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Abstract 

Water injection is arguably the most widely used technology in maintaining reservoir 

pressure and enhanced oil recovery. However, the water injectivity always declines as 

water injection process continuing due to the injection water quality and changes in 

formation condition. When the injection pressure is above the formation parting pressure, 

the formation will be fractured, whether inadvertently or purposely. The parting pressure 

for a depleted reservoir is affected by many parameters including reservoir pore pressure, 

injection fluid temperature, and rock geomechanics, etc. 

In this study, a stochastic modeling is used to determine the parting pressure for water 

injection. The reason of using Monte Carlo simulation is because petrophysical 

parameters in the subsurface environment are of a high level of uncertainty, and operator 

usually knows the range of them to a certain level, but does not know them accurately 

with high precision. Therefore, Monte Carlo simulation can take the possible distribution 

into consideration and give the range of possible parting pressure and possibility of 

occurrence. 

Once the formation parting pressure is determined, the operation profile between the 

injection rate and injection pressure can be established. This project proposes a procedure 

to determine the injection profile by considering the dynamic well injectivity and 

injection pressure. The determined profile can be used in injection operation and reservoir 

management. 

The proposed models and procedure are applied in a case study for a water injection well 

in a producing asset in Gulf of Mexico (GoM). The comparison results showed that the 



 xii 

determined parting pressure matches the field measurements very well and thus the 

determined injection profile can be used as injection guideline to injecting water through 

formation matrix or purposely fracturing the matrix. 

The work is practically important and scientifically challenging. Operator can use the 

program to operate water injection wells together with other surveillance tools to well 

manage the asset. Additionally, the formation parting pressure during water injection is 

affected by many parameters inherently and many of them have high level of uncertainties. 

Therefore, the project also proposes some future work to extend the scope of the work. 
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Chapter 1: Introduction 

Water injection is arguable the most often used Enhanced Oil Recovery (EOR) 

technology. Field practices show that the injectivity of water injection well usually get 

smaller when a large quantity of water is injected, which results in requiring higher 

injection pressure in order to keep the same injection rate for reservoir management 

purpose. Injection induced fracturing could occur in waterflooding when the injection 

pressure is above the formation parting pressure. However, sometimes the fracturing can 

occur inadvertently, which could cause many undesirable effects such as matrix bypass 

event and short-circuit water injection and offset production well. Therefore, a thorough 

understanding of the formation parting pressure during water injection is critical for 

reservoir management. 

The problem being addressed in this report is to quantitatively determine the formation 

parting pressure under multiple influencing factors for a water injection well and examine 

the relative importance of them through sensitivity study. Because subsurface variables 

have inherent uncertainties in their measurements and interpretations, Monte Carlo 

simulation is used to stochastically study the range of and possibility of the determined 

parting pressure. Also, a field example from Gulf of Mexico (GoM) is used as a case 

study and the calculated results are verified against the downhole gauge measurement.  

The outline of the project is as follows. Chapter one is the introduction which states the 

problem to be solved. Chapter two is literature survey which shows the related research 

that had been done on this topic. Chapter three is the methodology which presents the 
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calculation procedure. Chapter four is validation using a Gulf of Mexico field example, 

and chapter five gives conclusions and observations as well as future works for this study. 
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Chapter 2: Determining Fracturing Pressure for an Injection Well 

Injection-induced fracturing widely occurs in waterflooding process. It has been widely 

discussed in previous literature by both analytical models and numerical simulation 

approaches. Research methods have evolved from early simple analytical modeling to 

recent flow performance and geomechanics coupled numerical simulation which allows 

more realistic description of problems than analytical and has a broadly applicable range.  

Hagoort et al. (1980) provided a semi-analytical model for predicting the fracture 

propagation induced by water injection during a water flooding. However, thermally 

induced stress change was ignored in the model. Perkins and Gonzalez (1985)   presented 

a three-region model by coupling the flow performance with fracture mechanics, which 

has been a base model for the later study on waterflooding induced fracture (Saripalli et 

al., 1999; Suri et al., 2009; Rahman and Khaksar, 2012). Suri et al. (2010) studied 

reservoir pressure transient model for fractured injector based on Gringarten’s work 

(1974). The analytical model assumes 1-D fracture growth with an infinite conductivity 

and ignores width of fracture. Reservoir geomechanical properties variation due to 

injection cannot be simultaneously updated in this model. In other words, the fracture 

mechanics and reservoir flow dynamics are decoupled, which implies using these model 

for a quantitative prediction of fracture growth could be problematic.  

The fracture model used in this study was based on Perkins and Gonzalez model and 

Koning’s model. The details of the model and calculation procedure will be discussed in 

Chapter 2 and Chapter 3.  
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2.1 Factors Influencing Formation Parting Pressure 

2.1.1 In-situ Stress 

Underground formations are confined and under stresses. There are three principal earth 

stresses oriented at right angles to one another: vertical stress, maximum horizontal stress 

and minimum horizontal stress as shown in Figure 2-1. The magnitude and direction of 

these principal stresses control the pressure required to create and propagate a fracture, 

the shape and vertical extent of the fracture as well as the direction of the fracture. In 

principle, a fracture propagates parallel to the greatest principal stress and perpendicular 

to the least principal stress. That is, for example, if the maximum principal compressive 

stress is the overburden stress, then vertical fracture paralleling to the maximum 

horizontal stress is expected when the fracturing pressure exceeds the minimum 

horizontal stress. 

 

Figure 2-1 In-situ stress in in the subsurface environment. Adapted from 
http://ags.aer.ca/publications/chapter-29-in-situ-stress. Accessed on July 23, 2017. 
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The three principal stresses are calculated as follows. For a formation at depth H, the 

absolute vertical stress, σ" , is given by 

 σ" = g ρ&dH
)

*
 Eqn. 2-1 

where ρf is the density of the formations overlaying the target reservoir. If the density is 

constant, the equation above becomes 

 σ" =
ρH
144

 Eqn. 2-2 

where an average formation density is used in lb/ft2	 and the depth is in ft. For most 

sandstones, ρ = 165	lb/ft2.  

In a case of a porous medium, the weight of the overburden is carried by both the rock 

fabrics and the fluid within the pore space. The corresponding effective vertical stress is 

defined by 

 σ"6 = σ" − αp Eqn. 2-3 

Where, 

α: Biot’s poroelastic constant 

p: pore pressure 

For many hydrocarbon reservoirs the Biot’s poroelastic constant is approximately equal 

to 0.7. (Economides, Hill, Ehlig-Economides, & Zhu, 2012). 

The effective horizontal stress σ)′can be translated from vertical stress through the 

Poisson relationship: 
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 σ)6 =
ν

1 − ν
σ"′ Eqn. 2-4 

where n is the Poisson ratio, and for sandstones it is approximately equal to 0.25. 

(Economides et al., 2012) 

The absolute horizontal stress, sH, can be determined as follows: 

 σ) = σ)6 + αp Eqn. 2-5 

As the result of tectonic stresses, the horizontal stress is not the same in all directions in 

the horizontal plane. Therefore, there is a minimum horizontal stress and a maximum 

horizontal stress: 

 σ),>?@ = σ′),>AB	 + σCDEC Eqn. 2-6 

Where stect refers to tectonic stress.  

2.1.2 Tectonic Stresses 

The tectonic stress is caused by geotectonic movement and is the lateral forces from 

formation as shown in Figure 2-2, which is similar to the crustal movement. Generally 

speaking, in shallow depths, the tectonic forces have a significant effect on the horizontal 

stress and lead to a stress type of  𝜎G > 𝜎I > 𝜎J and to a stress type of 𝜎G > 𝜎J > 𝜎I in 

the intense tectonic zone. For greater depths, the impact of tectonics weakens, and the 

vertical stress increases and gradually changes the stress type to 𝜎I > 𝜎G > 𝜎J (An & 

Cheng, 2014). In tectonically active areas, the effects of tectonic activity must be included 

in the analyses of the total stresses. The pressure required to fracture the formation is 

intimately connected with the stresses prevailing in the earth's crust and the mechanical 
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strength of the rock itself (Morgenstern, 1962). Therefore, it may be possible to predict 

the pressures required to induce fracture if the strength of the rock can be measured and 

the local stresses inferred.  

