compared with site level gas exchange data. However, it should be noted that

many studies show that fPAR also has a diurnal variation which is related to the

SZA, diffused radiation, and LAI (Chen, 1996; Nouvellon et al., 2000), this may affect

the SI Fi nst to SI Fd ai l y conversion using this SZA approximation method.

3.5 Conclusions

As satellite observations are often snapshots of the vegetation activity, the usage of

satellite observations to infer vegetation activity at seasonal and spatial scales needs

to be treated with caution, especially for energy-based measurements such as SIF

that exhibit a large diurnal variation. Analyzing data from 135 flux tower sites, we

found that both spatial and diurnal patterns exist between daily and instantaneous

(bi-hourly) GPP. The latitudinal pattern is caused by the variation of PAR and the

diurnal pattern is caused by the diurnal variation of LUE.

SIF has shown high potential to predict GPP across broad spatial and seasonal

scales. However, the satellite instantaneous SIF retrieval and daily GPP relation-

ships on spatial and seasonal courses are still affected by several factors such as

C3/C4 composition, environmental stress. Using the SCOPE model simulation and

the comparison between GOME-2 SIF and FluxCom GPP, we have shown that the re-

lationship between daily average SIF and daily total GPP are more consistent across

latitudinal gradients and biome types than those between instantaneous SIF and

daily GPP, and the correction factor from instantaneous to daily SIF improved the

linear relationship between satellite-based SIF retrievals and daily GPP. This factor

should also be applied when using SIF to derive the physiological phenology. Since
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this correction factor is based on the analytical approximation of solar zenith an-

gle and does not consider the diurnal variation of other environmental factors (e.g.,

temperature, water stress), more in situ measurements of SIF are needed at sub-

daily time scale for different ecosystems to better interpret the GPP-SIF relationship

globally. The NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO),

Geostationary Carbon Cycle Observatory (GeoCARB), as well as European Sentinel

4 missions will also provide further valuable insights about the diurnal SIF variation

at a regional and larger scales.
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Figure 3.A.1: The spatial distribution of the 136 flux tower sites used in this study.
The filled symbols indicate the five sites used for the SCOPE simulation.
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Figure 3.A.2: The coefficient of determination (R2) for the correlation between in-
stantaneous and daily GPP estimates from flux tower. The black line represents
the predicted R2 using the incoming solar radiation calculated from the analyti-
cal method.
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Figure 3.A.3: Comparison between the SCOPE simulated GPP and eddy covari-
ance flux tower derived GPP. The left column shows the seasonal variations in
the daily aggregated GPP value. The right column compares the raw GPP data
at half-hour scale from EC and SCOPE. The big difference between GPP EC and
GPP SCOPE for US-Var is caused by pixel mixture: within the MODIS LAI foot-
print (5 km), a lot of evergreen trees contributed to the satellite signal while the
EC tower only measures the GPP of the temporary grassland.
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Figure 3.A.4: Comparison between the SIF simulated from the SCOPE model and
from the GOME-2 satellite. SCOPE SIF simulation at 9:30 am solar time is used
to compare with GOME-2 v26 SIF monthly data. The GOME-2 data are averaged
over the period 2007-2015 to reduce uncertainty. The large discrepancy for DK-
ZaH site is caused by the relative location of the EC flux tower footprint within
the satellite gridcell: most of the area in this gridcell is either all-year snow cov-
ered mountain peaks or ocean. For other sites, the model simulation and satellite
observation are similar.
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Table 3.A.1: Flux tower sites used in this study. IGBP class represents the Interna-
tional Geosphere-Biosphere Programme land cover classification.

Site ID Site name Latitude Longitude IGBP type1 Reference
AR-SLu San Luis -33.4648 -66.4598 MF -
AR-Vir Virasoro -28.2395 -56.1886 ENF -
AT-Neu Neustift/Stubai Valley 47.1167 11.3175 GRA (Wohlfahrt et al., 2008)
AU-Ade Adelaide River -13.0769 131.1178 WSA -
AU-ASM Alice Springs -22.283 133.249 ENF -
AU-Cpr Calperum -34.0021 140.5891 SAV -

AU-Cum Cumberland Plains -33.6133 150.7225 EBF -
AU-DaP Daly River Savanna -14.0633 131.3181 GRA -
AU-DaS Daly River Cleared -14.1593 131.3881 SAV -
AU-Dry Dry River -15.2588 132.3706 SAV -

AU-Emr
Emerald, Queensland,

Australia
-23.8587 148.4746 GRA -

AU-Fog Fogg Dam -12.5452 131.3072 WET (Guerschman et al., 2009)

AU-GWW
Great Western

Woodlands, Western
Australia

-30.1913 120.6541 SAV -

AU-RDF
Red Dirt Melon Farm,

Northern Territory
-14.5636 132.4776 WSA -

AU-Rig Riggs Creek -36.6499 145.5759 GRA -

AU-Rob
Robson Creek,

Queensland, Australia
-17.1175 145.6301 EBF -

AU-Tum Tumbarumba -35.6566 148.1517 EBF (Leuning et al., 2005)
AU-Whr Whroo -36.6732 145.0294 EBF -

BE-Bra
Brasschaat

(De Inslag Forest)
51.3092 4.5206 MF (Janssens et al., 2001)

BE-Lon Lonzee 50.5516 4.7461 CRO (Moureaux et al., 2006)
BE-Vie Vielsalm 50.3051 5.9981 MF (Aubinet et al., 2001)

BR-Sa3
Santarem-Km83-

Logged Forest
-3.018 -54.9714 EBF (Steininger, 2004)

CA-Gro
Ontario - Groundhog River,
Boreal Mixedwood Forest

48.2167 -82.1556 MF (McCaughey et al., 2006)

CA-NS1 UCI-1850 burn site 55.8792 -98.4839 ENF (Goulden et al., 2006)
CA-NS3 UCI-1964 burn site 55.9117 -98.3822 ENF (Goulden et al., 2006)
CA-NS4 UCI-1964 burn site wet 55.9117 -98.3822 ENF (Bond-Lamberty et al., 2004)
CA-NS5 UCI-1981 burn site 55.8631 -98.485 ENF (Wang et al., 2002)
CA-NS6 UCI-1989 burn site 55.9167 -98.9644 OSH (Bond-Lamberty et al., 2004)
CA-NS7 UCI-1998 burn site 56.6358 -99.9483 OSH (Bond-Lamberty et al., 2004)

CA-Qfo
Quebec - Eastern Boreal,

Mature Black Spruce
49.6925 -74.3421 ENF (Bergeron et al., 2007)

CA-SF1
Saskatchewan-
Western Boreal,

forest burned in 1977
54.4850 -105.8180 ENF (Amiro et al., 2006)

CA-SF2
Saskatchewan-
Western Boreal,

forest burned in 1989
54.2539 -105.8780 ENF (Amiro et al., 2003)

CA-SF3
Saskatchewan-
Western Boreal,

forest burned in 1998
54.0916 -106.005 OSH (Amiro et al., 2006)

CA-TP2
Ontario-Turkey Point

1989 Plantation
White Pine

42.7744 -80.4588 ENF (Arain & Restrepo-Coupe, 2005)

CG-Tch Tchizalamou -4.2892 11.6564 SAV -

1ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf
forest; DBF: deciduous broadleaf forest; MF: mixed forest; CSH: closed shrubland; OSH: open shrub-
land; WSA: woody savannas; GRA: grassland; SAV: savannas; WET: permanent wetland; CRO: crop-
land; CNV: cropland/natural vegetation mosaic.
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CH-Cha Chamau grassland 47.2102 8.4104 GRA (Merbold et al., 2014)
CH-Fru Fruebuel grassland 47.1158 8.5378 GRA (Fritsche et al., 2008)
CH-Oe1 Oensingen1 grass 47.2858 7.7319 GRA (Ammann et al., 2009)
CN-Cha Changbaishan 42.4025 128.0958 MF (Zhang et al., 2010)
CN-Cng Changling 44.5934 123.5092 GRA -
CN-Dan Dangxiong 30.4978 91.0664 GRA -
CN-Din Dinghushan 23.1733 112.5361 EBF (Zhang et al., 2010)
CN-Du2 Duolun_grassland (D01) 42.0467 116.2836 GRA (Sun et al., 2011)
CN-Du3 Duolun Degraded Meadow 42.0551 116.2809 GRA (Sun et al., 2011)
CN-Ha2 Haibei Shrubland 37.6086 101.3269 WET -
CN-HaM Haibei Alpine Tibet site 37.6167 101.3000 GRA (Kato et al., 2006)
CN-Qia Qianyanzhou 26.7414 115.0581 ENF (Zhang et al., 2010)
CN-Sw2 Siziwang Grazed (SZWG) 41.7902 111.8971 GRA (Shao et al., 2013)

CZ-BK1
Bily Kriz-

Beskidy Mountains
49.5047 18.5411 ENF (Marek et al., 2011)

CZ-BK2 Bily Kriz- grassland 49.4944 18.5429 GRA (Marek et al., 2011)
DE-Akm Anklam 53.8662 13.6834 WET -
DE-Gri Grillenburg- grass station 50.9495 13.5125 GRA (Hussain et al., 2011)
DE-Hai Hainich 51.0792 10.453 DBF (Anthoni et al., 2004)
DE-Kli Klingenberg - cropland 50.8929 13.5225 CRO (Prescher et al., 2010)

DE-Lkb Lackenberg 49.0996 13.3047 ENF (Lindauer et al., 2014)
DE-Obe Oberbarenburg 50.7836 13.7196 ENF -
DE-RuS Selhausen Juelich 50.8657 6.4472 CRO (Eder et al., 2015)
DE-Spw Spreewald 51.8923 14.0337 WET -

DE-Tha
Anchor Station

Tharandt - old spruce
50.9636 13.5669 ENF (Grunwald & Bernhofer, 2007)

DE-Zrk Zarnekow 53.8759 12.8890 WET (Hahn-Schofl et al., 2011)
DK-Eng Enghave 55.6905 12.1918 GRA -
DK-NuF Nuuk Fen 64.1308 -51.3861 WET (Westergaard-Nielsen et al., 2013)
DK-Sor Soroe- LilleBogeskov 55.4859 11.6446 DBF (Pilegaard et al., 2001)
DK-ZaF Zackenberg Fen 74.4791 -20.5557 WET -
DK-ZaH Zackenberg Heath 74.4732 -20.5503 GRA (Lund et al., 2012)
ES-Amo Amoladeras 36.8336 -2.2523 OSH -
ES-LgS Laguna Seca 37.0979 -2.9658 OSH (Reverter et al., 2010)
ES-LJu Llano de los Juanes 36.9266 -2.7521 OSH (Serrano-Ortiz et al., 2007)
FI-Hyy Hyytiala 61.8475 24.2950 ENF ((Suni et al., 2003)
FI-Jok Jokionen agricultural field 60.8986 23.5135 CRO (Lohila et al., 2004)
FR-Gri Grignon (after 6/5/2005) 48.8442 1.9519 CRO (Loubet et al., 2011)
FR-Pue Puechabon 43.7414 3.5958 EBF (Lhomme et al., 2001)
GF-Guy Guyaflux 5.2788 -52.9249 EBF (Epron et al., 2006)
GH-Ank Ankasa 5.2685 -2.6942 EBF -
IT-CA1 Castel d’Asso1 42.3804 12.0266 DBF (Sabbatini et al., 2016)
IT-CA2 Castel d’Asso2 42.3772 12.0260 GRA (Sabbatini et al., 2016)
IT-CA3 Castel d’Asso 3 42.3800 12.0222 DBF (Sabbatini et al., 2016)
IT-Cp2 Castelporziano2 41.7043 12.3573 EBF -
IT-Isp Ispra ABC-IS 45.8126 8.6336 DBF (Ferrea et al., 2012)
IT-La2 Lavarone2 45.9542 11.2853 ENF -
IT-Lav Lavarone (after 3/2002) 45.9562 11.2813 ENF (Fiora & Cescatti, 2006)
IT-Noe Sardinia/Arca di NoÃĺ 40.6061 8.1515 CSH (Beier et al., 2009)

IT-PT1
Zerbolo-Parco

Ticino- Canarazzo
45.2009 9.0610 DBF (Migliavacca et al., 2009)

IT-Ren Renon/Ritten (Bolzano) 46.5869 11.4337 ENF (Marcolla et al., 2005)
IT-Ro1 Roccarespampani 1 42.4081 11.9300 DBF (Rey et al., 2002)
IT-Ro2 Roccarespampani 2 42.3903 11.9209 DBF (Tedeschi et al., 2006)
IT-SRo San Rossore 43.7279 10.2844 ENF (Chiesi et al., 2005)
IT-Tor Torgnon 45.8444 7.5781 GRA (Galvagno et al., 2013)

JP-MBF
Moshiri Birch

Forest Site
44.3869 142.3186 DBF -

JP-SMF
Seto Mixed
Forest Site

35.2617 137.0788 MF -

MY-PSO
Pasoh Forest

Reserve (PSO)
2.973 102.3062 EBF -

NL-Hor Horstermeer 52.2404 5.0713 GRA -
NL-Loo Loobos 52.1666 5.7436 ENF (Dolman et al., 2002)
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NO-Adv Adventdalen 78.186 15.923 WET -
PA-SPn Sardinilla Plantation 9.3181 -79.6346 DBF (Wolf et al., 2011)
PA-SPs Sardinilla Pasture 9.3138 -79.6314 GRA (Wolf et al., 2011)

RU-Che Cherskii 68.613 161.3414 WET (Corradi et al., 2005)
RU-Cok Chokurdakh 70.8291 147.4943 OSH (van Huissteden et al., 2005)

RU-Fyo
Fyodorovskoye wet

spruce stand
56.4615 32.9221 ENF (Kurbatova et al., 2008)

RU-Ha1
Ubs Nur-Hakasija-

grassland
54.7252 90.0022 GRA -

RU-Sam
Samoylov Island-

Lena Delta
72.3738 126.4958 GRA (Kutzbach et al., 2007)

RU-SkP Spasskaya Pad larch 62.255 129.168 DNF -
RU-Vrk Seida/Vorkuta 67.0547 62.9405 CSH -

SD-Dem Demokeya 13.2829 30.4783 SAV (Ardö et al., 2008)

SE-St1
Stordalen Forest-
Mountain Birch

68.3542 19.0503 WET -

US-AR1
ARM USDA UNL OSU

Woodward Switchgrass 1
36.4267 -99.42 GRA -

US-AR2
ARM USDA UNL OSU

Woodward Switchgrass 2
36.6358 -99.5975 GRA -

US-ARM
ARM Southern Great
Plains site- Lamont

36.6058 -97.4888 CRO (Fischer et al., 2007a)

US-Blo Blodgett Forest 38.8953 -120.633 ENF (Misson et al., 2005)

US-CRT
Curtice Walter-
Berger cropland

41.6285 -83.3471 (Chu et al., 2014)

US-Goo Goodwin Creek 34.2547 -89.8735 GRA -

US-Ha1
Harvard Forest

EMS Tower (HFR1)
42.5378 -72.1715 DBF (Goulden et al., 1996)

US-IB2
Fermi National Accelerator

Laboratory- Batavia
(Prairie site)

41.8406 -88.241 GRA (Matamala et al., 2008)

US-Ivo Ivotuk 68.4865 -155.75 WET (Epstein et al., 2004)
US-Lin Lindcove Orange Orchard 36.3566 -119.842 CRO -
US-Los Lost Creek 46.0827 -89.9792 WET (Sulman et al., 2009)

US-Me6
Metolius Young

Pine Burn
44.3233 -121.608 ENF (Ruehr et al., 2012)

US-MMS
Morgan Monroe

State Forest
39.3232 -86.4131 DBF (Schmid et al., 2000)

US-Myb Mayberry Wetland 38.0498 -121.765 WET -
US-Ne1 Mead-irrigated continuous maize site 41.1651 -96.4766 CRO (Suyker et al., 2005)

US-Ne2
Mead - irrigated maize
-soybean rotation site

41.1649 -96.4701 CRO (Suyker et al., 2005)

US-Ne3
Mead - rainfed maize-
soybean rotation site

41.1797 -96.4397 CRO (Suyker et al., 2004)

US-Oho Oak Openings 41.5545 -83.8438 DBF (Noormets et al., 2008)
US-SRM Santa Rita Mesquite 31.8214 -110.866 WSA (Scott et al., 2009)

US-Syv
Sylvania

Wilderness Area
46.242 -89.3477 MF (Desai et al., 2005)

US-Ton Tonzi Ranch 38.4316 -120.966 WSA (Xu & Baldocchi, 2004)
US-Tw3 Twitchell Alfalfa 38.1159 -121.647 CRO -

US-UMd UMBS Disturbance 45.5625 -84.6975 DBF (Nave et al., 2011)
US-Var Vaira Ranch- Ione 38.4133 -120.951 GRA (Ma et al., 2007)

US-WCr Willow Creek 45.8059 -90.0799 DBF (Cook et al., 2004)

US-Whs
Walnut Gulch

Lucky Hills Shrub
31.7438 -110.052 OSH (Scott et al., 2006)

US-Wkg
Walnut Gulch

Kendall Grasslands
31.7365 -109.942 GRA (Scott et al., 2010)

US-WPT
Winous Point
North Marsh

41.4646 -82.9962 WET (Chu et al., 2014)

ZA-Kru
Skukuza- Kruger

National Park
-25.0197 31.4969 SAV (Williams et al., 2009)

ZM-Mon Mongu -15.4378 23.2528 DBF (Merbold et al., 2011)
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Chapter 4: Spatio-temporal convergence of maximum daily light use

efficiency based on radiation absorption by chlorophylls of the

canopy

Abstract

Light use efficiency (LUE), which quantifies the efficiency of plants to utilize so-

lar radiation for photosynthetic carbon fixation, has long been studied and used

for estimation of gross primary production (GPP) from single sites to global scales.

However, considerable uncertainties remain regarding how to parameterize these

LUE-based photosynthesis models, as the maximum LUE (the LUE under optimum

condition with little environmental stress) is often an empirical coefficient based

on varying definitions of energy absorption. The energy can be absorbed by (1) the

ecosystem, where all incident photosynthetically active radiation (PAR) is consid-

ered; (2) the canopy, where only PAR intercepted by the canopy is considered; or (3)

the chlorophylls in the canopy, where only PAR absorbed by the total chlorophylls

in all the leaves is considered. Here we use satellite-based solar-induced chloro-

phyll fluorescence (SIF) as a proxy for PAR absorbed by chlorophyll of the canopy

(APARchl ) and derive an estimation of the fraction of APARchl ( f PARchl ) from four

remote sensing based optical vegetation activity indicators (OVAIs). By comparing

maximum LUE based on different radiation absorptions from 127 eddy flux sites

(626 site-years), we found that the maximum daily LUE based on PAR absorption

by chlorophyll of the canopy (LU Echl ), unlike other expressions of LUE, tends to

converge to a common value independent of the biome types. The photosynthetic

seasonality in tropical forests can also be tracked by the change of f PARchl , and the

corresponding LU Echl was also found to have less seasonal variation. This spatio-

temporal convergence of LUE derived from f PARchl can be used to build simple
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but robust GPP models and to better constrain process-based models using satel-

lite observations.

4.1 Introduction

Plants fix carbon through photosynthesis, sequestering carbon dioxide from the at-

mosphere and substantially mitigating the negative impact of anthropogenic emis-

sions on climate. Ecological studies of photosynthesis often quantify carbon sinks

at local, regional and global scales as ecosystem gross primary productivity (GPP),

the quantity of carbon fixed prior to losses from respiration. Because of the driv-

ing role of photosynthesis in the global carbon cycle, accurate estimates of GPP are

critical in carbon related research, e.g., global climate change, food production, and

energy availability to consumers (Beer et al., 2010; Le Quéré et al., 2015). Many

approaches are available to estimate GPP at different temporal and spatial scales,

including in situ observations based on the eddy covariance technique (Baldocchi

et al., 2001), chambers measurements of gas exchange (Field et al., 2000), and, at

regional and global scales, earth observations and ecological models (Anav et al.,

2015; Running et al., 2004).

The production efficiency model (PEM) or light use efficiency model offers a

very simple and broadly applied conceptual framework to estimate GPP at differ-

ent spatial scales (Monteith, 1972). This class of models calculates GPP using the

product of the photosynthetically active radiation (PAR), the fraction of absorbed

PAR, and a light use efficiency factor (LUE), which converts energy absorbed into

the amount of carbon fixed:

GPP = PAR × f PAR ×LU E (4.1)
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The LUE is often calculated as a function of the maximum daily light use effi-

ciency (εmax) regulated by environmental controls (temperature, soil water, vapor

pressure deficit, etc.). The product of the first two terms on the right-hand side

in Eq. 4.1 is absorbed PAR (APAR=PAR×fPAR), which can be expressed variously

as incident PAR (fPAR = 1), PAR absorbed by the entire (non-photosynthetic and

photosynthetic) canopy ( f PARcanopy ) or by chlorophyll in all leaves of the canopy

( f PARchl , photosynthetic-only) (Figure 4.1). Because of the different definitions of

APAR (and fPAR), the LUE factor in Eq. 4.1, which corresponds to different maxi-

mum daily light use efficiency (εmax) values, can differ substantially. In most stud-

ies, εmax is an empirical parameter estimated from Eq. 4.1 that varies greatly be-

cause of the different LUE definitions (Song et al., 2013). Therefore, εmax values

cannot be used/compared when they were derived from different fPAR basis.

Canopy

Incoming PAR

Absorbed PAR by Canopy (APARcanopy)

Reflected and 
transmitted PAR

Non-photosynthetic 
vegetation (NPV)

Chlorophyll

Absorbed PAR by Chlorophyll (APARchl)
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A
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p
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E c

an
o

p
y

PA
R

fP
A

R
ch

l
LU

E c
h

l

SIF
Electron transport (PQ)

Heat (NPQ)

Light reactions

Dark reactions

GPP

Photorespiration 
alternative pathways

LU
E e

co
PA

R

Figure 4.1: Idealized representation of the radiation partitioning in plant
canopies for light use efficiency models. Left side is the LUE models based on the
total PAR or PAR absorbed by canopy (APARcanopy ), right side is the LUE models
based on PAR absorbed by chlorophyll of the entire canopy ( f PARchl ). This figure
is modified from Figure 4.1 in Porcar-Castell et al. (2014).
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Most PEMs employ the PAR absorbed by vegetation canopy (APARcanopy ) to es-

timate GPP (GPP=LU Ecanopy × APARcanopy ), e.g., the CASA model (Potter et al.,

1993) and MODIS GPP (Running et al., 2004), where the fPAR is often calculated

as a function of satellite-derived normalized difference vegetation indices (NDVI)

or leaf area index (LAI). However, not all light absorbed by the canopy is used in

the photosynthetic process (Figure 4.1). A substantial fraction of PAR will be ab-

sorbed by the non-photosynthetically vegetation (NPV, e.g. branch, stem, dry leaf,

vein, etc.) and will be directly dissipated as heat (Xiao et al., 2004a). Importantly,

the fraction of NPV is different for different biomes (Li et al., 2016), as a result, in

those PEM models, εmax may be biome-specific as APARcanopy is not corrected for

the fraction of PAR absorbed by NPV (Choudhury, 2001; Gu et al., 2002; McCallum

et al., 2009; Potter et al., 1993). However, the within-biome variation of NPV ratio is

not considered in these models. In addition, the NPV composition not only varies

across different biomes, but also with vegetation phenology and growth over sea-

sons and years (Guerschman et al., 2009). Thus, there is a need to account for the

temporal variability of biotic factors such as changes in the fraction of chlorophyll

in the canopy/NPV with phenological cycles.

One fundamental theoretical assumption is that with more precise representa-

tion of fPAR absorbed by chlorophyll of the canopy, estimates of ecosystem GPP

are significantly improved by reducing bias and variability associated with unac-

counted differences among biomes or across time in the ratio of chlorophyll to NPV.

If GPP is more tightly coupled with canopy chlorophyll absorption as hypothesized,

ranges of εmax variation across space and time will be smaller when estimated from

the absorbed energy by chlorophyll, which is used to drive photosynthesis. Previous

studies have shown that the LUE is more stable across the seasonal cycle in a crop-

land at using radiation absorption by chlorophyll than by leaf or canopy (Gitelson
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& Gamon, 2015; Gitelson et al., 2006). However, these studies focused on a single

vegetation type and used data from single site. Whether this phenomenon can be

extrapolated to other biome types at seasonal scales, or across different biome types

remains unclear.

Successful retrievals of solar-induced chlorophyll fluorescence (SIF) from satel-

lites (Frankenberg et al., 2011; Joiner et al., 2013) provide a new probe of vegetation

photosynthesis at regional to global scales (Porcar-Castell et al., 2014). SIF is a very

small amount ( 1-2%) of energy reemitted during the light reactions of photosyn-

thesis. Because SIF is only emitted from photosystems and can be interpreted as

the photosynthetic electron transport rate (ETR) under unstressed condition (Guan

et al., 2016; Liu et al., 2017a; Zhang et al., 2014b), it can be a good proxy of PAR

absorbed by the chlorophyll (APARchl ) that is more precisely focused on photo-

synthetic pigments than traditional measures of ecosystem or canopy APAR (Zhang

et al., 2016e). However, current long-term SIF observations have relatively high un-

certainties and low spatial resolution (Joiner et al., 2014) which makes them not

suitable for direct comparisons with eddy covariance (EC) flux tower observations

of LUE and GPP. Most PEMs still use satellite based optical vegetation activity in-

dicators (OVAIs, we did not use the conventional vegetation index term because

f PARmod15 is not a vegetation index) to serve as f PARcanopy or f PARchl , which

allow GPP simulation at spatial resolutions similar to the footprint of EC flux tower

sites.

In this study, we try to test our hypothesis whether the maximum daily light use

efficiency based on radiation absorbed by chlorophyll of the canopy (εchl
max , corre-

sponds to LU Echl ) are more stable across space and time. We divide this task into

three steps:

(1) We would like to derive proxies of f PARchl and f PARcanopy from OVAIs so
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that they can be directly compared with GPP and PAR from flux tower. To do this, we

explore the relationship between sun induced chlorophyll fluorescence (SIF) and

OVAIs upscaled to SIF spatial resolution, and estimate f PARchl from OVAIs (Fig-

ure 4.2). The OVAIs used in this study are satellite retrieved vegetation indicators

such as normalized difference vegetation index (NDVI), enhanced vegetation in-

dex (EVI), and the fPAR product ( f PARmod15) from the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) as well as the MERIS terrestrial chlorophyll index

(MTCI) from the Medium Resolution Imaging Spectrometer (MERIS) (Dash & Cur-

ran, 2004). Through this comparison, we would like to a) identify which OVAI can

serve as better proxies of f PARchl ; b) test whether a linear relationship between

OVAI and f PARchl exist.

(2) After we obtain the proxies of f PARchl , f PARcanopy , and GPP estimated

from the FLUXNET dataset (Baldocchi et al., 2001), we then calculate εmax values for

different biome types based on different APAR definitions. A spatial convergence of

εchl
max would be represented as a more stable value across different biome types over

space.

(3) To test the temporal convergence, we obtained the photosynthetic capacity

(PC) from two tropical forest sites where light use efficiency under a fixed environ-

ment can be derived for each month. In this way, we can compare the ecosystem

LUE without considering the environmental limitations (Figure 4.2). A temporal

convergence of εchl
max would be represented as f PARchl fully tracked the biotic vari-

ation of ecosystem LUE.
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4.2 Materials and Methods

4.2.1 Solar-induced chlorophyll fluorescence as a proxy of APARchl

The SIF product for the period from 2007 to 2015 is retrieved from the Global Ozone

Monitoring Experiment 2 (GOME-2) instrument onboard the MetOp-A satellite (Joiner

et al., 2013, 2016). GOME-2 SIF is retrieved at wavelengths around 740 nm, char-

acterizing the photon trapping efficiency as mostly contributed by photosystem II

(Lichtenthaler & Rinderle, 1988; Rossini et al., 2015). The GOME-2 V26 SIF product

used in this study has a spatial resolution of 0.5°×0.5° and monthly temporal reso-

lution. The uncertainty of this SIF product is 0.1–0.2 mW m−2 nm−1 sr−1. SIF can

be expressed using a similar form of LUE models (Guanter et al., 2014; Joiner et al.,

2014):

SI F = PAR × f PARchl ×F E (4.2)

where FE is the fluorescence efficiency or quantum yield for fluorescence observed

at top of canopy, which can be further decomposed into quantum yield for fluores-

SIF	as	a	proxy	
of	APARchl

SIF/cos(SZA)	as	a	
proxy	of	fPARchl

OVAIs
fPARmod15
NDVI
EVI
MTCI

Best	fPARchl
proxies	from	OAVI

Compare	with	
PC	at	Amazon

Compare	with	
LUEeco across	

biomes
Convergence	in	
spatial	domain	
(cross	biomes)

Convergence	in	
temporal	domain	
(seasonal)

Figure 4.2: A flowchart showing the evaluation of spatio-temporal convergence of
εmax based on radiation absorption of chlorophyll of the canopy.
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cence for individual leaf (φ f ), and the escaping factor ( fesc ) that accounts for the

absorption of fluorescence within the canopy by stem, branch, leaves or by the soil

(Guanter et al., 2014). Because SIF retrieved from GOME-2 is a snapshot of vegeta-

tion activity in space and time, PAR in this equation is the instantaneous PAR (iPAR)

during satellite overpass. Due to the different time of overpass and seasonal shift of

the day length, we use the cosine of the sun zenith angle (SZA) to approximate the

iPAR when the satellite observation is made (09:30 a.m. local time):

i PAR =β× cos(SZ A) (4.3)

where β is the solar constant, representing sea-surface clear-sky solar radiation

when the sun is at the zenith, i.e., cos(SZA) = 1, ignoring the atmospheric conditions.

