

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DIGITAL SIGNAL PROCESSOR BASED REAL-TIME PHASED ARRAY RADAR

BACKEND SYSTEM AND OPTIMIZATION ALGORITHMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

XINING YU

 Norman, Oklahoma

2017

DIGITAL SIGNAL PROCESSOR BASED REAL-TIME PHASED ARRAY RADAR

BACKEND SYSTEM AND OPTIMIZATION ALGORITHMS

A DISSERTATION APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Yan Zhang, Chair

Dr. Robert Palmer

Dr. Nathan Goodman

Dr. Joseph Havlicek

Dr. S. Lakshmivarahan

© Copyright by XINING YU 2017

All Rights Reserved.

iv

Acknowledgements

I extend deep thanks to my academic advisor, Professor Zhang Yan (Rockee), for his

invaluable insight and guidance during my entire graduate study at the University of

Oklahoma. In Chinese, there is an old saying—One day as a teacher, father for life. Dr.

Zhang is a reasonable explanation of those words. He uses his thoughtful, kindness, and

wisdom guiding his fresh-off-the-boat students when they arrived on this new continent.

It would be my pleasure to know Dr. Zhang, and learn from him both in academic and

daily life.

 As members of the Intelligent Aerospace Radar Team in the Advanced Radar

Research Center (ARRC), Pan Yu, Sudantha Perera, and Nepal Ramesh provided

valuable insight in conversations about our research. Many thanks go out to the rest of

my faculty committee: Robert Palmer, Joseph Havlicek, Nathan Goodman, and

Sivaramakrishnan Lakshmivarahan. This research was funded by NOAA-NSSL and

conducted in ARRC. The state-of-art equipment and comfort working environment

provide by ARRC would also be a supportive factor that makes sure our research going

well.

 In the end, I would also like to recognize the support and encouragement of my

parents and my wife. They are my beloved ones.

v

Table of Contents

1. Introduction .. 1

1.1. Introduction of Phased Array Radar ... 1

1.2. Challenge and Requirements of Multi-functional PAR Backend 4

1.3. Emerging Technologies for Digital Backend System 10

1.4. Comparison of DSP, FPGA, and GPGPU .. 13

1.5. Outline of Dissertation ... 15

2. Signal Processing Algorithms and Processing Chain ... 19

2.1. Introduction .. 19

2.2. Digital Beamforming .. 23

2.3. Pulse Compression ... 29

2.4. Doppler Processing and Data Corner Turn .. 31

2.5. Weather and Air-surveillance Data Products ... 32

2.5.1. Mean Velocity Estimation .. 32

2.5.2. Spectrum Width Estimation ... 33

2.5.3. Target Tracking .. 34

2.6. Advanced Algorithms ... 42

2.6.1. Model-Based Algorithms and System Optimizations 42

2.6.2. Compressive Sensing for Channel Data Rate Reduction 45

2.6.3. System Optimizations ... 50

2.6.4. Target Direction Estimation ... 62

3. System Architectures .. 69

3.1. Parallelization Model .. 72

vi

3.2. Data Transportation and Backend Protocol .. 78

3.3. Processing Units ... 86

3.4. System Synchronization ... 89

3.4.1. General Calibration Procedure ... 89

3.4.2. Backend Synchronization ... 92

3.5. System Performance Evaluations ... 96

3.5.1. FFT performance .. 98

3.5.2. Weighted Dot Multiplication .. 101

3.5.3. Data Corner Turn .. 106

4. An Example System Implementation ... 109

4.1. Architecture Design Considerations ... 109

4.2. Vendor Selections ... 113

4.3. Processing Chain Implementation Details .. 115

4.4. Benchmark Results ... 118

4.5. Comparison with OpenCL .. 119

4.6. Summary ... 122

5. Summary and Future Plans ... 125

5.1. Considerations of Future Architecture Design ... 127

5.1.1. System fault-tolerance .. 128

5.1.2. Scalability ... 130

5.1.3. Cost ... 131

5.2. Future Works .. 132

5.2.1. Optimal task and communication scheduling 133

vii

5.2.2. Cognitive Radar .. 134

6. References .. 137

Abbreviation ... 149

viii

List of Tables

Table 2.1: Computational Complexity for Signal Processing Kernels 23

Table 2.2: Doppler filtering performance measured in GFLOPS per core 31

Table 2.3: Tracking simulation parameters .. 39

Table 2.4: Parameters used in the MUSIC ... 65

Table 2.5: Assumption parameters used in the DOA algorithms 66

Table 3.1: Typical COTS Interconnection Fabrics ... 81

Table 3.2: DSP core performance after mitigating cache misses 105

Table 3.3:Time consumption of corner turn for one beam ... 107

Table 4.1: Example of PAR system parameters ... 111

Table 4.2: Communication Data Rate per Stage .. 111

file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832816
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832817

ix

List of Figures

Figure 1.1: Simplified TR channel diagram for a PAR system .. 1

Figure 1.2: CPPAR demonstrator operated by OU-ARRC .. 4

Figure 1.3: Cost-effectiveness and power efficiency comparison 7

Figure 2.1: Canonical front-end and back-end architecture of an HPEC application 19

Figure 2.2: Overview of data cube processing chain in a general PAR 20

Figure 2.3 : Illustration of large-scale PAR overall software system diagram 22

Figure 2.4: Output SNR of the new beamforming method versus SNR of traditional

beamforming method .. 28

Figure 2.5: Output SNR versus loading level ... 29

Figure 2.6: Reconstruction error vs SNR using CS algorithm 49

Figure 2.7: Computational time comparison of two CS algorithms on AMD Opteron

6128/MATLAB regarding to different degrees of signal sparsity 50

Figure 2.8: Initialization example for 𝑃𝑎𝑚; 𝑐ℎ .. 53

Figure 2.9: Simple example of three-channel receiver calibration results obtained by

using EM self-calibration algorithm ... 56

Figure 2.10: Comparison of calibration results based on various initial conditions. (The

dash line is the measurement value vs truth level. The solid line is the measured level vs

calibration result from three different values of 𝜎.) ... 57

Figure 2.11 Optimization Procedure .. 58

Figure 2.12: Comparison of calibration results based on various initial starting condition

and optimum finding result .. 59

Figure 2.13: Calibration results after using optimum result finding procedure 59

file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832820
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832821
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832822
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832824
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832825
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832826
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832826
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832827
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832828
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832829
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832829
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832830
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832831
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832831
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832832
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832832
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832832
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832833
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832834
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832834
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832835

x

Figure 2.14: Calibration result when noise variance=1 .. 60

Figure 2.15: Calibration result when noise variance=2 .. 61

Figure 2.16: Composite beam response for two signals at 10 and 0 degree. The dashed

curves are the responses to the individual signals, and solid curve is the composite

response .. 62

Figure 3.1: Top-level system digital array system concept .. 69

Figure 3.2: Illustration of the MTCA architecture in a PAR .. 71

Figure 3.3: (a) Partition input and output matrices into 2 × 2 submatrices. (b) A

decomposition of matrix multiplication into four tasks based on (a) 72

Figure 3.4: Example of Parallel Quicksort ... 74

Figure 3.5: Ping-Pong Buffering Mechanism .. 74

Figure 3.6: Examples of round-robin and pipeline scheduling 75

Figure 3.7: Levels of parallelism .. 76

Figure 3.8: Typical interconnection fabric ... 79

Figure 3.9: MTCA backplane configuration .. 80

Figure 3.10: point to point connectivity between port 2 and 3 82

Figure 3.11: Typical PCI Express system topology ... 83

Figure 3.12: Data throughput experiment results in MTCA-based SRIO testbed 85

Figure 3.13: MTCA based processing unit ... 87

Figure 3.14: Simple example of a PU-based architecture .. 88

Figure 3.15: General system calibration procedure for DAR and the focus of this work

 .. 90

file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832836
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832837
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832838
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832838
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832838
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832839
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832840
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832841
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832841
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832842
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832843
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832845
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832846
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832847
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832848
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832849
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832850
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832851
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832852
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832853
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832853

xi

Figure 3.16: Measurement of radiation pattern from a phased array antenna at the near-

field range ... 91

Figure 3.17: PU frontend AMC module architecture ... 93

Figure 3.18: Frontend in-chassis synchronization timing sequence 94

Figure 3.19: Example timing sequence of multi-chassis synchronization 95

Figure 3.20: TI C66x DSP Hierarchical Cache .. 97

Figure 3.21: FFT performance for different range gate numbers 100

Figure 3.22: L1D cache architecture .. 102

Figure 3.23: Weighted Dot Product Example .. 103

Figure 3.24: Memory Layout after two iterations .. 104

Figure 3.25: Computing performance of a DSP-core versus the number of range gates

 .. 105

Figure 3.26: An illustration of front-end data transmission strategy 107

Figure 4.1: System Network Topology .. 109

Figure 4.2: Clock Synchronization classification ... 112

Figure 4.3: An example of front-end processing platform ... 115

Figure 4.4: Speedup and efficiency of beamforming implementation 117

Figure 4.5: Real-time system timeline for the example backend system 118

Figure 4.6: Beamforming kernel performance using Open CL 120

Figure 4.7: Comparing OpenCL performance to manually optimized code for

beamforming ... 121

Figure 4.8: Pulse compression performance using OpenCL (8192 range gates) 122

file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832854
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832854
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832855
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832856
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832857
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832858
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832859
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832860
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832861
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832862
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832863
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832863
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832864
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832865
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832866
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832867
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832868
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832869
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832870
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832871
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832871
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832872

xii

Figure 4.9: Comparing OpenCL performance to manually optimized code for pulse

compression .. 122

Figure 5.1: The triple-duplex approach to redundancy .. 129

Figure 5.2: Data flowing graph in PAR frontend ... 131

Figure 5.3: Processing cycle of a cognitive radar ... 135

file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832873
file:///C:/Users/Xining%20Yu/Desktop/Dissertation_Xining_v2.docx%23_Toc497832873

xiii

Abstract

This dissertation presents an implementation of multifunctional large-scale phased array

radar based on the scalable DSP platform.

The challenge of building large-scale phased array radar backend is how to

address the compute-intensive operations and high data throughput requirement in both

front-end and backend in real-time. In most of the applications, FPGA or VLSI hardware

are typically used to solve those difficulties. However, with the help of the fast

development of IC industry, using a parallel set of high-performing programmable chips

can be an alternative. We present a hybrid high-performance backend system by using

DSP as the core computing device and MTCA as the system frame. Thus, the mapping

techniques for the front and backend signal processing algorithm based on DSP are

discussed in depth.

Beside high-efficiency computing device, the system architecture would be a

major factor influencing the reliability and performance of the backend system. The

reliability requires the system must incorporate the redundancy both in hardware and

software. In this dissertation, we propose a parallel modular system based on MTCA

chassis, which can be reliable, scalable, and fault-tolerant.

Finally, we present an example of high performance phased array radar backend,

in which there is the number of 220 DSPs, achieving 7000 GFLOPS calculation from 768

channels. This example shows the potential of using the combination of DSP and MTCA

as the computing platform for the future multi-functional large-scale phased array radar.

1

1. Introduction

1.1. Introduction of Phased Array Radar

Phased Array Radar (PAR) is an electronically scanned array with multiple numbers of

antennas. Compared with traditional mechanical beam steering radar, PAR can generate

a focused beam by applying a weight to each antenna and the beam direction can be

steered by adjusting the weights. Figure 1.1 shows a simplified transmit-receive (TR)

channel diagram for a modern PAR. The overall PAR system comprises three sections: a

phased array antenna manifold, an RF front-end, and a processing backend. The array

manifold contains a number of radiating elements, which can be different types of

antennas. The shape of array manifold can be linear, planar, or conformal. The linear and

Figure 1.1: Simplified TR channel diagram for a PAR system

2

planar arrays have been widely used in military and civilian applications for many years,

which is more mature than the conformal array. However, circular or cylindrical arrays

have found many applications in communications, direction finding, missile guidance and

recently in weather radars. RF front-end is responsible for the signal generating, signal

transmitting and receiving, and up/down converting. In digital PAR systems, the radar

pushes the backend system closer to the antennas. Such front-end systems are mixed-

signal systems responsible for transmitting and receiving radio frequencies (RF), digital

in-phase and quadrature (I/Q) sampling, and channel equalization that improves the

quality of signals. An example application is the Space Fence test facility built by

Lockheed Martin. The radar system in this facility is fully digital array composed by

multiple numbers of front-end transmit-and-receive line-replaceable unit [1]. Meanwhile,

digital PAR backend systems control the overall system, prepare to transmit waveforms,

transform received data for use in a digital processor, and process data for other functions,

including real-time calibration, beamforming, and target detection/tracking.

As the RF front-end becomes more digitalized and the increased performance of

backend processing units, Multifunctional Phased Array Radar (MPAR) is more feasible

by programmable RF and processing parallelization. This improvement makes possible

to combine multiple types of radar in one unit, which is also a way to enhance the

efficiency of spectrum utilization. For example, current U.S. government operates several

unique types of radars that provide weather, air traffic control, and homeland defense

missions. It is possible to reduce the total number of radars and spectrum footprints with

a single network of MPAR, which could potentially save billions of dollars [2]. Moreover,

the electronically scanned antennas can reduce the maintenance cost over mechanically

3

steered antennas by the absence of moving parts, and the radar system would be still

functional even if 20% of the TR modules fail [3]. With the fast development of

commercial wireless industry, various companies and agencies made their RF equipment

and required them to work on a stand-alone spectrum to avoid the interference. Therefore

the spectrum becomes crowded and makes the spectrum a highly-priced product in the

market. For example, a 65 MHz of spectrum in L-band are sold by $45 billion in 2015

[4]. Although the defense or national weather radars have the privilege of using some

specific spectrum, if government choose to move the working spectrum out of a crowded

area, they can use the selling money to update their system without raising fund from

other places. Thus, the MPAR would be a feasible, reliable and cost-effectiveness system.

Many types of research have begun in academia, industry, and government to

identify technical challenges and risks, and demonstrate their technologies for needs from

both weather and the airport surveillance. MIT Lincoln laboratory had a concept study

for the requirement of the aircraft surveillance and weather observation [5], in which it

purposed a planar PAR with four antenna faces. Each face contains roughly 20,000

elements with 10 Watts peak power. In 2015, MIT Lincoln lab had built a 10-panel

prototype array with the dual-polarization capability to refine system requirements and to

quantify performance for weather observations. This prototype has 640 elements with 3.5

kilo-Watts peak power at antennas, working at S-band [6]. As mentioned before, the

problem of using planar array in the dual polarization application is 𝐸𝑣 and 𝐸ℎ are skewed

when beam is not perpendicular to the array face. At the meantime, the Cylindrical

Polarimetric Phased Array (CPPAR) has recently been introduced for MPAR. In the

University of Oklahoma, a demonstrator of the CPPAR is designed by Advanced Radar

4

Research Center (ARRC) to prove the concept of polarimetric measurements of actual

weather and demonstrating a multi-functional PAR. CPPAR has 1824 elements separated

into 96 columns. Each column has 80 Watts peak power, working at 2900 MHz. Figure

1.2 shows the picture of CPPAR currently operated by ARRC.

1.2. Challenge and Requirements of Multi-functional PAR Backend

The concept of MPAR is associated with many technical challenges which remain to be

solved. This work mainly focuses on the backend aspect. A canonical PAR processing

platform contains a front-end component that performs basic array signal processing,

which requires relative easy but a significant amount computing throughput. A more

advanced backend performs knowledge-based processing requires complex operations

but the relatively small amount of computing throughput. For example, [5] proposed a

Figure 1.2: CPPAR demonstrator operated by OU-ARRC

5

400-channel PAR with 1 ms pulse repetition interval (PRI); assuming 8,192 range gates,

each range sample uses 8 bytes length in memory. For each PRI, the throughput in the

front-end can reach up to 5.24 GB/s. As the requirements for such data throughput are

extraordinarily demanding, at present, such computing performance requires digital I/Q

filtering to be mapped to a fixed set of gates, look-up tables, and Boolean operations on

the field-programmable gate array (FPGA) or very-large-scale integration (VLSI) with

the full-custom design [7]. After front-end processing, data are sent to the backend

system, in which more computationally intensive functions are performed. Compared

with FPGA or full-custom VLSI chips, programmable processing devices such as digital

signal processors (DSPs) offer a high degree of flexibility, which allows designers to

implement algorithms in a general-purpose language (e.g., C) in backend systems. For

application in aerospace surveillance, target detection and tracking are thus performed in

the backend. Target tracking algorithms, including the Kalman filter and its variants,

predict future target speeds and positions by using Bayesian estimation [8], whose

computational requirements vary according to the format and content of input data.

Accordingly, detection and tracking functions require processors to be more capable of

logic and data manipulation, as well as complex program flow control. Such features are

different from those of baseline radar signal processors, in which the size of data involved

dominates the throughput of processing [9]. As such, for tracking algorithms, a general

purpose processor or Graphics Processor Unit (GPU)-based platform is more suitable

than FPGA or DSP. In summary, in radar backend processing, hybrid solutions need to

be developed that exploit the advantages of each type of processor units.

6

Normally, the hybrid backend system is based on a modular design concept, in

which one or more processors are placed in one extension card. The modular architecture

is scalable, which allows the sub-system to be upgraded with minimal impact on the

overall system. However, the drawback of modular architecture is the communication

requirement among the extension cards and the complexity of software design when the

granularity of processing becomes small. The granularity of processing is defined

according to the size of a processing assignment that forms a part of the entire task.

Although finer granularity allows designers to attune the processing assignment, it also

poses the disadvantage of increased communication overhead within each unit [10]. To

balance computation load and real-time communication in one extension card, the ratio

of the number of computation operations to communication bandwidth needs to be

checked carefully. For example, in a 6678 Evaluation Module (Texas Instruments), which

has eight C66xx DSP cores, contains 24 DSP cores and four ARM cores in a single board.

Texas Instruments claims that each C66xx core has 16 Giga floating point operation per

second (GFLOPS) at 1 GHz [11]. On this board, it has four-lane SRIO (Gen 2) link, which

has a theoretical link speed up to 1,600 MB/s in NWrite mode; since the single-precision

floating point format (IEEE 754) [12] occupies 4 bytes in memory, the SRIO link convoys

400 million floating point data per second. The ratio of computation to bandwidth is 40

[8], meaning that the core can perform up to 40 floating point operations for each piece

of data that flows into the system without halting the core-to-core communication link.

As such, when the ratio reaches 40, the processor achieves an optimal balance between

real-time computing and communication. To achieve this optimization and efficiency,

7

technologies needed are optimized algorithms, computing resources optimization, and

ensuring that I/O capacity reaches its peak level.

The key design tradeoffs depend on the constraints imposed by the radar system.

In some applications, such as airborne radar, the size, weight, and power consumption

(SWaP) is a constraint and requires the designer to address the SWaP challenges by

balancing the performance and form factors. In contrast, the SWaP requirements are

likely to be relaxed for ground-based applications, but the cost of the platform may need

to be limited. As one of the tradeoffs, Figure 1.3 shows the comparison among different

type of processor selections in terms of power consumption, cost, and computing power.

Based on such comparisons, a designer may choose the proper type of processor to fulfill

the processing task according to the requirement. For example, FPGA is more appropriate

Figure 1.3: Cost-effectiveness and power efficiency comparison

8

for applications those require highest computation throughput at the lowest unit SWaP.

On the other hand, CPU is suitable for the cost-sensitive scenarios. DSP or GPU can be

a better choice when a balance between cost and performance is needed. Even though

FPGA and ASIC are relatively difficult to be programmed than DSP and the cost is

higher. However, when a large volume of devices are in demand and high computing

intensity is required, FPGA and ASIC will be used in the most demanding portion of the

system to keep the power consumption and form factor under control. For example, [5]

mentions that each MPAR contains 1,200 channel and more than 200 MPAR are needed

in the future. Based on this volume, the cost of using FPGA and ASIC would be dropped.

So, in the final phase of the product, FPGA or ASIC would be a better choice.

Besides the high data throughput requirements for the backend of a PAR system,

in the front-end, there are also issues related to antenna calibration, RF distortion, and

multi-channel synchronization. Compared with PAR, reflector dish radars have

mechanically steered the antenna to point the radar beam in a specific direction, so the

characteristics of the beam are the same during scanning. However, the beam

characteristics of a PAR change with the pointing directions as well as the performance

of its transmit and receive elements. For dual-polarized PAR, antenna beams at each

pointing direction need to be calibrated and monitored. Moreover, distributed array

architecture, such as the distributed local oscillator (LO) in digital arrays, leads to small

variations in signal response among different channels. Although various antenna

calibration methods, such as peripheral fixed probes and near-field measurement, can

help channel equalization, those procedures are all complex and need a clutter-free

9

environment. Once a PAR is deployed, re-calibration may be difficult, which brings the

challenge of achieving stable system performance.

In practice, due to the nonlinear behaviors of RF hardware, the relative phase, and

amplitude values deviate considerably during the time and among different channels. This

distortion reduces the dynamic-range and downgrades the data quality, so the predicting,

assessing and quantifying these effects would be necessary for calibrations. Several

linearization techniques have been developed to inversely models the behavioral models

of system’s gain and phase characteristics, such as feedforward linearization [13], RF

predistortion [14], Cartesian feedback [15], and digital predistortion. These methods

require extra predistortion circuits and feedback from the output of RF system, which

increase the complexity of RF front-end design and cost.

The transmitters, receivers, and other sequential circuits in PAR channels are

synchronized by a Local Oscillator clock (LO). In other to synchronize LOs in different

channels, a global clock signal is distributed so that the data acquired from multiple

channels are correlated in time. A reliable clock network is required to deliver the clock

signal to all the channel circuit components. In a multiple chassis PAR (especially for

DAR) application, the interconnection clock distribution network is complex and the

control of arrival times of the global clock at different LOs becomes difficult. If not

properly controlled and monitored constantly, the clock skew can adversely affect the

performance or even cause erratic operations of the systems.

The design of clock distribution network poses a formidable challenge of

considering the variations in interconnect parameters. For example, the length of between

the source of global clock to each LO may be varied, and the power supply noise on each

10

LO affects the clock jitter, which, in turn, affects the arrival time of the global clock.

Those instabilities would make the overall system unreliable, which is one of the lessons

learned from OU’s first version CPPAR development. The most common

synchronization solution is using Network Time Protocol, which synchronizes each client

by using the UDP packets over Ethernet. The drawback of this solution is the low

accuracy, ranging from 5 to 100 ms [12]. Another more accurate method is using the

IEEE 1588 Precision Time Protocol (PTP) standard [13], which can achieve sub-

microsecond synchronization [14]. However, to implement PTP, an extra dedicated

hardware and software are needed, which would increase the complexity and cost of

front-end system.

1.3. Emerging Technologies for Digital Backend System

The digitization of transmitting and receiving signals at the element level opens the door

to new processing technologies for the phased array system. In the RF front end, the state-

of-art Gallium nitride technology outperforms traditional CMOS power amplifiers in

terms of high power density and smaller die areas [16]. With the fast development of

integrated chip industry, the cost and size of chips are reduced, which makes the radar

system smaller, more powerful, and affordable for the customers from the consumer

electronics market. For example, in the automotive industry, the frequency modulation

continuous wave radar has been widely utilized in the forward collision avoidance system

and active cruise control system. Those mass productions would further bring down the

cost of the radar and make the radar product more affordable.

In the backend processing platforms, a high-performance embedded computing

(HPEC) platform contains microprocessors, network interconnection technologies such

11

as those of the Advanced Telecommunications Computing Architecture (ATCA) and

Micro Telecom Computing Architecture (MTCA), and management software that allows

more computing power to be packed into a system with smaller SWaP. Such designs

achieve compatibility with industrial standards and reduce both the cost and duration of

development. MTCA and ATCA contain groups of specifications that aim to provide an

open, multi-vendor architecture that seeks to fulfill the requirements of a high throughput

interconnection network, increase the feasibility of system upgrading and upscaling, and

improve system reliability. In particular, MTCA specifies the standard use of an

Advanced Mezzanine Card (AMC) to provide processing and input-output (I/O)

functions on a high-performance switch fabric with a small form factor.

Within the backend system, the processing chipsets have also evolved rapidly.

Not only the data throughput of widely-used FPGA and DSP are increased dramatically,

but also a new type of processor has emerged as a new tool to accelerate radar signal

processing tasks. Traditionally, GPU has been used as a special-purpose device whose

function is to accelerate the graphics pipeline for the video games in the PC environment.

With the fast development of GPU and its standardized application programming

interfaces (API), such as OpenGL, DirectX, and CUDA, GPUs have moved beyond

graphics applications to become powerful floating point processing units [17]. As GPU

is a native hardware for floating point operations, many areas of study related to a

significant computing throughput requirement, such as machine learning, computational

biology [18], and computer vision, has begun to adopt newer signal processing algorithms

to GPU. Moreover, GPUs offer good backward compatibility than DSP and FPGA.

12

Applying machine learning algorithms in radar signal processing, especially in

the target recognition area, has become a new trend [19]. For example, cognitive radar

[20] is designed to intelligently perceive, track, and classify the targets from the past

experiments, which is realized by the Bayesian approach. The cognitive aspect is

manifested in the form of the cognitive signal processing cycle, in which an adapt

waveforms are generated to illuminate the non-stationary environment. Within this cycle,

active target classifications are optimized based on prioritized system objectives,

understanding of the observation environment, and other forms of prior knowledge. With

each illumination, the system improves the understanding of surrounding area in response

to collected data and other information [21]. The cognitive radar uses the scene analysis

to develop an appropriate statistical model to describe the information content of received

signal on clutter, targets, or other false alarms. For example, when there is a target moving

on an ocean surface, the Doppler spectrum of clutter would be relatively smooth across a

wide range of the spectrum, whereas the spectral of the target would be appeared as a line

component [22]. Moreover, when the power level reflected from the target is small

compared with clutter, the cognitive radar needs an enhancement to extract the target

information from the clutter. Thus, three statistic models are developed to classify the

different conditions: clutter-statistics described by the F-distribution 𝐹2,2𝑘(𝑧), where 𝑧 is

the power of spectrum and, 𝑘 is the number of neighboring Doppler bins [23], target-

pulse-clutter statistics described by scaled F-distribution
1

𝛾
𝐹2,2𝑘 (

𝑧

𝛾
), where 𝛾 is the power

ratio of target to clutter, and target motion described by the Gaussian distribution .