 

Figure 2-2 Illustration of Tectonic stress for a well in subsurface environment, 
excepted from https://courses.lumenlearning.com/geophysical/chapter/causes-and-

types-of-tectonic-stress/. Accessed on July 23, 2017. 

2.1.3 Poroelastic Stress 

Pore pressure change due to injection may induce poroelastic stress in the formation rock. 

Poroelastic stress at wellbore wall (Biot, 1957) is defined as  

 𝛥𝜎L = 𝛼N𝛥𝑃 Eqn. 2-7 

 with the effect of geometry of thermal front, 

 𝛥𝜎L = 𝑆Q
𝛼N𝐸𝛥𝑃
1 − 𝜈

 Eqn. 2-8 
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where, 

DP: the difference between fluid pressure and pore, psi 

E: Young’s modulus, psi 

n: Poisson ratio 

ap: the coefficient of pore pressure expansion defined as  

 𝛼N = α
1 − 2𝜈
1 − 𝜈

 Eqn. 2-9 

Where a is Biot’s constant. 

2.1.4 Thermoelastic Stress 

During waterflooding, injection fluids that are cooler or hotter than the rock will result in 

changes in the temperature around the wellbore and therefore considerably alter the 

geomechanical stress distribution, which in turn would affect the change of parting 

pressure of the reservoir rock or variation of the geometry and direction of propagation 

of induced fractures. For example, injection of cooler fluids causes the rock grains and 

matrix to contract, in which leads to a decrease of thermo-elastic in the rock stress. The 

corresponding lowering of the tangential stress will promote formation fracturing (Sadd 

2009). This is referred to as injection induced thermoelastic stress (Perkins and Gonzales 

et al., 1985; Garon et al., 1988; Clifford et al. 1991).  

Perkins and Gonzalez (1985) showed that with injection induced fracture, thermoelastic 

stress at fracture tip was affected by the geometry of cooling region in storage aquifer 

with finite thickness 
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 𝛥𝜎U = 𝑆Q
𝛼U𝐸𝛥𝑇
1 − 𝜈

 Eqn. 2-10 

Where, 

DT: the temperature difference between injected fluid and formation temperature, °F 

𝑆Q: the geometric shape factor for the shape of the cooled region of reservoir rock 

In Perkins and Gonzalez study, Sf can be obtained as:  

 𝑆Q =
(𝑏* 𝑎*)

1 + (𝑏* 𝑎*)
 Eqn. 2-11 

Where a*	and	b*  are major and minor semi-axis of an elliptical cooling region, 

respectively. Charlez (1997) published the 𝛼U values in the range of 1.34 psi/°F to 29.16 

psi/°F, and Hettema, Bostrøm, and Lund (2004) estimated the range for sandstone 

formations in the GoM, from 2.77 psi/°F to 8.33 psi/°F.  

2.1.5 Water Quality 

In waterflooding, water quality is usually defined in terms of the plugging tendency of 

the water. Ideally, the quality of the water should be such that there is no reservoir 

plugging, and hence no loss of injectivity during the life of the flood. However, poor 

injection water quality (as measured by its content of suspended solids or oil) causes the 

reduction in injectivity in many water injection wells.  
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2.2 Hydraulic Fracturing Mechanism 

2.2.1 Initiation of Hydraulic Fracturing 

There are three ways of applying a force to enable a fracture to propagate as shown in 

Figure 2-3: 

1. Mode I – Opening mode (a tensile stress normal to the plane of the fracture) 

2. Mode II – Sliding mode (a shear stress acting parallel to the plane of the fracture 

and perpendicular to the fracture front)  

3. Mode III – Tearing mode (a shear stress acting parallel to the plane of the fracture 

and parallel to the fracture front) 

 

Figure 2-3 Different mode of the initiation of hydraulic fracturing. Excerpted from 
Edwalds and Wanhill (1984). 

Since most of conventional fracture models assume Mode I fracturing, in this project, the 

initiation of Mode I fracture, tensile open fracture, in normal faulting stress regime (σH,min 

<σH,min <σv) is considered. The initiation of formation tensile fracture requires that the 

effective tangential stress must exceed the formation tensile strength. For isotropic 
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stresses, the upper limit of the imposed pressure required to fracture a formation from a 

vertical wellbore is given by the Terzaghi equation: 

 𝑃]^ = 3𝜎G,`ab − 𝜎G,`cd + 𝜎e − 𝑝 Eqn. 2-12 

The lower boundary for the breakdown pressure is:  

 𝑃]^ =
3𝜎G,`ab − 𝜎G,`cd + 𝜎e − 2𝜂𝑝

2(1 − 𝜂)
 Eqn. 2-13 

Where,  

 𝜂 = 𝛼
1 − 2ν
2 1 − ν

 Eqn. 2-14 

𝜎e: the tensile strength of formation, psi 

p: fluid pressure in the reservoir, psi 

With the consideration of thermoelastic and poroelastic stress (Fjar, Holt, Horsrud, Raaen, 

& Risnes, 2008), the upper bound of the breakdown pressure is: 

 Pij =
3𝜎G,`ab − 𝜎G,`cd + 𝛥𝜎U + 𝛥𝜎L + 𝜎e

2
 Eqn. 2-15 

The superscript T and P indicates that this pressure accounts for contribution of 

thermoelastic and poroelastic stress respectively. Usually, the breakdown pressure is 

greater than the fracture extension pressure. The breakdown pressure represents the 

pressure required to initiate a fracture from the wellbore and is influenced by the very 

presence of the wellbore. The fracture extension pressure reflects the pressure required to 

propagate the fracture through the formation.  
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2.2.2 Fracture Gradient Determination 

Methods for estimating fracture pressure gradient can be classified as direct methods and 

indirect methods. Direct methods rely on measuring the pressure required to fracture the 

rock and the pressure required to propagate the resulting fracture. They are generally 

based on a field procedure called leak-off test and use mud to pressurize the well until 

formation fracture is initiated. A leak-off test (LOT) is a normal procedure in vertical 

wildcat wells where the formation fracture gradient is not well established. During the 

test, the well is shut in and fluid is pumped into the wellbore at constant injection rate to 

gradually increase the pressure. At some pressure, fluid will enter the formation, or leak 

off, either moving through permeable paths in the rock or by creating a space by fracturing 

the rock. A typical leak-off test procedure is illustrated in Figure 2-4, where the 

breakdown pressure is a direct measurement of the fracturing pressure, and the closure 

stress is the minimal earth stress. The difference between the breakdown and closure 

stresses is the stress needed to overcome any additional hoop stress at the wall plus the 

tensile strength of the formation rock. This difference may be small in many cases, 

including those involving overpressure, fractured, or ductile formations. As with the pore 

pressure, such direct measurements of the fracture gradient are not routinely available; 

thus, estimates for the minimum principal in-situ stress and breakdown pressure based on 

other measurements are sought. 
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Figure 2-4 The process of the hydraulic fracturing and the determination of the 
formation parting pressure from field test. 

Several studies have been carried out to predict formation fracture gradients and some 

often-used methods are discussed as follows.  

2.2.2.1 Hubbert and Willis Method 

Hubbert and Willis (1957) developed an equation to predict the pressure required to 

fracture a formation. Their theory is based on laboratory tri-axial compression tests and 

can be applied to tectonically relaxed areas with normal faulting. Their model was the 

basis for future methods, and it basically states that the fracture pressure is equal to the 

minimum horizontal stress plus the formation pore pressure. The minimum horizontal 

stress is equal to some fraction of the effective vertical stress, which is the overburden 

pressure minus the formation pore pressure. This minimum horizontal stress is about 1/2 

to 1/3 of the effective vertical matrix stress. The resulting equation is 
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F
𝐷
=

1
3
	𝑡𝑜

1
2

𝑆
𝐷
−
𝑃
𝐷

+
𝑃
𝐷

 Eqn. 2-16 

This equation is also based on the assumption that the overburden pressure gradient 

approximates 1.0 psi/ft. Although this model is the cornerstone for other methods, it is 

not widely utilized, due to the low values it normally yields because of the assumption of 

a constant stress ratio of 1/3 to 1/2 of the vertical stress. 