In fact, as solar radiation is affected by clouds and aerosols in the atmosphere during

the satellite overpass, this approximation will cause an overestimation of iPAR when

clouds and aerosols present. However, this effect is alleviated in our calculation as

the SIF retrieval algorithm omits the retrievals that were significantly affected by

clouds (Joiner et al., 2013). The uncertainty of this approximation is shown in Figure

4.A.3 and will be considered in further analysis. Thus, Eq. 4.2 can be written in a

different form (Sun et al., 2015):

f PARchl =
SI F

β× cos(SZ A)×F E
(4.4)

Plant physiological studies have shown the radiation absorbed by chlorophyll (APARchl )

undergoes three different pathways: photochemistry, heat dissipation, and fluo-

rescence emission (Butler, 1978). Previous studies also showed that SIF is mostly

driven by the amount of radiation absorbed by chlorophyll under unstressed con-
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ditions (Liu et al., 2017a; Yang et al., 2015). The Soil Canopy Observation of Pho-

tochemistry and Energy fluxes (SCOPE) model incorporates such three-way energy

partitioning of APARchl . Simulations using the SCOPE model suggest that φ f is

primarily affected by the maximum rate of carboxylation (Vcmax) and the incoming

radiation Lee et al. (2015); van der Tol et al. (2014). Both alter energy partitioning

into photochemical quenching (PQ, energy used for assimilation) or fluorescence

and non-photochemical quenching (NPQ, heat dissipation). We found that the φ f

exhibited relatively small variation (FE=1.69±0.18 J nm−1 sr−1 mol−1, CV=0.11) with

a very wide range of Vcmax and incoming radiation using the SCOPE model (Figure

4.A.1). Another simulation using a wide range of three other parameters that are

closely related to the SIF reabsorption also suggested that the fesc has much smaller

variation (FE=2.04±0.34 J nm−1 sr−1 mol−1, CV=0.17) compare to APARchl (Figure

4.A.2). This is also confirmed by previous studies because of the low canopy reab-

sorption of SIF at far-red band (Van Wittenberghe et al., 2015). Therefore, we regard

FE as a constant in this study and the uncertainties are considered in the error prop-

agation analysis (Section 4.2.5). With this approximation, we define f PARSI F as

SIF/cos(SZA), considering a constant β and FE in Eq. 4.4, f PARSI F is proportionate

to f PARchl :

f PARchl ∝ f PARSI F = SI F

cos(SZ A)
(4.5)

where f PARSI F does not follow the conventional range of 0 to 1, but that of an em-

pirical parameter that can be calculated from SIF data. We use this relationship to

evaluate proxies for f PARchl using OVAIs both temporally for each pixel and spa-

tially for each month.

SIF, vegetation indices (VIs, MOD13C1 C6) and f PARmod15 (MOD15A2H C6) are

all retrieved from satellite observations and therefore are affected by atmospheric
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conditions. Current retrieval algorithms account for such effects, but are rather

product specific. To reduce the uncertainty caused by the atmospheric conditions

and weak vegetation seasonality for the inter-comparison of remote sensing prod-

ucts, we applied a rigorous data quality checks for three MODIS product, only the

highest quality observations are used for analysis: for NDVI and EVI, we only used

quality layer Pixel Reliability = 0, (Good Data); for f PARmod15, we used same quality

check method as described below in the site level analysis in Section 4.2.3; for MTCI,

we masked out those areas that were identified as bad quality by above two quality

check methods. We also eliminated the regions where all four OVAIs did not show a

significant correlation with f PARSI F at monthly scale. These low correlation coef-

ficients are mostly caused by poor atmospheric conditions and weak seasonality of

vegetation (e.g. tropical forest in northern Amazon). Because of the linear form of

PEMs (Eq. 4.1), we use a linear transformation of OVAIs to approximate f PARchl as

follows:

f PARchl = a × (OV AI s − c) ∝ f PARSI F (4.6)

The coefficient a can be regarded as a part of LUE and ideally, should be a fixed

number for all biome types. The intercept c can be estimated from the intercept of

the regression. A relatively stable regression slope and intercept (c) between OVAIs

and f PARSI F both spatially and temporally indicates that the approximation in Eq.

4.6 is plausible. The values (OVAIs−c) are considered as a proxy of (or proportional

to) f PARchl and are denoted with a subscripts m (e.g., N DV Im=NDVI−c). The true

value of εchl
max is not the goal of our study, as long as we can show εmax for OVAIs-c

are spatio-temporal convergent, εchl
max will be spatio-temporal convergent.
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4.2.2 FLUXNET data processing and light use efficiency calculation

The ecosystem carbon dioxide exchange across a range of biomes and timescales

used in this study is derived from EC data available from the FLUXNET2015 Tier 2

dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/; 2015 December Re-

lease, Table 4.A.2) processed according to standardized protocols. Out of the 136

available sites we chose 127 sites (or specific site-year for cropland) where C3 species

are dominant. These flux sites cover a large variety of ecosystem types and give al-

together 626 site-years (Table 4.A.2, Figure 4.A.5). The measured net ecosystem ex-

change (NEE) was first gap-filled using the marginal distribution sampling (MDS)

with different friction velocity (u*) filters to compensate the biases caused by re-

duced vertical exchange during nighttime (Reichstein et al., 2005). The NEE was

then partitioned into GPP and ecosystem respiration (ER) using two different meth-

ods, the nighttime data-based method and daytime data-based method (Reichstein

et al., 2012). The nighttime data-based method assumes no GPP during night and

therefore, the nighttime NEE is regarded as ER and used to estimate the tempera-

ture dependency of respiration, which is then extrapolated to daytime. The daytime

GPP is then calculated as the difference between measured NEE and modeled ER.

The daytime data-based method assumes that the GPP can be described as a hy-

perbolic or non-hyperbolic function of light (Gilmanov et al., 2003; Lasslop et al.,

2010). The measured NEE during the daytime is a combination of the largely light-

dependent GPP and the temperature-dependent respiration, omitting other effects

such as soil moisture limitation. Using half-hourly observations, the parameters of

the response model are estimated and the GPP and ER terms are calculated simul-

taneously.

In order to compare the light use efficiency derived from flux measurements
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with satellite retrievals, we aggregated the daily FLUXNET2015 dataset into 8-day

intervals (and 10-day intervals for 2008-2012 to compare with MTCI, see Section

4.2.3). We applied the following screening rules to increase confidence: (1) For each

8-day (10-day) interval, we filtered out all periods with less than 75% of good quality

(based on daily quality check field) gap-filled data of shortwave radiation and NEE

observation. (2) To reduce the uncertainties of the flux partitioning, we compared

the GPP estimates from both daytime and nighttime partitioning methods on 8-

day (10-day) periods and excluded those with more than 10% difference between

methods.

Limitations of water, temperature and other climate factors will down-regulate

the LUE from its maximum value (εmax), and these limitations are complex and

may be different among ecosystems (Zhang et al., 2016f). In this study, we simplify

this issue by assuming: (1) that plants in all ecosystems reach their maximum LUE

during the peak growing season because of their long term acclimation of the pho-

tosynthetic apparatus given that no severe disturbances occur; (2) for tropical forest

ecosystems which photosynthesis happens all year round, we followed (Wu et al.,

2016) and use the photosynthesis capacity (PC) as seasonal dynamic of εmax . PC is

calculated as ecosystem light use efficiency under a small range of climate condi-

tions (e.g., cloudiness, PAR, air temperature, VPD) throughout the year to eliminate

the climate effect on photosynthesis. In this way, we can use seasonal variation of

PC as a proxy of maximum ecosystem light use efficiency under a fixed environ-

mental limitation across the year. This enables us to compare PC with f PARcanopy

and f PARchl proxies in the temporal domain. Based on these two assumptions, we

can explore the maximum light use efficiency across different ecosystems, and the

seasonal dynamics of maximum light use efficiency using tropical forests as an ex-

ample. For each site-year, we identified the five 8-day (four 10-day) period with the
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highest GPP values as the peak growing season. Subsequently, the abovementioned

quality check for flux data was applied and only the 8-day (10-day) periods with high

confidence were retained. For each 8-day (10-day) periods during the peak grow-

ing season, the maximum daily LU Eeco were then calculated as the average of daily

GPP from eddy covariance measurements (GPPEC ) divided by the average of daily

PAR. However, as disturbances may occur in some years and climate may limit LUE

during the peak growing season, we only retained the upper 50th percentile of the

maximum daily LU Eeco from all available years for each site for further analysis.

Because many studies have shown different εmax for clear and cloudy days (Gu

et al., 2002; Mercado et al., 2009), we separate the sunny and cloudy period for

each 8-day (10-day) during the peak growing season using a clearness index (ac-

tual shortwave radiation/potential shortwave radiation) of 0.55 (which is 80% of its

maximum actual value because of atmospheric scattering, and this threshold gives

us enough points for clear day and cloudy day analysis). Corresponding to the dif-

ferent definitions of fPAR (Figure 4.1), LUE or εmax can also be calculated at different

levels, using incoming top of canopy PAR (LU Eeco=GPPEC /PAR), canopy absorbed

PAR (LU Ecanopy =GPPEC /APARcanopy ), and chlorophyll of the canopy (chlorophyll

for short) absorbed PAR (LU Echl =GPPEC /APARchl ) (Gitelson & Gamon, 2015; Zhang

et al., 2016a, 2009). For LU Ecanopy and LU Echl , they can also be calculated from

LU Eeco/ f PARcanopy and LU Eeco/ f PARchl , respectively. Therefore, a convergence

of LUE from canopy to chlorophyll level across biome types will be represented as

a convergence of regression slopes in the simple linear regression with 0 intercept

between LU Eeco and f PARchl than LU Eeco and f PARcanopy .

The uncertainty of daily GPP derived from eddy covariance flux tower is 15–20%

(Falge et al., 2002; Hagen et al., 2006). By summing up the daily GPP to annual scale,

the relative uncertainty decrease as the random error cancel with each other. The
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annual GPP uncertainty is estimated to be 5% (Desai et al., 2008; Verma et al., 2014).

In our study, since we use daily GPP averaged over five 8-day, the uncertainty for this

averaged GPP is estimated to be 10% (between daily and annual uncertainty). The

uncertainty of PAR measurement from flux tower can be assumed to be negligible

since it is much smaller than that of GPP.

4.2.3 Remote sensing observations at flux tower sites

We used two vegetation indices (NDVI and EVI), one fPAR product ( f PARmod15)

from MODIS and one chlorophyll index (MTCI) to represent the f PARcanopy and

their transformations (OVAI−c) as proxies of f PARchl (Table 4.1). The NDVI and

f PARmod15 are often used as an indicator of canopy coverage (Carlson & Ripley,

1997; Myneni et al., 2002). The EVI is often considered to be a proxy of the green

(photosynthetically active) vegetation (Gitelson & Gamon, 2015; Xiao et al., 2005a).

MTCI is thought to be related to the leaf chlorophyll content integrated over the

canopy as they use spectrum bands which are more sensitive to chlorophyll ab-

sorption (Dash et al., 2010; Dash & Curran, 2007; Rossini et al., 2012; Vuolo et al.,

2012).

Due to the sensitivity of remote sensing retrievals to atmospheric contamina-

tions, when comparing the remotely sensed OVAIs with eddy flux measurements,

we used a similar procedure reported in Zhang et al. (2016f) to screen and gap-

fill the remotely sensed OVAI observations of poor quality: (1) The robustness of

MODIS VIs (i.e., NDVI, EVI) retrievals was checked using the quality control layer

from MOD09A1 C6; observations affected by cloud ("internal cloud algorithm flag"

equals to "1"), high or climatological aerosols ("aerosol quantity" equals to "00" or

"11"), and snow ("internal snow mask" equals to "1") were eliminated (Vermote

& Vermeulen, 1999). For the MOD15A2H C6 fPAR product ( f PARmod15), the ad-
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ditional five-level confidence score was evaluated ("SCF_QC" equals to "000" or

"001"), and only observations using the main algorithms (radiative transfer model)

were retained (Myneni et al., 2002). (2) The BISE algorithm (Viovy et al., 1992) was

applied to remove values that were potentially biased by atmospheric conditions

and that were not identified by previous quality checks. (3) The remaining high

quality values were then linearly interpolated to fill the gaps created from the previ-

ous steps. For MTCI, we did not apply any quality check procedure and just replaced

all zero values with NAs during the analysis as no quality control layer is provided

by the data product.

The seasonal dynamics of vegetation indices in tropical forests have been in-

vestigated for years (Huete et al., 2006; Myneni et al., 2007; Saleska et al., 2007; Wu

et al., 2016; Xiao et al., 2006), and some recent studies suggest that the dry season

increase of EVI is related to the sun-sensor geometry or bi-directional reflectance

distribution function (BRDF) (Morton et al., 2014). To reduce artifacts caused by this

issue, instead of using the ordinary NDVI and EVI, we used the Multi-Angle Imple-

mentation of Atmospheric Correction (MAIAC) algorithm reflectance dataset (Lya-

pustin et al., 2012) to calculate NDVI and EVI for the Amazon K67 (2.85°S, 54.97°W)

and K34 (2.61°S, 60.21°W) sites. The MAIAC algorithm implements rigorous BRDF

and atmospheric corrections and is therefore more robust than the current MODIS

EVI calculated from MOD09A1 C6 when detecting changes in tropical forests. The

original MAIAC 1km×1km reflectance data were downloaded from ftp://ladsweb.

nascom.nasa.gov/MAIAC/. We first retrieved the reflectance for the nine surround-

ing pixels (3km×3km) for sites K67 and K34 from 2000 to 2012 and then calculated

the NDVI and EVI using the BRDF corrected reflectance. All high quality observa-

tions that passed the quality check were aggregated into monthly values.
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4.2.4 Land cover dataset for major biome types

The land cover classification is based on the IGBP classification scheme from the

MCD12C1 C5 dataset for 2007 to 2013 (Friedl et al., 2010). The MCD12C1 data have

a spatial resolution of 0.05°×0.05°, and for each gridcell, 16 numbers correspond

to the areal percentages of 16 IGBP land cover types. We further aggregated this

dataset to 0.5°×0.5° to match the spatial resolution of SIF and recalculated the areal

percentages of 16 biome types for each 0.5°×0.5° gridcell. If one land cover type oc-

cupies more than 80% of the area of a 0.5°×0.5° gridcell, this gridcell is considered

a "pure" pixel and further used for the biome-based statistical analysis (Figure 4.6).

13 vegetated land cover types for both MCD12C1 and flux tower sites were aggre-

gated into four major biome types. Forests include DBF, EBF, ENF, DNF, and MF.

Shrublands include OSH, CSH, and WSA. Grasslands include GRA, SAV, and WET.

Croplands include CRO and NVM. A full list of these acronyms can be found in Ta-

ble S2.

4.2.5 Error propagation

Since our study includes several comparisons and approximations, the uncertain-

ties related to each dataset and approximations will propagate and affect the final

result. Therefore, we analyzed the uncertainties using the error propagation law

(Deming, 1943):

σ2
f = gT Vg (4.7)

Here σ2
f represents the variance of the function f with a set of parameters β, whose

variance-covariance matrix is V . The ith element in the vector g is ∂ f
∂βi

. If the pa-

rameters in vector β are uncorrelated, the error propagation can be simplified to:
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σ2
f =

∑(
∂ f

∂βi

)2

σ2
βi

(4.8)

This equation allows us to calculate the variance of a function (σ2
f ) from the vari-

ance of its individual input (σ2
βi

). The uncertainties of a variable can be greatly re-

duced by averaging n measurements:

σ2
f
=
σ2

f

n
(4.9)

The error propagation for a linear regression can be quantified from two aspects: (1)

the uncertainty of the regression, which can be quantified as an error term ε, and

(2) the uncertainty from the independent variable. A detailed error propagation

calculation can be found in the Appendix 4.A.2, and the uncertainties for each step

are summarized in Table 4.2.

Table 4.2: The uncertainties of approximations used in our study.

Variables Estimated from
Uncertainty

(represented as s.d. or RMSE)
iPAR cos(SZA) 85.6 W m−2

f PARSI F
a SIF 0.34

OV AIm
b

(approximation of
f PARchl using OVAI)

f PARmod15 0.17 (0.11)
NDVI 0.09 (0.08)

EVI 0.04 (0.03)
MTCI 0.24 (0.22)

a f PARSI F considered the uncertainty of FE.
bThese uncertainties are estimated for the 8-day (10-day) temporal resolution, the values in the

parentheses are adjusted for peak growing season period (five 8-day or four 10-day) to compare with
LU Eeco .
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4.3 Results

4.3.1 Relationship between f PARSI F and OVAIs

We calculated the averages of OVAIs for all pixels within each vegetation type for

each month and compared them with f PARSI F for the period 2007 to 2015 (2007 to

2012 for MTCI). For f PARmod15 and NDVI, their relationships with f PARSI F for dif-

ferent biome types were scattered, and the R2 of the regression within each biome

type was relatively lower compared to those for EVI and MTCI (Figure 4.3). EVI and

MTCI also showed a stronger linear correlation with f PARSI F when all the biome

types were combined together. The relationship between f PARSI F and MTCI was

also consistent across biomes except for the forests in the southern hemisphere.

The lower f PARSI F values for the southern hemisphere forests may be caused by

an overestimation of incoming radiation using SZA that ignores cloud effects.

The intercepts of these linear regressions (c in Eq. 4.6) are important to establish

and assess variation in the relationship between OVAIs and f PARchl . We compared

the intercept estimates from both the spatial averaged regressions (Figure 4.3) and

the regressions of individual gridcells (Figure 4.A.7). MTCI and EVI showed less vari-

able intercepts than f PARmod15 and NDVI across four biome types. The f PARmod15

exhibited the largest variation of intercepts independent of biome types, while vari-

ations for EVI and MTCI were comparatively smaller. The average intercepts on

x-axis are ∼0.2 for f PARmod15 and NDVI, ∼0.1 for EVI and ∼1.0 for MTCI. We used

these intercepts to build up the relationship between OVAIs and the f PARchl . Based

on these analyses, EVI and MTCI were considered stronger proxies of f PARchl than

either f PARmod15 or NDVI. The uncertainty of this approximation is shown in Fig-

ure 4.A.4.

We also used simple linear regression to determine the relationship between

93



monthly f PARSI F and OVAIs for individual gridcells. Figure 4 shows the spatial

pattern and the frequency statistics of the regression slopes between f PARSI F and

the four OVAIs with fixed intercepts from the previous steps. The regression slopes

of MODIS f PARmod15, NDVI and EVI showed a similar spatial pattern. The spatial

variations of the regression slopes using f PARmod15 and NDVI were relatively larger

than those using EVI and MTCI, as represented by a larger coefficient of variance

(c.v.). The frequency statistics of these regression slopes showed biome-specific

characteristics for f PARmod15, NDVI and EVI, where the lowest values were found
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Figure 4.3: Relationships between f PARSI F and four OVAIs for Northern (a-d)
and Southern Hemisphere (e-h). Each point represents the average value of all
the gridcells within a specific land cover type for either the Northern or Southern
Hemisphere for each month. Two hemispheres were calculated separately be-
cause of different phenological cycles. The coefficients of determination for each
regression are given in the lower-right corner. The four horizontal lines with dots
in (i-l) represent the mean value and standard deviation of the regression inter-
cepts between the f PARSI F and OVAIs for individual pixel (Figure 4.A.7). Coef-
ficients of determination for all data points (all land cover types and both hemi-
spheres) are shown in black.
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for forests, followed by shrublands, grasslands, and croplands. The MTCI, on the

other hand, showed a relatively stable slope across the different biome types. In

addition, EVI also showed slightly higher coefficients of determination (R2) for the

regression models (Figure 4.A.9).

4.3.2 LUE estimation at different scales across biomes based on flux tower GPP

To compare with the GPP estimated from flux towers (GPPEC ), we used the EV Im

(EV Im=EVI−0.1), MTC Im (MTC Im=MTCI−1), N DV Im (N DV Im=NDVI−0.2) and

f PARm ( f PARm= f PARmod15−0.2) as approximations of f PARchl , and the origi-

nal f PARmod15 and NDVI as f PARcanopy (Figure 4.1), which are also commonly

used in other studies (Prince & Goward, 1995; Running et al., 2004). With the as-

sumption that long-term acclimation enables plants to reach maximum photosyn-

thetic capacity during the peak growing season, we tested whether the maximum

daily light use efficiency (εmax) at chlorophyll scale (εchl
max) rather than canopy scale

(εcanopy
max ) converges across different biome types, i.e., whether regression slopes be-

tween LU Eeco and f PARchl (represented by OV AIm) for each biome types show less

variation than those between LU Eeco and f PARcanopy (represented by f PARmod15

and NDVI). For clear days, the regressions between LU Eeco and EV Im or MTC Im ,

which are considered better f PARchl approximations, showed smaller variation of

regression slopes within each biome types than those using the other two canopy

indicators ( f PARmod15 and NDVI) (Figure 4.5a-d). EV Im and MTC Im were also

characterized by a smaller root mean square errors (RMSE) and higher coefficients

of determination (R2) than fPARm and N DV Im when all biome types were com-

bined together (Table 4.A.3, 4.A.4). Similar results were also found for cloudy days

(Figure 4.5 e-h).

From the ecosystem (top of canopy) scale to canopy and chlorophyll scales,
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Figure 4.4: Spatial distribution and frequency distribution of the regression
slopes between f PARSI F and four optical vegetation activity indicators (OVAIs)
with fixed intercepts (c in equation 4.6) for the period 2007 to 2015. The left col-
umn (a-d) shows the spatial distribution of regression slopes where the regres-
sion is significant at 0.05 level. The white areas in tropical and boreal region are
caused by very limited valid observations after quality check. The right column
(e-h) shows the frequency distribution for 4 major land cover types. Points with
error bar at the top of each plot represent the mean ± 1 standard deviation (SD)
of the slopes within each land cover type.
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the maximum daily LUE converges as shown by smaller c.v. across biomes using

fPAR=1, f PARcanopy , and f PARchl approximations (Figure 6). All OV AIm showed

less variations than OVAI, for both clear and cloudy days, which indicates that the

approximation method we used did improve the estimation of f PARchl .

GPPEC from clear days (left panel) and cloudy days (right panel). Each open

circle represents one week from a site year. Solid lines represent the regression

between LU Eeco and modified OVAIs (with a subscript m, as proxies of f PARchl )

which are forced to pass [c,0] (c for the fixed intercept in Eq. 4.6); dashed lines rep-

resent the regression between LU Eeco and OVAIs which are forced to pass [0,0]. Re-

gressions lines and slope values (εmax) in black represent all biome types combined

together.

4.3.3 Using f PARchl approximations to track seasonal dynamic of photosynthetic

capacity

Across a broad array of 127 sites covering multiple biomes, we have shown that the

biome differences of εmax tend to diminish if we used fPAR of radiation absorp-

tion by chlorophyll of the canopy rather than at canopy or ecosystem scales, pos-

sibly owing to its emphasis on photosynthetic pigments (section 4.3.2.). We also

tested whether this convergence can be found across time, i.e., whether the sea-

sonal changes of PC can be explained by the change of the canopy chlorophyll. We

chose two tropical forest sites in the Amazon forest where multi-year eddy flux ob-

servations were available (Wu et al., 2016). For both sites, MTC Im showed a similar

seasonal pattern of PC, while NDVI was not sensitive to seasonal changes (Figure

4.7). The use of f PARchl approximations (OV AIm) did not show much advantage

over their original values (OVAI) in terms of RMSE. However, EV Im and MTC Im

had higher dry-season increases which better represented the seasonal dynamic of
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Figure 4.5: Relation-
ship between differ-
ent OVAIs and LU Eeco

for peak growing
season using GPPEC

from clear days (left
panel) and cloudy
days (right panel).
Each open circle rep-
resents one week from
a site year. Solid lines
represent the regres-
sion between LU Eeco

and modified OVAIs
(with a subscript m,
as proxies of f PARchl )
which are forced to
pass [c,0] (c for the
fixed intercept in Eq.
4.6); dashed lines
represent the regres-
sion between LU Eeco

and OVAIs which are
forced to pass [0,0].
Regressions lines and
slope values (εmax )
in black represent
all biome types com-
bined together.
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PC.

4.4 Discussion

4.4.1 Advantages and biophysical interpretation of f PARchl

In this study, we have shown that EVI and MTCI are robust proxies of f PARchl with

the possible uncertainties being taken into consideration, and a fixed εmax can be

used for C3 plants-dominated ecosystems across biomes and time to estimate GPP.

Previous studies also find higher correlation between GPP and EVI (MTCI) than with

NDVI or f PARmod15, and attribute this advantage to the exclusion of NPV or a better

indicator of green leaf/chlorophyll content, which are more directly related to plant

canopy photosynthesis (Gitelson et al., 2014; Ma et al., 2014; Rossini et al., 2012; Shi

et al., 2017; Xiao et al., 2004a,b). However, these studies usually focused on a single

site and did not separate the seasonal change of abiotic (environmental) limitation
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Figure 4.6: The variation of maximum daily LUE as represented by the coefficient
of variation (c.v.). f PARmod15, NDVI are used to represent f PARcanopy and EV Im

and MTC Im are used as proxies of f PARchl . All c.v. are calculated based on the
regression slopes in Figure 4.5 or the average of LU Eeco for each biome type. The
error bar on each bar is calculated from error propagation considering all the un-
certainties in both input datasets and each approximation step (Appendix 4.A.2).
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on photosynthesis. Using the SIF retrieval from satellite and a flux sites across the

globe, our study further demonstrated the advantage of this approach is caused by

a more directed proxy of canopy chlorophyll content.

Chlorophyll content has been successfully retrieved at canopy scale as the in-

teraction between these pigments and light will affect the canopy reflectance spec-
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Figure 4.7: Comparing EVI, NDVI, MTCI and their approximation of f PARchl

(EV Im , N DV Im , MTC Im) with PC at K67 and K34 sites in Amazon forest. EVI
and NDVI data are calculated from MAIAC reflectance. Each circle represents av-
erage of all valid observations for each year each month. The size of the circles
represents the numbers of valid observations used. Some obvious outliers were
colored in red and eliminated from further analysis. The blue and green lines in
(a, b, d, e) represent the observation numbers weighted averages of EVI or NDVI.
The error bars for PC represent the standard error of mean (SEM). The error bars
for MTCI and MTC Im in (c and f ) represent the standard deviation for the period
2002 to 2012. Shades in light yellow represent dry season. RMSE are calculated
based on regressions with zero intercept.
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trum (Asner & Martin, 2008; Curran, 1989; Sims & Gamon, 2002). Compared with

PEMs which only focus on the LAI or f PARcanopy , the use of f PARchl can better

estimate both leaf quantity (LAI) and leaf physiological quality (chlorophyll con-

centration, nitrogen content), the latter is often regarded as the secondary factor

that responsible for LU Ecanopy (Wu et al., 2016). The possible explanation for this

spatio-temporal convergence may be that all the C3 plants share the same electron

transport mechanism and chemical reactions to fix carbon. And all plants under dif-

ferent environmental conditions tend to maximum their photosynthetical capacity

during the peak growing season to increase their competitiveness. The variation

of f PARchl though space and time can be synergistic to the variation of maximum

carboxylation rate (Vcmax), quantum efficiency (αq ) and leaf area index (LAI) (?),

but still need future test.

4.4.2 Potential of using SIF and f PARchl for GPP estimation and data assimilation

As SIF is closely related to the APARchl , both theoretically from model simulations

and experimentally using in situ observations (Frankenberg et al., 2011; van der

Tol et al., 2014), this relationship, conserved across biomes, can be used to build

simple models to directly estimate GPP from SIF and to improve PEMs. Guanter

et al. (2014) have explored the feasibility of estimating GPP using SIF for croplands.

Many studies suggest SIF contains not only the information of light absorption,

but also the light use efficiency information (Yang et al., 2015). However, these

studies all used SI Fyi eld (SI Fyi eld =SIF/APARcanopy ) defined at the canopy scale.

At present, we still do not know whether the good relationship between SI Fyi eld

and LU Ecanopy is caused by the variation of canopy chlorophyll content, which is

embedded in both SI Fyi eld and LU Ecanopy (Figure 4.1), or whether SI Fyi eld actu-

ally captures environmental stress. Understanding this underlying mechanism will
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pave the way to better estimate GPP from SIF.

The estimates of f PARchl using vegetation indices also provide an alternative

opportunity to benchmark state-of-the-art land surface models. Currently, many

dynamic global vegetation models (DGVMs) use data assimilation techniques, which

employ remote sensing retrieved leaf area index or fPAR products to improve per-

formance (Demarty et al., 2007; Rayner et al., 2005). Some other studies try to use

SIF or MTCI to constrain models output or inversely estimate some key parameters

of the photosynthesis processes (Alton, 2017; Koffi et al., 2015; Zhang et al., 2014b).

As we have shown that EVI and MTCI can be used as a proxy of f PARchl and that

LUE tends to converge across different biome types, f PARchl estimated from EVI

and MTCI is more directly related to GPP and can be used for data assimilation to

improve model performance.

4.4.3 Implications for PEMs

Due to its simple form, PEMs play an important role in simulating GPP at regional

to global scale. However, the parameterization is a critical issue, especially for εmax ,

which determines the efficiency of plants converting the daily solar energy to bio-

chemical energy, thus directly affecting the magnitude of the GPP estimation. Pre-

vious studies have made efforts to correctly estimate the biome-based εmax (Zhao

et al., 2005; Zhou et al., 2015b). Some studies even suggest site level εmax is neces-

sary to improve model accuracy (Cheng et al., 2014; Kross et al., 2016). However, it

is unlikely that, outside of flux towers footprints, we can obtain spatially continuous

εmax estimates from in situ measurement. On the other hand, other studies based

on data from 168 flux sites and 7 PEMs suggest that vegetation-specific model pa-

rameters are not necessary for deriving accurate GPP estimates (Yuan et al., 2014a,

2016). The spatial convergence of εmax across biomes at chlorophyll scale justi-
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fies that a constant εmax may be applied for simple but robust parameterization of

PEMs. This approach could simplify the model parameterization by avoiding the

need of vegetation maps (e.g., forest, shrub, grass) and vegetation specific parame-

ters, ultimately reduce the uncertainty and improve the robustness of the GPP esti-

mates (Zhang et al., 2016a). The seasonal dynamic of f PARchl is closely related to

that of PC, however, this biotic change is not simulated in f PARcanopy based PEMs

(e.g. MOD17). Using f PARchl could improve the prediction of biotic regulation of

GPP at seasonal scale. However, in study, we did not give εchl
max value for C3 plants

since we used EV Im and MTC Im as proxies of f PARchl , while the true value of

f PARchl is unknown. This does not affect the use of EV Im or MTC Im based LUE

models since the corresponding εmax can be empirically derived. Future studies us-

ing inversion of radiative transfer models can give an accurate estimate of f PARchl

and εchl
max .