13

1.4. Comparison of DSP, FPGA, and GPGPU

The signal processing tasks in the DAR can be implemented with different types of

processors; each has its own benefits and limitations. FPGA has the advantage of low

non-recurring expenses and reconfigurability with high throughput. Different from other

types of general purpose processors, FPGA is programmable device based on user

applications. In the FPGA, multiple logic blocks are connected with programmable

interconnect point, in which the designer can implement algorithms by configuring logic

blocks and routing the data traffic through interconnect points [24]. Since a designer can

control the hardware structure implemented in FPGAs, the computation load and

communication throughput may be balanced better than other General-Purpose

Processors (GPPs). For example, the bus width and the processing speed is fixed in the

GPP, so the performance of the processors may be compromised when the

communication requirement is more stringent than computing requirements,

Before the proliferation of FPGA applications, DSP has been the primary choice

for signal processors. Within DSP, multiple numbers of Multiply Accumulate Engines

(MAC) are used for parallel processing. For example, a TI C66x core [11] contains one

MAC, which can perform four single precision floating point multiplications and two

single precision floating point additions in one clock cycle. Since a DSP operates on

instructions, the programming mechanism can be a high-level language for fast

deployment or assembly language for higher performance requirements. Those two

choices provide the flexibility for the designers compared by using only one mechanism-

-HDL on FPGA. However, with hundreds of MACs, FPGA can be built into a more

powerful parallel computing platform than DSP. Incorporating so much computing power

14

in one chip makes the power consumption in FPGA much higher than DSP. Moreover,

FPGAs are usually more expensive than DSP in terms of GFLOPS per dollar. Thus, DSP

would be a better choice for applications which are cost sensitive and have strict power

budget.

As a GPP, a CPU is designed to follow general purpose instructions among

different types of tasks and thus allow the advantage of programming flexibility and

efficiency in flow control. However, since CPUs do not accommodate for a range of

scientific calculations, GPUs can be used to support heavy processing loads. The

combination of a CPU and GPU offers competitive levels of flow control and

mathematical processing, which enable the radar backend system to perform

sophisticated algorithms in real-time. With the increasingly friendly programming

environment and standardized API, CPU-GPU becomes easy to be programmed and

maintained, compared with FPGA and DSP. Moreover, CPU-GPU has a better

performance than FPGA and DSP in term of GFLOPS per dollar. The drawback of the

combination, however, is its limited bandwidth for handling data flow in and out of the

system. CPUs and GPUs are designed for a server environment, in which Peripheral

Component Interconnect Express (PCIe) can efficiently perform point-to-point for

onboard communication. However, PCIe is not suitable for high throughput data

communication among a large number of boards. If the throughput of the processing is

dominated by the size of data involved, then the communication bottleneck downgrades

the computing performance for a CPU–GPU combination.

Therefore, when signal processing algorithms have demanding communication

bandwidth requirements, DSP and FPGA are better options, since both can provide

15

significant bandwidth for in-chassis communication by using SRIO while at once

achieving high computing performance. FPGA is more capable than DSP of providing

high throughput in real-time for a given device size and power. When the DSP cluster

cannot achieve performance requirements, the FPGA cluster can be employed for critical-

stage, real-time radar signal processing. However, such improved performance comes at

the expense of limited flexibility in implementing complex algorithms [7]. If FPGA and

DSP both meet application requirements, then DSP can be a more preferred option given

its reduced cost and less complicated programmability. The CPU-GPU combination can

be used in the applications, in which there is a significant computing load requirement

but with a more flexible timeline and power consumption requirements.

1.5. Outline of Dissertation

This dissertation presents the method of realizing digital phased array radar functions in

a scalable, compact, and power efficiency form factor by using commercial off-self

products. The ways of implementing fundamental signal processing algorithms in real-

time on DSP platforms are discussed. An HPEC platform for parallel backend processing

is introduced as an example, and novel algorithms to self-calibrate the array system are

investigated. Finally, an example of system implementation is elaborated to demonstrate

the performance of our purposed HPEC solutions.

Chapter 2 presents the computational aspect of canonical radar signal processing

algorithms and procedures, focusing on computational complexity, algorithm

decomposition, and mapping of algorithms onto embedded hardware processors. A new

self-calibration technique based on Expectation Maximization (EM) algorithm is studied.

Typically, antenna calibration needs a controlled environment and additional hardware,

16

which is difficult to be performed in the field. The proposed self-calibration method

would use EM algorithm to build up a Bayesian model to find the ground truth value

based on thousands of observation data from the antenna. Moreover, compressive sensing

is introduced to improve the range resolution. In this chapter, some of the research results

are based on the past publication [25, 26].

Chapter 3 presents an efficient and scalable backend system architecture design

for a large-scale PAR, which achieves high throughput and computing performance. The

basic signal processing chain, including beamforming, pulse compression, and Doppler

filtering are mapped to processing units in parallel for the real-time processing. More

advanced adaptive processing algorithms can also be implemented on this HPEC testbed.

Other radar applications, such as Synthetic Aperture Radar (SAR) can benefit greatly

from this design as well. Our approach integrates multiple DSPs by using SRIO links as

part of commercial-off-the-shelf (COTS) MTCA chassis. In a digital array radar (DAR)

containing hundreds of channels, a highly accurate synchronization technique is critical

to the system stability and performance since if transmitters or receivers are out of phase,

a focused beam cannot be reliably formed and the SNR would be reduced. We developed

a synchronization procedure with nano-seconds level accuracy to ensure the backend

system is synchronized. Compared with other synchronization techniques, such as

Network Time Protocol (NTP) and Precision Time Protocol (PTP), our method is more

reliable, convenient, and accurate. In this chapter, some of the research results are based

on the past publication [27].

Chapter 4 presents key benchmark results for radar processing algorithms to

investigate the performance of the backend processing platform design, and proves that

17

the design can meet the real timeline requirements for a large-scale PAR containing 768

digital channels with 4,096 range gates. The system architecture allows adjusted

processing power, which requires each processing board on the platform operates

independently and be “hot swappable.” Moreover, the architecture needs to provide

enough bandwidth for the large data communication among different computing units.

Based on those considerations, we use a product from various vendors and integrate them

with hybrid backplanes, which proves to enhance the computing performance through

benchmark results. Lastly, benchmark performance results of using “bare-bone”

parallelism method and standard libraries (such as OpenCL) are compared.

In the end, Chapter 5 would summarize the architecture design consideration for

the multi-functional PAR, in which the designer must diligently research the solution and

ensure a predictable degree of operational continuity during production hours. Without a

good underlying infrastructure and with poor planning, a single hardware failure in the

computing environment could affect the system ability to continue the service. Although

there are many considerations to a PAR system, the following are some of the most

important aspects:

• System Fault-tolerance: A fault-tolerant system has redundant hardware components

inside to withstand hardware failure. When the system encounters a hardware failure,

the application should remain operational or may be degraded, while the system is

repaired.

• Scalability: A scalable system is one whose performance can be increased, or

decreased, after adding or removing proportional hardware without changing the

framework of the infrastructure components.

18

• Cost-effective: Using less money to make more outcomes is the goal that every

system designer wants to achieve. By doing so, the designer should compare different

types of technologies and chose the one that can benefit the system most.

19

2. Signal Processing Algorithms and Processing Chain

2.1. Introduction

With the development of the higher level of functionality and complexity in signal and

image processing applications, the computing throughput in HPEC becomes more

demanding with hard-real-time deadlines and stringent form factors. Figure 2.1 shows a

top-level structure for a typical HPEC application. The HPEC can be divided into three

parts: sensors, a front-end signal processing and a backend data processing. For the PAR

application, the sensor could be patch antenna or reflect array [28, 29]. The front-end is

to transmit or receive the signal to/from the outside by using the appropriate sensors,

remove noise and interference from the signal, and extract the useful information from a

large amount of received data. The purpose of the backend is to further refine and classify

the information into different categories, convert the numerical information into readable,

user-friendly data, and estimate the status of the future targets based on the current result.

Figure 2.1: Canonical front-end and back-end architecture of an HPEC application

T/R

model

T/R

model

A/D

A/D

Front-end

Processors

Back-end

Processors

Sensors

Patch antenna

Sonar

Lidar

Front-end

• High data throughput

• Data-independent processing

• Large amount of simple OPs

• Simple flow-of-control

Back-end

• lower data rate

• Data dependent processing

• Small amount but complex OPs

• Complex flow-of-control

20

In the PAR application, multiple pulses are transmitted within one Coherent Pulse

Interval (CPI). The pulses in the same CPI are phase-coherent, in which each pulse starts

with the same phase and reflects back from targets with the relatively small differences

in phase. The time interval between transmitted pulse is Pulse Repetition Interval (PRI),

which determines the maximum unambiguous range. After the radar antenna receives the

reflected signal, the signal would proceed through receivers that perform down-

conversion and band-pass filtering, and input to the front-end and back-end processing

platform, in which more complex signal processing tasks are performed and output the

detection result to the users. In the front-end, three fundamental or general-purpose

processing tasks would be conducted— beamforming, pulse compression, and Doppler

filtering, and then the result would be feed to the backend platform, in which the types of

processing tasks are based on the requirements of different applications. For example, in

the weather radar processing, it focuses on the information related to volume targets and

analysis the spectrum of the target velocities. In contrast, the aircraft surveillance is

committed to giving a good estimation of the position and velocity of the aircraft targets.

Figure 2.2: Overview of data cube processing chain in a general PAR

21

Figure 2.2 shows the data cube processing chain in the PAR front-end. The

received data from the array manifold and front-end electronics are organized into three-

dimensional data cubes, and 𝑁𝑟𝑔, 𝑁𝑐ℎ, 𝑁𝑝, and 𝑁𝑏 represent the total number of range

gates, channels, pulses, and beams, respectively. When any of those four numbers are red,

the data are aligned in their corresponding dimensions. After the data cube is digitized by

ADCs, the data is aligned in the dimension of range gate. Before doing further processing,

the large data cube would be decomposed to several small portions for the purpose of

parallel computing and re-align the data in the channel domain to facilitate the following

beamforming processing. The beamforming stage transform spatial domain signal into

beam-space domain, creating a set of focused beams. Another data corner-turn is applied

at the output of beamforming to align the data in the range gate dimension. The pulse

compression stage concentrates the signal energy spread over the entire transmitted

waveform into a short pulse response to increase the SNR and sensitivity. A third data

corner turn is performed to transform the data from channel to pulse dimension. The

Doppler filter stage determine the radial velocity of targets relative to the radar array by

applying FFT across the pulses within one CPI. At the output of the Doppler filter, the

data cube has dimensions of number of range gates × the number of beams × the number

of Doppler bins. After the Doppler processing, the data cube is converted into a data set

containing the information about the position and velocity of the targets, from which the

processing tasks in the backend can further extract information based on the requirements

of applications by using more complex signal processing algorithms.

22

Figure 2.3 shows the large-scale PAR overall software diagram, in which the red,

black, and blue boxes represent the corresponding tasks performed by the FPGA, DSP,

and GPGPU platforms respectively. The selection of different types of the processor is

based on the requirements of processing tasks mentioned in Section 1.4. The data cube is

formed in the FPGA platform, red boxes, and processed on the DSP platform, black

boxes. This dissertation focuses on performing waveform processing and beamforming

control task on DSP. The following sections in this chapter would be organized as:

Section 2.2-2.4 introduce the canonical radar algorithm in the processing chain and study

the computing complexities of these algorithms. After the signal processing chain, the

data processing tasks including weather data product generation and target tracking are

discussed in Section 2.5. In Section 2.6, several advanced algorithms are introduced,

aiming to improve the performance of overall processing chain.

Before calculating the computing complexity of each algorithm in the following

sections, it is necessary to list the computational complexity expressions for several

fundamental signal processing kernels for both real and complex values in advance. The

Figure 2.3 : Illustration of large-scale PAR overall software system diagram

23

discussion of the complexity of each processing kernel is beyond the scope of this

dissertation; a comprehensive discussion can be found in [30]. The following sections

would use the computational complexity listed in Table 2.1 as a reference. Moreover, we

use Giga Floating-point Operations (GFLOPS) [31] as a metric to measure the

benchmarks of digital PAR backend system performance.

Table 2.1: Computational Complexity for Signal Processing Kernels

Signal Processing Kernel

Computational Complexity

Real value Complex value

Matrix Multiplication 2𝑚𝑛𝑝 2𝑚𝑛𝑝

Fast Fourier Transform
5

2
𝑛𝑙𝑜𝑔2𝑛 5𝑛𝑙𝑜𝑔2𝑛

Forward or back substitution 𝑛2 4𝑛2

Eigen-decomposition 9𝑛3 23𝑛3

For the matrix multiplication, the matrices are of dimensions 𝒎× 𝒏 and 𝒏 × 𝒑. For

the FFT, the vector size is 𝒏. The lower triangular matrix used in forward or back

substitution is 𝒏 × 𝒏.

2.2. Digital Beamforming

The procedure of beamforming is to convert the data from channel data (range gate) to

beamspace, steer the radiating direction, suppress sidelobes and interferences by applying

the beamformer weight, 𝑊𝑖, to received signal, 𝑌𝑖, indicating in Equation (2.1), in which

Θ is the beam pointing angle indicator and Ω is the total number of channels. The

computation complexity of Equation (2.1) can be determined as follows: first, each

complex multiplication requires four floating point multiplications and two floating point

24

additions, for a total of 4 + 2 = 6 real flops. There are two complex additions for

summing of each channel. Hence, for a complex beamforming, the complexity formula

arrived at is (6 + 2) × Ω × 𝑁𝑟𝑔 = 8𝑁𝑐𝑁𝑟𝑔, where 𝑁𝑟𝑔 is the number of range gates. The

above calculating complexity evaluates the throughput of beamforming at the time

interval, 𝑇, as (𝟖𝑵𝒄𝑵𝒓𝒈) 𝑻⁄ 𝐹𝐿𝑂𝑃𝑆.

𝐵𝑒𝑎𝑚𝛩 =∑𝑊𝑖
𝛩𝑌𝑖

𝛺

𝑖=1

 (2.1)

In a large-scale PAR, there will be thousands of range gates and channels, which

bring huge computing burden for a front-end computing platform. For example, in [5],

each face of the array contains 20,000 channels, and suppose the number of range gates

is 1,000 and pulse time interval is 𝑜𝑛𝑒 𝑚𝑠 . If all the elements are digitalized, the

throughput of the beamforming would be 160 GFLOPS for a single beam forming. It is

impossible for a single processor to handle such computation. So parallel computing is

needed and it requires to separate the entire computing load to various computing nodes.

Equation (2.2) and (2.3) shows an example of “systolic beamforming”, by dividing the

beamforming process into 𝑀 parts. The entire data is divided equally and a portion

assigned to each sub-beamformers, (i.e., computing node), in which the term

∑ (𝑊𝑗𝐶+𝑖
𝑏 𝑌𝑗𝐶+𝑖)

𝐶
𝑖=1 is calculated independently and 𝐶 is the number of channel of each

computing node can get.

𝐵𝑒𝑎𝑚Θ = [∑𝑊𝑖
Θ𝑌𝑖

𝐶

𝑖=1

] + [∑𝑊𝐶+𝑖
Θ 𝑌𝐶+𝑖

𝐶

𝑖=1

] + [∑𝑊2𝐶+𝑖
Θ 𝑌2𝐶+𝑖

𝐶

𝑖=1

] + ⋯

+ [∑𝑊(𝑀−1)𝐶+𝑖
Θ 𝑌(𝑀−1)𝐶+𝑖

𝐶

𝑖=1

]

(2.2)

25

𝐵𝑒𝑎𝑚Θ = ∑ [∑𝑊𝑗𝐶+𝑖
Θ 𝑌𝑗𝐶+𝑖

𝐶

𝑖=1

]

𝑀−1

𝑗=0

 (2.3)

A PAR system may operate in an environment which is not stable and contain

unwanted interference, so an adaptive beamforming weight is used to generate high gain

in the beam steering direction and reject or minimize energy from other directions by

adaptively adjusting the steering vector according to the interference environment. There

are numerous methods for calculating the beamformer weights adaptively. The most

standard solution is Wiener filter [32, 33], showing in Equation (2.4), in which 𝑊 is a

beamforming weight matrix; 𝑉 is a matrix of column steering vectors; 𝑅 is the covariance

matrix of the received signal 𝐴. To achieve good performance, [34] suggests that the

number of samples needs to be 2 to 5 times of channel number, 𝑁𝑐ℎ. For example, if the

system has 𝑁𝑐ℎ number of channels, then a sample matrix, 𝐴 has dimension of

𝑁𝑐ℎ × 5𝑁𝑐ℎ. Moreover, to desensitize the adaptive weight computation to perturbations

[35], covariance matrix 𝑅 needs to be appended by an extra loading matrix, 𝑄. Though

many studies suggest that the loading matrix takes the form of the covariance matrix of

steering vector due to of the simplicity and effectiveness [36], the most widely-used

method is diagonal loading matrix. Equation (2.5) shows a method for appending the

diagonal loading matrix to covariance matrix with a constant Loading Level, 𝜎. The

diagonal loading matrix can be accommodated into Equation (2.4) by augmenting the

sample matrix with an identity matrix with square root of desired loading level, as

showing in Equation (2.6), in which 𝐵 is the sample matrix appended with the loading

matrix. To efficiently solve the weight vector 𝑊, [9] suggests using the Winer filter to

avoid the calculating of the covariance matrix in Equation (2.6) by decomposing matrix

26

𝐵 into a lower triangular matrix 𝐿 and an orthogonal matrix 𝑄. The Equation (2.7) shows

the simplified version of Equation (2.6) after applying LQ decomposition to matrix 𝐵.

𝑊 = 𝑅−1𝑉, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ R = AAH (2.4)

�̅� = 𝑅 + 𝑄 = 𝐴𝐴𝐻 + 𝜎𝐼 (2.5)

𝑊1 = �̅�−1𝑉 = (𝐴𝐴𝐻 + 𝜎𝐼)−1𝑉 = ([𝐴|√𝛿𝐼][𝐴|√𝛿𝐼]
𝐻
)
−1

𝑉 = (𝐵𝐵𝐻)−1𝑉 (2.6)

𝑊1 = (𝐿𝐻)−1(𝐿−1𝑉) (2.7)

The Wiener filter method of calculating adaptive beamforming weight contains three

parts: LQ decomposition and two matrices backsolve. Suppose in Equation (2.6), 𝐵 and

𝑉 are the matrices of dimensions 𝑚× 𝑛 and 𝑚 × 1. The complexity expressions for the

LQ decomposition of matrix 𝐵 is 8𝑚𝑛2 − 8𝑛3 3⁄ . As the dimension of 𝐿 is the same as

𝐵, so two backsolves cost 4𝑛2and 4𝑚2 flops, respectively. Thus, in total, the complexity

of weight calculation is

8𝑚𝑛2 − 8𝑛3 3⁄ + 4𝑛2 + 4𝑚2 (2.8)

𝑊2 = (𝐵𝐵𝐻)−1𝑉 = ((𝐴 + √𝛿𝐼)(𝐴 + √𝛿𝐼)
𝐻
)

−1

𝑉

= (𝐴𝐴𝐻 + 𝜎𝐼 + √𝛿�̂�𝐻 + √𝛿�̂�)
−1
𝑉

(2.9)

As mentioned above, the sample matrix 𝐴 has the dimension of 𝑁𝑐ℎ × 5𝑁𝑐ℎ. In

Equation (2.6), the symbol “|” represents that the matrix on the right side of the bar is

appended to the end of the matrix on the left side. After diagonal loading matrix 𝑄

inserted into matrix 𝐴, the matrix 𝐵 has the dimension of 𝑁𝑐ℎ × 6𝑁𝑐ℎ, which increases

the complexity of computing the autocovariance matrix 𝐴. To reduce this additional

computation load after diagonal loading, a new method is introduced here, named direct

appending loading level method, by augmenting the loading matrix directly to the sample

27

matrix 𝐴, as showing in Equation (2.9). �̂� is square matrix of the product from 𝐴 × 𝐼. By

using this new method, the dimension of 𝐵 is 𝑁𝑐ℎ × 5𝑁𝑐ℎ, maintaining the original size

of sample matrix 𝐴. However, when we perform the direct appending method, two noise

matrices √𝛿�̂�𝐻and √𝛿�̂� are brought into the covariance result, which may degrade the

performance of beamforming. So, to investigate how much those two noise matrices may

affect the performance of beamforming, we compared the SNR between original weight

calculating method and our new method, as shown in Figure 2.4 and Figure 2.5,

respectively. The signal power 𝑃𝑠, and the interference pulse plus noise power 𝑃𝑖+𝑛, are

given by

𝑃𝑠 = 𝑊𝐻𝑅𝑠𝑊 (2.10)

𝑃𝑖+𝑛 = 𝑊𝐻𝑅𝑖+𝑛𝑊 (2.11)

So, the SNR is equal to

𝑃𝑠
𝑃𝑖+𝑛

=
𝑊𝐻𝑅𝑠𝑊

𝑊𝐻𝑅𝑖+𝑛𝑊
 (2.12)

28

In the first simulation, we compared the performance of adaptive beamforming

versus the array SNR. The loading level, 𝐿𝐿 is defined as 10 log(𝐿𝐿 𝛿2⁄), in which 𝛿 is

the standard deviation of zero mean white noise. From Figure 2.4, we observe that the

performance of new method is closed to the theory one, which means the new method

bring little impact to the SNR. Next, the influence of the loading level is shown in Figure

2.5. The maximum difference between two methods is 0.4 dB, which also indicates that

the new method has similar performance as the theory’s. Thus, the direct appending

loading level method can be a good way to reduce the computing resource. Note that to

implement the weight vector calculating for the adaptive beamforming, an extra

processing node are required to receive the all the channel data, and then the weight can

be distributed to each processing node.

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

8

10

12

Array SNR (dB)

O
u
tp

u
t

S
N

R
 (

d
B

)

Loading Level is 12dB

new method

theory

Figure 2.4: Output SNR of the new beamforming method versus SNR of

traditional beamforming method

29

2.3. Pulse Compression

After beamforming, pulse compression is for improving the signal-to-noise ratio and the

range resolution. Pulse compression can be implemented by performing correlation of the

return signal, 𝑠[𝑛], and a replica of the transmitted waveform, 𝑥[𝑛], which is equivalent

to matched filter operation. By filtering the return signal, the energy of returned

waveform would be aggregated into range gates and concentrates on the target ranges.

Matched filter implementation converts the signal to the frequency domain, performs

point-wise multiplies with transmitted waveform, and converts the result back to time

domain [9], as shown in Equations (2.13)-(2.16). The length of FFT is chosen to be the

first power of 2 greater than 𝑁 + 𝐿 − 1. For example, if 𝑁 = 2250 and 𝐿 = 22, which

makes 𝑁 + 𝐿 − 1 = 2271, so the length of FFT should be 4098. In this situation, it

requires to zero-pad 𝑥[𝑘] and 𝑠[𝑘] to the length of 4098, before converting into frequency

0 2 4 6 8 10 12 14 16 18 20
5.6

5.8

6

6.2

6.4

6.6

6.8

7

Loading Level (dB)

O
u
tp

u
t

S
N

R
 (

d
B

)

Array SNR is 6dB

new method

theory

Figure 2.5: Output SNR versus loading level

30

domain. Zero-padding increases computing complexity of the FFT in Equation (2.13) and

(2.14), and makes Equation (2.15) to consume more computing resources. Values of 𝑁

and 𝐿 need to be selected to avoid unnecessary computation.

S[k]
FFT
← s[n] 0≤n≤N (2.13)

X[k]
FFT
← x[n] 0≤n≤L (2.14)

𝑌(𝑘) = 𝑆[𝑘]𝑋[𝑘] 0 ≤ 𝑘 ≤ (𝑁 + 𝐿 − 1) (2.15)

y[n]
IFFT
← Y[k] 0≤n≤(N+L-1) (2.16)

From the above equations, the overall computing complexity of pulse compression

depends on FFT, IFFT and point-wise vector multiplication. For radix-2 FFT, there are

𝑙𝑜𝑔2(𝑁) butterfly computation stages. Each stage consists of 𝑁/2 butterflies, and each

butterfly operation requires one complex multiplication, one complex addition, and one

complex subtraction. Hence, the complexity of computing radix-2 FFT is:

 𝐶𝐹𝐹𝑇 = (6 + 2 + 2) ×
𝑁

2
× log2𝑁 = 5𝑁 log2𝑁 𝑓𝑙𝑜𝑝𝑠.

As the IFFT has the same complexity of FFT, the throughput of the whole pulse

compression in frequency domain is

2 × 𝐶𝐹𝐹𝑇 + 𝑁𝐶𝑚𝑢𝑙𝑡

𝑇
=
10𝑁 log2𝑁 + 6𝑁

𝑇
𝐹𝐿𝑂𝑃𝑆,

where 𝑁 is the number of range gates after zero-padding, and 𝐶𝑚𝑢𝑙𝑡 is the complexity of

point-wise complex multiply.

31

2.4. Doppler Processing and Data Corner Turn

The first objective of the Doppler processing is to mitigate the impacts of stationary or

slow-moving clutter. The second objective is to measure the radial velocity of the targets

by calculating the Doppler shift [37], from the Flourier transformation of data cube along

the CPI dimension for each range bin. The throughput of an FFT-based basic Doppler

filter is 𝐶𝐹𝐹𝑇/𝑇 = 5𝑁𝑝 log2𝑁𝑝 𝑇⁄ FLOPS, where 𝑁𝑝 is the number of pulses in one CPI.

The Doppler filtering performance is shown in Table 2.2.

Table 2.2: Doppler filtering performance measured in GFLOPS per core

Range Gates Pulses

8 16 32 64 128

1024 0.7293 1.6036 2.6852 3.8543 4.2866

2048 0.7294 1.6000 2.6841 3.8543 4.2867

4096 0.7294 1.5999 2.6842 3.8544 4.2867

8192 0.7295 1.6000 2.6842 3.8544 4.2732

Compared with previous beamforming and pulse compression processing,

Doppler processing requires less computing power. However, additional data

transmission time is required before Doppler processing. As the output of the pulse

compression is arranged along the range gate dimension, the output needs to undergo a

corner turn before being handled by the Doppler filtering processors [38]. This two-

dimensional corner turn operation is equivalent to a matrix transpose in the memory

space. Using EDMA3 [39] on TI generic C66xx DSP, the data can be reorganized into

the desired format without interfering the real-time computations in DSP core. So, the

performance of Doppler processing can be performed without interference from data

corner turn. The use of EDMA3 would be further discussed in further.

32

2.5. Weather and Air-surveillance Data Products

Section 2.2, 2.3, and 2.4 have illustrated the basic PAR signal processing algorithms,

which are the building blocks of radar signal processing chain and foundations of other

advanced signal processing algorithms. For example, in weather radar application, the

mean Doppler velocity and spectrum width estimation takes outputs from beamforming

and pulse compression. In the air-surveillance application, target detection and tracking

processing also depend on the results of beamforming, pulse compression, and Doppler

filtering. This section will illustrate the high-level, or backend, PAR data processing

algorithms and discuss their complexities.

