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Abstract 

This dissertation presents an implementation of multifunctional large-scale phased array 

radar based on the scalable DSP platform. 

The challenge of building large-scale phased array radar backend is how to 

address the compute-intensive operations and high data throughput requirement in both 

front-end and backend in real-time. In most of the applications, FPGA or VLSI hardware 

are typically used to solve those difficulties. However, with the help of the fast 

development of IC industry, using a parallel set of high-performing programmable chips 

can be an alternative. We present a hybrid high-performance backend system by using 

DSP as the core computing device and MTCA as the system frame. Thus, the mapping 

techniques for the front and backend signal processing algorithm based on DSP are 

discussed in depth.  

Beside high-efficiency computing device, the system architecture would be a 

major factor influencing the reliability and performance of the backend system. The 

reliability requires the system must incorporate the redundancy both in hardware and 

software. In this dissertation, we propose a parallel modular system based on MTCA 

chassis, which can be reliable, scalable, and fault-tolerant. 

Finally, we present an example of high performance phased array radar backend, 

in which there is the number of 220 DSPs, achieving 7000 GFLOPS calculation from 768 

channels. This example shows the potential of using the combination of DSP and MTCA 

as the computing platform for the future multi-functional large-scale phased array radar. 

 



1 

1. Introduction 

 

1.1. Introduction of Phased Array Radar 

Phased Array Radar (PAR) is an electronically scanned array with multiple numbers of 

antennas. Compared with traditional mechanical beam steering radar, PAR can generate 

a focused beam by applying a weight to each antenna and the beam direction can be 

steered by adjusting the weights. Figure 1.1 shows a simplified transmit-receive (TR) 

channel diagram for a modern PAR. The overall PAR system comprises three sections: a 

phased array antenna manifold, an RF front-end, and a processing backend. The array 

manifold contains a number of radiating elements, which can be different types of 

antennas. The shape of array manifold can be linear, planar, or conformal. The linear and 

Figure 1.1: Simplified TR channel diagram for a PAR system 
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planar arrays have been widely used in military and civilian applications for many years, 

which is more mature than the conformal array. However, circular or cylindrical arrays 

have found many applications in communications, direction finding, missile guidance and 

recently in weather radars. RF front-end is responsible for the signal generating, signal 

transmitting and receiving, and up/down converting. In digital PAR systems, the radar 

pushes the backend system closer to the antennas. Such front-end systems are mixed-

signal systems responsible for transmitting and receiving radio frequencies (RF), digital 

in-phase and quadrature (I/Q) sampling, and channel equalization that improves the 

quality of signals. An example application is the Space Fence test facility built by 

Lockheed Martin. The radar system in this facility is fully digital array composed by 

multiple numbers of front-end transmit-and-receive line-replaceable unit [1]. Meanwhile, 

digital PAR backend systems control the overall system, prepare to transmit waveforms, 

transform received data for use in a digital processor, and process data for other functions, 

including real-time calibration, beamforming, and target detection/tracking. 

As the RF front-end becomes more digitalized and the increased performance of 

backend processing units, Multifunctional Phased Array Radar (MPAR) is more feasible 

by programmable RF and processing parallelization. This improvement makes possible 

to combine multiple types of radar in one unit, which is also a way to enhance the 

efficiency of spectrum utilization. For example, current U.S. government operates several 

unique types of radars that provide weather, air traffic control, and homeland defense 

missions. It is possible to reduce the total number of radars and spectrum footprints with 

a single network of MPAR, which could potentially save billions of dollars [2]. Moreover, 

the electronically scanned antennas can reduce the maintenance cost over mechanically 
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steered antennas by the absence of moving parts, and the radar system would be still 

functional even if 20% of the TR modules fail [3]. With the fast development of 

commercial wireless industry, various companies and agencies made their RF equipment 

and required them to work on a stand-alone spectrum to avoid the interference. Therefore 

the spectrum becomes crowded and makes the spectrum a highly-priced product in the 

market. For example, a 65 MHz of spectrum in L-band are sold by $45 billion in 2015 

[4]. Although the defense or national weather radars have the privilege of using some 

specific spectrum, if government choose to move the working spectrum out of a crowded 

area, they can use the selling money to update their system without raising fund from 

other places. Thus, the MPAR would be a feasible, reliable and cost-effectiveness system. 

Many types of research have begun in academia, industry, and government to 

identify technical challenges and risks, and demonstrate their technologies for needs from 

both weather and the airport surveillance. MIT Lincoln laboratory had a concept study 

for the requirement of the aircraft surveillance and weather observation [5], in which it 

purposed a planar PAR with four antenna faces. Each face contains roughly 20,000 

elements with 10 Watts peak power. In 2015, MIT Lincoln lab had built a 10-panel 

prototype array with the dual-polarization capability to refine system requirements and to 

quantify performance for weather observations. This prototype has 640 elements with 3.5 

kilo-Watts peak power at antennas, working at S-band [6]. As mentioned before, the 

problem of using planar array in the dual polarization application is 𝐸𝑣 and 𝐸ℎ are skewed 

when beam is not perpendicular to the array face. At the meantime, the Cylindrical 

Polarimetric Phased Array (CPPAR) has recently been introduced for MPAR. In the 

University of Oklahoma, a demonstrator of the CPPAR is designed by Advanced Radar 
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Research Center (ARRC) to prove the concept of polarimetric measurements of actual 

weather and demonstrating a multi-functional PAR. CPPAR has 1824 elements separated 

into 96 columns. Each column has 80 Watts peak power, working at 2900 MHz. Figure 

1.2 shows the picture of CPPAR currently operated by ARRC. 

 

1.2. Challenge and Requirements of Multi-functional PAR Backend 

The concept of MPAR is associated with many technical challenges which remain to be 

solved. This work mainly focuses on the backend aspect. A canonical PAR processing 

platform contains a front-end component that performs basic array signal processing, 

which requires relative easy but a significant amount computing throughput.  A more 

advanced backend performs knowledge-based processing requires complex operations 

but the relatively small amount of computing throughput. For example, [5] proposed a 

Figure 1.2: CPPAR demonstrator operated by OU-ARRC  
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400-channel PAR with 1 ms pulse repetition interval (PRI); assuming 8,192 range gates, 

each range sample uses 8 bytes length in memory.  For each PRI, the throughput in the 

front-end can reach up to 5.24 GB/s. As the requirements for such data throughput are 

extraordinarily demanding, at present, such computing performance requires digital I/Q 

filtering to be mapped to a fixed set of gates, look-up tables, and Boolean operations on 

the field-programmable gate array (FPGA) or very-large-scale integration (VLSI) with 

the full-custom design [7]. After front-end processing, data are sent to the backend 

system, in which more computationally intensive functions are performed. Compared 

with FPGA or full-custom VLSI chips, programmable processing devices such as digital 

signal processors (DSPs) offer a high degree of flexibility, which allows designers to 

implement algorithms in a general-purpose language (e.g., C) in backend systems. For 

application in aerospace surveillance, target detection and tracking are thus performed in 

the backend. Target tracking algorithms, including the Kalman filter and its variants, 

predict future target speeds and positions by using Bayesian estimation [8], whose 

computational requirements vary according to the format and content of input data. 

Accordingly, detection and tracking functions require processors to be more capable of 

logic and data manipulation, as well as complex program flow control. Such features are 

different from those of baseline radar signal processors, in which the size of data involved 

dominates the throughput of processing [9]. As such, for tracking algorithms, a general 

purpose processor or Graphics Processor Unit (GPU)-based platform is more suitable 

than FPGA or DSP. In summary, in radar backend processing, hybrid solutions need to 

be developed that exploit the advantages of each type of processor units.  
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Normally, the hybrid backend system is based on a modular design concept, in 

which one or more processors are placed in one extension card. The modular architecture 

is scalable, which allows the sub-system to be upgraded with minimal impact on the 

overall system. However, the drawback of modular architecture is the communication 

requirement among the extension cards and the complexity of software design when the 

granularity of processing becomes small. The granularity of processing is defined 

according to the size of a processing assignment that forms a part of the entire task. 

Although finer granularity allows designers to attune the processing assignment, it also 

poses the disadvantage of increased communication overhead within each unit [10]. To 

balance computation load and real-time communication in one extension card, the ratio 

of the number of computation operations to communication bandwidth needs to be 

checked carefully. For example, in a 6678 Evaluation Module (Texas Instruments), which 

has eight C66xx DSP cores, contains 24 DSP cores and four ARM cores in a single board. 

Texas Instruments claims that each C66xx core has 16 Giga floating point operation per 

second (GFLOPS) at 1 GHz [11]. On this board, it has four-lane SRIO (Gen 2) link, which 

has a theoretical link speed up to 1,600 MB/s in NWrite mode; since the single-precision 

floating point format (IEEE 754) [12] occupies 4 bytes in memory, the SRIO link convoys 

400 million floating point data per second. The ratio of computation to bandwidth is 40 

[8], meaning that the core can perform up to 40 floating point operations for each piece 

of data that flows into the system without halting the core-to-core communication link. 

As such, when the ratio reaches 40, the processor achieves an optimal balance between 

real-time computing and communication. To achieve this optimization and efficiency, 
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technologies needed are optimized algorithms, computing resources optimization, and 

ensuring that I/O capacity reaches its peak level. 

The key design tradeoffs depend on the constraints imposed by the radar system.  

In some applications, such as airborne radar, the size, weight, and power consumption 

(SWaP) is a constraint and requires the designer to address the SWaP challenges by 

balancing the performance and form factors. In contrast, the SWaP requirements are 

likely to be relaxed for ground-based applications, but the cost of the platform may need 

to be limited. As one of the tradeoffs, Figure 1.3 shows the comparison among different 

type of processor selections in terms of power consumption, cost, and computing power. 

Based on such comparisons, a designer may choose the proper type of processor to fulfill 

the processing task according to the requirement. For example, FPGA is more appropriate 

Figure 1.3: Cost-effectiveness and power efficiency comparison 
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for applications those require highest computation throughput at the lowest unit SWaP. 

On the other hand, CPU is suitable for the cost-sensitive scenarios. DSP or GPU can be 

a better choice when a balance between cost and performance is needed. Even though 

FPGA and ASIC are relatively difficult to be programmed than DSP and the cost is 

higher. However, when a large volume of devices are in demand and high computing 

intensity is required, FPGA and ASIC will be used in the most demanding portion of the 

system to keep the power consumption and form factor under control. For example, [5] 

mentions that each MPAR contains 1,200 channel and more than 200 MPAR are needed 

in the future. Based on this volume, the cost of using FPGA and ASIC would be dropped. 

So, in the final phase of the product, FPGA or ASIC would be a better choice. 

Besides the high data throughput requirements for the backend of a PAR system, 

in the front-end, there are also issues related to antenna calibration, RF distortion, and 

multi-channel synchronization. Compared with PAR, reflector dish radars have 

mechanically steered the antenna to point the radar beam in a specific direction, so the 

characteristics of the beam are the same during scanning. However, the beam 

characteristics of a PAR change with the pointing directions as well as the performance 

of its transmit and receive elements. For dual-polarized PAR, antenna beams at each 

pointing direction need to be calibrated and monitored. Moreover, distributed array 

architecture, such as the distributed local oscillator (LO) in digital arrays, leads to small 

variations in signal response among different channels. Although various antenna 

calibration methods, such as peripheral fixed probes and near-field measurement, can 

help channel equalization, those procedures are all complex and need a clutter-free 
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environment. Once a PAR is deployed, re-calibration may be difficult, which brings the 

challenge of achieving stable system performance.   

In practice, due to the nonlinear behaviors of RF hardware, the relative phase, and 

amplitude values deviate considerably during the time and among different channels. This 

distortion reduces the dynamic-range and downgrades the data quality, so the predicting, 

assessing and quantifying these effects would be necessary for calibrations. Several 

linearization techniques have been developed to inversely models the behavioral models 

of system’s gain and phase characteristics, such as feedforward linearization [13], RF 

predistortion [14], Cartesian feedback [15], and digital predistortion. These methods 

require extra predistortion circuits and feedback from the output of RF system, which 

increase the complexity of RF front-end design and cost.  

The transmitters, receivers, and other sequential circuits in PAR channels are 

synchronized by a Local Oscillator clock (LO). In other to synchronize LOs in different 

channels, a global clock signal is distributed so that the data acquired from multiple 

channels are correlated in time. A reliable clock network is required to deliver the clock 

signal to all the channel circuit components. In a multiple chassis PAR (especially for 

DAR) application, the interconnection clock distribution network is complex and the 

control of arrival times of the global clock at different LOs becomes difficult. If not 

properly controlled and monitored constantly, the clock skew can adversely affect the 

performance or even cause erratic operations of the systems. 

The design of clock distribution network poses a formidable challenge of 

considering the variations in interconnect parameters. For example, the length of between 

the source of global clock to each LO may be varied, and the power supply noise on each 
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LO affects the clock jitter, which, in turn, affects the arrival time of the global clock. 

Those instabilities would make the overall system unreliable, which is one of the lessons 

learned from OU’s first version CPPAR development. The most common 

synchronization solution is using Network Time Protocol, which synchronizes each client 

by using the UDP packets over Ethernet. The drawback of this solution is the low 

accuracy, ranging from 5 to 100 ms [12]. Another more accurate method is using the 

IEEE 1588 Precision Time Protocol (PTP) standard [13], which can achieve sub-

microsecond synchronization [14]. However, to implement PTP, an extra dedicated 

hardware and software are needed, which would increase the complexity and cost of 

front-end system. 

1.3. Emerging Technologies for Digital Backend System 

The digitization of transmitting and receiving signals at the element level opens the door 

to new processing technologies for the phased array system. In the RF front end, the state-

of-art Gallium nitride technology outperforms traditional CMOS power amplifiers in 

terms of high power density and smaller die areas [16]. With the fast development of 

integrated chip industry, the cost and size of chips are reduced, which makes the radar 

system smaller, more powerful, and affordable for the customers from the consumer 

electronics market. For example, in the automotive industry, the frequency modulation 

continuous wave radar has been widely utilized in the forward collision avoidance system 

and active cruise control system. Those mass productions would further bring down the 

cost of the radar and make the radar product more affordable.  

In the backend processing platforms, a high-performance embedded computing 

(HPEC) platform contains microprocessors, network interconnection technologies such 
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as those of the Advanced Telecommunications Computing Architecture (ATCA) and 

Micro Telecom Computing Architecture (MTCA), and management software that allows 

more computing power to be packed into a system with smaller SWaP. Such designs 

achieve compatibility with industrial standards and reduce both the cost and duration of 

development. MTCA and ATCA contain groups of specifications that aim to provide an 

open, multi-vendor architecture that seeks to fulfill the requirements of a high throughput 

interconnection network, increase the feasibility of system upgrading and upscaling, and 

improve system reliability. In particular, MTCA specifies the standard use of an 

Advanced Mezzanine Card (AMC) to provide processing and input-output (I/O) 

functions on a high-performance switch fabric with a small form factor. 

Within the backend system, the processing chipsets have also evolved rapidly. 

Not only the data throughput of widely-used FPGA and DSP are increased dramatically, 

but also a new type of processor has emerged as a new tool to accelerate radar signal 

processing tasks. Traditionally, GPU has been used as a special-purpose device whose 

function is to accelerate the graphics pipeline for the video games in the PC environment. 

With the fast development of GPU and its standardized application programming 

interfaces (API), such as OpenGL, DirectX, and CUDA, GPUs have moved beyond 

graphics applications to become powerful floating point processing units [17]. As GPU 

is a native hardware for floating point operations, many areas of study related to a 

significant computing throughput requirement, such as machine learning, computational 

biology [18], and computer vision, has begun to adopt newer signal processing algorithms 

to GPU. Moreover, GPUs offer good backward compatibility than DSP and FPGA.  
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Applying machine learning algorithms in radar signal processing, especially in 

the target recognition area, has become a new trend [19]. For example, cognitive radar 

[20] is designed to intelligently perceive, track, and classify the targets from the past 

experiments, which is realized by the Bayesian approach. The cognitive aspect is 

manifested in the form of the cognitive signal processing cycle, in which an adapt 

waveforms are generated to illuminate the non-stationary environment. Within this cycle, 

active target classifications are optimized based on prioritized system objectives, 

understanding of the observation environment, and other forms of prior knowledge. With 

each illumination, the system improves the understanding of surrounding area in response 

to collected data and other information [21]. The cognitive radar uses the scene analysis 

to develop an appropriate statistical model to describe the information content of received 

signal on clutter, targets, or other false alarms. For example, when there is a target moving 

on an ocean surface, the Doppler spectrum of clutter would be relatively smooth across a 

wide range of the spectrum, whereas the spectral of the target would be appeared as a line 

component [22]. Moreover, when the power level reflected from the target is small 

compared with clutter, the cognitive radar needs an enhancement to extract the target 

information from the clutter. Thus, three statistic models are developed to classify the 

different conditions: clutter-statistics described by the F-distribution 𝐹2,2𝑘(𝑧), where 𝑧 is 

the power of spectrum and, 𝑘 is the number of neighboring Doppler bins [23], target-

pulse-clutter statistics described by scaled F-distribution 
1

𝛾
𝐹2,2𝑘 (

𝑧

𝛾
), where 𝛾 is the power 

ratio of target to clutter, and target motion described by the Gaussian distribution . 
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1.4. Comparison of DSP, FPGA, and GPGPU 

The signal processing tasks in the DAR can be implemented with different types of 

processors; each has its own benefits and limitations. FPGA has the advantage of low 

non-recurring expenses and reconfigurability with high throughput. Different from other 

types of general purpose processors, FPGA is programmable device based on user 

applications. In the FPGA, multiple logic blocks are connected with programmable 

interconnect point, in which the designer can implement algorithms by configuring logic 

blocks and routing the data traffic through interconnect points [24]. Since a designer can 

control the hardware structure implemented in FPGAs, the computation load and 

communication throughput may be balanced better than other General-Purpose 

Processors (GPPs). For example, the bus width and the processing speed is fixed in the 

GPP, so the performance of the processors may be compromised when the 

communication requirement is more stringent than computing requirements,  

Before the proliferation of FPGA applications, DSP has been the primary choice 

for signal processors. Within DSP, multiple numbers of Multiply Accumulate Engines 

(MAC) are used for parallel processing. For example, a TI C66x core [11] contains one 

MAC, which can perform four single precision floating point multiplications and two 

single precision floating point additions in one clock cycle. Since a DSP operates on 

instructions, the programming mechanism can be a high-level language for fast 

deployment or assembly language for higher performance requirements. Those two 

choices provide the flexibility for the designers compared by using only one mechanism-

-HDL on FPGA. However, with hundreds of MACs, FPGA can be built into a more 

powerful parallel computing platform than DSP. Incorporating so much computing power 
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in one chip makes the power consumption in FPGA much higher than DSP.  Moreover, 

FPGAs are usually more expensive than DSP in terms of GFLOPS per dollar. Thus, DSP 

would be a better choice for applications which are cost sensitive and have strict power 

budget. 

As a GPP, a CPU is designed to follow general purpose instructions among 

different types of tasks and thus allow the advantage of programming flexibility and 

efficiency in flow control. However, since CPUs do not accommodate for a range of 

scientific calculations, GPUs can be used to support heavy processing loads. The 

combination of a CPU and GPU offers competitive levels of flow control and 

mathematical processing, which enable the radar backend system to perform 

sophisticated algorithms in real-time. With the increasingly friendly programming 

environment and standardized API, CPU-GPU becomes easy to be programmed and 

maintained, compared with FPGA and DSP. Moreover, CPU-GPU has a better 

performance than FPGA and DSP in term of GFLOPS per dollar. The drawback of the 

combination, however, is its limited bandwidth for handling data flow in and out of the 

system. CPUs and GPUs are designed for a server environment, in which Peripheral 

Component Interconnect Express (PCIe) can efficiently perform point-to-point for 

onboard communication. However, PCIe is not suitable for high throughput data 

communication among a large number of boards. If the throughput of the processing is 

dominated by the size of data involved, then the communication bottleneck downgrades 

the computing performance for a CPU–GPU combination.  

Therefore, when signal processing algorithms have demanding communication 

bandwidth requirements, DSP and FPGA are better options, since both can provide 
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significant bandwidth for in-chassis communication by using SRIO while at once 

achieving high computing performance. FPGA is more capable than DSP of providing 

high throughput in real-time for a given device size and power. When the DSP cluster 

cannot achieve performance requirements, the FPGA cluster can be employed for critical-

stage, real-time radar signal processing. However, such improved performance comes at 

the expense of limited flexibility in implementing complex algorithms [7]. If FPGA and 

DSP both meet application requirements, then DSP can be a more preferred option given 

its reduced cost and less complicated programmability. The CPU-GPU combination can 

be used in the applications, in which there is a significant computing load requirement 

but with a more flexible timeline and power consumption requirements.  

1.5. Outline of Dissertation 

This dissertation presents the method of realizing digital phased array radar functions in 

a scalable, compact, and power efficiency form factor by using commercial off-self 

products. The ways of implementing fundamental signal processing algorithms in real-

time on DSP platforms are discussed. An HPEC platform for parallel backend processing 

is introduced as an example, and novel algorithms to self-calibrate the array system are 

investigated. Finally, an example of system implementation is elaborated to demonstrate 

the performance of our purposed HPEC solutions.  

Chapter 2 presents the computational aspect of canonical radar signal processing 

algorithms and procedures, focusing on computational complexity, algorithm 

decomposition, and mapping of algorithms onto embedded hardware processors. A new 

self-calibration technique based on Expectation Maximization (EM) algorithm is studied. 

Typically, antenna calibration needs a controlled environment and additional hardware, 
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which is difficult to be performed in the field. The proposed self-calibration method 

would use EM algorithm to build up a Bayesian model to find the ground truth value 

based on thousands of observation data from the antenna. Moreover, compressive sensing 

is introduced to improve the range resolution. In this chapter, some of the research results 

are based on the past publication [25, 26]. 

Chapter 3 presents an efficient and scalable backend system architecture design 

for a large-scale PAR, which achieves high throughput and computing performance. The 

basic signal processing chain, including beamforming, pulse compression, and Doppler 

filtering are mapped to processing units in parallel for the real-time processing. More 

advanced adaptive processing algorithms can also be implemented on this HPEC testbed. 