Although the cross-biome variation in εmax diminishes when using EV Im and

MTC Im as an approximation of f PARchl , we show that the within-biome εmax vari-

ation does not decrease much compared to the f PARcanopy based indicators. This

may be caused by several reasons: 1) εmax is still constrained by environmental con-

ditions and may change from one year to the other year for a given site, even during

the peak growing season; 2) site-specific characteristics (soil type, fertilization, etc.)

still affect the εmax to some extent; 3) the direct and diffuse radiation composition

affect εmax ; 4) flux and satellite measurements uncertainties still exist; and 5) the

inconsistency of flux tower footprint and OVAI pixels may introduce noise in the

relationship.

In this study, we find based on light absorption of chlorophyll of the canopy,

which directly reflect light harvest of photosynthesis process, εmax tends to con-

verge across space and time, which can greatly simplify the structure and parame-
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terization of PEMs. However, to improve model accuracy, more studies are needed

to investigate the environmental limitations on εmax and photosynthesis. Different

forms of temperature and water limitations have been widely used, but recent stud-

ies also suggest the need to employ mixed forms of the limitations for forests and

non-forested sites, especially during drought periods (Zhang et al., 2016d). With

more data accumulated from global flux networks and remotely sensed images from

different satellites, PEMs will provide more accurate estimates of GPP to support a

better understanding of the global carbon cycle.
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4.A Appendix

4.A.1 Relationship between SIF and f PARchl

We use the soil-canopy spectral radiances, photosynthesis, fluorescence, tempera-

ture and energy fluxes (SCOPE) model (van der Tol et al., 2009) to explore the robust-

ness of using SIF to derive f PARchl . The SCOPE model simulates (1) the distribu-

tion of incident light over leaves as a fuction of leaf position in the canopy and leaf

orientation, (2) the conversion of incident light on leaves into fluorescence emis-

sion spectra, and (3) the propagation of fluorescence through the canopy. At the

leaf level, it also simulates photosynthesis as a function of irradiance, leaf tempera-

ture, humidity and CO2 concentration. For the first step, the ‘Scattering of Arbitrary

Inclined Leaves’ (SAIL) model (Verhoef, 1984) concept is used, and for the second

step, the Fluspect model (Verhoef & Bach, 2007), a model that simulates the proba-

bility of the light absorbed by chlorophyll to three sinks, i.e., photochemistry (φp ),

fluorescence (φ f ) and heat dissipation (φd ), is used. For the third step, the Fluor-

SAIL model simulates the reabsorption of fluorescence in the canopy that reduce

the fluorescence to a value that is lower than the total emitted fluorescence by all

leaves; this reabsorption can be characterized using a factor fesc . In essence, the

simulated photosynthesis summed over all leaves (A) and the simulated observa-

tion of SIF can be expressed as:

A =φp × f PARchl ×PAR (4.A.1)

SI F =φ f × f PARchl ×PAR × fesc (4.A.2)

The integration of the φ f × fesc of the canopy equals to fluorescence efficiency
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(FE) in Eq. 2.2. To test whether FE can be approximated as a constant, we tested the

variation of the two components of FE, i.e., φ f and fesc , comparing with the varia-

tion of APARchl ( f PARchl× PAR). Previous studies suggest the maximum carboxy-

lation rate (Vcmax) is one of the most important factor which determines the prob-

ability of the partitioning of the absorbed photon by chlorophyll (φ f ) (van der Tol

et al., 2009; Zhang et al., 2014b). We first ran the SCOPE model using different Vcmax

values for one vegetation type (LAI = 3, Cab = 80 µ g cm−2) over different values of

irradiance (thus constant fesc but variable PAR) and showed that theφ f can be con-

sidered as a first approximation as a constant (Figure 4.A.1), because the variability

of APARchl is much larger than that ofφ f . As SIF is also sensitive to chlorophyll a+b

content (Cab), dry matter content (Cdm) and leaf area index (LAI) (Verrelst et al.,

2015), which may alter SIF through the change of fesc . We then ran SCOPE for one

value of irradiance but different value of Cab, Cdm and LAI (thus constant PAR but

variable fesc ) (Table 4.A.1), we found that the FE has much less variation (2.04±0.34

J nm−1 sr−1 mol−1) (Figure 4.A.2) compared to the f PARchl (0.57±0.18). Consider-

ing the PAR variation during the satellite overpass, the total variation of APARchl

will be much higher than fesc . Because both φ f and fesc have much smaller vari-

ation compared with APARchl , FE can be considered as a first approximation as a

constant.

4.A.2 Error propogation in each approximation

There are two major approximations in our analyses: (1) using SIF as an approxima-

tion of f PARchl ( f PARSI F ). (2) using OVAIs as approximations of f PARchl ( f PARSI F ).

In this error propagation analysis, the uncertainties of f PARchl and f PARSI F are

same in terms of CV, since the uncertainties in φ f and fesc are also considered for
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f PARSI F . For the first step of approximation, f PARchl can be expressed as:

f PARchl =
SI F

i PAR ×φ f × fesc
(4.A.3)

The uncertainty of f PARSI F (σ f PARSI F ) can be calculated from the uncertainties

from each independent variable using the error propagation law and assuming each

independent variable is independent from each other:

σ f PARSI F

f PARSI F
= σ f PARchl

f PARchl
=

√(σSI F

SI F

)2
+

(σi PAR

i PAR

)2
+

(
σφ f

φ f

)2

+
(
σ fesc

fesc

)2

(4.A.4)

where σi PAR
i PAR , can be calculated from the approximation of cos(SZA) (Figure 4.A.1),

σφ f

φ f
and

σ fesc
fesc

can be obtained from the SCOPE simulation.

To evaluate the performance of the four OVAIs as proxies of f PARSI F , we first

spatially averaged the both f PARSI F and each OVAIs for each month. This aver-

age will greatly reduce the uncertainty in both f PARSI F and OVAIs. Except for the

cropland in Southern Hemisphere which only include 382 0.5°× 0.5° gridcells, all

other biome types have at least 2000 gridcells. which will reduce the uncertainty

of f PARSI F to around or less than 0.01 CV (0.45
p

2000). The uncertainties of the

OVAIs in this comparison is also less than 0.01 CV. Therefore, the uncertainties from

the data sources of this comparison (Figure 4.3) are ignored.

The uncertainties of using OVAIs as a proxy of f PARSI F come from two major

aspects: (1) the uncertainty in the linear regression, which can be quantified as an

error term ε, and (2) the uncertainty in the independent variables, i.e., OVAIs. The

f PARSI F can be expressed as:

f PARSI F = a × (OV AI − c)+ε (4.A.5)
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or using OV AIm as the proxy of f PARchl :

OV AIm =OV AI − c + ε

a
(4.A.6)

The error term ε for each OVAI can be estimated from the linear regression between

f PARSI F and OVAIs with fixed intercepts c (0.2 for f PARmod15 and NDVI, 0.1 for

EVI and 1 for MTCI, Figure 4.A.4). The uncertainty of f PARSI F ( f PARchl ) estimated

from OVAIs (OV AIm) can be calculated from below:

σOV AIm =
√
σOV AI

2 +
(σε

a

)2
(4.A.7)

Since we used five 8-day (four 10-day for MTCI) average of OV AIm to compare with

LU Eeco , this average will reduce the uncertainty contributed from the OVAI (σOV AI ).

The adjusted uncertainty (σOV AI ′m ) is calculated below:

σOV AI ′m =
√
σOV AI

2

n
+

(σε
a

)2
(4.A.8)

where n is 5 for f PARmod15, NDVI and EVI, and 4 for MTCI. The result for these un-

certainties are shown in Table 4.2. The uncertainties of regression slopes in LU Ecanopy

and LU Echl estimation comes from both the uncertainty in GPP from flux tower,

and the uncertainty of f PARcanopy and f PARchl (OV AIm). For a linear regression

equation which passes the origin (0, 0) y=ax, the regression slope a can be calcu-

lated as:

a =
∑

xi yi∑
x2

i

(4.A.9)

Based on the error propagation law, the uncertainty of a caused by the uncertainty
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of x (σx)and y (σy ) will be estimated as:

σ2
a =

n∑
j=1

(
∂a

∂x j
σx j

)2

+
n∑

j=1

(
∂a

∂y j
σy j

)2

=
n∑

j=1

(
yi∑n

i=1 x2
i

− 2x j(∑n
i=1 x2

i

)2

)2

σx j
2 +

n∑
j=1

(
x j∑n

i=1 x2
i

)2

σ2
y j

(4.A.10)

where the uncertainty of y j (σy j ) is regarded as 10% of y (LU Eeco); the uncer-

tainty of x j (σx j ) is a fixed value from Table 4.2. The CV is used to evaluate how

convergent of the different definition of LUE (LU Eeco , LU Ecanopy , LU Echl ), and can

be calculated as:

CV =

√∑n
i=1 (li−l )2

n−1

l
(4.A.11)

where l is the mean of l which can be calculated from:

l =
∑n

i=1 li

n
(4.A.12)

The uncertainty of l (σover l i nel 2 ) is calculated as:

σ
l

2 = 1

n

n∑
i=1

σ2
li

(4.A.13)

where the σli denotes the uncertainty of LUE estimated for each biome type. The
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error propagation law allows us to calculate the uncertainties in CV of l as:

σ2
CV =

n∑
i=1

(
∂CV

∂li
σli

)2

+
(
∂CV

∂l
σl

)2

=
n∑

j=1

 l j − l

l
p

n −1

1√∑n
i=1

(
li − l

)2
σl j


2

+

 1p
n −1

∑n
j=1

(
l−l j

)
√∑n

k=1(lk−l )2
l −

√∑n
k=1

(
lk − l

)2

l
2 σl


2

=
n∑

j=1

 1

n −1

(
l j − l

l

)2
1∑n

i=1

(
li − l

)2σl j
2

+ 1

n −1

∑n
k=1

(
lk − l

)2

l
4 σl

2

(4.A.14)
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Figure 4.A.1: The relationship between (a) fluorescence efficiency and APARchl ,
and (b) SIF740 and APARchl using the simulation from the SCOPE model.
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Table 4.A.1.
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Figure 4.A.4: The linear regression with fixed OVAI intercept, same dataset from
Figure 4.3 is used. The RMSE value were used as the uncertainty of regression for
error propagation analysis.
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Figure 4.A.5: The spatial distribution of the flux tower sites used in this study. The
biome types are regrouped into four types to correspond to the biome type in the
SIF analysis. Forest includes ENF, EBF, DNF, DBF, and MF; shrubland includes
CSH, OSH, and WSA; grassland includes SAV, GRA, WET; cropland includes CRO
and CNV. For the full name of the vegetation types and the IGBP classification of
land cover types, please refer to Table 4.A.2. K34 and K67 are two amazon sites
used for seasonality analysis.
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Figure 4.A.6: The land cover type at the resolution of 0.5°× 0.5° for year 2007. Only
the "pure" pixels which are used for further analysis are shown. White areas are
barren and ice covered; grey are mixed pixels. For a complete list of the legend
acronyms, please refer to Table 4.A.2.
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Figure 4.A.7: Spatial pattern (left column) and frequency distribution (right col-
umn) of the regression intercept (c in Eq. 4.6). (a, e) fPAR, (b, f ) NDVI, (c, g) EVI,
(d, h) MTCI. The dots with horizontal bars at the top of frequency distribution fig-
ures (e-h) represent the means and standard deviations within each biome type.
The SIF and OVAIs data from 2007 to 2015 were used to build the relationship.
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Figure 4.A.8: Spatial distribution (left column) and frequency distribution (right
column) of regression slopes without fixing the intercept. The dots with horizon-
tal bars at the top of frequency distribution figures (e-h) represent the means and
standard deviations within each biome type. The SIF and OVAIs data from 2007
to 2015 were used to build the relationship.
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Figure 4.A.9: Spatial pattern (left column) and frequency distribution (right col-
umn) of the coefficient of determination (R2) between f PARSI F and three opti-
cal vegetation activity indicators (OVAIs). (a, d) fPAR, (b, e) NDVI, (c, f ) EVI. The
SIF and OVAIs data from 2007 to 2015 were used to build the relationship. The
low correlation coefficients in tropical regions are caused by high cloud cover and
weak seasonality of vegetation.
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Table 4.A.1: Parameters settings used in the second run of the SCOPE model with
fixed irradiance but variable parameters which result in different fesc values.

Parameter Symbol Value Range
Chlorophyll a+b content

(µg cm−2)
Cab 0.001, 0.002, 0.004, 0.008, 0.016 0.001–0.02

Dry matter content
(g cm−2)

Cdm 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064 0.001–0.05

Leaf area index
(m2/m−2)

LAI 1, 2, 3, 4, 5, 6 1–6

Table 4.A.2: Flux tower sites used in this study. IGBP class represents the Interna-
tional Geosphere-Biosphere Programme land cover classification.

Site ID Site name Latitude Longitude Country IGBP type1 Years used Reference

AR-SLu San Luis -33.4648 -66.4598 Argentina MF 2010 -

AR-Vir Virasoro -28.2395 -56.1886 Argentina ENF 2012 -

AT-Neu Neustift/Stubai Valley 47.1167 11.3175 Austria GRA
2002-2005,

2007-2009, 2011
(Wohlfahrt et al., 2008)

AU-Ade Adelaide River -13.0769 131.1178 Australia WSA 2007-2009 -

AU-ASM Alice Springs -22.283 133.249 Australia ENF 2010-2012 -

AU-Cpr Calperum -34.0021 140.5891 Australia SAV 2011-2013 -

AU-Cum Cumberland Plains -33.6133 150.7225 Australia EBF 2013 -

AU-DaP Daly River Savanna -14.0633 131.3181 Australia GRA 2008-2011, 2013 -

AU-DaS Daly River Cleared -14.1593 131.3881 Australia SAV
2008, 2009,

2011-2013
-

AU-Dry Dry River -15.2588 132.3706 Australia SAV 2010-2013 -

AU-Emr
Emerald, Queensland,

Australia
-23.8587 148.4746 Australia GRA 2011-2013 -

AU-Fog Fogg Dam -12.5452 131.3072 Australia WET 2007, 2008 (Guerschman et al., 2009)

AU-GWW

Great Western

Woodlands, Western

Australia

-30.1913 120.6541 Australia SAV 2013 -

AU-RDF
Red Dirt Melon Farm,

Northern Territory
-14.5636 132.4776 Australia WSA 2011, 2012 -

AU-Rig Riggs Creek -36.6499 145.5759 Australia GRA 2012, 2013 -

AU-Rob
Robson Creek,

Queensland, Australia
-17.1175 145.6301 Australia EBF 2014 -

AU-Tum Tumbarumba -35.6566 148.1517 Australia EBF 2004, 2006-2013 (Leuning et al., 2005)

AU-Whr Whroo -36.6732 145.0294 Australia EBF 2012, 2013 -

BE-Bra
Brasschaat

(De Inslag Forest)
51.3092 4.5206 Belgium MF

2000, 2005-2009,

2011-2013
(Janssens et al., 2001)

1ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf
forest; DBF: deciduous broadleaf forest; MF: mixed forest; CSH: closed shrubland; OSH: open shrub-
land; WSA: woody savannas; GRA: grassland; SAV: savannas; WET: permanent wetland; CRO: crop-
land; CNV: cropland/natural vegetation mosaic.

117



BE-Lon Lonzee 50.5516 4.7461 Belgium CRO

2004, 2005,

2007-2009,

2011-2013

(Moureaux et al., 2006)

BE-Vie Vielsalm 50.3051 5.9981 Belgium MF

2002, 2003,

2005-2010,

2012-2014

(Aubinet et al., 2001)

BR-Sa3
Santarem-Km83-

Logged Forest
-3.018 -54.9714 Brazil EBF 2001-2003 (Steininger, 2004)

CA-Gro
Ontario - Groundhog River,

Boreal Mixedwood Forest
48.2167 -82.1556 Canada MF 2004-2009, 2013 (McCaughey et al., 2006)

CA-NS1 UCI-1850 burn site 55.8792 -98.4839 Canada ENF 2002-2005 (Goulden et al., 2006)

CA-NS3 UCI-1964 burn site 55.9117 -98.3822 Canada ENF 2004, 2005 (Goulden et al., 2006)

CA-NS4 UCI-1964 burn site wet 55.9117 -98.3822 Canada ENF 2003-2005 (Bond-Lamberty et al., 2004)

CA-NS5 UCI-1981 burn site 55.8631 -98.485 Canada ENF 2002-2005 (Wang et al., 2002)

CA-NS6 UCI-1989 burn site 55.9167 -98.9644 Canada OSH 2002, 2004, 2005 (Bond-Lamberty et al., 2004)

CA-NS7 UCI-1998 burn site 56.6358 -99.9483 Canada OSH 2002, 2004, 2005 (Bond-Lamberty et al., 2004)

CA-Qfo
Quebec - Eastern Boreal,

Mature Black Spruce
49.6925 -74.3421 Canada ENF

2004-2006,

2008-2010
(Bergeron et al., 2007)

CA-SF1

Saskatchewan-

Western Boreal,

forest burned in 1977

54.4850 -105.8180 Canada ENF 2003, 2005, 2006 (Amiro et al., 2006)

CA-SF2

Saskatchewan-

Western Boreal,

forest burned in 1989

54.2539 -105.8780 Canada ENF 2002-2005 (Amiro et al., 2003)

CA-SF3

Saskatchewan-

Western Boreal,

forest burned in 1998

54.0916 -106.005 Canada OSH 2001, 2003-2006 (Amiro et al., 2006)

CA-TP2

Ontario-Turkey Point

1989 Plantation

White Pine

42.7744 -80.4588 Canada ENF 2003-2005 (Arain & Restrepo-Coupe, 2005)

CG-Tch Tchizalamou -4.2892 11.6564
Republic

of Congo
SAV 2006, 2007, 2009 -

CH-Cha Chamau grassland 47.2102 8.4104 Switzerland GRA
2007, 2008,

2010-2012
(Merbold et al., 2014)

CH-Fru Fruebuel grassland 47.1158 8.5378 Switzerland GRA
2007, 2008,

2010-2012
(Fritsche et al., 2008)

CH-Oe1 Oensingen1 grass 47.2858 7.7319 Switzerland GRA 2002-2008 (Ammann et al., 2009)

CN-Cha Changbaishan 42.4025 128.0958 China MF 2003-2005 (Zhang et al., 2010)

CN-Cng Changling 44.5934 123.5092 China GRA 2008, 2010 -

CN-Dan Dangxiong 30.4978 91.0664 China GRA 2004, 2005 -

CN-Din Dinghushan 23.1733 112.5361 China EBF 2003, 2005 (Zhang et al., 2010)

CN-Du2 Duolun_grassland (D01) 42.0467 116.2836 China GRA 2008 (Sun et al., 2011)

CN-Ha2 Haibei Shrubland 37.6086 101.3269 China WET 2003-2005 -

CN-HaM Haibei Alpine Tibet site 37.6167 101.3000 China GRA 2002, 2003 (Kato et al., 2006)

CN-Qia Qianyanzhou 26.7414 115.0581 China ENF 2003-2005 (Zhang et al., 2010)

CN-Sw2 Siziwang Grazed (SZWG) 41.7902 111.8971 China GRA 2011 (Shao et al., 2013)

CZ-BK1
Bily Kriz-

Beskidy Mountains
49.5047 18.5411

Czech

Republic
ENF

2003-2005,

2007-2012
(Marek et al., 2011)

CZ-BK2 Bily Kriz- grassland 49.4944 18.5429
Czech

Republic
GRA 2006-2011 (Marek et al., 2011)

DE-Akm Anklam 53.8662 13.6834 Germany WET 2011-2013 -

DE-Gri Grillenburg- grass station 50.9495 13.5125 Germany GRA
2004-2006,

2008-2014
(Hussain et al., 2011)

DE-Hai Hainich 51.0792 10.453 Germany DBF
2000-2005,

2007-2009, 2012
(Anthoni et al., 2004)
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DE-Kli Klingenberg - cropland 50.8929 13.5225 Germany CRO
2004-2006,

2009, 2010, 2014
(Prescher et al., 2010)

DE-Lkb Lackenberg 49.0996 13.3047 Germany ENF 2009, 2012, 2013 (Lindauer et al., 2014)

DE-Obe Oberbarenburg 50.7836 13.7196 Germany ENF 2008-2014 -

DE-RuS Selhausen Juelich 50.8657 6.4472 Germany CRO 2011-2014 (Eder et al., 2015)

DE-Spw Spreewald 51.8923 14.0337 Germany WET 2010-2012, 2014 -

DE-Tha
Anchor Station

Tharandt - old spruce
50.9636 13.5669 Germany ENF

2000, 2001,

2003-2005,

2007-2014

(Grunwald & Bernhofer, 2007)

DE-Zrk Zarnekow 53.8759 12.8890 Germany WET 2013, 2014 (Hahn-Schofl et al., 2011)

DK-Eng Enghave 55.6905 12.1918 Denmark GRA 2005 -

DK-NuF Nuuk Fen 64.1308 -51.3861 Denmark WET
2008, 2010,

2012-2014
(Westergaard-Nielsen et al., 2013)

DK-Sor Soroe- LilleBogeskov 55.4859 11.6446 Denmark DBF 2000, 2002-2012 (Pilegaard et al., 2001)

DK-ZaF Zackenberg Fen 74.4791 -20.5557 Denmark WET
2008, 2010,

2013, 2014
-

DK-ZaH Zackenberg Heath 74.4732 -20.5503 Denmark GRA
2002, 2003,

2005, 2006, 2008
(Lund et al., 2012)

ES-Amo Amoladeras 36.8336 -2.2523 Spain OSH 2010, 2011 -

ES-LgS Laguna Seca 37.0979 -2.9658 Spain OSH 2007-2009 (Reverter et al., 2010)

ES-LJu Llano de los Juanes 36.9266 -2.7521 Spain OSH
2004, 2006, 2008,

2010, 2011, 2013
(Serrano-Ortiz et al., 2007)

FI-Hyy Hyytiala 61.8475 24.2950 Finland ENF

2000, 2001,

2003-2005,

2008-2014

((Suni et al., 2003)

FI-Jok Jokionen agricultural field 60.8986 23.5135 Finland CRO 2001, 2003 (Lohila et al., 2004)

FR-Gri Grignon (after 6/5/2005) 48.8442 1.9519 France CRO 2005-2011, 2014 (Loubet et al., 2011)

FR-Pue Puechabon 43.7414 3.5958 France EBF 2001-2012 (Lhomme et al., 2001)

GF-Guy Guyaflux 5.2788 -52.9249
French

Guyana
EBF

2004-2006,

2008-2012
(Epron et al., 2006)

GH-Ank Ankasa 5.2685 -2.6942 Ghana EBF 2011, 2012, 2014 -

IT-CA1 Castel d’Asso1 42.3804 12.0266 Italy DBF 2011, 2012 (Sabbatini et al., 2016)

IT-CA2 Castel d’Asso2 42.3772 12.0260 Italy GRA 2011, 2013 (Sabbatini et al., 2016)

IT-CA3 Castel d’Asso 3 42.3800 12.0222 Italy DBF 2013 (Sabbatini et al., 2016)

IT-Cp2 Castelporziano2 41.7043 12.3573 Italy EBF 2013 -

IT-Isp Ispra ABC-IS 45.8126 8.6336 Italy DBF 2014 (Ferrea et al., 2012)

IT-La2 Lavarone2 45.9542 11.2853 Italy ENF 2001 -

IT-Lav Lavarone (after 3/2002) 45.9562 11.2813 Italy ENF 2003-2011 (Fiora & Cescatti, 2006)

IT-Noe Sardinia/Arca di NoÃĺ 40.6061 8.1515 Italy CSH 2004-2008, 2010 (Beier et al., 2009)

IT-PT1
Zerbolo-Parco

Ticino- Canarazzo
45.2009 9.0610 Italy DBF 2002, 2004 (Migliavacca et al., 2009)

IT-Ren Renon/Ritten (Bolzano) 46.5869 11.4337 Italy ENF

2001, 2002,

2004-2010,

2012, 2013

(Marcolla et al., 2005)

IT-Ro1 Roccarespampani 1 42.4081 11.9300 Italy DBF
2001-2004,

2006-2008
(Rey et al., 2002)

IT-Ro2 Roccarespampani 2 42.3903 11.9209 Italy DBF
2002-2008,

2010, 2012
(Tedeschi et al., 2006)

IT-SRo San Rossore 43.7279 10.2844 Italy ENF
2002, 2003,

2006-2012
(Chiesi et al., 2005)

IT-Tor Torgnon 45.8444 7.5781 Italy GRA
2008-2010,

2012, 2013
(Galvagno et al., 2013)

JP-MBF
Moshiri Birch

Forest Site
44.3869 142.3186 Japan DBF 2004 -

JP-SMF
Seto Mixed

Forest Site
35.2617 137.0788 Japan MF 2003, 2005, 2006 -
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MY-PSO
Pasoh Forest

Reserve (PSO)
2.973 102.3062 Malaysia EBF 2003-2009 -

NL-Hor Horstermeer 52.2404 5.0713 Netherlands GRA
2005, 2007,

2008, 2010
-

NL-Loo Loobos 52.1666 5.7436 Netherlands ENF
2000-2002,

2004-2014
(Dolman et al., 2002)

PA-SPn Sardinilla Plantation 9.3181 -79.6346 Panama DBF 2007, 2008 (Wolf et al., 2011)

RU-Che Cherskii 68.613 161.3414 Russia WET 2002-2004 (Corradi et al., 2005)

RU-Cok Chokurdakh 70.8291 147.4943 Russia OSH
2003, 2006, 2007,

2009, 2011, 2012
(van Huissteden et al., 2005)

RU-Fyo
Fyodorovskoye wet

spruce stand
56.4615 32.9221 Russia ENF

2000-2006, 2008,

2009, 2011-2013
(Kurbatova et al., 2008)

RU-Ha1
Ubs Nur-Hakasija-

grassland
54.7252 90.0022 Russia GRA 2003, 2004 -

RU-Sam
Samoylov Island-

Lena Delta
72.3738 126.4958 Russia GRA 2005, 2006, 2008 (Kutzbach et al., 2007)

RU-SkP Spasskaya Pad larch 62.255 129.168 Russia DNF 2012-2014 -

RU-Vrk Seida/Vorkuta 67.0547 62.9405 Russia CSH 2008 -

SD-Dem Demokeya 13.2829 30.4783 Sudan SAV 2007-2009 (Ardö et al., 2008)

SE-St1
Stordalen Forest-

Mountain Birch
68.3542 19.0503 Sweden WET 2012, 2014 -

US-ARM
ARM Southern Great

Plains site- Lamont
36.6058 -97.4888 USA CRO

2003, 2004,

2006-2010, 2012
(Fischer et al., 2007a)

US-Blo Blodgett Forest 38.8953 -120.633 USA ENF
2003, 2004,

2006, 2007
(Misson et al., 2005)

US-CRT
Curtice Walter-

Berger cropland
41.6285 -83.3471 USA CRO 2011-2013 (Chu et al., 2014)

US-Goo Goodwin Creek 34.2547 -89.8735 USA GRA 2002-2004, 2006 -

US-Ha1
Harvard Forest

EMS Tower (HFR1)
42.5378 -72.1715 USA DBF

2000, 2001,

2003-2012
(Goulden et al., 1996)

US-Ivo Ivotuk 68.4865 -155.75 USA WET 2004, 2006, 2007 (Epstein et al., 2004)

US-Los Lost Creek 46.0827 -89.9792 USA WET
2001-2008,

2010, 2014
(Sulman et al., 2009)

US-Me6
Metolius Young

Pine Burn
44.3233 -121.608 USA ENF 2010-2012 (Ruehr et al., 2012)

US-MMS
Morgan Monroe

State Forest
39.3232 -86.4131 USA DBF

2000-2006, 2009,

2010, 2013, 2014
(Schmid et al., 2000)

US-Myb Mayberry Wetland 38.0498 -121.765 USA WET 2011-2014 -

US-Ne2
Mead - irrigated maize

-soybean rotation site
41.1649 -96.4701 USA CRO

2002, 2004,

2006, 2008
(Suyker et al., 2005)

US-Ne3
Mead - rainfed maize-

soybean rotation site
41.1797 -96.4397 USA CRO

2002, 2004, 2006,

2008, 2010, 2012
(Suyker et al., 2004)

US-Oho Oak Openings 41.5545 -83.8438 USA DBF 2004-2011, 2013 (Noormets et al., 2008)

US-SRM Santa Rita Mesquite 31.8214 -110.866 USA WSA
2004-2008,

2010-2014
(Scott et al., 2009)

US-Syv
Sylvania

Wilderness Area
46.242 -89.3477 USA MF 2002, 2012-2014 (Desai et al., 2005)

US-Ton Tonzi Ranch 38.4316 -120.966 USA WSA
2002-2007, 2009,

2012-2014
(Xu & Baldocchi, 2004)

US-Tw3 Twitchell Alfalfa 38.1159 -121.647 USA CRO 2013, 2014 -

US-UMd UMBS Disturbance 45.5625 -84.6975 USA DBF 2008-2014 (Nave et al., 2011)

US-Var Vaira Ranch- Ione 38.4133 -120.951 USA GRA
2000-2007, 2009,

2011-2014
(Ma et al., 2007)

US-WCr Willow Creek 45.8059 -90.0799 USA DBF

2000, 2001,

2003-2006,

2011, 2013, 2014

(Cook et al., 2004)
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US-Whs
Walnut Gulch

Lucky Hills Shrub
31.7438 -110.052 USA OSH

2007, 2008, 2010,

2011, 2013, 2014
(Scott et al., 2006)

US-Wkg
Walnut Gulch

Kendall Grasslands
31.7365 -109.942 USA GRA

2006-2008,

2010-2014
(Scott et al., 2010)

US-WPT
Winous Point

North Marsh
41.4646 -82.9962 USA WET 2011-2013 (Chu et al., 2014)

ZA-Kru
Skukuza- Kruger

National Park
-25.0197 31.4969

South

Africa
SAV 2000, 2009-2012 (Williams et al., 2009)

ZM-Mon Mongu -15.4378 23.2528 Zambia DBF 2007-2009 (Merbold et al., 2011)

Table 4.A.3: Root mean square error (RMSE) for the regressions between LU EPAR

and OVAI or OV AIm , with all biome types combined together.

f PARm fPAR N DV Im NDVI EV Im EVI MTC Im MTCI
clear 0.00726 0.00722 0.00614 0.00661 0.00551 0.00558 0.00541 0.00613

cloudy 0.00742 0.00692 0.00650 0.00653 0.00671 0.00629 0.00590 0.00534

Table 4.A.4: Coefficient of determination (R2) for the regressions between
LU EPAR and OVAI or OV AIm , with all biome types combined together.

f PARm fPAR N DV Im NDVI EV Im EVI MTC Im MTCI
clear 0.39 0.40 0.56 0.49 0.64 0.63 0.69 0.60

cloudy 0.08 0.20 0.30 0.29 0.25 0.34 0.40 0.51

121



Chapter 5: Canopy and physiological controls of GPP during

drought and heat wave

Abstract

Vegetation indices (VIs) derived from satellite reflectance measurements are often

used as proxies of canopy activity to evaluate the impacts of drought and heatwave

on gross primary production (GPP) through production efficiency models (PEMs).