2.5.1. Mean Velocity Estimation

 Mean Doppler velocity is the averaged velocity of the radar resolution volume. There are

two methods to calculate the Doppler frequency shift: spectral processing and Pulse Pair

Processor (PPP) [40]. In the spectral processing method, the first step is to calculate the

periodogram [41] of signal along the CPI domain by using FFT as

𝑆 =
|𝑍(𝑓)|2𝑇

𝑀
, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑍(𝑓)

𝑓𝑓𝑡
← 𝑠(𝑛) (2.17)

where 𝑀 is the number of pulses, 𝑇 is the Pulse Repetition Time (PRT), 𝑠(𝑛) is the

samples along the CPI domain. Then the mean velocity is calculated by using Equation

(2.18) [42], in which 𝜆 is the wavelength of transmitting wave, 𝑃 is the total power in the

periodogram, 𝑘𝑚 is the index of the strongest Fourier coefficient, and 𝑖 is the index of

pulse. Most of computation load in mean velocity estimation is from Equation (2.17) and

the summation part in Equation (2.18). As the 𝑍(𝑓) is the result from Doppler filtering

mentioned in Section 2.4, those results can be utilized twice in the mean velocity

33

estimation to save the computing resources. Therefore, the complexity of Equations

(2.17)and (2.18) are 𝟏𝟐𝑴+ 𝟕𝑴 = 𝟏𝟗𝑴 in combination.

𝑣 =
𝜆

2𝑀
{
𝑘𝑚
𝑇

+
1

𝑃𝑇
∑ (𝑖 − 𝑘𝑚)𝑆[𝑚𝑜𝑑𝑀(𝑘𝑚)]

𝑘𝑚+𝑀/2

𝑘𝑚−𝑀/2

} (2.18)

PPP is another method to estimate the mean Doppler velocity by comparing the

phase differences among various samples. A general method to calculate the phase

difference is using the covariance approach [40]. The first step is to estimate the

autocorrelation of the signal along the CPI domain with one sample lag, 𝑛 = 1, as

𝑅𝑛 =
1

𝑀
∑ 𝑠𝑖

∗𝑠𝑖+𝑛

𝑀−1

𝑖=0

 (2.19)

So, the mean velocity can be estimated as

𝑣 =
𝜆

4𝜋𝑇
𝑎𝑟𝑔(𝑅1) (2.20)

where the argument of 𝑅 calculates the phase of 𝑅 in radians. Based on Equation (2.19)

and (2.20), we can calculate the complexity of PPP is 6𝑀 + 2𝑀 = 8𝑀. Compared with

the spectral processing, PPP method has the advantages of requiring less computing

resources and having smaller velocity variance when there is no unique solution for SNR

and spectrum widths [43].

2.5.2. Spectrum Width Estimation

The mean velocity estimation mentioned in the previous section represents the average

speed of hydrometeors in one range gate. When there are turbulence or chaotic flow,

hydrometeors within one resolution volume have vastly different radial velocities [44].

In this case, the mean velocity cannot represent the entire range of velocities within one

range gate and may overlook the fast-changing weather phenomenon. The spectrum

34

width can depict the standard deviation of the velocity and represent random particle

movements. Methods used to extract the spectrum width are usually based on

autocovariance processing and spectral estimation.

The autocovariance processing method utilizes the autocorrelation of the signal at

different lags to estimate the spectrum width. If the weather signal spectra closely follow

a Gaussian shape, the estimated spectrum width, 𝜎𝑣
2, is

𝜎𝑣
2 =

𝜆2

24(𝜋𝑇)2
ln |

𝑅1
𝑅2
| (2.21)

where 𝑅1 and 𝑅2 are the autocorrelation based on Equation (2.19) [45]. The computing

load of Equation (2.19) mainly comes from autocorrelation, so the complexity can be

approximated as 𝟔𝑵𝒑 + 𝟔𝑵𝒑 = 𝟏𝟐𝑵𝒑.

Corresponding to the autocovariance method, spectrum width estimation by using

spectral processing is given by

𝜎𝑣
2 =

𝜆2

4𝑃𝑇2
∑ (

𝑖

𝑀
+
2𝑣𝑇

𝜆
)
2

𝑆[𝑚𝑜𝑑𝑀(𝑘𝑚)]

𝑘𝑚+𝑀/2

𝑘𝑚−𝑀/2

 (2.22)

The complexity of Equation (2.22) is the same as Equation (2.18), which is 𝟏𝟗𝑵𝒑. Thus,

the spectral processing requires more computing resources than autocorrelation method.

Moreover, Equation (2.22) is a biased estimation due to the window effect in the FFT. In

general, this bias is difficult to compute [43], thus in general, autocovariance method is

superior than the spectral processing.

2.5.3. Target Tracking

For MPAR, target tracking (such as air-traffic tracking) is a crucial function. Once a radar

receiver detects the presence of the targets and converts the detections into validated

35

measurements, the radar tracker initiates and estimates the target’s future state, while

integrating the new measurements into an existing track. Bayesian tracking or Bayesian

recursively tracking is a method to treat the tracking problem from the perspective of

Bayesian inference. It assumes that a likelihood function links the events observed in the

current state to the future unknown. As such, if we specify a prior distribution of some

targets, we can calculate the posterior distributions or future states with the help of

likelihood function [23]. For example, if a surveillance radar records the previous speeds

and locations of an air-vehicle, based on the currently measured speed and location, a

likelihood function can be established, which is then used to predict the vehicle’s future

positions and velocities through different models.

The goal of multiple target tracking (MTT) is to estimate the states of multiple

targets simultaneously [46]. Compared with single target tracking, MTT needs to

determine which target generates each sensor response or whether the response is a false

alarm. For most cases, we may not know the exact number of the objectives, which makes

the MTT further complicated. Situations that the tracks of multiple targets are overlapped

or intersected can lead to ambiguity of the data association process. Also, as the kinematic

model of each target can vary, the transition functions that we used in a Kalman filter

may not be suitable for all the scenarios.

For multiple target tracking, joint probabilistic data association (JPDA) and

multiple hypothesis tracking (MHT) are the two classical Bayesian tracking methods. In

all cases, both algorithms (JPDA and MHT) can provide reliable target tracking

performance [46, 47]. MHT forms data association hypotheses by assigning probability

1 or 0 to a target, which is a hard association. JPDA relaxes this assumption by allowing

36

for the partial association. In the low SNR environments, JPDA and MHT are both

capable of handling a high volume of clutter. However, MHT has a major disadvantage

of requiring high computational complexity because the number of hypotheses grows

exponentially over tracking time [48]. Although various methods have been developed to

control the growth of hypotheses tree [49], JPDA is still more efficient and easier to be

implemented. Also, when the detection probability is reduced for the weak target

scenarios, MHT is more vulnerable than JPDA [50], since MHT is a single-scan algorithm

compared to JPDA and depends heavily on the past scans. Hence, JPDA would be a better

choice if there are no other specific requirements and use JPDA as an example to illustrate

the computing complexity of tracking algorithm.

To track the targets, at first, we may build a model to represent the tracking

system. Let 𝑺 be the state space of a target dynamics, in which it contains various target

information that can be utilized to locate and track the targets, such as the position,

velocity, and acceleration of the targets. Thus, the targets in the space 𝑺 can be

represented as a vector containing kinematic parameters [8]. For a typical parametric

approach, the classic Bayesian approach uses the dynamical motion and measurement

equations shown in Equation (2.23) and (2.24) for the target tracking models:

𝑦𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝑄𝑘−1 (2.23)

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑟𝑘 (2.24)

where 𝑥𝑘 is the state vector for the target on the time step 𝑘, 𝐴𝑘−1 defines the transition

matrix of the dynamic model, 𝑦𝑘 is the measurement vector on the time step 𝑘, 𝑄𝑘−1 is

the process Gaussian random noise covariance matrix for the time step 𝑘 − 1, denoted as

𝑄𝑘−1~𝑁(0, 𝑅𝑘−1) . 𝐻𝑘 is the measurement matrix that converts the system state to the

37

measurement, and 𝑟𝑘~𝑁(0, 𝑅𝑘) is the sensor measurement noise vector [37]. Based on

this model, we can represent the target moving in a two-dimensional space in Cartesian

coordinate system as

𝒙𝑘 = [𝑥𝑘 𝑦𝑘 �̇�𝑘 �̇�𝑘]
𝑇 (2.25)

in which �̇�𝑘 and �̇�𝑘 are the velocities of the target along the 𝑥 and 𝑦 coordinate observed

by a Radar. By giving Equation (2.25), we can represent transition matrix 𝐴𝑘−1 as

Equation (2.26), in which ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1.

Ak=[

 1 0
 0 1

∆t 0
0 ∆t

 0 0
 0 0

 1 0
 0 1

] (2.26)

For the nearly constant velocity motion model, the process noise covariance matrix is

given by

𝑄𝑘 = 𝛿2

[

∆𝑡3/3 ∆𝑡2/2

∆𝑡2/2 ∆𝑡

0 0
0 0

 0
 0

 0
 0

∆𝑡3/3 ∆𝑡2/2

∆𝑡2/2 ∆𝑡]

 (2.27)

The 𝛿2 is the design parameter for the system model error. Typically, this parameter is

set to be greater than one half of the maximum acceleration of the target and less than the

maximum acceleration [51]. The measurement matrix 𝐻𝑘 is used to calculate the position

of the target given the system state. In this case, the measurement matrix can be expressed

as Equation (2.28).

𝐻 = [
1 0
0 1

0 0
0 0

] (2.28)

The system defined in (2.23) and (2.24) satisfies the Markov property, which means that

the future state of this system is based solely on its present state. We can express this

property in general as:

38

𝑝(𝑥𝑘|𝑥1:𝑘−1, 𝑦1:𝑘−1) = 𝑝(𝑥𝑘|𝑥𝑘−1) (2.29)

This also implies the fact that the past does not depend on the future state by given the

present, which is the same concept as in Equation (2.29), in which 𝑥𝑘:𝑇 represents the

system states from current time step 𝑘 up to future time step 𝑇.

𝑝(𝑥𝑘|𝑥𝑘:𝑇 , 𝑦𝑘:𝑇) = 𝑝(𝑥𝑘−1|𝑥𝑘) (2.30)

For the measurement, which is the same as system state, the current measurement 𝑦𝑘 is

independent from the past measurement and system state. This property can be expressed

in Equation (2.31).

𝑝(𝑦𝑘|𝑥1:𝑘, 𝑦1:𝑘−1) = 𝑝(𝑦𝑘|𝑥𝑘) (2.31)

The JPDA is an extended version of Probabilistic Data Association Filter (PDAF).

PDAF is to set up a validation region at each sampling time. Among that possible

validated measurement, the position of a target can be determined by calculating the data

association function of each measurement [52]. Similar to Kalman filter, PDAF makes

an estimation based on the past measurements and states. If the state and measurement

equations are assumed to be linear, the update and predicting algorithm of PDAF can be

based on Kalman filter. When the state or measurement equations are nonlinear, then

PDAF can be based on Extended Kalman Filter (EKF) [50] or Particle Filters [8]. The

algorithms of PDAF and JPDA discussed in this section are based on Kalman filter. To

perform PDAF, a basic assumption that the posterior probability function for the system

state is summarized approximately by a normally distributed Gaussian

𝑝[𝑥(𝑘)|𝑧𝑘−1] = 𝑁[𝑥(𝑘); �̂�(𝑘|𝑘 − 1), 𝑃(𝑘|𝑘 − 1)] (2.32)

In contrast with previously discussed front-end processing algorithms, the throughput of

the tracking algorithm occurs on a per-target or per-track basis. Since the number of

39

targets, tracks, and false alarms in the detection area is unknown, the computation

requirements are nondeterministic. Moreover, compared with front-end processing tasks,

which are all streamlined mathematic calculations, the back-end tracking algorithm

involves more logical operations--stored, accessed, and updated target position overtime

periods. So, it is usually difficult to estimate the computing resources needed for tracking

algorithm without prior knowledge of the operational environment. To give a basic idea

of the computational complexity, we calculate the throughput of the JPDA based on the

sample parameters listed in Table 2.3.

Table 2.3: Tracking simulation parameters

Parameters Description

𝑇 Number of currently confirmed targets

𝑀 Number of measurements including potential targets and false alarms

𝐸 Number of potential tracks

Prediction

The first step of JPDA is to conduct the Kalman prediction from 𝑘 − 1 step to 𝑘,

which is the same procedure as the single target Kalman filter, namely

�̂�(𝑘|𝑘 − 1) = 𝐴(𝑘 − 1)�̂�(𝑘 − 1|𝑘 − 1) (2.33)

�̂�(𝑘|𝑘 − 1) = 𝐻(𝑘)�̂�(𝑘|𝑘 − 1) (2.34)

𝑃(𝑘|𝑘 − 1) = 𝐴(𝑘 − 1)𝑃(𝑘 − 1|𝑘 − 1)𝐴(𝑘 − 1)′ + 𝑄(𝑘 − 1) (2.35)

where 𝑃(𝑘 − 1|𝑘 − 1) is the covariance matrix of the past system state. Based on it, the

new innovation covariance matrix can be computed as

𝑆(𝑘) = 𝐻(𝑘)𝑃(𝑘|𝑘 − 1)𝐻(𝑘)′ + 𝑅(𝑘) (2.36)

40

The computation complexities of Equation (2.33)-(2.36) are 32𝑇, 16𝑇, 272𝑇, and 132𝑇

separately. In total, there are 𝟒𝟓𝟐𝑻 flops computation in each scan.

Measurement Validation

In this step, an elliptical shape validation region is defined as Equation (2.37). The

volume of this region is limited by the gate threshold parameter 𝛾. Measurements that lie

inside the gate 𝛾 are considered valid; those are outside are discard.

𝑉(𝑘, 𝛾) = {𝑧: [𝑧 − �̂�(𝑘|𝑘 − 1)]′𝑆(𝑘)−1[𝑧 − �̂�(𝑘|𝑘 − 1)] ≤ 𝛾} (2.37)

In this step, there is 22𝑀𝑇 flops computation in each scan.

Data Association

The data association of the measurement 𝜃𝑖(𝑘) at time 𝑘 of the target 𝑧𝑖(𝑘) is

𝑃[𝜽(𝑘)|𝑧𝑘] =
1

𝑐
𝑃[𝑍(𝑘)|𝜽(𝑘), 𝑍𝑘−1]𝑃{𝜽(𝑘)} (2.38)

where 𝑐 is the normalization constant. If we consider the entire measurements and

suppose that all the measurements are lied in the validation area, the PDF on the left-hand

side of Equation (2.38) can be written as

𝑝[𝑍(𝑘)|𝜽(𝑘), 𝑍𝑘−1] =∏𝑝[𝑧𝑗(𝑘)|𝜃𝑗𝑡𝑗(𝑘), 𝑍
𝑘−1]

𝑀

𝑗=1

 (2.39)

where 𝜃𝑗𝑡𝑗 is the measurement 𝑗 originated from target 𝑡 that 𝑗 = 1,⋯ ,𝑀 and 𝑡 =

0,⋯ , 𝑇 . The conditional PDF of the above equation is assumed to be a Gaussian

distribution as:

𝑝 [𝑧𝑗(𝑘)|𝜃𝑗𝑡𝑗(𝑘), 𝑍
𝑘−1] = 𝑁[𝑧𝑗(𝑘); �̂�𝑡𝑗(𝑘|𝑘 − 1); 𝑆𝑡𝑗(𝑘)] (2.40)

The prior probability of an event 𝜃(𝑘), the second part of right side of Equation (2.38),

can be obtained as

41

𝑃[𝜽(𝑘)] = 𝜇𝐹(𝜙)∏(𝑃𝐷)
𝛿𝑡(1 − 𝑃𝐷)

1−𝛿𝑡

𝑇

𝑡=1

, (2.41)

where 𝛿𝑡 is the number of target that has been detected at time 𝑘, and 𝜇𝐹(𝜙) is the clutter

density. Finally, after we combine (2.41) and (2.40) into (2.38), we have

𝑃[𝜽(𝑘)|𝑧𝑘] = 𝜇𝐹(𝜙)∏𝑁𝑡𝑗[𝑧𝑗(𝑘)]

𝑀

𝑗=1

∏(𝑃𝐷)
𝛿𝑡(1 − 𝑃𝐷)

1−𝛿𝑡

𝑇

𝑡=1

 (2.42)

The computation complexity of Equation (2.42) is 73𝑀𝐸 . The marginal association

probabilities are obtained from the joint probabilities by summing over all the joint

events, which has the complexity of 𝑀𝑇. So, in total there are 73𝑀𝐸 +𝑀𝑇 in the data

association step. The marginal association probabilities are obtained from the joint

probabilities by summing over all the joint events.

𝛽𝑗𝑡 ≜ 𝑃[𝜃𝑗𝑡|𝑍
𝑘] = ∑𝑃[𝜽(𝑘)|𝑧𝑘]�̂�𝑗𝑡(𝜽)

𝜽

(2.43)

State Estimation

The state update equation of JPDA is the same as Kalman filter as

𝐾(𝑘) = 𝑃(𝑘|𝑘 − 1)𝐻(𝑘)𝑇𝑆(𝑘)−1 (2.44)

𝑥(𝑘) = 𝑥(𝑘|𝑘 − 1) + 𝐾(𝑘)𝑣(𝑘) (2.45)

𝑣(𝑘) =∑𝛽𝑗𝑡(𝑘)𝑣𝑖(𝑘)

𝑚𝑘

𝑗=1

 (2.46)

The computation complexity of Equation (2.44) and (2.45) are 109𝑇.

The error covariance associated with the updated state estimate is

𝑃(𝑘|𝑘) = 𝛽0(𝑘)𝑃(𝑘|𝑘 − 1) + [1 − 𝛽0(𝑘)]𝑃
𝑐(𝑘|𝑘) + �̃�(𝑘) (2.47)

where

42

�̃�(𝑘) = 𝐾(𝑘) [∑𝛽𝑗𝑡(𝑘)𝑣𝑖(𝑘)𝑣
′
𝑖(𝑘) − 𝑣(𝑘)𝑣′(𝑘)

𝑀

𝑗=1

]𝐾′(𝑘) (2.48)

and

𝑃𝑐(𝑘|𝑘) = [𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝑃(𝑘|𝑘 − 1) (2.49)

The computation complexity of Equation (2.48) and (2.47) is (20𝑀 + 108)𝑇 and 88𝑇.

So, there are (20𝑀 + 196)𝑇 flops in the state estimation step. In total, the JPDA requires

452𝑇 + 22𝑀𝑇 + 73𝑀𝐸 +𝑀𝑇 + 20𝑀𝑇 + 108𝑇 = 𝟕𝟑𝑴𝑬 + (𝟓𝟔𝟎 + 𝟒𝟑𝑴)𝑻 flops for

one scan. To give a realistic example for a terminal aircraft surveillance tracking, we

chose the parameters that 𝑀 = 30, 𝑇 = 20, and 𝐸 = 25, and the radar would take 4.5

seconds for each scan. So, the throughput of JPDA tracking is around 20 KFLOPS. This

workload is much lower than the “front-end” signal processing. Although the workload

varies linearly with the number of tracks and targets, even a tenfold increase would only

be a small fraction of the “front-end” processing computing complexity. If parallelism is

required, the tracking algorithm can be easily implemented in a multithreading operating

system, and each thread contains several hypothesis tracks to be estimated in each

processor.

2.6. Advanced Algorithms

2.6.1. Model-Based Algorithms and System Optimizations

The primary signal-processing chain described in Section 2.1 has certain assumptions

about the PAR system, these assumptions are not usually valid in realistic radars. For

example, the estimation of computational loads assumes zero latency for data

transportation and memory access. The radiation patterns of individual antenna elements

43

are usually considered to be isotropic, and there is no channel-to-channel and pulse to

pulse errors for the beamforming algorithm, and there are no signal distortions in RF

channels. In reality, however, these assumptions are not realistic, and the overall signal

processing performance can be severely affected by these factors. In this section, we

explore several advanced processing algorithms and real-time implementations targeting

these issues. Many existing works have been reported on these topics [53, 54] while our

focus is the channel data rate control, interference mitigation and optimized calibrations

based on particular types of signal models (sparsity, covariance and nonlinearity

distortions).

The Power Amplifier (PA) models can be divided into two class: physical model

and empirical models [55]. The physical model handles the true RF modulated signal and

conceives to process real excitations by using nonlinear models of the active devices to

form an equivalent-circuit description, which requires deep knowledge and insight of the

circuit layout. This method provides a high level of accuracy result and limited by the

quality of the modeling of each component in PA. However, this benefit comes at the cost

of high computational time and the need for a detailed description of each component by

measurement of inspection.

When the design of PA is unknown or driving a PA equivalent circuit is not

available, PA behavior model is preferred, which is a black box simulation based on the

input and output behavioral observations. Thus it is used to simulate the PA behavior by

employing low-pass equivalent PA models and thus processes only the complex-valued

envelope signals at the PA input and output [56]. The accuracy of this behavior model

highly depends on the adopted model structure and the excitation parameters. Based on

44

the memory effect of different PAs, the system-level model can be divided into two

categories: memoryless and memory models. Memory effects are non-noise circuit

characteristics, which is caused by the thermal constants of the active devices or

components in the biasing network that has frequency-dependent behaviors. As the name

suggests, the memoryless model represents the input of PA has instantaneously effect to

the output. So, the observed AM-AM and AM-PM conversion constitute the PA’s

memoryless behavior. Commonly, two memoryless models are used: a polynomial

function with complex coefficients, like cubic polynomial model as showing in Equation

(2.50) and (2.51), where 𝑢 is the normalized input voltage,

𝐹𝐴𝑀−𝐴𝑀 = 𝑢 −
𝑢3

3
 (2.50)

𝐹𝐴𝑀−𝑃𝑀 = 𝑢𝑝𝑝𝑒𝑟 𝑝𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 − 𝑙𝑜𝑤𝑒𝑟 𝑝𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (2.51)

and the Saleh model [57] in Equation (2.52) and (2.53)

𝑟𝑦(𝑟𝑥(𝑡)) =
𝛼𝑟𝑟𝑥(𝑡)

2

1 + 𝛽𝑟[𝑟𝑥(𝑡)]2
 (2.52)

𝜙𝑦(𝑟𝑥(𝑡)) =
𝛼𝜙𝑟𝑥(𝑡)

2

1 + 𝛽𝜙[𝑟𝑥(𝑡)]2
 (2.53)

where rx(𝑡) represents the input envelope, the coefficients 𝛼𝑟 , 𝛽𝑟 , 𝛼𝜙, and 𝛽𝜙are fitting

parameters for the measured PA’s AM-AM and AM-PM characteristics, which can be

extracted using a least squares approximation to minimize the relative error between the

envelope measurements of the target PA and the values predicted by model.

The above-mentioned low-pass equivalent AM-AM and AM-PM memoryless

models are frequency independent, which have reasonable accuracy when the

narrowband signal drives the amplifiers. However, when the bandwidth of the input is

45

comparable to the inherent bandwidth of the amplifier, the response of each frequency in

the PA is frequency-dependent. So, in the wide-band application, it is necessary to take

both the nonlinear and memory effects into consideration when modeling a PA. A

straightforward method to simulate the memory effects is sampling the bandwidth at all

possible frequency points, so the variant in PA response for different frequencies can be

found [58]. In some situations, the memory may have nonlinear memory effect, which

can be seen as frequency-dependent nonlinear impulse responses [59, 60]. The idea of

modeling nonlinear memory effect is to postulate that the gain and phase characteristics

of PA do not merely depend on the instant input rx(𝑡) but also on a parameter z(𝑡), where

𝑧(𝑡) is a function of historical input signal and physical characteristic causing memory

effects within the amplifier [61]. Then the nonlinear memory effect can be modeled by

self-heating of the active device or by a varying power supply as Equation (2.54).

2.6.2. Compressive Sensing for Channel Data Rate Reduction

A traditional coherent radar receive channel generates in-phase and quadrature data

signals in either analog or digital forms. These signals are transported to the specialized

signal processor units for pulse compression, detection, and tracking. With the extensive

use of advanced waveforms, the bandwidth of the transmitting pulses can be quite large.

Accordingly, based on Nyquist–Shannon sampling theorem, increasing ADC sampling

speed may introduce a massive amount of data transactions. As an example, for a single

dual-polarized channel, if the signal bandwidth is 20 MHz and ADC’s resolution is 12

bits, the transmitting rate should be at least 960 Mbps per channel. For an envisioned

𝑦(𝑡) = 𝑓[𝑟𝑥(𝑡), 𝑧(𝑡)]𝑟𝑥(𝑡)𝑒
𝑗𝜃(𝑡) (2.54)

46

MPAR system with 200 dual-pol channels, the data rate at inputs of a beamformer can be

higher than 192 Gbps. Even with advanced data link technologies today, this is still a

tremendous challenge.

According to the compressive sampling concept, when the signal matrix is sparse,

we can sample the radar signal incoherently at a much slower rate than the Nyquist

sampling rate [62, 63], which may translate into saving of communication bandwidth,

reduction of signal processors, and eventually lower costs. When we introduce the CS

concept into array signal sampling, there are two specific issues we may pay attention to:

(1) Robustness of signal recovery from noisy data, especially for the received signals

before pulse compression. Indeed, CS processing can tolerate a proper level of noise.

However, when noise power is comparable to the power of the signal, it may lead to errors

or distortions in signal recovery. (2) The computing time and resources requirement of

the signal recovery. The computational resources required by CS processing, and the

additional latency that adds in the receiver chain, should not offset the benefits it brought

in for data transportation bandwidth reduction.

Supposing a return signal reflecting from a target and sampled by the front-end

with the Nyquist rate into a vector 𝑓 with the length of 𝑁, there exists a sensing basis Φ,

on which the projection of 𝑥 in the front-end is a vector with the length of 𝑙. Since the

signal is sampled lower than Nyquist rate, the received data needs to be reconstructed and

projected onto representation basis Ψ . If the signal on basis Ψ has 𝑠 non-zero

coefficients, it said this signal is the s-sparse. In the representation basis Ψ, it makes the

possible that the front-end system use fewer samples to reconstruct the signal without

much loss by discarding the zero coefficients. If the condition satisfied that 𝑠 < 𝑙 ≪ 𝑁

47

and the basis Φ and Ψ are uncorrelated, the under-sampled signal can be reconstructed

back by using CS. Note that, as 𝑠 increases, it becomes harder to sense and reconstruct

the original signal [64]. The coherence between the basis Φ and Ψ is measured by

(Φ,Ψ) = √𝑛 ∙ max
1≤𝑘,𝑗≤𝑛

| 〈ϕ𝑘
𝑗
〉 |

(2.55)

in which 𝜇 is the incoherence property, 𝑛 is the number of elements in the original signal,

and 𝑘 and 𝑗 are indices of the basis functions. In other words, the sensing and

representation basis should be concerned as low coherence pairs. For example, we may

choose spike basis
𝑘
(𝑡) = (𝑡 − 𝑘) as sensing matrix, and Fourier basis 𝜓𝑗(𝑡) =

√𝑛𝑒−𝑖2𝜋𝑗𝑡/𝑛 as representation basis [63]. To analyze the coherence between the sensing

basis and representation basis, the restricted isometry property (RIP) is introduced. RIP

characterizes isometry constant 𝛿2𝑠 of a matrix such that

(1 − 𝛿2𝑠)‖𝑥1 − 𝑥2‖𝑙2
2 ≤ ‖𝛩(𝑥1 − 𝑥2)‖𝑙2

2 ≤ (1 + 𝛿2𝑠)‖𝑥1 − 𝑥2‖𝑙2
2 (2.56)

in which 𝛩 is the reconstruction matrix, which is the product of Φ and Ψ . If 𝛿2𝑠 is

sufficiently less than one, this implies that the all pairwise distance between s-spare

signals, for any vector 𝑥1 and 𝑥2, can be well preserved in the measurement space. That

means measurement matrix contains the sufficient information in signal of interest, and

the majority part of signal can be reconstructed from the measurements.

