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Abstract 

 In the treatment of severe traumatic brain injury (TBI), a two-stage surgical 

intervention is routinely performed. In the first surgery, decompressive 

craniectomy (DC) is performed to remove a large portion of calvarial bone to allow 

unimpeded brain swelling. A second surgery termed cranioplasty, usually 

performed weeks to months later, is then employed to rebuild the cranium. 

Hydrogels have the potential to revolutionize TBI treatment by permitting a single-

stage surgical intervention, capable of exhibiting paste-like handling properties in 

the pre-crosslinked form for in situ placement to fill any size or shape of defect, 

remaining pliable during brain swelling, and tuned to regenerate bone after 

swelling has subsided. The motive of the current dissertation was to achieve the 

first step in designing a single-stage surgical intervention for treatment of TBI 

following DC, being the design of a hydrogel capable of regenerating bone within 

a critical size calvarial defect. The current dissertation first evaluated the use of 

colloidal hydrogels of hyaluronic acid, hydroxyapatite, and extracellular matrix 

(ECM) materials demonstrating promise for decellularized cartilage as a material 

for bone regenerative medicine. A next-generation biomaterial was then 

developed utilizing a methacrylated solubilized decellularized cartilage hydrogel 

encapsulating osteoconductive particles, the results of which demonstrated 

diminished bone regeneration that was speculated to be due to cartilage 

processing (i.e., solubilization). In the final study, pentenoate-functionalized 

hyaluronic acid (PHA) hydrogels encapsulating devitalized ECM materials were 

evaluated and I found that PHA hydrogels encapsulating devitalized tendon 
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(DVT) particles successfully regenerated bone in a critical size calvarial defect. 

Future studies will be conducted to test the use of the PHA-DVT hydrogel in a rat 

TBI model to evaluate the use of hydrogels in the treatment of TBI following DC. 

Ultimately, the current dissertation work successfully developed a hydrogel 

material that exhibits desirable handling properties in the pre-crosslinked form for 

surgical placement and adequate bone regeneration after 8 weeks of in vivo 

implantation, with promising future applications to bone regeneration and 

application to treatment of TBI.   
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Chapter 1: Introduction 

 The long-term goal of the dissertation was the creation of a material to aid 

in the treatment of traumatic brain injury (TBI). TBI is a life-threatening condition 

diagnosed by internal brain herniation. Severe TBI is commonly treated by a two-

stage surgical procedure. In the first surgery, a decompressive craniectomy (DC) 

procedure is conducted to remove a large portion of calvarial bone to allow un-

impeded brain swelling beyond the cranial confines. Weeks to months later, a 

second surgery termed cranioplasty is performed to restore the cranial vault. The 

current two-stage surgical intervention has disadvantages as it prolongs 

neurorehabilitation and recovery, increases medical costs, and is associated with 

causing the neurological condition termed syndrome of the trephined (SoT). SoT, 

also known as sinking skin flap syndrome, is a neurological condition associated 

with symptoms such as mood changes, fatigue, headaches, dizziness, fine motor 

dexterity issues, and difficulties concentrating. SoT is thought to be caused by 

changing intracranial pressure or deformation of the brain from the overlying 

scalp after the DC procedure. TBI treatment would greatly benefit from a single-

stage surgery using a material that could be implanted in the initial surgery, 

remain pliable enough to allow brain swelling, then transition to bone after 

swelling has subsided.  

 Hydrogels were identified as an attractive material option for application to 

a single-stage surgical model for TBI treatment. Hydrogels offer the ability for in 

situ placement to fill irregularly shaped defects, crosslinking for material retention 

at the injury site, a tunable degree of pliability, and selective material properties 
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for osteogenic promotion (Fig. 1.2). Additionally, hydrogel precursor solutions that 

exhibit paste or putty-like handling properties would allow for ease of placement 

and retention into the defect site. With these design parameters in mind, the 

following specific aims were designed: (1) assessment of physically crosslinked 

hydrogels composed of extracellular matrix materials (ECM) and growth factors, 

(2) evaluation of naturally derived crosslinking hydrogels encapsulating synthetic 

colloids, and (3) evaluation of synthetic crosslinking hydrogels encapsulating 

ECM colloidal particles (Fig. 1.1).  

 Aim 1 attempted to utilize a simple non-crosslinking hydrogel design to 

evaluate the use of hyaluronic acid (HA), synthetic hydroxyapatite, and natural 

ECM materials of demineralized bone matrix (DBM) or decellularized cartilage 

(DCC) with or without growth factors to generate new bone formation. The 

second aim attempted to address the observed issues of aim 1 regarding material 

retention issues while expanding on the use of DCC as a material for calvarial 

bone regeneration. Aim 2 utilized a solubilized and methacrylated DCC 

(MeSDCC) hydrogel encapsulating synthetic colloids. The third aim attempted to 

combine the positive aspects of aim 1 and aim 2, the bone regenerative potential 

and photocrosslinking, respectively. Aim 3 utilized a pentanoate-functionalized 

hyaluronic acid (PHA) hydrogel and devitalized tissue particles of bone, cartilage, 

meniscus, and tendon for evaluation in calvarial bone regeneration. All work 

presented in the following chapters was a product of my own effort with the 

exception of the animal surgeries that were conducted by Dr. Yi Feng and Dr. 

Jinxi Wang at the University of Kansas Medical Center and the histology 
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sectioning/staining presented in Aim 3 that was conducted by the Stephenson 

Cancer Tissue Pathology Core at the University of Oklahoma Health Sciences 

Center. Individual chapters communicate work that is in preparation, submitted, 

or published as indicted by the footnote at the bottom of each associated chapter. 

The following chapters represent the chronological organization of the 

aforementioned aims: 

 Chapter 2 is a review that provides informative advice to the hydrogel field 

on rheology and how better evaluation of hydrogel precursor solutions (i.e., 

hydrogels solutions before crosslinking) can lead to easier clinical adoption. The 

final hurdle in translating a new treatment from the lab bench to the clinic is 

clinician adoption and use. A new and potentially impactful technology can be 

overlooked if the associated learning curve is too difficult. Here I propose yield 

stress (i.e., the stress required for a material to begin to flow) ranges for liquid 

(no yield stress), paste (100-2000 Pa), and putty (2000+ Pa) handling properties. 

By designing materials with similar handling properties to currently available 

materials the surgeon technology learning curve can be minimized to ease 

clinician adoption. 

 Chapter 3 addresses the first aim, using a non-crosslinking hydrogel 

comprised of HA, hydroxyapatite nanoparticles (HAp), and ECM materials of 

DBM or DCC to evaluate bone regeneration in an in vivo rat critical-size calvarial 

defect model. The HA-HAp-ECM hydrogels were evaluated for their yield stress, 

regenerated bone volume by micro-computed tomography (CT), histology, and 

immunohistochemistry to compare osteogenic potential in vivo. Encouraging 
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results illustrating comparable bone regeneration between growth factor and 

DCC-containing materials prompted further research into using a 

photocrosslinkable cartilage hydrogel in Aim 2. Aim 1 represents our first attempt 

at using non-traditional ECM materials (i.e., cartilage) to promote bone formation, 

the work presented heavily influenced the direction of the research and 

subsequent aims. The aim 1 study was the first to use naturally derived 

decellularized cartilage extracellular matrix for calvarial bone regeneration. 

 Chapter 4 addresses the second aim, using a methacrylated solubilized 

decellularized cartilage (MeSDCC) hydrogel encapsulating synthetic osteogenic 

particles of hydroxyapatite nanofibers (HAPnf), bioglass microparticles (BG), or 

added rat bone marrow-derived mesenchymal stem cells (rMSCs) for bone 

regeneration in critical-size rat calvarial defects. Particles of HAPnf or BG were 

added for two specific reasons: 1) delivery of known osteoconductive materials 

to aid in bone regeneration, and 2) to create hydrogel precursor materials that 

exhibit paste-like handling properties for physical placement and shaping before 

crosslinking. Fibrin hydrogels were employed as a control material for the study. 

Hydrogels used in the study were evaluated for their yield stress before 

crosslinking, compressive modulus post-crosslinking, regenerated bone volume, 

histology, and immunohistochemistry to evaluate bone regeneration in a critical-

size rat calvarial defect. The use of the MeSDCC hydrogels was inspired by the 

results of Aim 1 suggesting that DCC particles could promote similar bone 

regeneration compared to growth factor containing groups. Minimal bone 
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regeneration using the MeSDCC hydrogels prompted the re-evaluation of 

crosslinking hydrogels.  

 Chapter 5 addresses the third aim, using a pentanoate-functionalized 

hyaluronic acid (PHA) hydrogel encapsulating ECM tissue particles of DBM, 

devitalized cartilage (DVC), devitalized meniscus (DVM), or devitalized tendon 

(DVT) for bone regeneration in critical-size rat calvarial defects. After discussions 

with surgeons, faster material crosslinking times were determined to be of great 

importance for successful clinical translation. Additionally, hyaluronic acid based 

colloidal gels used in the first aim demonstrated adequate bone regeneration. For 

these reasons, pentenoate-functionalized hyaluronic acid (PHA) hydrogels were 

determined to be an attractive material choice highlighting fast crosslinking times 

(1-2 minutes).  PHA-ECM hydrogels were evaluated for precursor yield stress, 

post-crosslinking compressive modulus, regenerated bone, and histology to 

evaluate new bone formation. Leading groups were further refined in vitro to 

determine the minimum ECM particle concentration required to achieve desirable 

bone formation. Aim 3 was designed in an attempt to combine the positive 

aspects of both aims 1 and 2 to develop a better material for calvarial bone 

regeneration. The materials from aim 1 and the crosslinking from aim 2 were 

combined to create the new crosslinking hydrogels encapsulating different ECM 

materials.  

 Chapter 6 serves as the conclusion to the dissertation and provides a 

summary of the most important findings, comparison between specific aims, and 

a global perspective of the dissertation work.  Recommendations are provided for 
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future work to design the next generation of materials for calvarial bone 

regeneration and application to TBI.  

 Overall, the work presented in the current dissertation provides the first 

step in the development of materials for application to TBI treatment after DC. 

The work has focused on developing cost-effective, highly translatable, acellular, 

pliable, and easy to use hydrogel treatments to achieve a single-stage surgical 

procedure for the treatment of TBI. Other treatment options such as DBX®, 

NovaBone Putty®, and custom-made implants generated from CT scans exist; 

however, these treatment options cannot be used in a single-stage surgical 

approach as they do not remain pliable and thus impede brain swelling. A 

secondary issue with currently available treatment options exists in that the 

materials themselves do not regenerate adequate bone in the critical size 

calvarial defect created during DC. Hydrogels are an attractive option as the 

materials are inherently pliable, and have demonstrated improved bone 

regeneration. Although the work in the current dissertation did not solve the entire 

issue associated with developing a treatment for TBI, it did provide the beginning 

foundation for a hydrogel material with potential for a single-stage surgical 

approach for the treatment of TBI.  
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Chapter 2: Flow Behavior Prior to Crosslinking: The Need for 

Precursor Rheology for Placement of Hydrogels in Medical 

Applications1 

 

Abstract 

Hydrogels – water swollen cross-linked networks – have demonstrated 

considerable promise in tissue engineering and regenerative medicine 

applications. However, ambiguity over which rheological properties are needed 

to characterize these gels before crosslinking still exists. Most hydrogel research 

focuses on the performance of the hydrogel construct after implantation, but for 

clinical practice, and for related applications such as bioinks for 3D bioprinting, 

the behavior of the pre-gelled state is also critical. Therefore, the goal of this 

review is to emphasize the need for more attention paid to the development and 

characterization of hydrogel precursor formulations with desirable rheological 

properties. In particular, we consider engineering paste or putty precursor 

solutions (i.e., suspensions with a yield stress), and distinguish between these 

differences to ease the path to clinical translation. The connection between 

rheology and surgical application as well as how the use of paste and putty 

nomenclature can help to qualitatively identify material properties are explained. 

Quantitative rheological properties for defining materials as either pastes or 

putties are proposed to enable easier adoption to current methods. Specifically, 

   

1Submitted as: Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow 

Behavior Prior to Crosslinking: The Need for Precursor Rheology for Placement of Hydrogels 

in Medical Applications. Progress in Polymer Science, 2017. 
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the three-parameter Herschel-Bulkley model is proposed as a suitable model to 

correlate experimental data and provide a basis for meaningful comparison 

between different materials. This model combines a yield stress, the critical 

parameter distinguishing solutions from pastes (100-2000 Pa) and from putties 

(>2000 Pa), with power law fluid behavior once the yield stress is exceeded. 

Overall, successful implementation of paste or putty handling properties to the 

hydrogel precursor may minimize the surgeon-technology learning time and 

ultimately ease incorporation into current practice. Furthermore, improved 

understanding and reporting of rheological properties will lead to better 

theoretical explanations of how materials affect rheological performances, to 

better predict and design the next generation of biomaterials. 

 

Introduction 

 Hydrogels are water-swellable networks held together by physical and/or 

covalent crosslinks. These networks can be tailored with varying degrees of 

control of the structural architectures from nano- to microscales and made from 

a wide variety of materials to suit particular applications.(1) Conventional 

hydrogel networks can be made from biological polymers (especially proteins and 

polysaccharides), synthetic polymers (e.g., poly(ethylene glycol)), or chemically 

modified (semi-synthetic) biopolymers such as cellulose ethers. Less 

conventional gels can be formed from inorganic colloids or even constructed from 

harvested tissues.(2-8) The molecular properties (e.g., hydrophilic/hydrophobic 

balance, net charge or charge distributions) and macroscopic physical properties 
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(e.g., size) can be tuned based on the desired application.(9) Hydrophilicity and 

significant water content (typically in the 50-90% range) and a fixed physical 

geometry once the gel has formed are the defining features that fall under the 

broadest sense of the term ‘hydrogel’. The versatility of hydrogels has allowed 

them to be employed in a wide variety of applications, from consumer products 

such as diapers to various foods to common biomedical devices such as soft 

contact lenses.(10-18) Hydrogels have contributed to the rapid growth in 

publications for more complex biomedical engineering applications such as tissue 

engineering constructs and triggered drug delivery devices over the past 20 

years.(19, 20) Most publications characterizing hydrogels focus on the 

performance of the gel after it has formed, with far less attention being paid to the 

behavior prior to gelation. For successful translation to surgical applications, the 

behavior of the pre-gelled solution is critical. 

  The use of hydrogels in regenerative medicine and biomedical 

applications has been rapidly increasing over the past 20 years, as the potential 

of hydrogels to treat complex medical issues has become widely recognized.(21)  

In situ forming hydrogels - those that polymerize or set within the body - can be 

applied to the treatment of  a wide range of complex medical issues such as those 

requiring filling of defects of various shapes and sizes. Hydrogels can be used to 

encapsulate and localize both living cells and materials such as hydroxyapatite 

(HAp) and demineralized bone matrix (DBM). HAp and DBM are commonly used 

materials in hydrogel formulations for treatment of bone defects.(16, 22) DBX® is 

a widely used commercially available bone replacement product that combines 
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DBM and hyaluronic acid, the DBM concentration in these hydrogels modulates 

material pliability to achieve either paste or putty behavior for in situ 

placement.(16) In fluid mechanics, the yield stress is the stress required for a fluid 

to begin to flow (as opposed to solid mechanics, where the same ‘yield stress’ 

term refers to the point between elastic and plastic deformation), and quantifies 

where such a fluid lies on the spectrum of paste to putty behavior. Increasing the 

yield stress allows for different material consistencies as illustrated in Figure 2.1, 

in which materials with no yield stress exhibit traditional liquid behavior (i.e., flow 

upon exposure to any stress, no matter how small), while materials with 

increasing yield stress have paste or putty behavior. DBX® products, for example, 

vary the yield stress based on the application, employing high yield stress putties 

for craniofacial applications and lower yield stress pastes for filling mandibular 

resection defects.(23) The major difference between paste or putty being the 

route of application, where high yield stress materials can be easily molded and 

lower yield stress materials can easily flow for injection.  

 Materials with handling properties that are similar to current products 

familiar to surgeons would have lower-learning curves associated with them and 

thus would be easier for them to adopt. To quantitatively assess these properties, 

we propose the use of rheology instruments to measure precursor solution 

characteristics such as yield stress, which have direct relevance to clinicians’ use 

of the materials. In practice, the three most relevant rheological parameters are 

the ease of injection (shear response), time for placement (recovery time), and 

retention of the hydrogel precursor solution at the defect site (yield stress). A 
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review of the recent literature revealed 27 studies that have conducted hydrogel 

precursor rheology for one or more of the three previously mentioned properties 

of interest to clinicians (Table 2.1). Of these 27 studies, only 10 characterized all 

three rheologically dependent characteristics. Although research publications 

commonly state the ability of the hydrogel precursor solution to be injectable or 

fill any irregularly-shaped defect, few publications reporting new hydrogels 

actually characterize the precursor solution. Various groups have reported their 

material to be injectable based only on the ability to pass through a syringe 

needle. Similarly, investigators have reported gel formation as determined by a 

simple tube inversion observation.(24, 25) Wang et al.(26) demonstrated that a 

mixture of oppositely charged nanospheres of anionic and cationic gelatins could 

be injected into a conical tube and inverted while maintaining the position and 

shape. Although these methods may qualitatively identify yield stress behavior 

and/or shear thinning properties, they do not provide quantitative or definitive 

information.  

 Therefore, the purpose of this review article is to emphasize to 

biomaterials developers the importance of hydrogel precursor rheological 

characterization. The connection between rheological properties and surgical 

application requirements will be explained, and how medical nomenclature can 

be leveraged as a translational advantage among hydrogel formulation 

developers. Finally, rheological modeling is proposed as the basis for comparison 

among hydrogel precursor groups, with additional considerations for physical, 

chemical, and combinational crosslinking approaches proposed to help move the 
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community toward material design strategies to create precursor solutions with a 

target yield stress. In this review, we will show how implementing yield stress in 

hydrogel precursor solutions has a direct benefit for biomedical applications in 

terms of clinical translation.   

 

Biomedical Hydrogel Perspective 

Our Inspiration 

 More than 20 years ago, the concept of colloidal gels began to emerge as 

a potential material for regenerative medicine. At the time, pioneering work by 

Prof. Jennifer Lewis and others showed novel colloidal inks could be used for 

printing freestanding 3D structures.(27, 28) Such colloidal inks utilized weak 

interactions between a multitude of nanoparticles or between nanoparticles and 

polymers, which could be disrupted to allow the viscous ink to yield and flow 

before again ‘recovering’ bulk solid properties. We and others recognized these 

dynamic, viscoelastic colloidal inks offered promise as tissue fillers or as 

substrates for printing 3D scaffolds for regenerative medicine.(29, 30) 

Our team began translating colloidal gels to applications in regenerative 

medicine based on biodegradable materials suitable for use as tissue fillers while 

still maintaining the desirable properties of colloidal inks. We rationalized that 

these dynamic, viscoelastic and biodegradable colloidal gels could facilitate 

placement of the material, retention at the site of administration, and recovery of 

elasticity after placement. Our first effort employed combinations of poly(lactic-
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co-glycolic acid) (PLGA) nanoparticles with opposite surface charges, which we 

demonstrated could support viable cells.(31) This work was followed by a study 

showing zero-order release and in vivo suitability for cranial defect repair.(32) 

Moving in a new direction, we then demonstrated that hyaluronic acid 

nanoparticles could form a dynamic, viscoelastic material believed to be the result 

of association of free surface chains, resulting in a colloidal gel viscosupplement 

that might improve upon the performance of traditional crosslinked or high 

molecular weight hyaluronic acid.(33) Having demonstrated some fundamental 

properties of colloidal gels, we then reported efforts to improve material 

performance by adding colloids such as hydroxyapatite,(34) or creating colloidal 

gels that could be chemically crosslinked after placement.(35) Today, we 

continue to explore the performance of colloidal gels in vivo as injectable bone or 

cartilage fillers, and we are refining material properties to create clinician-friendly 

materials that promote tissue regeneration.(36, 37)  

The precursor properties of our materials are of critical importance to 

clinicians, perhaps even more so than the crosslinked solid mechanics, 

depending on the application. That is, it is important to have a material that is 

easy to place in the site and ensure that it will stay there, and that if new hydrogel 

precursor solutions have behaviors of other moldable materials that surgeons are 

used to implanting, they may be more likely to adopt the technology. 
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Translation of Technology to Surgeons 

 In designing new hydrogel technologies with clinical translation as an end 

goal, it is important to keep in mind the needs of the clinician and the patient 

throughout the process. The transition from lab bench to clinic can be an arduous 

process, and a potentially significant product could be completely ignored if the 

surgeon must acquire new skills or buy new equipment. Wilson et al.(38) 

proposed that surgeons are attracted to new medical technologies that can be 

learned by passive observation rather than hands-on training sessions, and thus 

can be easily adopted into their practice without disruption. The gap between 

scientific knowledge and clinical application is well known, and with decreasing 

time available for some clinicians to spend on research, there are less 

comparative studies being conducted.(39) New methods are being employed to 

shorten the learning curve associated with new medical technologies and surgical 

procedures. The use of social media outlets and live streaming has provided the 

ability for surgeons to collaborate on difficult cases and provide coaching 

between surgical teams from different continents.(40, 41) Although steps are 

being taken to ease the translation of new research into the clinic, it is always 

going to be easier to utilize a surgeon’s current skill-set than to require training in 

a new technique. 