However, GPP is also regulated by physiological processes that cannot be directly

detected using reflectance measurements. This study analyzes the co-limitation of

canopy and plant physiology (represented by VIs and climate anomalies, respec-

tively) on GPP during 2003 European summer drought and heatwave for 15 Euroflux

sites. During the entire drought period, spatial pattern of GPP anomalies can be

quantified by relative changes in VIs. We also find that GPP sensitivity to relative

canopy changes is higher for non-forest ecosystems (1.81±0.32 %GPP/%EVI), while

GPP sensitivity to physiological changes is higher for forest ecosystems (0.18±0.05 g

C m−2 day−1/hPa). A conceptual model is further built to better illustrate the canopy

and physiological controls on GPP during drought periods.

5.1 Introduction

Both drought frequency and intensity are predicted to increase along with global

warming (Dai, 2012; Easterling et al., 2000b), which can alter the carbon cycle through

inhibiting photosynthesis (Flexas & Medrano, 2002), increasing mortality rate (Allen

et al., 2010; Peng et al., 2011a), and affecting ecosystem structure (Saatchi et al.,

2013)Ṫhe decrease of net primary production caused by drought was estimated to

be 0.55 Pg C globally for the first decade in the 21st century (Zhao & Running, 2010).

The most direct effect of drought came from the declined gross primary produc-
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tion (GPP) (Ciais et al., 2005). Many approaches have been proposed to estimate

GPP at regional or global scale: 1) process-based dynamic global vegetation models

(DGVMs) (Arora et al., 2013; Sitch et al., 2008), 2) remote sensing based produc-

tion efficiency models (PEMs) (Zhao & Running, 2010), 3) and eddy flux based data

driven models (Beer et al., 2010; Jung et al., 2011). Vetter et al. (2008) compared the

predictions of these models for GPP and NEE anomalies during the 2003 European

drought and heatwave. But the results from seven models were divergent, with es-

timates of drought induced GPP decline ranging from -0.02 to -0.27 Pg C. A clear

difference has also been found between the eddy flux based data driven models

which show little interannual variability (IAV) and the process-based models which

exhibit larger IAV (Anav et al., 2015). Since drought is one of the most important fac-

tors which causes the IAV of GPP (Zscheischler et al., 2014a), it is crucial to improve

the accuracy of GPP estimation during drought and heatwave to better understand

the ecosystem responses under future climate.

Drought and heatwave have two direct impacts on plant photosynthesis (van der

Molen et al., 2011). The first impact is the physiological response to water deficit

and high temperature, including the reduction in enzyme activity, and stomatal

conductance to prevent water loss (Flexas & Medrano, 2002; Hetherington & Wood-

ward, 2003; Reichstein et al., 2002). These effects have been often related to tem-

perature, vapor pressure deficit (Farquhar et al., 1980), and soil moisture deficit

(Baldocchi et al., 2004). The second impact is the changes of vegetation canopy

in response to drought, which includes leaf withering and senescence. The canopy

changes can be represented by the decrease of leaf area index (LAI), and observed

by satellites (Zhang et al., 2013b). These two processes also take effects at differ-

ent time scales: the physiological processes respond at the scale of minutes to days,

while the vegetation canopy changes occur at a scale of days to weeks.

123



Satellite-based PEMs differ in their approaches to quantify physiological and

canopy responses to drought and heat. Some PEMs use VPD related scalars, e.g.,

MODIS PSN (Moderate Resolution Imaging Spectroradiometer Photosynthesis) (Run-

ning et al., 2004), CFLUX (carbon flux model) (Turner et al., 2006). However, GPP

responses to VPD and temperature are different among ecosystems, even species

(Blackman et al., 2009). For example, both the stomata characteristics (size and

density) and intrinsic water use efficiency (A/gs, carbon assimilation rate divided

by stomatal conductance) differ among individual vegetation types (Hetherington

& Woodward, 2003). Therefore, using universal parameters to qualify these limita-

tions will introduce biases. Some PEMs use transformed vegetation indices (VIs) to

account for water stress, including VPM (vegetation photosynthesis model) (Xiao

et al., 2004a), VPRM (vegetation photosynthesis and respiration model) (Mahade-

van et al., 2008) and modified TG (temperature and greeness) model (Sims et al.,

2014). However, the vegetation canopy responds to prolonged drought and heat,

and different ecosystems have different spectral sensitivities to water stress (SSWS),

i.e., the changes in canopy characteristics which can be captured by satellite under

water stress (Sims et al., 2014). Trees with deeper roots are more resistant to de-

creased soil water, and have low SWSS. By contrast, SWSS are generally higher for

grassland and shrubland. In addition, there may be a time lag between leaf senes-

cence and GPP decline for most plants, which makes simulating GPP under drought

even more difficult (Frank et al., 2015). Dong et al. (2015) suggested that remote

sensing data-driven models that do not include water limitation factors performed

much worse during drought periods. However, even for the models discussed above

which consider water stress, their performances are not satisfied (Liu et al., 2015;

Schaefer et al., 2012). The major problem is the over-sensitivity of VPD related wa-

ter stress and under-sensitivity of VIs related water stress. Recent studies also high-
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light the complexity of water stress limitation on GPP and light use efficiency (Yuan

et al., 2014b; Zhang et al., 2015b). Improving PEMs performance is critical to better

diagnose the effects of droughts and heatwaves on GPP.

The 2003 summer climate anomaly in Europe is suitable to investigate physio-

logical and canopy controls on regional GPP, because of the relatively high density of

flux tower sites, different ecosystems affected, and the spatial extent of the drought

(Schar et al., 2004). In this paper, we address two specific questions: (1) Are satellite

retrieved VIs sufficient to quantify the spatial differences in GPP anomalies across

different ecosystems? (2) Are satellite retrieved VIs able to track the temporal GPP

anomalies at each flux tower site?

5.2 Materials and Methods

5.2.1 Data

The data used in this study includes remotely sensed vegetation indices (VIs) and

land surface temperature (LST), as well as vapor pressure deficit (VPD) and GPP

measurements from the in situ flux tower records. VIs and LST for each site are de-

rived from MODIS (MOD09A1 and MOD11A2). Even during drought period, there

exists atmospheric contamination on data quality (Zhang et al., 2015b). In order to

eliminate these corrupted observations, a data quality check and gap-filling algo-

rithm was applied to these variables (Figure 5.A.1). The eddy flux data are from 15

flux tower sites in Europe, all of which experienced a decline of GPP during the 2003

drought and heatwave period (Figure 5.1a-c, Table 5.A.1). For more information

about the data usage and processing, please refer to the Appendix.
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5.2.2 Method

GPP can be calculated based on a function of a maximum potential value, , reduced

by both canopy control (CC) and physiological control (PC):

GPP =GPPmax × f (CC ,PC ) (5.1)

For each specific stable ecosystem, the for a specific period can be regarded as a

constant. The canopy control is related to three different characteristics of vegeta-

tion canopy: 1) leaf area or canopy coverage, 2) canopy pigments such as chloro-

phyll content, and 3) canopy water content (Xiao et al., 2005b). The physiologi-

cal control is the environmental stress on carbon fixation process through stomatal

conductance, enzyme activity, etc. We hypothesize that canopy control and phys-

iological control are independent because they respond at different time scales.

Therefore, the differential form of GPP with respect to these two controls is as fol-

lows:

dGPP =GPPmax × (
∂GPP

∂CC
dCC ,

∂GPP

∂PC
dPC ) (5.2)

the relative change in GPP can be calculated as:

dGPP

GPP
=GPPmax × (

∂GPP/GPP

∂CC /CC

dCC

CC
+ ∂GPP/GPP

∂PC /PC

dPC

PC
) (5.3)

If we change the form of equations (2) and (3) and replace GPPmax × ∂GPP
∂CC and

GPPmax × ∂GPP
∂CC with ΦCC and ΦPC , GPPmax × ∂GPP/GPP

∂CC /CC
and GPPmax × ∂GPP/GPP

∂PC /PC

with φCC and φPC , Eq. (5.2) and (5.3) are rewritten as:

∆GPP =ΦCC ×∆CC +ΦPC ×∆PC (5.4)
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δGPP =φCC ×δCC +φPC ×δPC (5.5)

ΦCC andΦPC indicate the sensitivity of GPP to the absolute change (∆) of canopy

and physiological control, respectively. φCC and φPC represent the sensitivity of

GPP to the relative change (δ) of canopy and physiological control, respectively. The

absolute anomaly (∆) and relative anomaly (δ) can be calculated as below:

∆i
γ = γi −γi (5.6)

δi
γ =

γi −γi

γi
(5.7)

where γ stands for different variables (e.g., VIs, GPP, VPD). γi and γi represent

the ith observation for each 8-day period (hereafter referred to as week) in 2003, and

the average value of the variable γ for the corresponding week for normal years, re-

spectively. For each site, the normal years are defined as the years with flux obser-

vations, excluding 2003. ∆γ and δγ denote the anomalies calculated from the entire

drought period in 2003 compared to normal years. The drought period is defined as

week 20 to 39 (June 2nd to November 8th) in 2003, when the average δGPP of the 15

flux sites drops below 0 (Figure 5.1b, c)

The two limitations are represented by indicators that can be directly observed.

The canopy control (CC) is represented by three VIs, namely the normalized differ-

ence vegetation index (NDVI), the enhanced vegetation index (EVI), and the land

surface water index (LSWI). These three VIs are selected because they are related to

different properties of the canopy. NDVI is related to the leaf area [Carlson and Rip-

ley, 1997], EVI is related to the green leaf (Zhang et al., 2005), and LSWI is related to

the water content in the canopy (Xiao et al., 2004b). The physiological control (PC)

is represented by satellite-retrieved LST and VPD from flux tower measurements,
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both of which are frequently used in PEMs.

Based on absolute and relative anomalies (Eq. (5.6) and (5.7)), we investigate

the relationship between GPP anomalies and anomalies of VIs, LST, and VPD for

the entire drought period across all flux sites (∆γ and δγ were used). To explore

the respective effects of the physiological and canopy controls during the drought

period for each site, we first use VPD as the physiological control and analyze the

partial correlation between dependent variable ∆GPP or δGPP and two correspond-

ing independent variables (∆V I s or δV I s , and ∆V PD or δV PD ), represented by ρGPP,γ
∆

or ρGPP,γ
δ

(γ represents VIs or VPD, with the other controlled), respectively. We also

consider a lagged response of VIs to GPP change with lags of 0 to 5 weeks. Previous

studies suggested that lags from weeks to months exist for satellite retrieved canopy

signals and precipitation decline (Ji & Peters, 2003; Wan et al., 2004). LST and VPD,

which directly affect enzyme activity and stomatal conductance, respectively, are

not analyzed with lags (confirmed by Figure 5.A.3, 5.A.4). Based on the partial cor-

relation analysis, we use multi-variate regression to fit the GPP data into Eq. (5.4)

and (5.5) to get the GPP sensitivity to absolute change (Φ) and relative change (φ) of

canopy and physiological control, respectively. We also take the lag effect on canopy

control into consideration; regressions are conducted only for the lags with highest

partial correlation in the previous analysis. All these procedures are also conducted

using LST instead of VPD as the physiological control.
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5.3 Results

5.3.1 Sensitivity of GPP anomalies to changes in vegetation indices and climate over

the entire drought period

All the 15 sites have negative∆GPP andδGPP during the drought period (Table 5.A.1).

In terms of absolute anomalies, ∆GPP is largest for grassland (GRA, -377.8 to -207.3

g C m−2) and deciduous broadleaf forest (DBF, -321.0 to -175.0 g C m−2), followed

by evergreen needleleaf forest (ENF, -272.3 to -93.5 g C m−2), while three other veg-

etation types (EBF, MF, OSH) have a smaller ∆GPP . In terms of relative anomalies,

non-forest sites (GRA and OSH) show a much larger δGPP decline (-57.2% to -17.8%)

compared to the forest sites (-28.6% to -2.8%) (Figure 5.1i, Table 5.A.1).

Figure 5.1 (d-h) shows the relationship between the averaged anomalies of GPP

and three VIs, LST, and VPD during the entire drought period. The canopy responses

during the drought period are divergent among sites, and show only slight differ-

ences when different VIs are used. δV I s for non-forest are mostly negative, suggest-

ing that the canopy properties are significantly affected during the drought. In con-

trast, δV I s for all the forest sites are close to zero, indicating that the canopy optical

characteristics merely change. The coefficients of determination between δGPP and

δV I s are high (R2 > 0.73). The slopes of the regressions are lowest for LSWI (0.79),

suggesting that a small change in GPP corresponds to a larger change in LSWI. The

intercepts for the three VIs are similar (∼ 20%). When using absolute anomalies, the

correlation between GPP and VIs are much lower (Figure 5.A.2).

We also investigated the relationship between the anomalies of GPP and physi-

ological indicators (LST and VPD). During the drought period compared to normal

years, LST and VPD increase by 0.49 to 3.71°C and 0.50 to 6.83 hPa, respectively

(Table 5.A.1). Correlation between δGPP and δLST is stronger (R2 = 0.25) than that
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between δGPP and δV PD (R2 = 0.01), or air temperature (δTai r , R2 = 0.01) measured

at flux tower sites (Figure 5.1g, h, Figure 5.A.5). Even though all VIs and climate vari-

ables respond to drought, only δV I s show significant correlation with δGPP . This

indicates that the spatial difference, i.e., from site to site, of the GPP decline due to

drought and heatwave can be partially explained by the averaged relative changes

in VIs. However, for the drought affected regions, even when the average VIs did not

change, GPP can still decline ∼ 20% (intercept in Figure 5.1d, e, f).
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Figure 5.1: (a) Location of the flux tower sites used in this study, and the averaged
drought intensity from June to October in 2003. The drought intensity was in-
dicated by the Palmer Drought Severity Index (PDSI) averaged over the drought
period. PDSI data was down loaded from the National Center for Atmospheric Re-
search Climate & Global Dynamics (NCAR-CGD) website (http://www.cgd.ucar.
edu/cas/catalog/climind/pdsi.html) [Dai, 2012]. Site ID in the map can be inter-
preted using the legend for (b). (b) Seasonal GPP normalized by maximum GPP
for normal years. (c) GPP relative anomalies for 2003 for 15 flux tower sites. Dif-
ferent colors represent different vegetation types, using the same colors as (d).
The black dashed line represents the average anomaly of all the 15 sites. (d-h)
Relationship of averaged relative anomalies for the entire drought and heatwave
period (δγ) between GPP and vegetation indices (EVI, NDVI, LSWI), land surface
temperature (LST), and vapor pressure deficit (VPD). (i) GPP decrease for forest
(F) and non-forest (NF) in relative anomaly.
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5.3.2 Sensitivity of GPP anomalies to changes in vegetation indices and climate at

8-day intervals during the drought period

We calculated the partial correlations between GPP and VIs (with climate variables

in control) or climate variables (with VIs in control) in both absolute and relative

anomalies, and investigated GPP responses to canopy and physiological controls.

We chose EVI with different time lags to represent the canopy control, and VPD

with no lag for the physiological control because the anomalies of these predictors

have higher correlations with GPP anomalies. There are clear differences between

forest and non-forest ecosystems with respect to vegetation canopy versus physio-

logical controls (Figure 5.2). All non-forest sites, while only about half of the forest

sites show strong partial correlation (ρ > 0.5) in relative anomalies (ρGPP,EV I
δ

, Figure

5.2c). The lags where the highest correlation is reached are also shorter for non-

forest than forest sites. Strong partial correlation (ρ > 0.5) between GPP and VPD

in absolute anomalies (ρGPP,V PD
∆ ) is found for most (7 out of 9) forest sites (Figure

5.2b). In contrast, ρGPP,V PD
∆ is positive for most non-forest sites. The correlations

calculated using relative anomalies (ρGPP,V PD
δ

) are weaker than that using absolute

anomalies (ρGPP,V PD
∆ , Figure 5.2d). These analyses were also conducted for the two

other VIs (NDVI and LSWI) with VPD, and all three VIs with LST; the correlations

become weaker when using LST instead of VPD (Figure 5.A.6–5.A.10).

We further use eq. (5.4) and (5.5) to decompose the canopy and physiological

control, and the results are shown in Table 5.1. When using absolute anomalies

(∆), non-forest ecosystems usually have a higher level of significance for canopy

sensitivity (ΦCC ) in the regression model, with an average value of 19.85±9.25 g C

m−2/(EVI); forest ecosystems have a higher level of significance for physiological

sensitivity (ΦPC ), with an average value of -0.18±0.05 g C m−2day−1/hPa). When
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using the relative anomalies (δ), canopy sensitivity (φCC ) shows a higher control of

GPP for non-forest sites (1.81±0.32 %GPP/%EVI), but the physiological sensitivity

(φPC ) has much lower p-values for forest ecosystems. We also found that all sensi-

tivities (ΦCC , ΦPC , φCC and φPC ) have a large range of variation for all ecosystems.

Forest and non-forest ecosystems show a distinct difference (p < 0.1, student’s t

test) for three sensitivity factors except for ΦCC (Figure 5.A.11). Canopy sensitiv-

ities (ΦCC , φCC ) are lower for forest than non-forest while physiological sensitivi-

ties (ΦPC , φPC ) are opposite in absolute values. This regression analysis confirms

the finding of the partial correlation analysis and the results are similar when using

different canopy indicators (NDVI, LSWI) and physiological indicator (LST) (Table

5.A.2-5.A.6).
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Figure 5.2: Partial correlation between anomalies in GPP and anomalies in EVI
(a, c) and VPD (b, d). EVI with different lags were used. (a, b) are using absolute
anomalies (∆γ), and (c, d) are using relative anomalies (δγ). Only partial correla-
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The numbers represent the partial correlation coefficients.
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5.4 Discussion

5.4.1 Differences between forest and non-forest ecosystems in response to drought

and heatwave

Relative changes in GPP vary among biomes due to different resistance to drought.

Forest ecosystems have deeper roots and higher regulatory capacity on transpira-

tion during the early and middle phases of an extreme drought like 2003 (Teuling

et al., 2010), therefore, they can better utilize soil water, and are more resistant to

short-term drought. Non-forest ecosystems are more vulnerable to drought due

to their lower capability to utilize soil water (Baldocchi et al., 2004). The differ-

ence between forests and grasslands is also supported by distinctive energy balance

between forests and grasslands during the drought and heatwave period (Teuling

et al., 2010; Wicke & Bernhofer, 1996; Zaitchik et al., 2006).

GPP anomaly is regulated by the combined effects of canopy and physiological

changes. For forest ecosystems, the canopy changes are minor, and GPP anoma-

lies primarily come from physiological limitation on photosynthesis. For non-forest

ecosystems (GRA and OSH), both physiological and vegetation canopy changes con-

tribute to the change in GPP during the drought and heatwave period. Canopy

changes are dominant for these non-forest ecosystems, with previous studies show-

ing that in situ measured LAI has a good correlation with GPP during the drought

period (Aires et al., 2008). Although forest and non-forest ecosystems have differ-

ent regulatory mechanisms, VIs can partially explain the observed relative changes

in GPP during the drought across different biomes. By contrast, the physiological

control (VPD or LST) on photosynthesis is a fast process and cannot be temporally

averaged to evaluate the cross-site GPP differences during the entire drought pe-

riod.
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5.4.2 A conceptual model for canopy and physiological limitation on forest and non-

forest during drought and heatwave

Indicators perform differently for temporally tracking the GPP anomalies at each

site. In general, forest sites show weaker correlation between VI anomalies and

GPP anomalies, and have longer lags (but with large differences across sites), which

makes it difficult to predict drought impacts on GPP using only VIs. GRA and OSH

have shorter lags and show stronger correlation with VIs because of the higher SSWS.

For forest ecosystems, VPD is a superior predictor of GPP anomalies over VIs. How-

ever, GPP responses to VPD may vary for different forest types, and even for specific

sites (Lin et al., 2015). Together with different VPD base values for the referential

period, they contribute to the higher partial correlation when using absolute VPD

anomalies rather than relative anomalies (Figure 5.2). Non-forest ecosystems have

a lower sensitivity to VPD possibly because of less stomatal regulation and the rela-

tively dominant role of vegetation canopy change in affecting GPP.
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Figure 5.3: The conceptual model for vegetation canopy and physiological con-
trols on (a) forest and (b) non-forest during the drought period. Relative anoma-
lies (δγ) were used. For simplicity and readability, VI fluctuation was removed,
and only the VI trend was plotted. As drought progresses over time, two different
drought stages are annotated as P-I and P-II. For the first stage (P-I), physiologi-
cal control dominates the GPP variation, and for the second stage (P-II), canopy
control dominates the GPP variation.
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Based on the above findings, we built a conceptual model to describe the re-

lationship among the relative anomalies in VPD, VIs and GPP (Figure 5.3). The

anomaly in GPP is the combined result of VPD and VI anomalies, with remarkable

differences between forest and non-forest ecosystems. The drought can be divided

into two periods: P-I is the initial period of drought, in which the VPD and radiation

increases, but the canopy does not start to change due to the available soil water

and ecosystem self-regulation. During this period, the primary regulation on GPP

is through VPD and temperature. Forests have a much longer P-I, with higher sen-

sitivity to VPD than non-forests. P-II starts when soil water is depleted and cannot

sustain water supply to meet transpiration demand of plants, and the falling leaves

result in the changes in vegetation canopy or VIs. During this period, the primary

regulation on GPP is the vegetation canopy. Non-forest ecosystems have a longer

P-II phase than forests, and the VIs may change enormously during this period due

to the senescence of leaves.

5.4.3 Implication and limitation of the canopy and physiological control analysis

Different drought stages and regulation factors in forest and non-forest ecosystems

suggest that we cannot use a single indicator to temporally track the GPP anomaly

during the drought period for all ecosystems. For non-forest ecosystems, canopy

control, which explains much of the GPP variation, has been partially embedded

in the fraction of photosynthetic active radiation (FPAR) in PEMs (canopy sensitiv-

ity (φCC ) is greater than 1 %GPP/%EVI). The physiological control on GPP still ex-

ists, but has much smaller variation. Because of the decoupling of atmospheric and

soil water deficit from photosynthesis during extreme drought condition (Beringer

et al., 2011; Yuan et al., 2014b), VPD and other climate factors may not well represent

physiological control on GPP at daily or longer time scales. Rapid canopy responses
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in non-forest ecosystems allow transformed VIs to be used to represent the physio-

logical control on GPP, such as the LSWI based water scalar used in VPM (Xiao et al.,

2004b). For forest sites, VPD can be used, but more site-specific parameters are re-

quired. Similar biome-based differences were also reported by Zhang et al. (2015c).

Because the absolute anomaly of VPD (∆GPP ) shows an advantage over the relative

anomaly (δV PD ) in both partial correlation analysis and the regression model (Fig-

ure 5.2, Table 5.1), it also suggests a non-linear response of VPD control on photo-

synthesis, rather than the piecewise function currently used in MODIS PSN model

(Running et al., 2004).

The 2003 European drought and heatwave gives us a unique opportunity to

study the drought impact on GPP and the feasibility of estimating the drought im-

pacts on GPP using remote sensing based PEMs. This research benefits from high

density of carbon flux towers, however, it also faces the following limitations: (1)

the inconsistency of the flux tower footprint and MODIS pixel size; the land cover

is relatively patchy and mixed pixels exist. The climate and GPP anomalies are also

much larger in finer resolution images (Zaitchik et al., 2006). (2) The data quality of

VIs may still be unreliable even after gap-filling and smoothing for some sites. This

issue is more critical when doing interannual analysis at temporal scales, but can be

alleviated when VIs values are averaged over the entire drought period. (3) GPP and

satellite-retrieved data are at 8-day time scale, however, VPD/LST affects photosyn-

thesis at the hourly scale, the inconsistency of operation time scales will also reduce

the model predictability. (4) Several subsequent droughts and heatwaves also influ-

enced parts of Europe in 2006 and 2011. However, these years were not eliminated

when calculating the reference values because of the different spatial extents and

severities of these drought events.
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5.5 Conclusions

This study presents an analysis of how GPP from different ecosystems responds to

drought through vegetation canopy change and physiological responses. Distinc-

tive responses to drought are found between forest and non-forest ecosystems. Dur-

ing the entire drought period, forests do not show obvious changes in canopy op-

tical characteristics, while non-forests tend to have a faster canopy response. Rela-

tive anomalies of VIs can still be used as indicators to evaluate the drought-induced

GPP decline spatially. At the temporal scale for each site, because of different domi-

nant factors in two drought stages (P-I/P-II) and the different stage lengths for forest

and non-forest, forest GPP is more responsive to changes in VPD while non-forest

GPP is more sensitive to changes in VIs. In the near future, soil moisture data from

Soil Moisture Active Passive (SMAP) satellite and sun-induced chlorophyll fluores-

cence (SIF) observations from Orbiting Carbon Observatory-2 (OCO-2) or Sentinel-

5 Precursor satellite may be used to provide a better estimation of GPP decline from

canopy and physiological control during severe drought and heatwave period.

5.A Appendix

The L4 8-day eddy covariance data from 15 flux tower sites were used in our study

(Figure 5.1). These sites were selected due to the significant decrease of GPP in sum-

mer (June to August) 2003 compared to the average of other years, and also for the

data quality. These 15 sites covered 5 vegetation types: Deciduous Broadleaf For-

est (DBF), Evergreen Broad Leaf Forest (EBF), Evergreen Needle Leaf Forest (ENF),

Grassland (GRA), and Open Shrub land (OSH). To make eddy covariance data com-

parable with the Moderate Resolution Imaging Spectroradiometer (MODIS) prod-

ucts, we only used the flux data after 2000. We also find some sites with data missing
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for a relatively long period. This directly affected our site selections. If 8-day GPP

data is missing during the 2003 drought period (from week 20 to week 39), this site

was discarded; if the GPP data is missing during the corresponding drought period

in normal years, this site-year was excluded from analysis. This gave us 118 site-

years of available data. The anomaly was calculated between the difference of 2003

and the long-term average (2003 excluded); the average reference period for each

site is 6.9 years. GPP was estimated from the Marginal Distribution Sampling gap-

filling method (‘GPP_st_MDS’). Along with GPP, we also used 8-day vapor pressure

deficit (‘VPD’), precipitation (‘Precip’), and air temperature (‘Ta_f’) to quantify the

drought severity (Table 5.A.1).

The vegetation indices and land surface temperature (LST) were obtained from

MODIS onboard the Terra satellite. To make the MODIS data comparable with the

flux data, each site had the same period of observations, depending on the data

availability from both MODIS and flux tower. Although the LST from Aqua satellite

has a better bypass time (13:30) which is closer to the highest temperature of the

day, it was not used because a lot of flux data would be discarded to match the same

observation period of Aqua satellite (start from July, 2002). The MODIS-derived 8-

day vegetation indices were calculated from MOD09A1 C5 product, with a spatial

resolution of 500 meters. The day-time LST was obtained from MOD11A2 C5 prod-

uct at 8-day temporal resolution. Data quality was checked for cloud and aerosol,

and a temporal gap-filling method was used to remove bad observations.

The three vegetation indices were calculated from the MOD09A1 product using

the following equations:

EV I = 2.5× ρni r −ρr ed

ρni r + (6×ρr ed −7.5×ρbl ue )+1
(5.A.1)
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N DV I = 2.5× ρni r −ρr ed

ρni r +ρr ed
(5.A.2)

The three vegetation indices were then temporally gap-filled and smoothed us-

ing different procedures. Atmospheric corruption and measurement failure tend to

decrease the value of EVI and NDVI. Therefore, we used a similar data quality check

procedure as described by Reichstein et al. (2007): 1). The data quality for the vege-

tation indices were checked using the quality flag layer embedded in the MOD09A1

data. The quality flag is a 16-bit number for each observation and the data is only

considered valid when the following requirements were met: MOD35 cloud = ‘clear’

(bit 0-1 equals ‘00’); aerosol quantity = ‘low’ or ‘average’ (bit 6-7 equals ‘01’ or ‘10’).