Other radar applications, such as Synthetic Aperture Radar (SAR) can benefit greatly 

from this design as well. Our approach integrates multiple DSPs by using SRIO links as 

part of commercial-off-the-shelf (COTS) MTCA chassis. In a digital array radar (DAR) 

containing hundreds of channels, a highly accurate synchronization technique is critical 

to the system stability and performance since if transmitters or receivers are out of phase, 

a focused beam cannot be reliably formed and the SNR would be reduced. We developed 

a synchronization procedure with nano-seconds level accuracy to ensure the backend 

system is synchronized. Compared with other synchronization techniques, such as 

Network Time Protocol (NTP) and Precision Time Protocol (PTP), our method is more 

reliable, convenient, and accurate. In this chapter, some of the research results are based 

on the past publication [27]. 

Chapter 4 presents key benchmark results for radar processing algorithms to 

investigate the performance of the backend processing platform design, and proves that 
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the design can meet the real timeline requirements for a large-scale PAR containing 768 

digital channels with 4,096 range gates. The system architecture allows adjusted 

processing power, which requires each processing board on the platform operates 

independently and be “hot swappable.” Moreover, the architecture needs to provide 

enough bandwidth for the large data communication among different computing units. 

Based on those considerations, we use a product from various vendors and integrate them 

with hybrid backplanes, which proves to enhance the computing performance through 

benchmark results. Lastly, benchmark performance results of using “bare-bone” 

parallelism method and standard libraries (such as OpenCL) are compared. 

In the end, Chapter 5 would summarize the architecture design consideration for 

the multi-functional PAR, in which the designer must diligently research the solution and 

ensure a predictable degree of operational continuity during production hours. Without a 

good underlying infrastructure and with poor planning, a single hardware failure in the 

computing environment could affect the system ability to continue the service. Although 

there are many considerations to a PAR system, the following are some of the most 

important aspects: 

• System Fault-tolerance: A fault-tolerant system has redundant hardware components 

inside to withstand hardware failure. When the system encounters a hardware failure, 

the application should remain operational or may be degraded, while the system is 

repaired. 

• Scalability: A scalable system is one whose performance can be increased, or 

decreased, after adding or removing proportional hardware without changing the 

framework of the infrastructure components.  
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• Cost-effective: Using less money to make more outcomes is the goal that every 

system designer wants to achieve. By doing so, the designer should compare different 

types of technologies and chose the one that can benefit the system most.  
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2. Signal Processing Algorithms and Processing Chain 

2.1. Introduction 

With the development of the higher level of functionality and complexity in signal and 

image processing applications, the computing throughput in HPEC becomes more 

demanding with hard-real-time deadlines and stringent form factors. Figure 2.1 shows a 

top-level structure for a typical HPEC application. The HPEC can be divided into three 

parts: sensors, a front-end signal processing and a backend data processing. For the PAR 

application, the sensor could be patch antenna or reflect array [28, 29]. The front-end is 

to transmit or receive the signal to/from the outside by using the appropriate sensors, 

remove noise and interference from the signal, and extract the useful information from a 

large amount of received data. The purpose of the backend is to further refine and classify 

the information into different categories, convert the numerical information into readable, 

user-friendly data, and estimate the status of the future targets based on the current result.  

 

Figure 2.1: Canonical front-end and back-end architecture of an HPEC application 
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In the PAR application, multiple pulses are transmitted within one Coherent Pulse 

Interval (CPI). The pulses in the same CPI are phase-coherent, in which each pulse starts 

with the same phase and reflects back from targets with the relatively small differences 

in phase. The time interval between transmitted pulse is Pulse Repetition Interval (PRI), 

which determines the maximum unambiguous range. After the radar antenna receives the 

reflected signal, the signal would proceed through receivers that perform down-

conversion and band-pass filtering, and input to the front-end and back-end processing 

platform, in which more complex signal processing tasks are performed and output the 

detection result to the users. In the front-end, three fundamental or general-purpose 

processing tasks would be conducted— beamforming, pulse compression, and Doppler 

filtering, and then the result would be feed to the backend platform, in which the types of 

processing tasks are based on the requirements of different applications. For example, in 

the weather radar processing, it focuses on the information related to volume targets and 

analysis the spectrum of the target velocities. In contrast, the aircraft surveillance is 

committed to giving a good estimation of the position and velocity of the aircraft targets. 

Figure 2.2: Overview of data cube processing chain in a general PAR 
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Figure 2.2 shows the data cube processing chain in the PAR front-end. The 

received data from the array manifold and front-end electronics are organized into three-

dimensional data cubes, and 𝑁𝑟𝑔, 𝑁𝑐ℎ, 𝑁𝑝, and 𝑁𝑏 represent the total number of range 

gates, channels, pulses, and beams, respectively. When any of those four numbers are red, 

the data are aligned in their corresponding dimensions. After the data cube is digitized by 

ADCs, the data is aligned in the dimension of range gate. Before doing further processing, 

the large data cube would be decomposed to several small portions for the purpose of 

parallel computing and re-align the data in the channel domain to facilitate the following 

beamforming processing. The beamforming stage transform spatial domain signal into 

beam-space domain, creating a set of focused beams. Another data corner-turn is applied 

at the output of beamforming to align the data in the range gate dimension. The pulse 

compression stage concentrates the signal energy spread over the entire transmitted 

waveform into a short pulse response to increase the SNR and sensitivity. A third data 

corner turn is performed to transform the data from channel to pulse dimension. The 

Doppler filter stage determine the radial velocity of targets relative to the radar array by 

applying FFT across the pulses within one CPI. At the output of the Doppler filter, the 

data cube has dimensions of number of range gates × the number of beams × the number 

of Doppler bins. After the Doppler processing, the data cube is converted into a data set 

containing the information about the position and velocity of the targets, from which the 

processing tasks in the backend can further extract information based on the requirements 

of applications by using more complex signal processing algorithms.  
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Figure 2.3 shows the large-scale PAR overall software diagram, in which the red, 

black, and blue boxes represent the corresponding tasks performed by the FPGA, DSP, 

and GPGPU platforms respectively. The selection of different types of the processor is 

based on the requirements of processing tasks mentioned in Section 1.4. The data cube is 

formed in the FPGA platform, red boxes, and processed on the DSP platform, black 

boxes. This dissertation focuses on performing waveform processing and beamforming 

control task on DSP. The following sections in this chapter would be organized as: 

Section 2.2-2.4 introduce the canonical radar algorithm in the processing chain and study 

the computing complexities of these algorithms. After the signal processing chain, the 

data processing tasks including weather data product generation and target tracking are 

discussed in Section 2.5. In Section 2.6, several advanced algorithms are introduced, 

aiming to improve the performance of overall processing chain.  

Before calculating the computing complexity of each algorithm in the following 

sections, it is necessary to list the computational complexity expressions for several 

fundamental signal processing kernels for both real and complex values in advance. The 

Figure 2.3 : Illustration of large-scale PAR overall software system diagram 
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discussion of the complexity of each processing kernel is beyond the scope of this 

dissertation; a comprehensive discussion can be found in [30]. The following sections 

would use the computational complexity listed in Table 2.1 as a reference. Moreover, we 

use Giga Floating-point Operations (GFLOPS) [31] as a metric to measure the 

benchmarks of digital PAR backend system performance.  

Table 2.1: Computational Complexity for Signal Processing Kernels 

Signal Processing Kernel 

Computational Complexity 

Real value Complex value 

Matrix Multiplication 2𝑚𝑛𝑝 2𝑚𝑛𝑝 

Fast Fourier Transform 
5

2
𝑛𝑙𝑜𝑔2𝑛 5𝑛𝑙𝑜𝑔2𝑛 

Forward or back substitution 𝑛2 4𝑛2 

Eigen-decomposition 9𝑛3 23𝑛3 

For the matrix multiplication, the matrices are of dimensions 𝒎× 𝒏 and 𝒏 × 𝒑. For 

the FFT, the vector size is 𝒏. The lower triangular matrix used in forward or back 

substitution is 𝒏 × 𝒏. 

 

2.2. Digital Beamforming 

The procedure of beamforming is to convert the data from channel data (range gate) to 

beamspace, steer the radiating direction, suppress sidelobes and interferences by applying 

the beamformer weight, 𝑊𝑖, to received signal, 𝑌𝑖, indicating in Equation (2.1), in which 

Θ  is the beam pointing angle indicator and Ω  is the total number of channels. The 

computation complexity of Equation (2.1) can be determined as follows: first, each 

complex multiplication requires four floating point multiplications and two floating point 
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additions, for a total of 4 + 2 = 6  real flops. There are two complex additions for 

summing of each channel. Hence, for a complex beamforming, the complexity formula 

arrived at is (6 + 2) × Ω × 𝑁𝑟𝑔 = 8𝑁𝑐𝑁𝑟𝑔, where 𝑁𝑟𝑔 is the number of range gates. The 

above calculating complexity evaluates the throughput of beamforming at the time 

interval, 𝑇, as (𝟖𝑵𝒄𝑵𝒓𝒈) 𝑻⁄  𝐹𝐿𝑂𝑃𝑆. 

𝐵𝑒𝑎𝑚𝛩 =∑𝑊𝑖
𝛩𝑌𝑖

𝛺

𝑖=1

 (2.1) 

In a large-scale PAR, there will be thousands of range gates and channels, which 

bring huge computing burden for a front-end computing platform. For example, in [5], 

each face of the array contains 20,000 channels, and suppose the number of range gates 

is 1,000 and pulse time interval is 𝑜𝑛𝑒 𝑚𝑠 . If all the elements are digitalized, the 

throughput of the beamforming would be 160 GFLOPS for a single beam forming. It is 

impossible for a single processor to handle such computation. So parallel computing is 

needed and it requires to separate the entire computing load to various computing nodes. 

Equation (2.2) and (2.3) shows an example of “systolic beamforming”, by dividing the 

beamforming process into 𝑀  parts. The entire data is divided equally and a portion 

assigned to each sub-beamformers, (i.e., computing node), in which the term 

∑ (𝑊𝑗𝐶+𝑖
𝑏 𝑌𝑗𝐶+𝑖)

𝐶
𝑖=1  is calculated independently and 𝐶 is the number of channel of each 

computing node can get.  

𝐵𝑒𝑎𝑚Θ = [∑𝑊𝑖
Θ𝑌𝑖

𝐶

𝑖=1

] + [∑𝑊𝐶+𝑖
Θ 𝑌𝐶+𝑖

𝐶

𝑖=1

] + [∑𝑊2𝐶+𝑖
Θ 𝑌2𝐶+𝑖

𝐶

𝑖=1

] + ⋯

+ [∑𝑊(𝑀−1)𝐶+𝑖
Θ 𝑌(𝑀−1)𝐶+𝑖

𝐶

𝑖=1

] 

(2.2) 
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𝐵𝑒𝑎𝑚Θ = ∑ [∑𝑊𝑗𝐶+𝑖
Θ 𝑌𝑗𝐶+𝑖

𝐶

𝑖=1

]

𝑀−1

𝑗=0

 (2.3) 

A PAR system may operate in an environment which is not stable and contain 

unwanted interference, so an adaptive beamforming weight is used to generate high gain 

in the beam steering direction and reject or minimize energy from other directions by 

adaptively adjusting the steering vector according to the interference environment. There 

are numerous methods for calculating the beamformer weights adaptively. The most 

standard solution is Wiener filter [32, 33], showing in Equation (2.4), in which 𝑊 is a 

beamforming weight matrix; 𝑉 is a matrix of column steering vectors; 𝑅 is the covariance 

matrix of the received signal 𝐴. To achieve good performance, [34] suggests that the 

number of samples needs to be 2 to 5 times of channel number, 𝑁𝑐ℎ. For example, if the 

system has 𝑁𝑐ℎ  number of channels, then a sample matrix, 𝐴  has dimension of 

𝑁𝑐ℎ × 5𝑁𝑐ℎ. Moreover, to desensitize the adaptive weight computation to perturbations 

[35], covariance matrix 𝑅 needs to be appended by an extra loading matrix, 𝑄. Though 

many studies suggest that the loading matrix takes the form of the covariance matrix of 

steering vector due to of the simplicity and effectiveness [36], the most widely-used 

method is diagonal loading matrix. Equation (2.5) shows a method for appending the 

diagonal loading matrix to covariance matrix with a constant Loading Level, 𝜎. The 

diagonal loading matrix can be accommodated into Equation (2.4) by augmenting the 

sample matrix with an identity matrix with square root of desired loading level, as 

showing in Equation (2.6), in which 𝐵 is the sample matrix appended with the loading 

matrix. To efficiently solve the weight vector 𝑊, [9] suggests using the Winer filter to 

avoid the calculating of the covariance matrix in Equation (2.6) by decomposing matrix 
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𝐵 into a lower triangular matrix 𝐿 and an orthogonal matrix 𝑄. The Equation (2.7) shows 

the simplified version of Equation (2.6) after applying LQ decomposition to matrix 𝐵. 

𝑊 = 𝑅−1𝑉, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ R = AAH (2.4) 

�̅� = 𝑅 + 𝑄 = 𝐴𝐴𝐻 + 𝜎𝐼 (2.5) 

𝑊1 = �̅�−1𝑉 = (𝐴𝐴𝐻 + 𝜎𝐼)−1𝑉 = ([𝐴|√𝛿𝐼][𝐴|√𝛿𝐼]
𝐻
)
−1

𝑉 = (𝐵𝐵𝐻)−1𝑉 (2.6) 

𝑊1 = (𝐿𝐻)−1(𝐿−1𝑉) (2.7) 

The Wiener filter method of calculating adaptive beamforming weight contains three 

parts: LQ decomposition and two matrices backsolve. Suppose in Equation (2.6), 𝐵 and 

𝑉 are the matrices of dimensions 𝑚× 𝑛 and 𝑚 × 1. The complexity expressions for the 

LQ decomposition of matrix 𝐵 is 8𝑚𝑛2 − 8𝑛3 3⁄ . As the dimension of 𝐿 is the same as 

𝐵, so two backsolves cost 4𝑛2and 4𝑚2 flops, respectively. Thus, in total, the complexity 

of weight calculation is  

8𝑚𝑛2 − 8𝑛3 3⁄ + 4𝑛2 + 4𝑚2 (2.8) 

𝑊2 = (𝐵𝐵𝐻)−1𝑉 = ((𝐴 + √𝛿𝐼)(𝐴 + √𝛿𝐼)
𝐻
)

−1

𝑉

= (𝐴𝐴𝐻 + 𝜎𝐼 + √𝛿�̂�𝐻 + √𝛿�̂�)
−1
𝑉 

(2.9) 

As mentioned above, the sample matrix 𝐴 has the dimension of 𝑁𝑐ℎ × 5𝑁𝑐ℎ. In 

Equation (2.6), the symbol “|” represents that the matrix on the right side of the bar is 

appended to the end of the matrix on the left side. After diagonal loading matrix 𝑄 

inserted into matrix 𝐴, the matrix 𝐵 has the dimension of 𝑁𝑐ℎ × 6𝑁𝑐ℎ, which increases 

the complexity of computing the autocovariance matrix 𝐴. To reduce this additional 

computation load after diagonal loading, a new method is introduced here, named direct 

appending loading level method, by augmenting the loading matrix directly to the sample 
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matrix 𝐴, as showing in Equation (2.9). �̂� is square matrix of the product from 𝐴 × 𝐼. By 

using this new method, the dimension of 𝐵 is 𝑁𝑐ℎ × 5𝑁𝑐ℎ, maintaining the original size 

of sample matrix 𝐴. However, when we perform the direct appending method, two noise 

matrices √𝛿�̂�𝐻and √𝛿�̂� are brought into the covariance result, which may degrade the 

performance of beamforming. So, to investigate how much those two noise matrices may 

affect the performance of beamforming, we compared the SNR between original weight 

calculating method and our new method, as shown in Figure 2.4 and Figure 2.5, 

respectively. The signal power 𝑃𝑠, and the interference pulse plus noise power 𝑃𝑖+𝑛, are 

given by 

𝑃𝑠 = 𝑊𝐻𝑅𝑠𝑊 (2.10) 

𝑃𝑖+𝑛 = 𝑊𝐻𝑅𝑖+𝑛𝑊 (2.11) 

So, the SNR is equal to 

𝑃𝑠
𝑃𝑖+𝑛

=
𝑊𝐻𝑅𝑠𝑊

𝑊𝐻𝑅𝑖+𝑛𝑊
 (2.12) 
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In the first simulation, we compared the performance of adaptive beamforming 

versus the array SNR. The loading level, 𝐿𝐿 is defined as 10 log(𝐿𝐿 𝛿2⁄ ), in which 𝛿 is 

the standard deviation of zero mean white noise. From Figure 2.4, we observe that the 

performance of new method is closed to the theory one, which means the new method 

bring little impact to the SNR. Next, the influence of the loading level is shown in Figure 

2.5. The maximum difference between two methods is 0.4 dB, which also indicates that 

the new method has similar performance as the theory’s. Thus, the direct appending 

loading level method can be a good way to reduce the computing resource. Note that to 

implement the weight vector calculating for the adaptive beamforming, an extra 

processing node are required to receive the all the channel data, and then the weight can 

be distributed to each processing node. 
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Figure 2.4: Output SNR of the new beamforming method versus SNR of 

traditional beamforming method  
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2.3. Pulse Compression 

After beamforming, pulse compression is for improving the signal-to-noise ratio and the 

range resolution. Pulse compression can be implemented by performing correlation of the 

return signal, 𝑠[𝑛], and a replica of the transmitted waveform, 𝑥[𝑛], which is equivalent 

to matched filter operation.  By filtering the return signal, the energy of returned 

waveform would be aggregated into range gates and concentrates on the target ranges. 

Matched filter implementation converts the signal  to the frequency domain, performs 

point-wise multiplies with transmitted waveform, and converts the result back to time 

domain [9], as shown in Equations (2.13)-(2.16). The length of FFT is chosen to be the 

first power of 2 greater than 𝑁 + 𝐿 − 1. For example, if 𝑁 = 2250 and 𝐿 = 22, which 

makes 𝑁 + 𝐿 − 1 = 2271, so the length of FFT should be 4098. In this situation, it 

requires to zero-pad 𝑥[𝑘] and 𝑠[𝑘] to the length of 4098, before converting into frequency 
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domain. Zero-padding increases computing complexity of the FFT in Equation (2.13) and 

(2.14), and makes Equation (2.15) to consume more computing resources. Values of  𝑁 

and 𝐿 need to be selected to avoid unnecessary computation.  

S[k]
FFT
←  s[n]  0≤n≤N (2.13) 

X[k]
FFT
←  x[n]   0≤n≤L (2.14) 

𝑌(𝑘) = 𝑆[𝑘]𝑋[𝑘] 0 ≤ 𝑘 ≤ (𝑁 + 𝐿 − 1) (2.15) 

y[n]
IFFT
←  Y[k]   0≤n≤(N+L-1) (2.16) 

From the above equations, the overall computing complexity of pulse compression 

depends on FFT, IFFT and point-wise vector multiplication. For radix-2 FFT, there are 

𝑙𝑜𝑔2(𝑁) butterfly computation stages. Each stage consists of 𝑁/2 butterflies, and each 

butterfly operation requires one complex multiplication, one complex addition, and one 

complex subtraction. Hence, the complexity of computing radix-2 FFT is: 

 𝐶𝐹𝐹𝑇 = (6 + 2 + 2) ×
𝑁

2
× log2𝑁 = 5𝑁 log2𝑁 𝑓𝑙𝑜𝑝𝑠.  

As the IFFT has the same complexity of FFT, the throughput of the whole pulse 

compression in frequency domain is  

 
2 × 𝐶𝐹𝐹𝑇 + 𝑁𝐶𝑚𝑢𝑙𝑡

𝑇
=
10𝑁 log2𝑁 + 6𝑁

𝑇
𝐹𝐿𝑂𝑃𝑆,  

where 𝑁 is the number of range gates after zero-padding, and 𝐶𝑚𝑢𝑙𝑡 is the complexity of 

point-wise complex multiply.  
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2.4. Doppler Processing and Data Corner Turn 

The first objective of the Doppler processing is to mitigate the impacts of stationary or 

slow-moving clutter. The second objective is to measure the radial velocity of the targets 

by calculating the Doppler shift [37], from the Flourier transformation of data cube along 

the CPI dimension for each range bin. The throughput of an FFT-based basic Doppler 

filter is 𝐶𝐹𝐹𝑇/𝑇 = 5𝑁𝑝 log2𝑁𝑝 𝑇⁄  FLOPS, where 𝑁𝑝 is the number of pulses in one CPI. 

The Doppler filtering performance is shown in Table 2.2. 

Table 2.2: Doppler filtering performance measured in GFLOPS per core 

Range Gates Pulses 

8 16 32 64 128 

1024 0.7293 1.6036 2.6852 3.8543 4.2866 

2048 0.7294 1.6000 2.6841 3.8543 4.2867 

4096 0.7294 1.5999 2.6842 3.8544 4.2867 

8192 0.7295 1.6000 2.6842 3.8544 4.2732 

 

Compared with previous beamforming and pulse compression processing, 

Doppler processing requires less computing power. However, additional data 

transmission time is required before Doppler processing. As the output of the pulse 

compression is arranged along the range gate dimension, the output needs to undergo a 

corner turn before being handled by the Doppler filtering processors [38]. This two-

dimensional corner turn operation is equivalent to a matrix transpose in the memory 

space. Using EDMA3 [39] on TI generic C66xx DSP, the data can be reorganized into 

the desired format without interfering the real-time computations in DSP core. So, the 

performance of Doppler processing can be performed without interference from data 

corner turn. The use of EDMA3 would be further discussed in further. 
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2.5. Weather and Air-surveillance Data Products 

Section 2.2, 2.3, and 2.4 have illustrated the basic PAR signal processing algorithms, 

which are the building blocks of radar signal processing chain and foundations of other 

advanced signal processing algorithms. For example, in weather radar application, the 

mean Doppler velocity and spectrum width estimation takes outputs from beamforming 

and pulse compression. In the air-surveillance application, target detection and tracking 

processing also depend on the results of beamforming, pulse compression, and Doppler 

filtering. This section will illustrate the high-level, or backend, PAR data processing 

algorithms and discuss their complexities. 