When the basis Φ and Ψ satisfy RIP, the Equation (2.57) gives an accurate

reconstruction of the undersampled signal by using L1-norm minimization.

min
𝑥
‖𝑥‖𝑙1 𝑠. 𝑡. 𝑦 = ΦΨ𝑥

(2.57)

Different applications may have various requirements or limitations to use CS. In the

communication system, it requires the CS algorithm for speedy spectrum sensing; in

medical imaging processing, like magnetic resonance imaging, with benefits for patients’

48

economics, the scan time reduction is the thing researchers pay more attention to. In radar

application, the SNR may be too small that the signal can be immersed within the noise;

hence, robust signal recovery from noisy data is a crucial point for radar sampling. To

exam the performance of CS algorithm when SNR is low, Figure 2.6 shows a comparison

between reconstruction data and original signal (noise-free), and error compared to the

original signal with noise. We can see that the CS can suppress noise levels when SNR is

low. This is because the signal (pulse) is sparse, and the noise is widely spread the entire

spectrum. As a result, the reconstruction process would ignore those small variations

produced by the noise. From Figure 2.6 we can also notice that when SNR is larger than

6 dB, the reconstruction data have the similar result as original data with noise, which

means the compressive sampling can be used in the radar application even the SNR is

low. Besides that, CS can still perform under low SNR conditions. This may be because

this signal (pulse) is sparse, and the noise is widely spread the entire spectrum. As a result,

the reconstruction process would ignore those small variation produced by the noise. This

noise reduction phenomenon had been proved in [65, 66].

49

Another important aspect of CS implementation is the algorithm efficiency. There

are so many reconstruction algorithms existing, such as Basis Pursuit [67], Matching

Pursuit [68], and Message Passing [69]. Among those algorithms, the greedy iterative

algorithm is easy to implement and has a high speed of signal recovery. It solves the

reconstruction problem by finding an optimal result iteratively. Within the framework of

greedy pursuing, we select the Orthogonal Matching Pursuits (OMP) [70] as our core

compressive sensing algorithm. For a signal with length n and s sparsity, OMP can

reliably recover this signal by using 𝑂(𝑠 log 𝑛) measurements. The complexity of OMP

algorithm is 𝑂(𝑠𝑚𝑛) is the number of measurements. Figure 2.7 shows the comparison

between the OMP and Basis Pursuit, where 𝑛 = 600, and 𝑚 = 4𝑠. It can be seen that

OMP have better performance than the basis pursuit. However, when the signal is not

sparse, the recovery becomes costly.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

reconstructed signal vs originial signal

original signal vs original signal with noise

Figure 2.6: Reconstruction error vs SNR using CS algorithm

50

2.6.3. System Optimizations

RF hardware in radar receivers usually causes some of the undesired phase shifts and

amplitude variations, and those noise and distortions contaminate measurements. For

example, the transfer function of a power amplifier may not hold a constant gain for a

broad range of input power levels, and different amplifiers may not share the same

transfer function. So, this response inconstancy among channels would distort the shape

of the antenna pattern and bring errors into the measurements. To alleviate the

inconstancy response among channels, it is essential to calibrate the array by equalizing

the phase and amplitude effects [71].

There are some existing methods to calibrate the PAR system channels such as

near-field scanning probe [72], fixed peripheral probes [73], calibration lines [74], and

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S-sparse

co
m

pu
tin

g
tim

e
(s

)

Basis Pursuit

OMP

Figure 2.7: Computational time comparison of two CS algorithms on AMD

Opteron 6128/MATLAB regarding to different degrees of signal sparsity

51

mutual coupling [75]. The first three calibration methods require a controlled

environment by using specific calibration equipment, and procedures for performing

those methods are complex and challenging to be conducted in the field. Furthermore,

due to the reason of that the relative phase/amplitude shifts depend on frequency,

temperature, and time, calibration should be repeated at various temperatures and

frequencies. These variables increased the complexity of performing calibration once the

radar is deployed. Compared with the first three methods, mutual coupling calibration

can be done without extra equipment, but the calibration accuracy can be easily

deteriorated when the environment contains near-field clutter. Moreover, for the reason

of that setting the output power level too high would make transmitters saturate the

receivers, the mutual coupling cannot perform full range power level calibration. As the

PAR channels may have different gain values for different input power levels for a given

frequency, the calibration result based on mutual coupling may not fully meet the actual

operating requirements.

To make the PAR calibration reliable and feasible, we introduced a calibration

procedure that allows the radar system to perform self-calibration in the field by using

the Expectation-Maximization (EM) algorithm. Moreover, EM calibration does not

require extra equipment or feedback line to do the calibration. A similar EM calibration

method has been used in the [76]. Compared with mutual coupling calibration, EM

method is more robust when the radar surrounding environment has clutter, and the

calibration can be done during normal radar operations. EM algorithm is based on a

probabilistic learning model by iteratively computing the maximum-likelihood estimates

when the observations can be viewed as incomplete data [77]. Starting from an initial

52

assumption, each iteration involves two steps: expectation step (E-step) and a

maximization step (M-step) [78]. In E-step, it finds a probability distribution over the

unobserved variables given the known values for the current model; in M-step, it re-

estimates the parameters of the current model to be those with maximum likelihood, under

the assumption that the distribution found in E-step is correct. It can be shown that each

iteration improves the likelihood and a local maximum can be reached [79].

By using EM algorithm calibration for PAR application, we derive the

relationship between observed value and truth into a probabilistic model. Then, the

algorithm would iteratively seek the maximum likelihood between the observed value

and ground truth. The self-calibration procedure can be separated into two parts:

amplitude calibration and phase calibration. For amplitude calibration, the received

power level is directly calibrated by using EM algorithm. As mentioned in [80], the phase

distortion follows the nonlinear model between input power level and output signal for a

given frequency. This distortion can be estimated by comparing the phase differences

between the signal leaked through the diplexer from the transceiver to the receiver and

undistorted baseband signal [81]. After applying a range of power levels in the

transmitter, the nonlinear phase distortion model can be applied. Note that the calibration

procedures mentioned here are all based on the assumption that the RF system is working

at a single frequency and the system is memoryless.

The first step of EM algorithm is assuming the initial probability distribution of

observed power level, 𝑎, for each range gate by given true power level value, 𝑚, is a

Gaussian distribution, defined as

𝑃(𝑎|𝑚; 𝑐ℎ) = 𝜂 × 𝑒
−(𝑎−𝑚)2

2𝜎 (2.58)

53

in which 𝜂 is the normalizer, 𝑐ℎ is the channel indicator, 𝜎 is the variance. Note that each

channel maintains its own distribution 𝑃(𝑎|𝑚; 𝑐ℎ), and is initialized as a distribution with

the dimension of 𝑎 × 𝑚. An example of initialization is shown in Figure 2.8, in which

the values of 𝑎 and 𝑚 are both in the range between 0 to 100. While we should note that

the power level at each range gate is dependent with each other due to the sidelobe of the

pulse compression results, if ignoring those correlations, we may assume that each range

gate is conditionally independent of each other given the radar waveform and antenna

beam pattern. Since what we are interested in is deriving the calibrated power levels in

the RF channels rather than the truth RCS value of targets in each range gate, ignoring

this spatial correlation is acceptable.

The goal of the amplitude calibration is to find the maximum likelihood of

𝑃(𝑎|𝑚; 𝑐ℎ) given truth power value 𝑚 for each channel 𝑐ℎ . Starting with the

Figure 2.8: Initialization example for 𝑃(𝑎|𝑚; 𝑐ℎ)

54

initialization value in Equation (2.58), the algorithm alternates between updating

𝑃(𝑚 = 𝑘; 𝑅𝑔) (E-step) and computing 𝑃(𝑎|𝑚; 𝑐ℎ) (M-step), which are described as

follows.

Expectation step (E-step):

In E-Step, we calculate the probability of 𝑚 for each range gate independently:

𝑃(𝑚 = 𝑘; 𝑅𝑔) = 𝜂 ∏ 𝑃(𝑎|𝑚 = 𝑘; 𝑐ℎ)

𝑁

𝑐ℎ=1

 (2.59)

where 𝜂 is the normalizer, 𝑘 is the assumed ground truth power level, 𝑅𝑔 is the index of

range gate, 𝑎 is the measured power level when the index of the range gate equals to 𝑅𝑔,

and 𝑁 is the total number of array channels.

Maximization step (M-step)

M step calculates the marginal probability of 𝑚 by given 𝑎 as

𝑃(𝑚|𝑎; 𝑐ℎ) = ∑ 𝑃(𝑚 = 𝑘; 𝑅𝑔)

𝑀

𝑅𝑔=1

 (2.60)

in which 𝑀 is the total number of range gates. And then, we update Equation (2.58) by

using Bayes’ rule

𝑃(𝑎│𝑚; 𝑐ℎ) = 𝜂 × 𝑃(𝑚|𝑎; 𝑐ℎ) × 𝑃(𝑎; 𝑐ℎ) (2.61)

in which 𝑃(𝑎; 𝑐ℎ) is the probability of measured power amplitude from each channel.

Equation (2.61) computes distribution of 𝑎 for each channel given the distribution over

ground truth power levels. After several iterations, the 𝑃(𝑎|𝑚; 𝑐ℎ) would converge and

the maximum likelihood estimate between measured and the undistorted power level

would be established.

55

To verify the performance of EM algorithm calibration, we simulated a simple

three-channel receiver example with nonlinear distortion errors by using Matlab®. First,

we generated a set of data, 𝐷, ranging between 0 and 100, representing the truth power

levels. Note that we restrict the power levels to integers solely for the purpose of

illustration, and decimal power levels can be used when more fidelity is required. Then,

three different nonlinear transformations are applied to 𝐷, representing the output of three

RF nonlinear systems--𝐷1, 𝐷2, 𝑎𝑛𝑑, 𝐷3. The three nonlinear transformation models used

in this simulation are:

𝐷1 = 10√𝑚 (2.62)

𝐷2 =
𝑚2

100
 (2.63)

𝐷3 = 14 log2𝑚 (2.64)

respectively, in which 𝑚 are the undistorted power level of the reflected signal. We

applied the EM algorithm for calibration to these three datasets. Figure 2.9 shows the

calibration result, in which the solid lines represents the errors between the truth value

and calibration result for each channel after using the EM algorithm. The dash lines

represent the error between the nonlinearly-transformed datasets and the truth value.

From the figure, we can see that the EM algorithm successfully predicts the trend of the

three nonlinear transformations. However, this prediction contains some errors. The cause

for these errors is that although the EM algorithm can increase the likelihood function

between observed data and its truth value, this converges may be a local maximum of the

observed data [78] depending on the initial value, which means the algorithm cannot

guarantee a global optimum.

56

One simple way to alleviate the problem is to set the initial value randomly and

take the highest likelihood obtained as the global maximum [82]. Figure 2.10 shows the

calibration result of data set 𝐷1, as mentioned before, of using various initial conditions

as an example, in which the solid curve represents what is the truth power level for each

measured power level, and the dash curves is the calibration results. Among dash curves,

there is an intersection point of each solid line. When the calibrated power level is on the

left side of the intersection point, with the increasing value of 𝜎, the calibration result has

better matching with the truth value, however, the results become worse when 𝜎 grows

too large. On the other hand, on the right side of intersection point, when the value of 𝜎

becomes larger, the curve has good matching between ground truth and measured value.

So, we need an approach to select the best estimation based on different initial conditions

Figure 2.9: Simple example of three-channel receiver calibration results obtained by

using EM self-calibration algorithm

57

𝜎. Practically, since the truth value is unknown, we cannot directly tell which initial

condition has better predictions than others. However, the measured power level

differences among adjacent curves for a given calibrated power level indicates the

prediction status (fitted or over-fitted compared with true values). For example, in Figure

2.10, when the calibrated power level is in the range of [1, 20], starting from the blue line,

with the value of 𝜎 increased, the prediction status of each line changing from under-

fitted to over-fitted compared with dash line. When σ is no larger than 529, the measured

power level differences between each of three curves on the top of figure are around

√𝜎 = 10. In contrast, the measured power level differences between purple and yellow

curves is smaller than 10. So, based on this observation, we can use the variation of the

Figure 2.10: Comparison of calibration results based on various initial conditions.

(The dash line is the measurement value vs truth level. The solid line is the

measured level vs calibration result from three different values of 𝜎.)

58

differences of the measured power level for each 𝜎 as an indicator of the prediction status

(fitted or over-fitted). Moreover, there is an intersection point of four calibration curves.

After this point, the increasing rate for each curve is inversed, which can help us to

determine which curve should be picked. The optimum curve line finding procedure is

described as in Figure 2.11, in which 𝑜𝑝𝑡 is the numbers of starting conditions, 𝑅𝑒𝑐𝑃𝑤𝑟

indicates the power level in each channel, 𝐶𝑢𝑟𝑣(𝑖, 𝑘) is the calibration result for each

initial condition, 𝑠𝑖𝑔𝑚𝑎(𝑘) is the parameters for each initial condition.

Figure 2.12 shows the optimum finding result (the dash-dot-plus-sign line) based

on four different initial conditions (solid line), in which the optimal result shows a better

estimation than other conditions. Figure 2.13 shows the calibration results after using the

procedure of the optimum-result-finding, in which we can see that the improvement of

predictions for three channels compared with curves in Figure 2.9. In this example, we

use four different initial conditions. More initial conditions can be used to improve the

optimum-finding-results at the cost of higher computing load.

Final = Curv(:,1);

for k=2:opt

for i=1:RecPwr

 tmp = Curv(i,k)-Curve(i,k-1)

 If (tmp>sigma(k)-sigma(k-1)) or (tmp>diff_mem(i)*0.5)

 Final(i) = Curv(i,k)

 diff_mem(i) = tmp

 end

end

end

Figure 2.11 Optimization Procedure

59

Figure 2.12: Comparison of calibration results based on various initial starting condition

and optimum finding result

Figure 2.13: Calibration results after using optimum result finding procedure

60

In reality, since the noise would always be a factor to influence the condition of

the signal, we apply the Gaussian noise to the three datasets, 𝐷1, 𝐷2, 𝑎𝑛𝑑, 𝐷3 , as

mentioned before. Figure 2.14 and Figure 2.15 show the calibration results with two

different noise power levels, from which we can see that the EM algorithm is robust

enough to correctly predict the nonlinear transformation errors.

Figure 2.14: Calibration result when noise variance=1

61

Figure 2.15: Calibration result when noise variance=2

62

2.6.4. Target Direction Estimation

One of the important missions for a multi-channel radar system or PAR is determining

the direction (in azimuth and elevation) of a point target or a radiation source (such as

interference source). The most common or easiest way to detect the location of the point

targets is to perform the beamforming and find the peaks in corresponding azimuth or

elevation degree. The angular resolution of the traditional beamforming is limited by the

beamwidth of the antenna pattern. To reduce the angular resolution, some advanced

algorithms can be utilized to overcome the antenna limitation and achieve super-

resolution. In this section, the Direction of Arrival (DOA) estimation is investigated and

provide the computing complexity for each advanced algorithm.

Figure 2.16: Composite beam response for two signals at 10 and 0 degree. The

dashed curves are the responses to the individual signals, and solid curve is the

composite response

63

Herein we assume the transmission medium is nondispersive so that the

electrometric wave emitted from PAR propagates in straight lines, and the targets are in

the far-field area of the array. Consequently, the radiation reflected from the targets

impinging on the array is in the form of a sum of plane waves. Under those conditions, a

coarse estimation of the DOA of a single target can be known from the phase differences

applied to the beamforming weight factors, 𝑊𝑖 , as shown in Equation (2.1). A more

precise estimation is monopulse estimation [83], which is performed in principle by

comparing the amplitude or phase from the sum-beam output and diff-beam output. If

there is only one target present in the beamwidth, the monopulse estimation is unbiased

and efficient (minimum variance) [84], and rather insensitive to measurement noise [85].

However, when return signal is a composite of multiple targets within one beamwidth,

the beam response will have a single peak, as shown in Figure 2.16. The beamformer

therefore would fail to resolve two targets, producing a single biased direction estimation.

In this case, when the distance among each target is less than one beamwidth, other

methods needed to be applied to obtain the truth DOA of each target. The ability to

overcome the angular resolution of PAR, limited by its physical size of the aperture, is

called super-resolution.

Super-resolution can be achieved by utilizing the multiple spatial samples of

incoming wavefront, and some assumptions about the signal are needed to make at first.

For example, if we know the incoming signal is the echo of less than 𝑁 reflecting bodies,

the DOA of each target can be estimated by the knowledge of that the signal space is

orthogonal to the noise space. The resulting algorithm was called Multiple Signal

Classification (MUSIC) [86]. Although the super-resolution algorithms can increase the

64

angular resolution, they are based on the prior knowledge of the status of targets from the

conventional beamforming processing, which means that the conventional DOA

estimation method, such as monopulse, should be conducted in the first stage, and then

analyses the signal by using super resolution in detail [85]. Note that, for simplicity, the

following discussion of super resolution algorithms deals only with single dimensional

parameter, such as azimuth only DOA, and the narrow band signal of known frequency

is assumed.

Many super-resolution algorithms have been developed including maximum

likelihood [87] and maximum entropy method [88]. Although those algorithms have good

performance, they consume considerable computing resources, especially when the target

number is large [89]. Moreover, the signal model used by those two algorithms are biased

and sensitive to parameter estimates [90]. Thus, research had been done to exploit the

structure of data model and derive a new complete geometric solution for obtaining a

reasonable approximate solution, which is named as MUSIC. MUSIC is an eigenvector

projection procedure, in which the DOA is estimated by the fact that the signal space is

orthogonal to the noise space. The system model used in PAR is based on the parameters

listed in Table 2.4. The signal model is given as:

𝑥 = 𝐴𝑠 + 𝑛, (2.65)

where 𝑥 is the 𝑀 elements measured signal vector, 𝑠 is the ground truth signal source

vector with 𝑇 elements, 𝐴 is the steering vector with dimension of 𝑀 × 𝑇, and 𝑛 is the

noise vector. If the reflect signal from targets are modeled as stationary stochastic

processes, they are assumed to uncorrelated with signal and possess a positive definite

covariance matrix 𝑅𝑠 = 𝑠𝑠𝐻. Under this condition, the covariance matrix of measured

65

signal is given by 𝑅𝑥 = 𝐸{𝑥𝑥𝐻} = 𝐴𝑅𝑠𝐴
𝐻 + 𝜎0

2𝐼, in which 𝜎0
2 is the noise power. Then,

we perform the eigenvalue decomposition of the matrix 𝑅𝑥 to get the eigenvector 𝑈 and

eigenvalue 𝐷. For 𝑀 > 𝑇, it implies that in 𝐷 the first number of 𝑇 largest eigenvalues

are corresponding to the reflected signal, the result of 𝑀 − 𝑇 eigenvalues are from noise.

So we can rewrite 𝑅𝑥 as 𝑅𝑥 = 𝑈𝑠𝐷𝑠𝑈𝑠
𝐻 +𝑈𝑛𝐷𝑛𝑈𝑛

𝐻 , in which 𝑈𝑠 and 𝑈𝑛 are the signal

subspace and noise subspace, and 𝐷𝑠 and 𝐷𝑛 are the diagonal matrix whose entries

correspond to the eigenvalues associated with 𝑈𝑠 and 𝑈𝑛. As the signal is uncorrelated

with noise, so the DOA estimates are obtained by observing the peaks of the spatial

function spectrum function 𝑆(𝜃) as

𝑆(𝜃) =
1

A𝐻 × Un
 (2.66)

Table 2.4: Parameters used in the MUSIC

T Target Number

N number of range gate in the snapshot

M number of antenna elements

D number of directions in the detection area

To give a throughput estimation in MUSIC, we use the parameters listed in Table

2.4. There are 8𝑁3, 23𝑀3, and 8𝐷𝑀(𝑀 − 𝑇) +𝑀 flops in calculating 𝑅𝑥, eigenvalue

decomposition of 𝑅𝑥, and the final spectrum function 𝑆(𝜃) respectively. In total, there

are

8𝑀𝑁2 + 23𝑀3 + 8𝐷𝑀(𝑀 − 𝑇) +𝑀 (2.67)

complex number floating-point operations in MUSIC. To give an example, we use the

parameters listed in Table 2.5 to see how much computing resources are needed by using

66

MUSIC. Based on Equation (2.70), the throughput will be around 320 MFLOPS. This

workload does not seem large in this case, however, if we perform the 2-dimension

search-for every elevation, the computational load would dramatically increase. An

alternative algorithm, Estimation of Signal Parameters Via Rotational Invariance

Techniques (ESPRIT), [90] can be utilized to reduce the computing requirements and

achieve super-resolution DOA estimation at the cost of more number of antenna elements

than MUSIC.

Table 2.5: Assumption parameters used in the DOA algorithms

T 5

N 1000

M 20

D 180

Single elevation volume scan time 500 𝑚𝑠

Unlike MUSIC, ESPRIT does not need the knowledge of array manifold nor

searching over parameter space, which is computationally expensive. Like MUSIC,

ESPRIT correctly exploits the underlying data model by using the knowledge of signal

subspace and the noise subspace. Different from MUSIC, the ESPRIT exploits the

displacement invariance of signal subspace induced by two identical subarrays 𝑋 and 𝑌,

displaced from each other by distance 𝑑. The system model used in PAR is also based on

the parameters listed in Table 2.5. The signal model is defined as

𝑥 = 𝐴𝑠 + 𝑛

𝑦 = 𝐴𝜑𝑠 + 𝑛 (2.68)

67

in which 𝑠 is the 𝑇 × 𝑁 matrix impinging signals as observed by the subarrays 𝑋 and 𝑌,

𝑛 is the noise vector, and 𝜑 is the subarray displacement vector. Each subarray contains

𝐾 = 𝑀 − 1 number of antenna elements, so the steering vector, 𝐴, is the matrix with

dimension of (𝑀 − 1) × 𝑇 . The total-least-square ESPRIT algorithm based on a

covariance formation can be summarized as follows.

1. Obtain the receiving covariance matrix, from the measurement as

𝑅𝑥𝑦 = [𝑥 𝑦] × [𝑥 𝑦]𝐻 (2.69)

The computation complexity in this step is 8𝐾2𝑁 flops.

2. Compute the eigenvectors of 𝑅𝑥𝑦 as shown in Equation (2.69). As the number of

target is 𝑇, there are 𝑇 eigenvectors associate with signal subspace, which means, for

each subarray, it obtains the signal subspace, 𝑈𝑥 and 𝑈𝑦, as a matrix with dimension

of 𝐾 × 𝑇. In this step, the workload is 𝟐𝟑 × (𝟐𝑲)𝟑 = 𝟐𝟎𝟒𝑲𝟑 flops.

𝑅𝑥𝑦 = 𝜆𝑈𝑥𝑦, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑈𝑥𝑦 = [𝑈𝑥 𝑈𝑦] (2.70)

3. The invariance structure of the array implies the signal subspace from the aspect of

entire array, 𝑈𝑠, can be decomposed into 𝑈𝑥 and 𝑈𝑦 as

𝑈𝑠 = [
𝑈𝑥
𝑈𝑦
]. (2.71)

4. Then we can compute the eigendecomposition of 𝑈𝑠
𝐻 × 𝑈𝑠, as 𝑈𝑠

𝐻 × 𝑈𝑠 = 𝐸Λ𝐸𝐻 and

partition 𝐸 into 𝑇 × 𝑇 submatrices, as

𝐸 = [
𝐸11 𝐸12
𝐸21 𝐸22

] (2.72)

In this step, the matrix multiplication and the eigendecomposition would have

23 × (2𝑇)3 and 𝟒 × 𝟐𝑻 × 𝑲 × 𝟐𝑻 flops computation complexity separately.

5. Calculate the eigenvalues of Ψ = −𝐸12𝐸22
−1, as

68

Ψ = 𝜆𝑘𝑈, 𝑘 = 1,⋯ , 𝑇 (2.73)

In this step, there are 𝟏𝟏𝑻𝟑 + 𝟐𝟑𝑻𝟑 flops computation in total.

6. Estimate the 𝜃𝑘 = sin−1{𝑎𝑛𝑔𝑙𝑒(𝜆𝑘)/𝜋} for DOA, and costs 𝟔𝑻 flops.

In total, there are

204𝐾3 + 238𝑇3 + 6𝑇 + 32𝐾2𝑁 + 16𝑇2𝐾 (2.74)

flops in the ESPRIT.

Assume we take the same parameters for MUSIC in Table 2.5, the throughput of

ESPRIT is 𝟐𝟔 𝑴𝑭𝑳𝑶𝑷𝑺, which is 12 times less than the working load in MUSIC. The

primary computational advantage of ESPRIT is from eliminating the search procedure

happened in Equation (2.66), and directly produces signal parameters in terms of

eigenvalue instead. This advantage would become even more pronounced in 2-

dimensional DOA estimation, where the computational load grows linearly with

dimension in ESPRIT, while for MUSIC it grows exponentially. On the other hand,

MUSIC needs to know the array manifold, 𝐴, so it is sensitive to sensor position, gain

and phase errors. In other words, MUSIC requires precise calibrations. The advantages

of MUSIC method are that it is more accurate and stable in the term of SNR variations

[91], and it can be extended for to arbitrary arrays of sensors. In contrast, ESPRIT only

works for uniform arrays. In all, both methods can give high resolution DOA estimations

for multiple targets. If the applications are more cost-sensitive, ESPRIT would be a better

choice. If the operational environment is complex and has low SNR, it is better to use

MUSIC procedure happened in Equation (2.66), and directly produces signal parameters

in terms of eigenvalue instead.

69

3. System Architectures

Typically, an HPEC platform for PAR accommodates a computing environment [9]

consisting of multiple parallel processors. To facilitate system upgrades and maintenance,

the multiprocessor computing and interconnection topology should be flexible and

modular, meaning that each processing endpoint in the backend system needs to be

identical, and its responsibility entirely assumed or shared with other endpoints without

interfering overall system operations. Moreover, the connection topology among each

processing and I/O module should be flexible and capable of switching a significant

amount of data from other endpoints. Figure 3.1 shows a top-level system description of

a general large-scale array radar system. In receiving arrays, once data are collected from

the array manifold, each transmits and receive module (TRM) downconverts the

incoming I/Q streams in parallel. To support the throughput requirement, the receivers

group I/Q data from each coherent pulse interval (CPI) and send grouped data for

beamforming, pulse compression, and Doppler filtering. Beamforming and pulse

compression are paired into pipelines, and the pairs process the data in a round-robin

Figure 3.1: Top-level system digital array system concept

70

fashion. At each stage, data-parallel partitioning is used to mitigate the massive amount

of computations into smaller, more manageable pieces.