 Lack of consideration of the method for the physical placement of 

hydrogels in an intended application directly ignores the needs of the surgeon. In 

the example of in situ hydrogels for cartilage regeneration, some groups have 

proposed the use of liquid hydrogel precursors with zero yield stress to fill defects 
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before crosslinking.(42) The issue with this hydrogel precursor design is that it 

does not account for applications in which the defect may be angled, or in a hard 

to access area. In vivo studies generally employ ideal situations, such as a defect 

site that is perfectly cylindrical and applied to a single plane.(43) In contrast, real 

tissue defects are not perfectly cylindrical and uniplanar, as illustrated in Figure 

2.2. In situ placement using a liquid hydrogel precursor solution with zero yield 

stress could become difficult as the material may leak after placement. In 

designing clinically translatable hydrogels, understanding the connection 

between rheological hydrogel precursor properties and the connection to surgical 

use is important for successful clinical translation. 

 

Biomedical Hydrogel Perspective Summary 

 Over the past 10 years, we have evolved from using simple colloidal gels 

to more complex crosslinkable hydrogels for biomedical applications. A core 

philosophy of our team has focused on creating biomaterials capable of being 

translated from the lab to the clinic. A challenge of clinical translation is the poor 

adoption of new treatments by surgeons if the technique learning curve is too 

high. For the aforementioned reason, we have identified the handling properties 

of hydrogels, specifically the hydrogel precursor performance, as a crucial 

component of hydrogel design to allow future clinical translation.  
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Surgical Context 

Injectability/Syringeability and Shear Properties 

“Injectability” is a common buzzword among hydrogel publications to qualitatively 

communicate the ability of a material to flow through a syringe needle.(34, 44-47) 

Although prevalent, the use of this term is generally ambiguous with minimal 

quantitative information provided, as the injection pressure is strongly correlated 

with injection rate, needle gauge and length (i.e., the Hagen-Poiseuille equation). 

A similar term that has been used much less frequently in hydrogel publications 

is syringeability, which has become useful in our own publications to express the 

ability of the hydrogel precursor solution to flow through a syringe orifice rather 

than a needle.(2, 48) Both terms, injectability and syringeability, qualitatively 

express the ability to flow through a certain orifice size. In relation to the medical 

field, the performance of a material to easily flow from a needle or a syringe can 

dictate the delivery method and use by the surgeon. An injectable material (i.e., 

through a needle) could potentially have applications in laparoscopic surgery, 

whereas a syringeable material (i.e., through a syringe orifice) may require open 

surgery for placement. 

 The flow of a material in both situations is governed by the shear response 

exhibited when a force is applied as a function of flow rate. During extrusion, the 

material can undergo shear thinning or shear thickening. Shear thinning is where 

a material will exhibit a decreasing apparent viscosity with increasing rate of 

applied stress (i.e., shear rate), whereas shear thickening is where the material 

will exhibit an increasing apparent viscosity with increasing rate of applied stress. 
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The apparent viscosity can also be time dependent (i.e., thixotropy or rheopecty); 

however, the instantaneous change when a stress is applied is of more 

importance for application to biomedical materials as syringing or injection occurs 

over a short period of time. Hydrogel precursor solutions generally exhibit shear 

thinning behavior, which makes delivery from a syringe easier because as the 

shear rate increases in the needle, shear thinning will reduce the apparent 

viscosity and thus the relative resistance to flow (Table 2.1). Fakhari et al.(49) 

demonstrated shear thinning performance of colloidal gels comprised of 

hyaluronic acid nanoparticles by showing a decreasing viscosity with increasing 

shear rate. Similarly, Tsaryk et al.(50) indicated shear thinning performance of 

collagen/hyaluronic acid semi-interpenetrating network loaded with gelatin 

microspheres by determining the load required to inject the material through a 

16-gauge needle, showing a decreasing force required after the material began 

to flow. We previously fit experimental rheological data to the Herschel-Bulkley 

equation to determine the shear response, which allowed for a quantitative and 

comparable method for the degree of shear thinning.(34, 35, 51) The need for 

shear thinning physical hydrogels was previously identified by Guvendiren et 

al.(52) in biomedical applications; however, the benefit of shear thinning behavior 

can be extended to all hydrogel precursors. Shear thickening behavior has 

generally been avoided in biomedical applications due to issues with extruding, 

although desired in some industry based applications.(53) After injection or 

syringing, it is important for the material to regain the original properties prior to 
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being injected or syringed. The time required for transition back to this starting 

time is referred to as the recovery time.  

 

Placement and Recovery Time 

 Prior to injection or syringing, the bulk material is static and the 

microstructure is stable. After disruption, the material properties are in a state of 

disarray and take time to return to equilibrium. The time required for a material to 

return to the original equilibrium state is referred to as the recovery time, or the 

self-healing time.(52) The governing principle associated with the material 

recovery time is referred to as thixotropy, the reversible and time-dependent 

manifestation of viscosity-induced structural changes.(54-56) The recovery time 

of a syringed material is important in terms of initial placement. A material with a 

relatively slow recovery time could potentially have issues during placement as 

the material would initially be difficult to retain within the defect site. In terms of 

clinical usage, a fast recovery time after syringing is necessary for material 

manipulation or shaping, and especially for placement laparoscopically where it 

would be difficult to implement precautions for increased material retention. The 

recommended recovery time, and degree of material recovery for syringed or 

injected materials has yet to be defined and remains application dependent. We 

previously proposed the use of colloidal hydrogels comprised of hyaluronic acid, 

hydroxyapatite, and micronized native extracellular matrix as potential bone 

defect fillers.(57) The physical hydrogels presented were capable of nearly 

complete recovery of the storage modulus (G’) within 5 minutes after disruption 
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(Table 2.1). Similarly, in a previous study, we reported hydrogels comprised of 

UV-crosslinking hyaluronic acid and hyaluronic acid nanoparticles, in which the 

precursor could recover their original storage modulus within 5 minutes.(35) Even 

faster recovery times on the magnitude of seconds have been reported.(45, 47, 

58) Gaharwar et al.(59) demonstrated that an injectable nanocomposite hydrogel 

of gelatin and synthetic silicate nanoplatelets could be used for the treatment of 

internal hemorrhaging, as the hydrogel could recover the elastic gel strength in 

less than 10 seconds after disruption. In general, materials for biomedical 

applications should aim to have low recovery times to facilitate ease of use. After 

shearing and material placement, the material must remain in place, this retention 

is influenced by the yield stress of the material.  

 

Retention and Yield Stress 

 The stress required for a material to begin to deform under an applied 

shear stress is referred to as the yield stress, and it plays an important role in 

material performance. The yield stress is entirely separate from the apparent 

viscosity, and these two terms must not be confused. The yield stress contributes 

to both the syringeability/injectability of the material (i.e., initial force required to 

generate flow) and retention within the defect after placement (i.e., no movement 

in the absence of applied force). In contrast, the apparent viscosity relates to the 

force required to continue dispensing from the syringe after flow has commenced. 

Implementation of yield stress to the hydrogel precursor solution can positively 

aid in material retention within the defect site after surgical placement. Figure 2.3 



 
 

20 
 

illustrates the placement of a hydrogel precursor solution without a yield stress 

compared to a hydrogel precursor solution with a yield stress (i.e., exhibiting 

paste or putty rheological properties). Precursor solutions enabling a yield stress 

will experience better retention in the defect site, allow for shape-specific fitting, 

and will be easier for surgeons to handle.(51) Various methods are currently used 

to determine a material yield stress as depicted in Figure 2.4. The most common 

methods include 1) empirical model fitting (e.g., Herschel-Bulkley), 2) determining 

the shear stress at the crossover point of the storage and loss modulus (G’/G”), 

and 3) determining the shear stress related to a pre-determined deviation of 

storage modulus from linearity. We previously used a three-parameter fitting 

technique to the Herschel-Bulkley model to report the yield stress of UV-

crosslinking hyaluronic acid hydrogels embedded with hyaluronic acid 

nanoparticles, and reported yield stress values in the range of ~18 to 160 Pa 

(Table 2.1).(51)  Similarly, in another study, we used the Herschel-Bulkley model 

to determine the yield stress of hydroxyapatite colloidal gels with either hyaluronic 

acid or chondroitin sulfate, the resulting yield stress ranged from ~1 to 1400 

Pa.(34) Alternatively, Olsen et al.(60) demonstrated that hydrogels comprised of 

self-assembling telechelic proteins had a yield stress of ~1400 Pa using the G’/G” 

crossover method, and could be injected from a syringe through a 22-gauge 

needle. Similarly, Liu et al.(61), Gao et al.(62), and Yu et al.(63) used the G’/G” 

crossover method to determine yield strains of 9.8, 78, and 130%, respectively. 

Yield strain, similar to yield stress, is the strain at which a fluid begins to flow. We 

previously used the storage modulus deviation method, choosing a storage 
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modulus deviation of 10% from linearity, to determine the yield stress range of 

colloidal hydrogels comprised of hydroxyapatite and glycosaminoglycans from ~1 

to 1400 Pa.(57) Gaharwar et al.(59) and Glassman et al.(46) similarly used the 

deviation from linearity method in determining the yield stress. As a general rule, 

yield stress values above 100 Pa are sufficient for material retention prior to 

secondary crosslinking.(2, 49, 59)  

 Hydrogel precursor solutions can be created with a yield stress by several 

different available options. Perhaps the easiest route to employ a yield stress is 

the addition of micro- or nano-sized particles, the reduction in available space 

results in a thicker consistency, and we have previously used this method to 

create a hydrogel precursor solution with a yield stress.(36) Dumas et al.(64) 

developed an injectable self-setting lysine-derived polyurethane scaffold 

encapsulating allograft bone particles (180 m) for bone restoration. Allograft 

bone particles were added to the precursor solution at a concentration of 45% 

(w/w), providing a modest yield stress of 2.1 Pa. An alternate route to employ a 

yield stress to a precursor solution is the use of oppositely charged materials, 

where electrostatic interactions increase precursor consistency. Gaharwar et 

al.(59) used oppositely charged gelatin and silicate nanoplatelets to create 

injectable self-assembling hydrogels for treatment of internal hemorrhaging. The 

oppositely-charged gelatin-silicate nanocomposite hydrogels provided a yield 

stress of 2 to 89 Pa, depending on nanoplatelet concentration. Another potential 

avenue for achieving a precursor yield stress is the use of fast-acting click 

chemistry to create materials that self-heal after shearing. For example, Yu et 
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al.(63) proposed the use of a self-healing multi-block copolymer capable of 

quickly forming covalent bonds between acylhydrazines and aldehyde groups. 

Rapid covalent bond formation allowed for material healing after injection, 

creating a dynamic material with many potential applications to regenerative 

medicine. 

 

Rheological Methods 

 The assessment of rheological performance can be attained by various 

rheological testing systems. For in-depth background information regarding the 

mathematical theories of rheological testing, an introductory polymer rheology 

textbook by Osswald et al.(65) is recommended. Briefly, the two most commonly 

used testing fixtures, cone-plate and parallel-plate, will be discussed, detailing 

their individual uses and strengths/weaknesses. The cone-plate fixture allows for 

a wide variety of rheological tests such as yield stress, creep, recovery time, 

oscillation, and ramp tests.(65) The wide variety of rheological tests can be 

attributed to the design of the cone-plate fixture, where an upper cone of a small 

angle, generally between 1-4°, sandwiches the material being tested between a 

flat bottom plate. Due to the small angle of the cone, the shear rate and shear 

stress across the sample is nearly constant, allowing for accurate material 

measurements. The disadvantage of the cone-plate system is that it is limited to 

small particle sizes (≤ 10 µm), and thus cannot be used for suspensions of larger 

particles. Alternatively, the parallel-plate fixture, which sandwiches the material 

being tested between two flat plates, is not limited by particle size. Due to the 
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design of the parallel plate fixture, materials with larger particle sizes (≥ 10 µm) 

can be tested. The disadvantage of the parallel-plate fixture is that the shear rate 

across the sample increases with radius, so the parameters obtained are average 

values over the range. while keeping in mind that these differences exist in 

comparing results between various studies. The cone-plate fixture is the 

recommended choice when performing a rheological test; however, in cases 

where the cone-plate fixture may not be used due to particle size, the parallel-

plate fixture is recommended. The choice of testing apparatus, and the geometry 

of the probing fixture can influence the resulting data provided by a rheological 

test. Testing differences must be noted as sample measurements conducted by 

two separate studies using the same material and testing conditions, but different 

testing fixtures, can have varying results. It is necessary to report the choice of 

testing apparatus (e.g., cone-plate or parallel-plate), fixture geometry (e.g., 20 

mm), and testing conditions, while keeping in mind that methodological 

differences exist in comparing results among various studies. The cone-plate 

fixture is the recommended choice when performing a rheological test; however, 

in cases where the cone-plate fixture may not be used due to particle size, the 

parallel-plate fixture is recommended.  

 

Surgical Context Summary 

 The connection between rheological terminology and parameters 

observed in clinical practice is important for any researcher in developing the next 

generation of hydrogels intended for clinical adoption. In this section, we have 
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outlined the connection between injectability/syringeability and shear properties, 

material placement and recovery time, and material retention and yield stress to 

help bridge the gap between rheology and clinical relevance. Table 2.1 

summarizes the rheological properties of published hydrogel precursor solutions. 

In general, we recommend that the design of in situ forming hydrogels for use in 

biomedical applications includes shear thinning properties that are application 

dependent for either injection through a needle or syringe orifice, incorporates an 

adequate recovery time after disruption to minimize any loss of material, and has 

a suitable yield stress (>100 Pa) to allow for material retention and shape fitting. 

Additional background information on rheological application has been provided, 

focusing on choosing the best testing fixture for the material being studied. The 

cone-plate fixture is recommended overall, but limited to materials with small 

particle sizes (≤ 10 µm), and the parallel-plate fixture is recommended for 

materials with larger particle sizes (≥ 10 µm). Implementing desired rheological 

performance in various hydrogel designs can be challenging, and considerations 

for implementing these properties are proposed below.       

 

Hydrogel Rheology Properties 

Paste and Putty Nomenclature 

As previously stated, paste and putty nomenclature has long been used in 

medical products to distinguish basic rheological properties.(16) Medical 

professionals and the general public already have a common connection to these 

words and their distinguishing characteristics. The paste and putty description is 
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directly related to a material’s rheological properties for placement, specifically 

the material’s yield stress. A low yield stress material would exhibit paste-like 

properties and a high yield stress material would exhibit putty-like properties.(31, 

66) Because of the pre-existing connection to paste and putty nomenclature, the 

biomedical hydrogel community would be wise to adopt these words in describing 

rheological characteristics. 

The distinction between paste and putty performance, although related to 

yield stress, remains qualitative and has yet to be successfully defined. In part, 

this review aims to propose relative ranges of yield stresses for both paste and 

putty solutions for improvement of material reporting. In determining the yield 

stress range for a paste-like material compared to a putty-like material, we can 

utilize known materials to help in creating the distinction between the two 

designations. Samaniuk et al.(67) previously published yield stress values for 

common household items that qualitatively exhibit either paste or putty behavior 

for reporting the design of a novel rheometer, specifically the yield stress values 

for mayonnaise and Play-Doh. The yield stress of mayonnaise and Play-Doh, 

approximately 200 and 3000 Pa, respectively, can be used to help define the 

ranges for paste and putty distinctions. Using the yield stress of known household 

items and previous publications from our own group, we have proposed the range 

of 100 to 2000 Pa for paste-like materials and materials above 2000 Pa to exhibit 

putty-like properties. By reporting material yield stress in these parameters, it is 

possible to better connect the hydrogel community to clinicians using a common 

set of nomenclature.  
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Paste and Putty Application 

 The choice between paste and putty behavior for hydrogel precursors 

remains application dependent, and no “one size fits all” approach exists. 

Examples of low yield stress, paste-like hydrogel precursors, and high yield 

stress, putty-like hydrogel precursors will be explored and how they can be 

beneficial to different applications. Nucleus pulposus regeneration and 

ophthalmetry are two areas in which hydrogel use has been proposed.(68-71) 

The aforementioned applications generally propose precursor solutions to exhibit 

low to no yield stress for injection through a high-gauge needle; however, low 

yield stress, paste-like hydrogel precursor solutions may be ideal for such 

applications as they allow for injection through higher gauge needles while 

providing benefits tailored to the application desired.(72-74) High yield stress, 

putty-like hydrogel solutions are generally useful in applications where shape 

fitting is required, such as craniofacial bone regeneration.(75, 76) The higher 

yield stress precursor solutions and physical gels allow for better material shaping 

and directed tissue regeneration.  

 

Herschel-Bulkley Model 

 Although paste and putty nomenclature qualitatively depicts low and high 

yield stress, the nomenclature alone does not provide enough information for an 

in-depth comparison. It is important for the hydrogel community to choose a 

standardized testing method that allows for a deeper look into the relationships 
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between material properties and rheological performance. When reporting 

rheological properties of new materials, it is beneficial to fit experimental data to 

common, pre-existing rheological models for comparison. The Herschel-Bulkley 

(HB) model is an ideal candidate to fill this need for the hydrogel community. The 

HB model was first introduced by Winslow Herschel and Ronald Bulkley in 1926 

and provides a simple and general model to explain the behavior of a non-

Newtonian fluid.(77) The HB model equation shown in Equation 1 relates the 

fluids shear stress (𝜏), to the yield stress (𝜏0), consistency index (𝑘), shear rate 

(�̇�), and flow index (𝑛). 

𝜏 =  𝜏0 + 𝑘�̇�𝑛     (Equation 1) 

The fluid exhibits solid properties when 𝜏 < 𝜏0, and for 𝜏 > 𝜏0, exhibits shear 

thinning when 𝑛 < 1 and shear thickening when 𝑛 > 1.  The HB model is an 

attractive option for the hydrogel community because it provides a general model 

that includes variables for both yield stress and shear response. Previous groups 

that have characterized hydrogel precursor solutions have reported that 

experimental results respect the HB model.(78-80) For reporting hydrogel 

precursor properties, quantification of yield stress and shear response 

adequately provides information for comparison of materials within the hydrogel 

community.  
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Summary  

Understanding the nomenclature between clinicians and scientists is 

important for bridging the gap between the two fields. By incorporating the 

nomenclature, and defining the parameters, it is possible to better connect the 

two sides and eliminate the possibility of failed medical translation due to issues 

of poor surgeon adoption. In this section, we have defined the yield stress 

attributing to paste and putty nomenclature as the range of 100 to 2000 Pa, and 

materials above 2000 Pa, respectively. The application dependency of paste and 

putty precursors were explored, and the Herschel-Bulkley model was proposed 

as a simple model for reporting rheological parameters such as yield stress. The 

recommended range for paste and putty materials, and use of the Herschel-

Bulkley model, will hopefully increase the reporting of rheological parameters for 

clinical translatability. 

 

Hydrogel Precursor Considerations 

Chemically Crosslinked Hydrogels 

 Chemically crosslinked hydrogels are distinguished by the creation of 

covalent bonds between polymers to form an interconnected network.(21) A 

number of varying methods have been proposed to achieve the crosslinked 

network, the most common being photo-initiation, and enzymatic/reaction based 

technologies.(81-83) Various groups have proposed new and insightful ways for 

the development and application of chemical hydrogels for regenerative 

medicine; however, the delivery method of the pre-crosslinked form is often 
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unclear and under-characterized.(83, 84) Choi et al.(85) developed a novel 

visible light crosslinking chitosan hydrogel encapsulating collagen II and TGF-β3 

for in situ cartilage regeneration. The technology developed has shown promise 

for the reported application; however, the intended delivery mechanism and 

subsequent material mechanical characterization were not clearly identified. In 

designing chemically crosslinked hydrogels for regenerative medicine, it is 

important to establish a delivery method suitable for the intended user that 

facilitates the ease of placement, and characterize these rheological 

properties.(86) Although some groups have proposed circumventing the need for 

in situ placement by crosslinking the hydrogels in Teflon molds, the pre-

crosslinking method arguably diminishes the potential of this technology.(87)  

Although the end result of photo-initiated and reaction-based in situ hydrogels 

are similar in many ways, the considerations for designing their placement are 

distinct.    

 Photo-initiated hydrogels combine the positives of user-defined 

crosslinking initiation with the ability to form tunable covalent bonds to modulate 

crosslinking density.(81, 88) The downside of this method involves the need for 

an outside light source for initiation, generally requiring an open surgical site. The 

necessity of the open surgical site limits the available applications of photo-

initiated hydrogels; however, an open surgical site offers many potential benefits 

for precursor solution placement. Photo-initiation allows for complete control over 

the precursor placement, enabling possible shaping and defect-fitting if the 

precursor exhibits the correct rheological properties. Earlier, we  proposed the 
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idea of a photo-initiated hydrogel that could allow for easier surgical placement 

in cartilage defects if the precursor solution exhibited a sufficient yield stress, 

enabling a surgeon to form-fit the material to the defect site before crosslinking.(2, 

35, 48, 89) A potential limitation of photoinitiated hydrogels is the requirement for 

light penetration, thus opaque materials may encounter crosslinking issues due 

to limited light penetration. Reaction-based hydrogels, which are not limited to 

opacity issues like photoinitiated hydrogels, are generally initiated by the mixing 

of two solutions to initiate crosslinking and subsequent hydrogel formation.(24) 

Due to the need for achieving a well-mixed solution, many studies utilized low 

viscosity, zero yield stress precursor solutions.(90, 91)  Although these hydrogels 

have shown great promise in promoting cell viability and proliferation, the these 

hydrogels may encounter limitations in the intended surgical application. 

Employing a yield stress to the mixed precursor solution can greatly increase the 

available applications for reaction-based hydrogels.(44, 92) Special 

considerations need to be made for reaction-based hydrogels that employ a 

precursor yield stress. Issues arise in achieving a well-mixed solution, and an 

external mixing system such as a dual-syringe and mixing tip may be required. 