2) the best index slope extraction (BISE) algorithm with a window size of two time

steps was used to eliminate some low values which cannot be correctly identified

by the MODIS quality control layer (Viovy et al., 1992). A larger window size of

BISE algorithm can get a smoother curve, but it will also reduce the information

about disturbance (drought and heatwave in our study). After the BISE algorithm

finds the valid points which can be used for temporal interpolation, we further use

a threshold to remove the sudden spikes which can be caused by other unforeseen

problems: if a VI value is greater than 1.5 fold of the average of its two nearby val-

ues, it will also be removed. 3) The very last points were then linearly interpolated to

generate the time series of EVI/NDVI. Through this procedure, we found that most

abnormal values in the growing season were removed (Figure 5.A.1a, b). Because

atmospheric corruption may increase LSWI and violate the hypothesis of BISE al-

gorithm, we used a different procedure: 1) like EVI and NDVI, the data quality was

checked for each observation. 2) The invalid observations were then masked and

linearly interpolated with nearby good values. 3) A Savitzky-Golay filter was then
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applied to the time series to eliminate the high frequency noises (Figure 5.1c).

The LST data from MOD11A2 C5 followed the same routine of gap-filling and

smoothing procedure like LSWI while the quality flag is different; the quality flag

is an 8-bit number and the valid data should have Mandatory QA Flags = ‘LST pro-

duced’ (bit 0-1 equals ‘00’ or ‘01’), Data Quality Flag = ‘good data quality’ (bit 2-3

equals ‘00’).
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Figure 5.A.1: Gap-filled results of NDVI (a), EVI (b), and LSWI (c) for site DE-Tha
for year 2003. Red crosses indicate the corrupted observations identified by the
MODIS quality check layer. Green circles indicate observations that passed the
quality check, and the blue lines are the final smoothed vegetation indices.
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Figure 5.A.2: Relationship of averaged absolute anomalies (∆γ) between GPP and
vegetation indices (EVI, NDVI, LSWI), land surface temperature (LST), and vapor
pressure deficit (LST) for the entire drought and heatwave period (a-e). GPP de-
crease for forest (F) and non-forest (NF) in absolute anomaly (f ).
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Figure 5.A.3: Pearson correlation between anomalies in absolute value for GPP
(∆GPP ) and EVI (∆EV I ) with different lags applied.
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Figure 5.A.4: Pearson correlation between anomalies in absolute value for GPP
(∆GPP ) and VPD (∆V PD ) with different lags applied.
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Figure 5.A.5: Relationship of average anomalies between GPP and air tempera-
ture for the entire drought and heatwave period. (a) is using averaged absolute
anomalies (∆γ) and (b) is using averaged relative anomalies (δγ).
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Figure 5.A.6: Same as Figure 5.2, but for NDVI instead of EVI.
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Figure 5.A.7: Same as Figure 5.2, but for LSWI instead of EVI.

(a) (b) (c) (d)

DBF

EBF

ENF

MF

GRA

OSH

0 1 2 3 4 5

Lag (8-day)

IT-Pia

IT-Mbo

HU-Bug

CH-Oe1

BE-Vie

IT-Lav

FR-LBr

ES-ES1

DE-Tha

IT-Cpz

FR-Pue

IT-Ro2

IT-Ro1

FR-Hes

DE-Hai

Absolute EVI

0.53 0.68 0.71 0.66 0.49 0.21

0.51 0.64 0.33 -0.24 -0.75 -0.68

0.04 0.19 0.38 0.38 0.27 0.26

0.35 0.50 0.46 0.43 0.21 -0.02

0.16 0.36 0.26 0.14 0.06 -0.12

0.24 0.34 0.38 0.41 0.45 0.25

0.39 0.28 0.23 0.30 0.19 0.24

0.36 0.10 0.24 0.19 0.04 -0.13

-0.32 -0.21 0.12 0.05 0.06 0.12

0.15 0.15 0.47 0.45 0.28 0.30

0.54 0.51 0.28 0.03 -0.11 -0.15

-0.16 -0.34 -0.45 -0.26 0.05 0.15

0.27 0.27 0.24 0.28 0.26 0.08

0.06 0.08 -0.15 0.28 0.56 0.12

-0.01 0.26 0.44 0.49 0.46 0.17

0 1 2 3 4 5

Lag (8-day)

Absolute LST

-0.26 -0.30 -0.13 0.13 0.26 0.12

0.17 0.08 0.11 0.23 0.51 0.53

-0.17 -0.05 0.15 0.13 -0.05 -0.12

-0.37 -0.17 -0.38 -0.51 -0.44 -0.38

-0.12 -0.07 -0.11 -0.15 -0.17 -0.12

-0.10 -0.08 -0.01 0.03 -0.00 -0.14

-0.39 -0.41 -0.38 -0.38 -0.36 -0.33

-0.45 -0.50 -0.51 -0.50 -0.52 -0.53

-0.37 -0.39 -0.36 -0.36 -0.36 -0.34

-0.31 -0.33 -0.41 -0.44 -0.51 -0.56

-0.51 -0.48 -0.38 -0.39 -0.39 -0.40

-0.53 -0.59 -0.64 -0.53 -0.41 -0.39

-0.52 -0.40 -0.37 -0.46 -0.47 -0.56

-0.52 -0.54 -0.48 -0.59 -0.70 -0.54

-0.14 -0.13 -0.13 -0.22 -0.32 -0.20

0 1 2 3 4 5

Lag (8-day)

Relative EVI

0.38 0.48 0.52 0.47 0.24 -0.05

0.45 0.47 0.24 -0.06 -0.27 -0.10

0.05 0.32 0.53 0.56 0.50 0.52

0.39 0.59 0.45 0.31 0.11 -0.09

-0.14 0.37 -0.05 -0.08 -0.14 -0.17

0.11 0.19 0.26 0.28 0.26 0.07

0.42 0.29 0.20 0.20 0.02 0.13

0.28 -0.02 0.09 0.08 0.10 -0.01

-0.02 0.10 0.49 0.41 0.23 0.33

0.28 0.15 0.48 0.47 0.26 0.28

0.54 0.47 0.15 -0.13 -0.24 -0.22

-0.04 -0.14 -0.21 -0.03 0.24 0.29

0.39 0.38 0.29 0.32 0.38 0.09

0.33 0.27 -0.03 0.29 0.69 0.50

-0.13 0.00 0.14 0.29 0.36 0.17

0 1 2 3 4 5

Lag (8-day)

Relative LST

-0.05 -0.06 0.03 0.16 0.17 0.02

0.81 0.75 0.71 0.74 0.77 0.72

0.21 0.37 0.54 0.55 0.45 0.41

0.04 0.25 -0.01 -0.14 -0.07 0.03

-0.01 0.12 0.05 0.06 0.11 0.13

0.52 0.55 0.57 0.58 0.57 0.53

-0.16 -0.20 -0.15 -0.13 -0.13 -0.09

-0.37 -0.45 -0.45 -0.44 -0.45 -0.45

-0.03 -0.03 -0.04 -0.04 -0.02 0.04

-0.13 -0.25 -0.36 -0.39 -0.45 -0.49

-0.50 -0.44 -0.33 -0.37 -0.35 -0.35

-0.51 -0.51 -0.51 -0.38 -0.31 -0.29

-0.36 -0.22 -0.24 -0.37 -0.33 -0.47

-0.08 -0.22 -0.14 -0.30 -0.60 -0.31

0.13 0.16 0.22 0.13 -0.07 0.02

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.A.8: Same as Figure 5.2, but the climate indicator was replaced with land
surface temperature instead of VPD.
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Figure 5.A.9: Same as Figure 5.A.8, but for NDVI instead of EVI.
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Figure 5.A.10: Same as Figure 5.A.8, but for LSWI instead of EVI.
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Figure 5.A.11: Box plot of the absolute and relative sensitivity of canopy control
(CC) and physiological control (PC) for forest (F) and non-forest (NF).
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Chapter 6: Consistency between sun-induced chlorophyll

fluorescence and gross primary production of vegetation in North

America

Abstract

Accurate estimation of the gross primary production (GPP) of terrestrial ecosystems

is vital for a better understanding of the spatial-temporal patterns of the global car-

bon cycle. In this study, we estimate GPP in North America (NA) using the satellite-

based Vegetation Photosynthesis Model (VPM), MODIS images at 8-day temporal

and 500 m spatial resolutions, and NCEP-NARR (National Center for Environmen-

tal Prediction-North America Regional Reanalysis) climate data. The simulated GPP

(GPPV P M ) agrees well with the flux tower derived GPP (GPPEC ) at 39 AmeriFlux

sites (155 site-years). The GPPV P M in 2010 is spatially aggregated to 0.5 by 0.5

degree grid cells and then compared with solar-induced chlorophyll fluorescence

(SIF) data from Global Ozone Monitoring Instrument 2 (GOME-2), which is directly

related to vegetation photosynthesis. Spatial distribution and seasonal dynamics

of GPPV P M and GOME-2 SIF show good consistency. At the biome scale, the re-

lationship between GPPV P M and SIF shows strong linear relationships (R2 > 0.95)

and small variations in slopes (4.60–5.55 g C m−2 day−1 / mW m−2 nm−1 sr−1). The

total annual GPPV P M in NA in 2010 is approximately 13.53 Pg C year−1, which ac-

counts for∼11.0% of the global terrestrial GPP and is within the range of annual GPP

estimates from six other process-based and data-driven models (11.35–22.23 Pg C

year−1). Among the seven models, some models did not capture the spatial pattern

of GOME-2 SIF data at annual scale, especially in Midwest cropland region. The

results from this study demonstrate the reliable performance of VPM at the conti-

nental scale, and the potential of SIF data being used as a benchmark to compare
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with GPP models.

6.1 Introduction

Carbon dioxide fixed through photosynthesis by terrestrial vegetation is known as

gross primary production (GPP) at the ecosystem level. Increased carbon uptake

during the past decades helped offset growing CO2 emissions from fossil fuel burn-

ing and land cover change and mitigate the increase of atmospheric CO2 concentra-

tion and global climate warming (Ballantyne et al., 2012). A variety of approaches

have been used to estimate GPP of terrestrial ecosystems, and they can be grouped

into four categories: 1) process-based GPP models; 2) satellite-based production

efficiency models (PEM); 3) data-driven GPP models upscaled from eddy covari-

ance data; and 4) models based on solar-induced chlorophyll fluorescence (SIF)

(Figure 6.1). However, large uncertainty still remains regarding the spatial distribu-

tion and seasonal dynamics of GPP, which limits our capability to address scientific

questions related to the increasing seasonal amplitude and interannual variation

of atmospheric CO2 (Graven et al., 2013; Poulter et al., 2014; Forkel et al., 2016).

An accurate estimation of GPP at regional and global scales is essential for a bet-

ter understanding of the underlying mechanisms of ecosystem-climate interactions

and ecosystem response to extreme climate events, such as drought, heat wave, and

flood, etc. (Beer et al., 2010; Yu et al., 2013).

Many process-based biogeochemical models employ the enzyme kinetics the-

ory, most well-known as encapsulated by Farquhar et al. (1980) and its modification

for C4 plants (Collatz et al., 1992). Some process-based models employ the light-

use-efficiency (LUE) concept to estimate GPP (Zeng et al., 2005). These models also

take multiple ecological processes into consideration so that they can be coupled
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with general circulation models (GCMs) to predict feedbacks related to the global

warming and CO2 fertilization (Booth et al., 2012; Keenan et al., 2012; Piao et al.,

2013; Xia et al., 2014). However, these models are often run at coarse spatial resolu-

tion and the simulation results vary enormously even with the same set of meteo-

rological input datasets (Coops et al., 2009).

The remote sensing based PEMs estimate GPP as the product of the energy ab-

sorbed by plants (absorbed photosynthetically active radiation, APAR) and LUE that

converts energy to carbon fixed during the photosynthesis process (Monteith 1972).

These models can be further divided into two subcategories (Dong et al., 2015; Xiao

et al., 2004b). The F PARcanopy based models, including the Carnegie Ames Stanford

Approach (CASA) (Potter et al., 1993), the MODIS GPP algorithm (Photosynthesis,

PSN) (Running et al., 2004; Zhao et al., 2005), and the EC-LUE model (Yuan et al.,

2007), use the radiation absorbed by vegetation canopy. The F PARchl /g r een based

models use radiation absorbed by chlorophyll or green leaves and include the Vege-

tation Photosynthesis Model (VPM) (Xiao et al., 2004b,a), Greenness and Radiation

(GR) model (Gitelson et al., 2006), and the vegetation index (VI) model (Wu et al.,

2010b).

The eddy covariance (EC) technique provides estimates of GPP by partitioning

measured net ecosystem CO2 exchange (NEE) between land and the atmosphere

into GPP and ecosystem respiration (Re) (Baldocchi et al., 2001). Over the past

decades, the EC technique has been widely applied to measure NEE of various biome

types throughout the world, and a large amount of GPP data (GPPEC ) has been ac-

cumulated (Baldocchi, 2014; Baldocchi et al., 2001). A number of statistical models

have been developed to upscale GPPEC from individual sites to the regional scales

(Jung et al., 2009, 2011; Xiao et al., 2010, 2014; Yang et al., 2007). These algorithms,

such as model tree ensembles (MTE) or regression tree approaches, build a series
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of rules through data mining that relate in situ flux observations to satellite-based

indices and climate data.

Solar-induced chlorophyll fluorescence (SIF), a byproduct of the vegetation pho-

tosynthesis process, has been recently retrieved using multiple satellite platforms/

instruments such as the Greenhouse gases Observing SATellite (GOSAT) (Franken-

berg et al., 2011; Guanter et al., 2012; Joiner et al., 2012), the Global Ozone Monitor-

ing Instrument 2 (GOME-2) (Joiner et al., 2013), and the Orbiting Carbon Observatory-

2 (OCO-2) (Frankenberg et al., 2014). Recent field studies and theory suggest that

SIF contains information from both APAR and LUE that is complementary to vege-

tation indices such as the normalized difference vegetation index (NDVI) (Guanter

et al., 2013; Rossini et al., 2015; Yang et al., 2015). A simple regression model based

on space-borne SIF has been developed to estimate cropland GPP (Guanter et al.,

2014). Zhang et al. (2014b) have also shown the potential of SIF data to improve

carbon cycle models and provide accurate projections of agricultural productivity

(Guan et al., 2016).

GPP simulation

Process-based GPP 
models

Remote sensing 
based PEMs

EC based statistical 
models

GPP retrieved from SIF

MTE
(Jung et al., 2009; 2011)

SVM
(Yang et al., 2007)

EC-MOD
(Xiao et al., 2010; 2014)

GOME-2
(Guanter et al., 2014)

𝐹𝑃𝐴𝑅𝑐ℎ𝑙/𝑔𝑟𝑒𝑒𝑛 based 

models (Chl, EVI)

𝐹𝑃𝐴𝑅𝑐𝑎𝑛𝑜𝑝𝑦 based 

models (NDVI, LAI)

VPM
(Xiao et al., 2004a)

CASA
(Potter et al., 1993)

PSN
(Running et al., 2000)

Light use efficiency 
based models

Enzyme kinetic 
based models

LPJ
(Sitch et al., 2003)

ORCHIDEE
(Krinner et al., 2005)

LPJ-GUESS
(Smith et al., 2001)

EC-LUE
(Yuan et al., 2007)

VEGAS
(Zeng et al., 2005)

VI
(Wu et al., 2010)

Figure 6.1: A list of different approaches and models (as examples) to estimate
gross primary production (GPP) of vegetation.

Over the past several years, a number of studies have run the VPM model with
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in situ climate data at various eddy flux tower sites. The resulting GPPV P M was

evaluated with GPPEC at different ecosystem types, including forests (Xiao et al.,

2004b,a, 2005a), croplands (Kalfas et al., 2011; Wagle et al., 2015), savannas (Jin et al.,

2013), and grasslands (He et al., 2014; Wagle et al., 2014). Wu et al. (2010a) compared

GPP from four models driven by remotely sensed data at the Harvard forest site

and found that VPM performed best in terms of capturing the seasonal dynamics of

GPP. (Yuan et al., 2014b) compared seven LUE based models at 157 eddy flux sites

and showed that VPM had a moderate rank of performance. (Dong et al., 2015)

used four EVI-based models to estimate GPP of grasslands and croplands under

normal and severe drought conditions, and reported that VPM performed better

than other models in capturing the impacts of drought on GPP. This was mostly

because VPM uses Land Surface Water Index (LSWI) that is sensitive to water stress

(Wagle et al., 2014, 2015), while the other three models lack a water stress scalar.

Recently, simulations of VPM on the regional scale, driven by regional climate data,

have been carried out in the Tibetan Plateau (He et al., 2014) and China (Chen et al.,

2014), where only limited GPPEC data are available. The sensitivity of VPM to in situ

climate data from the flux tower sites and the regional data from NCEP-NARR was

reported for croplands in conterminous U.S. (Jin et al., 2015)

In this study, we aim to assess the feasibility and performance of the VPM model

in estimating GPP across North America (NA) and explore the relationship between

SIF and GPPV P M at regional scale. The selection of the NA study area is based on

two facts: (1) large uncertainties exist in the GPP estimates from various models

(ranging from 12.2 to 32.9 Pg C year−1) (Huntzinger et al., 2012); and (2) a large num-

ber of eddy flux sites are available in NA, which provides an opportunity for a thor-

ough validation. The specific objectives of this study are to: (1) implement the VPM

simulation at the continental scale over NA; (2) evaluate the performance of VPM at
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individual sites using GPPEC data from 39 flux tower sites (155 site-years); (3) com-

pare GPPV P M with GOME-2 SIF data at 0.5° (latitude/longitude) resolution at the

continental scale across NA; and (4) use of GOME-2 SIF as a reference to compare

with GPP estimates from other six models. In this paper, we report (1) multi-year

GPPV P M and GPPEC at individual flux tower sites, dependent upon availability of

GPPEC data, and (2) GPPV P M in 2010 across NA.

6.2 Materials and Methods

6.2.1 Regional datasets for VPM simulations across North America

6.2.1.1 Climate data

The VPM model uses photosynthetically active radiation (PAR) and temperature

data as climate input data. We use the National Center for Environmental Prediction-

North America Regional Reanalysis (NCEP-NARR) datasets (Mesinger et al., 2006)

for 2000-2014. The original three hourly data are first aggregated into 8-day aver-

ages to match the temporal resolution of MODIS vegetation indices. The day-time

mean air temperature is obtained by averaging the temperature between 6 am to

6 pm local time. Zhao et al. (2006) reported that the NCEP-NARR product overes-

timates the surface shortwave radiation when comparing with the in situ observa-

tion at the flux tower sites. Jin et al. (2015) compared the NCEP-NARR radiation data

with in situ radiation measurements at 37 AmeriFlux sites and reported a bias cor-

rection factor of 0.8. In this study, we applied this factor to adjust the radiation data.

In order to run VPM at a 500 m spatial resolution, we use a non-linear spatial in-

terpolation method (Zhao et al., 2005) to downscale the NCEP-NARR radiation and

temperature dataset from the spatial resolution of 0.25°×0.25° to 500-m. It uses a

fourth power of a cosine function and adopts the weighted distance from the near-
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est four grid cells to calculate a value for each output pixel. The distance factor (Di )

for the four nearby grid cells can be calculated as follows:

Di = cos4
(
π

2
×

(
di

dmax

))
i = 1,2,3,4 (6.1)

where di and dm ax indicate the distance between the 500m MODIS pixel and each

of the four vertex grid cells from NCEP-NARR data, and the maximum distance be-

tween the four vertex NCEP-NARR grid cells, respectively. For each MODIS pixel,

the weight from the four surrounding NCEP-NARR grid cells can be calculated as:

Wi = Di∑4
n=1 Di

(6.2)

The final value for each interpolated MODIS pixel (V ) can be expressed as a

weighted average:

V =
4∑

n=1
(Wi ×Vi ) (6.3)

where Vi is the value for the four surrounding grid cell values of NCEP-NARR data.

6.2.1.2 MODIS data

MODIS surface reflectance and vegetation indices

The MODIS MOD09A1 surface reflectance product (500 m spatial resolution and

8-day temporal resolution) is used to calculate the enhanced vegetation index (EVI)

(Huete et al., 2002) and LSWI as inputs to the VPM. LSWI is calculated as the nor-

malized difference between NIR (0.78-0.89µm) and SWIR (1.58-1.75µm) and is sen-

sitive to water content. Therefore, LSWI is a good indicator of water stress from the

vegetation canopy and soil background (Xiao et al., 2002). These two indices are
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calculated as follows:

EV I = 2.5× ρni r −ρr ed

ρni r + (6×ρr ed −7.5×ρbl ue )+1
(6.4)

LSW I = ρni r −ρswi r

ρni r +ρswi r
(6.5)

A temporal gap-fill algorithm is applied to the EVI time series data. The data

quality is checked using the quality flag layer, and those observations not affected

by cloud and climatological aerosols are considered ‘GOOD’ quality (MOD35 cloud

= ‘clear’; aerosol quantity = ‘low’ or ‘average’). Each pixel is temporally linearly in-

terpolated using only good-quality EVI observations within each year. A Savitzky-

Golay filter is then applied to each pixel to eliminate high frequency noise (Chen

et al., 2004). If a pixel has fewer than three out of 46 good observations for one year,

the original data (no gap-filled) are used. Fortunately, this happens only for less

than 0.5% of the total pixels and the majority of those are in less productive, boreal

areas.

MODIS land cover data

The MODIS MCD12Q1 land cover product at 500-m spatial resolution (Friedl

et al., 2010) includes annual land cover types from 2001 to 2013. We use MCD12Q1

data in 2001 to represent year 2000, and MDD12Q1 data in 2013 to represent year

2014, which allows us to have a full time series of land cover types for 2000-2014.

The IGBP land cover classification scheme in the dataset is used to provide biome

specific information for the VPM. A lookup-table (LUT) is used to get the essential

parameters including maximum LUE as well as the maximum, minimum, and op-

timum temperatures for vegetation photosynthesis (see Appendix).
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In order to investigate the relationship between GPPV P M and SIF (0.5 degree

latitude and longitude resolution) in different vegetation/biome types, we also ag-

gregate the original 500 m land cover data to 0.5° grid cells using the following pro-

cedure. The original IGBP land cover data are first merged and reprojected onto

the longitude-latitude projection with the original spatial resolution. We calcu-

late the frequency (number of 500-m pixels) of individual vegetation types within

a 0.5°×0.5° grid cell. Then, for each 0.5°×0.5° grid cell, if one vegetation type is dom-

inant (more than 75% of the grid cell), this grid cell is assigned that vegetation type;

if no land cover type is dominant, the grid cell is not assigned a type.

MODIS land surface temperature data

The MODIS MYD11A2 land surface temperature dataset is used to derive the

thermal growing season and eliminate the snow cover period, which avoids the ef-

fect of snow cover in retrieving the yearly maximum LSWI. The MYD11A2 data set is

chosen because it provides observations at 1:30 am, which is close to the daily min-

imum temperature. For each pixel each year, the thermal growing season is defined

using the nighttime land surface temperature (Dong et al., 2015). Once three con-

secutive 8-day’s in the spring have nighttime temperatures above 5°C, the thermal

growing season begins; when three consecutive 8-day’s in the fall have nighttime

temperatures below 10°C, the thermal growing season ends. A detailed application

of this temperature-based phenology was recently reported (Zhang et al., 2015a).
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6.2.2 Datasets used to evaluate and compare VPM simulations across North America

6.2.2.1 CO2 eddy flux data from AmeriFlux tower sites

CO2 flux data from 39 AmeriFlux sites are downloaded from the AmeriFlux data por-

tal (http://ameriflux.ornl.gov/). These flux sites cover most of the major biomes in

NA (DBF, ENF, MF, GRA, CRO, CSH, OSH, WET and WSA) (Table 6.1). The 8-day

level-4 gap-filled flux data with the Marginal Distribution Sampling (MDS) method

is used (Reichstein et al., 2005). GPPEC estimates from individual sites are used to

evaluate GPPV P M .

6.2.2.2 Solar-induced chlorophyll fluorescence (SIF) data from GOME-2

The latest version (v26) of monthly SIF data from the GOME-2 instrument onboard

Eumetsat’s MetOp-A satellite is available to the public (Joiner et al., 2013). GOME-2

captures earth radiation in the range from ∼600 to 800 nm with a spectral resolution

of ∼0.5 nm at a nominal nadir footprint of 40×80 km2 in the nominal observing

configuration. Wavelengths around 740 nm at the far-red peak of the SIF emission

are used for SIF retrievals with a principal component analysis approach to account

for atmospheric absorption. The results are then quality-controlled (e.g., heavily

cloud contaminated data removed) and aggregated to monthly means at 0.5°×0.5°

spatial resolution (Joiner et al., 2013). In this study, we use GOME-2 SIF data for the

period from January 2010 to February 2011.

6.2.2.3 GPP data from other six models

The GPP data from the four process-based models (LPJ, LPJ-GUESS, ORCHIDEE,

and VEGAS) are part of the TRENDY projects, which intended to compare trends in

net land-atmosphere carbon exchange over the period 1980–2010 (Table 6.3). These
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four models, driven by the CRU+NCEP climate data and global annual atmospheric

CO2, are chosen because they have different algorithms to simulate GPP at 0.5°×0.5°

spatial resolution.

Another two models involved in the comparison are the MPI-BGC and MODIS

PSN. The MPI-BGC estimates GPP by upscaling global CO2 flux observations us-

ing a Model Tree Ensemble approach (Jung et al., 2009). MODIS PSN employs a

production-efficiency approach and uses the MODIS fraction of photosynthetically

active radiation product (MOD15A2) and meteorological data (Running et al., 2004).

The C55 version of MODIS PSN product (MOD17A2 C55) is used.

6.2.3 A brief description of the Vegetation Photosynthesis Model (VPM)

The satellite-based VPM (Xiao et al., 2004b,a) uses the product of light use effi-

ciency (LUE, εg ), and absorbed photosynthetically active radiation by chlorophyll

(F PARchl ) to estimate GPP as follows (Figure 6.2):

GPP = εg × APARchl (6.6)

VPM uses the fraction of absorbed photosynthetic active radiation by chlorophyll

( f APARchl ) to estimate APARchl . The f APARchl is estimated from a linear func-

tion of EVI where the coefficient α is set to be 1.0 (Xiao et al., 2004b).

APARchl = f APARchl ×PAR (6.7)

f APARchl =α×EV I (6.8)

The light-use-efficiency (εg ) in the VPM is a down-regulation of maximum LUE (ε0)

by temperature (Tscal ar ) and water stress limitation (Wscal ar ) on photosynthesis as
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follows:

εg = ε0 ×Tscal ar ×Wscal ar (6.9)

ε0 is a biome-specific parameter and differs for C3 and C4 plants. The ε0 values are

obtained from a lookup-table (LUT) using the MODIS land cover data. Tscal ar is

estimated from the equation used in the Terrestrial Ecosystem Model (TEM) (Raich

et al., 1991).

Tscal ar =
(T −Tmax)× (T −Tmi n)

(T −Tmax)× (T −Tmi n)− (T −Topt )2
(6.10)

LSW Imax is the maximum LSWI during the growing season over several years. We

delineate the plant growing season from the following steps: (1) during the growing

season period pre-defined by the LST, LSW Imax is retrieved as the yearly maximum

LSWI. If temperature-based identification of the growing season fails in the boreal

region where nighttime temperature is always below 10°C, the growing season is set

to be June to August. (2) LSWI will have an abnormally high value if snow exists and
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Figure 6.2: Flowchart of the data processing procedures for vegetation photosyn-
thesis model (VPM).
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a lower value during drought periods. To eliminate these abnormal values and take

the land cover change into consideration, we further calculate the LSW Imax using a

moving-window statistical algorithm: we select a window of five years and pick the

second largest maximum LSWI in this period.

6.3 Results

6.3.1 Seasonal dynamics of GPP at individual flux tower sites

Figure 6.3 shows the seasonal dynamics and interannual variations of GPPEC and

GPPV P M across the 39 flux tower sites. The VPM accurately predicts the seasonal-

ity and magnitude of GPP for most natural vegetation (vegetation types other than

cropland and cropland/natural vegetation mosaic in IGBP classification) (Figure

6.3). Table 6.1 summarizes the correlation between GPPEC and GPPV P M at indi-

vidual sites over years. Nearly two thirds of the natural biomes sites have a RMSE

less than 1.5 g C m−2 day−1. Cropland sites have slightly larger RMSE values of 2.20–

3.06 g C m−2 day−1

Table 6.1: Descriptions of the 39 flux tower sites used in this study. IGBP class,
R2, and RMSE are the International Geosphere-Biosphere Programme land cover
classification, coefficient of determination, and root mean square error of the re-
gression analysis between tower-based gross primary production (GPPEC ) and
simulated GPP (GPPV P M ) using vegetation photosynthesis model.

ID NAME LAT LON
IGBP
class1 Years used R2 RMSE Reference

US-Bo1 Bondville 40.0062 -88.2904 CRO 2001-2006 0.83 2.20 Hollinger et al. (2005)

US-Ne1
Mead irrigated

continuous
41.1651 -96.4766 CRO 2001-2005 0.91 3.06 Suyker et al. (2004)

US-Ne2 Mead irrigated rotation 41.1649 -96.4701 CRO 2001-2005 0.91 2.71 Suyker et al. (2005)
US-Ne3 Mead rainfed rotation 41.1797 -96.4397 CRO 2001-2005 0.85 2.76 Suyker et al. (2005)
US-Ro1 Rosemount-G21 44.7143 -93.0898 CRO 2004-2006 0.80 2.45 Griffis et al. (2005)
US-Ro3 Rosemount-G19 44.7217 -93.0893 CRO 2004-2006 0.81 2.22 Griffis et al. (2005)
US-KS2 Kennedy Space Center 28.6086 -80.6715 CSH 2004-2005 0.72 0.96 Dijkstra et al. (2002)
US-Los Lost Creek 46.0827 -89.9792 CSH 2001-2002 0.90 1.59 Sulman et al. (2009)
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US-Bar
Bartlett Experimental

Forest
44.0646 -71.2881 DBF 2004-2006 0.93 1.33 Jenkins et al. (2007)

US-Ha1 Harvard Forest 42.5378 -72.1715 DBF 2000-2006 0.83 2.05 Urbanski et al. (2007)
US-LPH Little Prospect Hill 42.5419 -72.1850 DBF 2001-2005 0.91 1.30 Vanderhoof et al. (2013)

US-MMS
Morgan Monroe

State Forest
39.3232 -86.4131 DBF 2005-2007 0.91 1.59 Schmid et al. (2000)

US-MOz Missouri Ozark Site 38.7441 -92.2000 DBF 2000-2006 0.89 1.37 Gu et al. (2006)

US-UMB
Univ. of Mich.