Fundamental processing functions for PAR (e.g., beamforming, pulse

compression, Doppler processing, and real-time calibration) require teras of operation per

second for large-scale PAR applications [5]. Since such processing is executed on a

channel-by-channel basis, the processing flow can be parallelized naturally. A typical

scheme for parallelism involves assigning computation operations to multiple parallel

processing elements (PE). In that sense, from the perspective of radar application, a data

cube containing data from all range gates and pulses in a CPI is distributed across multiple

PEs within at least one chassis. A good distribution strategy can ensure that systems not

only achieve high computing efficiency but fulfill the requirements of modularity and

flexibility as well. In particular, modularity permits growth in computing power by

adding PEs and ensures that an efficient approach to development and system integration

can be adopted by replicating a single PE [9]. The granularity of each PE is defined

according to the size of a processing assignment that forms part of an entire task.

Although finer granularity allows designers to attune the processing assignment, also

poses the disadvantage of increased communication overhead within each PE [10].

As mentioned earlier, the features of a basic radar processing chain allow for

independent and parallel processing task divisions. In pulse compression, for instance,

the match filter operation in each channel along the range gate dimension can perform

independently; as such, a large throughput radar processing task can be assigned to

multiple processing units (PUs). Since each PU consists of identical PEs, the task would

undergo further decomposition into smaller pieces for each PE, thereby allowing an

71

adjustable level of granularity that facilitates precise radar function mapping. At the same

time, a centralized control unit is used for monitoring and scheduling distributed

computing resources, as well as for managing lower-level modules. PU implementations

based on the MTCA open standard can balance tradeoffs among processing power, I/O

functions, and system management. In our implementation, each PU contains at least one

chassis, each of which includes at least one MCH that provides central control and acts

as a data-switching entity for all PEs, which could be an I/O module (e.g., RF transceiver)

or a processing card. The MCH of each MTCA chassis could be connected with a system

manager that supports the monitoring and configuration of the system-level setting and

status of each PE by way of an IP interface. Within a single MTCA chassis, PEs

exchanges data through the SRIO or PCIe fabric on the backplane, and the MCH is

responsible for both switching and fabric management.

Figure 3.2 gives an example of using an MTCA chassis to implement the

fundamental functions of radar signal processing. We will not go into details of each step

since the purpose here is to illustrate the parallelism of the major steps, but a brief

description of the system is in Chapter 4. Depending on the nature of data parallelism

within each function, computing load is divided equally and a portion assigned to each

Figure 3.2: Illustration of the MTCA architecture in a PAR

72

PU. The computational capability is reconfigurable by adjusting the number of PUs, and

for each processing function, a different PU can constitute at least one MTCA chassis

with various types of PEs inserted into it, all according to specific needs. In the front,

several PUs handle a tremendous amount of beamforming calculations, and by changing

the number of PUs and PEs, the beamformer can be adjusted to accommodate different

types and numbers of array channels. Since computing loads are smaller for pulse

compression and Doppler filtering, assigning one PU for each function is sufficient in

MPAR systems.

3.1. Parallelization Model

A parallelization model is typically a way of decomposing a signal processing algorithm

into small portions, mapping each portion to the different processing unit, and

reconstructing the results calculated from each portion. There are two fundamental types

of parallelization: task and data parallelism. In data parallelism, the parallelization is

accomplished by equally divided a data object into subjects, each of which is operated by

a processing unit with a similar or identical computation. For example, matrices can be

partitioned into blocks or submatrices, and matrix computation can be formulated

regarding submatrices. The decomposition shown in Figure 3.3 is based on dividing the

Figure 3.3: (a) Partition input and output matrices into 2 × 2 submatrices.

(b) A decomposition of matrix multiplication into four tasks based on (a)

73

output matrix 𝐶 into four blocks and each of task computes one of these blocks

independently. 𝐴 and 𝐵 are two 𝑛 × 𝑛 matrices, so each of submatrix in 𝐶 is 𝑛/2 × 𝑛/2.

If each of processing endpoints has enough memory to store four of submatrices, it is easy

to see that, with data decomposition, each task in Figure 3.3 does not need to

communicate data between others, which is referred as embarrassingly parallel. However,

if each endpoint has less memory to hold entire four submatrices, data parallel requires

synchronization and communication among the parallel units.

Compared with data parallelism, the task parallelism looks for the independence

among tasks, so that one algorithm can be divided into tasks and executed concurrently.

An example of data sorting based on task parallelism is shown Figure 3.4 [10], in which

Lines 11 and 12 indicates that the array is partitioned into two parts and each part can be

solved recursively. Therefore, to parallelize the quicksort is to execute it initially on one

processing unit, and then when the algorithm runs to line 11 and line 12, assign one of

the subtasks to another processing unit. In this example, no communication is needed

between tasks. However, in general, some tasks may use data produced by other tasks.

Thus synchronization and communication may be needed in task parallelism schemes

too.

In both data and task parallelism, tasks may need to exchange data with other

tasks. This communication time can significantly impact the efficiency of parallel

programming by requiring processors halt for the data. A suitable data communication

pattern or strategy is a support of a stable and low latency HPEC system. When data

exchanging is unavoidable, we can make the computations to be carried out in concert

with communication. A ping-pong buffer mechanism is a simple technique that can make

74

the processor to do the computing job without waiting for the data. This technique

requires extra data communication hardware, usually, Direct Memory Access (DMA), to

prepare two sets of data buffers for all incoming and outgoing data streams as shown in

Figure 3.5. While the DMA transfers the data into and out of the ping buffers, the

processing core manipulates the data in the pong buffers. When both the processor and

DMA finished the tasks, they switch the working buffers. By using the ping-pong buffer,

processors activity can be distanced from memory fetching activity.

Figure 3.5: Ping-Pong Buffering Mechanism

1. procedure QUICKSORT (A, q, r)

2. if q<r

3. x=A[q];

4. s=q;

5. for i=q+1:r

6. if A[i]≤x

7. s=s+1;

8. swap(A[s],A[i]);

9. end

10. swap(A[q],A[s]);

11. QUICKSORT (A,q,s);

12. QUICKSORT (A,s+1,r);

13. end

14. end

Figure 3.4: Example of Parallel Quicksort

75

Ping-pong buffer is used to “hide” the communication latency in the scale of the

processing unit. In the large picture, to reduce the computing halt time among each

parallel task two forms of scheduling can be employed: round-robin and pipeline

mechanism. In the PAR application, those two methods are widely used in the front-end

processing by exploiting the repetitive nature of the incoming data streams [9]. In a round-

robin, as shown in Figure 3.6 (a), a data object is partitioned into four pieces, and each

piece is dealt out to a free processor, which means P1 operates on an earlier data piece

while a different set of parallel processors operate on a more recent data. As such, round-

robin can be viewed as data-parallel parallelism. Once the P1 finished the processing of

the earlier data, a new data set would be ready to be processed. The latency of the round-

robin scheduling is the number of parallel processing point multiply by the initial waiting

time for each processor.

 Time

Processor 1 2 3 4 5 6 7 8 9 10 11 12 13

P1

P2

P3

P4

(a)

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 P1 P2 P3 P4

(b)

The gray box represents processor is waiting for the data. The green box

indicates the processor is working. The red box is the result is sending out.

Figure 3.6: Examples of round-robin and pipeline scheduling

Pipeline scheduling, as shown in Figure 3.6 (b), is to have each processor in an

N-processor queue processing an entire data. By overlapping various tasks, pipelining

76

improves the overall processing throughput, which is quite suited to the PAR application.

In the front-end, one processor could implement the baseband quadrature conversion,

another pulse compression, and another beamforming, in which the output of the previous

stage is the input of the following stage. In this case, each stage performs a distinct task,

thus pipelining can be viewed as task parallelism. The latency of this approach is the

depth of the pipeline, which means the time span between the data starting to flow in the

pipeline and the last data flow out.

Despite the forms of parallelism, the level of parallelism determines the

granularity of the decomposition of the algorithm, from bit-level parallelism with a basic

operation in processing core to sub-problems within the entire program. A decomposition

into a large number of concurrent tasks is called fine-grained, and in contrast, a

decomposition into a relatively small number of tasks is coarse-grained. [92] defines a

five-level parallelism as shown in Figure 3.7. The lower the level, the higher degree of

parallelism is achieved, while the communication overhead would be increased too. At

Figure 3.7: Levels of parallelism

77

some point, the cost of communication will consume more time than the time saved by

parallel implementation of a program. This communication overhead effectively limits

the size and level of parallelism that may be productively employed. For evaluating the

effectiveness of parallel algorithm implementations in parallel computing systems,

parallel speedup and parallel efficiency are two important metrics. Speedup is a metric

of latency improvement for a parallel algorithm compared with a serial algorithm

distributed over 𝑀 PUs, defined as:

𝑆𝑀 = 𝑇𝑆 𝑇𝑃⁄ (3.1)

In Equation (3.1), 𝑇𝑆 and 𝑇𝑃 are the latency of the serial algorithm and the parallel

algorithm, respectively. Ideally, we expect 𝑆𝑀 = 𝑀, or perfect speedup, although such is

rarely achieved in practice. Instead, parallel efficiency is used to measure the performance

of a parallel algorithm, defined as

𝐸𝑀 = 𝑆𝑀 𝑀⁄ (3.2)

𝐸𝑀 is usually less than 100%, since the parallel components need to spend time on data

communication and synchronization [9], also known as overhead. In some cases,

overhead is possible to overlap with computation time by using multiple buffering

mechanisms. However, as the number of parallel computing nodes increases, the data size

of each computing node lessens, meaning that the computing nodes would need to switch

between processing and communication more often, thereby inevitably resulting in what

is known as method call overhead. When the algorithm is distributed across more nodes,

such overhead can preclude the benefit of using additional computing power. Parallel

scheduling thus needs to minimize both communication and method call overhead.

78

3.2. Data Transportation and Backend Protocol

With more powerful and efficient processors, HPEC platforms can acquire significant

computing power and meet scalable system requirements. However, HPEC performance

is also limited by the availability of a commensurate high throughput interconnect

network. Moreover, the scalability of communication fabric that providing achievable

communication bandwidth to each processing node should grow along with the newly

added multiple nodes. Since the communication overhead setback significantly impacts

the efficiency of executing system functions, a proper implementation of the

interconnection network among all processing nodes is critical to the performance the

parallel processing chain. Two primary connection methods can be selected based on the

distance of data transmission. For the long distance, chassis to chassis communication,

Gigabit Ethernet or InfiniBand over copper of fiber cable would be a better choice. For a

short distance board-to-board communication, in which the data are transmitted through

the trace lines on the printed circuit board, the RapidIO and PCI Express are the two most

common options. For both cases, they all employ multiple low-voltage differential

signaling pairs, apply 8B/10B coding, and base on switched-serial interconnects; the

differences are in the data packaging and routing strategy.

79

Figure 3.8 shows a block diagram of a typical interconnection fabric, in which the

communication is issued from the processing card and managed by a network switch. In

the processing card, the network interface connects to the processing core and memory

via the bus. On the network side, the network interface connects to the switch network

through cables for out-of-chassis communication, or through copper traces on chassis

backplane for board-to-board communication. Typically, multiple numbers of links are

active concurrently in the network interface to increase the data throughput. The number

of switches and the number of ports on each switch determine the scalability of the

network, and the aggregate bandwidth across all of the paths defines the metric of network

capacity.

Figure 3.8: Typical interconnection fabric

80

As a concrete example, we consider the MTCA standard, which represents the

latest attempt at increasing board to board communication on the backplane by leveraging

the switched-serial interconnection fabrics. For the switch network, the MTCA supports

multiple protocols, including Serial RapidIO, PCIe, SATA, and 10 Gigabit Ethernet

(GbE). MTCA has two kinds of cards: standard AMC front model and MCH (MicroTCA

Carrier Hub). AMC is a payload card which can be as a processing unit, or front-end data

transmitting/receiving model, and can be inserted into the slots on the backplane of

MTCA shelf. Each payload card can exchange the data through the high-speed

differential trace lines on the backplane. MCH is responsible for the monitoring system

status and provides data link switch for each payload card. To create larger, stable, and

Figure 3.9: MTCA backplane configuration

81

redundant network, two MCHs can be used and connected in a dual-star configuration. A

common backplane configuration for MTCA is 14-slots chassis with 12 payload cards

and 2 MCH, as shown in Figure 3.9. Each MCH has an independent fabric network,

providing the redundancy for the system. The fabric A for each MCH has one serial link,

routed to ports 0 and 1 of AMCs, which is allocated for GbE in common. Fabric B has

one serial link too and is allocated for protocol SATA through port 2 and 3 of AMCs. If

the application requires a direct link between AMCs, the fabric B can be routed as inter-

slot connections, allowing for one AMC directly communicate with another one without

involving MCH as shown in Figure 3.10. Fabrics D to G use the four links to support data

connectivity, known as fat pipes, which is usually used as PCIe or Serial RapidIO

transmission.

Table 3.1: Typical COTS Interconnection Fabrics [93] [94]

 SRIO Gen 2 SRIO Gen 3 PCIe Gen2 PCIe Gen3 10 GbE

Signal pair 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 4 (XAUI)

Encoding 8b/10b 64b/67b 8b/10b 128b/130b 8b/10b

Channel ~80-100 cm ~80-100 cm ~40-50 cm ~40-50 cm 100 m

Bandwidth (4X) 20 Gbps 40 Gbps 16 Gbps 32 Gbps 40 Gbps

Latency sub s sub s sub s sub s tens of s

As mentioned before, multiple transmission protocols have been employed in

HPECs. Much more often, people tend to think each protocol would be equal if they have

similar peak bandwidth. However, each protocol is developed and optimized for different

purposes of the application and types of processor. Typically, an interconnect will solve

the problems in one application, but it would be less efficient if some conditions have

82

been changed. Table 3.1 presents the typical bandwidth and lane configurations for most

widely used Commercial off-the-shelf (COTS) fabrics, in which the raw bandwidth is a

fundamental parameter to determine the peak throughput of the system. However, the

channel length, coding method, and latency would affect the efficiency of each protocol.

Thus, when people choose the backend data protocol, the inherent protocol capabilities,

supported topologies and latency should also be considered. The following use PCI

Express, Serial RapidIO (SRIO), and 10 GbE as illustrative examples.

PCI Express, used as its name, is designed to make the host processor, usually

CPU, to connect multiple numbers of peripheral devices. Subsequently, the topology of

PCI Express is a hierarchy of buses with a single root complex, as shown in Figure 3.11.

Although PCI Express switch uses the 32-bit or 64-bit device ID to forward the packets

to the device or downstream switch, PCI Express specification does not support peer-to-

peer communication. Implementing peer-to-peer connectivity requires researchers to

create a new mechanism, such as “non-transparent bridge” [95], which could be

exceedingly complex. In contrast, Ethernet and SRIO are routable protocols, in which

more complex topology can be implemented. Note that both PCI Express and SRIO are

designed for onboard or board-to-board communications, which shows low latency and

higher data throughput compared to Ethernet. In summary, if the applications have clear

hierarchy structure and no out-of-chassis communication, PCI Express would be a good

choice for connectivity.

Figure 3.10: point to point connectivity between port 2 and 3

83

Ethernet is the oldest and the most widely used protocol compared with other two

protocols. For the past 35 years, although Ethernet has been evolved to gain more

bandwidth, the improvement has been steadily in recent years and is reaching its

bottleneck. Ethernet has the advantage of long-distance transmission, which suits the

chassis-to-chassis communication. Moreover, as the Ethernet has been used widely, the

cost of Ethernet-related chips, boards, and interfaces is relatively low. Identical to SRIO,

Ethernet is using the routing table to switch the packages. The drawback of Ethernet is

the significant latency and communication overhead. Ethernet was originally designed

for long distance transmission, so it requires a collection of protocols and related

networking functionality to compensate the error brought from the noisy transmission

environment. Those extra protections increased the overhead of Ethernet package and

made the transmission inefficient. For example, for a 100 Bytes payload, the efficiency

is only 60% if the UDP package is used. Using TCP package or smaller sizes of payload

would be less efficient. The large overhead also increases the computing burden of

Ethernet switch, leading to the problem of high power consumption and rising cost of

Figure 3.11: Typical PCI Express system topology

84

switch and latency. In summary, Ethernet is suitable for the long distance, high latency

transmission applications, such as data center, in which the power consumption and the

cost of Ethernet switch are not sensitive, and many sophisticated functionalities such as

firewalls, prioritization, and virtual LAN can be utilized [93].

RapidIO is a reliable, efficient, and highly scalable protocol. Compared with

PCIe, SRIO is designed to support both point-to-point and hierarchical models. The

package routing in the SRIO is based on the device ID, and the switching decisions are

merely based on source and destination ID. This feature allows SRIO to add new

transaction types without changing the switch. Moreover, it demonstrates a better flow

control mechanism than PCI Express and Ethernet. The flow of control in Ethernet is

implemented in the software, which requires significant buffering capabilities to allow

for retransmission [96]. PCI Express and RapidIO flow of control both offer a retry

mechanism based on tracking credits inserted into packet headers in physical layer[97].

Also, SRIO also has logical layer flow control mechanisms by metering the admission of

packets to the fabric, which is similar to the Ethernet flow control. Compared with

Ethernet, logical level flow control in RapidIO is implemented by hardware, freeing

precious processing core. RapidIO also includes a virtual output queue backpressure

mechanism, which allows switches and endpoints to learn whether data transfer

destinations are congested [96]. Given those characteristics, SRIO allows an architecture

to strike a working balance between high-performance processors and the interconnection

network.

In light of those considerations, we use SRIO as our backplane transmission

protocol [98], and our current testbeds are based on SRIO Gen 2 backplanes. Each PE

85

has a four-lane port connected to an SRIO switch on the MCH. In our system, SRIO ports

on the C6678 DSP support four different bandwidths: 1.25, 2.5, 3.125, and 5 Gb/s. Since

SRIO bandwidth overhead is 20% in 8-bit/10-bit encoding, the theoretical effective data

bandwidths are 1, 2, 2.5, and 4 Gb/s, respectively. In reality, SRIO performance can be

affected by transfer type, the length of differential transmission lines, and the specific

type of SRIO port connectors. To assess SRIO performance in our testbed, we conducted

the following throughput experiments.

Figure 3.12 shows the performance of the SRIO link in our MTCA test

environment by using NWrite and NRead packets in 5 Gb/s, four-lane mode. Performance

is calculated by dividing the payload size by the elapsed transaction time from when the

transmitter starts to program SRIO registers and the receiver has received the entire

dataset. First, the performance of the SRIO link is enhanced along with larger payload

sizes. Second, the closer the destination memory to the core, the better the performance

Figure 3.12: Data throughput experiment results in MTCA-based SRIO testbed

86

achieved with the SRIO link. Optimally, SRIO 4× mode can reach a speed of 1,640 MB/S,

which is 82% of its theoretical link rate.

3.3. Processing Units

For an embedded signal processing unit, designers often have to balance various

competing objects: development cost, performance, and time to the market. It is

impossible to meet all the requirements at the same time. So, the designer needs to select

a proper implementation technology, according to the constraints specific to the

application. In this dissertation, we propose a low-cost experimental PAR computing

platform. The capacity to fulfill the canonical radar processing for a scalable PAR is our

main concern, and at the same time, we want to reduce the cost of the system. Those

requirements confine the choice of the principal processing power for the most of the

processing tasks should be in the area of COTS. Finally, we choose to use the MTCA to

build the processing unit for the PAR front-end processing and part of backend

processing. The processing units are the highly parallel homogeneous computation

platform, in which multiple numbers of payload cards can be inserted. Each processing

unit can be connected with others and form up a scalable computing system for PAR.

Figure 3.13 shows the MTCA based processing unit, in which there are 12 slots for

payload cards and two slots for the MCH. As mentioned in Section 3.2, each payload card

can communicate with others via switch fabric on the backplane, and the MCH would

provide the routing capability and system monitoring. The out-of-chassis communication

can be done by using the high-speed ports on one or each of the payload cards.

87

In our test platform, there are two types of payload cards: RF transceiver module

and DSP module. The RF transceiver module is AMC518 + FMC214 from VadaTech©,

which has four receiving channels, two transmitting channels, and one Xilinx Zynq

FPGA. The DSP module is the EVMK2H or EVM6678 from TI©. By using MTCA, RF

transceiver, and DSP processing module, a scalable HPEC platform for PAR application

can be built. An example showing in Figure 3.14 illustrates a simple front-end processing

platform. After the return signal sampled by ADCs, FPGA on AMC518 would do the

down conversion and basic digital filtering, and then the data would be transmitted

through 4 lanes of SRIO to the DSP module via the backplane fabric. In the DSP, the data

coming from all the FPGA would be combined and sent to the computing PU through

Hyperlink. In the computing PU, DSP modules take the responsibility of performing

canonical radar signal processing algorithms. Finally, the data would be transmitted to

Figure 3.13: MTCA based processing unit

88

the next stage through Hyperlink ports. In the computing PU, the number of DSP module

is determined based on required computational loads. Moreover, each computing PU can

be connected with others by way of the Hyperlink port. With this proposed PU, the

computing power of HPEC can be scaled horizontally by connecting more MTCA

chassis, and scaled vertically by adding more DSP or RF transceiver model in MTCA

chassis.

In each computing PU, the master DSP is also responsible for sending the commands

from PC to other DSPs. Those commands would instruct each DSP the size of a data cube

and other parameters related to the processing. After receiving those commands, DSP

Figure 3.14: Simple example of a PU-based architecture

89

would start to set up the dedicated memory region for the communication and computing,

and configure the EDMA and interrupt registers. When the initialization is finished, DSP

will wait for the command to start the processing. By using this method, the system has

the flexibility of controlling the computing and communication load of each PU and

makes the possibility of that progressively increasing the number of PU.

3.4. System Synchronization

3.4.1. General Calibration Procedure

Calibrating a fully digital PAR system is a complex procedure involving four general

stages, as shown in Figure 3.15. During the first stage, transmit-receive chips in each

array channel need to calibrate themselves regarding DC and frequency offsets, on-chip

phase alignment, and local oscillator calibration. Those problems always relate to the

issue of the signal integrity, power integrity, and electromagnetic compatibility, which is

quite complicated and the most effects to solve them are based on experience and felt as

“black magic’. So, the chance of the first failure is quite high, and multiple version of

PCB design would be a common situation until the performance can be meet the

requirements. During the second stage, subarrays containing fewer channels and radiating

elements are aligned precisely in the chamber environment by way of near-field

measurements, plane wave spectrum analysis, and far-field active element pattern

characterizations. Note that for the small antennas, which width of radiators is smaller

compared with the wavelength, 𝜆, the near field region is a radius 𝑟 ≪ 𝜆. While for the

large antenna, the near field region is a radius 𝑟 = 2𝐷2/𝜆, in which 𝐷 is the aperture of

antenna. In the second stage, the focus falls upon antenna elements, not the digital

90

backend, and initial array weights for forming focused beams at the subarray level are

estimated precisely. In the near filed measurements, as shown in Figure 3.16, it involves

two calibrations: transmitting and receiving calibration. In transmitting calibration, a test

probe scan across each antenna in the subarray to directly measure the phase and

amplitude. In the receiving calibration, the measurements are the output directly from the

ADC without mixing with the local oscillator, which would prevent the error brought

from the local oscillator. The measured value by each antenna are normalized and

compared. So, we can adjust the phase shifter and attenuators respectively and make each

antenna have the same response function. This near-field measurement requires an

automated precise probe control in an anechoic test chamber. Therefore, this method is

an initial factory calibration rather than in-field calibration [71]. Plane wave spectrum

analysis [99] is to acquire the far-field pattern of array by extracting the information for

near-field measurement. Unlike the near-field calibration mentioned before, the data

obtained in the plane wave spectrum analysis is by sampling the antenna pattern on a

spherical surface. The near-field scanning can give much more information than the far-

field, because many details can be computed by using near-field data but difficult to be

measured in far-field [100]. By using the expansion coefficients and far-field terms for

Figure 3.15: General system calibration procedure for DAR and the focus of this work

91

the modes, the transformation between near-field and far-field can be build. The

calibration is performed by using the information calculated from the near-field data.

In the third stage, far-field full array alignment is performed in either chamber or

outdoor range environments. Similar to the near-field measurement, this stage requires a

far-field probe in the loop of the alignment process and requires synchronization and

alignments in the backend. We use a simple unit-by-unit approach to ensure that when

each time a subarray is added it maximizes the coherent construction of the wavefront at

each required beam-pointing direction. At first, only one subarray is excited, and then by

adjusting the phase shifter, the phase offsets with the highest received power level from

the test probe is recorded. Repeat this procedure for the rest of subarrays. In the end, the

whole array would be calibrated. Note that these array-level weights are combined with

chamber-derived initial weights from the second stage to optimize array radiation patterns

Figure 3.16: Measurement of radiation pattern from a PAR at the near-field range

92

for all beam directions numerically. When multiple beams are formed at once, the

procedure repeats for all beamspace configurations. Initial factory alignment is finished

after this stage. As multiple numbers of the subarray are used, and each subarray has its

own local oscillator, it is important to synchronize all the subarray unless the array pattern

would be unstable and lose its focus. The aim of the final stage is to ensure the consistency

of system performance after the system is shipped for the field deployment. In the field,

the working condition would be changed regarding temperature, electronics drifting, and

platform vibration, those perturbations would affect the characteristic of RF components,

and a calibration is needed to offset those performance deviations. Based on internal

sensor (i.e., calibration network) monitoring data, algorithms in the backend perform

channel equalization and pre-post distortions, as well as correct system errors of

deviations from the factory standard. The final step entails data quality control, which

compares the obtained data product with analytical predictions to further correct biases

at the data product level for desired pointing.

3.4.2. Backend Synchronization

Our study focuses only on backend synchronization during the third stage, a step

necessary before parallel, multicore processing can be activated. Also, synchronized

backend enables that reference clock signals in the front-end PU (and the RF chipsets

such as AD9361/9371/9375 in the front-end PU) to be aligned through FPGA Mezzanine

Card (FMC) interface. For the testbed architecture in Section 3.3, the front-end PU,

referred to as simply “front-end” in this section, of the digital PAR systems includes a

93

number of array RF channels. In each channel, there is an integrated RF digital transceiver

with an independent clock source in its digital section.

Synchronization in this front-end system can be categorized according to either

in-chassis or multi-chassis synchronization. In-chassis synchronization ensures that each

front-end AMC in a chassis works synchronously with those in the other chassis. Figure

3.17 shows the architecture of a dual-channel front-end AMC module, which is based on

an existing product from VadaTech. The Ref Clock and Sync Pulse in Figure 3.17 are

radial fan-out by the MCH to each slot in the chassis, and each front-end AMC uses the

Sync Pulse and Ref Clock to accomplish in-chassis synchronization. As an example,

Figure 3.18 shows the timing sequence of synchronizing two front-end AMCs. Since

commands from the remote PC server or other MTCA chassis may arrive at AMC 1 and

AMC 2 at different times, transmitting or receiving synchronizations requires sharing the

Sync Pulse between the AMCs. When AMCs acknowledge the command and detect the

Sync Pulse, the FPGA triggers the AD9361 chip on both boards at the falling edge of the

next Ref Clock cycle. By using that mechanism, multichannel signal acquisition and

generation can be synchronized within a chassis. The accuracy of in-chassis

Figure 3.17: PU frontend AMC module architecture

94

synchronization depends on how well the trace length is matched from an MCH to each

AMC. If the trace length is fully matched, then synchronization will be tight.