2.2.2.2 Matthews and Kelly Method 

Matthews and Kelley (1967) presented a fracture gradient equation similar to Hubbert 

and Willis equation. In it, they developed the concept of variable ratio between the 

effective horizontal and vertical stresses: 

 
F
D
= 𝐾a

𝑆
𝐷
−
𝑃
𝐷

+
𝑃
𝐷

 Eqn. 2-17 

where the coefficient, Ki, relates the actual matrix stress conditions of the formation of 

interest to the conditions of matrix stress if the formation is compacted normally. Values 

for Ki are determined empirically from known fracture initiation pressures for an area. 

The Matthews and Kelly approach showed two weaknesses. One is the assumption that 

overburden stress is 1.0 psi/ft of depth. The other is that the stress ratio used in calculating 

the fracture gradient in abnormally pressured formations is that of the deepest normally 

pressured formation.  
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2.2.2.3 Ben Eaton Method 

Eaton (1969) expanded on the work of Hubbert and Willis by formally introducing 

Poisson’s ratio, and a variable overburden gradient. The amount of horizontal stress 

caused by the vertical matrix stress is a function of Poisson’s ratio v of the rock in 

question and is expressed in the form of 

 σ) =
𝜈

1 − 𝜈
𝜎I Eqn. 2-18 

The resulting fracture pressure gradient equation is: 

 
F
D
=

𝜈
1 − 𝜈

𝑆
𝐷
−
𝑃
𝐷

+
𝑃
𝐷

 Eqn. 2-19 

2.2.3 Fracture Propagation Process 

Once the fracture initiation pressure is exceeded, the rock fractures instantaneously and 

continuously. The length of the fracture will depend on both rock properties (particularly 

the tensile strength), the fluid pressure applied in the wellbore, and the magnitude of the 

minimum horizontal stresses. It is expected that when the tensile strength is low, the 

horizontal stresses are low, and the well is pressurized at a high pump rate, then the extent 

(length) of the initial fracture will be high. The reverse is expected for a rock with high 

tensile strength. After the fracture initiation, the pressure builds up in the fracture until it 

exceeds the fracture propagation pressure and then the fracture propagates. This 

propagation is accompanied by pressure drop which is due to the formation of a large 

fracture surface over a relatively short period of time, and also due to other processes 

such as fluid leak-off and frictional losses. Thus, the fracture propagation process can be 
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considered to be a series of pressure build-up, fracture propagation, and pressure decline 

cycles. 

2.3 Fracture Geometry Models 

There are various hydraulic fracturing models used to approximately define the 

development of fracture geometry. Improvement of the computer modeling is an 

important component that is able to accurately predict the fracture growth and dimensions 

for a given injection rate, time and fluid leak off. Initially hydraulic fracturing used two 

dimensional models (2D) which normally have fixed fracture height. From these models, 

more complex pseudo three-dimensional (P3D) and three-dimensional (3D) models have 

evolved which have the advantage of more computing power. In this research, a 2D model 

is adopted to determine the fracture geometry. P3D models are generally a more realistic 

representation of hydraulic fracture than the 2D models for most situations because the 

P3D model includes the fracture height, width, and length distribution with the data for 

the pay zone and all the rock layers above and below the perforated interval. Because of 

its complexity and availability in most commercial software, the P3D model is not 

discussed here. Some notable 2D models are described in following sub sections. 

2.3.1 KGD and PKN Models 

There have been numerous theories proposed for hydraulic fracturing in rocks (Harrison 

et.al, 1954, Hubbert and Willis, 1957 and Economides, 1995). Traditionally, Griffith-

Sneddon formed the basis of most fracture geometry models (Economides, 1995). Their 

work then was expanded by Perkins and Kern (1961). Later on Nordgren (1972) modified 

the PK model to include the effects of fluid loss into formation. The PKN model as shown 
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in Figure 2-5 is applied to the fractures in vertical plane. It has an elliptical shape and the 

maximum width at the center as shown in Figure 2-6. It assumes that fracture has a fixed 

height independent of fracture length and the length is much greater than height. It also 

assumes that the fluid flow and fracture propagation are one-dimensional in a direction 

perpendicular to the elliptic cross-section.  

 

Figure 2-5 the geometry of PKN model (Gidley, Holditch, Nierode, & Jr., 1989) 

Khristianovic and Zheltov (1955) and Geertsma and De Klerk (1969) developed another 

fracturing model, assuming horizontal plane strain condition often referred to as the KGD 

geometry (Figure 2-6). The KGD model is applicable for short fractures where the 

assumptions of plane strain are applied to horizontal sections. This model is applied to 

the fractures in vertical planes. It assumes that fracture has a fixed height and height is 

greater than the fracture length. It has a rectangular cross-section of the fracture. It also 

assumes that fluid flow and fracture propagation are one-dimensional in a direction 

perpendicular to the rectangular cross-section. Rock stiffness is taken into account in 2D 
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plane strain deformation in the horizontal plane only, so each horizontal cross-section 

deforms independently from the other (Gidley et al., 1989) 

 

Figure 2-6 the geometry of KGD model (Gidley et al., 1989) 

2.3.2 Perkins and Gonzalez Model 

The Perkins and Gonzalez model considers thermal stress and pore pressure change 

during injection. Thermoelastic stresses for a region with an elliptical cross-section and 

finite thickness are determined approximately with a numerical procedure. Empirical 

equations were developed to estimate the average interior thermal stresses in elliptical 

cooled regions of any height. Stress changes induced by pore pressure changes during 

fracturing are calculated using a similar equation with thermal stresses by assuming linear 

elasticity. The computed thermal stresses and stress changes due to pore pressure changes 

are coupled with solutions for a PKN hydraulic fracturing model to determine fracture 

dimensions – including length and width as functions of injection volume or time. 

Examples using typical elastic and thermal properties showed that injection of cool water 

can reduce in-situ stresses around injection wells substantially, causing them to fracture 
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at pressures considerably lower than would be expected in the absence of the 

thermoelastic effect.   

When water is injected during waterflooding, a region of cooled rock forms around the 

injection well. This region grows as additional water is injected. At any time, its outer 

boundary is approximately elliptical that is confocal with the line crack (2D fracture) as 

shown in Figure 2-7.   

 

Figure 2-7 Three regions of Perkins and Gonzalez Model as the result of water 
injection (Perkins & Gonzalez, 1985) 

Three zones with sharply defined boundaries are assumed: 

1. The cooled-and-flooded ellipse from the wellbore out. 

2. Followed by a flooded, but not cooled ellipse (the same temperature as the virgin 

reservoir, but increased injection water saturation). 

3. The undisturbed virgin reservoir. 

Thermoelastic stresses for regions of elliptical cross-section and finite thickness were 

determined approximately with a numerical procedure. The empirical equations to 

estimate the average interior thermal stresses in elliptical cooled regions are available in 
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literature. One must note that the pressure in the elliptical region is not uniform and stress 

changes due to pore pressure changes may have to be computed from a reservoir model. 

For a fractured injection well, the injected (flooded) region is approximately elliptical in 

shape, in its plan view, and it is confocal with the fracture length. The size of the elliptic 

region, its major and minor semi-axes, can be determined from volume balance of the 

injected water.  The cooled region is also approximated as elliptical in cross-section, and 

is also confocal with the fracture; the major and minor semi-axes of the cooled region are 

determined from an energy balance. Heat transfer and energy loss to the upper/lower 

bounding layers are not considered in their original model. 