For both photo-initiated and enzymatic/reaction hydrogel precursor solutions, it is 

strongly recommended to characterize and report the yield stress, recovery time, 

shear response, and gelation time at physiological conditions.  
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Physically Crosslinked Hydrogels 

Physical hydrogels are classified as hydrogels held together by polymer 

entanglements and/or secondary forces, and unlike chemical hydrogels, no 

formation of covalent binding occurs.(21) Some common methods for forming 

physical hydrogels are based on charge, colloidal flocculation, peptide 

interactions, and physical thermogelation.(25, 47, 93-97) Compared to 

chemically crosslinked hydrogels, physical hydrogels require specific rheological 

considerations as chemical binding does not occur post-placement. Physical 

hydrogels that exhibit a moderate yield stress, shear thinning behavior, and quick 

recovery time are ideal for biomedical applications.(34)  Many research groups 

proposing the use of physical hydrogels for biomedical applications have 

characterized a wide variety of rheological properties.(49, 59) Lu et al.(47) is a 

prime example of a physical hydrogel mechanical characterization study using 

rheology, providing information on shear response, gel recovery time, and yield 

stress/strain.  

 Physical hydrogels based on charge, colloidal flocculation, and peptide 

interactions require the same rheological considerations. In designing physical 

hydrogels for biomedical applications, certain key rheological properties must be 

characterized and reported. Evaluation of yield stress, recovery-time, and shear 

response are strongly recommended when reporting new physical hydrogels to 

the community. Additionally, physical hydrogels for biomedical applications must 

be tested at body temperature as a proof of concept. Physical hydrogels utilizing 

thermogelation require the same considerations as the charge, colloidal, and 
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peptide hydrogels; however, additional tests must be taken into consideration. 

Viscoelastic properties of thermally activated hydrogels should be mapped at 

varying temperature, and the time required for gelation at body temperature 

should be characterized.  

 

Combinational Crosslinking Hydrogels 

 Combinational hydrogels are developed with the intention of utilizing both 

physical and chemical crosslinking principles in mind. Hydrogels have historically 

been separated as either chemically or physically crosslinked; however, there are 

potentially great benefits for hydrogel designs incorporating both physical and 

chemical crosslinking principles.(98) Lu et al.(4) proposed the use of a 

combinational crosslinking hydrogel utilizing both self-assembling peptides and 

secondary UV-crosslinkable hyaluronic acid to form covalent bonds. Other 

groups have proposed the use of combinational hydrogels, such as polymer 

entanglements combined with UV-crosslinking, and thermogelation combined 

with reaction based crosslinking.(98, 99) The rheological considerations for the 

combinational hydrogel precursors should incorporate the necessary  

experimental tests for both physically and chemically crosslinked hydrogels, as 

previously mentioned. 
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Crosslinking Hydrogels Summary 

In this section, considerations for hydrogels incorporating chemical, physical, and 

combinational crosslinking mechanisms have been summarized. A general 

outline of rheological considerations and characteristics to report have been 

provided for each of the mentioned cases. The implementation of yield stress to 

precursor solutions can positively impact all hydrogel types and allow for an 

easier translation from the lab to clinic, while minimizing surgeon learning curve.  

 

Conclusions 

 In the current review, we have summarized the need for hydrogel 

precursor rheological characterization and the advantage of implementing 

precursor solutions exhibiting yield stress for surgical placement. This review has 

explored the gap in translation between hydrogel technology and clinical 

application, and identified the rheology of the hydrogel precursor solution as an 

often overlooked, yet crucial, design consideration. Basic rheological principles 

and their connection to the medical world have been explored, providing 

examples of recent research in application-dependent hydrogel design. Common 

pre-existing nomenclature of paste and putty behaviors were introduced for 

explaining low and high yield stress precursor properties, and the Herschel-

Bulkley equation was proposed as the model to be used by the hydrogel 

community in reporting rheological properties for comparison. Considerations for 

hydrogels utilizing chemical, physical, and combinational crosslinking 
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mechanisms were explored to better inform the community in designing new 

hydrogel materials for ease of implantation and surgeon adoption. 

  Hydrogels proposed for tissue engineering and regenerative medicine 

applications ultimately aspire to translate from the lab bench to the clinic. The 

design and intended placement of hydrogels may be tailored specifically with the 

surgeon in mind, minimizing the surgeon learning curve to ultimately improve 

translation. An emphasis within the hydrogel community on reporting rheological 

properties of hydrogel precursor solutions is the first step for meeting the clinical 

need. By utilizing the Herschel-Bulkley equation, the hydrogel community can 

easily compare rheological properties in a general and simplified manner that 

minimizes the need for an in-depth understanding of rheology. By better 

characterizing and reporting rheological performance of hydrogel precursor 

solutions, the community can begin to work toward theoretical explanations rather 

than relying on empirical correlations. By quantifying relationships rooted in 

fundamentals, future research will allow for better prediction and rational design 

of precursor solutions. Furthermore, research into precursor rheology will directly 

benefit other areas of research such as 3D bioprinting applications, which rely on 

achieving a specific yield stress for extrusion, a hot area in bioink research 

today.(100-102) We suggest a dialogue bringing together experts in both non-

Newtonian fluids and hydrogels, to facilitate an understanding of how to 

characterize and design better biomaterials. This dialogue will help to bridge the 

gap in knowledge regarding non-Newtonian rheology and establish new 

collaborations across different fields.  
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Chapter 3: Colloidal Gels with Extracellular Matrix Particles and 

Growth Factors for Bone Regeneration in Critical Size Rat 

Calvarial Defects2 

 

Abstract 

Colloidal gels encapsulating natural materials and exhibiting paste-like properties 

for placement are promising for filling complex geometries in craniofacial bone 

regeneration applications. Colloidal materials have demonstrated modest clinical 

outcomes as bone substitutes in orthopedic applications, but limited success in 

craniofacial applications. As such, development of a novel colloidal gel will fill a 

void in commercially available products for use in craniofacial reconstruction. One 

likely application for this technology is cranial reconstruction. Currently, traumatic 

brain injury (TBI) is often treated with a hemi-craniectomy, a procedure in which 

half the cranium is removed to allow the injured brain to swell and herniate 

beyond the enclosed cranial vault. The use of colloidal gels would allow for the 

design of a pliable material capable of expansion during brain swelling, and 

facilitate cranial bone regeneration alleviating the need for a second surgery to 

replace the previously removed hemi-cranium. In the current study, colloidal 

nanoparticles of hydroxyapatite (Hap), demineralized bone matrix (DBM), and 

decellularized cartilage (DCC) were combined with hyaluronic acid (HA) to form 

   

2Published as: Townsend JM, Dennis SC, Whitlow J, Feng Y, Wang J, Andrews B, Nudo RJ, 
Detamore MS, Berkland CJ. Colloidal Gels with Extracellular Matrix Particles and Growth 
Factors for Bone Regeneration in Critical Size Rat Calvarial Defects. The AAPS Journal. 
2017;19(3):703-11. doi: 10.1208/s12248-017-0045-0 
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colloidal gels with desirable rheological properties (𝜏y ≥ 100 Pa). BMP-2 and 

VEGF growth factors were included to assess extracellular matrix (ECM) 

contribution of DBM and DCC. The HA-Hap (BMP-2) and HA-Hap-DCC group 

had 89 and 82% higher bone regeneration compared to the sham group, 

respectively (p < 0.01). Material retention issues observed may be alleviated by 

implementing chemical crosslinking. Overall, DCC may be a promising material 

for bone regeneration in general, and colloidal gels may hold significant potential 

in craniofacial applications. 

 

Introduction 

 Colloidal gels represent a promising class of injectable materials for use 

in tissue engineering and regenerative medicine applications because of their 

high water content, self-assembly, tunable mechanical properties, and 

implementation of physical crosslinking for minimally invasive delivery.(35) The 

use of physical crosslinking principles in the development of colloidal hydrogels 

has resulted in the creation of highly tunable rheological properties capable of 

exhibiting yield stress for surgical placement and material recovery after 

injection.(47, 49, 52) In our previous studies utilizing colloidal gel technologies, 

these properties have been mapped using polymers and colloidal particles to 

achieve “paste-like” properties ideal for surgical placement.(34, 35) One clinical 

specialty that will greatly benefit from colloidal gel technology used for bone 

regeneration is craniofacial surgery.(103) Previous studies have demonstrated 

that similar colloidal gels have shown promise in bone tissue engineering 
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applications, highlighting the use of biodegradable natural materials as an 

attractive alternative to current commercially available options.(31, 66) 

 Current commercial products have demonstrated a long track record of 

clinical success in orthopedic long bone regeneration; however, many 

craniofacial applications are limited by current product designs and physical 

properties.(16) In particular cranial reconstruction has been problematic due to 

the large contoured surface area, the constant repetitive pulsation of the 

underlying dura/brain, limited soft tissue coverage options, and sensitivity of the 

underlying brain tissue to exothermic biomaterial processes.  Commercially 

available products such as DBX (MTF/Synthes), Dynagraft II (Integra 

Orthobiologics), Grafton® Gel (Osteotech), and Puros® DBM (Zimmer) have had 

limited success in calvarial reconstruction due to the low availability of 

propriogenic stem cells in the cranial diploic space as compared to that of long 

bones and the inability of all biomaterials to overcome a critical cranial defect 

size. These limitations of current commercial bone products have led to the need 

for new materials; and as such, new and innovative approaches should be 

considered for future cranial bone regenerative biomaterials.   

 Current bone products focus heavily on the use of micron sized 

demineralized bone matrix (DBM) colloids as a tissue matrix/scaffold for the 

promotion of cranial bone formation. Since these materials require bone ingrowth 

from the surrounding peripheral cranial margins, critical cranial defect size limits 

the ability to reconstruct large skull defects.  To address the limited bone 

regeneration associated with demineralized bone techniques, various synthetic 
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and raw materials, such as extracellular matrix (ECM) components, have been 

proposed for tissue regeneration such as hydroxyapatite (Hap), Bioglass, 

hyaluronic acid (HA), DBM, and decellularized cartilage (DCC).(104, 105) Growth 

factors such as bone morphogenetic protein (BMP)-2 and vascular endothelial 

growth factor (VEGF) have shown further promise in bone regeneration, and can 

be used both separately or by dual delivery.(106, 107) The majority of craniofacial 

skeleton forms by intramembranous (IM) ossification; however, leveraging 

endochondral (EC) ossification approaches for regeneration of craniofacial bone 

may provide novel medical treatment avenues.(108) 

 A clinical application that could greatly benefit from a medical product 

exhibiting paste-like rheological properties and bone regenerative potential is the 

surgical management of severe traumatic brain injury (TBI). TBI resulting from a 

severe closed head injury or stroke often causes life-threatening brain 

swelling.(109) Decompressive hemi-craniectomy is a life-saving treatment to 

alleviate brain swelling. In this procedure, approximately half of the patient’s 

calvarial bone is removed allowing the brain to swell and herniate beyond the 

confines of the closed calvarial vault.(110) This skin is draped over the herniating 

brain and the skull is left removed for an average of 80 days  before it is 

restored/replaced once swelling subsides in a second surgical procedure, 

cranioplasty.(111) This surgical procedure gained popularity with its utilization 

and proven beneficial outcomes in the treatment of active duty service who suffer 

severe head trauma in recent military conflicts. These soldiers represent a group 

that has been greatly impacted by TBI, referred to as the “invisible war on the 



 
 

39 
 

brain”(112) and accounting for 30% of military hospitalizations during modern 

warfare.(113) 

A poorly understood neurologic condition termed “syndrome of the 

trephined” (SoT) often results in TBI patients who undergo hemi-craniectomy. 

SoT is also termed “sinking skin flap syndrome” as a result of the sunken, 

concave appearance of the skull at the sight of hemi-craniectomy that develops 

as TBI patients await cranioplasty.(114, 115) SoT is associated with symptoms 

such as mood changes, fatigue, headaches, dizziness, fine motor dexterity 

problems, and difficulties concentrating.(116) Interestingly, SoT neurologic 

deficits are immediately reversible with a cranioplasty procedure where the 

missing cranial bone is replaced/restored and the underlying sunken cerebral 

tissue is allowed to re-expand within the calvarial vault. The symptoms typically 

return should the cranioplasty reconstruction require future removal such as the 

case of infection. 

Current surgical management of TBI requires a two staged procedure, the 

initial hemi-craniectomy and the reconstructive cranioplasty. They are typically 

performed months apart which delay recovery and rehabilitation and increasing 

cost and risk due to an additional surgery.(117, 118) Research on materials for 

TBI treatment has generally focused on reducing brain swelling(32, 119) or 

blocking tissue regeneration between the dura and periosteum for safer transition 

to cranioplasty.(111) Colloidal gel technology has the potential to provide a single 

surgical treatment for severe TBI cases in which the material is implanted with 
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the initial surgery, remain pliable during brain swelling, and provide a combination 

of materials and growth factors to regenerate bone over time.  

To effectively develop a material capable of providing a single surgery for 

TBI treatment, we must first identify an effective colloidal gel formulation that can 

regenerate bone across a critical size calvarial defect. After identifying a colloidal 

gel that can regenerate bone in a critical size defect, the regeneration time can 

be tuned specifically for treatment of TBI. The objective of this work was to 

evaluate colloidal gels composed of natural materials and growth factors for 

regenerating calvarial bone in a critical size calvarial defect. The use of natural 

materials is our first attempt with this type of formulation, and represents a next 

generation colloidal gel from our previously published work by Wang et al.(103) 

Hap, DBM or DCC nanoparticles were evaluated in physically crosslinked 

colloidal gel formulations with HA to create paste-like materials with desirable 

yield stress for injection in a bone regeneration application. Colloidal gel material 

characterization studies have previously been published by Dennis et al.(37), 

colloidal formulations with desirable mechanical properties were chosen for 

evaluation in the current study. Colloidal gels were loaded with or without BMP-2 

and VEGF to evaluate the extent to which growth factors would facilitate bone 

regeneration. We hypothesized that the colloidal gel formulations would 

regenerate bone at the defect site, and that the addition of DCC particles would 

increase regenerative capabilities.   
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Materials and Methods 

Materials 

Hydroxyapatite (Hap) was purchased in powder form (Davg ≤ 200 nm; 

Sigma-Aldrich, St. Louis, MO). Hyaluronic acid (HA, Mw = 1.01-1.8 Mda) 

(Lifecore Biomedical, Chaska, MN) was purchased as a sodium salt. Human 

demineralized bone matrix (DBM) was purchased from Biomet (Warsaw, IN). 

Human VEGF (Cat# 100-20) and human BMP-2 (Cat# 120-02) were purchased 

from PeproTech (Rocky Hill, NJ). 

 

Preparation of Decellularized Cartilage (DCC) 

Ten porcine knees were purchased from a local abattoir (Bichelmeyer 

Meats, Kansas City, KS). Articulating hyaline cartilage was harvested from 

mixed-breed, mixed-sex hogs 7-8 months of age. Harvested cartilage was coarse 

ground using a cryogenic tissue grinder (BioSpec Products, Bartlesville, OK) and 

packed into dialysis tubing (3500 MWCO) and decellularized using an adapted 

version of our previously established method using osmotic shock, detergent, and 

enzymatic washes.(120-122) Briefly, dialysis packets containing DCC were 

placed in a hypertonic salt solution (HSS) overnight at room temperature under 

agitation (70 rpm). The packets were then subjected to 220 rpm agitation and 

washed in triton X-100 (0.01 v/v) followed by HSS, with DI washes between each 

step, to permeabilize intact cellular membranes. Tissue packets were then 

treated with benzonase enzyme solution (0.0625 KU/mL) at 37°C overnight 

followed by DI washing, and then treated with sodium-lauroylsarcosine (NLS, 1% 
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v/v) overnight to lyse cells and denature proteins. After NLS treatment, the tissue 

was washed in DI water, and then in 40% (v/v) ethanol at 70 rpm. Tissue packets 

were then subjected to organic exchange resins and to remove organic material 

from solution. Tissue packets were then washed in a saline-mannitol solution at 

70 rpm followed by 1 hour of DI washes. The tissue was then removed from the 

dialysis packets and frozen. 

After the decellularization process, DCC particles were lyophilized and 

cryoground with a freezer-mill (SPEX, SamplePrep, Metuchen, NJ). Cryoground 

DCC was then sieved (Spectra/Mesh Woven Filters, Spectrum Laboratories, Inc., 

Rancho Dominguez, CA) (Davg ≤ 200 nm) and stored at -20 ºC for later use. 

Decellularization was confirmed by PicoGreen (Thermo Fisher Scientific, 

Waltham, MA, P7589) assay to determine DNA content. The particle size ranges 

of DCC and Hap were confirmed using dynamic light scattering (Brookhaven, 

ZetaPALS) as previously described.(34)  

 

Preparation of Colloidal Gels 

 Colloidal gels were prepared as previously described.(34) Briefly, 20 mg 

of HA, 800 mg of Hap, and 150 mg of ECM (DCC or DBM) materials were 

weighed dry and combined. Dry combinations were dispersed in 1 mL of 

phosphate buffered saline (PBS, Sigma-Aldrich, P3813) solution. Dry powder 

formulations were sterilized using ethylene oxide gas prior to use in vivo. PBS 

and growth factors were mixed together (25 µg/mL) in select groups before 

dispersion of dry powder combinations. Samples were allowed to reach ambient 
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conditions for 2 hours before implanting. Formulations are reported as material 

components with the addition of growth factors in parentheses [e.g. HA-Hap 

(VEGF)]. 

 

Environmental Scanning Electron Microscopy (ESEM) 

 Colloidal gels were imaged using an FEI Quanta 200 scanning electron 

microscope (FEI Company, Hillsboro, OR) with a tungsten filament electron 

source. The gaseous secondary electron detector (GSED) was used in 

environmental mode. Samples were imaged at a magnification of approximately 

500x, and an accelerating voltage of 15 kV.   

 

Rheological Testing 

 Colloidal gel rheological properties were mapped using a controlled stress 

rheometer (TA-Instruments, AR2000). All measurements were performed at a 

gap distance of 500 μm using a 20 mm diameter roughened stainless steel plate 

geometry. Samples were tested at 37 °C.  Initially, an oscillatory stress sweep 

from 1-10,000 Pa was performed at a constant frequency of 1 Hz to determine 

the linear viscoelastic (LVE) region for the colloidal formulations. The yield stress 

was defined as the oscillatory stress corresponding to a 15% departure of the 

storage modulus (G’) from the LVE region.  
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Animal Model and Surgical Method 

Mixed sex SAS Sprague Dawley rats were raised in house to an age of 7-

10 weeks and randomly assigned to treatment groups prior to surgery. Animal 

experiments were approved by the Institutional Animal Care and Use Committee 

of the University of Kansas Medical Center (protocol #2015-2303). A posterior 

incision along the periphery of the skull was created to peel back and suture the 

skin and periosteum to the anterior portion of the skull. A single critical size 7.5 

mm defect was created on the center of the calvarial bone using a cylindrical drill. 

The calvarial disk was carefully removed leaving the dura matter intact. After 

creation of the defect, approximately 50 μL of material was used to fill the site via 

syringe (Fig. 3.1A). The skin and periosteum were then draped over the defect 

site and sutured in place to hold the material during the healing process. The 

sham group received the same surgical procedure without the addition of any 

further treatment. Repaired tissue was harvested at 8 weeks’ post-implantation 

and analyzed. A sample size of 5 rats was used in BMP-2 containing groups, and 

a sample size of 4 rats was used in all other groups.  

 

Micro-computed Tomography (μCT) 

Micro-computed tomography analysis was performed on explanted rat 

calvarial sections to visualize and quantify new bone formation. An Xradia 

MicroXCT-400 system was used with a 50 kV X-ray source at 7.9 W. μCT images 

were reconstructed to generate 3D models for analysis of new bone formation. 

Avizo-Fire computational software (FEI Company) was used to generate 3D 
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images and quantify volumes. New bone was confirmed using pre-existing 

calvarial bone as the threshold, separating original Hap from new bone formed. 

Hap nanoparticles were partitioned from bone on the basis that any material 

above the bone threshold must be original Hap. Quantified new bone volume is 

expressed as a total (mm3) within the 7.5 mm diameter defect site.  

 

Histology and Immunohistochemistry 

  Harvested calvarial bone samples were fixed in 10% phosphate buffered 

formalin for 48 hours then stored in 70% ethanol for long term. Tissue sections 

were then decalcified using Calrite media (Thermo Fisher Scientific, 22-046-339) 

for 3 weeks before dehydrating in a grade series of ethanol to xylenes, and then 

embedded in paraffin wax. Sections of 5 μm were obtained using a microtome 

(Thermo Fisher Scientific, HM 355S) and affixed to microscope slides. Before 

staining, tissue sections were dewaxed in xylene and rehydrated in graded (i.e., 

100 to 70%) ethanol followed by deionized water. Slides were stained with 

hematoxylin and eosin (H&E) (Abcam, Cambridge, UK, H-3404) for cell infiltration 

and new bone formation. 

Immunohistochemistry was employed to visualize the distribution of 

collagen I (Novus Biological, Littleton, CO, NB600-408, 10 μg/mL), collagen II 

(Novus Biological, NBP2-33343, 5 μg/mL), osteocalcin (Abcam, ab93876, 5 

μg/mL), and α-smooth muscle actin (Abcam, ab5694, 10 μg/mL). Briefly, tissue 

sections were dewaxed in xylenes and rehydrated in a graded series of ethanol 

(100-70%) to DI water. Antigen retrieval was performed enzymatically with 
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proteinase K (Abcam, ab64220, 20 μg/mL) for 15 minutes at 37 °C. Following 

enzymatic retrieval, sections were blocked with 0.3% hydrogen peroxide (Abcam, 

ab94666) for 10 minutes, 10% normal horse serum (Vector Labs, Burlingame, 

CA, PK-6200) for 20 minutes, 5 % bovine serum albumin (Sigma, A9647) for 20 

minutes, and avidin/biotin blocking (Vector Labs, SP-2001) for 15 minutes each. 