For multi-chassis synchronization, the chief problem is so-called clock skew,

which to overcome, requires a clock synchronization mechanism. The most common

clock synchronization solution is Network Time Protocol (NTP), which synchronizes

each client based on messaging with User Datagram Protocol [101]. However, NTP

accuracy ranges from 5 to 100 ms, which is not precise enough for PAR application [102].

To get more accurate synchronization in the local area network, the IEEE 1588 Precision

Time Protocol (PTP) standard [103] can provide sub-microsecond synchronization [104].

To implement PTP, the front-end chassis needs to be capable of packing or unpacking

Ethernet packets, and additional dedicated hardware and software are required, which

increase both the complexity and cost of the front-end subsystem. A better method of

implementing multi-chassis synchronization would take advantage of GPS pulse per

second (PPS), since by connecting each chassis to a GPS receiver, the MCHs can use PPS

as a reference signal to generate the Ref Clock and Sync Pulse for in-chassis

synchronization. Because the PPS signal among different MCHs is synchronized, the Ref

Clock and Sync Pulse in each chassis is phase matched at any given time. However, when

the GPS signal is inaccessible or lost, the front-end subsystem should be able to stay

Figure 3.18: Frontend in-chassis synchronization timing sequence

95

synchronized by sharing the Sync Pulse from a common source, which could be an

external chassis clock generator or a signal from one of the chassis. In both methods, the

trace length to each MCH from the common Sync Pulse source can vary, thereby making

propagation time delay of the Sync Pulse from each chassis differ. To address this issue,

we need to know the delay time difference of each chassis compared with the reference

(i.e., master) chassis. With that knowledge, all chassis can use the time difference as an

offset to adjust the triggered time.

To implement that approach, we designed a clock counter to measure elapsed

clock cycles between the Sync Pulse and the return Sync Beacon, the latter of which is

transmitted only from antennas connected to the reference chassis. Since the beacon

arrives at all antennas simultaneously, each front-end subsystem stops its counter at the

same time. The time differences in delay can be obtained by subtracting the counter

number from each slave chassis to the reference chassis. Figure 3.19 illustrates a model

timing sequence after each chassis receives the Sync Pulse. At time T0, the reference

chassis begins to transmit Sync Beacon and starts the counter. After two and a half clock

cycles of propagation delay, the slave chassis launches the counter as well. At time T3,

the Sync Beacon is received by both chassis, however, since the chassis detect the signal

only at its rising edge, the reference chassis detects the signal at time T5 with counter

Figure 3.19: Example timing sequence of multi-chassis synchronization

96

number 16. By contrast, in the slave chassis, the counter stops at 13. In turn, when the

Sync Pulse is received the next time, the reference chassis is delayed by three clock cycles

and triggers AD9361 at time T6, whereas the slave chassis starts it at T7. In our example,

T6 is not the same as T7. Such deviation arises because the clock phase angle between

the two chassis is not identical. When this phase angle approaches 360 degrees, it is

possible for the Sync Beacon to arrive when the rising edge of one clock has just passed,

while the rising edge of the next clock cycle is still approaching. In the worst-case

scenario, only one clock cycle synchronization error will occur, meaning that the

accuracy of multi-chassis synchronization refers to the period of the reference clock. One

way to enhance its accuracy is to reduce the period of the reference clock; however, the

sampling speed of ADC confines the shortest period of the clock, because a front-end

AMC cannot read new data in every clock cycle from ADC when AMC’s reference clock

frequency exceeds ADC’s sampling speed. In our example, since the maximum data rate

in AD9361 is 61.44 million samples per second, the inter-chassis synchronization

accuracy without using the GPS signal is 16 ns.

3.5. System Performance Evaluations

In this section, we will demonstrate the processing capacity for FFT, vector

multiplication, and data corner turn for each processing node. At first, we may introduce

the principle of cache and locality, which is a fundamental knowledge of improving the

efficiency of computing. From a signal processing application perspective, ideally, a

larger and faster on-chip memory is better. However, the performance of processors has

improved faster than the pace of memory. As a result, the high-speed and large size on-

97

chip memory is expensive, so only a small size high-speed on-chip memory is used, which

causes the problem that the on-chip memory may not obtain enough data for the

computing, so the processor needs to stall, waiting for the data to be cached. To solve this

problem, the memory hierarchical can be used to reduce the cost and maintain the high

computing efficiency, as shown in Figure 3.20. A fast but small size memory is placed

beside the processing core, in which the access time is one clock cycle from processing

core to Level 1 cache. This level memory are maintained by the cache controller, which

could predict the processor’s access pattern and pre-fetch the data from the external

memory to the cache. The next lower memory levels are larger but slower than Level 1.

Through this type of architecture, the average memory access time will be closer to the

access time of the fastest memory rather than to the access time of the slowest memory

[105].

Figure 3.20: TI C66x DSP Hierarchical Cache

98

3.5.1. FFT performance

The Fourier transform is to transform the signal from time domain into frequency domain.

This transformation can be compared as a prism separating the sunlight into the different

colors (frequencies). In the digital system, to compute the Fourier transform the analog

signal should be sampled at discrete intervals and then applied the discrete Fourier

transform to the digitalized data. The direct expression for the computation of DFT is

listed below:

𝑋[𝑘] = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

, 𝑘 = 0,1,⋯ ,𝑁 − 1 (3.3)

in which 𝑊𝑁
𝑘𝑛 = 𝑒−𝑗2𝑘𝑛𝜋/𝑁 is called the twiddle factor. The set of twiddle factors can be

computed ahead of time and saved in the length of DFT is known. There are 𝑁2 complex

multiplications and 𝑁(𝑁 − 1) complex additions for an N-point DFT. So, there are

8𝑁2 − 2𝑁 complex operations. To reduce the number of computation, we may take

advantage of twiddle factor by writing the DFT expression into a summation of the odd-

number points, and even-number points, showing as:

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁
2
−1

𝑛=0

+ ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=𝑁/2

. (3.4)

𝑊𝑁
𝑘can be factored out of the odd number part to get

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘

𝑁
2
−1

𝑛=0

+ ∑ 𝑥 [𝑛 +
𝑁

2
]𝑊𝑁

(𝑛+
𝑁
2
)𝑘

𝑁
2
−1

𝑛=0

 (3.5)

Since 𝑊𝑁
𝑘𝑁/2

= 𝑒−𝑗𝑘𝜋 = (−1)𝑘, the above equation can be rewritten as

99

𝑋[𝑘] = ∑ {𝑥[𝑛] + (−1)𝑘𝑥 [𝑛 +
𝑁

2
]}𝑊𝑁

𝑛𝑘

𝑁
2
−1

𝑛=0

 (3.6)

Equation (3.6) simply divides the DFT into two smaller DFTs, so this method is named

as radix-2 FFT, in which the number of computations can be reduced to 5𝑁 log2𝑁

operations. Another popular algorithm is the radix-4 FFT, which express Equation (3.3)

as four summations, then divides it into four equations, as shown below:

𝑋[𝑘] = ∑ {𝑥[𝑛] + (−𝑗)𝑘𝑥 [𝑛 +
𝑁

4
] + (−1)𝑘𝑥 [𝑛 +

𝑁

2
]

𝑁
4
−1

𝑛=0

+ (𝑗)𝑘𝑥 [𝑛 +
3𝑁

4
]}𝑊𝑁

𝑛𝑘

(3.7)

The radix-4 FFT combines two stages of a radix-2 FFT into one, so half as many stages

are required. The computation load for radix-4 FFT is 4.25𝑁 log2𝑁, which is 15% less

than radix-2 FFT.

To arrive at a four-point DFT decomposition, since 𝑊𝑁
4 = 𝑊𝑁/4, Equation (3.4)

can be written as four 𝑁/4 points DFTs, as

𝑋[4𝑘] = ∑ {𝑥[𝑛] + 𝑥 [𝑛 +
𝑁

4
] + 𝑥 [𝑛 +

𝑁

2
] + 𝑥 [𝑛 +

3𝑁

4
]}𝑊𝑁

4

𝑛𝑘

𝑁
4
−1

𝑛=0

 (3.8)

𝑋[4𝑘 + 1] = 𝑊𝑁
𝑛 ∑{𝑥[𝑛] − 𝑗𝑥 [𝑛 +

𝑁

4
] − 𝑥 [𝑛 +

𝑁

2
] + 𝑗𝑥 [𝑛 +

3𝑁

4
]}𝑊𝑁

4

𝑛𝑘

𝑁
4
−1

𝑛=0

 (3.9)

𝑋[4𝑘 + 2] = 𝑊𝑁
2𝑛 ∑{𝑥[𝑛] − 𝑥 [𝑛 +

𝑁

4
] − 𝑥 [𝑛 +

𝑁

2
] − 𝑥 [𝑛 +

3𝑁

4
]}𝑊𝑁

4

𝑛𝑘

𝑁
4
−1

𝑛=0

 (3.10)

100

𝑋[4𝑘 + 3] = 𝑊𝑁
3𝑛 ∑{𝑥[𝑛] + 𝑗𝑥 [𝑛 +

𝑁

4
] − 𝑥 [𝑛 +

𝑁

2
] − 𝑗𝑥 [𝑛 +

3𝑁

4
]}𝑊𝑁

4

𝑛𝑘

𝑁
4
−1

𝑛=0

 (3.11)

𝑋[4𝑘], 𝑋[4𝑘 + 1], 𝑋[4𝑘 + 2], and 𝑋[4𝑘 + 3] are 𝑁/4 point DFTs. So, a DFT of length

𝑁 has been factored into four DFTs of length 𝑁/2, in which each of 𝑁/4 point is a sum

of a four input samples 𝑥[𝑛], 𝑥[𝑛 + 𝑁/4], 𝑥[𝑛 + 𝑁/2], and 𝑥[𝑛 + 3𝑁/4], multiplied by

either 1, −1, 𝑗, or −𝑗. The sum is multiplied by a twiddle factor 𝑊𝑁
0, 𝑊𝑁

𝑛, 𝑊𝑁
2𝑛, or 𝑊𝑁

3𝑛.

The same factorization can be applied to each of these smaller DFTs, and so on, until the

original DFTs has been factored into a four-point DFTs.

To implement computing algorithm on DSP, especially for FFT, we need to

reduce cache misses and improve the commuting efficiency by aligning the data based

on the computing sequence order. Ideally, researchers can arrange the data array and

twiddle factor array in the computing sequence, however, usually, the incoming data

order is fixed and additional memory management time would cost more than that saved

from ordered sequence computing. In this case, only the twiddle factors, 𝑊𝑁
0, 𝑊𝑁

𝑛, 𝑊𝑁
2𝑛,

Figure 3.21: FFT performance for different range gate numbers

101

and 𝑊𝑁
3𝑛 are arranged to be contiguous. This eliminates the twiddle factors allocation

separation within a butterfly. However, this implies that as the loop is traversed from one

stage to another, a redundant version of the twiddle factor array is required. Hence the

size of the twiddle factor array is increased to 2𝑁 compared with that the conventional

FFT is of size 3𝑁/4.

The computation throughput of FFT measured on one C66xx core is in Figure

3.21, in which dot represents the maximum number of range gates that the DSP cache can

hold. It is evident that the calculation performance would degrade dramatically when the

data size is close to or over the cache size.

3.5.2. Weighted Dot Multiplication

Besides FFT, weight dot multiplication is another basic computing algorithm used in the

signal processing. Compared with FFT, the weight dot multiplication does not involve

the data manipulation in the butterfly network, which means the performance of the vector

multiplication is highly depended on how to use the cache efficiently and reduce the

computing stall. So, a good strategy for optimizing cache performance is a guarantee of

a high throughput computing. There are two levels of cache optimization: application

level and procedural level. The application level optimization is a high-level optimization

procedure that the designer should make the flow of data continuously poured in/out of

the on-chip memory by using DMA. Those on-chip memories, L1/L2 SRAM, are closer

to the processing core, working as a buffer. Therefore, the computing stall time is reduced

and throughput is increased. Moreover, the cache coherence in the on-chip memory is

automatically maintained by the cache controller. This mechanism can increase the

computing efficiency, compared with by using external memory as a buffer, in which

102

programmer should manually issuing L2 cache coherence operations. However,

implementing the DMA buffer is time-consuming, for the rapid-prototyping applications,

it would be easier to configure L1/L2 as cache and maintain the cache coherence

manually.

The next level is the procedure optimization, in which data structures that are

accessed by the algorithm are optimized to make use of cache memory efficiently. For

the condition that the size of data is larger than the cache and the data would not be reused,

the interleaving cache sets can improve the computing efficiency. The interleaving cache,

or memory, is to spread the entire data evenly across several memory banks. Normally,

this method is used to increase the throughput of memory by avoiding using the same

memory bank repeatedly [106]. In the cache optimization, the interleaved cache is used

to separate the buffer data into different cache sets. Before introducing interleaved cache,

we should note that TI C66x DSP core uses the 2-way associative cache, which means

Figure 3.22: L1D cache architecture

103

the DSP core have two cache ways to reduce the probability of conflict misses. As shown

in Figure 3.22, each cache line contains 64 bytes data, and each set of a 2-way set-

associative cache consists of two line from L2 SRAM, one line frame in way 0 and

another line frame in way 1. A line in L2 SRAM still maps to one set, but now can be

stored in either of the two line frames. The problem of this architecture is that if multiple

data being used belong to the same set, the previously cached data would be evicted. For

example, Figure 3.23 shows the codes of an 𝑁-element weighted-dot-product, in which

the size of 𝑤, 𝑥, and ℎ are associated with the same cache line in L1. So those three

vectors cannot be cached at the same time. The solution of this problem is to allocate the

data set contiguously in memory and pad arrays as to force an interleaved mapping to

cache sets. Figure 3.24 shows the memory layout after first two iterations based on Figure

3.23. The pad reallocates the array ℎ in the next set, thus avoiding the eviction the array

𝑤. As a result, all the three arrays can be in the cache.

Another technique used in the procedure level optimization is to split the entire

data set and process one subset a time, which is referred as blocking or tilting. This

method would increase the computing efficiency when cached data is reused. For

example, in the beamforming, the weight vector is multiplied by with the array data, so

in Figure 3.23, array 𝑥 and 𝑤 are used, and ℎ is omitted. Thus, 𝑤 is reused each time. In

that sense, we can handle the data storage carefully to make sure the weight vector not be

evicted before the next subset reuses it. As an example, suppose one DSP core forms 15

beams from 24 channels, and each channel contains 1024 range gates, so w and 𝑥 are the

for (i=0; i<N; i++)
 sum += w[i] * x[i] * h[i];

Figure 3.23: Weighted Dot Product

Example

104

matrices of dimensions 24 × 15 and 24 × 1024, respectively, which are 3 KB and 192

KB in sizes. As the size of L1D cache is 32 KB, to allow the weight vectors and input

matrix fitting into L1D cache, the data from 24 channels should be divided into 16

subsets. So, one large-size beamforming based on 1024 range gates is converted into 16

small size beamforming based on 640 range gates. For example, in Figure 3.25, when

channel number equals to 16, if there are no cache misses, four cases should have the

same number of GFLOPS. However, for the cases that the numbers of range gates equal

to 128 and 256, the beamformer can outperform the cases that range gates are 512 and

1024. This variation is caused by cache miss. The markers in Figure 3.25 represent the

maximum number of channels that the DSP cache memory can hold for a specific number

of range gates. Before reaching each marker point, the performance improvement of each

case is from using larger sizes vectors, which reduces the method-call-overhead.

Figure 3.24: Memory Layout after two iterations

105

However, after reaching the marker points, the benefit of using large sizes of the vectors

is compromised by the cache misses. Table 3.2 shows the beamforming performance after

utilizing the blocking, in which the performance of DSP core remains the same regardless

the size of input data.

Figure 3.25: Computing performance of a DSP-core versus the number of range gates

Table 3.2: DSP core performance after mitigating cache misses

106

3.5.3. Data Corner Turn

In PAR, different processing operates on three-dimensional data in multiple stages. For

the efficiency reasons, as we mentioned in Section 3.5.2, it is desirable to continuously

align the data in the domain where the algorithm works on. Therefore, the alignment of

the data needs to be turned from one dimension to another. This realignment is called

“corner turn” in radar vernacular. This two-dimensional corner turn operation is

equivalent to a matrix transpose in the memory space. An example situation where this

might occur would be a Doppler filtering followed by a pulse compression [107]. Pulse

compression and Doppler filtering process the data along the range and pulse domain

separately, thus the two operations suggest different optimal data layouts. So, the corner

turn transforms the layout of the data matrix to preserve data locality in the dimension

being operated on. As the data comes in one dimension and is read in another, the amount

of data control operations can be quite large and time-consuming. It is not a good choice

to make the processing core to handle the corner turn. With the help of Enhance Direct

Memory Access (EDMA3) [39] on TI C66x DSP, by pre-defining the procedure of corner

turn, EDMA3 can reorganize the data into the desired format independently without

interfering the real-time computations in DSP core.

EDMA3 is a co-processor, which can perform data transfers without processor

core intervention. There are two components in EDMA3: DMA and Quick DMA

(QDMA). DMA is configured to respond to the interrupts from EDMA event, processing

core, and peripheral registers. It can be used for synchronizing the peripheral events and

processing. For example, Figure 3.26 shows an illustration of front-end transmission plan.

After the data are grouped and packed by FPGA, the data would send through the SRIO

107

link to DSP and stored at DDR2. When the SRIO transmission is done, a sync event

(interrupt) would be generated from SRIO to DMA, and the DMA would copy the data

from DDR2 to the on-chip memory buffer independent of the processing core. Once the

buffer is full, another interrupt would be sent from DMA to notify that the data is ready

for use. Once the current processing is done and data is ready to be sent to next level. The

core would trigger the pre-programmed DMA to transmit the data to external DDR2.

When the out-of-buffer transmission is done, the DMA will trigger the SRIO peripheral

to send the data outside. In this data in-and-out transmission, DSP core and DMA engine

work independently, increasing the computing efficiency and data transmission

throughput. Compared with DMA, QDMA is used for on-chip memory-to-memory data

movement, which is easy to be programmed and triggered.

Besides the basic sequential data transfer function, the DMA in TI C66x core

offers the advanced index transfer for both source and destination addresses. For

example, by properly programmed the registers, DMA can send the data separated for

Table 3.3:Time consumption of corner turn for one beam

Figure 3.26: An illustration of front-end data transmission strategy

108

every 𝑁 bytes and stored them at the destination address separated for every 𝑀 bytes, in

which 𝑀 and 𝑁 could be any value between 0 and 0xFFFF. By using this feature, the

data corner turn can be easily accomplished. Table 3.3 shows the performance of data

corner turn by using EDMA3 under different conditions.

109

4. An Example System Implementation

4.1. Architecture Design Considerations

In the previous sections, the computational aspects of the front-end and backend

processing algorithm have been explored, and various mapping strategies and the

architecture of processing unit have been discussed. A low-cost HPEC system with

scalability is now considered as the host platform for a large-scale PAR. Although there

are no tight form-factor constraints compared to some applications, such as airborne radar,

this platform imposes the requirements of showing the ability of scaled up and upgraded

and flexibility of enhancing the signal processing algorithm in the future. Table 4.1 shows

the parameters for an example PAR system. Based on those parameters, a complete

implementation of the processing chain would be given in the following sections. First

and for the most important, the network topology is the critical factor to affect both the

Figure 4.1: System Network Topology

110

system architecture and the bandwidth of data communication. Figure 4.1 shows the

network topology for the various levels in the computing platform. In the top level, the

data received from the antenna array form a three-dimension data cube, and each

processing stages process one domain’s data independently. Therefore, we can use the

pipeline parallelism, in which the output of one processing stage is the input of the next.

For the hundreds of the channel PAR application, the movement of data is as important

as the processing. Table 4.2 gives an estimate of the communication bandwidth between

the processing stages for the system based on the parameters from Table 4.1. Note that

the time for the data corner turn between each stage should also be considered, which

requires the network interface with high bi-directional bandwidth and the flexibility of

routing data. To increase the transmission efficiency, in each processing stage, a

switching unit is placed either at front or end, of each processing stage to combine or

distribute data from previous or to the next stage. The switching unit in this level needs

to buffer the data for the high-speed out-of-chassis communication, so it requires the unit

has the ability of access large amount of data with low latency. The data in each

processing stage would be separated into multiple PUs, and then the results are combined

into switching unit. In the function level, the interconnection of multiple PEs via a

dynamic switch network is built based on a multiport switch. At this point, the switch in

the PU only needs to route the data between each PE or out of function level, so compared

with the switching unit in the processing level, the switch in this level would handle

smaller size data with more complex data routing requirements.

111

Table 4.1: Example of PAR system parameters

Parameters Value

Range gates 4096

Pulses 128

Channels 768

Beams 264

PRI 1 𝑚𝑠

CPI 128 𝑚𝑠

Table 4.2: Communication Data Rate per Stage

Stage
Input

(GBytes/s)

Beamforming 12.5

Pulses Compression 4.3

Doppler Filtering 4.3

In a PAR system, different processing unit maintain their own local clocks and

those clocks have drifting errors. Even a tiny drift in each clock cycle, it will be magnified

to a large error when hundreds clock cycle has passed. Hence, a continuous mechanism

for synchronization is needed for the distributed computing system, so that the system

operation can be coordinated. Figure 4.2 shows an illustration of typical synchronization

method for distributed systems. The NTP has an approximate error in the range between

5 𝑚𝑠 to 50 𝑚𝑠 [108]. In the local network, numerous software clock synchronization

algorithms have been analyzed and evaluated, such as [109], [110], and [111]. Those

methods can achieve the accuracy in the range of several 𝑚𝑠 . By using dedicated

112

hardware, the software processing delay can be eliminated and the accuracy can be

improved in the range of several 𝜇𝑠, or to the best by using PTM-1588 and MTCA chassis

the accuracy can reach to 50 𝑛𝑠 [112]. For the PAR application, it requires a tight

synchronization, so the system needs a dedicated hardware to maintain the

synchronization by distributing a common clock to the multiple numbers of chassis, and

the clock in each chassis can be synchronized based on this common clock source.

However, it is always difficult to make the clock reaching each chassis at the same time

for the reason of that there may be skew and uncertainly from routing delays along the

physical signal wire. To get a better synchronization, the GPS signal is utilized to give a

reference signal and another common clock source works as a trigger signal, as mentioned

in the Section 3.4.2.

Figure 4.2: Clock Synchronization classification

113

In a distributed system, given a large number of processing node and chassis, in

which each of them has multiple computational, I/O, and network components, failures

would be commonplace. Therefore, the control system should monitor the health of each

node, identify the failure parts, and quickly recover by using either automatic or out-of-

band method. The control link should be implemented independently from the data

network to increase the reliability of the system. An example of system level monitoring

is the Intelligent Platform Management Interface (IPMI) in the MTCA, which provides

the diagnostics information of each AMC (e.g., power supply, fan tray, and inventory

information) to the shelf manager. Another important role of the control system is to allow

the entire system to be scaled up and become increasingly distributed [113]. Since the

fast development of electronic, it is inevitable to scale the system with newer and different

vectors hardware, so the control system should be capable of handling the variation in

hardware and software introduced by the upgrading the system. An example of this

distributed monitoring software is Ganglia [113], which is an open-source project that

shows the high levels of robustness and ease of management [114].

4.2. Vendor Selections

Choosing the products from the various vendor is one of the important processes to design

the architecture of the system. Many industrial standards, such as MTCA, ATCA, and

AMC, are defined the form factors, such as the capability, I/O bandwidth, and processing

power, of products in different ways. So by using different vendor products to build a

heterogeneous system, the platform can take advantages of those varieties, however,

when parallelizing an algorithm in a multi-processor environment, it would be better to

choose a homogeneous system for the less programming complexity heterogenous system

114

[115]. After the researchers decide the products for handling the computing, the system

architecture to support those products can be fixed. Thus, a vendor selection is critical for

the system architecture and the performance of the entire system.

In this research, we studied the products from three different vendors: TI,

Vadtech, and Prodrive. Each vendor has their focus, so the usage of their products may

be varied based on the purpose of applications. TI, one of major semiconductor

companies [116], produces several multi-core processor lines, in which the most powerful

one is the TI 66AK2H12. It has 8 C66x DSP cores and Quad Cortex-A15 cores with

multiple types of high-speed I/O [11], and the corresponding evaluation module (EVM),

66AK2H, for under $1,000 [117]. This EVM has the advantage of better price-

performance ratio, easy to purchase, and less leading time, compared to other equivalent

products on the market. Moreover, the product support from is always reliable from TI

then other small companies. Since the EVM is a reference design for the general purpose,

the board tends to represent all the features on one board, so it does not optimize the size,

power consumption, and performance. On the other hands, the third-party products aim

to the market of the high performance and high-reliability applications. So, it has larger

computing throughput than TI EVM. For example, AMC-TK2 manufactured by Prodrive

is a full-size AMC that combines a Quad ARM Cortex-A15 cores with 24 C66x DSP

cores [118], which is three times more processing power than TI EVM. Another

advantage of the third-party products is their technology supports are more specific to the

area of their customers. As the purpose of this study is to build up a prototype platform

to verify the feasibility and functionality of the HPEC for large-scale PAR system, we

choose the TI EVM board as our processing node. A systematic process for decision

115

support in evaluating and ranking various vendor products is still needed for the formal

product [119].

4.3. Processing Chain Implementation Details

In Chapter 2 and 3, the focus is on computational complexity and algorithm

decomposition for the baseline PAR signal processing. This section will show an example

of a system-level large scale PAR computing platform design focusing on the front-end

processing, and reveal some of the trade-offs when mapping the algorithms to HPEC

system. This processing platform is not specific for a large-scale PAR system, rather, it

can be a generalized purpose real-time HPEC processing platform for the multi-channel

applications that require high throughputs, such as driver-assistance automotive [120],

telecommunications [121], and biomedical imaging [122].