When the fracture length is short, the shape of flooded and cooled region is close to a 

circular shape, and the thermally-related reduction of the horizontal stresses is nearly 

uniform in all directions. As the fracture length becomes large, the cooled region becomes 

more elongated. As the cooled region lengthened, the thermal stress reduction parallel to 

the fracture exceeds the thermal stress reduction perpendicular to the fracture. This tends 

to reduce the difference between stresses within the cooled region and it is possible at 

some point the stress parallel to the fracture becomes as large as the stress perpendicular 

to the fracture. When this happens, fractures may initiate along the original fracture 

surface and propagate in the direction perpendicular to the original fracture. Whether this 

will happen or not depends on the difference in the principal horizontal stresses that are 

initially present in the reservoir, the thermal coefficient of expansion, the temperature 

change and the elastic modulus. This process is depicted in Figure 2-8.  
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Figure 2-8 The developed of regions for water injection process (Perkins & 
Gonzalez, 1985) 

2.3.3 Koning’s Model  

Koning (1988) presented an analytical model of fracture growth in an infinite reservoir 

and in the absence of reservoir stress change in which the leak-off distribution in the 

reservoir is allowed to range from 1-D perpendicular to 2-D radial with respect to fracture. 

In his dissertation, Koning also presented an analytical model for fracture propagation in 

an infinite reservoir under the influence of poroelastic and thermoelastic changes in rock 

to characterize features of injection-induced fracture growth. The assumption within the 

model are listed as follows: 
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1) A vertical fracture with a rectangular surface area having height h and half- length 

L extends laterally from a single well in an infinite reservoir. The reservoir and 

fracture heights are constant. The shape of the fracture is elliptical. 

2) By assuming infinite conductivity fracture, the fluid pressure drop along the 

fracture can be neglected. 

3) Similar to Perkins and Gonzalez model, the shapes of the fronts that separate the 

cold-flooded and the warm-flooded parts of the reservoir are approximated by 

ellipses that are confocal with the fracture tips at all times. 

After that, Ovens and Niko (1993) formulated a radial version of Koning's model. They 

combined the fracture growth criterion with thermal and poroelastic effects and fracture 

toughness to yield a compact formulation, relating changes in fracture length to changes 

in fracture pressure.  

2.4 Injectivity Before and After Formation Fractured 

Well injectivity measures the ability of an injection well to receive injected fluid. The 

injectivity index, J, of an injection well is simply defined as: 

 J =
Q

𝑃s − 𝑃tQ
=

𝑘ℎ

141.2𝜇𝐵(ln 𝑟s𝑟t
+ 𝑠)

 Eqn. 2-20 

Where,  

Q: surface flowrate at standard conditions, STB/D 

Pe: external boundary radius pressure, psi 

Pwf: bottom hole flowing pressure, psi 

rw: wellbore radius, ft. 
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re: drainage radius, ft. 

µ: viscosity, cp 

s: total near-wellbore skin factor 

While the fracture grows into the reservoir, the well injectivity is improved, restoring the 

initial injectivity index. This phenomenon must be included in the injectivity index 

calculation thorough the geometrical factor, calculating the formation damage factor due 

to fracture, sf. There are models to calculate the formation damage factor for hydraulic 

fracturing after a stimulation procedure, but there are not exclusive models to use with 

fractures induced by water injection. In fracture regime, injectivity of a well can be 

defined in a similar fashion. Agarwal, Gardner, Kleinsteiber, and Fussell (1998) and 

Cinco-Ley (1981) introduced the fracture dimensionless conductivity, CfD, which is 

defined as: 

 𝐶Q} =
𝑘Q𝑤
𝑘𝑥Q

 Eqn. 2-21 

In a cylindrical coordinates the pseudosteady-state flow equation for a hydraulically 

fractured oil well is:  

 𝑞 =
𝑘ℎ(𝑝 − 𝑝tQ)

141.2𝐵𝜇 ln 𝑟s
𝑟t

− 0.75 + 𝑠Q
 Eqn. 2-22 

Using the concept of equivalent radius as follows, 

 𝑟t6 = 𝑟t𝑒�e� Eqn. 2-23 

we have 



 

 24 

 r�6 =
𝑥Q

𝜋
𝐶Q}

+ 2
 Eqn. 2-24 

From the equation above, the equivalent skin effect, sf can be obtained and thus the flow 

equation as well as injectivity index could also be evaluated. 
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Chapter 3: Relationship Between Injection Pressure and Rate for an 

Injection Well 

For an injection process, usually the known parameters include surface pump pressure 

and injection rate, and from which we would be able to determine whether the injection 

is above or below formation parting pressure, or to determine if the water is injected 

through a fracture or into formation matrix. From the pump pressure to formation sand 

face, there are several hydraulic pressure changes should be considered as presented 

below.  

Bottomhole pressure data at the formation face is required in the process and 

interpretation of injection data. Bottomhole pressure depends on the surface pressure, 

pressure drop due to friction along the tubing, the hydrostatic head and any pressure drop 

through the completion system that is in place. Considering the injection string to start 

with, the pressure change through the tubing or the annulus is governed by potential 

energy, kinetic energy, and frictional contributions. With a few exceptions (e.g. high rate 

flow through elbows, restrictions), kinetic energy terms are usually ignored. Considering 

a simple situation: a single-phase flow, ignoring acceleration effects, the bottomhole 

pressure can be estimated from surface pressure as follows:  

 BHP	 = P���&?ED +	P��j���C?CAE	–	P&�AECA�B Eqn. 3-1 

Where: 

BHP: bottomhole pressure at the formation face, psi 

Psurface: surface pressure, psi 
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Phydrostatic: hydrostatic head due to the fluid column, psi 

Pfriction: frictional pressure drop through tubing, completion and perforations, psi 

3.1 Friction in the Injection String 

The pressure drop due to friction along tubing per unit length is:   

 dP
dL

= 0.3813
𝑓𝜌𝑞�

𝐷�
 Eqn. 3-2 

During flow, irreversible energy losses occur. Except for completely laminar flow, these 

energy losses cannot be predicted theoretically and are usually accounted for by using the 

friction factor. For consistency, the Moody friction factor is used in this study. The 

friction factor, f, and the relative roughness (e/D) are related to the Reynolds' Number. 

The Reynolds' Number is defined as follows:  

 N�D = 7737.6	
𝐷×𝑣×𝑆. 𝐺.

𝜇
 Eqn. 3-3 

Where, 

dP: pressure change, psi 

dL: length of the segment over which the pressure drop is calculated, ft. 

r: density, lbm/ft3 

f: Moody friction factor, dimensionless 

q: injection rate, BPM 

v: velocity, ft/s 
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D: diameter: inches 

The friction factor depends on the specific flow regime Except for laminar flow, there are 

many empirical representations of the friction factor in turbulent and transitional regimes. 

The following formulae are used in the study. 

Table 1. Moody Friction Factors 

Flow Regime Reynolds 
Number Moody Friction Factor Comments 

Laminar flow < 2100 
Re

M
64
N

f =
 

Independent of 
roughness 

Turbulent flow > 2100 ÷
÷
ø

ö
ç
ç
è

æ
+=

MM fNDf Re

7.182log2-74.11 e

 
Colebrook-White 

3.2  Static Bottomhole Pressure and Hydrostatic Head  

To convert surface pressure to bottomhole pressure, the friction is calculated first. Then 

the hydrostatic head is determined. For a liquid, the static bottomhole pressure or 

hydrostatic head is determined by multiplying the fluid gradient times the depth:  

 P��j���C?CAE = TVD×gradient Eqn. 3-4 

The gradient can be determined from the specific gravity of the fluid: 

 gradient	 psi ft =
S. G.×62.4
144

= S. G.×0.433 Eqn. 3-5 
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3.3 Injected Fluid Hydraulic Properties 

The injection water viscosity is calculated from the following correlation as a function of 

temperature, pressure and solids in injection water. The relationship between viscosity 

and temperature with the influence of solids in injection water is illustrated in Figure 3-1. 