Sections were incubated in one of the aforementioned primary antibodies for 1 

hour. Post-primary antibody incubation, sections were washed in PBS with 

Tween-20 (Sigma-Aldrich, P3563) solution for 5 minutes between each step. 

Sections were then incubated with biotinylated horse anti-mouse/rabbit IgG 

(Vector Labs, PK-6200) for 30 minutes. Sections were then incubated with 

VECTASTAIN Elite ABC solution (Vector Labs, PK-6200) for 30 minutes, before 

being developed using DAB (Vector Labs, SK-4100) for 2 minutes. DAB 

enhancing solution (Vector Labs, H-2200) was used for 10 seconds before 

counter-staining with hematoxylin QS (Vector Labs, H-3404) for 1 minute. Bluing 

solution (Thermo Fisher Scientific, 7301) was used for 3 minutes. Finally, 

sections were dehydrated in a grade series of ethanol (95-100%) to xylenes 

before mounting. Negative controls for each immunohistochemical staining batch 

were included.  

 

Statistical Methods 

GraphPad Prism (Graphpad Software Inc, La Jolla, CA) statistical software 

was used to conduct all statistical analyses. Groups were analyzed using a one-

way analysis of variance with groups of factors. Dunnett’s test was used to 
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compare groups to the sham control group. Tukey’s HSD test was used for 

comparing between groups in the rheological analysis. Results were considered 

significant at a level of p < 0.05. Results are reported as the mean ± standard 

deviation. 

 

Results 

Rheological Analysis 

Figure 3.1B shows colloidal material groups being shaped, and ESEM 

images of the gel microstructure. Colloidal material shaping demonstrated that all 

formulations exhibited some degree of yield stress. Representative rheometer 

traces for each colloidal formulation have been provided (Fig. 3.2A-C). The yield 

stress of the HA-Hap-DBM was 4.6 times higher than the HA-Hap formulation (p 

< 0.01) (Fig. 3.2D). Post-hoc analysis (Tukey’s HSD) showed no statistically 

significant difference between HA-Hap and HA-Hap-DCC, or between HA-Hap-

DBM and HA-Hap-DCC formulations.  

 

Microcomputed Tomography (μCT) Analysis 

The HA-Hap (BMP-2) and HA-Hap-DCC groups had 89 and 82% higher 

regenerated bone volume compared to the sham, respectively (Fig. 3.3A, p < 

0.01).  Peripheral bone growth was noted in all groups, and large peripheral bone 

growth into the defect site in the HA-Hap-DCC group without the addition of 

growth factors (Fig. 3.3B). Large bone island formation was noted in the sham 

and VEGF-containing groups, excluding the group containing DCC. Bone islands 
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observed in all groups were very thin compared to the native bone, and did not 

contribute significantly to regenerated bone volume.  

 

Histological Analysis 

A distinctive soft tissue formation spanning the defect site was observed 

in all colloidal gel formulations (Fig. 3.4). The presence of conglomerated colloidal 

particles was observed in all groups. Bone at the defect periphery was noted in 

all groups with new bone forming toward the dural side of the defect. The H&E 

stain confirmed the differences in new bone formation versus original colloidal 

particles identified from the μCT analysis. Histological analysis of all samples 

showed general trends of bone formation encapsulating conglomerated colloidal 

particles in HA-Hap groups with and without addition of growth factors. VEGF 

containing groups tended to have thicker soft tissue formation spanning the 

defect site compared to groups without the addition of growth factors and the 

sham. The HA-Hap-DCC group and the BMP-2 groups had more peripheral bone 

growth into the defect site compared to the sham and VEGF-containing groups.  

 

Immunohistochemical (IHC) Analysis 

Visual results of all samples stained for COL1 show substantial deposition 

of COL1 in the tissue spanning the defect site using peripheral bone for reference 

(Fig. 3.5). COL2 deposition in all groups was near non-existent in the tissue 

spanning the defect site, except for DCC groups with addition of growth factors, 

with the DCC (BMP-2) group in particular showing more regions of collagen II 
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than the DCC (VEGF) group. COL2 deposition in groups containing DCC and 

growth factors resulted in positive staining tissue pockets within the defect site; 

however, this was not seen in DCC samples without growth factors. OCN staining 

was similar to COL1 staining in that all groups showed positive antibody staining 

throughout the defect site using the peripheral bone as a reference. αSMA 

staining was positive only in the soft tissue spanning the defect site and no 

staining in the bone portion as expected.  

 

Discussion 

 The current study was the first to use naturally derived decellularized 

cartilage extracellular matrix for regeneration of calvarial bone.(108) Colloidal 

gels formulated of naturally derived ECM materials were evaluated with and 

without growth factors to determine osteogenic potential in vivo. The focus of this 

work in developing colloidal gels with physical crosslinking properties for ease of 

placement and pliability during the healing process is ideally positioned for the 

treatment of TBI after hemi-craniectomy.(34, 35) The proposed work is one of the 

few to propose a material capable of providing a single-surgical method for 

severe TBI treatment, eliminating the need for a second surgery to reclose the 

cranial vault.(123) A single-surgical intervention for TBI has great implications for 

increasing the quality of life for the people suffering from this issue, and 

decreased time for rehabilitation. In developing these colloidal materials, our 

team has proposed the use of nanoparticle-size DBM and DCC as natural 

materials for the promotion of new bone growth.  
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 Colloidal gels exhibiting a yield stress sufficient to create a paste-like 

consistency may have great clinical relevance for material placement and 

retention. Colloidal gels rely on physical interactions and the presence of a 

suitable yield stress in lieu of covalent crosslinking for material retention. The 

formulations presented in the current study were all capable of forming a paste-

like material, and the addition of ECM materials further increased the yield stress 

observed. ESEM images of the gel microstructure indicated that the addition of 

ECM particles reduced cavitation, contributing to the mechanical stability. An 

increased yield stress in colloidal gels has implications for the improvement of 

mechanical performance in surgical placement and retention in the defect 

site.(35) Although rheological testing confirmed the existence of a noticeable 

yield stress in all formulations, challenges with material retention were observed 

in the current study. In all cases, the majority of migrated material had moved 

anteriorly, possibly due to the normal head grooming motion of rats. Alternatively, 

the migration of Hap particles can possibly be attributed to material disintegration 

due to the lack of gel crosslinking after placement. The post-μCT analysis allowed 

for the ability to better assess regenerative capabilities by quantifying the volume 

of bone excluding the colloidal material, while subsequently visualizing the two. 

Other groups have previously used similar techniques for eliminating the 

quantification of non-bone material;(124) however, it is not uncommon to report 

regenerated new bone volume including the added material.(3) The result of the 

DCC material group without growth factors supports the idea that cartilage can 
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be used as a raw material for use in a paste-like application for calvarial bone 

regeneration.  

 Aggregation of Hap particles was noted in all samples analyzed, 

suggesting interaction between Hap nanoparticles to form larger clusters. Bone 

growth around the Hap clusters was visualized by H&E stain, supporting the 

osteoconductive properties of Hap. Possible osteoinductive potential was 

observed in the form of new bone islands throughout the defect site without the 

presence of Hap particles; however, bone island formation was also noted in the 

sham group. In all samples, a noticeable tissue had formed throughout the defect 

site. Small pockets of positive COL2 staining was noted in the DCC group 

containing BMP-2, leading to the suggestion that growth factor addition had a 

negative role on cell differentiation in the presence of the material DCC. The 

result may potentially be attributed to competing effects of DCC and BMP-2, or a 

synergistic effect of chondrogenesis rather than osteogenesis leading to delayed 

bone regeneration. COL2 deposition was not observed in the group containing 

DCC without growth factors, suggesting that including DCC may have provided 

osteoinductive potential. Consistent positive staining in all groups for COL1 and 

OCN can most likely be attributed to the common material HA-Hap in all groups. 

Additionally, results of αSMA staining showed a positive response in the soft 

tissue portion of the defect site; however, increased blood vessel formation was 

not observed in VEGF treated groups. Addition of BMP-2 did not produce the 

bone regeneration that had been previously observed in similar studies in rat 

calvarial defects. Cowan et al.(125) observed a significant increase in bone 
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formation with the addition of 30 µg/mL of BMP-2 (0.59 µg total); however, this 

was not observed in the current study using 25 µg/mL of BMP-2 (1.25 µg total). 

The differences observed emphasize the value of future growth factor dose 

response studies. The low amount of new bone regeneration in growth factor-

containing groups could possibly be due to a fast release from the defect site, 

causing a low response to available stem cells. Future studies including growth 

factors will include a controlled release mechanism for optimal delivery, and 

characterizing growth factor release in-vitro, as the release profile would have 

been of great value in the current study.  

 The addition of natural materials, i.e., DBM or DCC, had unexpected 

results in terms of bone regeneration potential. On average, the addition of DBM 

did not increase the regenerative potential compared to HA-Hap hydrogels, 

whereas addition of DCC had produced greater bone regeneration on average 

compared to DBM groups. DCC samples without growth factors were observed 

to have large amounts of peripheral bone growth, suggesting potential for DCC 

in calvarial bone regenerative approaches. Regenerated bone volumes of all 

groups tested in the current study were within the range of previously published 

studies in the area, and on average the HA-Hap (BMP-2) and HA-Hap-DCC 

group had more regenerated bone volume.(124, 126) Other groups studying the 

use of cartilage ECM for bone regeneration observed similar findings compared 

to the current study. In a study by Visser et al.(127) using decellularized cartilage 

ECM particles embedded in gelatin methacrylamide hydrogels found mineralized 

bone surrounding hypertrophic cartilage. Similarly, Gawlitta et al.(128) found that 
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bone formation was greatly enhanced by the presence of mesenchymal stem 

cells in decellularized cartilage ECM scaffolds. The collective results from the 

studies previously mentioned and the current study further support the use of 

DCC in bone regeneration applications. Caution should be taken in comparing 

the results of the current study due to the randomized sex study design. The 

National Institute of Health (NIH) notice (NOT-OD-102) “Consideration of Sex as 

a Biological Variable in NIH-funded Research” has identified an over-reliance on 

male animals and cells in research. The random use of both sexes in the current 

study attempts to follow NIH guidelines to eliminate sex as a variable.  

 Poor retention of growth factors and colloidal materials in the defect site 

was observed in the current study. Retention issues may be fixed by 

implementing a covalent crosslinking mechanism after material placement. A 

tunable crosslinking mechanism would effectively provide material stiffness and 

allow for recovery after non-plastic deformation. The crosslinking can be tuned 

accordingly to create hydrogels that remain pliable enough for application in the 

treatment of TBI.  In future studies, colloidal materials encapsulated in covalently 

crosslinked hydrogels will be explored for application to craniofacial bone 

regeneration.  

 

Conclusion 

 Colloidal gels composed of polymers and tissue particles represent a 

promising material for bone regenerative approaches, specifically in their ability 
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to exhibit paste-like properties for surgical placement. The study evaluated 

bone regeneration of critical size (7.5 mm) rat calvarial defects using colloidal 

gels comprised of hyaluronic acid, hydroxyapatite, and tissue particles (DCC or 

DBM) with and without the addition of growth factors (BMP-2 and/or VEGF). All 

colloidal formulations exhibited suitable yield stress for material placement, and 

an increased yield stress performance with the addition of DBM or DCC 

particles. Significant bone volume regeneration was observed in the HA-Hap 

(BMP-2) and HA-Hap-DCC group compared to the sham defect after 8 weeks. 

The results suggest that the material DCC has osteogenic potential for bone 

regeneration applications. Colloidal gels incorporating natural ECM materials 

have promise for calvarial bone regeneration applications. 
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Chapter 4: Decellularized Cartilage-Based Hydrogel 

Encapsulating Osteoconductive Particles for Calvarial Bone 

Regeneration3 

 

Abstract 

In the treatment of severe traumatic brain injury (TBI), decompressive 

craniectomy is commonly used to remove a large portion of calvarial bone to allow 

unimpeded brain swelling. Hydrogels have the potential to revolutionize TBI 

treatment by permitting a single-surgical intervention, remaining pliable during 

brain swelling, and tuned to regenerate bone after swelling has subsided. With 

this motivation, our goal is to present a pliable material capable of regenerating 

calvarial bone across a critical size defect. We therefore proposed the use of a 

methacrylated solubilized decellularized cartilage (MeSDCC) hydrogel 

encapsulating synthetic osteogenic particles of hydroxyapatite nanofibers 

(HAPnf), bioglass microparticles (BG), or added rat bone marrow-derived 

mesenchymal stem cells (rMSCs) for bone regeneration in critical-size rat 

calvarial defects. Fibrin hydrogels were employed as a control material for the 

study. MeSDCC hydrogels exhibited sufficient rheological performance for 

material placement before crosslinking (𝜏𝑦 > 500 Pa), and sufficient compressive 

moduli post-crosslinking (E > 150 kPa). Bone regeneration was minimal in both 

   

3Submitted as: Townsend JM, Zabel TA, Feng Y, Wang J, Andrews BT, Nudo RJ, Berkland 
CJ, Detamore MS. Decellularized Cartilage-Based Hydrogel Encapsulating Osteoconductive 
Particles for Calvarial Bone Regeneration. Biomedical Materials, 2017. 
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MeSDCC and fibrin groups, even with colloidal materials or added rMSCs. 

Minimal bone regeneration in the MeSDCC test groups may potentially be 

attributed to cartilage solubilization after decellularization, in which material 

signals may have degraded from enzymatic treatment. Looking to the future, an 

improvement in the bioactivity of the material will be crucial to the success of 

bone regeneration strategies for TBI treatment.  

 

Introduction 

 Traumatic brain injury (TBI) is characterized by severe brain swelling 

commonly resulting from motor vehicle accidents, assaults, and stroke. Active 

duty military service members are especially vulnerable to this condition, as an 

estimated 22% of wounded soldiers evacuated from conflict zones have severe 

TBI.(113) The brain swelling that results from TBI can be life-threatening as the 

brain lies within a closed cranial vault incapable of expansion to mitigate rising 

intracranial pressures.  Currently, severe TBI is treated by a two-stage surgical 

intervention.  In the first stage, a large portion of calvarial bone is removed in a 

procedure termed decompressive craniectomy.(129) Decompressive 

craniectomy allows the brain to swell beyond the cranial vault and reduces 

dangerous intracranial pressure.(117) After brain swelling has sufficiently 

decreased, typically weeks to months later, a second procedure termed 

cranioplasty is performed to restore the skull anatomy and reclose the cranial 

vault.(111) Disadvantages of the current two-stage TBI surgical intervention are 

that it prolongs neurorehabilitation and recovery, increases medical costs, and is 
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associated with adverse neurologic symptoms termed syndrome of the 

trephined.(130) Syndrome of the trephined, also known as sinking skin flap 

syndrome, is manifested by symptoms such as headaches, unsteadiness, a 

feeling of apprehension, difficulties concentrating, and fine-motor dexterity 

concerns. Interestingly, these often debilitating neurologic symptoms of 

syndrome of the trephined are immediately reversible with a cranioplasty 

procedure to restore the cranial vault anatomy.(114, 116) Previous attempts to 

combine the two-stage TBI treatment into a single surgery have resulted in 

extremely high complication rates due to the inability of materials to expand as 

initial brain swelling occurs.(123) Current commercial bone products for 

cranioplasty have been unsuccessful in meeting the demand required for TBI 

treatment, in either single or two-stage surgical approaches. 

 Current materials used in commercially available cranioplasty products for 

bone repair include allogenic bone, synthetic calcium-apatite, and custom 

polymer/metallic implants.(131) Products that utilize allogenic bone, such as 

DBX® (MTF/Synthes) and AlloFuse® (AlloSource), have reported advantages of 

favorable material integration and low rejection; however, issues with batch 

variability have been noted as potential limitations of using human bone 

matrix.(16, 132) Current allogenic bone products have limited use in cranioplasty 

procedures with large cranial defects, termed critical size defects, resulting in 

reasonable bone regeneration at the defect periphery but minimal regeneration 

centrally. Synthetic calcium-apatite products, such as NovaBone Putty® 

(NovaBone Products), which utilize synthetic processes for high-reproducibility, 
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are reported to have acceptable osteoconductive material properties.(133) 

Similar issues using synthetic apatite approaches compared to allogenic bone 

products persist with regard to limited bone regeneration across large defect 

sizes. Cranioplasty approaches utilizing custom-made implants generated based 

on computed-tomography have gained popularity within the medical community 

for their patient-specificity.(131, 134) Although custom-made implants are 

attractive for repairing the cranial vault, they lack in their ability to regenerate 

calvarial bone, and cannot be implemented in a single surgery for TBI cases due 

to issues with material flexibility during brain swelling. Beyond commercial 

products, research avenues for TBI-related issues have generally focused on 

easing transition between decompressive craniectomy and cranioplasty,(111) or 

focused on intracerebral regenerative medicine.(119, 135-138) Major gaps in 

current knowledge exist regarding materials capable of regenerating bone in 

critical size defects, and in materials that can be implemented in a single surgery 

for treatment of TBI while avoiding syndrome of the trephined. The first step in 

meeting the overall goal of developing a single surgical intervention for the 

treatment of TBI is to first identify a pliable material capable of regenerating 

calvarial bone across a critical size defect. Once the first step has been achieved, 

the regenerative medicine community can focus on translating materials for 

treatment of TBI. Hydrogels are a promising class of materials for calvarial bone 

regeneration and future TBI application, offering the capability for in situ 

placement, allowing for application to any shape or size of defect, 
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photocrosslinking for user-defined material activation, and modulation of stiffness 

for material elasticity during brain swelling.(20)  

 The objective of the current study was to evaluate the use of a 

methacrylated solubilized decellularized cartilage (MeSDCC) hydrogel 

encapsulating synthetic osteogenic particles of hydroxyapatite nanofibers 

(HAPnf), bioglass microparticles (BG), or added rat bone marrow-derived 

mesenchymal stem cells (rMSCs) for bone regeneration in critical size rat 

calvarial defects. Fibrin hydrogels were used as a control material for the study. 

The combinational use of photo-crosslinking cartilage-based hydrogel matrix in 

combination with synthetic particles represents a next-generation approach from 

our previously published work in the area.(36) The choice of cartilage as a 

material to facilitate bone regeneration is inspired by the process of endochondral 

ossification during fracture healing. In a previous publication from our group, the 

three phases of endochondral ossification: inflammatory, reparative, and 

remodeling, were reviewed in detail.(108) During the reparative phase, a fibrous 

and cartilaginous tissue forms spanning the defect. The use of cartilage in the 

current study attempted to circumvent the initial phases of the endochondral 

ossification process to accelerate the formation of bone by delivering a similar 

tissue. Although the calvarium forms from intramembranous ossification, 

endochondral ossification can be leveraged as an attractive route to increase 

bone regeneration. Previous in vitro studies conducted by our group using rMSCs 

encapsulated in cartilage-based hydrogels demonstrated an initial increase of 

collagen I gene expression.(2) The combination of in vitro data regarding 
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cartilage-based hydrogels and in vivo results using cartilage as a biomaterial for 

bone regeneration inspired further evaluation of cartilage in calvarial bone 

regeneration. The addition of synthetic particles to the hydrogel matrix serves a 

dual purpose, to create a paste-like consistency to facilitate material placement 

by the surgeon, and to aid in bone regeneration by delivering osteogenic 

materials. We hypothesized that decellularized cartilage-based hydrogel would 

facilitate bone regeneration, and that the addition of synthetic osteogenic 

particles would further improve overall bone regeneration.  

 

Materials and Methods 

Preparation of Decellularized Cartilage (DCC) 

 Ten porcine knees were purchased from a local abattoir (Bichelmeyer 

Meats, Kansas City, KS). Hyaline cartilage was harvested from castrated male 

Berkshire hogs, 7-8 months of age and 120 kg in weight. The cartilage processing 

and decellularization protocol is described in our previous publication.(48) Briefly, 

harvested hyaline cartilage was rinsed, strained, then coarse-ground using a 

cryogenic tissue grinder (BioSpec Products, Bartlesville, OK). The coarse-ground 

cartilage was then packed into dialysis tubing (MWCO 3500) packets. 

Decellularization was achieved through a series of solution exchanges of osmotic 

shock, detergent, and enzymatic washes as described in our previously 

established protocols.(120-122) Dialysis packets containing cryoground cartilage 

were placed in hypertonic salt solution (HSS) at room temperature under agitation 

(70 rpm) overnight. Dialysis packets were then washed in triton X-100 (0.01 v/v) 
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at 220 rpm, followed by HSS, with DI washes between each step to permeabilize 

cellular membranes. Dialysis packets were then treated with benzonase enzyme 

solution (0.0625 KU/mL) at 37°C overnight followed by DI washing before 

treatment with sodium-lauroylsarcosine (NLS, 1% v/v) overnight for cell lysis and 

protein denaturation. Afterwards, dialysis packets were washed with DI water 

then 40% (v/v) ethanol at 70 rpm. Dialysis packets were then soaked in DI water 

with organic exchange resins to remove organic material from solution. Dialysis 

packets were then subjected to a saline-mannitol solution followed by DI washes. 

The tissue was then removed from the tissue packets, frozen, and lyophilized. 

After decellularization, DCC particles were cryoground using a freezer-mill (SPEX 

6775, SamplePrep, Metuchen, NJ). Cryoground DCC was stored at -20°C for 

later use. The decellularization process was confirmed by PicoGreen assay 

(Thermo Fisher Scientific, Waltham, MA, P7589). 