2.5.1. Mean Velocity Estimation 

 Mean Doppler velocity is the averaged velocity of the radar resolution volume. There are 

two methods to calculate the Doppler frequency shift: spectral processing and Pulse Pair 

Processor (PPP) [40]. In the spectral processing method, the first step is to calculate the 

periodogram [41] of signal along the CPI domain by using FFT as 

𝑆 =
|𝑍(𝑓)|2𝑇

𝑀
, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑍(𝑓)

𝑓𝑓𝑡
← 𝑠(𝑛) (2.17) 

where 𝑀  is the number of pulses, 𝑇  is the Pulse Repetition Time (PRT), 𝑠(𝑛) is the 

samples along the CPI domain. Then the mean velocity is calculated by using Equation 

(2.18) [42], in which 𝜆 is the wavelength of transmitting wave, 𝑃 is the total power in the 

periodogram, 𝑘𝑚 is the index of the strongest Fourier coefficient, and 𝑖 is the index of 

pulse. Most of computation load in mean velocity estimation is from Equation (2.17) and 

the summation part in Equation (2.18). As the 𝑍(𝑓) is the result from Doppler filtering 

mentioned in Section 2.4, those results can be utilized twice in the mean velocity 
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estimation to save the computing resources. Therefore, the complexity of Equations 

(2.17)and (2.18) are 𝟏𝟐𝑴+ 𝟕𝑴 = 𝟏𝟗𝑴 in combination.  

𝑣 =
𝜆

2𝑀
{
𝑘𝑚
𝑇

+
1

𝑃𝑇
∑ (𝑖 − 𝑘𝑚)𝑆[𝑚𝑜𝑑𝑀(𝑘𝑚)]

𝑘𝑚+𝑀/2

𝑘𝑚−𝑀/2

} (2.18) 

PPP is another method to estimate the mean Doppler velocity by comparing the 

phase differences among various samples. A general method to calculate the phase 

difference is using the covariance approach [40]. The first step is to estimate the 

autocorrelation of the signal along the CPI domain with one sample lag, 𝑛 = 1, as  

𝑅𝑛 =
1

𝑀
∑ 𝑠𝑖

∗𝑠𝑖+𝑛

𝑀−1

𝑖=0

 (2.19) 

So, the mean velocity can be estimated as 

𝑣 =
𝜆

4𝜋𝑇
𝑎𝑟𝑔(𝑅1) (2.20) 

where the argument of 𝑅 calculates the phase of 𝑅 in radians. Based on Equation (2.19) 

and (2.20), we can calculate the complexity of PPP is 6𝑀 + 2𝑀 = 8𝑀. Compared with 

the spectral processing, PPP method has the advantages of requiring less computing 

resources and having smaller velocity variance when there is no unique solution for SNR 

and spectrum widths [43]. 

2.5.2. Spectrum Width Estimation 

The mean velocity estimation mentioned in the previous section represents the average 

speed of hydrometeors in one range gate. When there are turbulence or chaotic flow, 

hydrometeors within one resolution volume have vastly different radial velocities [44]. 

In this case, the mean velocity cannot represent the entire range of velocities within one 

range gate and may overlook the fast-changing weather phenomenon. The spectrum 
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width can depict the standard deviation of the velocity and represent random particle 

movements. Methods used to extract the spectrum width are usually based on 

autocovariance processing and spectral estimation.   

The autocovariance processing method utilizes the autocorrelation of the signal at 

different lags to estimate the spectrum width. If the weather signal spectra closely follow 

a Gaussian shape, the estimated spectrum width, 𝜎𝑣
2, is  

𝜎𝑣
2 =

𝜆2

24(𝜋𝑇)2
ln |

𝑅1
𝑅2
| (2.21) 

where 𝑅1 and 𝑅2 are the autocorrelation based on Equation (2.19) [45]. The computing 

load of Equation (2.19) mainly comes from autocorrelation, so the complexity can be 

approximated as  𝟔𝑵𝒑 + 𝟔𝑵𝒑 = 𝟏𝟐𝑵𝒑.  

Corresponding to the autocovariance method, spectrum width estimation by using 

spectral processing is given by 

𝜎𝑣
2 =

𝜆2

4𝑃𝑇2
∑ (

𝑖

𝑀
+
2𝑣𝑇

𝜆
)
2

𝑆[𝑚𝑜𝑑𝑀(𝑘𝑚)]

𝑘𝑚+𝑀/2

𝑘𝑚−𝑀/2

 (2.22) 

The complexity of Equation (2.22) is the same as Equation (2.18), which is 𝟏𝟗𝑵𝒑. Thus, 

the spectral processing requires more computing resources than autocorrelation method. 

Moreover, Equation (2.22) is a biased estimation due to the window effect in the FFT. In 

general, this bias is difficult to compute [43], thus in general, autocovariance method is 

superior than the spectral processing. 

 

2.5.3. Target Tracking 

For MPAR, target tracking (such as air-traffic tracking) is a crucial function. Once a radar 

receiver detects the presence of the targets and converts the detections into validated 
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measurements, the radar tracker initiates and estimates the target’s future state, while 

integrating the new measurements into an existing track. Bayesian tracking or Bayesian 

recursively tracking is a method to treat the tracking problem from the perspective of 

Bayesian inference. It assumes that a likelihood function links the events observed in the 

current state to the future unknown. As such, if we specify a prior distribution of some 

targets, we can calculate the posterior distributions or future states with the help of 

likelihood function [23]. For example, if a surveillance radar records the previous speeds 

and locations of an air-vehicle, based on the currently measured speed and location, a 

likelihood function can be established, which is then used to predict the vehicle’s future 

positions and velocities through different models. 

The goal of multiple target tracking (MTT) is to estimate the states of multiple 

targets simultaneously [46]. Compared with single target tracking, MTT needs to 

determine which target generates each sensor response or whether the response is a false 

alarm. For most cases, we may not know the exact number of the objectives, which makes 

the MTT further complicated. Situations that the tracks of multiple targets are overlapped 

or intersected can lead to ambiguity of the data association process. Also, as the kinematic 

model of each target can vary, the transition functions that we used in a Kalman filter 

may not be suitable for all the scenarios. 

For multiple target tracking, joint probabilistic data association (JPDA) and 

multiple hypothesis tracking (MHT) are the two classical Bayesian tracking methods. In 

all cases, both algorithms (JPDA and MHT) can provide reliable target tracking 

performance [46, 47]. MHT forms data association hypotheses by assigning probability 

1 or 0 to a target, which is a hard association. JPDA relaxes this assumption by allowing 
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for the partial association. In the low SNR environments, JPDA and MHT are both 

capable of handling a high volume of clutter. However, MHT has a major disadvantage 

of requiring high computational complexity because the number of hypotheses grows 

exponentially over tracking time [48]. Although various methods have been developed to 

control the growth of hypotheses tree [49],  JPDA is still more efficient and easier to be 

implemented. Also, when the detection probability is reduced for the weak target 

scenarios, MHT is more vulnerable than JPDA [50], since MHT is a single-scan algorithm 

compared to JPDA and depends heavily on the past scans. Hence, JPDA would be a better 

choice if there are no other specific requirements and use JPDA as an example to illustrate 

the computing complexity of tracking algorithm. 

To track the targets, at first, we may build a model to represent the tracking 

system. Let 𝑺 be the state space of a target dynamics, in which it contains various target 

information that can be utilized to locate and track the targets, such as the position, 

velocity, and acceleration of the targets. Thus, the targets in the space 𝑺  can be 

represented as a vector containing kinematic parameters [8].  For a typical parametric 

approach, the classic Bayesian approach uses the dynamical motion and measurement 

equations shown in Equation (2.23) and (2.24) for the target tracking models: 

𝑦𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝑄𝑘−1 (2.23) 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑟𝑘 (2.24) 

where 𝑥𝑘 is the state vector for the target on the time step 𝑘, 𝐴𝑘−1 defines the transition 

matrix of the dynamic model, 𝑦𝑘 is the measurement vector on the time step 𝑘, 𝑄𝑘−1 is 

the process Gaussian random noise covariance matrix for the time step 𝑘 − 1, denoted as 

𝑄𝑘−1~𝑁(0, 𝑅𝑘−1) . 𝐻𝑘 is the measurement matrix that converts the system state to the 
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measurement, and 𝑟𝑘~𝑁(0, 𝑅𝑘) is the sensor measurement noise vector [37]. Based on 

this model, we can represent the target moving in a two-dimensional space in Cartesian 

coordinate system as  

𝒙𝑘 = [𝑥𝑘  𝑦𝑘 �̇�𝑘 �̇�𝑘]
𝑇 (2.25) 

in which �̇�𝑘 and �̇�𝑘 are the velocities of the target along the 𝑥 and 𝑦 coordinate observed 

by a Radar. By giving Equation (2.25), we can represent transition matrix 𝐴𝑘−1  as 

Equation (2.26), in which ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1. 

Ak=[

 1   0
   0    1

     
∆t   0
0    ∆t

   0    0
   0    0

     
  1     0
  0     1

   ] (2.26) 

For the nearly constant velocity motion model, the process noise covariance matrix is 

given by 

𝑄𝑘 = 𝛿2

[
 
 
 
 

∆𝑡3/3 ∆𝑡2/2

∆𝑡2/2 ∆𝑡
     
0         0
0          0

           0
           0

            0
             0

     
∆𝑡3/3 ∆𝑡2/2

∆𝑡2/2 ∆𝑡 ]
 
 
 
 

 (2.27) 

The 𝛿2 is the design parameter for the system model error. Typically, this parameter is 

set to be greater than one half of the maximum acceleration of the target and less than the 

maximum acceleration [51]. The measurement matrix 𝐻𝑘 is used to calculate the position 

of the target given the system state. In this case, the measurement matrix can be expressed 

as Equation (2.28). 

𝐻 = [
1 0
0 1

     
0 0
0 0

] (2.28) 

The system defined in (2.23) and (2.24) satisfies the Markov property, which means that 

the future state of this system is based solely on its present state. We can express this 

property in general as: 



38 

𝑝(𝑥𝑘|𝑥1:𝑘−1, 𝑦1:𝑘−1) = 𝑝(𝑥𝑘|𝑥𝑘−1) (2.29) 

This also implies the fact that the past does not depend on the future state by given the 

present, which is the same concept as in Equation (2.29), in which 𝑥𝑘:𝑇 represents the 

system states from current time step 𝑘 up to future time step 𝑇. 

𝑝(𝑥𝑘|𝑥𝑘:𝑇 , 𝑦𝑘:𝑇) = 𝑝(𝑥𝑘−1|𝑥𝑘) (2.30) 

For the measurement, which is the same as system state, the current measurement 𝑦𝑘 is 

independent from the past measurement and system state. This property can be expressed 

in Equation (2.31). 

𝑝(𝑦𝑘|𝑥1:𝑘, 𝑦1:𝑘−1) = 𝑝(𝑦𝑘|𝑥𝑘) (2.31) 

The JPDA is an extended version of Probabilistic Data Association Filter (PDAF). 

PDAF is to set up a validation region at each sampling time. Among that possible 

validated measurement, the position of a target can be determined by calculating the data 

association function of each measurement [52]. Similar to Kalman filter, PDAF makes 

an estimation based on the past measurements and states. If the state and measurement 

equations are assumed to be linear, the update and predicting algorithm of PDAF can be 

based on Kalman filter. When the state or measurement equations are nonlinear, then 

PDAF can be based on Extended Kalman Filter (EKF) [50] or Particle Filters [8]. The 

algorithms of PDAF and JPDA discussed in this section are based on Kalman filter. To 

perform PDAF, a basic assumption that the posterior probability function for the system 

state is summarized approximately by a normally distributed Gaussian 

𝑝[𝑥(𝑘)|𝑧𝑘−1] = 𝑁[𝑥(𝑘); �̂�(𝑘|𝑘 − 1), 𝑃(𝑘|𝑘 − 1)] (2.32) 

In contrast with previously discussed front-end processing algorithms, the throughput of 

the tracking algorithm occurs on a per-target or per-track basis. Since the number of 
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targets, tracks, and false alarms in the detection area is unknown, the computation 

requirements are nondeterministic. Moreover, compared with front-end processing tasks, 

which are all streamlined mathematic calculations, the back-end tracking algorithm 

involves more logical operations--stored, accessed, and updated target position overtime 

periods. So, it is usually difficult to estimate the computing resources needed for tracking 

algorithm without prior knowledge of the operational environment. To give a basic idea 

of the computational complexity, we calculate the throughput of the JPDA based on the 

sample parameters listed in Table 2.3. 

Table 2.3: Tracking simulation parameters 

Parameters Description 

𝑇 Number of currently confirmed targets 

𝑀 Number of measurements including potential targets and false alarms 

𝐸 Number of potential tracks 

 

Prediction 

The first step of JPDA is to conduct the Kalman prediction from 𝑘 − 1 step to 𝑘, 

which is the same procedure as the single target Kalman filter, namely 

�̂�(𝑘|𝑘 − 1) = 𝐴(𝑘 − 1)�̂�(𝑘 − 1|𝑘 − 1) (2.33) 

�̂�(𝑘|𝑘 − 1) = 𝐻(𝑘)�̂�(𝑘|𝑘 − 1) (2.34) 

𝑃(𝑘|𝑘 − 1) = 𝐴(𝑘 − 1)𝑃(𝑘 − 1|𝑘 − 1)𝐴(𝑘 − 1)′ + 𝑄(𝑘 − 1) (2.35) 

where 𝑃(𝑘 − 1|𝑘 − 1) is the covariance matrix of the past system state. Based on it, the 

new innovation covariance matrix can be computed as 

𝑆(𝑘) = 𝐻(𝑘)𝑃(𝑘|𝑘 − 1)𝐻(𝑘)′ + 𝑅(𝑘) (2.36) 
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The computation complexities of Equation (2.33)-(2.36) are 32𝑇, 16𝑇, 272𝑇, and 132𝑇 

separately. In total, there are 𝟒𝟓𝟐𝑻 flops computation in each scan. 

Measurement Validation 

In this step, an elliptical shape validation region is defined as Equation (2.37). The 

volume of this region is limited by the gate threshold parameter 𝛾. Measurements that lie 

inside the gate 𝛾 are considered valid; those are outside are discard. 

𝑉(𝑘, 𝛾) = {𝑧: [𝑧 − �̂�(𝑘|𝑘 − 1)]′𝑆(𝑘)−1[𝑧 − �̂�(𝑘|𝑘 − 1)] ≤ 𝛾} (2.37) 

In this step, there is 22𝑀𝑇 flops computation in each scan. 

Data Association 

The data association of the measurement 𝜃𝑖(𝑘) at time 𝑘 of the target 𝑧𝑖(𝑘) is 

𝑃[𝜽(𝑘)|𝑧𝑘] =
1

𝑐
𝑃[𝑍(𝑘)|𝜽(𝑘), 𝑍𝑘−1]𝑃{𝜽(𝑘)} (2.38) 

where 𝑐  is the normalization constant. If we consider the entire measurements and 

suppose that all the measurements are lied in the validation area, the PDF on the left-hand 

side of Equation (2.38) can be written as 

𝑝[𝑍(𝑘)|𝜽(𝑘), 𝑍𝑘−1] =∏𝑝[𝑧𝑗(𝑘)|𝜃𝑗𝑡𝑗(𝑘), 𝑍
𝑘−1]

𝑀

𝑗=1

 (2.39) 

where 𝜃𝑗𝑡𝑗  is the measurement 𝑗  originated from target 𝑡  that 𝑗 = 1,⋯ ,𝑀  and 𝑡 =

0,⋯ , 𝑇 . The conditional PDF of the above equation is assumed to be a Gaussian 

distribution as: 

𝑝 [𝑧𝑗(𝑘)|𝜃𝑗𝑡𝑗(𝑘), 𝑍
𝑘−1] = 𝑁[𝑧𝑗(𝑘); �̂�𝑡𝑗(𝑘|𝑘 − 1); 𝑆𝑡𝑗(𝑘)] (2.40) 

The prior probability of an event 𝜃(𝑘), the second part of right side of Equation (2.38), 

can be obtained as 
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𝑃[𝜽(𝑘)] = 𝜇𝐹(𝜙)∏(𝑃𝐷)
𝛿𝑡(1 − 𝑃𝐷)

1−𝛿𝑡

𝑇

𝑡=1

, (2.41) 

where 𝛿𝑡 is the number of target that has been detected at time 𝑘, and 𝜇𝐹(𝜙) is the clutter 

density. Finally, after we combine (2.41) and (2.40) into (2.38), we have 

𝑃[𝜽(𝑘)|𝑧𝑘] = 𝜇𝐹(𝜙)∏𝑁𝑡𝑗[𝑧𝑗(𝑘)]

𝑀

𝑗=1

∏(𝑃𝐷)
𝛿𝑡(1 − 𝑃𝐷)

1−𝛿𝑡

𝑇

𝑡=1

 (2.42) 

The computation complexity of Equation (2.42) is 73𝑀𝐸 . The marginal association 

probabilities are obtained from the joint probabilities by summing over all the joint 

events, which has the complexity of 𝑀𝑇. So, in total there are 73𝑀𝐸 +𝑀𝑇 in the data 

association step. The marginal association probabilities are obtained from the joint 

probabilities by summing over all the joint events. 

𝛽𝑗𝑡 ≜ 𝑃[𝜃𝑗𝑡|𝑍
𝑘] = ∑𝑃[𝜽(𝑘)|𝑧𝑘]�̂�𝑗𝑡(𝜽)

𝜽

 
(2.43) 

State Estimation 

The state update equation of JPDA is the same as Kalman filter as 

𝐾(𝑘) = 𝑃(𝑘|𝑘 − 1)𝐻(𝑘)𝑇𝑆(𝑘)−1 (2.44) 

𝑥(𝑘) = 𝑥(𝑘|𝑘 − 1) + 𝐾(𝑘)𝑣(𝑘) (2.45) 

𝑣(𝑘) =∑𝛽𝑗𝑡(𝑘)𝑣𝑖(𝑘)

𝑚𝑘

𝑗=1

 (2.46) 

The computation complexity of Equation (2.44) and (2.45) are 109𝑇. 

The error covariance associated with the updated state estimate is 

𝑃(𝑘|𝑘) = 𝛽0(𝑘)𝑃(𝑘|𝑘 − 1) + [1 − 𝛽0(𝑘)]𝑃
𝑐(𝑘|𝑘) + �̃�(𝑘) (2.47) 

where  



42 

�̃�(𝑘) = 𝐾(𝑘) [∑𝛽𝑗𝑡(𝑘)𝑣𝑖(𝑘)𝑣
′
𝑖(𝑘) − 𝑣(𝑘)𝑣′(𝑘)

𝑀

𝑗=1

]𝐾′(𝑘) (2.48) 

and 

𝑃𝑐(𝑘|𝑘) = [𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝑃(𝑘|𝑘 − 1) (2.49) 

The computation complexity of Equation (2.48) and (2.47) is (20𝑀 + 108)𝑇 and 88𝑇. 

So, there are (20𝑀 + 196)𝑇 flops in the state estimation step. In total, the JPDA requires  

452𝑇 + 22𝑀𝑇 + 73𝑀𝐸 +𝑀𝑇 + 20𝑀𝑇 + 108𝑇 = 𝟕𝟑𝑴𝑬 + (𝟓𝟔𝟎 + 𝟒𝟑𝑴)𝑻 flops for 

one scan. To give a realistic example for a terminal aircraft surveillance tracking, we 

chose the parameters that 𝑀 = 30, 𝑇 = 20, and 𝐸 = 25, and the radar would take 4.5 

seconds for each scan. So, the throughput of JPDA tracking is around 20 KFLOPS. This 

workload is much lower than the “front-end” signal processing. Although the workload 

varies linearly with the number of tracks and targets, even a tenfold increase would only 

be a small fraction of the “front-end” processing computing complexity. If parallelism is 

required, the tracking algorithm can be easily implemented in a multithreading operating 

system, and each thread contains several hypothesis tracks to be estimated in each 

processor.  

 

2.6. Advanced Algorithms 

2.6.1. Model-Based Algorithms and System Optimizations   

The primary signal-processing chain described in Section 2.1 has certain assumptions 

about the PAR system, these assumptions are not usually valid in realistic radars. For 

example, the estimation of computational loads assumes zero latency for data 

transportation and memory access. The radiation patterns of individual antenna elements 
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are usually considered to be isotropic, and there is no channel-to-channel and pulse to 

pulse errors for the beamforming algorithm, and there are no signal distortions in RF 

channels. In reality, however, these assumptions are not realistic, and the overall signal 

processing performance can be severely affected by these factors. In this section, we 

explore several advanced processing algorithms and real-time implementations targeting 

these issues. Many existing works have been reported on these topics [53, 54] while our 

focus is the channel data rate control, interference mitigation and optimized calibrations 

based on particular types of signal models (sparsity, covariance and nonlinearity 

distortions).  

The Power Amplifier (PA) models can be divided into two class: physical model 

and empirical models [55]. The physical model handles the true RF modulated signal and 

conceives to process real excitations by using nonlinear models of the active devices to 

form an equivalent-circuit description, which requires deep knowledge and insight of the 

circuit layout. This method provides a high level of accuracy result and limited by the 

quality of the modeling of each component in PA. However, this benefit comes at the cost 

of high computational time and the need for a detailed description of each component by 

measurement of inspection.  

When the design of PA is unknown or driving a PA equivalent circuit is not 

available, PA behavior model is preferred, which is a black box simulation based on the 

input and output behavioral observations. Thus it is used to simulate the PA behavior by 

employing low-pass equivalent PA models and thus processes only the complex-valued 

envelope signals at the PA input and output [56]. The accuracy of this behavior model 

highly depends on the adopted model structure and the excitation parameters. Based on 
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the memory effect of different PAs, the system-level model can be divided into two 

categories: memoryless and memory models. Memory effects are non-noise circuit 

characteristics, which is caused by the thermal constants of the active devices or 

components in the biasing network that has frequency-dependent behaviors. As the name 

suggests, the memoryless model represents the input of PA has instantaneously effect to 

the output. So, the observed AM-AM and AM-PM conversion constitute the PA’s 

memoryless behavior. Commonly, two memoryless models are used: a polynomial 

function with complex coefficients, like cubic polynomial model as showing in Equation 

(2.50) and (2.51), where 𝑢 is the normalized input voltage,  

𝐹𝐴𝑀−𝐴𝑀 = 𝑢 −
𝑢3

3
 (2.50) 

𝐹𝐴𝑀−𝑃𝑀 = 𝑢𝑝𝑝𝑒𝑟 𝑝𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 − 𝑙𝑜𝑤𝑒𝑟 𝑝𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (2.51) 

and the Saleh model [57] in Equation (2.52) and (2.53) 

𝑟𝑦(𝑟𝑥(𝑡)) =
𝛼𝑟𝑟𝑥(𝑡)

2

1 + 𝛽𝑟[𝑟𝑥(𝑡)]2
 (2.52) 

𝜙𝑦(𝑟𝑥(𝑡)) =
𝛼𝜙𝑟𝑥(𝑡)

2

1 + 𝛽𝜙[𝑟𝑥(𝑡)]2
 (2.53) 

where rx(𝑡) represents the input envelope, the coefficients 𝛼𝑟 , 𝛽𝑟 , 𝛼𝜙, and 𝛽𝜙are fitting 

parameters for the measured PA’s AM-AM and AM-PM characteristics, which can be 

extracted using a least squares approximation to minimize the relative error between the 

envelope measurements of the target PA and the values predicted by model. 