Biological Station
45.5598 -84.7138 DBF 2000-2006 0.97 0.78 Gough et al. (2008)

US-WCr Willow Creek 45.8059 -90.0799 DBF 2002-2005 0.96 1.05 Cook et al. (2004)
CA-NS1 UCI-1850 burn site 55.8792 -98.4839 ENF 2003-2005 0.65 1.00 Goulden et al. (2006)
CA-NS2 UCI-1930 burn site 55.9058 -98.5247 ENF 2002-2005 0.70 0.88 Goulden et al. (2006)
CA-NS3 UCI-1964 burn site 55.9117 -98.3822 ENF 2002-2005 0.92 1.49 Goulden et al. (2006)

CA-NS4
UCI-1964 burn

site wet
55.9117 -98.3822 ENF 2003-2004 0.84 1.08 Goulden et al. (2006)

CA-NS5 UCI-1981 burn site 55.8631 -98.4850 ENF 2002-2005 0.89 1.13 Goulden et al. (2006)
US-Blo Blodgett Forest 38.8953 -120.6328 ENF 2000-2006 0.74 1.58 Goldstein et al. (2000)

US-Fmf
Flagstaff Managed

Forest
35.1426 -111.7273 ENF 2007 0.63 0.95 Dore et al. (2008)

US-Ho1
Howland Forest

(main tower)
45.2041 -68.7402 ENF 2000-2004 0.88 0.84 Hollinger et al. (2004)

US-Ho2
Howland Forest

(west tower)
45.2091 -68.7470 ENF 2000-2004 0.69 0.98 Hollinger et al. (2004)

US-Me2
Metolius-intermediate

aged pine
44.4523 -121.5574 ENF

2002,
2004-2007

0.91 1.03 Law et al. (2004)

US-Me3
Metolius-second
young aged pine

44.3154 -121.6078 ENF 2004-2005 0.69 1.26 Law et al. (2000)

US-Me5
Metolius-first

young aged pine
44.4372 -121.5668 ENF 2000-2002 0.94 0.60 Law et al. (2000)

US-NC1
North Carolina

Clearcut
35.8115 -76.7115 ENF 2005-2006 0.95 0.93 Noormets et al. (2010)

US-Wi0
Wisconsin young

red pine
46.6188 -91.0814 ENF 2002 0.81 1.79 Sun et al. (2008)

US-Wi4
Wisconsin mature

red pine
46.7393 -91.1663 ENF 2002-2005 0.92 0.81 Sun et al. (2008)

US-ARb ARM SGP burn 35.5497 -98.0402 GRA 2005-2006 0.91 1.99 Fischer et al. (2007b)
US-ARc ARM SGP control 35.5465 -98.0400 GRA 2005-2006 0.91 2.07 Fischer et al. (2007b)
US-Goo Goodwin Creek 34.2547 -89.8735 GRA 2004-2006 0.68 1.93 Wilson & Meyers (2007)

US-Wlr
Walnut River

Watershed
37.5208 -96.8550 GRA 2002-2004 0.94 0.81 Coulter et al. (2006)

US-Syv
Sylvania

Wilderness Area
46.2420 -89.3477 MF 2001-2006 0.92 1.12 Desai et al. (2005)

CA-NS6 UCI-1989 burn site 55.9167 -98.9644 OSH 2002-2005 0.87 0.69 Goulden et al. (2006)
CA-NS7 UCI-1998 burn site 56.6358 -99.9483 OSH 2002-2005 0.86 0.63 Goulden et al. (2006)
US-Ivo Ivotuk 68.4865 -155.7503 WET 2004, 2006 0.67 0.80 Epstein et al. (2004)

US-FR2
Freeman Ranch-
Mesquite Juniper

29.9495 -97.9962 WSA 2004-2006 0.73 1.13 Heinsch et al. (2004)

Figure 6.4 shows the comparison between GPPEC and GPPV P M at biome lev-

els. When compared to GPPEC , GPPV P M underestimate by 4% (according to re-

gression slope and hereafter) for deciduous broadleaf forests (DBF), 8% for mixed
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Figure 6.3: Seasonal dynamics and interannual variations of the tower-based
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forests (MF), and 16% for evergreen needleleaf forests (ENF). GPPV P M and GPPEC

agree well for closed shrubland (2%) and open shrubland (4%). For grassland and

woody savannas (WSA), the biases are less than 8%. When all natural biome sites

are combined, GPPV P M is slightly lower than GPPEC , approximately 8% (y = 0.92x,

R2 = 0.85) (Figure 6.4). For cropland sites (cropland and cropland/natural vegeta-

tion mosaic in IGBP classification), GPPV P M is lower than GPPEC by 23% (y = 0.77x,

R2 = 0.82). When all 39 sites are lumped together, the difference between GPPV P M

and GPPEC is approximately 13% (y = 0.87x, R2 = 0.82). The LUE parameter in VPM

improves the predictability of GPP, as represented by the decreased coefficient of

determination (R2) in the VPM model sensitivity analysis for both natural biomes

and all biomes sites when LUE parameter is removed (Figure 6.A.1).
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Figure 6.4: A comparison of the tower-based (GPPEC ) and the modeled (GPPV P M )
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lines forced to pass the origin.
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6.3.2 Spatial patterns of GPPV P M across North America in 2010 at 500-m spatial

resolution

Figure 6.5A shows the spatial distribution of annual GPPV P M for 2010 across NA.

The highest GPPV P M (> 2,000 g C m−2 year−1) occurs in the southernmost tropical

regions. GPPV P M decreases along a latitudinal gradient in the eastern region, owing

to the decreasing temperature and growing season length. GPPV P M also decreases

along a longitudinal gradient from east (dominated by forest) to west (dominated by

grasslands and desert). Figure 6.5B shows the spatial distribution of the maximum

daily GPPV P M in 2010. The highest value is ∼20 g C m−2 day−1 for the Midwest

Corn Belt. The southeastern U.S. has a relatively low value as compared with the

mid-latitude region (35°N– 45°N). The biggest contrast between annual GPPV P M

and maximum daily GPPV P M is found in the tropical and western coastal regions,

where annual GPPV P M is highest while the maximum daily GPPV P M is moderate.
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Figure 6.5: Spatial distribution of modeled (A) annual GPPV P M and (B) maximum
daily GPPV P M for year 2010.

GPPV P M varies significantly across biomes (Table 6.2). The most productive
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ecosystem is the evergreen broadleaf forest with an annual GPPV P M of more than

2,000 g C m−2 year−1. Open shrubland and savannas are the least productive with

an annual GPPV P M less than 375 g C m−2 year−1. Grassland, savannas, and shrub-

lands have relatively high spatial variance because of the extensive distribution and

high sensitivity to soil water. All natural vegetation contribute about 70% of the total

GPPV P M , with an average of 600.88 g C m−2 year−1. Croplands accounts for about

27% of the total GPP but with a nearly doubled photosynthetic capacity (1,194.27 g

C m−2 year−1) compared with the mean of natural vegetation. The maximum daily

GPPV P M for different biomes varies from 3.59 to 12.00 g C m−2 day−1. Croplands

have the largest GPPV P M magnitudes (9.94 to 12.00 g C m−2 day−1). Forest ecosys-

tems have a relatively higher maximum photosynthetic rate (8.79 g C m−2 day−1)

compared with other natural vegetation types (4.65 g C m−2 day−1). The inconsis-

tency between annual GPPV P M sums and maximum daily GPPV P M may be mainly

attributed to different growing season lengths that are affected by temperatures and

rainfall.

Table 6.2: The magnitudes and annual sums of simulated gross primary produc-
tion (GPPV P M ) of different biomes in North America (170°–50°W, 20°–80°N) for
year 2010.

IGBP
class

Average annual
GPP

(g C m−2 year−1)

Standard deviation
of annual GPP

(g C m−2 year−1)

Average maximum
daily GPP

(g C m−2 day−1)

Standard deviation
of maximum daily

GPP(g C m−2 day−1)

Total
(Pg C year−1)

ENF 638.45 255.53 5.90 1.55 1.32
EBF 2038.76 448.32 9.63 1.71 0.16
DBF 1443.95 188.49 11.09 1.47 0.75
MF 1030.24 330.46 8.53 1.78 1.94

OSH 349.30 224.44 3.59 1.31 1.48
WSA 815.81 543.79 6.27 2.29 1.50
SAV 377.65 267.02 4.17 1.27 0.20
GRA 457.50 380.74 4.24 2.59 2.00
WET 539.26 253.98 5.00 1.41 0.21
CRO 1157.99 390.54 12.00 3.09 2.15
CNV 1248.95 317.55 9.94 1.67 1.54
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Figure 6.6 shows the frequency distribution of annual GPPV P M and maximum

daily GPPV P M for all pixels in NA and their distribution in the climate space. More

than 70% of pixels have relatively low productivity, i.e., annual GPPV P M less than

1,000 g C m−2 year−1 or maximum daily GPPV P M less than 10 g C m−2 day−1. We

also plot the distribution of the 39 flux tower sites in NA based on the annual and

maximum daily GPPEC (Figure 6.6). The distribution of the flux tower sites cover the

broad range of maximum daily GPPV P M , and most of them are located in regions

with moderate annual GPP (1,000–1,800 g C m−2 year−1). In the two-dimensional

climate space described by mean annual temperature (MAT) and mean annual pre-

cipitation (MAP) (Figure 6.6C, D), the flux tower sites distribution covers most of the

climate space. The annual GPPV P M generally increases with MAT mad MAP, while

the daily maximum GPPV P M is highest in moderate MAT and MAP regions.

6.3.3 Spatial-temporal comparison between GPPV P M and SIF across NA in 2010 at

0.5° spatial resolution

We aggregate the 8-day 500-m GPPV P M estimates to the seasonal (3-month inter-

val) and 0.5° latitude/longitude grid to compare with the seasonal SIF data. Both

GPPV P M and GOME-2 SIF data have strong seasonal dynamics and spatial varia-

tion across NA (Figure 6.7, 6.8).

During spring (March to May), both GPPV P M and GOME-2 SIF are relatively

high in the southeastern part of the United States (Figure 6.7), where forests domi-

nate and plants grow through the spring. Both GPPV P M and GOME-2 SIF are also

high in California, where the Mediterranean climate (warm and wet spring and dry

summer) occurs (Ma et al., 2007; Baldocchi et al., 2004). In comparison, the rest of

lands with low temperature and/or rainfall in NA have low GPPV P M and GOME-2

SIF values.
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In summer months (June to August), the Corn Belt in mid-west U.S. and south-

western Canada has the highest GPPV P M and SIF. This is supported by the eddy flux

data: GPPEC for maize is > 25 g C m−2 day−1 during summer, much higher than that

of the forest ecosystems. Overall, summer months contribute more than 62% of the

annual GPP in NA, 42% of which come from Canada and 45% from the contermi-

nous U.S. SIF data also show the highest values in the Corn Belt and lowest in the

western and northern regions, consistent with the GPPV P M .

In the fall (September to November), both GPP and SIF drop substantially in the

mid-west region due to crop harvesting. Similar to spring, the high photosynthesis

0 500 1000 1500 2000 2500 3000

Annual GPP (g C m-2 year-1)

0

0.01

0.02

0.03

0.04

0.05

0.06

F
re

qu
en

cy

A

0

2

4

6

8

10

12

14

16

S
ite

 n
um

be
rs

CRO
CSH
DBF
ENF
GRA
MF
OSH
WET
WSA

0 5 10 15 20 25

Maximum daily GPP (g C m-2 day-1)

0

0.01

0.02

0.03

0.04

0.05

0.06

F
re

qu
en

cy

B

0

2

4

6

8

10

S
ite

 n
um

be
rs

-20 -10 0 10 20 30

MAT (°C)

0

1000

2000

3000

4000

5000

M
A

P
 (

m
m

 y
ea

r-1
)

C

0

500

1000

1500

2000

A
nn

ua
l G

P
P

 (
g 

C
 m

-2
 y

ea
r-1

)

-20 -10 0 10 20 30

MAT (°C)

0

1000

2000

3000

4000

5000

M
A

P
 (

m
m

 y
ea

r-1
)

D

0

5

10

15

20

M
ax

im
um

 d
ai

ly
 G

P
P

 (
g 

C
 m

-2
 d

ay
-1

)

Figure 6.6: The frequency distribution of GPPV P M of the (A) annual GPP and (B)
maximum daily GPP compared to the flux site distribution and their distribution
in the climate space defined by mean annual temperature (MAT) mean annual
precipitation (MAP) (C, D). The blue curves in (A and B) indicate the frequency
distribution calculated from Figure 6.5. The annual and maximum daily GPP for
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from NCEP-NARR are used to generate the climate space.
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rate also corresponds to a long growing season in the southeastern U.S., but the

value is smaller than spring. The eastern and western coasts of Mexico as well as

Cuba still fix carbon at a rate of more than 5 g C m−2 day−1. In Alaska and northern

Canada, all vegetation goes to dormancy, and both GPP and SIF values are close to

0. These spatial patterns are also evident in the SIF data.

During the winter (December through February), only the very southern part of

the U.S., California, and coastal regions of Mexico and Cuba have moderate GPPV P M

and SIF values. All the other regions do not show any sign of photosynthesis activi-
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from the GOME-2 satellite instrument and simulated gross primary production
(GPPV P M ) during the period of March 2010 through February 2011. MAM, JJA,
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ties, and both GPPV P M and SIF values are close to zero.

6.4 Discussion

6.4.1 The relationship between SIF and GPP

SIF is emitted during the vegetation photosynthetic process. Absorbed energy by

chlorophyll is partitioned into SIF, photochemical quenching (PQ, energy used for

photosynthesis), non-photochemical quenching (NPQ, energy partitioned to heat-

ing), and efficiency loss (Baker, 2008). Previous studies have shown that SIF is pos-

itively correlated with PQ when light is moderate or high or environmental stress

exists (Flexas et al., 2000; Lee et al., 2015; Porcar-Castell et al., 2006; Soukupová

et al., 2008). However, the relationship between GPP and SIF emission at far-red

peak (SIF740 used in our study) is also affected by the SIF contribution from photo-

system II and photosystem I, alternative sinks of energy, photorespiration, internal

CO2 concentration of leaves and enzyme activities, etc. (Porcar-Castell et al., 2014).

Nevertheless, SIF measurements from satellite provide a direct and independent es-

timations of photosynthetic activity which is different from reflectance based vege-

tation indices. The GPP-SIF relationship still needs intensive investigation.

Several studies (Joiner et al., 2014; Zhang et al., 2014b; Wagle et al., 2016) have

reported on the direct comparison between satellite-derived SIF data (0.5°grid cell)

and in situ GPPEC from flux sites that often have footprint sizes of a few hundreds of

meters, but such comparisons is problematic owing to spatial mismatches and het-

erogeneity due to mixed land cover types within a given 0.5° grid cell (Zhang et al.,

2014b). In this study, the VPM simulations are aggregated to the same spatial reso-

lution as the GOME-2 SIF data. Figure 6.8 shows the correlation between GPPV P M

and the SIF data for the four seasons. In spring, summer, and fall, GPPV P M shows
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a very high correlation with SIF. The coefficient of determination ranges from 0.74

to 0.86, and the GPPV P M -SIF correlation increases with the increase in daily GPP

or SIF value (from early to peak growing season). This high spatial correlation con-

firms our comparison in section 3.3 and can be further explained by the APARchl

used in the VPM. Both APARN DV I (NDVI×PAR) and APAR f PAR (fPAR×PAR) have

lower correlation with SIF compared with APARchl ; an obvious saturation can be

found in summer where SIF continues to increase while APARN DV I and APAR f PAR

tend to saturate. The regression slope between APARchl and SIF are also more sta-

ble during the growing season (2.82±0.13). As SIF is reemitted from the photosys-

tem II, the higher correlation between SIF and APARchl also suggests that EVI can

be a good proxy of light absorbed by chlorophyll. In the winter, however, the cor-

relations between SIF and GPPV P M and APAR are much weaker mostly due to the

very low SIF signal and relatively lower signal-to-noise ratio. We also calculate the

regression between GPPV P M and SIF for points with GPPV P M > 1 g C m−2 day−1 (to

eliminate some low values with relatively higher bias during the non-growing sea-

son). The range of the regression slopes are narrower when only data for the period

of GPPV P M > 1g C m−2 day−1 are used as compared to all data points (SDsl ope =0.42

vs. 0.74).

6.4.2 Comparison of SIF and GPP estimates in North America from several models

A number of models have reported annual total GPP in NA (Huntzinger et al., 2012;

Xiao et al., 2014). The annual GPPV P M is 13.53 Pg C in 2010. We further compared

GPPV P M with GPP from six other models (MODIS PSN, MPI-BGC, LPJ, LPJ-GUESS,

ORCHIDEE, and VEGAS) (Figure 6.9). The VPM-based GPP estimates are close to

the average of these six models (15.75 Pg C year−1) (Table 6.3). Three process-based

models (LPJ, LPJ-GUESS, and ORCHIDEE) predict very high GPP for the southeast-
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ern U.S., which may be caused by different approaches they employed (enzyme ki-

netic vs. LUE).

Because SIF is directly retrieved from satellite and has a very good correlation

with data driven model-based GPP (Frankenberg et al., 2011; Wagle et al., 2016), we

use SIF as a reference to compare the spatial variations in GPP of all models. OR-

CHIDEE, PSN, MPI-BGC, and VPM show high consistency with SIF data. The ma-

SIF (mW m-2 nm-1 sr-1)

G
P

P
 (

g 
C

 m
-2

 d
ay

-1
)

A
P

A
R

 (
M

J 
m

-2
 d

ay
-1

)

GPP
VPM

APAR
chl

APAR
NDVI

APAR
fPAR

-0.5 0   0.5 1   1.5 
0

1

2

3

4

5

6

7
A

R2=0.78
y=3.57x+0.34

R2=0.73
y=3.35x+0.65

-0.5 0   0.5 1   1.5 
0

1

2

3

4

5

6

7
B

R2=0.78
y=2.73x+1.15

-0.5 0   0.5 1   1.5 
0 

2 

4 

6 

8 

10
C

R2=0.67
y=4.24x+2.35

-0.5 0   0.5 1   1.5 
0 

2 

4 

6 

8 

10
D

R2=0.65
y=4.26x+1.35

-0.5 0   0.5 1   1.5 2   2.5 
0 

2 

4 

6 

8 

10

12
E

R2=0.86
y=4.18x+1.02

R2=0.85
y=3.98x+1.27

-0.5 0   0.5 1   1.5 2   2.5 
0 

2 

4 

6 

8 

10
F

R2=0.86
y=2.77x+1.58

-0.5 0   0.5 1   1.5 2   2.5 
0 

2 

4 

6 

8 

10

12

14
G

R2=0.65
y=3.40x+4.03

-0.5 0   0.5 1   1.5 2   2.5 
0 

2 

4 

6 

8 

10

12

14
H

R2=0.68
y=3.76x+2.66

-0.5 0   0.5 1   1.5 
0 

2 

4 

6 

8 
I

R2=0.74
y=3.74x+0.19

R2=0.65
y=3.39x+0.64

-0.5 0   0.5 1   1.5 
0 

1 

2 

3 

4 

5 

6 
J

R2=0.76
y=2.97x+0.49

-0.5 0   0.5 1   1.5 
0 

2 

4 

6 

8 

10
K

R2=0.72
y=5.02x+1.26

-0.5 0   0.5 1   1.5 
0 

2 

4 

6 

8 

10
L

R2=0.72
y=4.90x+0.74

-0.5 -0.25 0    0.25 0.5  0.75 1    
0 

1 

2 

3 

4 

5 

6 
M

R2=0.34
y=2.44x+0.23

R2=0.34
y=2.97x+0.84

-0.5 -0.25 0    0.25 0.5  0.75 1    
0 

1 

2 

3 

4 
N

R2=0.38
y=1.91x+0.85

-0.5 -0.25 0    0.25 0.5  0.75 1    
0 

2 

4 

6 

8 
O

R2=0.37
y=4.15x+1.54

-0.5 -0.25 0    0.25 0.5  0.75 1    
0 

2 

4 

6 

8 
P

R2=0.36
y=4.25x+1.05

0 5 10 15 20

plot density
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jor difference is the relative underestimation at the Corn-Belt and overestimation in

the western coast along the U.S./Canada border in ORCHIDEE, PSN, and MPI-BGC.

Recent studies reveal that cropland, especially maize in the U.S., makes a large con-

tribution to the seasonal swing of atmospheric CO2 concentration (Gray et al., 2014;

Zeng et al., 2014). The high GPP values in this region are often underestimated by

models (Guanter et al., 2014). Beer et al. (2010) also suggest that given the limited

C4 vegetation flux data availability, great uncertainty remains in estimating the con-

tribution of C4 plants while upscaling eddy flux observations. A similar issue is also

found in a study focused on the conterminous U.S. (Xiao et al., 2010), which may

explain the underestimation of the regional GPP sums. GPPV P M and SIF data show

similar spatial patterns for the mid-western Corn Belt (r = 0.87, p < 0.001) where

a previous study showed SIF at a monthly scale has a high correlation with GPP

(Guanter et al., 2014); this also supports that the spatial variation of GPPV P M for

croplands is to some degree an improvement over the other six models.

Table 6.3: Annual gross primary production (GPP) of North America (170°–50°W,
20°–80°N) estimated from different models for year 2010.

Models
Annual

GPP
(P g C year−1)

Reference

LPJ 22.23 (Sitch et al., 2003)
LPJ-GUESS 19.84 (Smith et al., 2001)
ORCHIDEE 17.52 (Krinner et al., 2005)

VEGAS 11.35 (Zeng et al., 2005)
MODIS GPP 13.13 (Zhao et al., 2005)

MPI-BGC 12.70 (Jung et al., 2011)
VPM 13.53 This study

Several previous studies indicate that the relationships between GPP and SIF

should be different across biomes (Damm et al., 2015a; Guanter et al., 2012, 2014;

Parazoo et al., 2014; Verrelst et al., 2015). This ecosystem-dependent GPP-SIF rela-
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tionship is determined by different SIF contribution from both photosystem I and

photosystem II, uncertainty in NPQ, and structural interference of SIF leaving the

canopy (Damm et al., 2015a; Verrelst et al., 2015). Here we compare SIF with GPP es-

timates from three diagnostic models (VPM, MPI-BGC, and MODIS PSN) and APAR,

as well as the relationship between SI Fyi eld (SIF/APARchl ) and LUE (Figure 6.10).

Being consistent with a previous study at site level (Yang et al., 2015), we also find

that SIF contains the information of LUE, represented by a high correlation between

SI Fyi eld (SI F /APARchl ) and LU EV P M (Figure 6.10E). This also partially supports
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the GPP-SIF relationship. However, due to the spatial inconsistency, we did not di-

rectly compare GOME-2 SIFyield with LUEEC, more canopy or ecosystem level SIF

measurement from in situ or airborne spectrometers will enable this kind of com-

parison in the near future. In terms of inter-model comparison, VPM and MPI-BGC

show higher average R2 (0.86 and 0.89, respectively) for individual biomes than does

MODIS PSN (0.83). The data points are also more scattered in the MODIS PSN than

in other two models. Different biome types also show distinct differences in slopes

(4.03–8.9 for VPM, 3.73–7.83 for MPI-BGC, and 2.76–11.12 for MODIS PSN). For the

most highly productive biomes (average SIF > 1 mW m−2 nm−1 sr−1), the correla-

tions between predicted GPP and SIF are very high (R2 > 0.95) except for EBF; this

may be caused by cloud and/or aerosol contamination of the satellite data. The

range of slopes for these biomes also shows less variation (4.60–5.55 for VPM, 4.02–

5.72 for MPI-BGC, and 3.60–6.02 for MODIS PSN). In contrast, the less productive

regions usually have lower regression coefficents and more variable slopes. This

may be partially due to the higher relative error for the GOME-2 SIF data (Joiner

et al., 2013) and GPP models. SIF retrievals from later satellites (OCO-2, FLEX -

Fluorescence Explorer, Sentinel-5 Precursor) will have better accuracy (Franken-

berg et al., 2014; Guanter et al., 2015; Kraft et al., 2013) and can be used to improve

and benchmark GPP for land models (Lee et al., 2015; Luo et al., 2011; Zhang et al.,

2014b).

6.4.3 Sources of uncertainty for VPM simulations in North America

Maps of land cover types affect GPP estimates as the LUE parameter used in the

model varies with biomes. In this study, the MOD12 land cover dataset lists crop-

lands as one category and does not distinguish between C3 and C4 crops. Both

C3 and C4 crops have different photosynthetic pathways and light use efficiency
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Figure 6.10: A comparison for relationship between GPPV P M and SIF (A), GPPMPI

and SIF (B), GPPPSN and SIF (C), APARchl (EVI×PAR) and SIF (D), SI Fyi eld

(SIF/APAR) and LU EV P M (E) for different biome types in North America in 2010.
For each month each biome type, a value is given by averaging all the grid cells
with in this biome type.
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(Kalfas et al., 2011; Yuan et al., 2015): C4 croplands (e.g., maize) have a higher GPPEC

that do C3 croplands (Figure 6.3). Thus, the LUE parameterization of croplands for

each year depends upon our knowledge of crop rotation. For VPM simulations at

the continental scale, there are four options to address this problem in a MODIS

cropland pixel: (1) assume 100% C3 plants, (2) assume 100% C4 plants, (3) assume

C3+C4 mixing ratio as 50% each, and (4) use known C3+C4 mixing ratio from other

data sources (in situ data, or other maps). Because there is no yearly map of C3/C4

mixing ratio across NA, we simply chose the third option in this study. Therefore,

GPPV P M would either overestimate GPP for C3 plants (soybean, wheat, etc.) or

underestimate for C4 plants (corn, sugar cane, etc.) in those pure pixels. In those

C3/C4 mixed pixels, however, these artifacts (under- or over-estimation) can be par-

tially alleviated. For example, both maize and soybean are grown in rotation at

the US-Bo1 site within a 50 m radius, but within a 500 m radius of the flux tower

site, corn and soybean areas have a mixing ratio of 50% each over the years. The

GPPV P M , driven by averaged LUE for C3 and C4 crops, captures both the season-

ality and the magnitude at this site (Figure 6.11A). For pure pixels, VPM would pro-

vide better results if a specific crop type is given and an appropriate LUE value is

used. We use the LUE value for C4 plants at the US-Ne1 site where maize is grown

throughout the period (Figure 6.11B). This modification greatly improves the esti-

mation of GPP, with an RMSE reduces from 3.06 to 2.32 g C m−2 day−1 and a slope

increases from 0.65 to 0.86.

In our study, all cropland flux tower sites are located in the mid-west Corn Belt

and altogether we have 16 corn years and 11 soybean years. As we use an average

LUE of C3 and C4 for croplands, the model may underestimate GPP at the site scale

owing to more corn years (Figure 6.4). At a regional scale, the bias mainly depends

on the C3 and C4 crop mixing ratios within individual pixels. In the U.S. Midwest
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where C4 crops (e.g., corn) are dominant, the VPM simulation may underestimate

cropland production while in California or the Mississippi River Basin, where C3

crops are dominant, the VPM simulation may overestimate. Therefore, the lack of

crop plant functional type (C3 and C4) is likely the largest source of uncertainty in

the GPPV P M . This clearly highlights the need to generate annual maps of plant

functional types (C3 and C4) in NA in the near future. In addition, the mismatch

between the flux tower footprint and the MODIS pixel, and the land cover fragmen-

tation within each MODIS pixel are also critical issues when using EC data for model

validation. All flux towers should be evaluated using footprint models and high res-

olution satellite images to provide the representativeness for the MODIS pixel (Chen

et al., 2012).

Image data quality is always an important issue for the application of remote

sensing. In this study, we use the vegetation indices calculated directly from the

MODIS surface reflectance product. These indices are subject to atmospheric con-

tamination (i.e., clouds, aerosols) and often result in a lower-than-normal value for
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Figure 6.11: Seasonal dynamics and interannual variations of the tower-based
(GPPEC ) and the modeled (GPPV P M ) gross primary production at two flux tower
sites at 8-day intervals at a maize/soybean rotation site (US-Bo1) (A) and a con-
tinuous maize site (US-Ne1) (B). Blue lines represent estimated GPP from flux
tower, yellow circles represent the present simulation result using the original
LUE (LUE_O) and brown circles represent improved simulation result using an
alternative LUE (LUE_A) for C4 plant.
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EVI, especially in those regions where cloud and aerosol are persistent (boreal and

tropical regions in our study). The effect of the atmospheric contamination can

be partially eliminated through a gap-fill method. Figure 6.12 shows the compar-

ison between the gap-filled and no gap-filled results. Obvious cloud contamina-

tion is marked in the black ellipse in Figure 6.12A, C. The gap-fill method used in

our study not only temporally interpolates the low values that are marked as cloud

or aerosol contaminated in the quality control layer, but also removes the noises

caused by other factors. Some extremely high value data (dark green dots) in Fig-

ure 6.12A are also temporally smoothed, as shown in Figure 6.12B. The use of this

gap-fill method also results in different regional GPP estimates. The GPP estimate

without the gap-fill method shows a total GPP of NA in 2010 as 13.23 Pg C, while the

gap-filled method leads to an annual GPP estimation of 13.53 Pg C. In addition, the

GPP simulations with the gap-filled processing are more stable when conducting

interannual comparisons or trend analyses.