 

Synthesis of Methacrylated Solubilized Decellularized Cartilage (MeSDCC) 

 Solubilization and methacrylation of DCC was achieved using a protocol 

from our previously reported methods.(89) Briefly, solubilized DCC (sDCC) was 

created by mixing DCC powder in 0.1 M HCL at a concentration of 10 g/L. Pepsin 

(Cat# P7000, Sigma-Aldrich, St. Louis, MO) was then added to the DCC-HCL 

solution at a concentration of 1 g/L and stirred at 200 rpm for 48 hours at room 

temperature. The solution was then brought to physiological pH by adding 1 M 

NaOH. The solubilized DCC was then centrifuged at 7,000 x g for 5 min to pellet 
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any unsolubilized DCC particles. The supernatant was then retained, frozen, and 

lyophilized for later use as sDCC. 

 MeSDCC was synthesized by first dissolving sDCC in a 1:1 water:acetone 

mixture at a concentration of 10 g/L. sDCC was then reacted with 20-fold molar 

excess of glycidyl methacrylate (Cat# 779342, Sigma-Aldrich) in the presence of 

62rimethylamine (Cat# T0886, Sigma-Aldrich) and tetrabutylammonium bromide 

(Cat# 426288, Sigma-Aldrich). The reaction was then stirred at 200 rpm for 6 

days at room temperature. Afterward, MeSDCC was precipitated in an excess of 

acetone, then centrifuged at 3,000 x g for 3 min to pellet the MeSDCC. Pelleted 

MeSDCC was then dialyzed in DI water for 48 hours before freezing and 

lyophilizing for later use. The molar excess of glycidyl methacrylate to sDCC was 

approximated based on reacting one glycidyl methacrylate group to every 

monomer present in solution, assuming all monomers present were hyaluronic 

acid.  

 

Rat Bone Marrow Harvest and Culture 

 rMSCs were harvested from the femurs of a male Sprague-Dawley rat 

(200-250 g) following an approved IACUC protocol at the University of Kansas 

(AUS #175-08). The rMSCs were cultured for 1 week in minimum essential 

medium-α (MEM-α, Cat# 12561072, Thermo Fisher Scientific, Waltham, MA) with 

10% fetal bovine serum (FBS, Cat# 16000044, Thermo Fisher Scientific) and 1% 

antibiotic-antimyotic (Cat# 15240-062, Thermo Fisher Scientific) to ensure no 

contamination after harvest. After 1 week of culture, the antibiotic-antimyotic was 
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substituted for 1% penicillin/streptomycin (Cat# 15140-122, Thermo Fisher 

Scientific). Medium was exchanged every other day and cells were cultured until 

passage 3 before encapsulating the cells in material.  

 

Hydrogel Preparation 

 MeSDCC hydrogels were prepared as previously described.(36) Briefly, 

100 mg of MeSDCC and 100 mg of particles were weighed dry and combined. 

Hydroxyapatite nanofibers (HAPnf) were bestowed from Nanova Biomaterials, 

Inc. (Columbia, MO), and 1393-B3 bioglass (BG) microparticles (Davg = 75 – 125 

µm) were gifted from MO-SCI, Corp. (Rolla, MO). 1393-B3 BG is a borate glass 

containing 53% B2 O3 (wt/wt). Dry material combinations were sterilized using 

ethylene oxide gas (AN74i, Anderson Anprolene, Haw River, NC) prior to use in 

vivo. Dry combinations were dispersed in 1 mL of phosphate buffered saline 

(PBS, Cat# P3813, Sigma-Aldrich) solution containing 0.05% 2-Hydroxy-4′-(2-

hydroxyethoxy)-2-methylpropiophenone (I2959, Cat# 410896, Sigma-Aldrich) as 

the photo-initiator. The MeSDCC group with added rMSCs was made by making 

a 2x concentration of MeSDCC in PBS containing 0.1% I2959, and an equal 

volume of medium with cells was added to the 2x material and mixed, bringing 

the final rMSC concentration to 106 cells/mL. MeSDCC groups were loaded into 

1 mL sterile syringes for later use.  

 Fibrin hydrogels were created using a dual syringe (2x2 mL, 1:1 ratio) and 

mixing tip (3x6 mm) purchased from Merlin Packaging Technologies (Gahanna, 

OH). Due to the quick setting time of enzymatically crosslinked fibrin hydrogels, 
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the dual syringe system was necessary to stop the material from prematurely 

crosslinking. In the first compartment, Human fibrinogen 1 (Cat# Fib1, Enzyme 

Research Labs, South Bend, IN) was dissolved in pooled normal plasma (Cat# 

0010-5, George King Biomedical, Overland Park, KS) at a concentration of 10% 

(w/v). The second compartment contained a solution of 20 units/mL of human α-

thrombin (Cat# HT1002A, Enzyme Research Labs) dissolved in a 40 mM CaCl2 

solution. After mixing, the final concentration was 5% fibrinogen, 10 units/mL of 

human α-thrombin, 20 mM CaCl2, dissolved in a 50% (v/v) solution of normal 

human plasma. Fibrin groups with particles (HAPnf or BG) were added equally 

to both syringes of the dual mixing syringe at a concentration of 10% (w/v). The 

fibrin group with cells was achieved by mixing concentrated cells and medium 

with 20 units/mL human α-thrombin and 40 mM CaCl2 in the dual syringe. The 

final concentration of components was the same as the other groups, with a final 

cell concentration of 106 cells/mL.   

 

Rheological Testing of Hydrogel Precursor Solution 

 Hydrogel precursor solution yield stress was determined using an AR2000 

controlled stress rheometer (TA-Instruments, New Castle, DE). Measurements 

were performed using a gap distance of 500 µm using a 20-mm diameter 

crosshatched stainless steel plate geometry and a crosshatched Peltier plate 

cover at 37°C (n = 5). Precursor yield stress was measured over an oscillatory 

shear stress sweep from 1-3000 Pa. The yield stress of each material was 

determined by the cross-over point of the storage (G’) and loss modulus (G”). 
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Hydrogel precursor solutions were prepared as previously described, with the 

exception that the fibrin groups were prepared without the enzymatic crosslinker 

α-thrombin.  

 

Mechanical Testing of Crosslinked Hydrogel 

 The crosslinked hydrogel compressive modulus (n = 5) was determined 

using an RSA III dynamic mechanical analyzer (TA-Instruments). Hydrogels for 

mechanical testing were prepared as previously described.(35) Briefly, hydrogel 

precursor solution was loaded into a 2 mm thick Teflon mold sandwiched 

between glass microscope slides. MeSDCC hydrogels were crosslinked with a 

312 nm UV-light at 9 mW/cm2 for 10 min (EB-160C, Spectroline, Westbury, NY). 

Fibrin hydrogels were crosslinked by injecting the two precursor solutions into the 

mold space using the dual syringe with mixing tip, the fibrin mixture was allowed 

to set for 5 min. After crosslinking, circular hydrogels were cut using a sterile 3 

mm biopsy punch. Hydrogels were pre-swollen in PBS for 24 hours before 

mechanical testing. The swollen hydrogel diameter was measured using a stereo 

microscope (20x magnification) and a micrometer, and the hydrogel height was 

measured using the RSA III. Hydrogels were compressed at a constant rate of 

0.005 mm/s until mechanical failure.(139) The compressive modulus was 

calculated from the slope of the linear portion of the stress-strain curve between 

10-20% strain.   
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Animal Model and Surgical Method 

 Animal experiments were approved by the Institutional Animal Care and 

Use Committee of the University of Kansas Medical Center (protocol #2015-

2303). The animal model and surgical method was conducted as previously 

described.(36) Briefly, mixed-sex Sprague-Dawley rats were raised to an age of 

7-10 weeks in-house and randomly assigned to treatment groups (n = 5). An 

incision was created on the posterior periphery of the skull to pull back the skin 

and periosteum exposing the calvarium. A critical-size (7.5 mm diameter) full 

thickness bone defect was created in the center of the calvarium (parietal bone) 

using a dental trephine. The circular piece of calvarial bone was removed, leaving 

the dura mater intact, and approximately 50 L of material was syringed into the 

defect. MeSDCC groups were then crosslinked using a handheld 312 nm UV-

light, and fibrin groups were allowed to enzymatically crosslink for 5 min after 

injection of material. The skin flap was then draped over the defect site and 

sutured to hold the material in place during the recovery period. The sham group, 

which has been republished from our previous study, received the same surgical 

method without the addition of material.(36) The DBX® group received 

approximately 50 L of DBX® Putty. The treated and untreated calvarial bone 

defects were harvested with the surrounding bone at 8 weeks post-implantation.  

 

Micro-computed Tomography (µCT) 

 Micro-computed tomography was performed on harvested rat calvarial 

bone after the 8-week recovery period to quantify new bone. A MicroXCT-400 
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(Carl Zeiss X-ray Microscopy, Pleasanton, CA) system with a 50-kV X-ray source 

at 7.9 W was used. Reconstructed µCT scans were analyzed using Avizo Fire 

computational software (FEI Company, Hillsboro, OR) to quantify new bone 

formation. New bone was confirmed using pre-existing bone as the threshold 

limit. Bone within the original 7.5 mm diameter defect was colored orange to 

indicate new bone formation. Quantified new bone is presented as the total (mm3) 

within the 7.5 mm diameter defect.  

 

Histology and Immunohistochemistry (IHC) 

 Explanted calvarial bone defect samples were fixed in 10% phosphate-

buffered formalin for 48 hours then stored long term in 70% ethanol. Calvarial 

tissue samples were then decalcified in Calrite media (Cat# 22-046-339, Thermo 

Fisher Scientific) for 3 weeks before dehydrating in a grade series of ethanol to 

xylene, then to paraffin wax for embedding. Using a microtome (HM 355S, 

Thermo Fisher Scientific), 5 µm thick sections were taken and affixed to 

microscope slides. Tissue slides were heated to 60°C for 20 min to improve 

adhesion of tissue to slides, then stored long term at -20°C. Before staining, 

tissue slides were dewaxed in xylene then rehydrated in a graded series of 

ethanol (i.e., 100% to 70%) followed by PBS. Slides were stained with 

hematoxylin and eosin (H&E, Cat# H-3404, Abcam, Cambridge, UK) to visualize 

cell infiltration and new bone formation.  

 Immunohistochemistry (IHC) was used to visualize the deposition of 

collagen I (Cat# NB600-408, Novus Biologicals, Littleton, CO) and collagen II 
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(Cat# NBP2-33343, Novus Biologicals) within the defect site. An in-depth protocol 

of the IHC procedure has been previously published.(36) Briefly, after tissue 

dewaxing and rehydrating to PBS with Tween-20 (Cat# P3563, Sigma-Aldrich), 

antigen retrieval was performed using 20 µg/mL proteinase K (Cat# ab64220, 

Abcam) for 15 min at 37°C, then cooled at room temperature for 10 min. Sections 

were then blocked with 0.3% hydrogen peroxide (Cat# ab94666, Abcam) for 10 

min, 10% normal horse serum (Cat# PK-6200, Vector Labs, Burlingame, CA) for 

20 min, 5% bovine serum albumin (Cat# A9647, Sigma-Aldrich) for 20 min, and 

avidin/biotin blocking (Cat# SP-2001, Vector Labs) for 15 min each. Sections 

were then incubated with either 10 µg/mL of collagen I or 5 µg/mL of collagen II 

(100 µL volume) for 1 hour. After incubation of sections with the primary antibody, 

slides were washed between each following step using PBS with Tween-20 for 5 

min. Sections were then incubated with biotinylated horse anti-mouse/rabbit IgG 

(Cat# PK-6200, Vector Labs) for 30 min, VECTASTAIN Elite ABC solution (Cat# 

PK-6200, Vector Labs) for 30 min, DAB solution (Cat# SK-4100, Vector Labs) for 

2 min, DAB-enhancing solution (Cat# H-2200, Vector Labs) for 10 s, 

counterstained using hematoxylin QS (Cat# H-3404, Vector Labs) for 1 min, 

bluing solution (Cat# 7301, Thermo Fisher Scientific) for 3 min, then dehydrated 

in a graded series of ethanol (i.e., 70-100%) to xylene before mounting. Negative 

controls for each IHC batch were included to confirm negligible background 

staining.  
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Statistical Methods 

 Statistical analyses were conducted using the GraphPad Prism (Graphpad 

Software Inc, La Jolla, CA) statistical software. A one-way analysis of variance 

with groups of factors was used to analyze groups. Tukey’s post-hoc test was 

used for comparing between groups. Rheological testing, mechanical testing, and 

µCT had n = 5 samples per group, and data are reported as the mean ± standard 

deviation.  

 

Results 

Rheological Analysis of Hydrogel Precursor 

 Representative rheometer traces are provided for each hydrogel precursor 

solution that exhibited a yield stress (Fig. 4.1A). Fibrin and fibrin-BG did not create 

a noticeable yield stress after being mixed. The yield stress of the MeSDCC-

HAPnf group (1641 Pa) was 3.3 and 4.4 times greater than those of the MeSDCC 

and fibrin-HAPnf group, respectively (Fig. 4.1B, p < 0.0001). The yield stress of 

the MeSDCC-BG group (1456 Pa) was 2.9 and 3.9 times greater than those of 

the MeSDCC and fibrin-HAPnf group, respectively (p < 0.0001). No significant 

difference was observed between MeSDCC and fibrin-HAPnf, or between 

MeSDCC-HAPnf and MeSDCC-BG formulations.  

 

Mechanical Analysis of Crosslinked Hydrogel 

 Representative stress-strain curves are provided for each material 

formulation post-crosslinking (Fig. 4.2A-B). The MeSDCC-HAPnf group (711 
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kPa) had a compressive modulus that was 4, 26.4, 45.7, and 29.4 times greater 

than the compressive moduli of the MeSDCC, fibrin, fibrin-HAPnf, and fibrin-BG 

groups, respectively (Fig. 4.2C, p < 0.01). The MeSDCC-BG group (989 kPa) had 

a compressive modulus 5.5, 36.7, 63.6, and 40.9 times greater than those of the 

MeSDCC, fibrin, fibrin-HAPnf, and fibrin-BG groups, respectively (p < 0.01). No 

other differences in modulus were statistically significant. 

 

Micro-computed Tomography (µCT) Analysis 

 Large bone islands were observed in both the sham and DBX group; 

however, bone islands observed in the sham group were thin and did not 

significantly contribute to overall total regenerated bone volume (Fig. 4.3A). Small 

bone island formation was observed in all samples except the MeSDCC group 

and groups containing HAPnf. Peripheral bone growth was observed in all 

samples. The DBX group (8.94 mm3) had 2.1, 2.7, 2.8, 4.3, 5.5, 3.1, 3.0, 3.1, and 

2.6 times greater bone regeneration compared to the sham, fibrin, fibrin+Cells, 

fibrin-HAPnf, fibrin-BG, MeSDCC, MeSDCC+Cells, MeSDCC-HAPnf, and 

MeSDCC-BG groups, respectively (Fig. 4.3B, p < 0.05). No significant difference 

was observed among any other group.  

 

Histological and Immunohistochemistry (IHC) Analysis 

 Soft tissue formation spanning the defect site was observed in all samples 

(Fig. 4.4). Peripheral bone growth was observed in all samples and tended to 

form toward the dural side of the defect. No differences were noted among the 
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MeSDCC or Fibrin groups with or without the addition of rMSCs. Groups with 

exogenously added cells did not appear to have a higher number of stained nuclei 

within the defect. Groups containing HAPnf had leftover material within the defect 

site after the 8-week recovery period, and in some samples, cells were unable to 

migrate to the center of the material. Leftover MeSDCC hydrogel was observed 

in the MeSDCC-BG group based on collagen II deposition. Leftover BG particles 

were observed in both MeSDCC and Fibrin hydrogels and tended to migrate to 

the periphery of the defect site in all samples.  

 Collagen I staining showed substantial deposition throughout the defect 

site, including the soft tissue portion (Fig. 4.5). Native peripheral bone was used 

as the reference for comparison. In groups containing HAPnf, minimal deposition 

of collagen I was observed toward the center of the defect. Staining for collagen 

II showed almost no collagen II deposition within the defect site, except for the 

MeSDCC-BG group, where small tissue pockets positively staining for collagen 

II deposition were observed. 

 

Discussion 

 The current study was the first to use an in situ crosslinking hydrogel 

comprised of naturally-derived decellularized cartilage-based matrix for calvarial 

bone regeneration in vivo. The use of a cartilage-based hydrogel for bone 

regeneration follows our previous work using micronized decellularized hyaline-

cartilage particles and hydroxyapatite colloidal gels for bone regeneration in 

vivo.(36) In designing hydrogels with potential for TBI treatment in mind, the 
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mechanical performance of the material before and after UV-crosslinking was 

identified as a crucial aspect for clinical translation.(20) All MeSDCC hydrogels 

tested exhibited sufficient yield stress (𝜏𝑦 > 500 Pa) for material placement, and 

addition of HAPnf or BG particles significantly increased the yield stress of the 

material to a range of 1400 to 1600 Pa. For context, the yield stress of 

mayonnaise is approximately 200 Pa, and the yield stress of Play-Doh is 

approximately 3000 Pa.(67) The potential reason that only the fibrin-HAPnf led 

to a detectable yield stress may have been that the fibers would conceivably 

interact more with their surrounding environment than a sphere due to the 

randomized fiber orientation distribution, and a changing microstructure from 

fiber-fiber and fiber-medium interactions.(140) Although the calvarium is a non-

load bearing bone, sufficient material mechanical performance is necessary to 

remain in place during healing, and provide a barrier between the brain and scalp. 

Due to stiffness being an important parameter for material success, the 

compressive modulus of hydrogels was characterized. After crosslinking of the 

hydrogel precursor, MeSDCC hydrogels with colloids had considerably higher 

compressive moduli compared to fibrin groups; however, no significant difference 

was observed among the MeSDCC group and the fibrin groups. The addition of 

colloids in fibrin groups did not increase the compressive modulus as observed 

in the MeSDCC groups. Comparing fibrin and MeSDCC without particles, 

MeSDCC on average had a higher compressive modulus, potentially due to a 

greater crosslinking density. The difference in compressive modulus could be in 

part due to limited initial crosslinking in fibrin groups compared to MeSDCC, and 
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thus the added colloids were not sufficiently encapsulated in the matrix, or that 

the MeSDCC material interacted with the particles to a greater extent. 

Additionally,  Although the compressive modulus of native bone is on the 

magnitude of Gpa, hydrogels do not necessarily need to match the compressive 

modulus of native bone in the calvarium due to the non-load bearing nature.(141) 

The elastic nature of a hydrogel would also be beneficial for future TBI application 

allowing pliability during brain swelling. For these reasons, we have identified a 

minimum compressive modulus of 100 kPa, similar to human skin tissue to 

maintain shape while remaining pliable.(142)  

 In vivo bone tissue formation within the defect for both fibrin and MeSDCC 

groups was minimal. No difference in bone formation was observed among any 

fibrin or MeSDCC formulation. The DBX® group was the only group to outperform 

the sham control in regenerated bone volume, showing increased bone formation 

spanning into the defect. Sham groups had noticeable bone island formation 

covering an ample area; however, the bone formed was especially thin and did 

not contribute significantly to the overall bone volume. Sporadic small bone island 

formation was observed in all groups, with the exception of the HAPnf-containing 

groups. H&E staining revealed a large amount of leftover HAPnfs in both fibrin 

and MeSDCC formulations. The HAPnf appeared to perhaps inhibit cell migration 

toward the center of the material. Cell migration issues with HAPnf were 

especially problematic in combination with MeSDCC, potentially due to the high 

compressive modulus and yield stress of the material during hydrogel 

degradation for cellular infiltration. Collagen I deposition was homogeneous 
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throughout all samples except the HAPnf containing groups, where there was 

minimal positive staining for collagen I in the center of the material, most likely 

due to the lack of cellular infiltration into the material. The only material to have 

leftover hydrogel matrix inside the defect after the 8-week period was the 

MeSDCC-BG group; however, the remaining volume was especially small and 

not apparent in all samples. Collagen II deposition was not detected in all samples 

except for the MeSDCC-BG group, in which the leftover MeSDCC hydrogel 

positively stained for collagen II. One may argue that the incorporation 

enzymatically degradable sequences or a material porogen may enhance 

regenerative capabilities by facilitating cellular infiltration and remodeling. 

However, the observation of remaining MeSDCC in only one group, juxtaposed 

with the limited capacity of regeneration even with rMSCs present, leads to the 

conclusion that the inherent material bioactivity is the primary focus for future 

improvement becomes, with cell infiltration and migration being relegated to a 

secondary issue.  

 Although our group was the first to use naturally derived cartilage for 

calvarial bone regeneration, other groups have studied the use of cartilage matrix 

(naturally derived or tissue engineered) for bone formation. Cunniffe et al.(143) 

studied the use of chondrogenically-primed rMSCs encapsulated in alginate 

hydrogels to partially mimic the endochondral ossification healing process in rat 

critical-size femur and calvarial defects. The rMSC-alginate hydrogels appeared 

to support bone formation at the hydrogel surface, and comparable bone 

regeneration to the current study was observed. In another study from that same 
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group, a decellularized tissue engineered cartilage scaffold was studied for use 

in long bone defect healing.(144) The tissue engineered cartilage scaffold 

promoted more bone regeneration on average compared to the sham group; 

however, a considerable amount of deviation was observed within the group. 