The above-mentioned low-pass equivalent AM-AM and AM-PM memoryless 

models are frequency independent, which have reasonable accuracy when the 

narrowband signal drives the amplifiers. However, when the bandwidth of the input is 
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comparable to the inherent bandwidth of the amplifier, the response of each frequency in 

the PA is frequency-dependent. So, in the wide-band application, it is necessary to take 

both the nonlinear and memory effects into consideration when modeling a PA. A 

straightforward method to simulate the memory effects is sampling the bandwidth at all 

possible frequency points, so the variant in PA response for different frequencies can be 

found [58]. In some situations, the memory may have nonlinear memory effect, which 

can be seen as frequency-dependent nonlinear impulse responses [59, 60]. The idea of 

modeling nonlinear memory effect is to postulate that the gain and phase characteristics 

of PA do not merely depend on the instant input rx(𝑡) but also on a parameter z(𝑡), where 

𝑧(𝑡) is a function of historical input signal and physical characteristic causing memory 

effects within the amplifier [61]. Then the nonlinear memory effect can be modeled by 

self-heating of the active device or by a varying power supply as Equation (2.54). 

 

2.6.2. Compressive Sensing for Channel Data Rate Reduction 

A traditional coherent radar receive channel generates in-phase and quadrature data 

signals in either analog or digital forms. These signals are transported to the specialized 

signal processor units for pulse compression, detection, and tracking. With the extensive 

use of advanced waveforms, the bandwidth of the transmitting pulses can be quite large. 

Accordingly, based on Nyquist–Shannon sampling theorem, increasing ADC sampling 

speed may introduce a massive amount of data transactions. As an example, for a single 

dual-polarized channel, if the signal bandwidth is 20 MHz and ADC’s resolution is 12 

bits, the transmitting rate should be at least 960 Mbps per channel. For an envisioned 

𝑦(𝑡) = 𝑓[𝑟𝑥(𝑡), 𝑧(𝑡)]𝑟𝑥(𝑡)𝑒
𝑗𝜃(𝑡) (2.54) 
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MPAR system with 200 dual-pol channels, the data rate at inputs of a beamformer can be 

higher than 192 Gbps. Even with advanced data link technologies today, this is still a 

tremendous challenge.  

According to the compressive sampling concept, when the signal matrix is sparse, 

we can sample the radar signal incoherently at a much slower rate than the Nyquist 

sampling rate [62, 63], which may translate into saving of communication bandwidth, 

reduction of signal processors, and eventually lower costs. When we introduce the CS 

concept into array signal sampling, there are two specific issues we may pay attention to: 

(1) Robustness of signal recovery from noisy data, especially for the received signals 

before pulse compression. Indeed, CS processing can tolerate a proper level of noise. 

However, when noise power is comparable to the power of the signal, it may lead to errors 

or distortions in signal recovery. (2) The computing time and resources requirement of 

the signal recovery. The computational resources required by CS processing, and the 

additional latency that adds in the receiver chain, should not offset the benefits it brought 

in for data transportation bandwidth reduction. 

Supposing a return signal reflecting from a target and sampled by the front-end 

with the Nyquist rate into a vector 𝑓 with the length of 𝑁, there exists a sensing basis Φ, 

on which the projection of 𝑥 in the front-end is a vector with the length of 𝑙. Since the 

signal is sampled lower than Nyquist rate, the received data needs to be reconstructed and 

projected onto representation basis  Ψ . If the signal on basis Ψ  has 𝑠  non-zero 

coefficients, it said this signal is the s-sparse. In the representation basis Ψ, it makes the 

possible that the front-end system use fewer samples to reconstruct the signal without 

much loss by discarding the zero coefficients. If the condition satisfied that 𝑠 < 𝑙 ≪ 𝑁 
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and the basis Φ and Ψ are uncorrelated, the under-sampled signal can be reconstructed 

back by using CS. Note that, as 𝑠 increases, it becomes harder to sense and reconstruct 

the original signal [64]. The coherence between the basis Φ and Ψ is measured by 

(Φ,Ψ) = √𝑛 ∙  max
1≤𝑘,𝑗≤𝑛

| 〈ϕ𝑘
𝑗
〉 | 

(2.55) 

in which 𝜇 is the incoherence property, 𝑛 is the number of elements in the original signal, 

and 𝑘  and 𝑗  are indices of the basis functions. In other words, the sensing and 

representation basis should be concerned as low coherence pairs. For example, we may 

choose spike basis 
𝑘
(𝑡) = (𝑡 − 𝑘)  as sensing matrix, and Fourier basis 𝜓𝑗(𝑡) =

√𝑛𝑒−𝑖2𝜋𝑗𝑡/𝑛 as representation basis [63]. To analyze the coherence between the sensing 

basis and representation basis, the restricted isometry property (RIP) is introduced. RIP 

characterizes isometry constant 𝛿2𝑠 of a matrix such that 

(1 − 𝛿2𝑠)‖𝑥1 − 𝑥2‖𝑙2
2 ≤ ‖𝛩(𝑥1 − 𝑥2)‖𝑙2

2 ≤ (1 + 𝛿2𝑠)‖𝑥1 − 𝑥2‖𝑙2
2  (2.56) 

in which 𝛩  is the reconstruction matrix, which is the product of Φ  and Ψ . If 𝛿2𝑠  is 

sufficiently less than one, this implies that the all pairwise distance between s-spare 

signals, for any vector 𝑥1 and 𝑥2, can be well preserved in the measurement space. That 

means measurement matrix contains the sufficient information in signal of interest, and 

the majority part of signal can be reconstructed from the measurements. 

When the basis Φ  and Ψ  satisfy RIP, the Equation (2.57) gives an accurate 

reconstruction of the undersampled signal by using L1-norm minimization. 

min
𝑥
‖𝑥‖𝑙1 𝑠. 𝑡. 𝑦 = ΦΨ𝑥 

(2.57) 

Different applications may have various requirements or limitations to use CS. In the 

communication system, it requires the CS algorithm for speedy spectrum sensing; in 

medical imaging processing, like magnetic resonance imaging, with benefits for patients’ 
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economics, the scan time reduction is the thing researchers pay more attention to. In radar 

application, the SNR may be too small that the signal can be immersed within the noise; 

hence, robust signal recovery from noisy data is a crucial point for radar sampling. To 

exam the performance of CS algorithm when SNR is low, Figure 2.6 shows a comparison 

between reconstruction data and original signal (noise-free), and error compared to the 

original signal with noise. We can see that the CS can suppress noise levels when SNR is 

low. This is because the signal (pulse) is sparse, and the noise is widely spread the entire 

spectrum. As a result, the reconstruction process would ignore those small variations 

produced by the noise. From Figure 2.6 we can also notice that when SNR is larger than 

6 dB, the reconstruction data have the similar result as original data with noise, which 

means the compressive sampling can be used in the radar application even the SNR is 

low. Besides that, CS can still perform under low SNR conditions. This may be because 

this signal (pulse) is sparse, and the noise is widely spread the entire spectrum. As a result, 

the reconstruction process would ignore those small variation produced by the noise. This 

noise reduction phenomenon had been proved in [65, 66]. 
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Another important aspect of CS implementation is the algorithm efficiency. There 

are so many reconstruction algorithms existing, such as Basis Pursuit [67], Matching 

Pursuit [68], and Message Passing [69]. Among those algorithms, the greedy iterative 

algorithm is easy to implement and has a high speed of signal recovery. It solves the 

reconstruction problem by finding an optimal result iteratively. Within the framework of 

greedy pursuing, we select the Orthogonal Matching Pursuits (OMP) [70] as our core 

compressive sensing algorithm. For a signal with length n and s sparsity, OMP can 

reliably recover this signal by using 𝑂(𝑠 log 𝑛) measurements. The complexity of OMP 

algorithm is 𝑂(𝑠𝑚𝑛) is the number of measurements. Figure 2.7 shows the comparison 

between the OMP and Basis Pursuit, where 𝑛 = 600, and 𝑚 = 4𝑠. It can be seen that 

OMP have better performance than the basis pursuit. However, when the signal is not 

sparse, the recovery becomes costly.  
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2.6.3. System Optimizations 

RF hardware in radar receivers usually causes some of the undesired phase shifts and 

amplitude variations, and those noise and distortions contaminate measurements. For 

example, the transfer function of a power amplifier may not hold a constant gain for a 

broad range of input power levels, and different amplifiers may not share the same 

transfer function. So, this response inconstancy among channels would distort the shape 

of the antenna pattern and bring errors into the measurements. To alleviate the 

inconstancy response among channels, it is essential to calibrate the array by equalizing 

the phase and amplitude effects [71]. 

There are some existing methods to calibrate the PAR system channels such as 

near-field scanning probe [72], fixed peripheral probes [73], calibration lines [74], and 
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mutual coupling [75]. The first three calibration methods require a controlled 

environment by using specific calibration equipment, and procedures for performing 

those methods are complex and challenging to be conducted in the field. Furthermore, 

due to the reason of that the relative phase/amplitude shifts depend on frequency, 

temperature, and time, calibration should be repeated at various temperatures and 

frequencies. These variables increased the complexity of performing calibration once the 

radar is deployed. Compared with the first three methods, mutual coupling calibration 

can be done without extra equipment, but the calibration accuracy can be easily 

deteriorated when the environment contains near-field clutter. Moreover, for the reason 

of that setting the output power level too high would make transmitters saturate the 

receivers, the mutual coupling cannot perform full range power level calibration. As the 

PAR channels may have different gain values for different input power levels for a given 

frequency, the calibration result based on mutual coupling may not fully meet the actual 

operating requirements. 

To make the PAR calibration reliable and feasible, we introduced a calibration 

procedure that allows the radar system to perform self-calibration in the field by using 

the Expectation-Maximization (EM) algorithm. Moreover, EM calibration does not 

require extra equipment or feedback line to do the calibration. A similar EM calibration 

method has been used in the [76]. Compared with mutual coupling calibration, EM 

method is more robust when the radar surrounding environment has clutter, and the 

calibration can be done during normal radar operations. EM algorithm is based on a 

probabilistic learning model by iteratively computing the maximum-likelihood estimates 

when the observations can be viewed as incomplete data [77]. Starting from an initial 
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assumption, each iteration involves two steps: expectation step (E-step) and a 

maximization step (M-step) [78]. In E-step, it finds a probability distribution over the 

unobserved variables given the known values for the current model; in M-step, it re-

estimates the parameters of the current model to be those with maximum likelihood, under 

the assumption that the distribution found in E-step is correct. It can be shown that each 

iteration improves the likelihood and a local maximum can be reached [79].  

By using EM algorithm calibration for PAR application, we derive the 

relationship between observed value and truth into a probabilistic model. Then, the 

algorithm would iteratively seek the maximum likelihood between the observed value 

and ground truth. The self-calibration procedure can be separated into two parts: 

amplitude calibration and phase calibration. For amplitude calibration, the received 

power level is directly calibrated by using EM algorithm. As mentioned in [80], the phase 

distortion follows the nonlinear model between input power level and output signal for a 

given frequency. This distortion can be estimated by comparing the phase differences 

between the signal leaked through the diplexer from the transceiver to the receiver and 

undistorted baseband signal [81]. After applying a range of power levels in the 

transmitter, the nonlinear phase distortion model can be applied. Note that the calibration 

procedures mentioned here are all based on the assumption that the RF system is working 

at a single frequency and the system is memoryless. 

The first step of EM algorithm is assuming the initial probability distribution of 

observed power level, 𝑎, for each range gate by given true power level value, 𝑚, is a 

Gaussian distribution, defined as 

𝑃(𝑎|𝑚; 𝑐ℎ) = 𝜂 × 𝑒
−(𝑎−𝑚)2

2𝜎  (2.58) 
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in which 𝜂 is the normalizer, 𝑐ℎ is the channel indicator, 𝜎 is the variance. Note that each 

channel maintains its own distribution 𝑃(𝑎|𝑚; 𝑐ℎ), and is initialized as a distribution with 

the dimension of 𝑎 × 𝑚. An example of initialization is shown in Figure 2.8, in which 

the values of 𝑎 and 𝑚 are both in the range between 0 to 100. While we should note that 

the power level at each range gate is dependent with each other due to the sidelobe of the 

pulse compression results, if ignoring those correlations, we may assume that each range 

gate is conditionally independent of each other given the radar waveform and antenna 

beam pattern. Since what we are interested in is deriving the calibrated power levels in 

the RF channels rather than the truth RCS value of targets in each range gate, ignoring 

this spatial correlation is acceptable. 

 

The goal of the amplitude calibration is to find the maximum likelihood of 

𝑃(𝑎|𝑚; 𝑐ℎ)  given truth power value 𝑚  for each channel 𝑐ℎ . Starting with the 

Figure 2.8: Initialization example for 𝑃(𝑎|𝑚; 𝑐ℎ) 
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initialization value in Equation (2.58), the algorithm alternates between updating 

𝑃(𝑚 = 𝑘; 𝑅𝑔)  (E-step) and computing 𝑃(𝑎|𝑚; 𝑐ℎ)  (M-step), which are described as 

follows.  

Expectation step (E-step): 

In E-Step, we calculate the probability of 𝑚 for each range gate independently: 

𝑃(𝑚 = 𝑘; 𝑅𝑔) = 𝜂 ∏ 𝑃(𝑎|𝑚 = 𝑘; 𝑐ℎ)

𝑁

𝑐ℎ=1

 (2.59) 

where 𝜂 is the normalizer, 𝑘 is the assumed ground truth power level, 𝑅𝑔 is the index of 

range gate, 𝑎 is the measured power level when the index of the range gate equals to 𝑅𝑔, 

and 𝑁 is the total number of array channels.  

Maximization step (M-step) 

M step calculates the marginal probability of 𝑚 by given 𝑎 as 

𝑃(𝑚|𝑎; 𝑐ℎ) = ∑ 𝑃(𝑚 = 𝑘; 𝑅𝑔)

𝑀

𝑅𝑔=1

 (2.60) 

in which 𝑀 is the total number of range gates. And then, we update Equation (2.58) by 

using Bayes’ rule 

𝑃(𝑎│𝑚; 𝑐ℎ) = 𝜂 × 𝑃(𝑚|𝑎; 𝑐ℎ) × 𝑃(𝑎; 𝑐ℎ) (2.61) 

in which 𝑃(𝑎; 𝑐ℎ) is the probability of measured power amplitude from each channel. 

Equation (2.61) computes distribution of 𝑎 for each channel given the distribution over 

ground truth power levels. After several iterations, the 𝑃(𝑎|𝑚; 𝑐ℎ) would converge and 

the maximum likelihood estimate between measured and the undistorted power level 

would be established. 
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To verify the performance of EM algorithm calibration, we simulated a simple 

three-channel receiver example with nonlinear distortion errors by using Matlab®. First, 

we generated a set of data, 𝐷, ranging between 0 and 100, representing the truth power 

levels. Note that we restrict the power levels to integers solely for the purpose of 

illustration, and decimal power levels can be used when more fidelity is required. Then, 

three different nonlinear transformations are applied to 𝐷, representing the output of three 

RF nonlinear systems--𝐷1, 𝐷2, 𝑎𝑛𝑑, 𝐷3. The three nonlinear transformation models used 

in this simulation are:  

𝐷1 = 10√𝑚 (2.62) 

𝐷2 =
𝑚2

100
 (2.63) 

𝐷3 = 14 log2𝑚 (2.64) 

respectively, in which 𝑚  are the undistorted power level of the reflected signal. We 

applied the EM algorithm for calibration to these three datasets. Figure 2.9 shows the 

calibration result, in which the solid lines represents the errors between the truth value 

and calibration result for each channel after using the EM algorithm. The dash lines 

represent the error between the nonlinearly-transformed datasets and the truth value. 

From the figure, we can see that the EM algorithm successfully predicts the trend of the 

three nonlinear transformations. However, this prediction contains some errors. The cause 

for these errors is that although the EM algorithm can increase the likelihood function 

between observed data and its truth value, this converges may be a local maximum of the 

observed data [78] depending on the initial value, which means the algorithm cannot 

guarantee a global optimum.  
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One simple way to alleviate the problem is to set the initial value randomly and 

take the highest likelihood obtained as the global maximum [82]. Figure 2.10 shows the 

calibration result of data set 𝐷1, as mentioned before, of using various initial conditions 

as an example, in which the solid curve represents what is the truth power level for each 

measured power level, and the dash curves is the calibration results. Among dash curves, 

there is an intersection point of each solid line. When the calibrated power level is on the 

left side of the intersection point, with the increasing value of 𝜎, the calibration result has 

better matching with the truth value, however, the results become worse when 𝜎 grows 

too large. On the other hand, on the right side of intersection point, when the value of 𝜎 

becomes larger, the curve has good matching between ground truth and measured value. 

So, we need an approach to select the best estimation based on different initial conditions 

Figure 2.9: Simple example of three-channel receiver calibration results obtained by 

using EM self-calibration algorithm 
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𝜎. Practically, since the truth value is unknown, we cannot directly tell which initial 

condition has better predictions than others. However, the measured power level 

differences among adjacent curves for a given calibrated power level indicates the 

prediction status (fitted or over-fitted compared with true values). For example, in Figure 

2.10, when the calibrated power level is in the range of [1, 20], starting from the blue line, 

with the value of 𝜎 increased, the prediction status of each line changing from under-

fitted to over-fitted compared with dash line. When σ is no larger than 529, the measured 

power level differences between each of three curves on the top of figure are around 

√𝜎 = 10. In contrast, the measured power level differences between purple and yellow 

curves is smaller than 10. So, based on this observation, we can use the variation of the 

Figure 2.10: Comparison of calibration results based on various initial conditions. 

(The dash line is the measurement value vs truth level. The solid line is the 

measured level vs calibration result from three different values of 𝜎.) 
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differences of the measured power level for each 𝜎 as an indicator of the prediction status 

(fitted or over-fitted). Moreover, there is an intersection point of four calibration curves. 

After this point, the increasing rate for each curve is inversed, which can help us to 

determine which curve should be picked. The optimum curve line finding procedure is 

described as in Figure 2.11, in which 𝑜𝑝𝑡 is the numbers of starting conditions, 𝑅𝑒𝑐𝑃𝑤𝑟 

indicates the power level in each channel, 𝐶𝑢𝑟𝑣(𝑖, 𝑘) is the calibration result for each 

initial condition, 𝑠𝑖𝑔𝑚𝑎(𝑘) is the parameters for each initial condition.  

 

Figure 2.12 shows the optimum finding result (the dash-dot-plus-sign line) based 

on four different initial conditions (solid line), in which the optimal result shows a better 

estimation than other conditions. Figure 2.13 shows the calibration results after using the 

procedure of the optimum-result-finding, in which we can see that the improvement of 

predictions for three channels compared with curves in Figure 2.9. In this example, we 

use four different initial conditions. More initial conditions can be used to improve the 

optimum-finding-results at the cost of higher computing load.  

Final = Curv(:,1); 

for k=2:opt 

for i=1:RecPwr 

  tmp = Curv(i,k)-Curve(i,k-1) 

  If (tmp>sigma(k)-sigma(k-1)) or (tmp>diff_mem(i)*0.5) 

   Final(i) = Curv(i,k) 

   diff_mem(i) = tmp 

  end 

end 

end 

 
Figure 2.11 Optimization Procedure 
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Figure 2.12: Comparison of calibration results based on various initial starting condition 

and optimum finding result 

Figure 2.13: Calibration results after using optimum result finding procedure 
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In reality, since the noise would always be a factor to influence the condition of 

the signal, we apply the Gaussian noise to the three datasets, 𝐷1, 𝐷2, 𝑎𝑛𝑑, 𝐷3 , as 

mentioned before. Figure 2.14 and Figure 2.15 show the calibration results with two 

different noise power levels, from which we can see that the EM algorithm is robust 

enough to correctly predict the nonlinear transformation errors. 

 
Figure 2.14: Calibration result when noise variance=1 
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Figure 2.15: Calibration result when noise variance=2 
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2.6.4. Target Direction Estimation  

One of the important missions for a multi-channel radar system or PAR is determining 

the direction (in azimuth and elevation) of a point target or a radiation source (such as 

interference source). The most common or easiest way to detect the location of the point 

targets is to perform the beamforming and find the peaks in corresponding azimuth or 

elevation degree. The angular resolution of the traditional beamforming is limited by the 

beamwidth of the antenna pattern. To reduce the angular resolution, some advanced 

algorithms can be utilized to overcome the antenna limitation and achieve super-

resolution. In this section, the Direction of Arrival (DOA) estimation is investigated and 

provide the computing complexity for each advanced algorithm.   

Figure 2.16: Composite beam response for two signals at 10 and 0 degree. The 

dashed curves are the responses to the individual signals, and solid curve is the 

composite response 
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Herein we assume the transmission medium is nondispersive so that the 

electrometric wave emitted from PAR propagates in straight lines, and the targets are in 

the far-field area of the array. Consequently, the radiation reflected from the targets 

impinging on the array is in the form of a sum of plane waves. Under those conditions, a 

coarse estimation of the DOA of a single target can be known from the phase differences 

applied to the beamforming weight factors, 𝑊𝑖 , as shown in Equation (2.1). A more 

precise estimation is monopulse estimation [83], which is performed in principle by 

comparing the amplitude or phase from the sum-beam output and diff-beam output. If 

there is only one target present in the beamwidth, the monopulse estimation is unbiased 

and efficient (minimum variance) [84], and rather insensitive to measurement noise [85]. 

However, when return signal is a composite of multiple targets within one beamwidth, 

the beam response will have a single peak, as shown in Figure 2.16. The beamformer 

therefore would fail to resolve two targets, producing a single biased direction estimation. 

In this case, when the distance among each target is less than one beamwidth, other 

methods needed to be applied to obtain the truth DOA of each target. The ability to 

overcome the angular resolution of PAR, limited by its physical size of the aperture, is 

called super-resolution.  

Super-resolution can be achieved by utilizing the multiple spatial samples of 

incoming wavefront, and some assumptions about the signal are needed to make at first. 