Based on the parameters listed in Table 4.2, and the PU described in Section 3.3,

we proposed a front-end processing platform as shown in Figure 4.3. The entire

processing chain works as a pipeline and can be separated into four generic stages: AD

conversion, beamforming, pulse compression, and Doppler filtering. In the ADC step,

Figure 4.3: An example of front-end processing platform

116

each PU samples the signal from 48 channels, so in total 16 PUs will collect 48 × 16 =

768 channels data. After the data from each pulse is recorded, the receiving PUs would

send the data to their counterpart beamforming PUs. In the beamforming, since each

beamformer requires the data from all the antennas, the data routing between antennas

and beamformer would be complex when the number of channels is large. To mitigate

the complexity in data routing, as showing in Equation (2.2) and (2.3), the entire data is

divided equally and a portion is assigned to each sub-beamformers, (i.e., computing

node), in which the term ∑ (𝑊𝑗𝐶+𝑖
𝑏 𝑌𝑗𝐶+𝑖)

𝐶
𝑖=1 is calculated independently. A formed beam

is generated by accumulating the results from each sub-beamformers. This method is

named as systolic beamforming [123]. Based on Equation (2.2) and (2.3), the

beamforming can be re-written to Equation (4.1),

∑𝑊𝑚𝐶+𝑖
𝛩 𝑌𝑚𝐶+𝑖

𝐶

𝑖=1

=⋃(∑𝑊𝑖
(𝑛−1)𝐵+1𝑌𝑖

𝐶

𝑖=1

)

𝑁

𝑛=1

 (4.1)

in which 𝑁 = 12 is the number of PE in a PU, 𝐶 = 48 is the number of channels obtained

by each PU, 𝐵 = 22 is the number of beams processed by each PE, Θ are the beam

number indicator. In our implementation, the received data from total 768 channels are

sent to 16 PUs, in which, as showing in Equation (4.1) each PE calculates the term

∑ 𝑊𝑖
(n−1)B+1𝑌𝑖

𝐶
𝑖=1 forming number of 𝐵 partial beams in parallel. After all the PEs finish

the computing, the first PU starts to pass the result to its downstream neighbor, in which

the received data are summed with its own and the results are send downstream. In turn,

after the last PU combined the results from all the upstream PU, the entire number of 264

beams based on 768 channels are formed. In other words, each PE converts the data from

48 channels into partial of 22 beams. So, the output of one PU is the data matrix with 48

117

channels and 264 beams data, and this matrix would be given to the next PU in the systolic

beamforming. In the end, the last PU would combine all the results from previous PU and

form the entire 264 beams.

Following beamforming, the next step is the pulse compression, in which there

are 12 PEs within one PU to process the 264 beams. So, each PE would do the pulse

compression for 22 beams. After all the PE finish the computing, one PE would combine

all the results from others through the backplane by using Serial RapidIO, corner turn the

data along the pulse domain, and send them through Hyperlink cable to the Doppler

filtering stage. Same as pulse compression PU, 12 PEs will perform Doppler filtering for

128 pulses. From the prospect of task parallelism, in the top-level, the processing chain

works in the pipeline. In the lower-level, there are two parallelisms-the beamforming is

systolic parallelism and the rest of the two processing stages work in the round-robin

parallelism. In each PU, the parallelism is round-robin.

In Section 3.1, parallel speedup and parallel efficiency are introduced, which are

two important metrics. Figure 4.4 shows this effect for a parallel implementation of the

Figure 4.4: Speedup and efficiency of beamforming implementation

118

beamforming, in which the speedup grows with the number of PUs, but the efficiency is

degradation due to the reason of method call overhead. As for this reason, we need to

seek a balance between the performance and effectiveness based on the system

requirements. According to Figure 4.4, an optimal choice, for example, when the number

of PU equals to 28, allows the system to achieve a good speedup while maintaining a

reasonable level of efficiency. In our proposed system, we want to make full use of our

equipment and achieve high efficiency, so the number of computing PU in the

beamforming is 16.

4.4. Benchmark Results

In previous sections, a set of single-processor kernel benchmarks, such as FFT, weighted

dot production, and data corner turn, have been given. This section gives a quantitative

evaluation multiprocessor application benchmark. Figure 4.5 shows the time scheduling

of the radar processing chain mentioned in Section 4.3 and parameters listed in Table 4.1.

The numbers of PU and PE are chosen as an example, which can be changed based on

Figure 4.5: Real-time system timeline for the example backend system

119

the application requirements. This scheduling is a rigorous and realistic timeline

including all the impacts of SRIO communication and memory access latency, and has

been verified by real-time hardware running tests. After the first data sample by ADC,

the data cube from the first pulse is formed and send to the beamforming stage, the

parallel beamforming processors use 123 𝑚𝑠 to generate 264 beams for the each of 128

pulses in one CPI, in which 16 𝑚𝑠 is needed until the first pulse beamforming is done

and reached to the pulse compression stage. In the pulse compression stage, the

processing platform needs 123 𝑚𝑠 to do the pulse compression for the entire 128 pulses

in one CPI. After the pulse compression, the data corner turn is required before Doppler

filtering. As we mentioned before, EDMA on the DSP would do the data transformation

independently from processing core, thus, the data corner turn is conducted in the pulse

compression stage. In 16 𝑚𝑠, the first 96 beams from 128 pulses will be realigned in the

CPI domain and sent out to the Doppler filter. In the end, the data cube would be

processed through the Doppler filtering stage. In total, there are 192, 12, and 12 TI C6678

DSP cores involved for the beamforming, pulse compression, and Doppler filtering,

respectively. And for each processing function, it achieves 6880 GFLOPS, 370 GFLOPS,

and 140 GFLOPS real-time performance, respectively. The overall latency, depth of

pipeline, for the backend system is 1.5 CPI or 187.7 𝑚𝑠.

4.5. Comparison with OpenCL

The previous section summarizes the approach of “manual task division and

parallelization.” Another option is using standard and automatic parallelization solutions.

For example, OpenCL is a standard for parallel computing on heterogeneous devices. The

120

standard requires a host to dispatch tasks, or kernels, to devices which perform the

computation. In the single cluster, one master processor is running the host system and

dispatch the tasks to other slave processors. For systems with more than one cluster,

OpenCL can dispatch different kernels to each cluster. When the kernel is dispatched,

arrays must be copied from host memory to device memory. This communication adds

significant overhead to computation time that increases linearly with buffer size.

To leverage the performance of OpenCL, the TI 66AK2H14 is loaded with an

embedded Linux kernel that contains the OpenCL drivers, in which the ARM core will

dispatch the computing task to each DSP core. In the beamforming, the processing of

each beam is allocated to its parallel processing thread for each DSP core. Figure 4.6

shows that as the number of beams sent to the kernel increases, the time it takes to process

an individual beam decreases. Because of task dispatching communication overhead, the

performance of the kernel increases logarithmically.

Comparing the performance of OpenCL implementation to the manually optimized

scheme, the overhead of standard scheme can be seen more clearly in Figure 4.7. On

Figure 4.6: Beamforming kernel performance using Open CL

121

average, using OpenCL/MP results in a 33% average performance penalty in

beamforming with a maximum penalty of 44.3% when performing beamforming from 48

channels.

In the pulse compression, the performance of OpenCL implementation is shown

in Figure 4.8. The comparison between OpenCL with the manually optimized codes is

shown in Figure 4.9. As discussed previously in Section 3.5.1, FFT and IFFT require

highly non-linear memory accesses. Thus it is essential to optimize the data fetching

pattern manually. However, in the OpenCL, it does not provide the flexibility for a

programmer to adjust the memory patch pattern, so the latency due to the non-linear

accesses are compounded which results in severely degraded performance.

Figure 4.7: Comparing OpenCL performance to manually optimized code for beamforming

122

4.6. Summary

In this chapter, considerations of the architecture of the PAR processing platforms are

illustrated. In general, the architecture should reflect the data topology in each processing

stage, provide enough communication bandwidth for high throughput computing, and

maintain an accurate synchronization among each processing node. When designing

platform for PAR based on COTS technologies, the choice of products from various

Figure 4.8: Pulse compression performance using OpenCL (8192 range gates)

Figure 4.9: Comparing OpenCL performance to manually optimized code for pulse compression

123

vendors requires a process of evaluating and ranking software and hardware. First, we

need to evaluate the cost, time to market, and features that each COTS product has. Then,

further analysis would estimate how much the long-term maintenance costs would be.

We present a development model of an efficient and scalable backend system for

digital PAR based on Field-Programmable-RF channels, DSP core, and SRIO backplane.

The architecture of model allows for real-time, synchronized and data-parallel radar

signal processing. Moreover, the system is modularized for scalability and flexibility.

Each PE in the system has a proper granularity to maintain a good balance between

computation load and communication overheads.

Even for the basic radar processing operations studied in this work, teras-scale

floating point operations are required in the MPAR/SENSR type backend system. For

such requirements, using programmable software DSP that can be attuned to the

processing assignment in parallel would be a good solution. The computational aspects

of a 7400 GFLOPS throughput phased array backend system has been presented to

illustrate the analysis of the basic radar processing tasks and the method of mapping those

tasks to an MTCA chassis and DSP hardware. In our implementation of PAR backend

system, the form-factor can be changed based on requirements of various systems. By

changing the number of PUs, the total capacity of the system can be easily scaled. By

changing the number of inputs for each PE, we can adjust the throughput performance of

a PU. A carefully customized design of different processing stages in DSP core also helps

to achieve the optimal performance regarding latency and efficiency. When we parallelize

a candidate algorithm, there are two steps in the design process. First, the algorithm is

decomposed into small components. Next, each algorithm component is assigned to

124

different processors for parallel execution. In the parallel computing, the communication

overhead among parallel computing nodes is a key impact on the parallel efficiency of

the system. Within each parallel processor, dividing the entire data cube into small subsets

to avoid cache miss is also necessary when the size of input data is larger than the cache

size of processors. For data communication links, the SRIO, HyperLink, and EDMA3

handle the data traffic between and/or within each DSP. By using SRIO, the data traffic

among DSPs can be switched through the SRIO fabric controlled by an MCH of the

MTCA chassis, which is more flexible than PCIe and efficient than Gigabit Ethernet. A

unique advantage of our proposed method is utilizing EDMA3 and Ping-pong buffer

mechanism, which helps the system to overlap the communication time with computing

time and reduce the processing latency. OpenCL is a framework to control the parallelism

in high level, in which the master kernel assigns the tasks to each slave kernels. Compared

with the “bare-bone” method we developed, OpenCL is platform-independent and

enables heterogeneous multicore software development, which leads to the drawback of

less flexibility and efficiency to specific hardware.

125

5. Summary and Future Plans

In the previous chapters, the fundamental radar signal processing algorithms have been

introduced, and the computing aspects of a large-scale PAR have been presented to

illustrate the analysis and mapping of challenging algorithms onto computing devices.

Moreover, the difficulty of calibrating RF system in PAR was focused on as a key design

consideration. Indeed, the traditional antenna calibration procedures, such as near-field

and far-field calibration, are the dominant methods. For many circumstances, however,

the traditional calibration method is limited by the surrounding environment and the

complexity of procedures. To make the calibration practical and easy to be performed in

the field, we have proposed the EM algorithm, which calculates the probabilistic values

between measurement results and ground truth values. In particular, if clutter is in the

field-of-vew, the traditional calibration method is often too difficult and inaccurate to

implement, while the EM method calibration can remain tolerant toward these clutters.

On the other hand, the EM method can be performed while the radar is operating. This

feature is especially important for which the calibration is expected to conduct from time

to time as the parameters from outside environment, such as temperature and humidity,

are changing with time.

Several advanced processing algorithms have been introduced in previous

chapters, however, due to the time constraint, most of those advance signal processing

algorithms are not implemented in hardware. The future work involves reformulating

existing MATLAB codes so that they are suitable for HPEC processor architectures such

as DSPs. For future algorithm development, the future work would investigate the

identification and mitigation of ground clutters. The strong echoes from the ground clutter

126

contaminate the return signal and mask the weak weather signals. Currently, there are

three mitigation methods: enhanced radar system design [124], clutter filtering [125], and

post-processing in the backend [126]. By carefully planning the location of the radar

system and selecting proper wavelengths, the clutter return can be reduced, but these

techniques are limited by other factors. The second option is to apply a notch filter to

cancel zero frequency signals in the Doppler spectrum. However, such method would fail

for weather echo with zero Doppler frequency. Another option is based on postprocessing,

which encompasses the traditional method by integrating radar moments data and their

spatial texture, by using pulse-to-pulse cancellation, and by applying mathematical

analysis and fuzzy logic synthesis to identify the clutter, as recent developments [127].

Scalability is another issue discussed in previous chapters. For the reasons that

MTCA is a modular design that subdivides the system into smaller computing parts, so

accommodating scalability in MTCA would be easy. In the software aspect, using DSP

on the MTCA platform could facilitate software re-use during upgrading, compared with

hardware-coded devices, such as FPGA. The nature of beamforming, pulse compression,

and Doppler filtering algorithm is to perform calculations on each slice of data from the

different dimensions of the data cube. This feature makes the computing on each slice

independent, so it eases the difficulty of parallel partitioning in software. Moreover, when

the design of the algorithm for each slice is changed in a way that increases its complexity,

either spare computing unit can be exploited, or more computing unit can be added to the

system. Since the computing load is equally divided in the current system, in the future,

as more advanced chips are added into the system, a dynamic task scheduling and

127

assigning mechanism can be implemented, which allows the system assign the computing

load for each node based on their capabilities.

5.1. Considerations of Future Architecture Design

When designing the backend computing platform for PAR application, many factors such

as the communication scheduling patterns among processes, the interoperability between

different types of process, the fault tolerance of the system, the scalability of the system,

and cost-effectiveness, are needed to be considered. To a great extent, these factors

depend on the performance of the entire system. Typically, the PAR system would

employ the parallel programming model as a multiple-program multiple-data model,

which requires the processors and associated peripherals have a robust and high

throughput communication network. Based on the requirement of the radar application,

the network hardware should be fault tolerant, which allows for the failed parts to be

replaced while the system is still operational with little or no performance degradation.

The problem of fault tolerance can be solved by making the system redundant both in

hardware and software level. So, the capability of the scalability in the PAR backend not

only implies that the system offers the potential for computing power growth but also

ensures the system is high-availability. A cost-effective approach to design the backend

would include usage of COTS technologies for both hardware and software. Although

using COTS components can increase integration complexity has more risk in reliability

compared with custom-designed products, the performance improvement by bringing

state-of-the-art processor technology and software into the system would overcome these

deficiencies.

128

5.1.1. System fault-tolerance

The role of fault tolerance is to make the system to tolerate the faults, maintain the critical

operations, and recover from the failures. When the fault happens in hardware, the best

method to keep the system running is to have the redundancy. There are three forms of

redundancy: information redundancy, physical redundancy, and time redundancy [128].

The information redundancy is to use the extra information to allow fault detection, fault

masking, or possibly fault tolerance. Usually, the information redundancy is to prevent

the transmission error over a long distance or a noisy channel. For example, the checksum

is a widely used method for purposes of error detection. Because of the high throughput

in the PAR backend, even a low transmission error rate would bring many fault bits and

cause the system to stall. When implementing the information redundancy, extra

hardware or software computing power is usually required. Thus, selecting a proper

coding technique would be necessary.

With the physical redundancy, one or more standby sparing hardware or software

can bring a system back to full operation once the fault is detected. As the task switching

between fault hardware and spares cannot be seamless, this time discontinuity may

disrupt the system. To minimize the task switching time, a system can set up the hot

standby sparing operating along with other online modules and prepare to take over at

any time [128]. Opposed to hot standby sparing, a cold standby sparing is used when the

application is not time sensitive, so the system has enough time to power up and

synchronize the spare with other modules when the fault is detected. Compared with hot

spares, the cold sparing can be power friendly and used in the condition that the power

consumption is limited [129]. Figure 5.1 [128] shows an example of the triple-duplex

129

physical redundancy, which can perform error detection, error location, and system

recovery. In this example, six modules are separated into three groups, forming up a triple

modular redundancy system. The system output is determined by the majority vote from

three groups. If one of the modules becomes faulty, the two-remaining can mask the error.

In each group, it contains the combination of one online module and its duplication. The

use of the duplication allows the faulty module be removed from the voting arrangement

without interfering the system operations.

Figure 5.1: The triple-duplex approach to redundancy

In some applications, when the time constraint is not tight, errors can be detected

by repeating the computation or transmission and comparing those results. If the

discrepancy exists, the computation or transmission can be performed again to see if the

conflict remains or disappear. This method is termed as time redundancy. Compared with

information and physical redundancy, the time redundancy does not require extra

130

hardware to detect the fault. Thus the cost of implementing time redundancy is lower than

the other two methods. However, the biggest problem of using the time redundancy is

that for some applications it is unable to assure the system has the same data to be

processed. Besides that, when there is a hardware error happened the time redundancy

can detect the error neither. Thus, the time redundancy suits for the processes that the

faults are transient or intermittent.

5.1.2. Scalability

The scalability of the PAR backend system allows handling additional of data from

increasing number of channels or the computing burden from more complex signal

processing algorithm by adding more hardware without suffering a noticeable increase in

administrative complexity [130]. A good scalability indicates that the size of a problem

can be efficiently extended to the increasing numbers of parallel processing elements. In

the real world, as we expand the number of the computing elements, the cost of

communication and synchronization among each element would increase, thus reducing

the efficiency of parallel programs. Also, adding more hardware to the system would

temper the reliability. Thus, at some point, when the number of nodes gets too large, the

program cannot perform up to expectations.

As the communication is always the potential bottleneck for scalability of a

parallel program, it is necessary for the system architecture represents the pattern of the

data flow in the signal processing. For example, in the frontend processing, three

fundamental processing tasks, beamforming, pulse compression, and Doppler processing,

are conducted in the three-dimension data cube separately as shown in Figure 5.2, in

which the data are gathered and separated multiple times. Based on this flow pattern, the

131

front-end architecture needs to be designed in a combination model of distributed

memory and pipeline.

Figure 5.2: Data flowing graph in PAR frontend

Besides the data communication pattern, the synchronizing issue among the

computing module should also be considered. As the number of computing node

increased, the synchronization among each node becomes a matter that the latency of

each synchronization trigger would vary due to physical distance and the hardware

variations among modules. If the expansion of the computing node is within one chassis,

it is easy to achieve synchronization by using a global clock source. However, when the

system requires more chassis to solve additional processing tasks, the synchronization

among each chassis requires extra synchronization hardware, such as GPS based phasor

measurement units [131] and NTP as mentioned in Section 3.4.2.

5.1.3. Cost

When designing a PAR system, the developers need to balance various competing objects:

development cost, production cost, and time to the market. During the development phase,

researchers would determine the radar performance objectives based on the goal of the

132

application and evaluate the candidate algorithms. In the development period, using the

reconfigurable computing device would provide flexibility than a dedicated computing

device. In the production phase, since the algorithm suite and system parameters are fixed,

a device with more computing power but with less or no flexibility to reconfigure can be

used. Besides the development time, the time to the market also depends on the difficulty

of changing the hardware structure of the development platform to the final product. The

changes would be either larger system scale or more specific hardware. Ideally, it would

be better to design a scalable system by using the easy-to-program device, such as DSP.

There are two advantages of using DSP devices. First, as shown in Figure 1.3, the easier

the device to be programmed, the more cost-efficient it is. Second, it can save time and

cost to change the software and algorithm once they need to be upgraded. As the

computing efficiency of the easy-to-program device is lower than the dedicated device,

seeking the balance among the usage of different chips would be important, and in many

cases, a hybrid system consisting of the dedicated and flexible programming devices

would provide low expense and reconfigurability.

5.2. Future Works

While this dissertation has demonstrated a DSP based high-performance embedded PAR

backend system, there are many remaining challenges. Future work includes further

implementing the dynamic task and communication scheduling (hot-swapped), cognitive

radar (knowledge-based computation), introducing GPU for solving finer-grained

parallelism, and optimally scheduling communication and resources. For example, the

hot-swapping feature requires the platform reschedule the tasks that had been assigned to

the removed computing node to other nodes. When the new nodes are plugged in, the

133

platform should be able to schedule each task to the computational resource based on the

current usage [132]. The hot-swapping feature can be implemented by optimally

scheduling the communication and resources in the system. In the radar backend, tasks

often have dynamic behaviors caused by the changing external conditions. For example,

the number of tasks for target tracking is associated with the number of targets; a good

dynamic runtime scheduler can assign the task to the available computing resources based

on the system status. Another important future work is to incorporate knowledge base,

which incorporates higher-level computations results into front-end sensor processing.

The knowledge-based radar uses the prior knowledge of the environment, such as the

location of roads, terrain, and types of ground, to perform ‘intelligent’ processing that

avoids invalid assumptions about the environment [133]. Another example is cognitive

radar [19], in which the optimal detection threshold based on the measured data is

determined by using machine learning technique. The remainder of this section will give

a discussion of the outline of the future work for the abovementioned research topics.

5.2.1. Optimal task and communication scheduling

The emergence of radar sensor network [129] and the blurring boundary between the

front-end sensing and the backend detection system is both extending the need for the

high-performance parallel computation. In the parallel computing platform, there are two

views to improve the performance [134]. One is to develop and integrate more advanced

hardware and software; the other focuses on the issue of scheduling. In this dissertation,

the first method has been discussed and analyzed. So, in the future works, we should

concentrate on developing an appropriate task scheduler for PAR backend. The scheduler

is responsible for optimally scheduling the tasks to the available computation resources

134

across the entire networks. The tasks scheduling algorithms can be categorized as either

online (dynamic) or offline (static) scheduling [135]. The offline scheduling has the

complete knowledge of all the tasks before the scheduler begins planning their execution

schedule. With the online scheduling, tasks arrive at the time that some other tasks are

already running, where the scheduler must place the new task around the currently

running tasks [136]. In the PAR system, especially in the front-end, the amount and types

of running tasks are predictable so that the task scheduling can be guaranteed before

execution. Nevertheless, online approaches do have a significant role in the tasks that the

predicting is impossible, such as target tracking and super-resolution DOA estimation.

Thus, for PAR system, a scheduler may, in essence, be offline but incorporate online

scheduling that allows dynamic tasks to continue executing.

In a parallel computing system, the communication delays are significant and non-

deterministic, so it gives the difficulties to calculate the useful worst-case delay times.

Many algorithms have been proposed to represent the network and end-point contention

[137, 138]. However, most of those algorithms employ idealized models of the target

parallel system and a fully connected network. Future works need to emphasis on the

monitoring the contention for communication resources in a real parallel system. Besides

the communication issues, it has been proved that the problem of finding an optimal

schedule for a set of tasks is NP-hard [139]. It is, therefore, necessary to plan ways of

simplifying the problem and algorithms.

5.2.2. Cognitive Radar

In the age of big data and machine learning, researchers start to use the computers to

explore the hidden information and linking information among the data. Following this

135

trend, researchers start to make the radar backend system adaptively to calculate the

transmitter parameters based on the requests from different usage, and the backend signal

processing is not only based on the current input but also use previously determined

knowledge [19-21]. This way of thinking leads us to the block diagram of Figure 5.3,

which depicts the processing cycle of a cognitive radar. A key step in the cognitive radar

is to analyze the detection area and build up a knowledge database containing

environment information, such as the characterization of radar clutter and the type of

targets (continuous or sparse). Since the optimal transmitting waveform is task-dependent

[140], based on the interests of different task and the knowledge of the operating

environment, the waveform of the transmitter can be optimized to increase the SNR and

enhance decision-making performance with defined hypotheses [140, 141].

Figure 5.3: Processing cycle of a cognitive radar

136

Besides updating the transmitting waveform adaptively, other processing

parameters can also be adaptively determined, such as the detection threshold in the

CFAR [19], bearing angle in the STAP processing [142], and the sensing matrix in

compressive sensing [141]. Those dynamic processing techniques are suitable for

multifunctional radars, which perform various types of observation on a single platform.

Thus, in the future, a multifunctional radar with cognitive sensing capabilities would

afford unprecedented levels of intelligence.

137

6. References

[1] L. Martin, "Lockheed martin space fence radar prototype tracking orbiting

objects," Press Release, vol. 8, 2012.

[2] J. Herd et al., "Multifunction Phased Array Radar (MPAR) for aircraft and

weather surveillance," in 2010 IEEE Radar Conference, 2010, pp. 945-948.

[3] W. Benner, G. Torok, N. Gordner-Kalani, M. Batista-Carver, and T. Lee, "MPAR

program overview and status," 2007.

[4] G. N. Thomas Gryta, "FCC Raises $44.9 Billion in U.S. Wireless Spectrum Sale,"

in The Wall Street Journal, ed, 2015.

[5] J. C. Mark Weber, James Flavin, Jeffrey Herd, Michael Vai, "Muti-function

Phased Array Radar for U.S. Civil-Sector Surveillance Needs," presented at the

AMS Conference, Albuquerque, NM, 2005.

[6] D. Conway et al., "On the development of a tileable LRU for the nextgen

surveillance and weather radar capability program," in 2013 IEEE International

Symposium on Phased Array Systems and Technology, 2013, pp. 490-493.

[7] D. Martinez, T. Moeller, and K. Teitelbaum, "Application of Reconfigurable

Computing to a High Performance Front-End Radar Signal Processor," (in

English), Journal of VLSI signal processing systems for signal, image and video

technology, vol. 28, no. 1-2, pp. 63-83, 2001/05/01 2001.

[8] L. D. Stone, R. L. Streit, T. L. Corwin, and K. L. Bell, Bayesian Multiple Target

Tracking, Second ed. Norwood, MA: Artech House, 2013.

[9] D. R. Martinez, R. A. Bond, and M. M. Vai, High performance embedded

computing handbook : a systems perspective. Boca Raton: Boca Raton : CRC

Press, 2008.

[10] A. Grama, Introduction to parallel computing, 2nd ed.. ed. Harlow, England ;

New York: Harlow, England ; New York : Addison-Wesley, 2003.

[11] T. Instruments, "Multicore DSP+ARM KeyStone II System-on-Chip (SoC),"

2013.

[12] "IEEE Standard for Floating-Point Arithmetic," IEEE Std 754-2008, pp. 1-70,

2008.

[13] A. Katz, "Linearization: Reducing distortion in power amplifiers," IEEE

microwave magazine, vol. 2, no. 4, pp. 37-49, 2001.

138

[14] S. Boumaiza, J. Li, M. Jaidane-Saidane, and F. M. Ghannouchi, "Adaptive

digital/RF predistortion using a nonuniform LUT indexing function with built-in

dependence on the amplifier nonlinearity," IEEE Transactions on Microwave

Theory and Techniques, vol. 52, no. 12, pp. 2670-2677, 2004.

[15] J. L. Dawson and T. H. Lee, "Automatic phase alignment for a fully integrated

Cartesian feedback power amplifier system," IEEE Journal of Solid-State

Circuits, vol. 38, no. 12, pp. 2269-2279, 2003.

[16] J. S. Herd and M. D. Conway, "The Evolution to Modern Phased Array

Architectures," Proceedings of the IEEE, vol. 104, no. 3, pp. 519-529, 2016.

[17] F. Kong, Y. R. Zhang, J. Cai, and R. D. Palmer, "Real-time radar signal processing

using GPGPU (general-purpose graphic processing unit)," 2016, vol. 9829, pp.

982914-982914-7.

[18] J. L. Payne, N. A. Sinnott-Armstrong, and J. H. Moore, "Exploiting Graphics

Processing Units for Computational Biology and Bioinformatics,"

Interdisciplinary sciences, computational life sciences, vol. 2, no. 3, pp. 213-220,

07/25 2010.

[19] J. Metcalf, S. D. Blunt, and B. Himed, "A machine learning approach to cognitive

radar detection," in 2015 IEEE Radar Conference (RadarCon), 2015, pp. 1405-

1411.