Both studies by Cunniffe et al. illustrated promise for the use of cartilage-derived 

matrix/cells in promoting bone regeneration by recapitulating part of the 

endochondral ossification process. In a study using DCC scaffolds to promote 

endochondral bone formation, collagen I deposition was observed after 22 days 

of subcutaneous implantation in a rat model.(128) Similarly, in another study, 

collagen I deposition and mineralization was observed in gelatin methacrylamide 

hydrogels encapsulating DCC particles after 8 weeks of in vivo rat subcutaneous 

implantation.(145) Both studies supported the use of DCC as a material for bone 

regeneration. In comparing the referred studies to the current study, limited bone 

regeneration with MeSDCC hydrogels in the current study may potentially have 

been attributed to the processing of DCC. The further processing of DCC to 

create MeSDCC may potentially have contributed to a lower bioactivity and 

subsequent lower bone formation. DCC solubilization is speculated to have been 

the major contributing factor in the reduction of material bioactivity, as potential 

signals may have been affected by the process. Reduced bioactivity due to tissue 

decellularization has been previously discussed, in which devitalized cartilage 

(DVC) had greater bioactivity than DCC potentially due to altering matrix 

architecture and a reduction of important growth factors from 

decellularization.(48) DVC is cartilage extracellular matrix that has only 
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undergone physical processing (i.e., granulating) without the additional step of 

chemical decellularization.(7) In another study from our group evaluating 

methacrylated solubilized devitalized cartilage (MeSDVC) loaded with DVC 

particles, increased gene expression was observed in MeSDVC hydrogels with 

DVC particles compared to MeSDVC alone.(2) Therefore, both decellularization 

and solubilization could potentially contribute to lower bioactivity. Future studies 

using cartilage will focus on minimizing the processing of cartilage to retain 

material activity, in which the use of DVC may be of interest for enhancing 

endochondral bone formation. Further research is necessary to fully characterize 

the use of cartilage in bone regeneration in general, and in calvarial defect 

regeneration in particular.  

 

Conclusion 

 MeSDCC hydrogels composed entirely of naturally-derived DCC 

demonstrated desirable handling properties in the pre-crosslinked form, and 

appropriate mechanical performance post-crosslinking for a cranioplasty 

application. The addition of synthetic particles (HAPnf or BG) increased the 

mechanical stiffness of MeSDCC hydrogels several fold, approaching the 1 Mpa 

mark in compressive modulus, which may be desirable in a TBI application. In 

vivo testing in an 8-week rat calvarial defect model demonstrated minimal bone 

formation in both MeSDCC and fibrin groups containing osteoconductive 

particles. Encapsulated rMSCs did not appear to influence bone formation in 

either fibrin or MeSDCC hydrogels, and significant bone formation was only 
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observed in the DBX® group, suggesting that material bioactivity may be the 

governing limitation beyond cell infiltration.  Minimal bone formation using 

MeSDCC compared to other published studies potentially suggests that DCC 

solubilization may have potentially reduced material activity in this application. 

Further research is necessary to determine the full capacity of cartilage (DCC 

and DVC) as a material to promote bone regeneration.  
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Chapter 5: Superior Calvarial Bone Regeneration with 

Pentenoate-Functionalized Hyaluronic Acid Hydrogels with 

Devitalized Tendon Particles4 

 

Abstract 

 Traumatic brain injury (TBI) is a life-threatening condition defined by 

internal brain herniation. Severe TBI is commonly treated by a two-stage surgical 

intervention, where decompressive craniectomy is first conducted to remove a 

large portion of calvarial bone and allow unimpeded brain swelling. In the second 

surgery, spaced weeks to months after the first, cranioplasty is performed to 

restore the cranial bone. Hydrogels with paste-like precursor solutions for surgical 

placement may potentially revolutionize TBI treatment by permitting a single-

stage surgical intervention, capable of being implanted with the initial surgery, 

remaining pliable during brain swelling, and tuned to regenerate calvarial bone 

after brain swelling has subsided. The current study evaluated the use of 

photocrosslinkable pentenoate-functionalized hyaluronic acid (PHA) and non-

crosslinking hyaluronic acid (HA) hydrogels encapsulating naturally derived 

tissue particles of demineralized bone matrix (DBM), devitalized cartilage (DVC), 

devitalized meniscus (DVM), or devitalized tendon (DVT) for bone regeneration 

in critical-size rat calvarial defects. The commercial product DBX® was used as 

   
4Submitted as: Townsend JM, Andrews BT, Feng Y, Wang J, Nudo RJ, Van Kampen E, 
Gehrke SH, Berkland CJ, Detamore MS. Superior Calvarial Bone Regeneration using 
Pentenoate-Functionalized Hyaluronic Acid Hydrogels with Devitalized Tendon Particles. Acta 
Biomaterialia, 2017. 
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the positive control for the study. The HA-DBM (4-30%), PHA (4%), and PHA-

DVT (4-30%) groups had 5 (p < 0.0001), 3.1, and 3.2 (p < 0.05) times greater 

regenerated bone volume compared to the sham (untreated defect) group, 

respectively. In vitro cell studies suggested that the PHA-DVT (4-10%) group 

would have the most desirable performance. Overall, hydrogels containing DVT 

particles outperformed other materials in terms of bone regeneration in vivo and 

calcium deposition in vitro. Hydrogels containing DVT will be further evaluated in 

future rat TBI studies.  

Introduction 

 Traumatic brain injury (TBI) is a life-threatening condition characterized by 

internal brain swelling, the degree of which can vary greatly. TBI inflicted by a 

closed head injury or stroke can result in severe brain swelling requiring surgical 

intervention.(109) The current surgical procedure to treat severe TBI involves a 

two-stage surgery. In the first surgery, decompressive craniectomy (DC) is 

performed to remove a large portion of the calvarial bone and allow un-impeded 

brain swelling.(146) The size of calvarial bone removed during DC is considered 

a critical size defect as the bone will not naturally heal by itself. After brain 

swelling has subsided, a second surgery—termed cranioplasty—is performed to 

close the cranial vault.(131) The average time between DC and cranioplasty has 

been reported up to 80 days; during this time the brain is left unprotected. 

Syndrome of the trephined (SoT), also known as sinking skin flap syndrome, is a 

severe neurological condition associated with mood changes, fatigue, dizziness, 

motor skill problems, and concentration issues.(116) The occurrence of SoT has 
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been connected to patients following DC for the treatment of TBI.(114) The cause 

of SoT has been attributed to various factors such as changing intracranial 

pressure,(147) and physical distortion of the brain from the weight of the 

scalp.(148) Immediate relief from SoT has been observed directly after 

cranioplasty,(114) and it is recommended that cranioplasty be performed as soon 

as clinically possible to mitigate the occurrence of SoT.(148) The current two-

stage surgical treatment is non-advantageous as it prolongs patient recovery by 

requiring two separate surgeries and potentially results in the neurological 

condition SoT.  

 Various research groups have reported new approaches to treat TBI. 

Martin et al.(123) previously studied the effect of a single-surgical approach 

combining DC and autologous bone flap cranioplasty in a pediatric patient 

population and found high complication rates. A potential issue with combining 

DC and cranioplasty in a single surgical intervention is that current methods, such 

as autologous bone flap cranioplasty, do not allow the brain to swell as the 

constructs are rigid bodies. Currently there is an unmet need for a material that 

can be implemented in a single-stage surgery to treat TBI, capable of remaining 

flexible during brain swelling, then transitioning to bone after brain swelling has 

ceased. Most research into TBI treatment has focused on methods to improve 

brain tissue healing(119, 135-138) or blocking tissue growth to ease the transition 

between DC and cranioplasty.(111) Currently available commercial bone void 

fillers cannot be used for cranioplasty following DC as the treatments are unable 

to regenerate sufficient bone across the critical size defect and do not remain 
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pliable after implantation. The first step in designing a material for TBI treatment 

after DC is to identify a pliable material capable of regenerating bone across a 

critical size defect. Once a pliable material that can sufficiently regenerate bone 

has been identified, the next logical step would be testing in a TBI animal model.  

 The objective of the current study was to evaluate the use of a 

photocrosslinking hyaluronic acid (HA) hydrogel encapsulating devitalized tissue 

particles for calvarial bone regeneration in a critical size calvarial defect. The use 

of a photocrosslinking hydrogel for calvarial bone regeneration represents a next-

generation biomaterial following our previous work.(36, 103) In the current study, 

hydrogels encapsulating tissue particles were created by combining pentenoate 

functionalized hyaluronic acid (PHA) or non-crosslinking hyaluronic acid (HA) 

with demineralized bone matrix (DBM), devitalized cartilage (DVC), devitalized 

meniscus (DVM), or devitalized tendon (DVT) particles. PHA hydrogels are an 

attractive material choice as the crosslinking time is on the range of 1-2 minutes. 

Compared to other options like methacrylated HA, which has a crosslinking time 

on the range of 5-10 minutes, a faster crosslinking time is desirable for the 

addition of cells or for surgical use.(149-153) The use of hydrogels by surgeons 

is often overlooked during the hydrogel design process. Hydrogel precursor 

handling properties can be tuned specifically with the surgeon in mind, 

developing paste-like precursor solutions to aid in material placement to ease 

clinical translation.(35) 

 The use of different extracellular matrix (ECM) materials for calvarial bone 

regeneration attempts to apply and recapitulate part of the endochondral 
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ossification process by delivering an intermediate material to accelerate 

healing.(108) Cartilage, meniscus, and tendon tissues were selected as they are 

comprised of varying amounts of collagen I or collagen II and may provide 

additional bioactive signals to promote healing. Crosslinking (i.e., PHA) and non-

crosslinking (i.e., HA) tissue hydrogels with a single colloidal loading of 30% were 

evaluated in a critical size rat calvarial defect model and groups with significant 

bone regeneration were refined explored in vitro. We hypothesized that ECM 

from sources other than bone would promote comparable or superior bone 

regeneration in a critical-size calvarial defect.  

 

Materials and Methods 

Preparation of Devitalized Tissue 

 Cartilage, meniscus, and tendon tissues were harvested from the knees 

of 10 castrated male Berkshire hogs (7-8 months of age, 120 kg) purchased from 

the local abattoir (Bichelmeyer Meats, Kansas City, KS). Tissue devitalization 

was described in our previous publication.(48) Briefly, harvested tissues were 

rinsed, strained, and chopped into small pieces. Tissues were coarse ground 

using a cryogenic tissue grinder (BioSpec Products, Bartlesville, OK) then frozen 

and lyophilized. Tissues were then cryoground using a freezer-mill (SPEX 6775, 

SamplePrep, Metuchen, NJ). Devitalized cartilage (DVC), devitalized meniscus 

(DVM), and devitalized tendon (DVT) particles were stored at -20°C for later use.  
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Synthesis of Pentenoate Functionalized Hyaluronic Acid (PHA) 

 Pentenoate functionalized hyaluronic acid (PHA) was synthesized as 

previously described.(154, 155) hyaluronic acid (HA, Mw = 1.01-1.8 MDa, 

Lifecore Biomedical, Chaska, MN) was dissolved in DI water at a concentration 

of 0.5% (w/v). Once fully dissolved, DMF was slowly added to the solution to 

achieve a final ratio of 3:2 (water:DMF). The pH of the solution was then adjusted 

to 9.5 using 1M NaOH. Pentenoic anhydride (Cat# 471801, Sigma-Aldrich, St. 

Louis, MO) was added in 5 M excess relative to HA and the pH was maintained 

between 8-9 for approximately 2 hours. Afterwards, NaCl was added to the 

solution to achieve a final concentration of 0.5 M. The PHA was then precipitated 

in four volumes of acetone and centrifuged at 7,000 x g to separate the PHA from 

solution. PHA pellets were then dissolved in DI water and transferred to dialysis 

packets (MWCO: 6-8 kDa). PHA was dialyzed against DI water for 48 hours, 

performing DI water exchanges every 12 hours. After dialysis, the PHA solution 

was frozen and lyophilized. Dry PHA was stored at -20°C for later use.  

 

Hydrogel Preparation 

 Hydrogels were prepared as previously described.(36) Briefly, HA or PHA 

and tissue particles were weighed dry and combined. HA groups were 

resuspended in phosphate buffered saline (PBS, Cat# P3813, Sigma-Aldrich) 

solution, and PHA groups were resuspended in PBS solution containing 2.3 mM 

of 2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959, Cat# 

410896, Sigma-Aldrich) and 1% dithiothreitol (DTT, Cat# D0632, Sigma-Aldrich). 
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Dry material combinations were sterilized using ethylene oxide gas (AN74i, 

Anderson Anprolene, Haw River, NC) and the PBS-I2959-DTT solution was 

sterile-filtered prior to resuspending PHA groups for use in vivo or in vitro. 

Hydrogel precursor solutions were allowed to reach ambient conditions for 2 h 

before implanting. Groups are presented as the material contents followed by 

weight per volume (in PBS) percentages of each in parentheses (i.e. PHA-DVC 

(4-30%) = 4% PHA + 30% DVC in PBS).  

 

Rheological Testing of Hydrogel Precursor  

 Hydrogel precursor yield stress (n = 3) was determined using a DHR-2 

controlled stress rheometer (TA Instruments, New Castle, DE). Measurements 

were performed using a 20-mm diameter crosshatched stainless steel plate 

geometry and a crosshatched Peltier plate cover at 37°C and a gap distance of 

500 µm. The Peltier solvent trap was used to ensure the material did not 

dehydrate during testing.  An oscillatory shear stress sweep from 10-5000 Pa 

was used to measure hydrogel precursor yield stress. Material yield stress was 

defined as the cross-over point of the storage (G’) and loss modulus (G”).(2)  

 

Mechanical Testing of Crosslinked Hydrogel 

 Crosslinked hydrogel compressive moduli (n = 5) were determined using 

an RSA III dynamic mechanical analyzer (TA Instruments). Crosslinked 

hydrogels were prepared using a previously published protocol.(35) Briefly, 

hydrogel precursor solutions were loaded into 2-mm thick Teflon molds 
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sandwiched between glass microscope slides and secured using clamps. 

Hydrogels were then crosslinked using a 312 nm UV-light at 9 mW/cm2 for 2 

minutes (EB-160C, Spectroline, Westbury, NY). Post-crosslinking, circular 

hydrogels cylinders were cut using a sterile 3 mm punch and swelled in PBS for 

24 hours before proceeding with mechanical testing. Swollen hydrogels were 

measured using a stereomicroscope and micrometer to determine the diameter 

(3.75 ± 0.1 mm), and hydrogel height (2.75 ± 0.1 mm) was measured using the 

RSA III. Hydrogels were compressed at a constant rate of 0.005 mm/s until 30% 

strain. The compressive modulus was calculated from the linear portion slope of 

the stress-strain curve between 5-15% strain.  

 

Animal Model and Surgical Method 

 Animal experiments were approved by the Institutional Animal Care and 

Use Committee of the University of Kansas Medical Center (protocol #2015-

2303). Male Sprague-Dawley rats were purchased from Charles River 

Laboratories (Wilmington, MA) at an age of 7-8 weeks; surgeries were conducted 

between 8-9 weeks of age. The calvarial bone was exposed by creating an 

incision on the posterior periphery of the skull to pull back the skin and 

periosteum. Using a dental trephine, a critical-size 7.5 mm diameter defect was 

created on the center of the calvarial bone. The circular piece of calvarial bone 

was carefully removed, leaving the dura mater intact. Approximately 50 µL of 

hydrogel paste was then syringed into the space and smoothed/shaped to the 

defect using a sterile spatula. Groups containing PHA hydrogel were then 
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crosslinked using a handheld 312 nm UV-light using a 312 nm UV-light at 9 

mW/cm2 for 2 minutes (EB-160C, Spectroline). The skin and periosteum were 

carefully draped over the defect site and sutured in place. The sham (untreated 

defect) group received the same surgical procedure without the addition of 

material, the DBX® group received approximately 50 µL of DBX® Putty, and the 

uninjured group received no surgical intervention. Calvarial bone was harvested 

after 8 weeks post-implantation (n = 5).  

 

Micro-Computed Tomography (µCT) 

 Micro-computed Tomography was performed using a Quantum FX 

imaging system (PerkinElmer, Waltham, MA) with a 50-kV X-ray source at 160 

µA. µCT imaging was conducted on harvested rat calvarial bone after 8 weeks 

post-implantation (n = 5). Scans were analyzed using Avizo computational 

software (FEI Company, Hillsboro, OR) to quantify regenerated bone volume. 

Regenerated bone was confirmed using pre-existing peripheral bone as the 

threshold. Total bone was determined using uninjured rat calvarial bone for 

determination of total bone regeneration percentage.  

 

Histology and Immunohistochemistry (IHC) 

 After fixing in 10% phosphate-buffered formalin for 48 hours and µCT 

imaging, explanted cranial bone samples were submerged in 70% ethanol for 

long-term storage. Embedding, sectioning, and staining of tissue was performed 

by the Stephenson Cancer Tissue Pathology Core at the University of Oklahoma 
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Health Sciences Center. Briefly, cranial implants with surrounding host bone were 

embedded in paraffin and sectioned in the sagittal plane following a standard 

protocol. Paraffin blocks were cut to a thickness of 4 µm and affixed to glass 

microscope slides. The SelecTech hematoxylin and eosin (H&E) staining system 

(Leica Biosystems, Wetzlar, Germany) was performed using a Leica ST5020 

multistainer (Leica Biosystems) following the manufacturer’s protocol (n = 5). 

 

In Vitro Cell Culture and Experimental Design 

 Pre-osteoblast mouse calvarial cells (MC3T3-E1, ATCC, Manassas, VA) 

were cultured in minimum essential medium- (Cat# 12561072, Thermo Fisher 

Scientific, Waltham, MA) supplemented with 10% fetal bovine serum (FBS, Cat# 

16000044, Thermo Fisher Scientific) and 1% penicillin/streptomycin (Cat# 

15140-122, Thermo Fisher Scientific). Medium was exchanged every other day 

and cells were cultured to a passage number of 2 before being used in the study. 

Experimental groups from the 8-week in vivo study that significantly outperformed 

the negative control (p < 0.05) were chosen to be refined in vitro to determine the 

minimum tissue particle concentration to achieve a desirable cellular response. 

Following the results of the in vivo study; PHA, PHA-DBM, and PHA-DVT groups 

were selected to evaluate the tissue particle concentration from 10 to 30%. 

Approximately 50 L of material was injected by syringe into each well of a 96-

well plate, centrifuged at 1000 x g for 5 minutes to evenly coat the bottom of the 

well, then crosslinked using the handheld UV light for 2 minutes. MC3T3-E1 cells 
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were seeded at a concentration of 104 cells per well (150 L volume) directly on 

top of the crosslinked material in each well of the 96-well plate (n = 5). 

 

Biochemical Assays 

 After 2 and 10 days of cell culture, seeded cells were lysed with 200 L of 

lysis buffer (Cat# R1060-1-50, Zymo Research, Irvine, CA) and DNA content was 

determined using the Quant-iTTM PicoGreenTM assay (Cat# P7589, Thermo 

Fisher Scientific) according to the manufacturer’s protocol (n = 5). Hydrogels 

without seeded MC3T3 cells served as controls for the study, designated as the 

tissue culture plastic (TCP) group. Hydrogel constructs were then dissolved in 

100 L of 1M hydrochloric acid to determine the amount of deposited calcium. 

Calcium was assayed using the QuantiChromTM calcium assay kit (BioAssay 

Systems, Hayward, CA) according to the manufacturer’s protocol (n = 5).  

 

Statistical Methods 

 GraphPad Prism (GraphPad Software Inc, La Jolla, CA) software was 

used to conduct all statistical analyses. A one-way analysis of variance with 

groups of factors was used for analyzing mechanical testing and CT results, and 

a two-way analysis of variance with groups of factors was used to analyze 

biochemical assays. Tukey’s post-hoc analysis was used to compare between 

groups. Yield stress testing had n = 3 samples per group. Compressive modulus, 

µCT, DNA, and calcium testing had n = 5 samples per group; all data are reported 

as the mean ± the standard deviation. 
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Results 

Rheological Analysis of Hydrogel Precursor 

 All material formulations tested exhibited a yield stress (𝜏𝑦 > 200 Pa, Fig. 

1A). The addition of ECM particles to PHA significantly increased the material 

yield stress in all groups except for the PHA-DVT (4-10%) group. PHA-DVC (4-

30%), PHA-DVM (4-30%), PHA-DBM (4-30%), PHA-DVT (4-20%), and PHA-

DVT (4-30%) had 23.1, 12.8, 14.8, 8.4, and 10.4 times greater yield stresses 

compared to the control PHA (4%) group (206 Pa) (p < 0.0001). PHA-DBM (4-

10%) and PHA-DBM (4-20%) had 6.3 and 5.8 times greater yield stresses 

compared to the PHA (4%) group (p < 0.05). The PHA-DVC (4-30%) group (4760 

Pa) had the highest yield stress, which was 1.8, 3.7, 4.0, 1.6, 5.3, 2.8, and 2.2 

times greater than those of the PHA-DVM (4-30%), PHA-DBM (4-10%), PHA-

DBM (4-20%), PHA-DBM (4-30%), PHA-DVT (4-10%), PHA-DVT (4-20%), and 

PHA-DVT (4-30%) groups, respectively (p < 0.0001). The PHA-DVM (4-30%) 

group (2644 Pa) had a yield stress that was 2.0, 2.2, and 2.9 times greater than 

those of the PHA-DBM (4-10%), PHA-DBM (4-20%), and PHA-DVT (4-10%) 

groups, respectively (p < 0.0001), and 1.5 times greater than that of the PHA-

DVT (4-20%) group (p < 0.05). The PHA-DBM (4-30%) group (3060 Pa) had a 

yield stress that was 2.4, 2.6, and 3.4, times greater than those of the PHA-DBM 

(4-10%), PHA-DBM (4-20%), and PHA-DVT (4-30%) groups, respectively (p < 

0.0001), and 1.8 times greater than that of the PHA-DVM (4-20%) group (p < 

0.001), and 1.4 times greater than that of the PHA-DVT (4-30%) group (p < 0.05). 
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The PHA-DVT (4-30%) group (2154 Pa) had a yield stress 1.7, 1.8, and 2.4 times 

greater than that of the PHA-DBM (4-10%), PHA-DBM (4-20%), and PHA-DVT 

(4-10%) groups, respectively (p < 0.05).    