For example, if we know the incoming signal is the echo of less than 𝑁 reflecting bodies, 

the DOA of each target can be estimated by the knowledge of that the signal space is 

orthogonal to the noise space. The resulting algorithm was called Multiple Signal 

Classification (MUSIC) [86]. Although the super-resolution algorithms can increase the 
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angular resolution, they are based on the prior knowledge of the status of targets from the 

conventional beamforming processing, which means that the conventional DOA 

estimation method, such as monopulse, should be conducted in the first stage, and then 

analyses the signal by using super resolution in detail [85]. Note that, for simplicity, the 

following discussion of super resolution algorithms deals only with single dimensional 

parameter, such as azimuth only DOA, and the narrow band signal of known frequency 

is assumed. 

Many super-resolution algorithms have been developed including maximum 

likelihood [87] and maximum entropy method [88]. Although those algorithms have good 

performance, they consume considerable computing resources, especially when the target 

number is large [89]. Moreover, the signal model used by those two algorithms are biased 

and sensitive to parameter estimates [90]. Thus, research had been done to exploit the 

structure of data model and derive a new complete geometric solution for obtaining a 

reasonable approximate solution, which is named as MUSIC. MUSIC is an eigenvector 

projection procedure, in which the DOA is estimated by the fact that the signal space is 

orthogonal to the noise space. The system model used in PAR is based on the parameters 

listed in Table 2.4. The signal model is given as: 

𝑥 = 𝐴𝑠 + 𝑛, (2.65) 

where 𝑥 is the 𝑀 elements measured signal vector, 𝑠 is the ground truth signal source 

vector with 𝑇 elements, 𝐴 is the steering vector with dimension of 𝑀 × 𝑇, and 𝑛 is the 

noise vector. If the reflect signal from targets are modeled as stationary stochastic 

processes, they are assumed to uncorrelated with signal and possess a positive definite 

covariance matrix 𝑅𝑠 = 𝑠𝑠𝐻. Under this condition, the covariance matrix of measured 
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signal is given by 𝑅𝑥 = 𝐸{𝑥𝑥𝐻} = 𝐴𝑅𝑠𝐴
𝐻 + 𝜎0

2𝐼, in which 𝜎0
2 is the noise power. Then, 

we perform the eigenvalue decomposition of the matrix 𝑅𝑥 to get the eigenvector 𝑈 and 

eigenvalue 𝐷. For 𝑀 > 𝑇, it implies that in 𝐷 the first number of 𝑇 largest eigenvalues 

are corresponding to the reflected signal, the result of 𝑀 − 𝑇 eigenvalues are from noise. 

So we can rewrite 𝑅𝑥 as 𝑅𝑥 = 𝑈𝑠𝐷𝑠𝑈𝑠
𝐻 +𝑈𝑛𝐷𝑛𝑈𝑛

𝐻 , in which 𝑈𝑠 and 𝑈𝑛 are the signal 

subspace and noise subspace, and 𝐷𝑠  and 𝐷𝑛  are the diagonal matrix whose entries 

correspond to the eigenvalues associated with 𝑈𝑠 and 𝑈𝑛. As the signal is uncorrelated 

with noise, so the DOA estimates are obtained by observing the peaks of the spatial 

function spectrum function 𝑆(𝜃) as 

𝑆(𝜃) =
1

A𝐻 × Un
 (2.66) 

Table 2.4: Parameters used in the MUSIC 

T Target Number 

N number of range gate in the snapshot 

M number of antenna elements 

D number of directions in the detection area 

To give a throughput estimation in MUSIC, we use the parameters listed in Table 

2.4. There are 8𝑁3, 23𝑀3, and 8𝐷𝑀(𝑀 − 𝑇) +𝑀 flops in calculating 𝑅𝑥, eigenvalue 

decomposition of 𝑅𝑥, and the final spectrum function 𝑆(𝜃) respectively. In total, there 

are  

8𝑀𝑁2 + 23𝑀3 + 8𝐷𝑀(𝑀 − 𝑇) +𝑀  (2.67) 

complex number floating-point operations in MUSIC. To give an example, we use the 

parameters listed in Table 2.5 to see how much computing resources are needed by using 
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MUSIC. Based on Equation (2.70), the throughput will be around 320 MFLOPS. This 

workload does not seem large in this case, however, if we perform the 2-dimension 

search-for every elevation, the computational load would dramatically increase. An 

alternative algorithm, Estimation of Signal Parameters Via Rotational Invariance 

Techniques (ESPRIT), [90] can be utilized to reduce the computing requirements and 

achieve super-resolution DOA estimation at the cost of more number of antenna elements 

than MUSIC. 

Table 2.5: Assumption parameters used in the DOA algorithms 

T 5 

N 1000 

M 20 

D 180 

Single elevation volume scan time 500 𝑚𝑠 

 

Unlike MUSIC, ESPRIT does not need the knowledge of array manifold nor 

searching over parameter space, which is computationally expensive. Like MUSIC, 

ESPRIT correctly exploits the underlying data model by using the knowledge of signal 

subspace and the noise subspace. Different from MUSIC, the ESPRIT exploits the 

displacement invariance of signal subspace induced by two identical subarrays 𝑋 and 𝑌, 

displaced from each other by distance 𝑑. The system model used in PAR is also based on 

the parameters listed in Table 2.5. The signal model is defined as 

𝑥 = 𝐴𝑠 + 𝑛 

𝑦 = 𝐴𝜑𝑠 + 𝑛 (2.68) 
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in which 𝑠 is the 𝑇 × 𝑁 matrix impinging signals as observed by the subarrays 𝑋 and 𝑌,  

𝑛 is the noise vector, and 𝜑 is the subarray displacement vector.  Each subarray contains 

𝐾 = 𝑀 − 1 number of antenna elements, so the steering vector, 𝐴, is the matrix with 

dimension of  (𝑀 − 1) × 𝑇 . The total-least-square ESPRIT algorithm based on a 

covariance formation can be summarized as follows. 

1. Obtain the receiving covariance matrix, from the measurement as 

𝑅𝑥𝑦 = [𝑥 𝑦] × [𝑥 𝑦]𝐻 (2.69) 

The computation complexity in this step is 8𝐾2𝑁 flops. 

2. Compute the eigenvectors of 𝑅𝑥𝑦  as shown in Equation (2.69). As the number of 

target is 𝑇, there are 𝑇 eigenvectors associate with signal subspace, which means, for 

each subarray, it obtains the signal subspace,  𝑈𝑥 and 𝑈𝑦, as a matrix with dimension 

of 𝐾 × 𝑇. In this step, the workload is 𝟐𝟑 × (𝟐𝑲)𝟑 = 𝟐𝟎𝟒𝑲𝟑 flops. 

𝑅𝑥𝑦 = 𝜆𝑈𝑥𝑦, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑈𝑥𝑦 = [𝑈𝑥 𝑈𝑦] (2.70) 

3. The invariance structure of the array implies the signal subspace from the aspect of 

entire array, 𝑈𝑠, can be decomposed into 𝑈𝑥 and 𝑈𝑦 as  

𝑈𝑠 = [
𝑈𝑥
𝑈𝑦
].  (2.71) 

4. Then we can compute the eigendecomposition of 𝑈𝑠
𝐻 × 𝑈𝑠, as 𝑈𝑠

𝐻 × 𝑈𝑠 = 𝐸Λ𝐸𝐻 and 

partition 𝐸 into 𝑇 × 𝑇 submatrices, as 

𝐸 = [
𝐸11 𝐸12
𝐸21 𝐸22

] (2.72) 

In this step, the matrix multiplication and the eigendecomposition would have 

23 × (2𝑇)3 and 𝟒 × 𝟐𝑻 × 𝑲 × 𝟐𝑻 flops computation complexity separately. 

5. Calculate the eigenvalues of Ψ = −𝐸12𝐸22
−1, as 
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Ψ = 𝜆𝑘𝑈, 𝑘 = 1,⋯ , 𝑇 (2.73) 

In this step, there are 𝟏𝟏𝑻𝟑 + 𝟐𝟑𝑻𝟑 flops computation in total. 

6. Estimate the 𝜃𝑘 = sin−1{𝑎𝑛𝑔𝑙𝑒(𝜆𝑘)/𝜋} for DOA, and costs 𝟔𝑻 flops. 

In total, there are 

204𝐾3 + 238𝑇3 + 6𝑇 + 32𝐾2𝑁 + 16𝑇2𝐾  (2.74) 

flops in the ESPRIT.  

Assume we take the same parameters for MUSIC in Table 2.5, the throughput of 

ESPRIT is 𝟐𝟔 𝑴𝑭𝑳𝑶𝑷𝑺, which is 12 times less than the working load in MUSIC. The 

primary computational advantage of ESPRIT is from eliminating the search procedure 

happened in Equation (2.66), and directly produces signal parameters in terms of 

eigenvalue instead. This advantage would become even more pronounced in 2-

dimensional DOA estimation, where the computational load grows linearly with 

dimension in ESPRIT, while for MUSIC it grows exponentially. On the other hand, 

MUSIC needs to know the array manifold, 𝐴, so it is sensitive to sensor position, gain 

and phase errors. In other words, MUSIC requires precise calibrations. The advantages 

of MUSIC method are that it is more accurate and stable in the term of SNR variations 

[91], and it can be extended for to arbitrary arrays of sensors. In contrast, ESPRIT only 

works for uniform arrays. In all, both methods can give high resolution DOA estimations 

for multiple targets. If the applications are more cost-sensitive, ESPRIT would be a better 

choice. If the operational environment is complex and has low SNR, it is better to use 

MUSIC procedure happened in Equation (2.66), and directly produces signal parameters 

in terms of eigenvalue instead. 
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3. System Architectures 

Typically, an HPEC platform for PAR accommodates a computing environment [9] 

consisting of multiple parallel processors. To facilitate system upgrades and maintenance, 

the multiprocessor computing and interconnection topology should be flexible and 

modular, meaning that each processing endpoint in the backend system needs to be 

identical, and its responsibility entirely assumed or shared with other endpoints without 

interfering overall system operations. Moreover, the connection topology among each 

processing and I/O module should be flexible and capable of switching a significant 

amount of data from other endpoints. Figure 3.1 shows a top-level system description of 

a general large-scale array radar system. In receiving arrays, once data are collected from 

the array manifold, each transmits and receive module (TRM) downconverts the 

incoming I/Q streams in parallel. To support the throughput requirement, the receivers 

group I/Q data from each coherent pulse interval (CPI) and send grouped data for 

beamforming, pulse compression, and Doppler filtering. Beamforming and pulse 

compression are paired into pipelines, and the pairs process the data in a round-robin 

Figure 3.1: Top-level system digital array system concept 
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fashion. At each stage, data-parallel partitioning is used to mitigate the massive amount 

of computations into smaller, more manageable pieces.  

Fundamental processing functions for PAR (e.g., beamforming, pulse 

compression, Doppler processing, and real-time calibration) require teras of operation per 

second for large-scale PAR applications [5]. Since such processing is executed on a 

channel-by-channel basis, the processing flow can be parallelized naturally. A typical 

scheme for parallelism involves assigning computation operations to multiple parallel 

processing elements (PE). In that sense, from the perspective of radar application, a data 

cube containing data from all range gates and pulses in a CPI is distributed across multiple 

PEs within at least one chassis. A good distribution strategy can ensure that systems not 

only achieve high computing efficiency but fulfill the requirements of modularity and 

flexibility as well. In particular, modularity permits growth in computing power by 

adding PEs and ensures that an efficient approach to development and system integration 

can be adopted by replicating a single PE [9]. The granularity of each PE is defined 

according to the size of a processing assignment that forms part of an entire task. 

Although finer granularity allows designers to attune the processing assignment, also 

poses the disadvantage of increased communication overhead within each PE [10].  

As mentioned earlier, the features of a basic radar processing chain allow for 

independent and parallel processing task divisions. In pulse compression, for instance, 

the match filter operation in each channel along the range gate dimension can perform 

independently; as such, a large throughput radar processing task can be assigned to 

multiple processing units (PUs). Since each PU consists of identical PEs, the task would 

undergo further decomposition into smaller pieces for each PE, thereby allowing an 
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adjustable level of granularity that facilitates precise radar function mapping. At the same 

time, a centralized control unit is used for monitoring and scheduling distributed 

computing resources, as well as for managing lower-level modules. PU implementations 

based on the MTCA open standard can balance tradeoffs among processing power, I/O 

functions, and system management. In our implementation, each PU contains at least one 

chassis, each of which includes at least one MCH that provides central control and acts 

as a data-switching entity for all PEs, which could be an I/O module (e.g., RF transceiver) 

or a processing card. The MCH of each MTCA chassis could be connected with a system 

manager that supports the monitoring and configuration of the system-level setting and 

status of each PE by way of an IP interface. Within a single MTCA chassis, PEs 

exchanges data through the SRIO or PCIe fabric on the backplane, and the MCH is 

responsible for both switching and fabric management. 

Figure 3.2 gives an example of using an MTCA chassis to implement the 

fundamental functions of radar signal processing. We will not go into details of each step 

since the purpose here is to illustrate the parallelism of the major steps, but a brief 

description of the system is in Chapter 4. Depending on the nature of data parallelism 

within each function, computing load is divided equally and a portion assigned to each 

Figure 3.2: Illustration of the MTCA architecture in a PAR 
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PU. The computational capability is reconfigurable by adjusting the number of PUs, and 

for each processing function, a different PU can constitute at least one MTCA chassis 

with various types of PEs inserted into it, all according to specific needs. In the front, 

several PUs handle a tremendous amount of beamforming calculations, and by changing 

the number of PUs and PEs, the beamformer can be adjusted to accommodate different 

types and numbers of array channels. Since computing loads are smaller for pulse 

compression and Doppler filtering, assigning one PU for each function is sufficient in 

MPAR systems. 

3.1. Parallelization Model 

A parallelization model is typically a way of decomposing a signal processing algorithm 

into small portions, mapping each portion to the different processing unit, and 

reconstructing the results calculated from each portion. There are two fundamental types 

of parallelization: task and data parallelism. In data parallelism, the parallelization is 

accomplished by equally divided a data object into subjects, each of which is operated by 

a processing unit with a similar or identical computation. For example, matrices can be 

partitioned into blocks or submatrices, and matrix computation can be formulated 

regarding submatrices. The decomposition shown in Figure 3.3 is based on dividing the 

Figure 3.3: (a) Partition input and output matrices into 2 × 2 submatrices. 

(b) A decomposition of matrix multiplication into four tasks based on (a) 
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output matrix 𝐶  into four blocks and each of task computes one of these blocks 

independently. 𝐴 and 𝐵 are two 𝑛 × 𝑛 matrices, so each of submatrix in 𝐶 is 𝑛/2 × 𝑛/2. 

If each of processing endpoints has enough memory to store four of submatrices, it is easy 

to see that, with data decomposition, each task in Figure 3.3 does not need to 

communicate data between others, which is referred as embarrassingly parallel. However, 

if each endpoint has less memory to hold entire four submatrices, data parallel requires 

synchronization and communication among the parallel units.  

Compared with data parallelism, the task parallelism looks for the independence 

among tasks, so that one algorithm can be divided into tasks and executed concurrently. 

An example of data sorting based on task parallelism is shown Figure 3.4 [10], in which 

Lines 11 and 12 indicates that the array is partitioned into two parts and each part can be 

solved recursively. Therefore, to parallelize the quicksort is to execute it initially on one 

processing unit, and then when the algorithm runs to line 11 and line 12, assign one of 

the subtasks to another processing unit. In this example, no communication is needed 

between tasks. However, in general, some tasks may use data produced by other tasks. 

Thus synchronization and communication may be needed in task parallelism schemes 

too. 

In both data and task parallelism, tasks may need to exchange data with other 

tasks. This communication time can significantly impact the efficiency of parallel 

programming by requiring processors halt for the data. A suitable data communication 

pattern or strategy is a support of a stable and low latency HPEC system. When data 

exchanging is unavoidable, we can make the computations to be carried out in concert 

with communication. A ping-pong buffer mechanism is a simple technique that can make  
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the processor to do the computing job without waiting for the data. This technique 

requires extra data communication hardware, usually, Direct Memory Access (DMA), to 

prepare two sets of data buffers for all incoming and outgoing data streams as shown in 

Figure 3.5. While the DMA transfers the data into and out of the ping buffers, the 

processing core manipulates the data in the pong buffers. When both the processor and 

DMA finished the tasks, they switch the working buffers. By using the ping-pong buffer, 

processors activity can be distanced from memory fetching activity.  

 
Figure 3.5: Ping-Pong Buffering Mechanism 

1. procedure QUICKSORT (A, q, r) 

2.     if q<r  

3.         x=A[q]; 

4.         s=q; 

5.         for i=q+1:r 

6.             if A[i]≤x 

7.                 s=s+1; 

8.                 swap(A[s],A[i]); 

9.             end 

10.         swap(A[q],A[s]); 

11.         QUICKSORT (A,q,s); 

12.         QUICKSORT (A,s+1,r); 

13.     end 

14. end  

Figure 3.4: Example of Parallel Quicksort 
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Ping-pong buffer is used to “hide” the communication latency in the scale of the 

processing unit. In the large picture, to reduce the computing halt time among each 

parallel task two forms of scheduling can be employed: round-robin and pipeline 

mechanism. In the PAR application, those two methods are widely used in the front-end 

processing by exploiting the repetitive nature of the incoming data streams [9]. In a round-

robin, as shown in Figure 3.6 (a), a data object is partitioned into four pieces, and each 

piece is dealt out to a free processor, which means P1 operates on an earlier data piece 

while a different set of parallel processors operate on a more recent data. As such, round-

robin can be viewed as data-parallel parallelism. Once the P1 finished the processing of 

the earlier data, a new data set would be ready to be processed. The latency of the round-

robin scheduling is the number of parallel processing point multiply by the initial waiting 

time for each processor.  

 Time      

Processor 1 2 3 4 5 6 7 8 9 10 11 12 13 

P1                        

P2                         

P3                          

P4                           

(a) 

Time 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

                                  

  P1    P2    P3    P4   

(b) 

The gray box represents processor is waiting for the data. The green box 

indicates the processor is working. The red box is the result is sending out. 

 

Figure 3.6: Examples of round-robin and pipeline scheduling 

Pipeline scheduling, as shown in Figure 3.6 (b), is to have each processor in an 

N-processor queue processing an entire data. By overlapping various tasks, pipelining 
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improves the overall processing throughput, which is quite suited to the PAR application. 

In the front-end, one processor could implement the baseband quadrature conversion, 

another pulse compression, and another beamforming, in which the output of the previous 

stage is the input of the following stage. In this case, each stage performs a distinct task, 

thus pipelining can be viewed as task parallelism. The latency of this approach is the 

depth of the pipeline, which means the time span between the data starting to flow in the 

pipeline and the last data flow out.  

 

Despite the forms of parallelism, the level of parallelism determines the 

granularity of the decomposition of the algorithm, from bit-level parallelism with a basic 

operation in processing core to sub-problems within the entire program. A decomposition 

into a large number of concurrent tasks is called fine-grained, and in contrast, a 

decomposition into a relatively small number of tasks is coarse-grained. [92] defines a 

five-level parallelism as shown in Figure 3.7. The lower the level, the higher degree of 

parallelism is achieved, while the communication overhead would be increased too. At 

Figure 3.7: Levels of parallelism 



77 

some point, the cost of communication will consume more time than the time saved by 

parallel implementation of a program. This communication overhead effectively limits 

the size and level of parallelism that may be productively employed. For evaluating the 

effectiveness of parallel algorithm implementations in parallel computing systems, 

parallel speedup and parallel efficiency are two important metrics. Speedup is a metric 

of latency improvement for a parallel algorithm compared with a serial algorithm 

distributed over 𝑀 PUs, defined as: 

𝑆𝑀 = 𝑇𝑆 𝑇𝑃⁄  (3.1) 

In Equation (3.1), 𝑇𝑆 and 𝑇𝑃 are the latency of the serial algorithm and the parallel 

algorithm, respectively. Ideally, we expect 𝑆𝑀 = 𝑀, or perfect speedup, although such is 

rarely achieved in practice. Instead, parallel efficiency is used to measure the performance 

of a parallel algorithm, defined as 

𝐸𝑀 = 𝑆𝑀 𝑀⁄  (3.2) 

𝐸𝑀 is usually less than 100%, since the parallel components need to spend time on data 

communication and synchronization [9], also known as overhead. In some cases, 

overhead is possible to overlap with computation time by using multiple buffering 

mechanisms. However, as the number of parallel computing nodes increases, the data size 

of each computing node lessens, meaning that the computing nodes would need to switch 

between processing and communication more often, thereby inevitably resulting in what 

is known as method call overhead. When the algorithm is distributed across more nodes, 

such overhead can preclude the benefit of using additional computing power. Parallel 

scheduling thus needs to minimize both communication and method call overhead.  
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3.2. Data Transportation and Backend Protocol 

With more powerful and efficient processors, HPEC platforms can acquire significant 

computing power and meet scalable system requirements. However, HPEC performance 

is also limited by the availability of a commensurate high throughput interconnect 

network. Moreover, the scalability of communication fabric that providing achievable 

communication bandwidth to each processing node should grow along with the newly 

added multiple nodes. Since the communication overhead setback significantly impacts 

the efficiency of executing system functions, a proper implementation of the 

interconnection network among all processing nodes is critical to the performance the 

parallel processing chain. Two primary connection methods can be selected based on the 

distance of data transmission. For the long distance, chassis to chassis communication, 

Gigabit Ethernet or InfiniBand over copper of fiber cable would be a better choice. For a 

short distance board-to-board communication, in which the data are transmitted through 

the trace lines on the printed circuit board, the RapidIO and PCI Express are the two most 

common options. For both cases, they all employ multiple low-voltage differential 

signaling pairs, apply 8B/10B coding, and base on switched-serial interconnects; the 

differences are in the data packaging and routing strategy.  
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Figure 3.8 shows a block diagram of a typical interconnection fabric, in which the 

communication is issued from the processing card and managed by a network switch. In 

the processing card, the network interface connects to the processing core and memory 

via the bus. On the network side, the network interface connects to the switch network 

through cables for out-of-chassis communication, or through copper traces on chassis 

backplane for board-to-board communication. Typically, multiple numbers of links are 

active concurrently in the network interface to increase the data throughput. The number 

of switches and the number of ports on each switch determine the scalability of the 

network, and the aggregate bandwidth across all of the paths defines the metric of network 

capacity. 