Climate data input is another potential uncertainty source for VPM simulation.

Previous studies show that VPM accurately simulates GPP at flux tower sites, when

driven by in situ (site-specific) meteorological data and parameters (Jin et al., 2013;

Kalfas et al., 2011; Wagle et al., 2014; Xiao et al., 2004b,a). As radiation is one of

the direct inputs to model GPP, the accuracy of radiation directly influences GPP

simulation. Recent studies which employ different models (MODIS PSN, EC-LUE)

to investigate the performance of multiple meteorological datasets in estimating

regional GPP report that the NCEP product overestimates radiation as compared

with meteorological stations in U.S. and China (Cai et al., 2014; Zhao et al., 2006).

Jin et al. (2015) assesses the feasibility of using large scale reanalysis meteorologi-

cal data (NCEP-NARR) to drive VPM at cropland flux tower sites, and the resultant

GPPV P M agrees well with GPPEC at those sites. Our validataion at the site level
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shows that VPM accurately simulates GPP across different natural biome types in

NA using the regional reanalysis meteorological data and biome specific parame-

ters, suggesting that the recalibrated NCEP-NARR radiation product can be used to

estimate regional GPP effectively in NA.

6.5 Conclusions

In this study, we use VPM, climate reanalysis data, and MODIS products (vegeta-

tion indices, land cover, and LST) to simulate GPP of North America. GPPV P M

agrees well with GPPEC at individual flux tower sites and the GOME-2 SIF data

across North America. The comparison between SIF and GPPV P M showed very

high spatial-temporal consistency during the growing season, mostly due to the

GPP
(g C m-2 d-1)

EVI

0.8

0

Gap-filledNo gap-filled

A B

DC

10

0

Figure 6.12: Comparison between no gap-filled and gap-filled enhanced veg-
etation index (EVI) and the corresponding modeled gross primary production
(GPPV P M ). The low value in (A) and (C) are marked out using ellipses. The scene
is from the tile h11v03 during the mid-growing season on August 13th, 2010.
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close relationship between SIF and APARchl . The quality of GOME-2 SIF data may

limit its application for evaluating the seasonal variation of GPP for very low produc-

tive biome types. The results from this study clearly demonstrate the potential of

VPM for estimating GPP at the continental scale, and highlights the value of GOME-

2 SIF data for evaluation of various LUE-based and process-based GPP models. The

resultant high spatial and temporal resolution GPPV P M dataset in North America

will be provided to the public, which can be further used in a wide variety of ap-

plications, especially in those studies related to trend analysis, regional disturbance

evaluation, model comparison, and the carbon cycle under global climate change.

6.A Appendix
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Chapter 7: Precipitation and carbon-water coupling jointly control

the interannual variability of global land primary production

Abstract

Carbon uptake by terrestrial ecosystems is increasing along with the rising of at-

mospheric CO2 concentration. Embedded in this trend, recent studies suggested

that the interannual variability (IAV) of global carbon fluxes may be dominated by

semi-arid ecosystems, but the underlying mechanisms of this high variability in

these specific regions are not well known. Here we derive an ensemble of gross

primary production (GPP) estimates using the average of three data-driven models

and eleven process-based models. These models are weighted by their spatial rep-

resentativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF).

We then use this weighted GPP ensemble to investigate the GPP variability for dif-

ferent aridity regimes. We show that semi-arid regions contribute to 57% of the de-

trended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP

fluctuations are mostly controlled by precipitation and strongly coupled with evap-

otranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by sup-

ply (precipitation)-induced ET variability and GPP-ET coupling strength. Our re-

sults demonstrate the importance of semi-arid regions to the global terrestrial car-

bon cycle and posit that there will be larger GPP and ET variations in the future with

changes in precipitation patterns and dryland expansion.

7.1 Introduction

Carbon uptake through photosynthesis by terrestrial ecosystems is the largest flux

in the global carbon cycle Beer et al. (2010). This flux, also known as gross primary

production (GPP), drives not only ecosystem functioning, but also terrestrial carbon
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sequestration, which currently offsets more than one third of anthropogenic CO2

emissions (Le Quéré et al., 2015). Over the past 50 years, an enhanced seasonal ex-

change of CO2 has been observed in the Northern Hemisphere (Graven et al., 2013),

which was interpreted as increasing GPP in northern ecosystems induced by CO2

fertilization, extended growing seasons, and nitrogen deposition (Baldocchi et al.,

2016; Forkel et al., 2016; Graven et al., 2013). However, the GPP fluctuations super-

imposed on this increasing trend are less studied. With the increasing frequency

of extreme climate events (Easterling et al., 2000a), the interannual variability (IAV)

of GPP is also projected to increase (Zscheischler et al., 2014b), and will cause sig-

nificant impacts on the global terrestrial carbon cycle (Reichstein et al., 2013). The

IAV of carbon uptake was shown to have distinctive spatial patterns, with hotspots

on semi-arid or grassland ecosystems (Ahlstrom et al., 2015; Knapp & Smith, 2001;

Poulter et al., 2014). Although these spatial patterns are often explained by the in-

terannual variation of water availability in semi-arid ecosystems, specifically, the

precipitation variability, biotic meristem growth potential and their interactions

(Knapp & Smith, 2001), the underlying mechanism is not well established. A key

limitation to understanding this phenomenon and its potential feedbacks is that no

accurate or direct GPP measurements are available at the global scale: diagnostic

models and prognostic models show large differences in the spatio-temporal mean

and variability patterns of GPP (Anav et al., 2015). Previous studies often use me-

dian or average values as model ensembles to reduce the uncertainties (Anav et al.,

2013). However, un-weighted ensembles are not suitable to characterize spatial pat-

terns for each individual year for two reasons: median values only keep limited in-

formation and unweighted averages may lead to biases from outliers.

In recent years, significant progress was made to develop satellite-retrieved solar-

induced chlorophyll fluorescence (SIF) datasets (Frankenberg et al., 2011; Joiner
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et al., 2016) that offer a new proxy for direct quantification of plant photosynthesis

at a global scale. SIF is a very small amount of energy emitted by vegetation during

photosynthesis, and it is sensitive to the electron transport rate and the absorbed

radiation by chrolophyll (van der Tol et al., 2014). Empirical studies have shown

that SIF is highly correlated with GPP in space and time (Frankenberg et al., 2011;

Guanter et al., 2012, 2014; Joiner et al., 2014; Zhang et al., 2016e). Recent modelling

studies also exhibited high correlation between SIF and GPP at daily or 8-day scales

(Verrelst et al., 2016; Zhang et al., 2016e). Therefore, SIF can be used as a benchmark

to evaluate GPP model performance (Luo et al., 2012).

In this study, our first objective is to improve the spatial patterns of global es-

timates of GPP. We developed a method to calculate a weighted ensemble of GPP

from multiple models that best approximate spatial and temporal variations in SIF

derived from GOME-2 instrument (Joiner et al., 2013, 2016). To improve global esti-

mates of GPP as compared with a straight average of an ensemble of models, we pro-

vided a weighted ensemble estimate using three data-driven models (VPM (Zhang

et al., 2016e), MTE (Jung et al., 2011), and MOD17 (Running et al., 2004)) and eleven

process-oriented models from the TRENDY-v4 project (Sitch et al., 2008) (CLM4.5,

ISAM, JSBACH, JULES, LPJ, LPJ-GUESS, LPX, OCN, ORCHIDEE, VEGAS, and VISIT,

see Materials and Methods). The weight of each model was determined by how

well its GPP matches the spatial patterns of its proxy, SIF, within each biome type,

i.e., higher weights were given to more realistic models and vice versa (see Meth-

ods). Our second objective is to better understand what factors control the spatial

patterns of GPP IAV using the resultant SIF-constrained grid-based GPP dataset.

The IAV of GPP and Evapotranspiration (ET) were analyzed together since they are

closely coupled. We also adopted the Budyko framework (Budyko, 1974) to explain

the IAV pattern along the aridity index (hotspot in semi-arid regions).
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7.2 Materials and Methods

7.2.1 GPP from 14 models

GPP dataset from 14 models for the period 2000 to 2011 can be grouped into two

categories, i.e., three data driven models (VPM, MTE, and MOD17) and 11 pro-

cess based models from TRENDY-v4 project. The VPM model and MOD17 are both

light use efficiency models while using different driving data and parameters (Run-

ning et al., 2004; Xiao et al., 2004b). MTE uses machine learning algorithms which

combine the observation from flux tower, satellite imagery, and gridded climate

datasets (Jung et al., 2011, 2009). The TRENDY-v4 datasets are the latest release for

the TRENDY project which compared the simulation results from dynamic global

vegetation models (DGVMs) (Sitch et al., 2015). All these models are driven by the

same climate forcing data and monthly GPP estimates are used. (see Appendix, Text

7.A.1).

7.2.2 Solar-induced chlorophyll fluorescence from GOME-2

The solar-induced chlorophyll fluorescence (SIF) measurements are retrieved from

GOME-2 onboard the MetOp-A satellite. The GOME-2 instrument captures the

Earth radiation from ∼240 to 790 nm at a nominal nadir footprint of 40×80 km2

(and 40×40 km2 since 15 July 2013) with a spectral resolution of ∼0.5 nm. Com-

pared with SIF measurements from other satellites (GOSAT, OCO-2, etc.), GOME-2

data has the longest observation history (2007-2015). We used the version 26 SIF

from Joiner et al. (2013) available at http://avdc.gsfc.nasa.gov. This product is re-

trieved at wavelengths surrounding 740 nm, where the far-red peak of SIF emission

is located, based on a principal component analysis approach to account for at-

mospheric absorption. The initial results are quality controlled and aggregated to
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produce a level 3 monthly mean product at 0.5°×0.5° spatial resolution (Joiner et al.,

2013).

7.2.3 The ensemble of GPP using SIF

Sun-induced chlorophyll fluorescence (SIF) is a small amount of energy released

during the photosynthesis process (Porcar-Castell et al., 2014). When sunlight is

absorbed by vegetation, a large proportion of energy goes to photosynthesis (known

as photochemical quenching, PQ), and most of the remaining energy is dissipated

as heat (known as non-photochemical quenching, NPQ); a small amount of energy

(∼1–2%) is reemitted as chlorophyll fluorescence. In cases of environmental stress,

both PQ and SIF decrease while NPQ increases. Therefore, SIF can serve as a good

proxy for plant photosynthesis.

The SIF product from the Global Ozone Monitoring Experiment 2 (GOME-2)

that we used in this study has a satellite overpass time near 9:30 am local time.

Therefore, for most areas, GPP should be correlated with SIF for each biome type,

and the ratio between GPP and SIF should converge on a monthly scale. Hence,

we can use SIF as a proxy for GPP within each biome type both spatially and tem-

porally. To get the ensemble of all GPP estimates, the weight of each GPP prod-

uct should reflect how well the GPP product matches its respective SIF spatial or

temporal pattern within each biome type. Considering that SIF has relatively low

values (0–4.0 mW m−2 sr−1 nm−1) compared to its uncertainties (0.1–0.4 mW m−2

sr−1 nm−1) at monthly scales, to reduce uncertainty SIF can be averaged temporally

(from monthly to yearly) or spatially (within-biome for each month) to reduce those

uncertainties and compare with GPP. The land cover data used to identify different

biome types came from MCD12C1 (Friedl et al., 2010). This dataset has a spatial

resolution of 0.05 degree with a proportion of each biome type for each grid cell.
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We aggregated it to 0.5 degree spatial resolution and recalculated the proportion of

area for each biome type. For the GPP ensemble using SIF as a proxy for spatial

(temporal) variations, both SIF and GPP were temporally (spatially) averaged to get

an annual map (a value for each biome type for each month). For each model i , the

correlation between SIF and GPP for all pixels within each biome type j (for all 12

months for biome type j) is calculated as r s
i , j (r t

i , j ).

The overall score of a model i (scor ei ) is the weighted average of ri , j by the area

of each biome:

scor ei =
n∑

j=1
(a j × ri , j ) (7.1)

where a j represents the biome type j as a fraction of the total area (
∑

j=1 na j =
1)). For each group (data-driven or process based or all-ensemble), the weight of

i th model is calculated as:

Wi =
scor eγi∑n
i scor eγi

(7.2)

where γ is the order coefficient; in this study, we used 1s t order, 2nd order and

4t h order to calculate Wi . The ensemble GPP for each year is calculated as:

GPPe ns =
n∑
i

(Wi ×GPPi ) (7.3)

We chose the years 2007-2011 as the training period, due to the overlay of all

process-based models, data-driven models, and availability of SIF from GOME-2.

We applied the model contribution to the period 2000 to 2011 to get a GPP product

at an annual scale for both spatial and temporal ensembles. Because we focused on

the IAV of GPP, which is a spatial pattern, we only used the GPP ensemble with SIF
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as a spatial representative.

7.2.4 The Budyko framework

The Budyko framework describes how energy availability (represented by potential

evapotranspiration, PET or E0) and water availability (represented by precipitation,

P ) determine evapotranspiration (ET ). It hypothesizes that the ratio of ET over P

is a function of the ratio of PET over P , as follows:

ET

P
= f

(
PET

P

)
(7.4)

One analytical solution (Yang et al., 2008) to this equation is:

ET = P ×PET

(pn +E n
0 )

1
n

(7.5)

where the parameter n is used to define different Budyko curves for landscape

and vegetation characteristics. This analytical solution is similar to FuâĂŹs solution

(Zhang et al., 2001) and enables us to easily calculate the partial derivative of ET

with respect to P. n ranges from 0.5 to 2, which covers most global landscape char-

acteristics, and is used as a constraint to explain the ET and P IAV relationship. The

IAV of ET (σE ) can be derived from this Budyko framework (Koster & Suarez, 1999):

σET

σP
≈ ∂ET

∂
= f

(
PET

P

)
− PET

P
f ′

(
PET

P

)
= (AI n +1)−

n+1
n (7.6)

We use different n to get the possible distributions of the relationship between

∂ET
∂P and P

PET (aridity index).
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7.3 Results and Discussion

The annual mean and IAV of the weighted ensemble of GPP (GPPens) show very

good spatial consistency with the average of means and IAVs from individual mod-

els (GPPi ) and GOME-2 SIF retrievals (Joiner et al., 2013) (Figure 7.1). The weighted

global mean GPP is 123.8±1.6 Pg C year−1 for data-driven models, 133.6±1.9 Pg C

year−1 for process-based models, and 130.4±1.7 Pg C year−1 for all models (with

± being used for 1-sigma standard deviation). The weighted ensemble mean from

data-driven models is very close to the previous estimates from multiple diagnostic

models (Beer et al., 2010) (∼123 Pg C year−1), the seasonal cycle of oxygen isotope

measurements of atmospheric CO2 (Ciais et al., 1997) (∼120 Pg C year−1), and a re-

cent synthesis study (Anav et al., 2015). The ensemble mean for all 14 models is

slightly higher due to the relatively higher GPP estimates from the process-based

models, possibly because these process models do not all represent nutrient lim-

itation. The spatial patterns of mean annual GPP and IAV of GPP are similar for

different weight orders and model groups (Appendix, Figures 7.A.7–7.A.9).

With this weighted ensemble of GPP from 14 models, we explore the linkage

between the spatial patterns of GPP IAV and aridity index (Table S1), i.e., the ra-

tio of long-term annual precipitation to potential evapotranspirative demand. Un-

like previous studies defining semi-arid regions by vegetation types (Ahlstrom et al.,

2015), we use the climatological definition from the Food and Agriculture Organi-

zation (FAO)(Middleton and Thomas 1997), where semi-arid regions are areas with

the aridity index ranges from 0.2–0.5. Comparison with the aridity index shows that

most of the areas with high GPPens IAV are located in semi-arid regions (Figure

7.2b). The average of GPP variability from individual models (GPPi ) and SIF versus

aridity index confirms this relationship, with the average GPP variability reaching its
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peak at aridity index values of around 0.3, corresponding to semi-arid regions. SIF

IAV from GOME-2 also shows high variability in semi-arid regions, but another peak

in humid regions, the latter being a possible artifact of higher SIF errors under the

influence of the South Atlantic Anomaly (SAA) in South America (Köhler et al., 2015)

(Appendix, Figure 7.A.10). Although humid regions defined by aridity index occupy

a larger proportion of the global land surface (35%) and contribute a larger fraction
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Figure 7.1: Mean and variability of GPP and SIF (2000-2011). (a, b) Mean and
standard deviation (s.d., as a representative of variability) of annual GPP from
ensemble of all models with the 2nd order weight (GPPens) for 2000-2011. (c, d)
unweighted average of annual GPP and GPP s.d. calculated from each individual
model (GPPi ) for 2000-2011. (e, f ) Annual mean SIF and SIF s.d. from GOME-2
for 2007 to 2015. The SIF variances were smoothed with a 3×3 pixel smoothing
window after removing the error (see Appendix, Text 7.A.7).
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of global GPP (∼57%), the total variability of GPP of humid regions is smaller than

that in semi-arid regions (Figure 7.2c). In addition, the southern hemisphere con-

tributes nearly 40% of the total GPP variability with only 25.8% of the global land

area.
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Figure 7.2: (a) The aridity map calculated as a ratio between precipitation from
GPCC (Schneider et al., 2011) and potential evapotranspiration from MOD16
product (Mu et al., 2011)). Long-term averages from 2000 to 2013 for both prod-
ucts were used; the classification of aridity regions is based on UNEP (Appendix,
Table 7.A.1). The small pie chart indicates the proportion of each class in the
global land area. (b) IAV of GPP ensemble (GPPens), average of GPP IAV from in-
dividual models (GPPi ) and SIF IAV at different aridity indices, with the shaded
area indicating one s.d. of variation. (c) The contribution of total GPP variability
from different aridity classes. Error bars stand for one s.d. using different orders
of ensemble. (d) Detrended GPP anomaly for global and 5 individual aridity re-
gions, from 2000 to 2011. GPP ensemble comes from all models, and the shaded
area indicates the range of s.d. from different orders of weight (1st, 2nd, 4th, see
Methods).

When decomposing the variability of annual GPP during 2000-2011 into a long-

term trend and detrended anomalies, semi-arid regions contribute 57% of the total

detrended GPP variance (Figure 7.2d). This is in line with the results of Ahlstrom
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et al. (2015) who used the model tree ensemble (MTE) data-driven GPP and TRENDY

v3 process-based models. Similar results are also found if we use the ensembles

from either only data-driven models or only process-based models (Appendix, Fig-

ure 7.A.11). Our results also show an increasing trend in the GPP ensembles with

large geographic differences. The humid regions contribute the largest proportion

to the increase (42.4%), followed by semi-arid regions (29.0%). The GPP in humid

regions is less sensitive to the climate anomalies, but may benefit from nitrogen de-

position in mid-latitudes that makes CO2 fertilization more effective (Yu et al., 2014)

and from longer growing seasons in high latitudes (Piao et al., 2007), therefore yield-

ing a higher contribution to the trend than to IAV.

We further attribute the IAV of GPP to different climatic factors by calculating the

partial correlation coefficients between GPP and precipitation, temperature, and

shortwave downward radiation. Similar to the results from a previous analysis us-

ing the MTE approach (Beer et al., 2010), we find that for most land surfaces, an-

nual GPP is controlled by precipitation, except for some tropical and boreal regions.

Contributions from temperature and radiation are less significant (Figure 7.3a–c).

In addition, for most drylands (aridity index < 0.65), GPP and ET are closely cou-

pled, as represented by a high Pearson correlation coefficient (significant at the 0.05

level for 65.4% of areas in Figure 7.3d). This tight coupling between GPP and ET in

dry regions is robust to the choice of a particular ET dataset, as it is present for 12

different ET datasets (Appendix, Text 7.A.2). When plotting the correlation coeffi-

cients between ET and GPP against the GPP variability, the strength of the GPP-ET

relationship increases with GPP variability (Figure 7.3e), indicating that the changes

in GPP in these high variability regions is closely linked to changes in ET. Precipita-

tion is still the dominant climate factor for the large GPP variability, as represented

by its highest partial correlation coefficient among the three major climate factors
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(Figure 7.3e). Partial correlation between GPP and radiation is mostly negative due

to the negative correlation with cloud cover and precipitation.
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Figure 7.3: Relationship among GPP and GPP IAV, climate variables, and ET. Par-
tial correlation (ρ) between annual GPP and (a) annual total GPCC precipitation,
(b) annual mean CRU TS temperature and (c) annual sum CRUNCEP downward
shortwave radiation with other two climate variable fixed. (d) averaged Pearson
correlation (r ) between GPP and all ET products (see Appendix, Text A.7.2). (e)
The relationship between 4 types of correlation versus GPP variability, with a bin
size of 10 g C m−2 year−1. Shaded areas represent the s.d. range within each bin.
GPP is from the 2-order ensemble of all models and GPP ET correlation is from
(d).

As GPP and ET are highly coupled in high GPP variability (semi-arid) regions,

and both fluxes are closely linked to the precipitation anomalies, we use this empir-

ical relationship to diagnostically investigate the factors related to high GPP IAV in
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semi-arid regions. One of the key factors that contributes to the GPP variability is

the coupling strength or regression slope between GPP and ET (β). The contribution

of this factor to the IAV of GPP is given by:

I AVGPP =β× I AVET (7.7)

This equation only applies for regions where ET and GPP are strongly coupled

on a temporal scale, i.e., high GPP variability areas as shown in the previous analysis

(Figure 7.3e). We calculate this β factor by using the linear regression slopes for

each pixel between the weighted GPP anomalies and ET anomalies from 12 different

ET products (Appendix, Figure 7.A.12), and related it with the aridity index (Figure

7.4a). These regression slopes generally increase with aridity index and can also

be regarded as an approximation of the ecosystem water use efficiency (WUE) as

long as the ecosystem is water limited (Huxman et al., 2004). The increasing trend

of β with aridity index (i.e., from hyper arid to humid) is consistent with the fact

that WUE increasing with precipitation across spatial gradients as suggested by a

recent study using an inter-comparison of multiple models (Sun et al., 2016). β

starts to decrease when the aridity index approaches 1, where GPP and ET become

decoupled from each other (Appendix, Figure 7.A.13), i.e., when ecosystems are no

longer water limited, decreases of GPP will not necessarily be linked to decreases

of ET. When aridity index > 1, some regions show relatively low β value; however,

most of these regions are located in tropical forests where the ET-GPP correlation is

low (Figure 7.3d). Therefore, β is highest in arid to sub-humid regions and Eq. 7.7 is

valid in these regions due to the close relationship between ET and GPP.

Given that the carbon and water fluxes are highly coupled in high GPP variabil-

ity areas, we try to identify the climate regulation of ET variability and also GPP
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variability. Evapotranspiration is often thought to be physically constrained by the

energy demand (potential evapotranspiration, PET) and water supply (precipita-

tion, P) as described by the Budyko framework (Budyko, 1974; Zhou et al., 2015a)

(see Methods). Based on this framework, the IAV of ET can be diagnosed from IAV
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Figure 7.4: Decomposition of GPP IAV into ET IAV and precipitation IAV, and their
relationship with aridity index. (a) Ratios of interannual anomalies of GPP to
anomalies of ET (β) as a function of aridity index. Each line represents the mean
value at each AI value. (b) Change in ET induced by change in precipitation, two
dashed red line and the solid black line represent the prediction from Budyko
framework with different n values. (c) GPP IAV from 2nd order ensemble (γ=2)
of all models versus AI, the black dashed line represents mean value at each AI
value. (d) ET IAV from all 12 ET products versus AI. (e) Precipitation IAV and its
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of precipitation, given that the contribution from IAV of PET is negligible(Koster &

Suarez, 1999), which is also confirmed by our analysis (Appendix, Figure 7.A.14).

Neglecting the contribution of PET is possible because precipitation variability in

supply-(water) dominated regions is much larger than potential evapotranspiration

(PET) variability in demand-(energy) dominated regions, and this difference ampli-

fies when we calculate the contributions from precipitation or PET exclusively using

the derivatives of a Budyko function (Yang et al., 2008) (Appendix, Figure 7.A.15).

As ET variability is mostly dominated by P variability in high GPP IAV regions, we

can investigate the precipitation contribution to the variability of ET. We get the spa-

tial pattern of this sensitivity factor (σET
σP

) by calculating the ratio of ET variation to

the precipitation variation (Appendix, Figure 7.A.16). This sensitivity factor should,

according to the Budyko framework (see Methods), decrease from 1 in hyper arid

regions where all changes in precipitation leads to an equal magnitude change of

ET, to 0 in extreme humid regions, where changes in precipitation do not affect ET

(Figure 7.4b). The relationship is also regulated by landscape and vegetation char-

acteristics and by vegetation-precipitation feedbacks, as represented by the value

of the exponent n in the Budyko equation (see Methods). Our data also show that

σET
σP

decreases with increasing aridity index, and absolute σET
σP

values are relatively

lower for the two data-driven ET products than for the process-based models. This

is caused by the relative lower interannual variation of ET in data-driven products.

Since the precipitation variability (σP ) increases with mean annual precipitation as

well as with the aridity index, while the σET
σP

decreases with aridity index, ET vari-

ability (σET ) reaches its highest values in arid to semi-arid regions (Figure 7.4d).

In addition, regression slopes between GPP and ET (β) are also highest in arid to

sub-humid regions, both of which explain the highest GPP variability in semi-arid

regions.
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Many studies have shown the importance of precipitation to the global carbon

cycle (Beer et al., 2010; Fu et al., 2014). Previous studies hypothesize that the high-

est IAV of aboveground net primary production occurs in grasslands as a balance

between the ecosystem potential productivity and the ecosystem stability (Knapp &

Smith, 2001). Our study further documents a higher ET-GPP coupling (β) combined

with a high precipitation-induced changes in water fluxes which is also predicted

by Budyko framework in semi-arid regions. Using ET as an intermediate variable

to connect the precipitation and stomata behavior which links both the carbon and

water fluxes, we revealed how precipitation affects the IAV of GPP and ET. Because

the highest ET variation in semi-arid regions is not only physically constrained by

the precipitation and evapotranspiration ratio (fraction of precipitation that goes to

evaporation, usually in the range from 0 to 1), but also affected by the vegetation

coverage (Li et al., 2013). It is likely that the recent greening trend of vegetation, es-

pecially in northern hemisphere (Mao et al., 2016; Zhu et al., 2016), will also affect

the peak of ET through the change of n in the Budyko equations. In addition, the

elevated CO2 concentration in the atmosphere will affect the stomata behavior and

water use efficiency (Keenan et al., 2013), which may further affect the peak of GPP

variability in the space of aridity index. These issues still need further investigation

by future studies.

GPP and ET variability are projected to increase in the future with changes in

precipitation regimes and increases in evapotranspirative demand: the aridity map

has changed over the past 60 years (Spinoni et al., 2015), and drylands are projected

to further expand in the future (Huang et al., 2015). In addition, as the precipitation

variability increases with global climate change, larger GPP and ET variability is ex-

pected in the future. On the other hand, with increased CO2 concentrations in the

atmosphere, water will be more efficiently used and this tends to dampen the GPP

202



ET relationship (Keenan et al., 2013). Grazing and frequent fire occurrence in semi-

arid regions may also alter the value of GPP ET ratios, which makes this issue more

complicated. Whether GPP IAV will continue to increase in the future still needs to

be further assessed by state-of-the-art Earth system models and manipulated ex-

periments.

In this study, we presented a weighted ensemble method to provide a better es-

timate of the GPP IAV from multiple models. By giving better performing models a

higher weight, we expect to see an improved prediction of the GPP spatial patterns.

Due to the spatial inconsistency between model gridcell and in situ measurements

footprints (Zhang et al., 2014b), we cannot directly verify the effectiveness of this

method. However, this method is supposed to be more stable and robust to model

selections, i.e., the variability of the GPPens IAV generated from different models

will be smaller than that using a traditional unweighted averaging method. Fig-

ure 7.5 shows the difference of variability between the unweighted average and the

weighted ensemble method using 13 out of 14 models as inputs (see Appendix, Text

7.A.9). For annual GPP, the weighted ensemble method shows a relatively larger dif-

ference in tropical rainforest, south eastern U.S. and China. This may be caused by

the relative large GPP discrepancy between data-driven models and process-based

models in these regions, and the relatively higher weight factors given to the data-

driven models. In terms of GPP s.d., we can see that the weighted ensemble method

has smaller variation for almost all regions. This indicates the weighted ensemble

method will give a more stable prediction of GPP s.d., which is also the focus of this

study.

Global carbon cycle studies often rely on models to predict the spatial pattern

of carbon fluxes (Ciais et al., 2005; Forkel et al., 2016; Zhao & Running, 2010). How-

ever, large uncertainties still exist in different model groups (process-based or data-
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driven), or even within the same group. The uncertainties becomes more evident

when analyzing the interannual variability patterns (Anav et al., 2015). Our study

presents a new framework to incorporate model simulations with global satellite

observations to reduce these uncertainties of model outputs. Although GPP vari-

ability patterns produced by either process-based ensemble and data-driven en-

sembles are similar, we note that not all models captured these IAV patterns accu-

rately, even models with similar distributions of annual GPP. With this precipitation-

ET-GPP relationship being explained and the new ensemble framework developed,

it provides a means to benchmark ecosystem models for water and carbon fluxes

and their coupling.
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Figure 7.5: Difference in variation between the unweighted average and the
weighted ensemble methods in terms of (a) annual GPP and (b) GPP s.d. Ensem-
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7.A Appendix

7.A.1 GPP product

VPM

The Vegetation Photosynthesis Model (VPM) is a light use efficiency (LUE) model

which has been tested over a variety of land cover types at CO2 eddy flux tower sites

(Jin et al., 2015, 2013; Kross et al., 2016; Wagle et al., 2014; Xiao et al., 2004b,a). The

GPP product we used in this paper is driven by the MODIS 8-day 500 m surface re-

flectance product (MOD09A1 C6), the MODIS 8-day 1 km Land surface temperature

product (MOD11A2 C5), the MODIS land cover product (MCD12A2 C5), and the

shortwave radiation and air temperature from the NCEP-DOE Reanalysis 2 dataset.