 

Mechanical Analysis of Crosslinked Hydrogel 

 The addition of ECM particles increased the average compressive 

modulus of all hydrogels tested (Fig. 1B). The PHA-DVC (4-30%), PHA-DVT (4-

20%), and PHA-DVT (4-30%) groups respectively had 7.6, 3.2, and 2.5 times 

greater compressive moduli compared to the PHA (4%) group (7.4 kPa) without 

ECM particle (p < 0.01). PHA-DVC (4-30%) had a compressive modulus that was 

2.5 times greater than that of the PHA-DVM (4-30%) group (p < 0.05), and 4, 2.7, 

and 3 times greater than those of the PHA-DVT (4-10%), PHA-DBM (4-10%), and 

PHA-DBM (4-30%) groups, respectively (p < 0.001), and 2.4 times greater than 

that of the PHA-DBM (4-20%) group(p<0.01). The PHA-DVT (4-20%) group had 

a compressive modulus that was 3.2 times greater than that of the PHA-DVT (4-

10%) group (p < 0.05). The addition of ECM particles in DBM groups did not 

significantly increase the compressive modulus; however, a statistically 

significant increase in compressive modulus was observed in PHA-DVT groups 

with increasing ECM particles.     

 

Micro-computed Tomography (µCT) Analysis 

 Significant bone regeneration was not observed in non-crosslinking HA-

ECM formulations, except for the HA-DBM (4-30%) group (Fig. 2). Large bone 
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island formation was observed in all PHA groups; however, minimal bone-

bridging was observed. The HA-DBM (4-30%) group (67.1%) had 5, 4.2, 6.4, 6.3, 

3.6, and 2.9 times greater percent bone volume regeneration compared to the 

sham, HA-DVC (4-30%), HA-DVM (4-30%), HA-DVT (4-30%), PHA-DVC (4-

30%), and PHA-DVM (4-30%) groups, respectively (p < 0.0001). HA-DBM (4-

30%) also had 2.4 times (p < 0.01) and 1.8 times (p < 0.05) times greater percent 

bone volume regeneration compared to the DBX® and PHA-DBM (4-30%) 

groups, respectively. The PHA (4%) group (41.9%) had 3.1, 4, and 3.9 times 

greater percent bone volume regeneration compared to the sham, HA-DVM (4-

30%), and HA-DVT (4-30%), respectively (p < 0.05). The PHA-DVT (4-30%) 

group (42.4%) had 3.2, 4.1, and 4 times greater percent bone volume 

regeneration compared to the sham, HA-DVM (4-30%), and HA-DVT (4-30%), 

respectively (p < 0.05).  

 

Histological Analysis 

 Bone growth at the defect periphery was observed in all samples and 

formed toward the dural side of the defect (Fig. 3). A noticeable soft tissue 

formation was observed in the defect space where bone formation was absent. 

Thicker bone formation was observed in hydrogel groups with PHA compared to 

HA groups. Peripheral bone growth spanning into the defect site was observed 

at a higher rate in PHA hydrogel groups. Disjoined DBM particles were observed 

in the defect space for both the HA and PHA hydrogels and did not appear to 



 
 

92 
 

integrate with the regenerated bone. DVC, DVM, and DVT tissue particles were 

not observed in any group after the 8 week recovery time.  

 

Biochemical Analysis from In Vitro Study 

 After 2 days of cell growth, DNA content was by far the highest for the 

PHA-DVT (4-30%) group (14.2 µg/mL), significantly outperforming all other 

groups (Fig. 4A). Specifically, this PHA-DVT (4-30%) group at day 2 had 6.9, 

18.1, 19, 15.6, 13, 6.4, and 3.5 times greater DNA content compared to the TCP, 

PHA (4%), PHA-DBM (4-10%), PHA-DBM (4-20%), PHA-DBM (4-30%), PHA-

DVT (4-10%), and PHA-DVT (4-20%) groups at day 2, respectively (p < 0.0001). 

After 10 days of cell culture on hydrogel groups, the only group with a significant 

increase in DNA content was the TCP group. The TCP group (12.7 µg/mL) at day 

10 had had 6.1 times greater DNA content compared to TCP at day 2 (p < 

0.0001). The TCP group at day 10 had 21.5, 19.3, 11.7, 10.6, 17.5, and 3.9 times 

greater DNA content compared to the PHA (4%), PHA-DBM (4-10%), PHA-DBM 

(4-20%), PHA-DBM (4-30%), PHA-DVT (4-10%), and PHA-DVT (4-20%) groups, 

respectively (p < 0.001). The PHA-DVT (4-30%) group (18.4 µg/mL) at day 10 

had 31.2, 28, 16.9, 15.4, 25.4, and 5.6 times greater DNA content compared to 

the PHA (4%), PHA-DBM (4-10%), PHA-DBM (4-20%), PHA-DBM (4-30%), 

PHA-DVT (4-10%), and PHA-DVT (4-20%) groups, respectively (p < 0.0001). 

 Calcium assayed at days 2 and 10 showed a significant increase of 

calcium content in hydrogels containing devitalized tendon. The TCP group had 

a near zero result (Fig. 4B). PHA-DVT (4-10%) (8.44 mg/dL), PHA-DVT (4-20%) 
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(8.78 mg/dL), and PHA-DVT (4-30%) (6.82 mg/dL) at day 10 had increases of 

2.8, 2.7, and 3.3 times compared to day 2, respectively (p < 0.0001). At day 10, 

The PHA-DVT (4-10%) group had 2.2, 1.6, 3.1, and 6.3 times greater calcium 

content compared to the PHA (4%), PHA-DBM (4-10%), PHA-DBM (4-20%), and 

PHA-DBM (4-30%), respectively (p<0.0001). The PHA-DVT (4-20%) group at 

day 10 had 2.3, 1.7, 3.2, and 6.6 times greater calcium content compared to PHA 

(4%), PHA-DBM (4-10%), PHA-DBM (4-20%), and PHA-DBM (4-30%), 

respectively (p < 0.0001). The PHA-DVT (4-30%) group at day 10 had 1.8, 2.5, 

and 5.1 times greater calcium content compared to the PHA (4%), PHA-DBM (4-

20%), and PHA-DBM (4-30%) groups, respectively (p < 0.05). The PHA-DBM (4-

10%) group (5.17 mg/dL) at day 10 had 3.9 times greater calcium content 

compared to the PHA-DBM (4-30%) group (p < 0.001). No significant differences 

were observed among day 2 groups.  

 

Discussion 

 The current study was the first to evaluate multiple sources of extracellular 

matrix materials for bone regeneration in a critical size calvarial defect. Hydrogels 

presented in the current study demonstrated desirable paste-like handling 

properties for surgical placement and fast crosslinking times. The current study 

represents the next generation of materials following our previous work using 

micron-sized decellularized cartilage and hydroxyapatite for calvarial bone 

regeneration in vivo.(36, 37) In designing hydrogels for the current study, aspects 

such as mechanical performance, both solid (post-crosslinking) and fluid (pre-
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crosslinking), were determined to be of great importance for clinical translation 

and future application to TBI treatment.(20) Mechanical performance of the 

hydrogel precursor solution and the crosslinked hydrogel, specifically the 

precursor solution yield stress and the crosslinked hydrogel compressive 

modulus, respectively, were determined to be vital parameters to demonstrate 

feasibility for material placement and retention. All hydrogel precursors (prior to 

crosslinking) exhibited adequate yield stress (𝜏𝑦 > 200 Pa) for material 

placement, and the addition of tissue particles increased the average yield stress 

of all groups. For context, the yield stress of common household items such as 

mayonnaise and Play-Doh are 200 and 3000 Pa, respectively.(67) The addition 

of 30% cartilage particles had the greatest effect on material yield stress, 

potentially due to the presence of the charged proteoglycan,  aggrecan.(156) 

Only PHA-containing groups were evaluated for yield stress as the rheological 

differences between HA and PHA were assumed to be negligible. After material 

crosslinking to form hydrogels, the average compressive modulus increased for 

the groups containing particles; however, the result was only significant in the 

DCC and some DVT-containing groups. The significant increase in compressive 

modulus for the DVC and DVT groups was speculated to be attributed to material 

interaction between the PHA hydrogel and the tissue particle. Although the 

compressive moduli of the hydrogels tested in the current study were relatively 

low, the stiffness does not necessarily need to meet that of native bone (i.e., GPa) 

due to the TBI application requiring flexibility of the biomaterial.(141)  
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 One of the more striking results of the current study was that in vivo bone 

formation differed greatly between the HA- and PHA-containing groups. Both HA 

and PHA were evaluated due to the speculation that hydrogel crosslinking may 

influence cellular infiltration. For every group besides the DBM containing group, 

average bone formation was greater when the tissue was combined with PHA 

rather than non-crosslinking HA. Due to the aforementioned observation, 

hydrogel formation may potentially aid in regeneration by providing a three-

dimensional framework; however, the hydrogel may also impede access to the 

colloidal material as demonstrated by the CT results. The speculation that the 

PHA hydrogel crosslinking may potentially impede cellular infiltration was 

debunked for the PHA hydrogels in the current study as demonstrated by H&E 

staining. Interestingly, the positive control of DBX® had less bone regeneration 

compared to both HA-DBM and PHA-DBM. DBX® contains approximately 31% 

cortical bone and 4% hyaluronic acid (Mw = 1 MDa) by weight and would be 

expected to have similar bone regeneration compared to the non-crosslinking 

HA-DBM (4-30%) group that had approximately 22% cortical bone by 

weight.(157) The major difference of DBX® comparatively to HA-DBM (4-30%) 

and PHA-DBM (4-30%) being the hyaluronic acid molecular weight and bone 

concentration. The PHA (4%) control group similarly demonstrated greater 

average bone regeneration compared to DBX®; however, the finding was not 

significant. Another study used an 80 kDa, 30 wt% maleimide-modified HA 

(MaHA) hydrogel tested in a critical size rat calvarial defect and reported less 

bone regeneration on average compared to the current study.(87) Noting 
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differences of the MaHA hydrogel compared to the current study of HA molecular 

weight, concentration, and crosslinking mechanism, histological analysis 

demonstrated that the MaHA gel remained after 8 weeks of recovery. No 

hydrogel persisted after 8 weeks of recovery in the current study as demonstrated 

by H&E staining. Further investigation into the relationship between hyaluronic 

acid molecular weight and bone regeneration is recommended to fully understand 

the use of the polymer in bone regeneration. 

 Other groups have evaluated the use of different extracellular matrices for 

bone regeneration. One such group demonstrated desirable bone regeneration 

in a mouse calvarial defect model using scaffolds derived from decellularized 

bovine Achilles tendon seeded with human adipose-derived stem cells.(158) 

Another group proposed the use of different ECM materials for general hydrogel 

applications, in which photocrosslinking hydrogels composed of methacrylated 

gelatin and solubilized-methacrylated-ECM (i.e., cartilage, meniscus, and 

tendon) were created and tested for in vitro gene expression.(145) Perhaps the 

majority of focus into new ECM materials for bone regeneration has been 

targeted at using cartilage as a material for bone regeneration.(36, 128, 143, 144) 

Although other groups have demonstrated promise for cartilage as a material to 

facilitate bone regeneration, including our own group, the current study 

demonstrated minimal regeneration compared to previous studies as indicated 

by µCT and H&E staining.   

 Groups with significantly greater bone regeneration compared to the sham 

were selected for further refinement in vitro to determine the most attractive tissue 
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particle concentration for future application to TBI treatment. PHA (4%), PHA-

DBM (4-30%), and PHA-DVT (4-30%) were selected for further refinement. 

Although the HA-DBM (4-30%) group had the largest bone regeneration in the 

current study, a crosslinking hydrogel is necessary for application to TB 

treatment, thus the PHA-DBM (4-30%) group was included due to the large bone 

regeneration observed in the HA-DBM (4-30%) group. Material crosslinking is 

necessary for potential application to a single surgical intervention to treat TBI, 

thus refining the material to determine the minimum particle concentration to 

achieve maximum crosslinking was explored. In vitro studies demonstrated 

significantly greater proliferation on the PHA-DVT (4-30%) group, potentially 

attributed to greater initial cellular adhesion during seeding. Interestingly, cellular 

number did not significantly change over 10 days on the hydrogel groups. Initial 

calcium deposition was relatively the same for hydrogel groups after 2 days of 

culture, but significantly increased on hydrogels containing DVT by 10 days. 

Overall, DVT hydrogels outperformed other crosslinked hydrogels and calcium 

deposition suggested that the most desirable particle concentration would be 

10%. Future studies will focus on using the refined particle concentration in a rat 

TBI model.   

 

Conclusion 

 The current study demonstrated the feasibility of PHA hydrogels 

encapsulating ECM tissue particles for use in calvarial bone regeneration. 

Desirable paste-like handling properties of the pre-crosslinked hydrogels, and 
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mechanical performance after crosslinking was demonstrated in the current study 

for relevance to TBI. The addition of tissue particles increased both the yield 

stress and compressive modulus of the material on average, with the cartilage 

particles leading to the greatest yield stress. The PHA (4%) and PHA-DVT (4-

30%) groups led to the greatest bone regeneration, and the tendon particles 

likewise demonstrated superior calcium deposition by MC3T3 cells in vitro, with 

10% DVT appearing to be the most desirable concentration. Future studies will 

attempt to evaluate leading materials in an in vivo rat TBI model.  
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Chapter 6: Conclusion 

 The current dissertation has successfully identified a pliable hydrogel 

material capable of regenerating bone in a critical size calvarial defect with 

potential application to the treatment of traumatic brain injury (TBI). Hydrogels 

are an attractive choice for regenerative medicine approaches, highlighting their 

capability for in situ placement to fill any size or shape of tissue defect, a 

secondary crosslinking mechanism to ensure retention at the site of application, 

pliability after crosslinking for tailored application such as TBI, and the inherent 

ability to encapsulate other materials or biosignals for specific tissue 

regeneration. The hydrogel precursor performance can be further tailored with 

clinical translation in mind, creating precursor solutions that exhibit paste-like or 

putty-like handling properties for ease of placement. For the aforementioned 

reasons, hydrogels were selected for application in calvarial bone regeneration 

and treatment of TBI.  

 To successfully create a hydrogel material for application to a single-stage 

TBI treatment the material must remain pliable after initial implantation to allow 

un-impeded brain swelling, prevent the manifestation of neurological conditions, 

and regenerate bone spanning a critical size defect. Hydrogels are inherently 

pliable after crosslinking, thus the first step in designing hydrogels for TBI 

application is to create a hydrogel that can adequately regenerate bone in a 

critical size defect. Predecessors of the current dissertation have evaluated the 

use of physical “colloidal gels” comprised of synthetic particles capable of tailored 

biosignal release to promote calvarial bone regeneration.(31, 32, 34, 37, 103, 
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108) The colloidal gels were capable of exhibiting desirable paste-like handling 

properties for placement and demonstrated promising in vitro cell response. The 

encouraging results from predecessors using colloidal gels prompted their use in 

the current dissertation, marking the beginning of the research presented. 

 Colloidal hydrogels comprised of hyaluronic acid (HA), hydroxyapatite 

nanoparticles (HAp), and extracellular matrix (ECM) materials of demineralized 

bone matrix (DBM) or decellularized cartilage (DCC) exhibited ideal handling 

performance for implantation. Comparing the use of ECM materials to growth 

factors such as bone morphogenetic protein-2 (BMP-2) or vascular endothelial 

growth factor (VEGF), similar bone regeneration was observed between the HA-

HAp (BMP-2) group and the HA-HAp-DCC group. DBM containing groups on 

average had lower bone regeneration compared to the HA-HAp-DCC group, 

suggesting that materials other than the traditional DBM could be used for bone 

regeneration. The aforementioned findings suggested that ECM materials could 

be used in place of costly growth factors to create clinically translatable products 

and prompted additional research using DCC in bone regeneration. One major 

down-fall of the colloidal gels used in Aim 1 was the lack of a crosslinking 

mechanism, which resulted in material retention issues, which I believe may have 

led to diminished regenerative potential. To circumvent the material retention 

issue observed and further evaluate the use of cartilage ECM as a material for 

bone regeneration, a crosslinking hydrogel material was selected for subsequent 

studies. 



 
 

101 
 

 Predecessors of this work had previously developed a crosslinking 

hydrogel matrix comprised of naturally derived decellularized cartilage matrix for 

use in cartilage regenerative medicine.(48, 89) The methacrylated solubilized 

decellularized cartilage (MeSDCC) hydrogel exhibited desirable handling 

performance prior to crosslinking, high mechanical stiffness after crosslinking, 

and the ability to encapsulate nano- and micron-size particles. The MeSDCC 

hydrogels were an attractive material choice to address material retention issues 

while expanding upon the use of cartilage ECM for bone regeneration in aim 2 

studies. 

 MeSDCC could be further refined for bone regeneration by the addition of 

rat mesenchymal stem cells, or synthetic osteoconductive particles of bioglass 

microparticles or hydroxyapatite nanofibers. MeSDCC results following the 8 

week in vivo study were lackluster in terms of bone regeneration. Clear 

differences in average bone regeneration were observed between the use of 

DCC and MeSDCC, prompting speculation into why these potential differences 

may exist. Tissue processing was speculated to be the major contributing factor, 

as tissue solubilization using protein digestion most likely diminished ECM 

bioactivity by degrading the ECM into unrecognizable components. For future 

studies, utilizing cartilage it is highly recommended to minimize tissue processing 

to retain material bioactivity, thus cartilage devitalization is an attractive 

approach. Devitalization, which is similar to decellularization, only incorporates 

physical processing (i.e., granulating) methods without the additional step of 

chemical decellularization. To retain material bioactivity, both tissue 
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decellularization and solubilization were excluded from future studies to retain 

material bioactivity. One major drawback associated with the exclusion of tissue 

decellularization was that there could now be potential for an immune response 

due to foreign tissue. Although this concern was noted at the time, ECM sources 

selected were generally acellular and did not require decellularization during 

allogenic tissue implantation.  

 In moving forward, the objective was to combine the bone regeneration 

observed in aim 1 with the crosslinking of aim 2. Additionally, ECM sources such 

as demineralized bone matrix (DBM), devitalized cartilage (DVC), devitalized 

meniscus (DVM), and devitalized tendon (DVT) were included to expand the 

evaluation of different ECM materials for bone regeneration. Both non-

crosslinking HA and crosslinking HA hydrogels were evaluated for In vivo bone 

regeneration after 8 weeks. Significant bone regeneration was observed for the 

HA-DBM (4-30%), PHA (4%), and PHA-DVT (4-30%) groups compared to the 

sham. I then sought to refine the colloidal particle concentration to determine the 

minimum concentration required to achieve the highest crosslinking density for 

application to TBI and the most economically feasible formulation for clinical 

translation and affordability. Due to the HA-DBM (4-30%) group not being able to 

crosslink, the PHA-DBM (4-30%) group was included in the in vitro colloidal 

refinement study. Calcium deposition suggested superior bone regeneration from 

the PHA-DVT (4-10%) group, and overall the most attractive material for 

application to a single-stage surgical intervention to treat TBI. In hindsight, further 

in vitro analysis and refinement of groups following the in vivo study would have 
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increased confidence in the colloidal refinement. Multiple time points, and a 

longer overall study time may have helped reassure and better pinpoint the most 

attractive colloidal concentration. Before additional in vivo work is conducted, it is 

strongly recommended that the in vitro study is repeated with time points of 14 

and 21 days to better observe deposited calcium and include ELISA testing for 

osteogenic markers such as osteocalcin release.  

 In vivo testing prior to in vitro refinement was beneficial to the study as the 

in vivo animal model served as a reliable method to evaluate various osteogenic 

materials. The in vitro model, which provides less confidence compared to an in 

vivo animal model, acted to refine the superior groups rather than exclude 

groups. The route of performing in vivo before in vitro is uncommon within the 

field, potentially due to the associated monetary cost for animal studies. Although 

in vitro studies can be a cost-effective method for eliminating a large number of 

potential options, the reality persists that the in vitro model may not accurately 

depict the in vivo environment. For the aforementioned reasons, an iterative 

design between in vitro and in vivo models is recommended for future 

experimental designs. 

 A limitation of the current dissertation was the lack of physical evaluation 

of regenerated calvarial bone following the in vivo rat study. Various methods 

exist to mechanically characterize the regenerated bone such as indentation 

testing, which is used to determine the stiffness, or push-out testing, which is 

used to evaluate the interfacial strength. Although the mechanical 

characterization would be of potential value for comparing different materials in a 
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research setting, a clinician may be more interested in the extent of regenerated 

bone across the entire defect to ensure patient safety. Indentation mapping of the 

entire defect space may be the most relevant test to satisfy both scientists and 

medical professionals. Although indentation mapping would not provide 

information on the defect interfacial strength, it would provide information on the 

degree of bone stiffness at various points of the defect. 