Figure 3.8: Typical interconnection fabric 
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As a concrete example, we consider the MTCA standard, which represents the 

latest attempt at increasing board to board communication on the backplane by leveraging 

the switched-serial interconnection fabrics. For the switch network, the MTCA supports 

multiple protocols, including Serial RapidIO, PCIe, SATA, and 10 Gigabit Ethernet 

(GbE). MTCA has two kinds of cards: standard AMC front model and MCH (MicroTCA 

Carrier Hub). AMC is a payload card which can be as a processing unit, or front-end data 

transmitting/receiving model, and can be inserted into the slots on the backplane of 

MTCA shelf. Each payload card can exchange the data through the high-speed 

differential trace lines on the backplane. MCH is responsible for the monitoring system 

status and provides data link switch for each payload card. To create larger, stable, and 

Figure 3.9: MTCA backplane configuration 
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redundant network, two MCHs can be used and connected in a dual-star configuration. A 

common backplane configuration for MTCA is 14-slots chassis with 12 payload cards 

and 2 MCH, as shown in Figure 3.9. Each MCH has an independent fabric network, 

providing the redundancy for the system. The fabric A for each MCH has one serial link, 

routed to ports 0 and 1 of AMCs, which is allocated for GbE in common. Fabric B has 

one serial link too and is allocated for protocol SATA through port 2 and 3 of AMCs. If 

the application requires a direct link between AMCs, the fabric B can be routed as inter-

slot connections, allowing for one AMC directly communicate with another one without 

involving MCH as shown in Figure 3.10. Fabrics D to G use the four links to support data 

connectivity, known as fat pipes, which is usually used as PCIe or Serial RapidIO 

transmission. 

Table 3.1: Typical COTS Interconnection Fabrics [93] [94] 

 SRIO Gen 2 SRIO Gen 3 PCIe Gen2 PCIe Gen3 10 GbE 

Signal pair 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 4 (XAUI) 

Encoding 8b/10b 64b/67b 8b/10b 128b/130b 8b/10b 

Channel ~80-100 cm ~80-100 cm ~40-50 cm ~40-50 cm 100 m 

Bandwidth (4X) 20 Gbps 40 Gbps 16 Gbps 32 Gbps 40 Gbps 

Latency sub s sub s sub s sub s tens of s 

 

As mentioned before, multiple transmission protocols have been employed in 

HPECs. Much more often, people tend to think each protocol would be equal if they have 

similar peak bandwidth. However, each protocol is developed and optimized for different 

purposes of the application and types of processor. Typically, an interconnect will solve 

the problems in one application, but it would be less efficient if some conditions have 
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been changed. Table 3.1 presents the typical bandwidth and lane configurations for most 

widely used Commercial off-the-shelf (COTS) fabrics, in which the raw bandwidth is a 

fundamental parameter to determine the peak throughput of the system. However, the 

channel length, coding method, and latency would affect the efficiency of each protocol. 

Thus, when people choose the backend data protocol, the inherent protocol capabilities, 

supported topologies and latency should also be considered. The following use PCI 

Express, Serial RapidIO (SRIO), and 10 GbE as illustrative examples. 

 

PCI Express, used as its name, is designed to make the host processor, usually 

CPU, to connect multiple numbers of peripheral devices. Subsequently, the topology of 

PCI Express is a hierarchy of buses with a single root complex, as shown in Figure 3.11. 

Although PCI Express switch uses the 32-bit or 64-bit device ID to forward the packets 

to the device or downstream switch, PCI Express specification does not support peer-to-

peer communication. Implementing peer-to-peer connectivity requires researchers to 

create a new mechanism, such as “non-transparent bridge” [95], which could be 

exceedingly complex. In contrast, Ethernet and SRIO are routable protocols, in which 

more complex topology can be implemented. Note that both PCI Express and SRIO are 

designed for onboard or board-to-board communications, which shows low latency and 

higher data throughput compared to Ethernet. In summary, if the applications have clear 

hierarchy structure and no out-of-chassis communication, PCI Express would be a good 

choice for connectivity. 

Figure 3.10: point to point connectivity between port 2 and 3 
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Ethernet is the oldest and the most widely used protocol compared with other two 

protocols. For the past 35 years, although Ethernet has been evolved to gain more 

bandwidth, the improvement has been steadily in recent years and is reaching its 

bottleneck. Ethernet has the advantage of long-distance transmission, which suits the 

chassis-to-chassis communication. Moreover, as the Ethernet has been used widely, the 

cost of Ethernet-related chips, boards, and interfaces is relatively low. Identical to SRIO, 

Ethernet is using the routing table to switch the packages. The drawback of Ethernet is 

the significant latency and communication overhead. Ethernet was originally designed 

for long distance transmission, so it requires a collection of protocols and related 

networking functionality to compensate the error brought from the noisy transmission 

environment. Those extra protections increased the overhead of Ethernet package and 

made the transmission inefficient. For example, for a 100 Bytes payload, the efficiency 

is only 60% if the UDP package is used. Using TCP package or smaller sizes of payload 

would be less efficient. The large overhead also increases the computing burden of 

Ethernet switch, leading to the problem of high power consumption and rising cost of 

Figure 3.11: Typical PCI Express system topology 
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switch and latency. In summary, Ethernet is suitable for the long distance, high latency 

transmission applications, such as data center, in which the power consumption and the 

cost of Ethernet switch are not sensitive, and many sophisticated functionalities such as 

firewalls, prioritization, and virtual LAN can be utilized [93].  

RapidIO is a reliable, efficient, and highly scalable protocol. Compared with 

PCIe, SRIO is designed to support both point-to-point and hierarchical models. The 

package routing in the SRIO is based on the device ID, and the switching decisions are 

merely based on source and destination ID. This feature allows SRIO to add new 

transaction types without changing the switch. Moreover, it demonstrates a better flow 

control mechanism than PCI Express and Ethernet. The flow of control in Ethernet is 

implemented in the software, which requires significant buffering capabilities to allow 

for retransmission [96]. PCI Express and RapidIO flow of control both offer a retry 

mechanism based on tracking credits inserted into packet headers in physical layer[97]. 

Also, SRIO also has logical layer flow control mechanisms by metering the admission of 

packets to the fabric, which is similar to the Ethernet flow control. Compared with 

Ethernet, logical level flow control in RapidIO is implemented by hardware, freeing 

precious processing core. RapidIO also includes a virtual output queue backpressure 

mechanism, which allows switches and endpoints to learn whether data transfer 

destinations are congested [96]. Given those characteristics, SRIO allows an architecture 

to strike a working balance between high-performance processors and the interconnection 

network.  

In light of those considerations, we use SRIO as our backplane transmission 

protocol [98], and our current testbeds are based on SRIO Gen 2 backplanes. Each PE 
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has a four-lane port connected to an SRIO switch on the MCH. In our system, SRIO ports 

on the C6678 DSP support four different bandwidths: 1.25, 2.5, 3.125, and 5 Gb/s. Since 

SRIO bandwidth overhead is 20% in 8-bit/10-bit encoding, the theoretical effective data 

bandwidths are 1, 2, 2.5, and 4 Gb/s, respectively. In reality, SRIO performance can be 

affected by transfer type, the length of differential transmission lines, and the specific 

type of SRIO port connectors. To assess SRIO performance in our testbed, we conducted 

the following throughput experiments. 

 

Figure 3.12 shows the performance of the SRIO link in our MTCA test 

environment by using NWrite and NRead packets in 5 Gb/s, four-lane mode. Performance 

is calculated by dividing the payload size by the elapsed transaction time from when the 

transmitter starts to program SRIO registers and the receiver has received the entire 

dataset. First, the performance of the SRIO link is enhanced along with larger payload 

sizes. Second, the closer the destination memory to the core, the better the performance 

Figure 3.12: Data throughput experiment results in MTCA-based SRIO testbed 
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achieved with the SRIO link. Optimally, SRIO 4× mode can reach a speed of 1,640 MB/S, 

which is 82% of its theoretical link rate. 

 

3.3. Processing Units 

For an embedded signal processing unit, designers often have to balance various 

competing objects: development cost, performance, and time to the market. It is 

impossible to meet all the requirements at the same time. So, the designer needs to select 

a proper implementation technology, according to the constraints specific to the 

application.  In this dissertation, we propose a low-cost experimental PAR computing 

platform. The capacity to fulfill the canonical radar processing for a scalable PAR is our 

main concern, and at the same time, we want to reduce the cost of the system. Those 

requirements confine the choice of the principal processing power for the most of the 

processing tasks should be in the area of COTS. Finally, we choose to use the MTCA to 

build the processing unit for the PAR front-end processing and part of backend 

processing. The processing units are the highly parallel homogeneous computation 

platform, in which multiple numbers of payload cards can be inserted. Each processing 

unit can be connected with others and form up a scalable computing system for PAR. 

Figure 3.13 shows the MTCA based processing unit, in which there are 12 slots for 

payload cards and two slots for the MCH. As mentioned in Section 3.2, each payload card 

can communicate with others via switch fabric on the backplane, and the MCH would 

provide the routing capability and system monitoring. The out-of-chassis communication 

can be done by using the high-speed ports on one or each of the payload cards.  
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In our test platform, there are two types of payload cards: RF transceiver module 

and DSP module. The RF transceiver module is AMC518 + FMC214 from VadaTech©, 

which has four receiving channels, two transmitting channels, and one Xilinx Zynq 

FPGA. The DSP module is the EVMK2H or EVM6678 from TI©. By using MTCA, RF 

transceiver, and DSP processing module, a scalable HPEC platform for PAR application 

can be built. An example showing in Figure 3.14 illustrates a simple front-end processing 

platform.  After the return signal sampled by ADCs, FPGA on AMC518 would do the 

down conversion and basic digital filtering, and then the data would be transmitted 

through 4 lanes of SRIO to the DSP module via the backplane fabric. In the DSP, the data 

coming from all the FPGA would be combined and sent to the computing PU through 

Hyperlink. In the computing PU, DSP modules take the responsibility of performing 

canonical radar signal processing algorithms. Finally, the data would be transmitted to 

Figure 3.13: MTCA based processing unit 
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the next stage through Hyperlink ports. In the computing PU, the number of DSP module 

is determined based on required computational loads. Moreover, each computing PU can 

be connected with others by way of the Hyperlink port. With this proposed PU, the 

computing power of HPEC can be scaled horizontally by connecting more MTCA 

chassis, and scaled vertically by adding more DSP or RF transceiver model in MTCA 

chassis.  

 

In each computing PU, the master DSP is also responsible for sending the commands 

from PC to other DSPs. Those commands would instruct each DSP the size of a data cube 

and other parameters related to the processing. After receiving those commands, DSP 

Figure 3.14: Simple example of a PU-based architecture 
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would start to set up the dedicated memory region for the communication and computing, 

and configure the EDMA and interrupt registers. When the initialization is finished, DSP 

will wait for the command to start the processing. By using this method, the system has 

the flexibility of controlling the computing and communication load of each PU and 

makes the possibility of that progressively increasing the number of PU. 

 

3.4. System Synchronization 

3.4.1. General Calibration Procedure 

Calibrating a fully digital PAR system is a complex procedure involving four general 

stages, as shown in Figure 3.15. During the first stage, transmit-receive chips in each 

array channel need to calibrate themselves regarding DC and frequency offsets, on-chip 

phase alignment, and local oscillator calibration. Those problems always relate to the 

issue of the signal integrity, power integrity, and electromagnetic compatibility, which is 

quite complicated and the most effects to solve them are based on experience and felt as 

“black magic’. So, the chance of the first failure is quite high, and multiple version of 

PCB design would be a common situation until the performance can be meet the 

requirements. During the second stage, subarrays containing fewer channels and radiating 

elements are aligned precisely in the chamber environment by way of near-field 

measurements, plane wave spectrum analysis, and far-field active element pattern 

characterizations. Note that for the small antennas, which width of radiators is smaller 

compared with the wavelength, 𝜆, the near field region is a radius 𝑟 ≪  𝜆. While for the 

large antenna, the near field region is a radius 𝑟 = 2𝐷2/𝜆, in which 𝐷 is the aperture of 

antenna. In the second stage, the focus falls upon antenna elements, not the digital 
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backend, and initial array weights for forming focused beams at the subarray level are 

estimated precisely. In the near filed measurements, as shown in Figure 3.16, it involves 

two calibrations: transmitting and receiving calibration. In transmitting calibration, a test 

probe scan across each antenna in the subarray to directly measure the phase and 

amplitude. In the receiving calibration, the measurements are the output directly from the 

ADC without mixing with the local oscillator, which would prevent the error brought 

from the local oscillator. The measured value by each antenna are normalized and 

compared. So, we can adjust the phase shifter and attenuators respectively and make each 

antenna have the same response function. This near-field measurement requires an 

automated precise probe control in an anechoic test chamber. Therefore, this method is 

an initial factory calibration rather than in-field calibration [71]. Plane wave spectrum 

analysis [99] is to acquire the far-field pattern of array by extracting the information for 

near-field measurement. Unlike the near-field calibration mentioned before, the data 

obtained in the plane wave spectrum analysis is by sampling the antenna pattern on a 

spherical surface. The near-field scanning can give much more information than the far-

field, because many details can be computed by using near-field data but difficult to be 

measured in far-field [100]. By using the expansion coefficients and far-field terms for 

Figure 3.15: General system calibration procedure for DAR and the focus of this work 



91 

the modes, the transformation between near-field and far-field can be build. The 

calibration is performed by using the information calculated from the near-field data. 

 

In the third stage, far-field full array alignment is performed in either chamber or 

outdoor range environments. Similar to the near-field measurement, this stage requires a 

far-field probe in the loop of the alignment process and requires synchronization and 

alignments in the backend.  We use a simple unit-by-unit approach to ensure that when 

each time a subarray is added it maximizes the coherent construction of the wavefront at 

each required beam-pointing direction. At first, only one subarray is excited, and then by 

adjusting the phase shifter, the phase offsets with the highest received power level from 

the test probe is recorded. Repeat this procedure for the rest of subarrays. In the end, the 

whole array would be calibrated. Note that these array-level weights are combined with 

chamber-derived initial weights from the second stage to optimize array radiation patterns 

Figure 3.16: Measurement of radiation pattern from a PAR at the near-field range  
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for all beam directions numerically. When multiple beams are formed at once, the 

procedure repeats for all beamspace configurations. Initial factory alignment is finished 

after this stage. As multiple numbers of the subarray are used, and each subarray has its 

own local oscillator, it is important to synchronize all the subarray unless the array pattern 

would be unstable and lose its focus. The aim of the final stage is to ensure the consistency 

of system performance after the system is shipped for the field deployment. In the field, 

the working condition would be changed regarding temperature, electronics drifting, and 

platform vibration, those perturbations would affect the characteristic of RF components, 

and a calibration is needed to offset those performance deviations. Based on internal 

sensor (i.e., calibration network) monitoring data, algorithms in the backend perform 

channel equalization and pre-post distortions, as well as correct system errors of 

deviations from the factory standard. The final step entails data quality control, which 

compares the obtained data product with analytical predictions to further correct biases 

at the data product level for desired pointing. 

 

3.4.2. Backend Synchronization 

Our study focuses only on backend synchronization during the third stage, a step 

necessary before parallel, multicore processing can be activated. Also, synchronized 

backend enables that reference clock signals in the front-end PU (and the RF chipsets 

such as AD9361/9371/9375 in the front-end PU) to be aligned through FPGA Mezzanine 

Card (FMC) interface. For the testbed architecture in Section 3.3, the front-end PU, 

referred to as simply “front-end” in this section, of the digital PAR systems includes a 
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number of array RF channels. In each channel, there is an integrated RF digital transceiver 

with an independent clock source in its digital section. 

 

Synchronization in this front-end system can be categorized according to either 

in-chassis or multi-chassis synchronization. In-chassis synchronization ensures that each 

front-end AMC in a chassis works synchronously with those in the other chassis. Figure 

3.17 shows the architecture of a dual-channel front-end AMC module, which is based on 

an existing product from VadaTech. The Ref Clock and Sync Pulse in Figure 3.17 are 

radial fan-out by the MCH to each slot in the chassis, and each front-end AMC uses the 

Sync Pulse and Ref Clock to accomplish in-chassis synchronization. As an example, 

Figure 3.18 shows the timing sequence of synchronizing two front-end AMCs. Since 

commands from the remote PC server or other MTCA chassis may arrive at AMC 1 and 

AMC 2 at different times, transmitting or receiving synchronizations requires sharing the 

Sync Pulse between the AMCs. When AMCs acknowledge the command and detect the 

Sync Pulse, the FPGA triggers the AD9361 chip on both boards at the falling edge of the 

next Ref Clock cycle. By using that mechanism, multichannel signal acquisition and 

generation can be synchronized within a chassis. The accuracy of in-chassis 

Figure 3.17: PU frontend AMC module architecture 
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synchronization depends on how well the trace length is matched from an MCH to each 

AMC. If the trace length is fully matched, then synchronization will be tight. 

For multi-chassis synchronization, the chief problem is so-called clock skew, 

which to overcome, requires a clock synchronization mechanism. The most common 

clock synchronization solution is Network Time Protocol (NTP), which synchronizes 

each client based on messaging with User Datagram Protocol [101]. However, NTP 

accuracy ranges from 5 to 100 ms, which is not precise enough for PAR application [102]. 

To get more accurate synchronization in the local area network, the IEEE 1588 Precision 

Time Protocol (PTP) standard [103] can provide sub-microsecond synchronization [104]. 

To implement PTP, the front-end chassis needs to be capable of packing or unpacking 

Ethernet packets, and additional dedicated hardware and software are required, which 

increase both the complexity and cost of the front-end subsystem. A better method of 

implementing multi-chassis synchronization would take advantage of GPS pulse per 

second (PPS), since by connecting each chassis to a GPS receiver, the MCHs can use PPS 

as a reference signal to generate the Ref Clock and Sync Pulse for in-chassis 

synchronization. Because the PPS signal among different MCHs is synchronized, the Ref 

Clock and Sync Pulse in each chassis is phase matched at any given time. However, when 

the GPS signal is inaccessible or lost, the front-end subsystem should be able to stay 

Figure 3.18: Frontend in-chassis synchronization timing sequence 
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synchronized by sharing the Sync Pulse from a common source, which could be an 

external chassis clock generator or a signal from one of the chassis. In both methods, the 

trace length to each MCH from the common Sync Pulse source can vary, thereby making 

propagation time delay of the Sync Pulse from each chassis differ. To address this issue, 

we need to know the delay time difference of each chassis compared with the reference 

(i.e., master) chassis. With that knowledge, all chassis can use the time difference as an 

offset to adjust the triggered time. 

To implement that approach, we designed a clock counter to measure elapsed 

clock cycles between the Sync Pulse and the return Sync Beacon, the latter of which is 

transmitted only from antennas connected to the reference chassis. Since the beacon 

arrives at all antennas simultaneously, each front-end subsystem stops its counter at the 

same time. The time differences in delay can be obtained by subtracting the counter 

number from each slave chassis to the reference chassis. Figure 3.19 illustrates a model 

timing sequence after each chassis receives the Sync Pulse. At time T0, the reference 

chassis begins to transmit Sync Beacon and starts the counter. After two and a half clock 

cycles of propagation delay, the slave chassis launches the counter as well. At time T3, 

the Sync Beacon is received by both chassis, however, since the chassis detect the signal 

only at its rising edge, the reference chassis detects the signal at time T5 with counter 

Figure 3.19: Example timing sequence of multi-chassis synchronization 



96 

number 16. By contrast, in the slave chassis, the counter stops at 13. In turn, when the 

Sync Pulse is received the next time, the reference chassis is delayed by three clock cycles 

and triggers AD9361 at time T6, whereas the slave chassis starts it at T7. In our example, 

T6 is not the same as T7. Such deviation arises because the clock phase angle between 

the two chassis is not identical. When this phase angle approaches 360 degrees, it is 

possible for the Sync Beacon to arrive when the rising edge of one clock has just passed, 

while the rising edge of the next clock cycle is still approaching. In the worst-case 

scenario, only one clock cycle synchronization error will occur, meaning that the 

accuracy of multi-chassis synchronization refers to the period of the reference clock. One 

way to enhance its accuracy is to reduce the period of the reference clock; however, the 

sampling speed of ADC confines the shortest period of the clock, because a front-end 

AMC cannot read new data in every clock cycle from ADC when AMC’s reference clock 

frequency exceeds ADC’s sampling speed. In our example, since the maximum data rate 

in AD9361 is 61.44 million samples per second, the inter-chassis synchronization 

accuracy without using the GPS signal is 16 ns. 

 

3.5. System Performance Evaluations 

In this section, we will demonstrate the processing capacity for FFT, vector 

multiplication, and data corner turn for each processing node. At first, we may introduce 

the principle of cache and locality, which is a fundamental knowledge of improving the 

efficiency of computing. From a signal processing application perspective, ideally, a 

larger and faster on-chip memory is better. However, the performance of processors has 

improved faster than the pace of memory. As a result, the high-speed and large size on-
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chip memory is expensive, so only a small size high-speed on-chip memory is used, which 

causes the problem that the on-chip memory may not obtain enough data for the 

computing, so the processor needs to stall, waiting for the data to be cached. To solve this 

problem, the memory hierarchical can be used to reduce the cost and maintain the high 

computing efficiency, as shown in Figure 3.20. A fast but small size memory is placed 

beside the processing core, in which the access time is one clock cycle from processing 

core to Level 1 cache.  This level memory are maintained by the cache controller, which 

could predict the processor’s access pattern and pre-fetch the data from the external 

memory to the cache. The next lower memory levels are larger but slower than Level 1. 

Through this type of architecture, the average memory access time will be closer to the 

access time of the fastest memory rather than to the access time of the slowest memory 

[105]. 

 
Figure 3.20: TI C66x DSP Hierarchical Cache 
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3.5.1. FFT performance 

The Fourier transform is to transform the signal from time domain into frequency domain. 

This transformation can be compared as a prism separating the sunlight into the different 

colors (frequencies). In the digital system, to compute the Fourier transform the analog 

signal should be sampled at discrete intervals and then applied the discrete Fourier 

transform to the digitalized data. The direct expression for the computation of DFT is 

listed below: 

𝑋[𝑘] = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

, 𝑘 = 0,1,⋯ ,𝑁 − 1 (3.3) 

in which 𝑊𝑁
𝑘𝑛 = 𝑒−𝑗2𝑘𝑛𝜋/𝑁  is called the twiddle factor. The set of twiddle factors can be 

computed ahead of time and saved in the length of DFT is known. There are 𝑁2 complex 

multiplications and 𝑁(𝑁 − 1)  complex additions for an N-point DFT. So, there are 

8𝑁2 − 2𝑁  complex operations. To reduce the number of computation, we may take 

advantage of twiddle factor by writing the DFT expression into a summation of the odd-

number points, and even-number points, showing as: 
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𝑊𝑁
𝑘can be factored out of the odd number part to get 
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 (3.5) 

Since 𝑊𝑁
𝑘𝑁/2

= 𝑒−𝑗𝑘𝜋 = (−1)𝑘, the above equation can be rewritten as 
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 (3.6) 

Equation (3.6) simply divides the DFT into two smaller DFTs, so this method is named 

as radix-2 FFT, in which the number of computations can be reduced to 5𝑁 log2𝑁 

operations. Another popular algorithm is the radix-4 FFT, which express Equation (3.3)  

as four summations, then divides it into four equations, as shown below: 

𝑋[𝑘] = ∑ {𝑥[𝑛] + (−𝑗)𝑘𝑥 [𝑛 +
𝑁

4
] + (−1)𝑘𝑥 [𝑛 +

𝑁

2
]

𝑁
4
−1

𝑛=0

+ (𝑗)𝑘𝑥 [𝑛 +
3𝑁

4
]}𝑊𝑁

𝑛𝑘 

(3.7) 

The radix-4 FFT combines two stages of a radix-2 FFT into one, so half as many stages 

are required. The computation load for radix-4 FFT is 4.25𝑁 log2𝑁, which is 15% less 

than radix-2 FFT. 