The VPM (version 2.0) estimates GPP by using the product of absorbed photosyn-

thetic active radiation by the chlorophyll (APARchl , calculated by f PARchl ×PAR)

and the light use efficiency (LUE, εg ):

GPP = εg × APARchl (7.A.1)

f PARchl = a × (EV I −0.1) (7.A.2)

where the factor a = 1.25, and 0.1 in Eq. A2 is used to adjust EVI baseline (Sims

et al., 2008, 2006). The EVI is calculated from the MOD09A1 product and passed

a rigorous quality check and gap-filling procedure (Zhang et al., 2016f). The LUE

(εg ) is reduced from a maximum light use efficiency (ε0) by the temperature scalar

(Tscal ar ) and a water scalar (Wscal ar ):

εg = ε0 ×Tscal ar ×Wscal ar (7.A.3)
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Detailed information about the model parameter estimation were documented in

previous publications (Jin et al., 2015; Xiao et al., 2004b; Zhang et al., 2016e).

The GPP product at 8-day temporal resolution and 500 m spatial resolution was

reprojected and aggregated into 0.5 degree (latitude and longitude). The annual

GPP is calculated as the sum of each 8-day GPP over a Julian year, and the interan-

nual variation of GPP is calculated below:

I AV =

√√√√∑n
n=1

(
GPPi −GPP

)2

n
(7.A.4)

where GPPi and GPP represent the annual GPP for year i and average annual GPP

for year 2000 to 2011, respectively. n is the total number of years.

MPI-BGC (MTE)

The MPI-BGC estimates GPP by upscaling global in situ CO2 eddy flux obser-

vations with climate data and remote sensing fraction of absorbed photosynthetic

active radiation (fAPAR) using a Model Tree Ensemble approach (Jung et al., 2009,

2011). This dataset has a spatial resolution of 0.5°× 0.5°. This monthly dataset was

first aggregated into annual sum and then the IAV over the period of 2000 to 2011

was calculated to match with other GPP products.

MOD17

The MODIS GPP product (MOD17) employs a light use efficiency (LUE) approach

to calculate GPP. The PSN model used in the MOD17 GPP product uses MODIS fPAR

product as the fraction of PAR absorbed by vegetation for photosynthesis. MOD17

also uses vapor pressure deficit (VPD) as the water limitation of LUE and uses vari-

able maximum LUE for individual biome types, which are determined by MODIS
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land cover map (MCD12). The MOD17 product (MOD17A2 C55) during 2000-2011

was downloaded from Numerical Terradynamic Simulation Group (http://www.ntsg.

umt.edu/project/mod17#data-product) at the University of Montana. MOD17 GPP

at 1-km spatial resolution and 8-day temporal resolution and was aggregated into

0.5 degree (latitude/longitude) to calculate annual GPP.

TRENDY-V4

The TRENDY project compared simulation results from dynamic global vege-

tation models (DGVMs) under the same climate forcing data, with an objective to

investigate the trend in net biome production (NBP) over the period 1980 to 2010

(Sitch et al., 2015). The GPP simulation from 2000 to 2011 from the latest version

TRENDY-V4 were used in our study. The model simulation is based on two exper-

iments: S2, CO2 and climate, S3, CO2, climate and land use. In our study, the S2

simulation with variable CO2 and climate forcing are used because not all models

provide S3 simulations. Eleven models (CLM4.5 (Oleson et al., 2013), ISAM (Kato

et al., 2013), JSBACH (Raddatz et al., 2007), JULES (Clark et al., 2011), LPJ (Sitch et al.,

2003), LPJ-GUESS (Smith et al., 2001), LPX (Prentice et al., 2011), OCN (Zaehle &

Friend, 2010), ORCHIDEE (Krinner et al., 2005), VEGAS (Zeng et al., 2005), and VISIT

(Ito, 2008)) from the TRNEDY project were used to calculate the inter-annual vari-

ability (IAV) of GPP for the period 2000 to 2011 (Figure 7.A.1–7.A.3). The spatial res-

olution of CLIM4.5 is 2.5°×1.875°, JSBACH is ∼1.875°×1.875°, JULES is 1.875°×1.25°,

OCN and LPX are 1°×1°. These annual GPP means and IAVs are calculated at the

original resolution and spatially interpolated to 0.5°×0.5° using cubic interpolation

method.
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7.A.2 Evapotranspiration and potential evapotranspiration dataset

Evapotranspiration datasets from the model tree ensemble (MTE) (Jung et al. (2011)),

MODIS ET (Mu et al. (2011)) (MOD16A3 C5), and 10 TREDNY models are used in our

study (ET from LPJ is not used due to a data problem—abnormally low ET in trop-

ical reigons). The MTE method integrates the eddy flux tower measured ET with

remote sensing satellite images and meteorological data using a machine-learning

algorithm (Jung et al., 2009). The MOD16A3 product calculates ET based on the

Penman-Monteith algorithm (Mu et al., 2007) and was recently improved (Mu et al.,

2011). We downloaded the potential evapotranspiration (PET) and evapotranspira-

tion (ET) from Numerical Terradynamic Simulation Group website at the University

of Montana (http://www.ntsg.umt.edu/project/mod16). The PET and ET datasets

were annual sums at 1 km×1 km spatial resolution and we aggregated to 0.5°×0.5°.

ET from TRENDY-V4 were also interpolated into 0.5°×0.5° spatial resolution. All ET

datasets from 2000 to 2011 were used.

7.A.3 Climate dataset

The GPCC V7 global precipitation at 0.5°×0.5° is used in our analysis (Schneider

et al., 2011). This dataset has a monthly precipitation value from 1901 to 2013.

The downward shortwave radiation was obtained from CRUNCEP V4 (http://dods.

extra.cea.fr/data/p529viov/cruncep/) with a monthly sum and a spatial resolution

of 0.5°×0.5°. The monthly mean temperature was from CRU TS 3.23 (Harris et al.,

2014) (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/) and also has a 0.5°×0.5°

spatial resolution. All the monthly climate datasets are aggregated to annual sums.

The aridity index is calculated using GPCC precipitation over PET from MOD16 for

the period 2000 to 2011. The classification scheme of the aridity regions based on
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aridity index is from UNEP (Middleton & Thomas, 1997) and can be found in Ta-

ble 7.A.1. Because CRUNCEP V4 does not provide radiation after 2010, the climate

correlation is calculated using data from 2000 to 2010.

7.A.4 Aggregation of MODIS land cover map

In order to get the annual land cover map at 0.5°×0.5° spatial resolution, we aggre-

gate the MCD12C1 C5 product spatially. The aggregation is based on the average of

area percentage of each biome type, therefore the output also includes percentage

of each biome type for each grid cell. To make sure we can compare the SIF and

GPP within each land cover type, we set a threshold to extract the grid cells with

‘pure’ land cover types. We set the threshold from 50% to 100%. With the increase

of this threshold, the number of mixed pixels also increased and the available pix-

els decreased (Figure 7.A.4). In this study, we used the 80% threshold, and only two

biome types have less than 100 gridcells.

7.A.5 Rationale of GPP ensemble using SIF as a reference

Recent studies have successfully retrieved SIF from satellites, and these SIF retrievals

showed very good correlation with GPP from flux tower upscaled models and light

use efficiency models (Frankenberg et al., 2011). This close relationship between

GPP and SIF is found to be higher within each biome type at monthly scale us-

ing data from both global simulation and in situ observations (Damm et al., 2015a;

Guanter et al., 2012). The Soil Canopy Observation of Photochemistry and Energy

fluxes (SCOPE) model is a process-based model which can also simulate energy ex-

change within photosynthesis process, including SIF (van der Tol et al., 2009). Us-

ing this SCOPE model, recent studies investigated the relationship between GPP

and SIF (Lee et al., 2015; van der Tol et al., 2014). SI Fyi eld (defined as SIF/APAR,
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absorbed photosynthetically active radiation) shows a good linear correlation with

photochemical yield (defined as GPP/APAR) when APAR is higher than 400 to 600

µ mol m−2s−1. However, this linear relationship varies with Vcmax. If we assume

the similar Vcmax within each biome type, SIF should have a good correlation with

GPP at moderate or high light conditions relevant to satellite observations.

7.A.6 Comparing GPP ensemble using SIF as a temporal proxy and spatial proxy

Because of the close relationship between SIF and GPP within each biome type, SIF

can be used as a reference to evaluate the performance of various models in GPP

estimation. To reduce uncertainties of SIF from GOME-2, we proposed two strate-

gies to reduce uncertainties: monthly SIF is averaged either temporally to yearly

average, or spatially within each biome types; and we then use temporally averaged

SIF as spatial representative or the spatially averaged SIF as temporal representative

of photosynthetic activity. The weights for each model from these two approaches

are given in Figures 7.A.5, 7.A.6. When using SIF as a temporal reference for each

biome, the difference between each individual model is rather small (Table 7.A.2),

and most models have relatively high correlation. This implies most models can

simulate the seasonal variation of GPP relatively well. However, when using SIF as a

spatial reference within each biome, the difference between each individual model

is relatively large (Table 7.A.2), and many models have relatively low correlation co-

efficients. In addition, the interannual difference of the weight is very small (short

error bar in Figure 7.A.5), proving the method is relatively stable.

7.A.7 Interannual variation of SIF

SIF data from the satellite have relative high noise because of the high spectral re-

quirement for the sensor. For the GOME-2 dataset, the reported error for monthly
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mean gridded data are ∼0.1–0.4 mW m−2nm−1sr−1 (Joiner et al., 2013). This re-

ported error is contributed from several sources: (1) the error for each individual SIF

measurement, which is affected by the radiance noise, atmospheric conditions; (2)

different observing conditions (view angle), sampling locations and time; (3) cloud

contaminations; (4) various systematic errors. When calculating the interannual

variation, the contribution from 2-4 is limited and is ignored in our analysis.

We use the following scheme to calculate the interannual variation of SIF:

(1) For each gridcell each month, not only the aggregated SIF value (av-

erage of all valid SIF retrieval) is given, the GOME-2 SIF product also

gives the number of individual SIF measurements used to aggregate the

gridcell and the standard deviation of all retrievals. The uncertainty of

this gridcell for month i (σi ) will be the standard deviation of all re-

trievals (regarded as the uncertainty of each individual measurement)

divided by
p

n, where n is the number of measurements used for aggre-

gation. Therefore, we can get the uncertainty of SIF for each gridcell for

each month.

(2) From the SIF value and uncertainty for each month, we will further

calculate the SIF mean and uncertainties for each year. Assuming for

each gridcell, the uncertainty of SIF for month i (εi ) follows a normal

distribution (εi ∈ N(0, σi )), where σi is the uncertainty which we calcu-

lated in the previous step, the uncertainty of annual average SIF for year

j (ε j ) will also follow a normal distribution:

ε j =∈ N

0,

√∑12
i=1σ

2
i

12

 (7.A.5)
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(3) To calculate the actual IAV of SIF, we need to eliminate the uncer-

tainty induced variability for each year (ε j ∈ N(0, σ j )) from the calcu-

lated variability (σcal ) for each gridcell. We found a very similar pattern

of ε j across different years. Because of the additivity of variance, the cal-

culated IAV of SIF (σcal ) can be explained by the real IAV of SIF (σI AV )

and error of observation (σann):

σ2
cal =σ2

I AV +σ2
ann (7.A.6)

where the error of observation (σann) is calculated as follows:

σann =
√∑2015

j=2007σ
2
j

9
(7.A.7)

The spatial patterns of σcal and σann are shown in Figure 7.A.10.

7.A.8 Decompose ET variation from precipitation variation and potential evapotran-

spiration variation

Using the Budyko framework, similar with Eq. 7.6 in the methods, we can also get

the ET sensitivity to PET (E0) change:

∂ET

∂P
= 1(

1+
(

E0
P

)−n) n+1
n

= (AI n +1)−
n+1

n (7.A.8)

∂ET

∂E0
= 1(

1+
(

E0
P

)n) n+1
n

= (AI−n +1)−
n+1

n (7.A.9)
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Therefore, ET variability can be decomposed into ET variability caused by precipi-

tation variability (ETP ), and ET variability caused by PET variability (ETE0 ).

ETP = ∂ET

∂P
× I AVP (7.A.10)

ETE0 =
∂ET

∂E0
× I AVE0 (7.A.11)

We calculate the ETP and ETE0 using different n values (0.5, 1, 2) to infer the ET

change from change in precipitation and change in E0. Results are shown in Figure

7.A.15.

7.A.9 Verification of the stability and robustness of the weighted ensemble method

To verify the stability and robustness of the weighted ensemble method to model

inputs, we use 13 out of 14 models as input and test the variation of the annual

GPP and GPP s.d. for both unweighted average method and the weighted ensem-

ble method. Each time, we drop one model from the 14 models and use the rest 13

models as input. The GPP for each year is calculated as the average of the 13 model

estimates for this year or using the ensemble method described in the method sec-

tion. The annual GPP and GPP s.d. is then calculated from the output of each year

by both methods. By repeating this process for 14 times, we can get all the possible

combination of using 13 models as inputs. The variations of the annual GPP and

GPP s.d. from 14 times run for both methods are regarded as the methods stability

(Figures 7.A.17).
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Figure 7.A.1: Spatial patterns of annual mean GPP from 3 data-driven models,
and 11 DGVMs from the Trendy-V4 project.
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Figure 7.A.2: Latitudinal pattern (1° bands) of annual GPP. The blue area rep-
resents the range of the DGVMs from the Trendy-V4 project (CLM4.5, ISAM,
JSBACH, JULES, LPJ, LPJ-GUESS, OCN, ORCHIDEE, TRIFFID, VEGAS, VISIT),
the red area represents the range of the data-driven models (VPM, MTE, and
MOD17).
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Figure 7.A.3: Spatial patterns of inter-annual variability (standard deviation, s.d.)
of GPP from the 3 data-driven models and the 11 DGVMs from the Trendy-V4
project.
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Figure 7.A.4: Land cover map (80% threshold value) from MODIS MCD12Q1 for
2007 (a) and the ‘pure’ pixel numbers for each land cover type at different thresh-
old values(b). For statistic purpose, only vegetated land (no snow, barren, water)
were shown.
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Figure 7.A.5: Average model contribution of spatial GPP ensemble (see Methods)
with different orders. The error bars represent the standardized deviation (s.d.)
across 5 years (2007–2011).
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Figure 7.A.6: Average model contribution of temporal GPP ensemble (see Meth-
ods) with different orders. The error bars represent the standardized deviation
(s.d.) across 5 years (2007–2011).

Figure 7.A.7: Spatial pattern of annual GPP ensemble from all models (first col-
umn), data-driven models (second column), and DGVMs (third column). Differ-
ent rows represent different orders of weight applied.
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Figure 7.A.8: Latitudinal pattern (1° bands) of annual GPP. The solid line, dashed
line and dash-dotted line represent 1-order, 2-order and 4-order weighted en-
semble.

Figure 7.A.9: Spatial pattern of GPP IAV from all models ensemble (first column),
data-driven models (second column), DGVMs (third column). Different rows rep-
resent different orders of weight applied.
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Figure 7.A.10: The calculated SIF variability from 2007 to 2015 using annual
mean SIF value (a) and the average SIF error from each year (b).
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Figure 7.A.11: Detrended GPP anomaly from the ensembles of data-driven mod-
els (a) and process-based models (b).
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Figure 7.A.12: Regression slope between GPP and ET. GPP is from 2nd order of
the GPP ensemble with all models and ET is from 12 models.
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Figure 7.A.13: Correlation distribution between 2nd order GPP ensemble and
MTE ET across different aridity index. The water-carbon cycle is closely coupled
in arid and semi-arid regions, but decreases after aridity index is greater than 0.5.
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Figure 7.A.14: Relationship between ET variability and aridity index. ET variation
are calculated from MTE ET dataset and aggregated to annual sum. Aridity equals
to 1 indicate precipitation equals to evapotranspirative demand. With the aridity
index decreasing from 1 to 0, ET variability becomes dominated by the precip-
itation variability; with the aridity index increasing from 1 to ∞, ET variability
becomes dominated by the PET variability.
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Figure 7.A.15: The spatial pattern of precipitation variation from GPCC and PET
variation from MODIS MOD16, both datasets are annual sums from 2000-2013
(a, b). ET variation caused by precipitation variation and by PET variation with
different n values (c - h).
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Figure 7.A.16: σET /σP estimated from 12 ET models and the GPCC precipitation
for 2000-2011.
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Figure 7.A.17: The variation of (a, c, e, g) annual GPP and (b, d, f, h) GPP s.d. using
unweighted average (a, b) and weighted ensemble (c, d, e, f, g, h) with different
order factor (γ in Eq. 7.2). All the units are g C m−2 year−1.
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Table 7.A.1: Classification scheme of aridity regions based on aridity index (AI).
Aridity index is defined by FAO and the classification is inherited from UNEP Dry-
lands are defined as AI < 0.65.

Aridity index Aridity class
<0.05 Hyper arid

0.05–0.2 Arid
0.2–0.5 Semi-arid

0.5–0.65 Sub-humid
>0.65 Humid

Table 7.A.2: The biome area weighted correlation between GPP and SIF (scor ei )
using SIF as a temporal reference.

Models 2007 2008 2009 2010 2011
VPM 0.91 0.90 0.94 0.87 0.88
MOD 0.87 0.90 0.88 0.90 0.85
MPI 0.94 0.96 0.93 0.94 0.95

CLM4.5 0.87 0.91 0.77 0.89 0.89
ISAM 0.87 0.92 0.82 0.88 0.90

JSBACH 0.86 0.89 0.88 0.87 0.91
JULES 0.82 0.89 0.83 0.84 0.88

LPJ 0.87 0.92 0.87 0.87 0.91
LPJG 0.83 0.86 0.79 0.82 0.82
LPX 0.84 0.85 0.78 0.85 0.82
OCN 0.84 0.89 0.81 0.85 0.89

ORCHIDEE 0.78 0.81 0.71 0.81 0.77
VEGAS 0.81 0.84 0.73 0.80 0.77
VISIT 0.89 0.87 0.82 0.86 0.87
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Table 7.A.3: The biome area weighted correlation between GPP and SIF (scor ei )
using SIF as a spatial reference.

Models 2007 2008 2009 2010 2011
VPM 0.71 0.74 0.74 0.76 0.74
MOD 0.59 0.63 0.63 0.66 0.63
MPI 0.60 0.63 0.62 0.66 0.64

CLM4.5 0.42 0.41 0.41 0.42 0.39
ISAM 0.55 0.57 0.57 0.59 0.58

JSBACH 0.51 0.51 0.51 0.59 0.53
JULES 0.47 0.45 0.47 0.51 0.48

LPJ 0.41 0.43 0.43 0.41 0.40
LPJG 0.51 0.52 0.52 0.54 0.51
LPX 0.59 0.62 0.59 0.62 0.59
OCN 0.65 0.67 0.66 0.68 0.67

ORCHIDEE 0.50 0.51 0.51 0.52 0.51
VEGAS 0.56 0.57 0.58 0.62 0.59
VISIT 0.28 0.28 0.30 0.28 0.27
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Chapter 8: Conclusions and perspectives

Observation and simulation of GPP at regional and global scale is critical to under-

stand vegetation responses to disturbances and global climate change. They also

provide information of the spatial temporal variation of the global carbon cycle.

Increasing observations, both in situ and remotely sensed, enable us to investi-

gate plant photosynthesis from different scales and perspectives. This dissertation

uses an integration of photosynthesis measurements at leaf, canopy, and ecosys-

tem, and global scales, either by gas exchanges (CO2 fluxes) or energy partitioning

after plant absorption. The use of these datasets not only enhanced our under-

standing of plant photosynthesis in response to drought, but also improved a light

use efficiency model — the vegetation photosynthesis model (VPM). Based on the

improved model simulation, I developed a global GPP datasets and explored the re-

lationship between GPP and solar induced chlorophyll fluorescence, and the spatial

variability and climate regulation.

The results from Chapter 2 demonstrated the feasibility of using SIF and remote

sensing spectroscopy to track the seasonal variation of vegetation photosynthesis

capacity and drought limitation on energy partitioning after absorption by chloro-

phylls. Both leaf level and canopy level measurements suggest that the chlorophyll

concentration is an important factor affecting the seasonal dynamic of photosyn-

thesis other than leaf area. The drought can have impacts on both leaf level en-

ergy absorption and partitioning that can be tracked by SIF. Future studies can fur-

ther test the relative contribution of chlorophyll and leaf area in determining the

ecosystem photosynthetic capacity for different ecosystems and responses of dif-

ferent plant species to drought.

Chapter 3 used an integration of modeling and eddy covariance data and demon-
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strated the important gap between instantaneous satellite SIF measurements and

the daily integral of vegetation carbon fixation. Many previous studies ignored this

temporal mismatch and the resultant relationship derived may be biased. Future

studies should test how much difference are caused by this temporal mismatch us-

ing SIF from different satellite retrievals and at different latitude, and to what extent

the vegetation specific GPP-SIF relationship are caused by this temporal mismatch.

Since the use of instantaneous SIF also showed great advantage over other vegeta-

tion indices in tracking plant phenology, especially in boreal high latitude ecosys-

tems. Future studies can also test whether the use of daily SIF will improve the

phenology retrieval using SIF.

Chapter 4 demonstrated that the plants’ ability to utilize light for photosynthesis

is similar across species and times if only the light absorption by chlorophyll of the

canopy is considered. Previous studies used canopy or ecosystem total radiation

absorption fail to consider the variation of chlorophyll concentration in different

leaves, therefore produced less satisfactory GPP estimations. However, the varia-

tion of maximum light use efficiency still exist within each biome types, which may

be related to the canopy structure and fraction of diffused radiation. Future stud-

ies should test how much variation can be explain by the variation of plant canopy

structure and how to simulate this effect using remote sensing datasets. The combi-

nation of plant structure and leaf pigments concentration will be beneficial to build

new models to simulate GPP at a global scale.

Chapter 5 explained how two types of limitations worked in coordination dur-

ing the drought period. Different biome types (forest or non-forest) also showed

very different responses to drought in terms of their canopy stability and stomatal

sensitivity. The sensitivity and stability are related to both the root depth and the

plant iso/anisohydricty, which are indicators of plant water use strategy to drought.
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Isohydric species tend to maintain a relative stable water potential in their leaves

so that they will have more control on stomatal; Anisohydric species’ leaf water po-

tential will vary with the soil water potential and have less regulation on evapotran-

spiration. How do the plant spectral sensitivity to drought related to different root

depth and plant iso/anisohydricity should be further investigated by future studies

so that these traits can be incorporated in the earth system modeling and give better

prediction of drought effect on global carbon cycle.

Chapter 6 uses the vegetation photosynthesis model (VPM) and simulate the

GPP for North America for year 2010. The results showed that GPP and SIF showed

very high consistency in terms of the spatial and temporal patterns. The imple-

mentation of the VPM at regional scale also showed very good performance when

validated against flux tower site in NA. However, uncertainties still exist between the

GPP-SIF relationship, one key question remained unanswered is whether GPP-SIF

relationship is biome dependent or the variations across biomes are just caused by

artifacts. Future studies should focus more on site level analysis using both SIF and

EC measurement to explain the GPP-SIF relationship across space and time.

Chapter 7 focused on the hotspots on the GPP interannual variation. By com-

bining multiple GPP products together using satellite SIF observations, we gener-

ated a new global GPP datasets and found high GPP interannual variability in the

semi arid regions. We also explained this high variation using the Budyko frame-

work and the carbon water coupling. Recent studies suggested although at regional

scale, GPP interannual variability is caused by precipitation, the global total GPP

anomalies are strongly coupled with temperature anomalies. This scale depen-

dency are important to predict the future carbon cycle under climate change. Fu-

ture studies should integrate both site level experiment and satellite observations to

explore the sensitivity of carbon cycle to temperature and precipitation at different
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ecosystems and how they work in coordination to control the regional and global

carbon cycle.
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use efficiency model for predicting gross primary production across fluxnet sites.
Journal of Geophysical Research: Biogeosciences.

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch,
S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian,

274



X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M.,
Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., & Zeng, N.
(2016). Greening of the earth and its drivers. Nature Climate Change, 6, 791–795.

Zscheischler, J., Mahecha, M. D., von Buttlar, J., Harmeling, S., Jung, M., Rammig, A.,
Randerson, J. T., Schölkopf, B., Seneviratne, S. I., Tomelleri, E., Zaehle, S., & Reich-
stein, M. (2014a). A few extreme events dominate global interannual variability in
gross primary production. Environmental Research Letters, 9(3), 035001.

Zscheischler, J., Reichstein, M., von Buttlar, J., Mu, M., Randerson, J. T., & Mahecha,
M. D. (2014b). Carbon cycle extremes during the 21st century in cmip5 models:
Future evolution and attribution to climatic drivers. Geophysical Research Letters,
41(24), 8853–8861.

275


	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	Overall research objectives
	Organization of the dissertation
	List of publication from the dissertation

	Seasonal variation and drought responses of gross primary productivity and solar induced chlorophyll fluorescence for a South Great Plain grassland
	Abstract
	Introduction
	Materials and Methods
	Site description
	Climate data measurement from Mesonet station and eddy covariance flux tower site
	Leaf level gas exchange and fluorescence measurements
	Canopy level vegetation reflectance and solar induced chlorophyll fluorescence measurement
	Leaf and canopy biophysical parameter measurements
	Contributing factors for the seasonal variation of canopy SIF

	Results
	Seasonal variation climate and vegetation photosynthesis at different scales
	Relationship between chlorophyll fluorescence and CO2 assimilation
	Vegetation response to drought using SIF and optical vegetation indices

	Discussion
	Seasonal variation of vegetation photosynthetic capacity and relationship with biophysical variables
	Solar induced chlorophyll fluorescence as an indicator of vegetation drought stress

	Conclusion
	Appendix
	Data acquisition using SpecFluo system and processing


	On the relationship between sub-daily instantaneous and daily total gross primary production: implications for interpreting satellite-based SIF retrievals
	Abstract
	Introduction
	Materials and Method
	GPP from FLUXNET data base and preprocessing
	Relationship between instantaneous and daily GPP at seasonal scale across sites
	Relationship between instantaneous and daily LUE at seasonal scale across sites
	Analytical conversion from instantaneous to daily APAR
	SCOPE model simulation
	Comparison of satellite retrieved SIF and GPP at global scale

	Results
	Comparison between instantaneous GPP and daily GPP at seasonal scale
	Comparison between sub-daily instantaneous LUE and daily LUE at seasonal scale
	Comparison between simulated instantaneous and daily SIF from the SCOPE model
	GPP-SIF comparison at global scale

	Discussion
	The relationship between daily GPP and instantaneous SIF across space and time
	Potential uncertainty for phenological analysis using GOME-2 SIF

	Conclusions
	Appendix

	Spatio-temporal convergence of maximum daily light use efficiency based on radiation absorption by chlorophylls of the canopy
	Abstract
	Introduction
	Materials and Methods
	Solar-induced chlorophyll fluorescence as a proxy of APARchl
	FLUXNET data processing and light use efficiency calculation
	Remote sensing observations at flux tower sites
	Land cover dataset for major biome types
	Error propagation

	Results
	Relationship between fPARSIF and OVAIs
	LUE estimation at different scales across biomes based on flux tower GPP
	Using fPARchl approximations to track seasonal dynamic of photosynthetic capacity

	Discussion
	Advantages and biophysical interpretation of fPARchl
	Potential of using SIF and fPARchl for GPP estimation and data assimilation
	Implications for PEMs

	Appendix
	Relationship between SIF and fPARchl
	Error propogation in each approximation


	Canopy and physiological controls of GPP during drought and heat wave
	Abstract
	Introduction
	Materials and Methods
	Data
	Method

	Results
	Sensitivity of GPP anomalies to changes in vegetation indices and climate over the entire drought period
	Sensitivity of GPP anomalies to changes in vegetation indices and climate at 8-day intervals during the drought period

	Discussion
	Differences between forest and non-forest ecosystems in response to drought and heatwave
	A conceptual model for canopy and physiological limitation on forest and non-forest during drought and heatwave
	Implication and limitation of the canopy and physiological control analysis

	Conclusions
	Appendix

	Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America
	Abstract
	Introduction
	Materials and Methods
	Regional datasets for VPM simulations across North America
	Datasets used to evaluate and compare VPM simulations across North America
	A brief description of the Vegetation Photosynthesis Model (VPM)

	Results
	Seasonal dynamics of GPP at individual flux tower sites
	Spatial patterns of GPPVPM across North America in 2010 at 500-m spatial resolution
	Spatial-temporal comparison between GPPVPM and SIF across NA in 2010 at 0.5° spatial resolution

	Discussion
	The relationship between SIF and GPP
	Comparison of SIF and GPP estimates in North America from several models
	Sources of uncertainty for VPM simulations in North America

	Conclusions
	Appendix

	Precipitation and carbon-water coupling jointly control the interannual variability of global land primary production
	Abstract
	Introduction
	Materials and Methods
	GPP from 14 models
	Solar-induced chlorophyll fluorescence from GOME-2
	The ensemble of GPP using SIF
	The Budyko framework

	Results and Discussion
	Appendix
	GPP product
	Evapotranspiration and potential evapotranspiration dataset
	Climate dataset
	Aggregation of MODIS land cover map
	Rationale of GPP ensemble using SIF as a reference
	Comparing GPP ensemble using SIF as a temporal proxy and spatial proxy
	Interannual variation of SIF
	Decompose ET variation from precipitation variation and potential evapotranspiration variation
	Verification of the stability and robustness of the weighted ensemble method


	Conclusions and perspectives
	Bibliography