 

µ = −4.518×10�� + 9.312×10�2𝑇𝐷𝑆 − 3.93×10�¥𝑇𝐷𝑆�

+
70.635 + 9.3576×10��𝑇𝐷𝑆�

𝑇a
1

+ 3.5×10�¦� 𝑃a + 14.696 � 𝑇a − 40  

Eqn. 3-6 

 

Figure 3-1 Water viscosity vs. temperature with the existence of solids 

The specific gravity of the injected fluid is calculated from following correlations: 
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 S. G. = (7.572×10�2𝑇𝐷𝑆 + 0.998238)×1.002866𝑒§ Eqn. 3-7 

 

 
ψ = 3.0997×10�©

𝑃a + 𝑃tsªªJsc^
2

− 2.2139×10�¥ 𝑇a − 59

− 5.0123×10�« 𝑇a − 59 � 

Eqn. 3-8 

 

Where, 

TDS: total dissolved solids in the injection water, percentage 

Ti: injection water temperature, °F 

Pi: bottomhole injection pressure, psi 

Pwellhead: wellhead injection pressure, psi 

Figure 3-2 demonstrates the relationship between specific gravity of water and 

temperature under different solids concentration conditions. 
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Figure 3-2 Specific gravity of water with various solids concentrations 

The hydrostatic head is determined from the specific gravity, at the datum, zdatum (ft.): 

 P��j���C?CAE = 0.433×zj?C�>×S. G. Eqn. 3-9 

3.4 Perforation Friction  

Analysis of field and laboratory data shows that variations in pressure drop due to 

changing perforation entry friction tends to strongly influence the prediction of fracturing 

treatment performance (Crump & Conway, 1988). 

The formula adopted by Crump and Conway is:  
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 P& =
0.2369𝑄�𝜌
𝑁N�𝐷¥𝐶^�

 Eqn. 3-10 

Where, 

Q: flow rate, BPM 

ρ: fluid density, lbm/gal 

Np: number of perforations 

D: perforation diameter, inches 

Cd: coefficient of discharge 

3.5 Model Description 

A fracture and water injection model is programmed for the study with following features: 

1) Various pressure losses such as frictional loss along the tubing and friction due to 

perforation are considered explicitly.  

2) Both matrix injection with formation damage and fracturing injection are 

considered.   

3) The fracture is assumed to have a constant fracture height.  

4) Stress changes due to temperature and pore pressure changes are considered.  

5) Formation damage due to injection water quality such as total suspended solids 

oil in water is considered.  

6) The well can be vertical or deviated. 

7) Monte Carlo analysis is used to determine the distribution of fracturing pressure. 

The program requires a large number of input parameters including reservoir 

petrophysical and geomechanical properties, injected fluid quality, well data as well as 

tubing settings. The calculated data include injection pressure (bottomhole pressure and 
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wellhead injection pressure), well injectivity, whether it is under matrix injection or 

fracturing injection. If the injection is under fracturing condition, the fracture properties 

such as fracture length, fracture net pressure, and fracture skin are calculated. The 

parameters and calculation procedures are discussed in detail in following sub sections. 

3.5.1  Propagation Calculations 

In the developed model, the pressure change due to pore pressure change is modeled as 

follows through the poroelastic coefficient, Ap, which is defined as: 

 A° = βα
1 − 2ν
1 − 𝜈

 Eqn. 3-11 

Where, 

b: Perkins and Gonzalez shape factor, 

a: Biot’s poroelastic parameter, 

n: Poisson’s ratio. 

The injection shape factor, b, is derived from the work of Perkins and Gonzalez to 

characterize the portion of the reservoir influenced by fluid injection and temperature 

changes. The shape factor ranges from 0 (when a small region on each side of a fracture 

has been cooled) to 0.5 (when a small radial distance from the wellbore has been cooled) 

to 1.0 when the degree of cooling is large enough that the extent of the thermal front is 

greater than the formation height or greater than the half-length of a created fracture. 

Similarly, the thermoelastic coefficient, At, is defined as: 
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 AC =
βEαC
1 − 𝜈

 Eqn. 3-12 

where: 

E: Young’s Modulus, 

at: Coefficient of linear thermal expansion. 

The current stresses in the near-wellbore/fracture region are determined for various 

scenarios as follow: 

1)  For no injection condition, the total stress is represented as: 

 𝜎 = 𝜎* + 𝐴N(𝑝s − 𝑝*) Eqn. 3-13 

Where, 

s: current stress, psi 

s0: original stress, psi 

Ap: poroelastic coefficient 

pe: the current average reservoir pressure, psi 

p0: the original reservoir pressure, psi 

This is essentially the original stress field plus changes in stress associated with the 

change in pore pressure. 

2)  If injection is occurring but the zone is not fractured, the stress acting is (initial 

stress, modified for changes in the stress due to changes in the reservoir pressure 

before injection, further modified by changes in the stress due to changes in pore 

pressure and temperature due to injection): 
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•  𝜎´c^acª = 𝜎s + 𝐴N 𝑝s − 𝑝* + 𝐴N(𝑝a − 𝛥𝑝eµab − 𝑝s) Eqn.3-14 

Where, 

pi: injection pressure, psi 

se: current far-field stress, psi 

Dpskin: mechanical skin (accounts for any entry pressure drop), psi 

3)  If injection related fracturing is occurring and there are ongoing tests for this to 

see if the current stress level is exceeded by the injection pressure, the current 

stress field becomes:  

 σ&�?E = 𝜎* + 𝜉𝐴N 𝑝a − 𝑝s + 𝐴·(𝑇A − 𝑇*) 
Eqn. 3-15 

Where the correction factor x (from Koning (1988))  is defined as: 

 ξ = 1 −
0.25

ln	(2 𝑟s 𝑥Q)
1 + 2 sinh�¦

2ℎQ
𝑥Q

− 2 sinh�¦
ℎQ
𝑟s
	  Eqn. 3-16 

Where,  

Dpskin: specified mechanical skin (set to zero if the well is fractured), psi 

x: correction factor (from Koning (1988)) to account for the finite nature of the reservoir 

hf: fracture height, ft. 

xf: fracture half-length, ft. 

Furthermore, a condition check whether the formation is under matrix or fracturing 

injection is performed. The relation in Eqn. 3-19 is to examine whether the formation 

face pressure exceeds the value required for fracturing: 
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 𝑝a − 𝛥𝑝eµab > 𝜎Q´cº Eqn. 3-17 

If the relation is true, fracturing would occur and the formation face pressure shown on 

the left-hand side of the preceding equation is set to the fracturing pressure. Otherwise, 

radial flow is taken to be true. The fracture opening pressure is calculated as: 

 P�°DBAB» = 𝜎* − 𝐴N𝑃* + 𝐴· 𝑇a − 𝑇* +
𝐴N𝑃s 1 − 𝜉
1 − 𝐴N𝜉

 Eqn. 3-18 

3.5.2 Injection Performance Calculations 

The injection performance calculations are as follows: 

 𝛥𝑝 = 𝑝a − 𝑝s Eqn. 3-19 

Use high mechanical skin to estimate the effect of water quality on the injectivity of 

unfractured zones. There is a conditional statement for calculating the Injectivity Index 

for pseudo-steady-state conditions in radial flow.  

If hf = 0, the Injectivity Index is calculated as: 

 𝐼𝐼½c·´ad =
𝑘𝑘´ℎbs·

141.2𝜇 ln(𝑟s 𝑟t) + 𝑠` + 𝑠¾ − 0.75
	 𝑥 Eqn. 3-20 

Where  

 𝑥 = 1 + 22𝑒�µµ¿/��×(0.05𝑇𝑆𝑆 + 0.0007𝑂𝐼𝑊) Eqn. 3-21 

 𝑞½c·´ad = Δ𝑝𝐼𝐼½c·´ad Eqn. 3-22 

Alternatively, if it is determined that the well is fractured, etc., hf > 0, the fractured 
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Injectivity Index is calculated as: 

 𝐼𝐼Q´cº·Ã´s =
𝑘𝑘´ℎbs·

141.2𝜇 ln(𝑟s 𝑟t) + 𝑠¾ − 0.75
	 𝑥 Eqn. 3-23 

Where, 

 𝑥 = 1 + 22𝑒�µµ¿/��×(0.05𝑇𝑆𝑆 + 0.0007𝑂𝐼𝑊) Eqn. 3-24 

 𝑞Q´cº·Ã´s = Δ𝑝𝐼𝐼Q´cº·Ã´s Eqn. 3-25 

Finally, a “total” injectivity index is determined by adding matrix and fractured 

components and similarly a total rate is determined, all iteratively. 