To arrive at a four-point DFT decomposition, since 𝑊𝑁
4 = 𝑊𝑁/4, Equation (3.4) 

can be written as four 𝑁/4 points DFTs, as 

𝑋[4𝑘] = ∑ {𝑥[𝑛] + 𝑥 [𝑛 +
𝑁

4
] + 𝑥 [𝑛 +

𝑁

2
] + 𝑥 [𝑛 +

3𝑁

4
]}𝑊𝑁

4

𝑛𝑘

𝑁
4
−1

𝑛=0

 (3.8) 

𝑋[4𝑘 + 1] = 𝑊𝑁
𝑛 ∑{𝑥[𝑛] − 𝑗𝑥 [𝑛 +

𝑁

4
] − 𝑥 [𝑛 +

𝑁

2
] + 𝑗𝑥 [𝑛 +

3𝑁

4
]}𝑊𝑁

4

𝑛𝑘

𝑁
4
−1

𝑛=0

 (3.9) 

𝑋[4𝑘 + 2] = 𝑊𝑁
2𝑛 ∑{𝑥[𝑛] − 𝑥 [𝑛 +

𝑁

4
] − 𝑥 [𝑛 +

𝑁

2
] − 𝑥 [𝑛 +

3𝑁

4
]}𝑊𝑁

4

𝑛𝑘

𝑁
4
−1

𝑛=0

 (3.10) 
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𝑋[4𝑘 + 3] = 𝑊𝑁
3𝑛 ∑{𝑥[𝑛] + 𝑗𝑥 [𝑛 +

𝑁

4
] − 𝑥 [𝑛 +

𝑁

2
] − 𝑗𝑥 [𝑛 +

3𝑁

4
]}𝑊𝑁

4

𝑛𝑘

𝑁
4
−1

𝑛=0

 (3.11) 

𝑋[4𝑘], 𝑋[4𝑘 + 1], 𝑋[4𝑘 + 2], and 𝑋[4𝑘 + 3] are 𝑁/4 point DFTs. So, a DFT of length 

𝑁 has been factored into four DFTs of length 𝑁/2, in which each of 𝑁/4 point is a sum 

of a four input samples 𝑥[𝑛], 𝑥[𝑛 + 𝑁/4], 𝑥[𝑛 + 𝑁/2], and 𝑥[𝑛 + 3𝑁/4], multiplied by 

either 1, −1, 𝑗, or −𝑗. The sum is multiplied by a twiddle factor 𝑊𝑁
0, 𝑊𝑁

𝑛, 𝑊𝑁
2𝑛, or 𝑊𝑁

3𝑛. 

The same factorization can be applied to each of these smaller DFTs, and so on, until the 

original DFTs has been factored into a four-point DFTs.  

To implement computing algorithm on DSP, especially for FFT, we need to 

reduce cache misses and improve the commuting efficiency by aligning the data based 

on the computing sequence order. Ideally, researchers can arrange the data array and 

twiddle factor array in the computing sequence, however, usually, the incoming data 

order is fixed and additional memory management time would cost more than that saved 

from ordered sequence computing. In this case, only the twiddle factors, 𝑊𝑁
0, 𝑊𝑁

𝑛, 𝑊𝑁
2𝑛, 

Figure 3.21: FFT performance for different range gate numbers 
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and 𝑊𝑁
3𝑛 are arranged to be contiguous. This eliminates the twiddle factors allocation 

separation within a butterfly. However, this implies that as the loop is traversed from one 

stage to another, a redundant version of the twiddle factor array is required. Hence the 

size of the twiddle factor array is increased to 2𝑁 compared with that the conventional 

FFT is of size 3𝑁/4. 

The computation throughput of FFT measured on one C66xx core is in Figure 

3.21, in which dot represents the maximum number of range gates that the DSP cache can 

hold. It is evident that the calculation performance would degrade dramatically when the 

data size is close to or over the cache size. 

3.5.2. Weighted Dot Multiplication 

Besides FFT, weight dot multiplication is another basic computing algorithm used in the 

signal processing. Compared with FFT, the weight dot multiplication does not involve 

the data manipulation in the butterfly network, which means the performance of the vector 

multiplication is highly depended on how to use the cache efficiently and reduce the 

computing stall. So, a good strategy for optimizing cache performance is a guarantee of 

a high throughput computing. There are two levels of cache optimization: application 

level and procedural level. The application level optimization is a high-level optimization 

procedure that the designer should make the flow of data continuously poured in/out of 

the on-chip memory by using DMA. Those on-chip memories, L1/L2 SRAM, are closer 

to the processing core, working as a buffer. Therefore, the computing stall time is reduced 

and throughput is increased. Moreover, the cache coherence in the on-chip memory is 

automatically maintained by the cache controller. This mechanism can increase the 

computing efficiency, compared with by using external memory as a buffer, in which 
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programmer should manually issuing L2 cache coherence operations. However, 

implementing the DMA buffer is time-consuming, for the rapid-prototyping applications, 

it would be easier to configure L1/L2 as cache and maintain the cache coherence 

manually.  

The next level is the procedure optimization, in which data structures that are 

accessed by the algorithm are optimized to make use of cache memory efficiently. For 

the condition that the size of data is larger than the cache and the data would not be reused, 

the interleaving cache sets can improve the computing efficiency. The interleaving cache, 

or memory, is to spread the entire data evenly across several memory banks. Normally, 

this method is used to increase the throughput of memory by avoiding using the same 

memory bank repeatedly [106]. In the cache optimization, the interleaved cache is used 

to separate the buffer data into different cache sets. Before introducing interleaved cache, 

we should note that TI C66x DSP core uses the 2-way associative cache, which means 

Figure 3.22: L1D cache architecture 
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the DSP core have two cache ways to reduce the probability of conflict misses. As shown 

in Figure 3.22, each cache line contains 64 bytes data, and each set of a 2-way set-

associative cache consists of two line from L2 SRAM, one line frame in way 0 and 

another line frame in way 1. A line in L2 SRAM still maps to one set, but now can be 

stored in either of the two line frames. The problem of this architecture is that if multiple 

data being used belong to the same set, the previously cached data would be evicted. For 

example, Figure 3.23 shows the codes of an 𝑁-element weighted-dot-product, in which 

the size of 𝑤, 𝑥, and ℎ are associated with the same cache line in L1. So those three 

vectors cannot be cached at the same time. The solution of this problem is to allocate the 

data set contiguously in memory and pad arrays as to force an interleaved mapping to 

cache sets. Figure 3.24 shows the memory layout after first two iterations based on Figure 

3.23. The pad reallocates the array ℎ in the next set, thus avoiding the eviction the array 

𝑤. As a result, all the three arrays can be in the cache. 

Another technique used in the procedure level optimization is to split the entire 

data set and process one subset a time, which is referred as blocking or tilting. This 

method would increase the computing efficiency when cached data is reused. For 

example, in the beamforming, the weight vector is multiplied by with the array data, so 

in Figure 3.23, array 𝑥 and 𝑤 are used, and ℎ is omitted.  Thus, 𝑤 is reused each time. In 

that sense, we can handle the data storage carefully to make sure the weight vector not be 

evicted before the next subset reuses it. As an example, suppose one DSP core forms 15 

beams from 24 channels, and each channel contains 1024 range gates, so w and 𝑥 are the 

for (i=0; i<N; i++) 
 sum += w[i] * x[i] * h[i]; 

Figure 3.23: Weighted Dot Product 

Example 
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matrices of dimensions 24 × 15 and 24 × 1024, respectively, which are 3 KB and 192 

KB in sizes. As the size of L1D cache is 32 KB, to allow the weight vectors and input 

matrix fitting into L1D cache, the data from 24 channels should be divided into 16 

subsets. So, one large-size beamforming based on 1024 range gates is converted into 16 

small size beamforming based on 640 range gates. For example, in Figure 3.25, when 

channel number equals to 16, if there are no cache misses, four cases should have the 

same number of GFLOPS. However, for the cases that the numbers of range gates equal 

to 128 and 256, the beamformer can outperform the cases that range gates are 512 and 

1024. This variation is caused by cache miss. The markers in Figure 3.25 represent the 

maximum number of channels that the DSP cache memory can hold for a specific number 

of range gates. Before reaching each marker point, the performance improvement of each 

case is from using larger sizes vectors, which reduces the method-call-overhead. 

Figure 3.24: Memory Layout after two iterations 
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However, after reaching the marker points, the benefit of using large sizes of the vectors 

is compromised by the cache misses. Table 3.2 shows the beamforming performance after 

utilizing the blocking, in which the performance of DSP core remains the same regardless 

the size of input data.  

 

Figure 3.25: Computing performance of a DSP-core versus the number of range gates 

Table 3.2: DSP core performance after mitigating cache misses 
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3.5.3. Data Corner Turn 

In PAR, different processing operates on three-dimensional data in multiple stages. For 

the efficiency reasons, as we mentioned in Section 3.5.2, it is desirable to continuously 

align the data in the domain where the algorithm works on. Therefore, the alignment of 

the data needs to be turned from one dimension to another. This realignment is called 

“corner turn” in radar vernacular. This two-dimensional corner turn operation is 

equivalent to a matrix transpose in the memory space. An example situation where this 

might occur would be a Doppler filtering followed by a pulse compression [107]. Pulse 

compression and Doppler filtering process the data along the range and pulse domain 

separately, thus the two operations suggest different optimal data layouts. So, the corner 

turn transforms the layout of the data matrix to preserve data locality in the dimension 

being operated on. As the data comes in one dimension and is read in another, the amount 

of data control operations can be quite large and time-consuming. It is not a good choice 

to make the processing core to handle the corner turn. With the help of Enhance Direct 

Memory Access (EDMA3) [39] on TI C66x DSP, by pre-defining the procedure of corner 

turn, EDMA3 can reorganize the data into the desired format independently without 

interfering the real-time computations in DSP core.  

EDMA3 is a co-processor, which can perform data transfers without processor 

core intervention. There are two components in EDMA3: DMA and Quick DMA 

(QDMA). DMA is configured to respond to the interrupts from EDMA event, processing 

core, and peripheral registers. It can be used for synchronizing the peripheral events and 

processing. For example, Figure 3.26 shows an illustration of front-end transmission plan. 

After the data are grouped and packed by FPGA, the data would send through the SRIO 
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link to DSP and stored at DDR2. When the SRIO transmission is done, a sync event 

(interrupt) would be generated from SRIO to DMA, and the DMA would copy the data 

from DDR2 to the on-chip memory buffer independent of the processing core. Once the 

buffer is full, another interrupt would be sent from DMA to notify that the data is ready 

for use. Once the current processing is done and data is ready to be sent to next level. The 

core would trigger the pre-programmed DMA to transmit the data to external DDR2. 

When the out-of-buffer transmission is done, the DMA will trigger the SRIO peripheral 

to send the data outside. In this data in-and-out transmission, DSP core and DMA engine 

work independently, increasing the computing efficiency and data transmission 

throughput. Compared with DMA, QDMA is used for on-chip memory-to-memory data 

movement, which is easy to be programmed and triggered.  

 

Besides the basic sequential data transfer function, the DMA in TI C66x core 

offers the advanced index transfer for both source and destination addresses.  For 

example, by properly programmed the registers, DMA can send the data separated for 

Table 3.3:Time consumption of corner turn for one beam 

Figure 3.26: An illustration of front-end data transmission strategy 
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every 𝑁 bytes and stored them at the destination address separated for every 𝑀 bytes, in 

which 𝑀 and 𝑁 could be any value between 0 and 0xFFFF.  By using this feature, the 

data corner turn can be easily accomplished. Table 3.3 shows the performance of data 

corner turn by using EDMA3 under different conditions. 
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4. An Example System Implementation 

4.1. Architecture Design Considerations 

In the previous sections, the computational aspects of the front-end and backend 

processing algorithm have been explored, and various mapping strategies and the 

architecture of processing unit have been discussed. A low-cost HPEC system with 

scalability is now considered as the host platform for a large-scale PAR. Although there 

are no tight form-factor constraints compared to some applications, such as airborne radar, 

this platform imposes the requirements of showing the ability of scaled up and upgraded 

and flexibility of enhancing the signal processing algorithm in the future. Table 4.1 shows 

the parameters for an example PAR system. Based on those parameters, a complete 

implementation of the processing chain would be given in the following sections. First 

and for the most important, the network topology is the critical factor to affect both the 

Figure 4.1: System Network Topology 
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system architecture and the bandwidth of data communication. Figure 4.1 shows the 

network topology for the various levels in the computing platform. In the top level, the 

data received from the antenna array form a three-dimension data cube, and each 

processing stages process one domain’s data independently. Therefore, we can use the 

pipeline parallelism, in which the output of one processing stage is the input of the next. 

For the hundreds of the channel PAR application, the movement of data is as important 

as the processing. Table 4.2 gives an estimate of the communication bandwidth between 

the processing stages for the system based on the parameters from Table 4.1. Note that 

the time for the data corner turn between each stage should also be considered, which 

requires the network interface with high bi-directional bandwidth and the flexibility of 

routing data. To increase the transmission efficiency, in each processing stage, a 

switching unit is placed either at front or end, of each processing stage to combine or 

distribute data from previous or to the next stage. The switching unit in this level needs 

to buffer the data for the high-speed out-of-chassis communication, so it requires the unit 

has the ability of access large amount of data with low latency. The data in each 

processing stage would be separated into multiple PUs, and then the results are combined 

into switching unit. In the function level, the interconnection of multiple PEs via a 

dynamic switch network is built based on a multiport switch. At this point, the switch in 

the PU only needs to route the data between each PE or out of function level, so compared 

with the switching unit in the processing level, the switch in this level would handle 

smaller size data with more complex data routing requirements.  
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Table 4.1: Example of PAR system parameters 

Parameters Value 

Range gates 4096 

Pulses 128 

Channels 768 

Beams 264 

PRI 1 𝑚𝑠 

CPI 128 𝑚𝑠 

 

Table 4.2: Communication Data Rate per Stage 

Stage 
Input 

(GBytes/s) 

Beamforming 12.5 

Pulses Compression 4.3 

Doppler Filtering 4.3 

 

In a PAR system, different processing unit maintain their own local clocks and 

those clocks have drifting errors. Even a tiny drift in each clock cycle, it will be magnified 

to a large error when hundreds clock cycle has passed. Hence, a continuous mechanism 

for synchronization is needed for the distributed computing system, so that the system 

operation can be coordinated. Figure 4.2 shows an illustration of typical synchronization 

method for distributed systems. The NTP has an approximate error in the range between 

5 𝑚𝑠 to 50 𝑚𝑠 [108]. In the local network, numerous software clock synchronization 

algorithms have been analyzed and evaluated, such as [109], [110], and [111]. Those 

methods can achieve the accuracy in the range of several 𝑚𝑠 . By using dedicated 
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hardware, the software processing delay can be eliminated and the accuracy can be 

improved in the range of several 𝜇𝑠, or to the best by using PTM-1588 and MTCA chassis 

the accuracy can reach to 50 𝑛𝑠  [112]. For the PAR application, it requires a tight 

synchronization, so the system needs a dedicated hardware to maintain the 

synchronization by distributing a common clock to the multiple numbers of chassis, and 

the clock in each chassis can be synchronized based on this common clock source. 

However, it is always difficult to make the clock reaching each chassis at the same time 

for the reason of that there may be skew and uncertainly from routing delays along the 

physical signal wire. To get a better synchronization, the GPS signal is utilized to give a 

reference signal and another common clock source works as a trigger signal, as mentioned 

in the Section 3.4.2.  

Figure 4.2: Clock Synchronization classification 
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In a distributed system, given a large number of processing node and chassis, in 

which each of them has multiple computational, I/O, and network components, failures 

would be commonplace. Therefore, the control system should monitor the health of each 

node, identify the failure parts, and quickly recover by using either automatic or out-of-

band method. The control link should be implemented independently from the data 

network to increase the reliability of the system. An example of system level monitoring 

is the Intelligent Platform Management Interface (IPMI) in the MTCA, which provides 

the diagnostics information of each AMC (e.g., power supply, fan tray, and inventory 

information) to the shelf manager. Another important role of the control system is to allow 

the entire system to be scaled up and become increasingly distributed [113]. Since the 

fast development of electronic, it is inevitable to scale the system with newer and different 

vectors hardware, so the control system should be capable of handling the variation in 

hardware and software introduced by the upgrading the system. An example of this 

distributed monitoring software is Ganglia [113], which is an open-source project that 

shows the high levels of robustness and ease of management [114].  

4.2. Vendor Selections 

Choosing the products from the various vendor is one of the important processes to design 

the architecture of the system. Many industrial standards, such as MTCA, ATCA, and 

AMC, are defined the form factors, such as the capability, I/O bandwidth, and processing 

power, of products in different ways. So by using different vendor products to build a 

heterogeneous system, the platform can take advantages of those varieties, however, 

when parallelizing an algorithm in a multi-processor environment, it would be better to 

choose a homogeneous system for the less programming complexity heterogenous system 
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[115]. After the researchers decide the products for handling the computing, the system 

architecture to support those products can be fixed. Thus, a vendor selection is critical for 

the system architecture and the performance of the entire system. 

In this research, we studied the products from three different vendors: TI, 

Vadtech, and Prodrive. Each vendor has their focus, so the usage of their products may 

be varied based on the purpose of applications. TI, one of major semiconductor 

companies [116], produces several multi-core processor lines, in which the most powerful 

one is the TI 66AK2H12. It has 8 C66x DSP cores and Quad Cortex-A15 cores with 

multiple types of high-speed I/O [11], and the corresponding evaluation module (EVM), 

66AK2H, for under $1,000 [117]. This EVM has the advantage of better price-

performance ratio, easy to purchase, and less leading time, compared to other equivalent 

products on the market. Moreover, the product support from is always reliable from TI 

then other small companies. Since the EVM is a reference design for the general purpose, 

the board tends to represent all the features on one board, so it does not optimize the size, 

power consumption, and performance. On the other hands, the third-party products aim 

to the market of the high performance and high-reliability applications. So, it has larger 

computing throughput than TI EVM. For example, AMC-TK2 manufactured by Prodrive 

is a full-size AMC that combines a Quad ARM Cortex-A15 cores with 24 C66x DSP 

cores [118], which is three times more processing power than TI EVM. Another 

advantage of the third-party products is their technology supports are more specific to the 

area of their customers. As the purpose of this study is to build up a prototype platform 

to verify the feasibility and functionality of the HPEC for large-scale PAR system, we 

choose the TI EVM board as our processing node. A systematic process for decision 
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support in evaluating and ranking various vendor products is still needed for the formal 

product [119]. 

 

4.3. Processing Chain Implementation Details 

In Chapter 2 and 3, the focus is on computational complexity and algorithm 

decomposition for the baseline PAR signal processing. This section will show an example 

of a system-level large scale PAR computing platform design focusing on the front-end 

processing, and reveal some of the trade-offs when mapping the algorithms to HPEC 

system. This processing platform is not specific for a large-scale PAR system, rather, it 

can be a generalized purpose real-time HPEC processing platform for the multi-channel 

applications that require high throughputs, such as driver-assistance automotive [120], 

telecommunications [121], and biomedical imaging [122]. 

Based on the parameters listed in Table 4.2, and the PU described in Section 3.3, 

we proposed a front-end processing platform as shown in Figure 4.3. The entire 

processing chain works as a pipeline and can be separated into four generic stages: AD 

conversion, beamforming, pulse compression, and Doppler filtering. In the ADC step, 

Figure 4.3: An example of front-end processing platform 
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each PU samples the signal from 48 channels, so in total 16 PUs will collect 48 × 16 =

768 channels data. After the data from each pulse is recorded, the receiving PUs would 

send the data to their counterpart beamforming PUs. In the beamforming, since each 

beamformer requires the data from all the antennas, the data routing between antennas 

and beamformer would be complex when the number of channels is large. To mitigate 

the complexity in data routing, as showing in Equation (2.2) and (2.3), the entire data is 

divided equally and a portion is assigned to each sub-beamformers, (i.e., computing 

node), in which the term ∑ (𝑊𝑗𝐶+𝑖
𝑏 𝑌𝑗𝐶+𝑖)

𝐶
𝑖=1  is calculated independently. A formed beam 

is generated by accumulating the results from each sub-beamformers. This method is 

named as systolic beamforming [123]. Based on Equation (2.2) and (2.3),  the 

beamforming can be re-written to Equation (4.1),   

∑𝑊𝑚𝐶+𝑖
𝛩 𝑌𝑚𝐶+𝑖

𝐶

𝑖=1

=⋃(∑𝑊𝑖
(𝑛−1)𝐵+1𝑌𝑖

𝐶

𝑖=1

)

𝑁

𝑛=1

 (4.1) 

in which 𝑁 = 12 is the number of PE in a PU, 𝐶 = 48 is the number of channels obtained 

by each PU, 𝐵 = 22 is the number of beams processed by each PE, Θ are the beam 

number indicator. In our implementation, the received data from total 768 channels are 

sent to 16 PUs, in which, as showing in Equation (4.1) each PE calculates the term 

∑ 𝑊𝑖
(n−1)B+1𝑌𝑖

𝐶
𝑖=1  forming number of 𝐵 partial beams in parallel. After all the PEs finish 

the computing, the first PU starts to pass the result to its downstream neighbor, in which 

the received data are summed with its own and the results are send downstream. In turn, 

after the last PU combined the results from all the upstream PU, the entire number of 264 

beams based on 768 channels are formed. In other words, each PE converts the data from 

48 channels into partial of 22 beams. So, the output of one PU is the data matrix with 48 
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channels and 264 beams data, and this matrix would be given to the next PU in the systolic 

beamforming. In the end, the last PU would combine all the results from previous PU and 

form the entire 264 beams. 