 Although the greatest crosslinking hydrogel bone regeneration was 

observed using DVT, impressive bone regeneration was also observed in the 

control PHA hydrogel without the addition of ECM particles. Comparing to 

another study using a similar HA based hydrogel, which utilized a lower molecular 

weight (80 kDa), the average bone regeneration was greater for the higher 

molecular weight HA based hydrogel used in the current dissertation.(87) The 

difference in observed bone regeneration suggests further research is needed in 

the evaluation of HA as a material for bone regeneration. Publications utilizing 

HA based hydrogels rarely provide background information into the selection 

process for hydrogel characteristics such as the choice of molecular weight, 

concentration, and compressive modulus. The current dissertation is in part at 

fault for the same aforementioned reasons, and further research is necessary to 

understand how molecular weight, concentration, and hydrogel stiffness effects 

cellular response. Although the physical material component may only be a piece 

of the larger puzzle, a better understanding of how HA properties effect cellular 

response can lead to enhanced regenerative potential.   
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 The current dissertation has successfully identified a hydrogel material 

capable of regenerating bone in a critical size calvarial defect, utilizing natural 

materials as an affordable alternative to growth factors such as BMP-2, and 

capable of remaining pliable after initial implantation. Future studies will be 

conducted to evaluate the use of the PHA hydrogels encapsulating tendon ECM 

in a rat TBI model. At the time of writing the current dissertation, the rat TBI model 

was still under development. After successful development of the model by Dr. 

Brian Andrew’s team at the University of Kansas Medical Center, the hydrogel 

will be evaluated for application of the material for the treatment of TBI following 

decompressive craniectomy.  
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Figure 1.1: Illustration of Dissertation Aims  

Graphical illustration of the three specific aims evaluated in chronological order.   
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Figure 1.2: Illustration of Implanted Hydrogel Pliability 

Graphical illustration of an implanted hydrogel for treatment of traumatic brain 
injury following decompressive craniectomy. Note the pliability of the hydrogel 
to allow brain herniation during initial implantation.  
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Figure 2.1: Liquid, paste, and Putty Precursor Solutions 

Illustration of increasing precursor yield stress to achieve different material 
consistencies. Precursor materials with no yield stress exhibit liquid properties, 
and materials with increasing yield stress exhibit paste and putty hydrogel 
precursor properties.  
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Figure 2.2: Illustration of Real and Induced Defects  

Illustration depicting the difference between defects observed in patient 
populations (top) compared to defects used for in vivo studies (bottom). Common 
differences between actual injuries and defects used for research include shape, 
size, and orientation, and emphasize the clinical requirement of a hydrogel 
precursor solution that can be carefully molded as a paste and contoured to fit 
the defect site prior to crosslinking.  
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Figure 2.3. Defect Retention of Liquid Compared to Paste or Putty  

Illustration of how achieving paste or putty rheological properties in hydrogel 
precursor solutions can aid in material placement. (Left) Lack of material retention 
using an in situ liquid hydrogel precursor solution compared to (Right) precursor 
materials exhibiting desirable paste and putty behavior. 
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Figure 2.4: Methods to Determine Yield Stress  

Graph illustrations of methods to determine the yield stress of a material, black 

dots correspond to the yield stress. A) Theoretical model fitting using the 

Herschel-Bulkley (HB) model as an example. B) Determining the shear stress at 

the crossover point of the storage and loss modulus (G’/G”). C) Determining the 

shear stress related to a pre-determined deviation of the storage modulus from 

linearity (i.e. 85% deviation). As a general rule, we recommend the HB model to 

calculate the yield stress (𝜏0). 
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Figure 3.1: Surgical Method and Material ESEM Images 

A) Surgical method illustration shown in two steps, in the first (left) step the scalp 
is opened and a 7.5 mm cylindrical bone section is removed. The following step 
(right) involves filling the defect gap using a syringe loaded with one of the 
material groups and smoothing into place, before suturing the scalp back in place. 
B) Extruded and shaped material groups of HA-HAp, HA-HAp-DBM, and HA-
HAp-DCC. Material yield stress allowed for retention after shaping using a 
surgical spatula. Environmental scanning electron microscope images provide 
insight into the gel microstructure. Scale bars = 200 μm.  
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Figure 3.2: Aim 1 Hydrogel Precursor Yield Stress  

A-C) Representative rheometer traces for HA-HAp, HA-HAp-DBM, and HA-HAp-
DCC, respectively. D) Colloidal gel yield stress corresponding to a 15% deviation 
of G’ from linearity. Addition of DBM significantly increased the yield stress of the 
material compared to HA-HAp as indicated by an asterisk (p<0.01).  
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Figure 3.3: Aim 1 Regenerated Bone Volume and CT Imaging  

A) In vivo regenerated bone volume. Bone regeneration was evaluated after 8 
weeks using micro-computed tomography (μCT) analysis. Asterisks (**) 
represent statistically significant results (P<0.01) compared to the sham. Error 
bars represent standard deviations. B) μCT analysis using Avizo Fire software. 
Orange coloring indicating the regenerated bone, and blue coloring defining 
original colloidal particles. Scale bar represents 5 mm in length.  
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Figure 3.4: Aim 1 H&E Staining  

Histological analysis of critical size (7.5 mm) rat calvarial defects after 8 weeks 
post-implantation. Sections were taken in the sagittal plane with the dural side of 
the calvaria as the bottom of the image. Groups were analyzed using hematoxylin 
and eosin (H&E) to highlight new bone formation versus original colloidal 
material. Zoomed images correspond to the boxed area on the total defect area. 
scale bars = 1 mm 
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Figure 3.5: Aim 1 Immunohistochemistry 

Immunohistochemistry (IHC) results for collagen 1 (COL1), collagen 2 (COL2), Osteocalcin (OCN), and alpha-smooth 
muscle actin (αSMA). Brown coloring represents positive presence for the selected antibody, where blue staining represents 
negative antibody presence. All images represent in vivo healing of material groups after 8 weeks post-implantation. (*) 
corresponds to defect bone edge, scale bar = 1 mm. 
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Figure 4.1: Aim 2 Hydrogel Precursor Yield Stress 

A) Representative rheometer traces for Fib-HAPnf, MeSDCC, MeSDCC-HAPnf, 
and MeSDCC-BG hydrogel precursor solutions. B) Hydrogel yield stress 
determined by the crossover point of the storage (G’) and loss (G”) moduli. α = 
significant increase compared to MeSDCC (p<0.0001) and β = significantly larger 
value compared to the Fib-HAPnf group (p<0.0001). Addition of colloidal particles 
to MeSDCC significantly increased the yield stress by a factor of ~3. n = 5, values 

represent the mean  standard deviation. Fib = Fibrin, MeSDCC = Methacrylated 
Solubilized Decellularized Cartilage, HAPnf = Hydroxyapatite Nanofibers, BG = 
Bioglass. 
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Figure 4.2: Aim 2 Hydrogel Compressive Modulus  

A-B) Representative stress-strain curves for crosslinked hydrogel groups. C) 
Compressive modulus determined by the slope of the stress-strain curve 
between 10 and 20% strain. α = significant increase compared to the MeSDCC 
group (p<0.01) and β = significantly larger than Fib, Fib-HAPnf, and Fib-BG 
(p<0.0001). Addition of colloidal particles to MeSDCC significantly increased the 

compressive modulus by a factor of 4 to 5.5. n = 5, values represent the mean  
standard deviation. Fib = Fibrin, MeSDCC = Methacrylated Solubilized 
Decellularized Cartilage, HAPnf = Hydroxyapatite Nanofibers, BG = Bioglass. 
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Figure 4.3: Aim 2 Regenerated Bone Volume and CT Imaging 

Microcomputed tomography (µCT) analysis using Avizo software 8 weeks after 
implantation. A) Reconstructed µCT scans of calvarial defects. Orange coloring 
indicates regenerated bone to distinguish from existing bone. B) Regenerated 
bone volume determined by µCT. α = significantly greater bone volume compared 
to all other groups (p<0.05). Note that only the DBX® treatment group had a 
significantly larger bone volume compared to the sham. Scale bar = 5 mm. 
Asterisks (*) represent our previously published data (i.e., sham group).(36) n = 

5, values represent the mean  standard deviation. Fib = Fibrin, MeSDCC = 
Methacrylated Solubilized Decellularized Cartilage, HAPnf = Hydroxyapatite 
Nanofibers, BG = Bioglass. 



 
 

 
 

1
4

2
 

 

Figure 4.4: Aim 2 H&E Staining 

Hematoxylin and eosin (H&E) histological analysis of critical size (7.5 mm) rat calvarial defects 8 weeks after implantation. 
Sections were taken in the sagittal plane with the dural side of the calvarium as the bottom of each image. Note that 
regeneration was limited in all groups except the DBX® group. Scale bar = 5 mm. Fib = Fibrin, MeSDCC = Methacrylated 
Solubilized Decellularized Cartilage, HAPnf = Hydroxyapatite Nanofibers, BG = Bioglass.  



 
 

 
 

1
4

3
 

 

Figure 4.5: Aim 2 Immunohistochemistry 

Immunohistochemical (IHC) staining for collagen I and collagen II. Brown coloring indicates positive presence for the 
selected antibody, and the blue staining represents the hematoxylin counterstain. Note the positive collagen II staining in 
the MeSDCC-BG group, indicating leftover hydrogel after the 8-week recovery period. Scale bar = 500 µm. Fib = Fibrin, 
MeSDCC = Methacrylated Solubilized Decellularized Cartilage, HAPnf = Hydroxyapatite Nanofibers, BG = Bioglass.  
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Figure 5.1: Aim 3 Mechanical Characterization 

A) Hydrogel precursor yield stress determined by the crossover point of the 

storage (G’) and loss (G”) modulus (n = 3). Note increasing yield stress with DVT 

concentration. The highest yield stress observed in the DVC group. α = 

significantly larger value compared to PHA (4%) (p < 0.0001). β = significantly 

larger value compared to PHA (4%) (p < 0.05). µ = significantly larger value 

compared to all other groups (p < 0.0001). D = significantly larger value compared 

to PHA-DBM (4-10%), PHA-DBM (4-20%), and PHA-DVT (4-10%) (p < 0.0001). 

θ = significantly larger value compared to PHA-DVT (4-20%) (p < 0.05). λ = 

significantly larger value compared to PHA-DVT (4-20%) (p < 0.001). γ = 

significantly larger value compared to PHA-DVT (4-30%) (p < 0.05). π = 

significantly larger value compared to PHA-DBM (4-10%), PHA-DBM (4-20%), 

and PHA-DVT (4-10%) (p < 0.05).   B) Crosslinked hydrogel compressive 

modulus determined by the slope of the stress-strain curve between 5-15% (n = 

5). Note higher compressive moduli for hydrogels containing DVT or DVC. α = 

significantly larger value compared to PHA (4%) (p < 0.01). β = significantly larger 

value compared to PHA-DVM (4-30%) (p < 0.05). γ = significant larger value 

compared to PHA-DVT (4-10%), PHA-DBM (4-10%), and PHA-DBM (4-30%) (p 

< 0.01). δ = significantly larger value compared to PHA-DBM (4-20%) (p < 0.05). 

µ = significantly larger value compared to PHA-DVT (4-10%) (p < 0.05). PHA = 

pentanoate-functionalized hyaluronic acid, DBM = demineralized bone matrix, 

DVC = devitalized cartilage, DVM = devitalized meniscus, DVT = devitalized 

tendon. 
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Figure 5.2: Aim 3 Regenerated Bone Volume and µCT Imaging 

Microcomputed tomography (µCT) analysis using Avizo software after 8 weeks 

post hydrogel implantation (n = 5). A) Representative µCT scans of calvarial 

defect groups. Orange coloring indicates the space in which the original defect 

was created. Scale bar = 5 mm. Note greater bone regeneration for PHA hydrogel 

groups. B) Percent regenerated bone volume determined by µCT. α = 

significantly larger value compared to the sham, HA-DVC (4-30%), HA-DVM (4-

30%), HA-DVT (4-30%), PHA-DVC (4-30%), and PHA-DVM (4-30%) (p < 

0.0001). β = significantly larger value compared to the sham, HA-DVM (4-30%), 

and HA-DVT (4-30%) (p < 0.05). γ = significantly larger value compared to DBX® 

(p < 0.01). δ = significantly larger value compared to PHA-DBM (4-30%) (p < 

0.05).   HA = Hyaluronic acid, PHA = pentanoate-functionalized hyaluronic acid, 

DBM = demineralized bone matrix, DVC = devitalized cartilage, DVM = 

devitalized meniscus, DVT = devitalized tendon.  
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Figure 5.3: Aim 3 H&E Staining  

Histological analysis of rat calvarial defects after 8 weeks post implantation (n = 
5). Sections were taken from the sagittal plane in which the dural side of the 
calvaria is the bottom of each image. Sections were stained with hematoxylin and 
eosin (H&E) and magnified images shown below each overall section correlate 
to the box above. Note thicker bone formation in hydrogels containing PHA. Scale 
bar = 1 mm. HA = hyaluronic acid, PHA = pentanoate-functionalized hyaluronic 
acid, DBM = demineralized bone matrix, DVC = devitalized cartilage, DVM = 
devitalized meniscus, DVT = devitalized tendon. 
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Figure 5.4: Aim 3 Biochemical Analysis 

Biochemical analysis of hydrogels for 10 consecutive days of in vitro cell culture 

(n = 5). A) DNA content after 2 and 10 days of cell culture. Note high DNA content 

on PHA-DVT (4-30%) hydrogels after 2 days of culture. α = significantly greater 

DNA content compared to all other day 2 groups (p < 0.0001). ∆ = significantly 

greater increase in DNA content between day 2 and day 10 (p < 0.0001). β = 

significantly larger value compared to all day 10 groups except PHA-DVT (4-30%) 

(p < 0.01). µ = significantly larger value compared to all other day 10 groups 

except the TCP group (p < 0.0001). B) Deposited calcium content after 2 and 10 

days of cell culture. Note increased calcium deposition on DVT hydrogels after 

10 days of cell culture. γ = indicates a near zero result. D = significantly greater 

increase in calcium content between day 2 and day 10 (p < 0.0001). α = 

significantly larger value compared to all day 10 groups excluding those 

containing DVT (p < 0.0001). µ = significantly larger value compared to all day 10 

groups excluding those containing DVT and the PHA-DBM (4-10%) group (p < 

0.05). β = significantly larger value compared to PHA-DBM (4-30%) (p < 0.001). 

PHA = pentanoate-functionalized hyaluronic acid, DBM = demineralized bone 

matrix, DVT = devitalized tendon, TCP = tissue culture plastic. 
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Chapter 4: No tables 
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Table 2.1: Summary of Hydrogel Rheological Properties 

Summary of rheological properties of hydrogel precursor solutions. Dash marks (-) = data not provided. 

Reference Hydrogel 
Type 

Materials Methods Shear 
Response 

Recovery 
Time 

Yield 
Stress 

Avery et 
al.(159) 

 

Physical 
Charge 

Gelatin and 
silicate 

nanoplatelets 

25 mm cone 
and plate 

(1°) 

Thinning <1 min - 

Beck et 
al.(51)  

Chemical 
Photoinitiated 

Methacrylated 
hyaluronic acid 
and hyaluronic 

acid nanoparticles 

20 mm 
parallel plate 

Thinning - ~18 to 
160 Pa 

Beck et 
al.(35) 

Chemical 
Photoinitiated 

Methacrylated 
hyaluronic acid 
and hyaluronic 

acid nanoparticles 

20 mm 
parallel 

plate, 500 
µm gap 

Thinning <5 mins ~200 to 
700 Pa 

Beck et 
al.(2) 

Chemical 
Photoinitiated 

Methacrylated 
solubilized 
devitalized 

cartilage and 
devitalized 
cartilage 

microparticles 

20 mm 
parallel 

plate, 500 
µm gap 

Thinning - ~30 to 
1500 Pa 

Beck et 
al.(48)  

Chemical 
Photoinitiated 

Methacrylated 
hyaluronic acid 

and 
devitalized/decell
ularized cartilage 

microparticles 

20 mm 
cross-

hatched 
parallel 

plate, 500 
µm gap 

Thinning - ~90 to 
240 Pa 
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Dennis et 
al.(34) 

Physical 
Colloidal 

Flocculation 

Chondroitin 
sulfate or 

hyaluronic acid 
with 

hydroxyapatite 
nanoparticles 

20 mm 
parallel 

plate, 500 
µm gap 

Thinning <5 mins ~1 to 
1400 Pa 

Dennis et 
al.(57) 

 

Physical 
Colloidal 

Flocculation 

Hyaluronic acid, 
hydroxyapatite 
nanoparticles, 

and micronized 
tissue ECM 

20 mm 
cross-

hatched 
parallel 

plate, 500 
µm gap 

Thinning <5 mins ~100 to 
1000 Pa 

Diba et 
al.(160) 

 

Physical 
Colloidal 

Flocculation 

Bisphosphonate-
functionalized 

hyaluronan and 
bioactive glass 

particles 

8 mm 
parallel plate 

Thinning Immediate ~160 to 
260% 
(Yield 
Strain) 

Dumas et 
al.(64) 

 

Chemical 
Reaction 

Lysine-derived 
polyurethane and 

bone particles 

25 mm 
parallel 

plate, 1000 
µm gap 

Thinning - 2.1 Pa 

Fakhari et 
al.(49) 

 

Physical  
Entanglement 

Hyaluronic acid 
nanoparticles 

20 mm cone 
and plate 

(2°) 

Thinning - ~500 to 
2300 Pa 

Gaharwar 
et al.(59) 

Physical 
Charge 

Gelatin and 
silicate 

nanoplatelets 

Static Tests: 
25 mm 
Parallel 

Plate, 500 

µm gap 

Thinning <10 s 2 to 89 
Pa 
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Transient 
Tests: 25 
mm Cone 
and Plate 

(1°) 
 

Geisler et 
al.(45) 

Physical 
Peptide 

Interactions 

Peptide 
(VKVKVKVKVKV-

NH2) 

25 mm 
parallel 

plate, 500 
nm gap 

Thinning Immediate - 

Glassman 
et al.(46) 

 

Physical 
Peptide 

Interactions 

Protein-polymer 
triblock copolymer  

25 mm 
sandblasted 

cone and 
plate (1°) 

Thinning - ~9 kPa 

Gao et 
al.(62) 

 

Physical 
Hydrophobic 
Interactions 

Pyrene-tailored 
pyridinium and 

2,4,7-
trinitrofluorenone 

 

25 mm 
parallel plate 

- <180 s 78% 
(Yield 
Strain) 

Hao et 
al.(58) 

 

Physical 
Entanglement 

Hydrophobically 
modified 

polyacrylamide 
and sodium 

oleate micelles 

40 mm cone 
and plate 

(1°) 

- <10 s - 

Li et 
al.(161) 

 

Chemical  
Reaction 

Glycol-chitosan 
and 

dibenzaldehyde-
terminated 

polyethylene-
glycol 

20 mm 
parallel plate 

- 40 to 84 min - 
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Liu et 
al.(61) 

 

Physical 
Hydrophobic 
Interactions 

Dexamethosone 
phosphate, 

betamethasone 
phosphate, and 
hydrocortisone 

phosphate 
 

20 mm cone 
and plate 

Thinning <10 s 9.8% 
(Yield 
Strain) 

Lu et 
al.(47) 

Physical 
Peptide 

Interactions 

Peptide-PEG 
copolymer with 

dimerization and 
docking domain 

polypeptide    

20 mm cone 
and plate, 27 

µm gap 

Thinning ~6 s ~100 to 
400% 
(Yield 
Strain) 

Olsen et 
al.(60) 

Physical 
Peptide 

Interactions 

Telechelic 
proteins with 

coiled-coil 
endblocks and 

flexible 
polyelectrolyte 

midblocks 

25 mm cone 
and plate 

Thinning <10 s ~1400 Pa 

Rodell et 
al.(162) 

Physical 
Hydrophobic 
Interactions 

Hyaluronic acid 
functionalized 

with guest 
(adamantine) and 

host (β-
cyclodextrin) 

20 mm cone 
and plate 

(1°) 

Thinning <10 s ~60%  
(Yield 
Strain) 

Rodell et 
al.(163) 

 

Combinational 
Hydrophobic 
Interactions 

and Chemical 
Reaction 

Dual crosslinking 
hyaluronic acid 
functionalized 

with guest 
(adamantine) and 

20 mm cone 
and plate 

Thinning <3 s 35% 
(Yield 
Strain) 
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host (β-
cyclodextrin), and 
thiol/methacrylate 

groups    

Rughani et 
al.(98) 

 

Combinational 
Peptide 

Interactions 
and 

Photoinitiated 

Self-assembling 
β-hairpin peptide 

incorporating non-
natural sorbamide 

residues 

25 mm 
parallel 

plate, 500 
µm gap 

Thinning <2 h - 

Samaniuk 
et al.(67) 

- Mayonnaise 25.4 mm 
diameter, 

150 mm long 
vane 

rheometer 

- - ~200 Pa 

- Play-Doh - - ~3000 Pa 

Townsend 
et al.(164) 

Physical 
Colloidal 

Flocculation 

Hyaluronic acid, 
hydroxyapatite 
nanoparticles, 

and micronized 
tissue ECM 

20 mm 
cross-

hatched 
parallel 

plate, 500 
µm gap 

Thinning - ~100 to 
550 Pa 

Tsaryk et 
al.(50) 

Physical  
Entanglement 

Collagen and 
hyaluronic acid 

semi-
interpenetrating 
network loaded 

with gelatin 
microspheres 

15 mm 
cross-

hatched 
parallel 

plate, 1000 
µm gap 

Thinning - - 

Vulpe et 
al.(165) 

 

Chemical  
Reaction 

Collagen, 
hyaluronan, and 

sericin 

Concentric 
cylinder 

geometry 

Thinning - - 
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Wang et 
al.(26) 

Physical 
Charge 

Cationic and 
anionic gelatin 
nanospheres 

20 mm 
parallel 

plate, 500 
µm gap 

Thinning <1 min - 

Yu et 
al.(63) 

 

Chemical 
Reaction 

Chain-extended 
PEO-PPO-PEO 

multiblock 
copolymer 

40 mm cone 
and plate 

(1°) 

- Immediate 130% 
(Yield 
Strain) 

 

 