If the well is deviated, the skin due to the well deviation is calculated as 

 s» =
𝜃6

41

�.*©

−
𝜃6

56

¦.Å©�

log
ℎ¾𝑁¾

100𝑟t
𝑘I
𝑘J
	

 Eqn. 3-26 

 

 θ6 = tan�¦
𝑘I
𝑘J

¦ �

𝑡𝑎𝑛𝜃  Eqn. 3-27 

Where, 

q: deviation of the wellbore from the vertical through the zone, degree 

hg: the gross thickness of the zone, ft. 

Ng: the ratio of the net to the gross thicknesses 

kv: vertical permeability, mD 

kh: horizontal permeability, mD 
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3.5.3 Fracture Properties Calculations 

The skin factor due to hydraulic fracture is given as: 

 S& = ln
2𝑟t
𝑥Q

 Eqn. 3-28 

If a fracture exists, its total fracture height is assigned to the gross height of the zone (hf 

= hg). Knowing the bottomhole pressure, the net pressure is then calculated. The net 

pressure is determined as the treating pressure downstream of any completions minus the 

current in-situ stress level which accounts for evolving poroelastic and thermoelastic 

effects: 

 𝑝bs· = 𝑝a − 𝜎 − Δ𝑝eµab Eqn. 3-29 

In the fracture, we assume that the pressure changes linearly from tip to tip because of its 

high conductivity. The fracture friction is calculated as: 

 𝑝Q´aº·aÉb =
𝑝bs·
𝑥Q

 Eqn. 3-30 

The fracture length in this program is determined by iterating until the pressure drop along 

the fracture length is between 3.5 and 4 psi/ft and the wellhead target pressure is matched. 

The injection gradient is calculated as the bottomhole pressure divided by the depth. The 

fracture gradient is calculated as the fracture opening pressure divided by the depth. 
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3.5.4 Tubing Friction Calculations 

The friction along the tubing is determined in one of the calculation routines in the 

programing. Up to ten different strings can be included. For each string, tubing ID, tubing 

length and absolute roughness are specified. 

As mentioned in Chapter 3.1, the friction factors for laminar and turbulent flow are 

conditionally calculated as follows: 

1) For a nonzero flow, f = 64/NRe for laminar flow.  

2) For a nonzero flow, and a Reynolds number in greater than 2100, the turbulent 

friction factor is iteratively calculated from the Colebrook White equation, by 

minimizing the following error: 

 𝑒𝑟𝑟𝑜𝑟 = 1 + 2 𝑓 log
𝜀

3.7 𝑑·Ã]ab¾ 12
+

2.51
𝑁´s 𝑓

 Eqn. 3-31 

Friction is then calculated conditionally as: 

1) For laminar flow (NRe < 2100), 

 𝛥𝑝Q´aº·aÉb =
0.001295×𝑓ªc`abc´×𝑧·Ã]ab¾×𝑣�×𝑆. 𝐺.×62.4

𝑑·Ã]ab¾
	 Eqn. 3-32 

2) For turbulent flow (NRe > 2100),  

 𝛥𝑝Q´aº·aÉb =
0.001295×𝑓·Ã´]Ãªsb·×𝑧·Ã]ab¾×𝑣�×𝑆. 𝐺.×62.4

𝑑·Ã]ab¾
	 Eqn. 3-33 

Where,  

f: friction number 
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ztubing: tubing length, ft. 

dtubing: tubing ID, inch 

v: velocity, ft/s 

S.G.: fluid specific gravity 

e: absolute roughness, ft. 

Finally, friction for each tubing section is summed up as total friction.   

3.6 Iteration Procedures 

Based on the model discussed above, the following iteration procedure is proposed to 

determine the relationship between the pump pressure and injection rate before and after 

formation fracturing. The whole iteration procedure is divided into 3 steps and will be 

discussed in detail below. A detailed iteration flowchart is shown in Figure 3-6. 

Step 1: To initiate homogeneous calculations, a small fracture is considered in the layer. 

The fracture half-length is set to be twice the wellbore radius. Consequently, fracture skin 

is defaulted to zero in the radial flow equations assuming an infinite conductivity fracture. 

 

Figure 3-3 Calculation procedure Step 1: initialization 

Step 2: Injection rates and bottomhole pressures derived at this stage are for injection 

under matrix conditions without fracturing. The following calculations are made: 
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1. Given a bottomhole pressure (from initial reservoir pressure, Pi), a rate (in radial 

flow) is calculated. 

2. From this rate, a pressure drop due to friction along the tubing is calculated. 

3. The wellhead pressure is then derived from the bottomhole pressure minus the 

hydrostatic head and plus the frictional pressure drop. 

4. The calculated wellhead pressure is then compared to the target wellhead pressure 

entered by the user and the operation is then iterated until these values match. 

5. The user has entered a target wellhead injection pressure and the calculated 

wellhead injection pressure is iteratively compared with this until convergence is 

achieved – an error is also reported indicating the difference between the 

calculated and targeted values.  The wellhead injection pressure is calculated as 

the bottomhole pressure plus the friction pressure minus the hydrostatic head plus 

calculated friction 

6. Once the wellhead pressure has been matched, the calculated bottomhole pressure 

is compared to the reservoir pressure and the stress. Three conditions are 

evaluated before moving to the last calculation step: 

7. If the value of the bottomhole pressure does not exceed the reservoir pressure, 

then it is classified as no injection occurring. 

8. If the value of the bottomhole pressure exceeds the reservoir pressure but does not 

exceed the current in-situ stress, a matrix injection condition is presumed to occur. 

9. If the value of the bottomhole pressure exceeds both the reservoir pressure and 

the current in-situ stress, fractured injection condition is presumed to occur. 
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Figure 3-4 Calculation procedure Step 2: evaluate injection conditions 

Step 3: This last step performs fracture calculations, to derive length, rate and pressure 

that have been indicated to be fractured (per the foregoing conditional statements).  

1. First, the bottomhole pressure is again tested to ensure that it does exceed the 

relevant stress.  

2. If this condition is unsatisfied, the calculation does not proceed and the results are 

unaltered from those previously determined in the second step.  

3. If a fracturing condition is satisfied, the injection rate is calculated from the 

bottomhole pressure. Again, iterations are made to match the wellhead pressure 

based on the rate change. 
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Figure 3-5 Calculation procedure Step 3: fracture calculations under fracturing 
condition 
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Figure 3-6 Iteration flowchart of calculation procedure 
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Chapter 4: Case Study on a GOM Deepwater Injection Well 

4.1 Introduction of the field 

Many deep-water discoveries in Gulf of Mexico in the past five years are in water depths 

greater than 4,000 feet and in older Tertiary reservoirs of middle Miocene to Paleocene 

(Liu, Dessenberger, McMillen, Lach, & Kelkar, 2008). The middle Miocene constitutes 

one of the most prolific hydrocarbon-producing intervals in the Gulf of Mexico. The 

middle Miocene depositional episode is bounded by regional-marine transgressive 

deposits and flooding surfaces associated with faunal tops. Structural styles of these lower 

slope fields include compressional anticlines, turtle structures and sub-salt three-way dip 

closures against salt faces. Some of these reservoirs are highly compartmentalized by 

faulting. Older middle Miocene to Paleocene reservoirs in Gulf of Mexico are 

characterized by the following: 

• Reservoirs are often at greater subsea depths: 20,000 to 30,000 ft.  