Following beamforming, the next step is the pulse compression, in which there 

are 12 PEs within one PU to process the 264 beams. So, each PE would do the pulse 

compression for 22 beams. After all the PE finish the computing, one PE would combine 

all the results from others through the backplane by using Serial RapidIO, corner turn the 

data along the pulse domain, and send them through Hyperlink cable to the Doppler 

filtering stage. Same as pulse compression PU, 12 PEs will perform Doppler filtering for 

128 pulses. From the prospect of task parallelism, in the top-level, the processing chain 

works in the pipeline. In the lower-level, there are two parallelisms-the beamforming is 

systolic parallelism and the rest of the two processing stages work in the round-robin 

parallelism. In each PU, the parallelism is round-robin.  

In Section 3.1, parallel speedup and parallel efficiency are introduced, which are 

two important metrics. Figure 4.4 shows this effect for a parallel implementation of the 

Figure 4.4: Speedup and efficiency of beamforming implementation 



118 

beamforming, in which the speedup grows with the number of PUs, but the efficiency is 

degradation due to the reason of method call overhead. As for this reason, we need to 

seek a balance between the performance and effectiveness based on the system 

requirements. According to Figure 4.4, an optimal choice, for example, when the number 

of PU equals to 28, allows the system to achieve a good speedup while maintaining a 

reasonable level of efficiency. In our proposed system, we want to make full use of our 

equipment and achieve high efficiency, so the number of computing PU in the 

beamforming is 16. 

 

4.4. Benchmark Results 

In previous sections, a set of single-processor kernel benchmarks, such as FFT, weighted 

dot production, and data corner turn, have been given. This section gives a quantitative 

evaluation multiprocessor application benchmark. Figure 4.5 shows the time scheduling 

of the radar processing chain mentioned in Section 4.3 and parameters listed in Table 4.1. 

The numbers of PU and PE are chosen as an example, which can be changed based on 

Figure 4.5: Real-time system timeline for the example backend system 
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the application requirements. This scheduling is a rigorous and realistic timeline 

including all the impacts of SRIO communication and memory access latency, and has 

been verified by real-time hardware running tests. After the first data sample by ADC, 

the data cube from the first pulse is formed and send to the beamforming stage, the 

parallel beamforming processors use 123 𝑚𝑠 to generate 264 beams for the each of 128 

pulses in one CPI, in which 16 𝑚𝑠 is needed until the first pulse beamforming is done 

and reached to the pulse compression stage. In the pulse compression stage, the 

processing platform needs 123 𝑚𝑠 to do the pulse compression for the entire 128 pulses 

in one CPI. After the pulse compression, the data corner turn is required before Doppler 

filtering. As we mentioned before, EDMA on the DSP would do the data transformation 

independently from processing core, thus, the data corner turn is conducted in the pulse 

compression stage. In 16 𝑚𝑠, the first 96 beams from 128 pulses will be realigned in the 

CPI domain and sent out to the Doppler filter. In the end, the data cube would be 

processed through the Doppler filtering stage. In total, there are 192, 12, and 12 TI C6678 

DSP cores involved for the beamforming, pulse compression, and Doppler filtering, 

respectively. And for each processing function, it achieves 6880 GFLOPS, 370 GFLOPS, 

and 140 GFLOPS real-time performance, respectively. The overall latency, depth of 

pipeline, for the backend system is 1.5 CPI or 187.7 𝑚𝑠. 

 

4.5. Comparison with OpenCL 

The previous section summarizes the approach of “manual task division and 

parallelization.” Another option is using standard and automatic parallelization solutions. 

For example, OpenCL is a standard for parallel computing on heterogeneous devices. The 
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standard requires a host to dispatch tasks, or kernels, to devices which perform the 

computation. In the single cluster, one master processor is running the host system and 

dispatch the tasks to other slave processors. For systems with more than one cluster, 

OpenCL can dispatch different kernels to each cluster. When the kernel is dispatched, 

arrays must be copied from host memory to device memory. This communication adds 

significant overhead to computation time that increases linearly with buffer size.  

 

To leverage the performance of OpenCL, the TI 66AK2H14 is loaded with an 

embedded Linux kernel that contains the OpenCL drivers, in which the ARM core will 

dispatch the computing task to each DSP core. In the beamforming, the processing of 

each beam is allocated to its parallel processing thread for each DSP core. Figure 4.6 

shows that as the number of beams sent to the kernel increases, the time it takes to process 

an individual beam decreases. Because of task dispatching communication overhead, the 

performance of the kernel increases logarithmically. 

Comparing the performance of OpenCL implementation to the manually optimized 

scheme, the overhead of standard scheme can be seen more clearly in Figure 4.7. On 

Figure 4.6: Beamforming kernel performance using Open CL 
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average, using OpenCL/MP results in a 33% average performance penalty in 

beamforming with a maximum penalty of 44.3% when performing beamforming from 48 

channels. 

 

In the pulse compression, the performance of OpenCL implementation is shown 

in Figure 4.8. The comparison between OpenCL with the manually optimized codes is 

shown in Figure 4.9. As discussed previously in Section 3.5.1, FFT and IFFT require 

highly non-linear memory accesses. Thus it is essential to optimize the data fetching 

pattern manually. However, in the OpenCL, it does not provide the flexibility for a 

programmer to adjust the memory patch pattern, so the latency due to the non-linear 

accesses are compounded which results in severely degraded performance. 

Figure 4.7: Comparing OpenCL performance to manually optimized code for beamforming 
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4.6. Summary 

In this chapter, considerations of the architecture of the PAR processing platforms are 

illustrated. In general, the architecture should reflect the data topology in each processing 

stage, provide enough communication bandwidth for high throughput computing, and 

maintain an accurate synchronization among each processing node. When designing 

platform for PAR based on COTS technologies, the choice of products from various 

Figure 4.8: Pulse compression performance using OpenCL (8192 range gates) 

Figure 4.9: Comparing OpenCL performance to manually optimized code for pulse compression 
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vendors requires a process of evaluating and ranking software and hardware. First, we 

need to evaluate the cost, time to market, and features that each COTS product has. Then, 

further analysis would estimate how much the long-term maintenance costs would be.  

We present a development model of an efficient and scalable backend system for 

digital PAR based on Field-Programmable-RF channels, DSP core, and SRIO backplane. 

The architecture of model allows for real-time, synchronized and data-parallel radar 

signal processing. Moreover, the system is modularized for scalability and flexibility. 

Each PE in the system has a proper granularity to maintain a good balance between 

computation load and communication overheads.  

Even for the basic radar processing operations studied in this work, teras-scale 

floating point operations are required in the MPAR/SENSR type backend system. For 

such requirements, using programmable software DSP that can be attuned to the 

processing assignment in parallel would be a good solution. The computational aspects 

of a 7400 GFLOPS throughput phased array backend system has been presented to 

illustrate the analysis of the basic radar processing tasks and the method of mapping those 

tasks to an MTCA chassis and DSP hardware. In our implementation of PAR backend 

system, the form-factor can be changed based on requirements of various systems. By 

changing the number of PUs, the total capacity of the system can be easily scaled. By 

changing the number of inputs for each PE, we can adjust the throughput performance of 

a PU. A carefully customized design of different processing stages in DSP core also helps 

to achieve the optimal performance regarding latency and efficiency. When we parallelize 

a candidate algorithm, there are two steps in the design process. First, the algorithm is 

decomposed into small components. Next, each algorithm component is assigned to 
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different processors for parallel execution. In the parallel computing, the communication 

overhead among parallel computing nodes is a key impact on the parallel efficiency of 

the system. Within each parallel processor, dividing the entire data cube into small subsets 

to avoid cache miss is also necessary when the size of input data is larger than the cache 

size of processors. For data communication links, the SRIO, HyperLink, and EDMA3 

handle the data traffic between and/or within each DSP. By using SRIO, the data traffic 

among DSPs can be switched through the SRIO fabric controlled by an MCH of the 

MTCA chassis, which is more flexible than PCIe and efficient than Gigabit Ethernet. A 

unique advantage of our proposed method is utilizing EDMA3 and Ping-pong buffer 

mechanism, which helps the system to overlap the communication time with computing 

time and reduce the processing latency. OpenCL is a framework to control the parallelism 

in high level, in which the master kernel assigns the tasks to each slave kernels. Compared 

with the “bare-bone” method we developed, OpenCL is platform-independent and 

enables heterogeneous multicore software development, which leads to the drawback of 

less flexibility and efficiency to specific hardware. 
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5. Summary and Future Plans 

In the previous chapters, the fundamental radar signal processing algorithms have been 

introduced, and the computing aspects of a large-scale PAR have been presented to 

illustrate the analysis and mapping of challenging algorithms onto computing devices. 

Moreover, the difficulty of calibrating RF system in PAR was focused on as a key design 

consideration. Indeed, the traditional antenna calibration procedures, such as near-field 

and far-field calibration, are the dominant methods. For many circumstances, however, 

the traditional calibration method is limited by the surrounding environment and the 

complexity of procedures. To make the calibration practical and easy to be performed in 

the field, we have proposed the EM algorithm, which calculates the probabilistic values 

between measurement results and ground truth values. In particular, if clutter is in the 

field-of-vew, the traditional calibration method is often too difficult and inaccurate to 

implement, while the EM method calibration can remain tolerant toward these clutters.  

On the other hand, the EM method can be performed while the radar is operating. This 

feature is especially important for which the calibration is expected to conduct from time 

to time as the parameters from outside environment, such as temperature and humidity, 

are changing with time. 

Several advanced processing algorithms have been introduced in previous 

chapters, however, due to the time constraint, most of those advance signal processing 

algorithms are not implemented in hardware. The future work involves reformulating 

existing MATLAB codes so that they are suitable for HPEC processor architectures such 

as DSPs. For future algorithm development, the future work would investigate the 

identification and mitigation of ground clutters. The strong echoes from the ground clutter 
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contaminate the return signal and mask the weak weather signals. Currently, there are 

three mitigation methods: enhanced radar system design [124], clutter filtering [125], and 

post-processing in the backend [126]. By carefully planning the location of the radar 

system and selecting proper wavelengths, the clutter return can be reduced, but these 

techniques are limited by other factors. The second option is to apply a notch filter to 

cancel zero frequency signals in the Doppler spectrum. However, such method would fail 

for weather echo with zero Doppler frequency. Another option is based on postprocessing, 

which encompasses the traditional method by integrating radar moments data and their 

spatial texture, by using pulse-to-pulse cancellation, and by applying mathematical 

analysis and fuzzy logic synthesis to identify the clutter, as recent developments [127]. 

Scalability is another issue discussed in previous chapters. For the reasons that 

MTCA is a modular design that subdivides the system into smaller computing parts, so 

accommodating scalability in MTCA would be easy. In the software aspect, using DSP 

on the MTCA platform could facilitate software re-use during upgrading, compared with 

hardware-coded devices, such as FPGA. The nature of beamforming, pulse compression, 

and Doppler filtering algorithm is to perform calculations on each slice of data from the 

different dimensions of the data cube. This feature makes the computing on each slice 

independent, so it eases the difficulty of parallel partitioning in software. Moreover, when 

the design of the algorithm for each slice is changed in a way that increases its complexity, 

either spare computing unit can be exploited, or more computing unit can be added to the 

system. Since the computing load is equally divided in the current system, in the future, 

as more advanced chips are added into the system, a dynamic task scheduling and 
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assigning mechanism can be implemented, which allows the system assign the computing 

load for each node based on their capabilities. 

5.1. Considerations of Future Architecture Design 

When designing the backend computing platform for PAR application, many factors such 

as the communication scheduling patterns among processes, the interoperability between 

different types of process, the fault tolerance of the system, the scalability of the system, 

and cost-effectiveness, are needed to be considered. To a great extent, these factors 

depend on the performance of the entire system. Typically, the PAR system would 

employ the parallel programming model as a multiple-program multiple-data model, 

which requires the processors and associated peripherals have a robust and high 

throughput communication network. Based on the requirement of the radar application, 

the network hardware should be fault tolerant, which allows for the failed parts to be 

replaced while the system is still operational with little or no performance degradation. 

The problem of fault tolerance can be solved by making the system redundant both in 

hardware and software level. So, the capability of the scalability in the PAR backend not 

only implies that the system offers the potential for computing power growth but also 

ensures the system is high-availability. A cost-effective approach to design the backend 

would include usage of COTS technologies for both hardware and software. Although 

using COTS components can increase integration complexity has more risk in reliability 

compared with custom-designed products, the performance improvement by bringing 

state-of-the-art processor technology and software into the system would overcome these 

deficiencies.  
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5.1.1. System fault-tolerance 

The role of fault tolerance is to make the system to tolerate the faults, maintain the critical 

operations, and recover from the failures. When the fault happens in hardware, the best 

method to keep the system running is to have the redundancy. There are three forms of 

redundancy: information redundancy, physical redundancy, and time redundancy [128]. 

The information redundancy is to use the extra information to allow fault detection, fault 

masking, or possibly fault tolerance. Usually, the information redundancy is to prevent 

the transmission error over a long distance or a noisy channel. For example, the checksum 

is a widely used method for purposes of error detection. Because of the high throughput 

in the PAR backend, even a low transmission error rate would bring many fault bits and 

cause the system to stall. When implementing the information redundancy, extra 

hardware or software computing power is usually required. Thus, selecting a proper 

coding technique would be necessary.  

With the physical redundancy, one or more standby sparing hardware or software 

can bring a system back to full operation once the fault is detected. As the task switching 

between fault hardware and spares cannot be seamless, this time discontinuity may 

disrupt the system. To minimize the task switching time, a system can set up the hot 

standby sparing operating along with other online modules and prepare to take over at 

any time [128]. Opposed to hot standby sparing, a cold standby sparing is used when the 

application is not time sensitive, so the system has enough time to power up and 

synchronize the spare with other modules when the fault is detected. Compared with hot 

spares, the cold sparing can be power friendly and used in the condition that the power 

consumption is limited [129]. Figure 5.1 [128] shows an example of the triple-duplex 
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physical redundancy, which can perform error detection, error location, and system 

recovery. In this example, six modules are separated into three groups, forming up a triple 

modular redundancy system. The system output is determined by the majority vote from 

three groups. If one of the modules becomes faulty, the two-remaining can mask the error. 

In each group, it contains the combination of one online module and its duplication. The 

use of the duplication allows the faulty module be removed from the voting arrangement 

without interfering the system operations.   

 

Figure 5.1: The triple-duplex approach to redundancy 

In some applications, when the time constraint is not tight, errors can be detected 

by repeating the computation or transmission and comparing those results. If the 

discrepancy exists, the computation or transmission can be performed again to see if the 

conflict remains or disappear. This method is termed as time redundancy. Compared with 

information and physical redundancy, the time redundancy does not require extra 
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hardware to detect the fault. Thus the cost of implementing time redundancy is lower than 

the other two methods. However, the biggest problem of using the time redundancy is 

that for some applications it is unable to assure the system has the same data to be 

processed. Besides that, when there is a hardware error happened the time redundancy 

can detect the error neither. Thus, the time redundancy suits for the processes that the 

faults are transient or intermittent.   

5.1.2. Scalability 

The scalability of the PAR backend system allows handling additional of data from 

increasing number of channels or the computing burden from more complex signal 

processing algorithm by adding more hardware without suffering a noticeable increase in 

administrative complexity [130]. A good scalability indicates that the size of a problem 

can be efficiently extended to the increasing numbers of parallel processing elements. In 

the real world, as we expand the number of the computing elements, the cost of 

communication and synchronization among each element would increase, thus reducing 

the efficiency of parallel programs. Also, adding more hardware to the system would 

temper the reliability. Thus, at some point, when the number of nodes gets too large, the 

program cannot perform up to expectations.  

As the communication is always the potential bottleneck for scalability of a 

parallel program, it is necessary for the system architecture represents the pattern of the 

data flow in the signal processing. For example, in the frontend processing, three 

fundamental processing tasks, beamforming, pulse compression, and Doppler processing, 

are conducted in the three-dimension data cube separately as shown in Figure 5.2, in 

which the data are gathered and separated multiple times. Based on this flow pattern, the 
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front-end architecture needs to be designed in a combination model of distributed 

memory and pipeline.  

 

Figure 5.2: Data flowing graph in PAR frontend 

Besides the data communication pattern, the synchronizing issue among the 

computing module should also be considered. As the number of computing node 

increased, the synchronization among each node becomes a matter that the latency of 

each synchronization trigger would vary due to physical distance and the hardware 

variations among modules. If the expansion of the computing node is within one chassis, 

it is easy to achieve synchronization by using a global clock source. However, when the 

system requires more chassis to solve additional processing tasks, the synchronization 

among each chassis requires extra synchronization hardware, such as GPS based phasor 

measurement units [131] and NTP as mentioned in Section 3.4.2. 

5.1.3. Cost 

When designing a PAR system, the developers need to balance various competing objects: 

development cost, production cost, and time to the market. During the development phase, 

researchers would determine the radar performance objectives based on the goal of the 
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application and evaluate the candidate algorithms. In the development period, using the 

reconfigurable computing device would provide flexibility than a dedicated computing 

device. In the production phase, since the algorithm suite and system parameters are fixed, 

a device with more computing power but with less or no flexibility to reconfigure can be 

used. Besides the development time, the time to the market also depends on the difficulty 

of changing the hardware structure of the development platform to the final product. The 

changes would be either larger system scale or more specific hardware. Ideally, it would 

be better to design a scalable system by using the easy-to-program device, such as DSP. 

There are two advantages of using DSP devices. First, as shown in Figure 1.3, the easier 

the device to be programmed, the more cost-efficient it is. Second, it can save time and 

cost to change the software and algorithm once they need to be upgraded. As the 

computing efficiency of the easy-to-program device is lower than the dedicated device, 

seeking the balance among the usage of different chips would be important, and in many 

cases, a hybrid system consisting of the dedicated and flexible programming devices 

would provide low expense and reconfigurability. 

5.2. Future Works 

While this dissertation has demonstrated a DSP based high-performance embedded PAR 

backend system, there are many remaining challenges. Future work includes further 

implementing the dynamic task and communication scheduling (hot-swapped), cognitive 

radar (knowledge-based computation), introducing GPU for solving finer-grained 

parallelism, and optimally scheduling communication and resources. For example, the 

hot-swapping feature requires the platform reschedule the tasks that had been assigned to 

the removed computing node to other nodes. When the new nodes are plugged in, the 
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platform should be able to schedule each task to the computational resource based on the 

current usage [132]. The hot-swapping feature can be implemented by optimally 

scheduling the communication and resources in the system. In the radar backend, tasks 

often have dynamic behaviors caused by the changing external conditions. For example, 

the number of tasks for target tracking is associated with the number of targets; a good 

dynamic runtime scheduler can assign the task to the available computing resources based 

on the system status. Another important future work is to incorporate knowledge base, 

which incorporates higher-level computations results into front-end sensor processing. 

The knowledge-based radar uses the prior knowledge of the environment, such as the 

location of roads, terrain, and types of ground, to perform ‘intelligent’ processing that 

avoids invalid assumptions about the environment [133]. Another example is cognitive 

radar [19], in which the optimal detection threshold based on the measured data is 

determined by using machine learning technique. The remainder of this section will give 

a discussion of the outline of the future work for the abovementioned research topics. 

5.2.1. Optimal task and communication scheduling 

The emergence of radar sensor network [129] and the blurring boundary between the 

front-end sensing and the backend detection system is both extending the need for the 

high-performance parallel computation. In the parallel computing platform, there are two 

views to improve the performance [134]. One is to develop and integrate more advanced 

hardware and software; the other focuses on the issue of scheduling. In this dissertation, 

the first method has been discussed and analyzed. So, in the future works, we should 

concentrate on developing an appropriate task scheduler for PAR backend. The scheduler 

is responsible for optimally scheduling the tasks to the available computation resources 
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across the entire networks. The tasks scheduling algorithms can be categorized as either 

online (dynamic) or offline (static) scheduling [135].  The offline scheduling has the 

complete knowledge of all the tasks before the scheduler begins planning their execution 

schedule. With the online scheduling, tasks arrive at the time that some other tasks are 

already running, where the scheduler must place the new task around the currently 

running tasks [136].  In the PAR system, especially in the front-end, the amount and types 

of running tasks are predictable so that the task scheduling can be guaranteed before 

execution. Nevertheless, online approaches do have a significant role in the tasks that the 

predicting is impossible, such as target tracking and super-resolution DOA estimation. 

Thus, for PAR system, a scheduler may, in essence, be offline but incorporate online 

scheduling that allows dynamic tasks to continue executing.  

In a parallel computing system, the communication delays are significant and non-

deterministic, so it gives the difficulties to calculate the useful worst-case delay times. 

Many algorithms have been proposed to represent the network and end-point contention 

[137, 138]. However, most of those algorithms employ idealized models of the target 

parallel system and a fully connected network. Future works need to emphasis on the 

monitoring the contention for communication resources in a real parallel system. Besides 

the communication issues, it has been proved that the problem of finding an optimal 

schedule for a set of tasks is NP-hard [139]. It is, therefore, necessary to plan ways of 

simplifying the problem and algorithms.  

5.2.2. Cognitive Radar 

In the age of big data and machine learning, researchers start to use the computers to 

explore the hidden information and linking information among the data. Following this 
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trend, researchers start to make the radar backend system adaptively to calculate the 

transmitter parameters based on the requests from different usage, and the backend signal 

processing is not only based on the current input but also use previously determined 

knowledge [19-21]. This way of thinking leads us to the block diagram of Figure 5.3, 

which depicts the processing cycle of a cognitive radar. A key step in the cognitive radar 

is to analyze the detection area and build up a knowledge database containing 

environment information, such as the characterization of radar clutter and the type of 

targets (continuous or sparse). Since the optimal transmitting waveform is task-dependent 

[140], based on the interests of different task and the knowledge of the operating 

environment, the waveform of the transmitter can be optimized to increase the SNR and 

enhance decision-making performance with defined hypotheses [140, 141]. 

 

Figure 5.3: Processing cycle of a cognitive radar 
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Besides updating the transmitting waveform adaptively, other processing 

parameters can also be adaptively determined, such as the detection threshold in the 

CFAR [19], bearing angle in the STAP processing [142], and the sensing matrix in 

compressive sensing [141]. Those dynamic processing techniques are suitable for 

multifunctional radars, which perform various types of observation on a single platform. 

Thus, in the future, a multifunctional radar with cognitive sensing capabilities would 

afford unprecedented levels of intelligence. 
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