[20] S. Haykin, "Cognitive radar: a way of the future," IEEE Signal Processing

Magazine, vol. 23, no. 1, pp. 30-40, 2006.

[21] J. R. Guerci, "COGNITIVE RADAR: THE NEXT RADAR WAVE?,"

Microwave Journal, vol. 54, no. 1, pp. 22-+, Jan 2011.

[22] F. Gini and M. Rangaswamy, Knowledge based radar detection, tracking and

classification. John Wiley & Sons, 2008.

[23] R. Bakker, T. Kirubarajan, B. Currie, and S. Haykin, "Adaptive radar detection:

A bayesian approach," in Proc. EPSRC IEE Workshop Nonlinear Non-Gaussian

Signal Processing, 2002.

[24] "Introduction," in Digital Signal Processing with Field Programmable Gate

ArraysBerlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 1-52.

[25] X. Yu, R. Y. Zhang, M. Weber, and A. Zahari, "Compressive Sampling and Real-

Time Data Transportation in MPAR Backend System," presented at the AMS,

2015.

139

[26] X. Yu, Y. Zhang, A. Patel, A. Zahrai, and M. Weber, "An Implementation of Real-

Time Phased Array Radar Fundamental Functions on DSP-Focused, High

Performance Embedded Computing Platform," in Proc. of SPIE Vol, vol. 9829,

pp. 982913-1.

[27] X. Yu, Y. Zhang, A. Patel, A. Zahrai, and M. Weber, "An Implementation of Real-

Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-

Performance, Embedded Computing Platform," Aerospace, vol. 3, no. 3, p. 28,

2016.

[28] Y. Pan, Y. R. Zhang, and X. Yu, "AX/Ku dual‐band reflectarray design with

cosecant squared shaped beam," Microwave and Optical Technology Letters, vol.

56, no. 9, pp. 2028-2034, 2014.

[29] S. Perera, Y. Pan, Y. Zhang, X. Yu, D. Zrnic, and R. Doviak, "A fully

reconfigurable polarimetric phased array antenna testbed," International Journal

of Antennas and Propagation, vol. 2014, 2014.

[30] M. Arakawa, "Computational workloads for commonly used signal processing

kernels," DTIC Document2006.

[31] S. F. Reddaway, P. Bruno, P. Rogina, and R. Pancoast, "Ultra-high performance,

low-power, data parallel radar implementations," Ieee Aerospace and Electronic

Systems Magazine, vol. 21, no. 4, pp. 3-7, Apr 2006.

[32] W. L. Melvin and J. A. Scheer, "Principles of Modern Radar, Volume 2 -

Advanced Techniques," ed: Institution of Engineering and Technology, 2010.

[33] M. A. Richards, Fundamentals of radar signal processing, Second edition.. ed.

New York : McGraw-Hill Education, 2014.

[34] J. Ward, "Space-Time Adaptive Processing for Airborne Radar Submitter," MIT

Lincoln Laboratory Technical Report 10151994.

[35] B. D. Carlson, "Covariance matrix estimation errors and diagonal loading in

adaptive arrays," IEEE Transactions on Aerospace and Electronic Systems, vol.

24, no. 4, pp. 397-401, 1988.

[36] O. Besson and F. Vincent, "Performance analysis of beamformers using

generalized loading of the covariance matrix in the presence of random steering

vector errors," IEEE Transactions on Signal Processing, vol. 53, no. 2, pp. 452-

459, 2005.

[37] M. A. Richards, J. A. Scheer, and W. A. Holm, Priniciples of Modern Radar.

Edison, NJ: Scitech Publishing, 2010.

140

[38] A. Klilou, S. Belkouch, P. Elleaume, P. Le Gall, F. Bourzeix, and M. M. R.

Hassani, "Real-time parallel implementation of Pulse-Doppler radar signal

processing chain on a massively parallel machine based on multi-core DSP and

Serial RapidIO interconnect," EURASIP Journal on Advances in Signal

Processing, journal article vol. 2014, no. 1, pp. 1-22, 2014.

[39] T. Instruments, "Enhanced Direct Memory Access 3 (EDMA3) for KeyStone

Devices User's Guide (Rev. B)," 2015 May.

[40] K. Miller and M. Rochwarger, "A covariance approach to spectral moment

estimation," IEEE Transactions on Information Theory, vol. 18, no. 5, pp. 588-

596, 1972.

[41] R. Passarelli, P. Romanik, S. Geotis, and A. Siggia, "Ground clutter rejection in

the frequency domain(for radar meteorology applications)," in Conference on

Radar Meteorology, 20 th, Boston, MA, 1981, pp. 295-300.

[42] D. S. Zrnic, "Estimation of Spectral Moments for Weather Echoes," IEEE

Transactions on Geoscience Electronics, vol. 17, no. 4, pp. 113-128, 1979.

[43] R. J. Doviak and D. S. Zrnic, Doppler Radar & Weather Observations. Academic

press, 2014.

[44] J. haby. What is spectrum width. Available:

http://www.theweatherprediction.com/habyhints/245/

[45] R. Srivastava, A. Jameson, and P. Hildebrand, "Time-domain computation of

mean and variance of Doppler spectra," Journal of Applied Meteorology, vol. 18,

no. 2, pp. 189-194, 1979.

[46] M. de Feo, A. Graziano, R. Miglioli, and A. Farina, "IMMJPDA versus MHT and

Kalman filter with NN correlation: performance comparison," Radar, Sonar and

Navigation, IEE Proceedings -, vol. 144, no. 2, pp. 49-56, 1997.

[47] R. Danchick and G. E. Newnam, "Reformulating Reid's MHT method with

generalised Murty K-best ranked linear assignment algorithm," Radar, Sonar and

Navigation, IEE Proceedings -, vol. 153, no. 1, pp. 13-22, 2006.

[48] K. Panta, B.-N. Vo, S. Singh, and A. Doucet, "Probability hypothesis density filter

versus multiple hypothesis tracking," in Defense and Security, 2004, pp. 284-295:

International Society for Optics and Photonics.

[49] I. J. Cox and S. L. Hingorani, "An efficient implementation of Reid's multiple

hypothesis tracking algorithm and its evaluation for the purpose of visual

tracking," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.

18, no. 2, pp. 138-150, 1996.

http://www.theweatherprediction.com/habyhints/245/

141

[50] Y. Bar-Shalom, F. Daum, and J. Huang, "The probabilistic data association filter,"

Control Systems, IEEE, vol. 29, no. 6, pp. 82-100, 2009.

[51] W. D. Blair, "Design of nearly constant velocity track filters for tracking

maneuvering targets," in Information Fusion, 2008 11th International Conference

on, 2008, pp. 1-7.

[52] Y. Bar-Shalom, Tracking and data association. San Diego, Calif.: San Diego,

Calif. : Academic Press, 1988.

[53] D. Schreurs, M. O'Droma, A. A. Goacher, and M. Gadringer, Eds. RF Power

Amplifier Behavioral Modeling (The Cambridge RF and Microwave Engineering

Series). Cambridge: Cambridge University Press, 2008.

[54] C. G. Tua, T. Pratt, and A. I. Zaghloul, "A Study of Interpulse Instability in

Gallium Nitride Power Amplifiers in Multifunction Radars," IEEE Transactions

on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3732-3747, 2016.

[55] J. C. Pedro, J. C. Madaleno, and J. A. García, "Theoretical basis for extraction of

mildly nonlinear behavioral models," International Journal of RF and Microwave

Computer‐Aided Engineering, vol. 13, no. 1, pp. 40-53, 2003.

[56] L. B. Chipansky Freire, C. De Franca, and E. G. de Lima, "Low-pass equivalent

behavioral modeling of RF power amplifiers using two independent real-valued

feed-forward neural networks," Progress In Electromagnetics Research C, vol.

52, pp. 125-133, 2014.

[57] J. C. Pedro and S. A. Maas, "A comparative overview of microwave and wireless

power-amplifier behavioral modeling approaches," IEEE Transactions on

Microwave Theory and Techniques, vol. 53, no. 4, pp. 1150-1163, 2005.

[58] A. A. Saleh, "Frequency-independent and frequency-dependent nonlinear models

of TWT amplifiers," IEEE Transactions on communications, vol. 29, no. 11, pp.

1715-1720, 1981.

[59] A. Soury, E. Ngoya, J.-M. Nebus, and T. Reveyrand, "Measurement based

modeling of power amplifiers for reliable design of modern communication

systems," in Microwave Symposium Digest, 2003 IEEE MTT-S International,

2003, vol. 2, pp. 795-798: IEEE.

[60] D. Mirri, F. Filicori, G. Iuculano, and G. Pasini, "A nonlinear dynamic model for

performance analysis of large-signal amplifiers in communication systems," IEEE

Transactions on Instrumentation and Measurement, vol. 53, no. 2, pp. 341-350,

2004.

142

[61] P. Draxler, I. Langmore, T. Hung, and P. Asbeck, "Time domain characterization

of power amplifiers with memory effects," in Microwave Symposium Digest, 2003

IEEE MTT-S International, 2003, vol. 2, pp. 803-806: IEEE.

[62] E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information," IEEE

Transactions on information theory, vol. 52, no. 2, pp. 489-509, 2006.

[63] E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," IEEE

signal processing magazine, vol. 25, no. 2, pp. 21-30, 2008.

[64] S. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee, "Compressive sensing:

From theory to applications, a survey," Journal of Communications and networks,

vol. 15, no. 5, pp. 443-456, 2013.

[65] D. Wu, W.-P. Zhu, and M. Swamy, "A compressive sensing method for noise

reduction of speech and audio signals," in Circuits and Systems (MWSCAS), 2011

IEEE 54th International Midwest Symposium on, 2011, pp. 1-4: IEEE.

[66] J. F. Gemmeke and B. Cranen, "Noise reduction through compressed sensing,"

2008.

[67] D. L. Donoho and M. Elad, "Optimally sparse representation in general

(nonorthogonal) dictionaries via ℓ1 minimization," Proceedings of the National

Academy of Sciences, vol. 100, no. 5, pp. 2197-2202, 2003.

[68] J. Tropp and A. C. Gilbert, "Signal recovery from partial information via

orthogonal matching pursuit," ed: Apr, 2005.

[69] D. L. Donoho, A. Maleki, and A. Montanari, "Message-passing algorithms for

compressed sensing," Proceedings of the National Academy of Sciences, vol. 106,

no. 45, pp. 18914-18919, 2009.

[70] J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via

orthogonal matching pursuit," IEEE Transactions on information theory, vol. 53,

no. 12, pp. 4655-4666, 2007.

[71] I. Şeker, "Calibration methods for phased array radars," 2013, vol. 8714, pp.

87140W-87140W-15.

[72] M. Scott, "SAMPSON MFR active phased array antenna," in IEEE International

Symposium on Phased Array Systems and Technology, 2003., 2003, pp. 119-123.

[73] H. Pawlak, A. Charaspreedalarp, and A. F. Jacob, "Experimental Investigation of

an External Calibration Scheme for 30 GHz Circularly Polarized DBF Transmit

Antenna Arrays," in 2006 European Microwave Conference, 2006, pp. 764-767.

143

[74] K. M. Lee, R. S. Chu, and S. C. Liu, "A built-in performance monitoring/fault

isolation and correction (PM/FIC) system for active phased array antennas," in

Proceedings of IEEE Antennas and Propagation Society International

Symposium, 1993, pp. 206-209 vol.1.

[75] C. Fulton and W. Chappell, "Calibration techniques for digital phased arrays," in

2009 IEEE International Conference on Microwaves, Communications, Antennas

and Electronics Systems, 2009, pp. 1-10.

[76] J. Levinson and S. Thrun, "Unsupervised calibration for multi-beam lasers," in

Experimental Robotics, 2014, pp. 179-193: Springer.

[77] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum Likelihood from

Incomplete Data via the EM Algorithm," Journal of the Royal Statistical Society.

Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977.

[78] C. B. Do and S. Batzoglou, "What is the expectation maximization algorithm?,"

Nat Biotech, 10.1038/nbt1406 vol. 26, no. 8, pp. 897-899, 08//print 2008.

[79] C. J. Wu, "On the convergence properties of the EM algorithm," The Annals of

statistics, pp. 95-103, 1983.

[80] M. K. Nezami, "Fundamentals of power amplifier linearization using digital pre-

distortion," High Frequency Electronics, vol. 54-59, 2004.

[81] B. Nutten, P. Amayenc, M. Chong, D. Hauser, F. Roux, and J. Testud, "The

RONSARD Radars: A Versatile C-Band Dual Doppler Facility," IEEE

Transactions on Geoscience Electronics, vol. 17, no. 4, pp. 281-288, 1979.

[82] Y. Wang and N. L. Zhang, "Severity of Local Maxima for the EM Algorithm:

Experiences with Hierarchical Latent Class Models," presented at the

Probabilistic Graphical Models, 2006. Available: http://dblp.uni-

trier.de/db/conf/pgm/pgm2006.html#WangZ06

[83] W. Kederer and J. Detlefsen, "Direction of arrival (DOA) determination based on

monopulse concepts," in Microwave Conference, 2000 Asia-Pacific, 2000, pp.

120-123: IEEE.

[84] M. J. Hinich and P. Shaman, "Parameter estimation for an r-dimensional plane

wave observed with additive independent Gaussian errors," The Annals of

Mathematical Statistics, pp. 153-169, 1972.

[85] U. Nickel, "Angular superresolution with phased array radar: a review of

algorithms and operational constraints," in IEE Proceedings F-Communications,

Radar and Signal Processing, 1987, vol. 134, no. 1, pp. 53-59: IET.

http://dblp.uni-trier.de/db/conf/pgm/pgm2006.html#WangZ06
http://dblp.uni-trier.de/db/conf/pgm/pgm2006.html#WangZ06

144

[86] J. Odendaal, E. Barnard, and C. Pistorius, "Two-dimensional superresolution

radar imaging using the MUSIC algorithm," IEEE Transactions on Antennas and

Propagation, vol. 42, no. 10, pp. 1386-1391, 1994.

[87] T. E. Tuncer and B. Friedlander, "1. Wireless Direction-Finding Fundamentals,"

in Classical and Modern Direction-of-Arrival Estimation: Elsevier.

[88] D. G. Childers and S. B. Kesler, Modern spectrum analysis. IEEE press New

York, 1978.

[89] K. Agarwal and R. Macháň, "Multiple signal classification algorithm for super-

resolution fluorescence microscopy," Nature communications, vol. 7, p. 13752,

2016.

[90] R. Roy and T. Kailath, "ESPRIT-estimation of signal parameters via rotational

invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 37, no. 7, pp. 984-995, 1989.

[91] O. A. Oumar, M. F. Siyau, and T. P. Sattar, "Comparison between MUSIC and

ESPRIT direction of arrival estimation algorithms for wireless communication

systems," in The First International Conference on Future Generation

Communication Technologies, 2012, pp. 99-103.

[92] K. Hwang, Advanced Computer Architecture:

Parallelism,Scalability,Programmability. McGraw-Hill Higher Education, 1992,

p. 771.

[93] S. Fuller, "The opportunity for sub microsecond interconnects for processor

connectivity," Technology Comparisons, RapidIO®, retrieved online, 2015.

[94] R. T. Association, "RapidIO, PCI express and Gigabit ethernet comparison," ed.

[95] J. Regula, "Using non-transparent bridging in PCI Express systems," PLX

Technology, Inc, pp. 1-31, 2004.

[96] T. Barry Wood, "Backplane tutorial: RapidIO, PCIe and Ethernet," Available:

http://www.eetimes.com/document.asp?doc_id=1275655

[97] S. H. Fuller, RapidIO : the embedded system interconnect. Chichester, England ;

Hoboken, NJ: Chichester, England ; Hoboken, NJ : John Wiley & Sons,

2005.

[98] D. Bueno, C. Conger, A. D. George, I. Troxel, and A. Leko, "RapidIO for radar

processing in advanced space systems," ACM Trans. Embed. Comput. Syst, vol.

7, 2007.

http://www.eetimes.com/document.asp?doc_id=1275655

145

[99] J. C. Bennett and E. P. Schoessow, "Antenna near-field/far-field transformation

using a plane-wave-synthesis technique," Electrical Engineers, Proceedings of

the Institution of, vol. 125, no. 3, pp. 179-184, 1978.

[100] J. Appel-Hansen, E. S. Gillespie, T. G. Hickman, and J. D. Dyson, "Antenna

measurements," in Electromagnetic Waves, Handbook of Antenna Design, Vol.

1: Institution of Engineering and Technology, 1982, pp. 584-694. [Online].

Available: http://digital-library.theiet.org/content/books/10.1049/pbew015f_ch8.

[101] N. P. (R&D). What is NTP? Available: http://www.ntp.org/ntpfaq/NTP-s-def.htm

[102] N. P. (R&D). How accurate will my Clock be? Available:

http://www.ntp.org/ntpfaq/NTP-s-algo.htm

[103] IEEE Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems (1588-2008). USA: USA: IEEE, 2008, pp. 1-

269.

[104] D. M. Anand, J. G. Fletcher, Y. Li-Baboud, and J. Moyne, "A practical

implementation of distributed system control over an asynchronous Ethernet

network using time stamped data," ed, 2010, pp. 515-520.

[105] D. TMS320C66x, "Cache User Guide," Literature Number: SPRUGY8, Texas

Instruments, 2010.

[106] F. Baskett and A. J. Smith, "Interference in multiprocessor computer systems with

interleaved memory," Communications of the ACM, vol. 19, no. 6, pp. 327-334,

1976.

[107] J. Lebak, "Polymorphous computing architectures (PCA) example application 4:

Corner-turn," External report, Oct, 2001.

[108] P. Thambidurai, A. M. Finn, R. M. Kieckhafer, and C. J. Walter, "Clock

synchronization in MAFT," in Fault-Tolerant Computing, 1989. FTCS-19. Digest

of Papers., Nineteenth International Symposium on, 1989, pp. 142-149: IEEE.

[109] B. Simons, "An overview of clock synchronization," in Fault-Tolerant

Distributed Computing: Springer, 1990, pp. 84-96.

[110] P. Ramanathan, K. G. Shin, and R. W. Butler, "Fault-tolerant clock

synchronization in distributed systems," Computer, vol. 23, no. 10, pp. 33-42,

1990.

http://digital-library.theiet.org/content/books/10.1049/pbew015f_ch8
http://www.ntp.org/ntpfaq/NTP-s-def.htm
http://www.ntp.org/ntpfaq/NTP-s-algo.htm

146

[111] Z. Yang and T. A. Marsland, "Annotated bibliography on global states and times

in distributed systems," in ACM SIGOPS Operating Systems Review, 1993:

Citeseer.

[112] G. Jabłoński et al., "IEEE 1588 Time Synchronization Board in MTCA.4 Form

Factor," IEEE Transactions on Nuclear Science, vol. 62, no. 3, pp. 919-924, 2015.

[113] M. L. Massie, B. N. Chun, and D. E. Culler, "The ganglia distributed monitoring

system: design, implementation, and experience," Parallel Computing, vol. 30,

no. 7, pp. 817-840, 2004.

[114] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler, "Wide area cluster

monitoring with Ganglia," in CLUSTER, 2003, vol. 3, pp. 289-289.

[115] N. B. Jeremy Kepner, "Evaluating the Productivity of a Multicore Architecture,"

Available: https://www.ll.mit.edu/HPEC/agendas/proc08/Day3/47-Day3-

Focus5-Kepner-abstract.pdf.

[116] (2017). Leading semiconductor companies from 2014 to 2016. Available:

https://www.statista.com/statistics/283359/top-20-semiconductor-companies/

[117] T. Instruments. 66AK2H Evaluation Modules. Available:

http://www.ti.com/tool/evmk2h

[118] PRODRIVE. (2016). AMC-TK2: ARM and DSP AMC. Available:

https://prodrive-technologies.com/products/arm-dsp-amc/

[119] H. Lin et al., "Cots software selection process," in Commercial-off-the-Shelf

(COTS)-Based Software Systems, 2007. ICCBSS'07. Sixth International IEEE

Conference on, 2007, pp. 114-122: IEEE.

[120] W. Wong, "The Automotive Supercomputer," Electronic Design, Available:

http://electronicdesign.com/embedded/automotive-supercomputer

[121] M. L. Brodie, "The promise of distributed computing and the challenges of legacy

systems," in British National Conference on Databases, 1992, pp. 1-28: Springer.

[122] Y. M. Kadah, K. Z. Abd-Elmoniem, and A. A. Farag, "Parallel Computation in

Medical Imaging Applications," International Journal of Biomedical Imaging,

vol. 2011, p. 2, 2011, Art. no. 840181.

[123] H. T. Kung and C. E. leiserson, "Systolic Arrays (for VLSI)," in Sparse Matrix

Proceedings 1978Philadelphia: SIAM, 1979, pp. 256-282.

https://www.ll.mit.edu/HPEC/agendas/proc08/Day3/47-Day3-Focus5-Kepner-abstract.pdf
https://www.ll.mit.edu/HPEC/agendas/proc08/Day3/47-Day3-Focus5-Kepner-abstract.pdf
https://www.statista.com/statistics/283359/top-20-semiconductor-companies/
http://www.ti.com/tool/evmk2h
https://prodrive-technologies.com/products/arm-dsp-amc/
http://electronicdesign.com/embedded/automotive-supercomputer

147

[124] D. Mann, J. Evans, and M. Merritt, "Clutter suppression for low altitude wind

shear detection by Doppler weather radars," in 23rd Conference on Radar

Meteorology, 1986.

[125] S. M. Torres and D. S. Zrnic, "Ground clutter canceling with a regression filter,"

Journal of Atmospheric and Oceanic Technology, vol. 16, no. 10, pp. 1364-1372,

1999.

[126] J. Ward, "Space-time adaptive processing for airborne radar," 1998.

[127] C. S. Morse, R. K. Goodrich, and L. B. Cornman, "The NIMA method for

improved moment estimation from Doppler spectra," Journal of atmospheric and

oceanic technology, vol. 19, no. 3, pp. 274-295, 2002.

[128] B. W. Johnson, "An introduction to the design and analysis of fault-tolerant

systems," Fault-tolerant computer system design, vol. 1, pp. 1-84, 1996.

[129] J. Liang and Q. Liang, "Design and analysis of distributed radar sensor networks,"

IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 11, pp. 1926-

1933, 2011.

[130] B. C. ord Neuman, "Scale in distributed systems," ISI/USC, 1994.

[131] K. E. Martin et al., "IEEE standard for synchrophasors for power systems," IEEE

Transactions on Power Delivery, vol. 13, no. 1, pp. 73-77, 1998.

[132] G. P. C. Tran, D.-I. Kang, and S. Crago, "Dynamic runtime optimizations for

systems of heterogeneous architectures," in High Performance Extreme

Computing Conference (HPEC), 2014 IEEE, 2014, pp. 1-6: IEEE.

[133] G. Schrader, "A KASSPER Real-Time Signal Processor Testbed,"

MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB2005.

[134] M. Joseph and A. Goswami, "Formal description of realtime systems: a review,"

Information and software technology, vol. 31, no. 2, pp. 67-76, 1989.

[135] A. Jacobs, N. Wulf, and A. D. George, "Task scheduling for reconfigurable

systems in dynamic fault-rate environments," in High Performance Extreme

Computing Conference (HPEC), 2013 IEEE, 2013, pp. 1-6: IEEE.

[136] J. r Sgall, "On-line scheduling| a survey," in Dagstuhl Seminar on On-Line

Algorithms (Schlo Dagstuhl (Wadern), Germany, June 24 {28, 1996), to appear

in LNCS. Springer-Verlag, Berlin-Heidelberg-New York, 1998.

[137] O. Beaumont, V. Boudet, and Y. Robert, "A realistic model and an efficient

heuristic for scheduling with heterogeneous processors," in Parallel and

148

Distributed Processing Symposium., Proceedings International, IPDPS 2002,

Abstracts and CD-ROM, 2001, p. 14 pp: IEEE.

[138] H. El-Rewini and T. G. Lewis, "Scheduling parallel program tasks onto arbitrary

target machines," Journal of parallel and Distributed Computing, vol. 9, no. 2,

pp. 138-153, 1990.

[139] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, "Optimization and

approximation in deterministic sequencing and scheduling: a survey," Annals of

discrete mathematics, vol. 5, pp. 287-326, 1979.

[140] S. Haykin, Y. Xue, and T. N. Davidson, "Optimal waveform design for cognitive

radar," in Signals, Systems and Computers, 2008 42nd Asilomar Conference on,

2008, pp. 3-7: IEEE.

[141] J. Zhang, D. Zhu, and G. Zhang, "Adaptive compressed sensing radar oriented

toward cognitive detection in dynamic sparse target scene," IEEE Transactions

on Signal Processing, vol. 60, no. 4, pp. 1718-1729, 2012.

[142] J. R. Guerci, "Cognitive radar: A knowledge-aided fully adaptive approach," in

Radar Conference, 2010 IEEE, 2010, pp. 1365-1370: IEEE.

149

Abbreviation

ADC Analog-to-digital converter

AM Amplitude modulation

AMC Advanced Mezzanine Card

ARM Advanced RISC Machines

ATCA Advanced Telecommunications Computing Architecture

CFAR Constant False Alarm Rate

CMOS Complementary metal–oxide–semiconductor

COTS Commercial off-the-shelf

CPI Coherent Pulse Interval

CPPAR Cylindrical Polarimetric Phased Array Radar

CPU Central Processing Unit

CS Compressive Sensing

DAR Digital Array Radar

DFT Digital Flourier Transform

DMA Direct Memory Access

DOA Direction of Arrival

DSP Digital Signal Processing

EM Expectation Maximization

ESPRIT Estimation of Signal Parameters Via Rotational Invariance Techniques

EVM Evaluation Module

FFT Fast Flourier Transform

FPGA field-programmable gate array

150

GFLOPS Giga Floating Operation per Second

GPS Global Position System

GPU Graphic Processing Unit

HPEC High Performance Embedded Computing

JPDA Joint Probabilistic Data Association

MCH MicroTCA Carrier Hub

MHT Multiple Hypothesis Tracking

MPAR Multifunctional Phased Array Radar

MTCA Micro Telecom Computing Architecture

MTT Multiple Target Tracking

MUSIC Multiple Signal Classification

NP Non-deterministic Polynomial-time

OMP Orthogonal Matching Pursuits

PA Power Amplifier

PAR Phased Array Radar

PCI Peripheral Component Interconnect

PDAF Probabilistic Data Association Filter

PDF Probability Density Function

PE Processing Element

PM Processing Module

PPS Pulse per Second

PRI Pule Repetition Interval

PTP Precision Time Protocol

151

PU Processing Unit

RCS Radar Cross Section

RF Radio Frequency

RIP Restricted Isometry Property

SATA Serial at Attachment

SENSR Spectrum Efficient National Surveillance Radar

SNR Signal Noise Ratio

SRIO Serial Rapid IO

STAP Space Time Adaptive Processing

TCP Transmission Control Protocol

TR Transmit and Receive

UDP User Datagram Protocol

VLSI Very Large-Scale Integration