• Reservoirs often have high pressure (>15,000 psi) and temperature (>180°F)  

• Turbidite deposition was in coalescing basin floor fans, i.e. sheet sands  

• Reservoirs are consolidated, resulting in lower rock compressibility  

• Increased diagenesis in sands with volcaniclastic components results in 

cementation and reduced compressibility  

• Paleocene reservoirs often have poorer porosity (<15%) and permeability (<30 

mD)  
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In this study, the sample field located in the Gulf of Mexico. The example field has been 

developed with a semi-submersible production platform. Complex sea-floor topography 

plunges from 4,500 ft. to 7,000 ft. water depth at slopes up to 30 degrees. Several Miocene 

hydrocarbons bearing reservoirs are present over the structure at depths of 16,000 to 

19,000 ft. subsea. A typical deep-water field water injection well is shown in Figure 4-1. 
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Figure 4-1 Sketch map of a deep-water field development (water injection well) 

4.2 Case Studies 

4.2.1 Example A 

A summary of input data of Well A was shown in Table 2 and Table 3, including 

reservoir properties, rock properties, injection properties, well data and tubing settings. 
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Table 2. Key reservoir and injection parameters for Well A 
Reservoir Parameters Unit Value 
Original Reservoir Pressure psi 9,500 
Original Reservoir Temperature °F 177 
Current pressure at 0.47Re psi 7,950 
Drainage Radius feet 1,500 
Datum ft TVD bwh 10,700 
Rock Data   
Formation Gross Thickness feet 100.0 
Formation Net to Gross  0.60 
Absolute Permeability md 200.0 
Kv/Kh  0.1000 
End Point Water Relative Permeability  0.30 
Young's Modulus psi 1,481,481 
Poisson Ratio  0.30 
Coefficient of linear thermal expansion 1/°F 8.0E-06 
Original Stress psi 17,900 
Injection Properties   

Thermoelastic shape factor  0.67 
Injection water temperature °F 70.0 
Injection water total suspended solids mg/l 2.0 
Injection water oil-in-water mg/l 2.0 
Injection water total dissolved solids % 5.0 
Biot Factor  0.67 
Well Data   
Well Deviation degree 0.0 
Well radius feet 0.300 
Well mechanical skin  0.0 

 

Table 3. Tubing settings for Well A 
Tubing ID, in Tubing Length, ft Absolute Roughness 
4.67 75 0.00024 
5.25 11490 0.00024 
3.88 130 0.0005 
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After applying the model described in Chapter 3, results of injection pressure versus water 

injection rate were presented in Figure 4-2. As in Figure 4-2, before the well was 

fractured, the increase of water injection rate results in the increase of both bottomhole 

injection pressure and wellhead injection pressure. When the well was fractured, BHIP 

and WHIP drop as water injection rate increases. The breakpoint in Figure 4-2 indicates 

the existence of fracture, etc., when the water injection rate reaches 30,000 B/D and 

wellhead injection pressure reaches 15,300 psi, the well will be fractured. The slope 

before fracturing is steeper than the slope after fracturing, which also indicates the 

substantial increase of water injectivity. Moreover, it is noticed that after injection-

induced fracturing occurred, the growth rate of well head pressure becomes larger than 

the growth rate of bottomhole pressure, and at some point, it will exceed bottomhole 

pressure. This phenomenon can be explained using Eqn. 3-1. Since the well head pressure 

is derived from BHP, because of the pressure drop due to friction along the tubing 

increases as the injection rate increasing, the difference between BHP and wellhead 

pressure will get smaller, which is showed in the graph. The physical meaning of this 

phenomenon is that at some point, the ability of a formation to receive injected fluid 

reaches its upper limit. In other words, the formation will not be fractured no matter what 

injection rate is.  
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Figure 4-2 Well A bottomhole injection pressure and wellhead injection pressure 
versus water injection rate 

4.2.2  Example B 

In second case study, an injection well, Well B, will be discussed. The actual measured 

field data was shown in Figure 4-3 and Figure 4-4. Figure 4-3 shows the changes of 

water injection rate and bottomhole injection pressure over time. As shown in Figure 4-3, 

at point a, bottomhole pressure remains stable while water injection rate keeping 

increasing, which indicates the rock is fractured and propagates. However, the 

corresponding bottomhole pressure shall not be considered as fracturing pressure since 

the BHP is measured at downhole gauge. At point b, bottomhole pressure decreases while 

injection rate drops significantly. Comparing with point a, the injection rate is lower at 

point b while bottomhole pressure tends to be similar. The phenomenon may indicate the 
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collapse of fracture, which largely reduces the formation permeability. The fracturing can 

also be inferred in Figure 4-4. The two trend lines show in Figure 4-4 illustrates the 

change of injectivity before and after fracturing. The injectivity, which is the reciprocal 

of the slope of the trendline, increased from 2.74 bbl/psi to 5.8 bbl/psi, which is caused 

by the injection-induced fracture. The point of intersection represents the occurrence of 

fracture, with corresponding water injection rate of 8243 B/D and downhole injection 

pressure of 10778 psi.  

 

Figure 4-3 Measured flowing bottom hole pressure from permanent downhole 
pressure gauge and injection rate for Well B 
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Figure 4-4 Step rate result for Well B, from which the change of slope indicates the 
change of injectivity 

The measured data of Well B was then compared with calculated values using the 

program introduced in Chapter 3. From Figure 4-5, it is showed that the calculated 

bottomhole pressure before fracturing is basically consistent with the measured data of 

Well B. Also, the results are similar during the frac-packing completion (Figure 4-6). 

Therefore, it can be concluded that the model and program used in this study are highly 

reliable. 
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Figure 4-5 Comparison of measured and calculated values of Well B – production 
performance 

Figure 4-6 Comparison of calculated and measured value of Well B – during 
completion 
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4.3 Sensitivity Analysis 

Sensitivity refers the degree to which model results are affected by changes in selected 

input parameters. In a typical fracturing pressure analysis, uncertainties exist in all factors 

introduced in Chapter 2, such as in-situ stresses, temperature, water quality and rock 

properties. A sensitivity analysis is necessary for fracturing pressure analysis to determine 

how uncertainties in the calculation of fracturing pressure are systematically apportioned 

to various input parameter factors. By investigating the relative sensitivity of the input 

parameters, the relative importance of parameters in the calculation process can be 

determined. When combined with uncertainty analysis, there can be more confidence in 

the predicted fracturing pressure. 

A sensitivity analysis of various parameters was performed using these inputs, as shown 

in tornado charts Figure 4-7. The inputs can be generally classified in two categories, 

static inputs and dynamic inputs. Static inputs refer to parameters related to formation 

properties such as original stress, original reservoir pressure and temperature while 

dynamic inputs refer to parameters associated with water injection process, for example, 

injection water temperature, which can be controlled by operator. As shown in Figure 

4-7, sensitivity result generated from influencing parameters indicates that the original 

stress is the most critical factor in the determination of fracturing pressure. Reservoir 

pressure and temperature also have greater influence on fracturing pressure. Figure 4-7 

also demonstrates whether those parameters have positive and negative influence on 

fracturing pressure. For example, the injection water temperature (assuming lower than 

reservoir temperature) would have direct influencing on fracturing pressure: the decrease 

of injection water temperature enlarges the temperature difference between injection 
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water and formation rocks, causing the reduction of fracturing pressure, which conforms 

the discussion in Chapter 2.  

Figure 4-7 Tornado chart comparing the relative importance of inputs 

As discussed earlier, water injectivity declines when large quantity of water is injected. 

Bottomhole pressure is sensitive to water quality, which is a factor that operators have 

control over. Therefore, in addition to fracturing pressure, another sensitivity analysis 

was performed to examine the relative importance of water quality on bottomhole 

pressure. It is shown in Figure 4-8, bottomhole pressure is most sensitive to suspended 

solids in injection water.  

12,000	 14,000	 16,000	 18,000	 20,000	 22,000	 24,000	

Current	pressure	at	0.47Re

Injection	water	temperature

Young's	Modulus

Thermal	Expansion	Coefficient

Biot	Factor

Thermoelastic	shape	factor

Poisson	Ratio

Original	Reservoir	Temperature

Original	Reservoir	Pressure

Original	Stress

Fracturing	Pressure,	psia

In
pu

ts 20% -20% 



 

 55 

Figure 4-8 Tornado chart comparing the relative importance of water quality 

4.4 Monte Carlo Analysis 

A probabilistic analysis is necessary for fracture pressure analyses because 

geomechanical parameters are never known precisely, and because of an intrinsic 

uncertainty or error associated with each measurement. After the sensitivity analyses 

were performed to determine the relative effects of various factors on the fracture pressure, 

more attention was paid to those more sensitive parameters to better control the optimum 

mud-weight window. Less-sensitive parameters were filtered out to minimize the 

computational time. The terms P90, P50 and P10 are occasionally used to define 

confidence levels. Conceptually, the P10 is lowest value that the expert thinks that the 

uncertain variable could be. The P50 is the most likely value, while P90 is the highest 

estimate. 
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Uncertainties of each qualified input parameter were then quantified by simple 

probability distribution functions, such as uniform distribution, normal distribution, and 

triangle distribution functions. A Monte Carlo simulation process was performed based 

on the example Well A with input parameters as in Table 4; the result is shown in Figure 

4-9 and Figure 4-10 with fracturing pressure of 17,068 psia at P10, 18,364 psia at P50 

and 19,786 psia at P90. Therefore, in this case, P90 represents 90% of the calculated 

estimates (fracturing pressure) are lower than 19,786 psi. Among these three numbers, 

P10 and P90 show the range in the uncertainty of the estimate. P50 is usually considered 

as a best estimate since it is along with higher frequency in the frequency distribution. In 

other words, if the bottomhole injection pressure is even greater than P90, the formation 

will mostly likely be fractured.  

Table 4. Input parameters for the example injection well (triangular distribution) 
Parameters Unit Most likely Min Max 
Original Reservoir Pressure psi 9,500 9,000 9,500 
Original Reservoir Temperature °F 177 150 190 
Current pressure at 0.47Re psi 7,950 7,500 8,500 
Poroelastic Shape Factor  0.67 0.60 0.70 
Young's Modulus psi 1.48E+06 1.48E+06 1.48E+06 
Poisson Ratio  0.3 0.2 0.45 
Coefficient of linear thermal expansion 1/°F 8.00E-06 7.5E-06 8.5E-06 
Original Stress psi 17,900 16,900 18,900 
Injection water temperature °F 70 55 120 
Biot Factor   0.67 0.50 0.95 
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Figure 4-9 Probability density function of the fracturing pressure 

Figure 4-10 Cumulative distribution function of the fracturing pressure  
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Chapter 5: Conclusions and Recommended Future Works 

This study explores many factors that affect the fracturing pressure of a formation, such 

as the in-situ stress, rock properties, and injection properties. The objective of the analysis 

was to quantify the range of subsurface uncertainty and to select deterministic models 

that represented the P10, P50, and P90 statistical subsurface realizations. To establish 

these deterministic models, we analyzed the sensitivity of the fracturing pressure to the 

subsurface uncertainties. In this study, methods for determining various input factors with 

the fracture pressure assessment by means of Monte Carlo simulations to understand the 

influence of various factors on fracture pressure were analyzed. The sensitivity analyses 

were performed to determine the relative influence of various factors on fracturing 

pressure. More attention was paid to the most-sensitive parameters to develop a better 

understanding of the controlling parameters in the determination of the fracturing 

pressure. As a result, less-sensitive parameters were filtered out to minimize the 

computational time. Case studies using the proposed methods are included to outline the 

workflow in the sensitivity investigation. After providing each input parameter with the 

designated functional distribution (e.g., normal, triangle, or uniform distribution), the 

Monte Carlo simulation was launched. The advantage of using the Monte Carlo 

simulation rests on the freedom to select the uncertainty range for each parameter and to 

indicate the confidence level of each input parameter. Consequently, the determined 

fracturing pressure can be more sensitive and realistic than those calculated from a 

deterministic model. 
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5.1 Conclusions 

After extensive literature surveys on the controlling parameters for hydraulic fracturing 

models and influencing parameters, in this study, a stochastic procedure to determine the 

formation parting pressure for an injection is presented. Using the determined parting 

pressure, the procedure to determine the injection profile of the relationship between the 

pump pressure and injection rate are proposed. These procedures are validated against a 

deep-water injection well in GoM. From this study, the following conclusions can be 

drawn: 

1) Formation parting pressure is affected by many parameters. For water injection 

scenario, the formation pore pressure, temperature changes in the near wellbore 

formation and injection pressure are critical. 

2) Monte Carlo simulation of the parting pressure not only gives the ranges of 

possible parting pressure, but also give the probability of them. To minimize the 

range, uncertainties associated with geomechanics of rocks and injection 

conditions should be managed. 

3) The determined profile between water injection pressure and flow rate can be a 

guideline for water injection practice. If the injection rate pressure exceeds the 

determined value or the injection rate is above the calculated rate, likely the 

injection induced fracture is going to be created. 

4) In the injection process, it can be considered as a clear signal of fracturing 

formation when the injection rate increases, while the injection pressure decreases. 
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5.2 Recommended Future Works 

Given the importance of knowing where the injection water goes in the reservoir 

management, the following surveillance and research are recommended. 

1) Extend the model to multi-layer water injection. 

2) Extend the model with pseudo-3D so that a more realistic model can be used to 

forecast the injectivity changes with injection pressure and rates. 

3) Integrated water surveillance program for an asset should be established so that 

they can cross check each other to increase operator’s confidence. The integrated 

surveillance technology includes Hall plot of water injection, distributed 

downhole temperature gauges, Capacitance-Resistance modeling, and reservoir 

simulation. 
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Appendix A: Nomenclature 

r = density, lbm/ft3 

b = Perkins and Gonzalez shape factor 

a = Biot’s poroelastic constant 

n = Poisson’s ratio 

s = current stress, psi 

x = 
Koning correction factor to account for the finite nature of the 

reservoir 

q = 
deviation of the wellbore from the vertical through the zone, 

degree 

DsP = induced poroelastic stress, psi 

DsT = induced thermoelastic stress, psi 

s0 = initial stress, psi 

se = current far-field stress, psi 

sH = horizontal stress, psi 

aP = coefficient of pore pressure expansion 

aT = coefficient of thermal expansion 

stect = tectonic stress, psi 

sv = vertical stress, psi 

a0 = major semi-axis of an elliptical region 

Ap = poroelastic coefficient 
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b0 = minor semi-axis of an elliptical region 

BHP = bottomhole pressure at the formation face, psi 

Cd = coefficient of discharge 

CfD = fracture dimensionless conductivity 

D = diameter, inches 

dL = 
length of the segment over which the pressure drop is 

calculated, ft 

dP = pressure change, psi 

E = Young’s Modulus, psi 

fM = Moody friction factor 

hf = fracture height, ft 

hg = the gross thickness of the zone, ft 

k = reservoir permeability, mD 

kf = fracture permeability, mD 

kh = horizontal permeability, mD 

Ki = matrix stress coefficient 

kv = vertical permeability, mD 

Ng = the ratio of the net to the gross thicknesses 

Np = number of perforations 

NRe = Reynolds number 

OIW = oil-in-water, mL/g 

p0 = the original reservoir pressure, psi 

pe = the current average reservoir pressure, psi 
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Pfrac = 
the upper bound of fluid pressure in the bottomhole which 

would cause a fracture initiate from borehole wall 

Pfriction = 
frictional pressure drop through tubulars, completion and 

perforations, psi 

Phydrostatic = hydrostatic head due to the fluid column, psi 

Pi = bottomhole injection pressure, psi 

Psurface = surface pressure, psi 

Pwellhead = wellhead injection pressure, psi 

pwf = bottomhole flowing pressure, psi 

q = injection rate, BPM 

Qtotal = total flow rate, BPM 

rw = wellbore radius, ft 

rw’ = effective wellbore radius, ft 

sf = skin due to fracture propagation 

Sf = geometric shape factor 

TDS = total dissolved solids, % 

Ti = the injection water temperature, °F 

TSS = total suspended solids, mL/g 

v = velocity, ft/s 

w = fracture width, ft 

xf = fracture half-length, ft 

z = datum, ft 

µ = viscosity, cp 
 


