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Abstract 

In this thesis, we develop a unified inversion scheme that can be coupled to 

various type of relaxation models to process multi-frequency measurement of varied 

electromagnetic (EM) properties for purposes of improved EM-based geomaterial 

characterization. The proposed inversion scheme is firstly tested in few synthetic cases in 

which different relaxation models are coupled with the inversion scheme. Then, the 

inversion is applied to multi-frequency complex resistivity and complex permittivity 

measurements acquired in laboratory and in subsurface borehole environments. For 

purposes of inversion of laboratory-based EM measurements, the unified inversion 

scheme estimates up to seven relaxation-model parameters exhibiting convergence and 

accuracy for random initializations of the relaxation-model parameters within up to 3-

orders of magnitude variation around the true parameter values. The inversion-derived 

estimates of relaxation-model parameters can be used for materials characterization. 

The inversion scheme is then improved for purposes of joint petrophysical 

inversion of multifrequency effective electrical conductivity and dielectric permittivity 

logs derived from various combinations of downhole EM logs acquired in clay- and 

pyrite-rich shale formations at multiple frequencies. The proposed joint interpretation 

method uses a single mechanistic model that accounts for the IP effect arising from clay 

and conductive mineral grains; thereby generating physically consistent water saturation 

estimates in shales. The proposed inversion-based interpretation also generates estimates 

of formation water salinity, surface conductance of clay, and average radius of clay and 

conductive mineral grains. The proposed method is firstly applied to three synthetic 

geological formations, with varying clay type, conductive mineral properties, and water 



xv 

saturation. Then the joint petrophysical inversion algorithm is applied to field broadband 

dispersion EM data acquired in a European Lower Paleozoic organic-rich shale 

formation.  

Finally, the inversion-based joint petrophysical interpretation is implemented for 

processing dielectric dispersion logs acquired in Bakken Petroleum System acquired at 

four discrete frequencies in the range of 10 MHz – 1 GHz. The newly developed 

interpretation method is applied to process the dielectric dispersion log acquired in 

Bakken formation to estimate water saturation, formation salinity, cementation index and 

homogeneity index. Water saturation estimates for a specific depth obtained using the 

proposed interpretation method is not one single value but a range of possible values 

within a desired accuracy. These water saturation estimates were compared against those 

obtained from resistivity induction log, NMR log, Quanti-ELAN solver, service 

company’s dielectric inversion, and Dean-Stark core measurements. Our estimates of 

water saturation and those obtained using the service company’s dielectric inversion 

exhibit best match with Dean-Stark’s core water saturation in Middle Bakken and Three 

Forks formations. The estimated water salinity is very high which agrees with core 

measurements. Homogeneity index obtained using our method indicates the presence of 

layering and heterogeneity in Lower Three Forks and Middle Bakken. The cementation 

index indicates high tortuosity and cementation in Upper and Lower Bakken.  
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Chapter 1: Introduction 

This thesis presents work performed for a Master of Science degree that was 

conducted at Mewbourne School of Petroleum and Geological Engineering of the 

University of Oklahoma. The research presented herein develops inversion schemes to 

process the resistivity and permittivity laboratory measurements and logs. The 

petrophysical properties of formations or laboratory samples can be characterized or 

estimated. The following sections present the motivation and problem statement, 

objective, and organization of this thesis.  

 

1.1       Motivation and problem statement 

Multi-frequency laboratory measurement of a dispersive electromagnetic (EM) 

property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, 

is commonly analyzed for purposes of material characterization. Such an analysis 

requires inversion of the multi-frequency measurement based on a specific relaxation 

model, such as Cole-Cole model or Pelton’s model. In doing so, the estimated parameters 

of the relaxation model serve as characteristics/identifiers of the geomaterial. Although 

there are several published methods for deterministic inversion of multi-frequency EM 

measurements that were developed for one specific type of relaxation model under 

investigation, there is no unified and robust inversion scheme that can be coupled to 

various type of relaxation models to process multifrequency measurement of various EM 

properties.  

Borehole-based subsurface electromagnetic (EM) measurements, namely 

galvanic resistivity (laterolog), induction, propagation, and dielectric dispersion logs, are 
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commonly used for water saturation estimation in hydrocarbon-bearing formations. 

Organic-rich shale formations generally exhibit high clay content and significant 

variations in lithology, rock texture, and total organic carbon accompanied by high 

connate water salinity and presence of disseminated pyrite grains. These petrophysical 

attributes affect water saturation estimates in shales. EM logs exhibit frequency 

dependence due to the interfacial polarization (IP) effects arising from clay grain surfaces, 

conductive minerals, and charge blockage in pore throats. IP effects in shale formations 

adversely affect the log-derived water saturation estimates, especially in the presence of 

low porosity, high salinity, and high clay concentration. Conventional EM log 

interpretation methods estimate water saturation in shale formations by separately 

interpreting the galvanic, induction, propagation, and dielectric dispersion logs using 

various empirical models or mixing laws. This approach leads to significant variations 

and uncertainties in petrophysical estimations.   

Bakken Petroleum System (BPS) is composed of both conventional and 

unconventional units exhibiting significant variations in lithology, rock texture, clay 

content, total organic carbon (TOC), accompanied by high connate water salinity, 

presence of disseminated pyrite grains, and low values of porosity. These petrophysical 

attributes of BPS lead to inconsistency water saturation estimation obtained from 

different logging measurements. Dielectric dispersion log was applied in a science well 

in BPS to more accurately estimate water saturation while there is limited information 

about how service company process the dielectric dispersion log. 
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1.2 Objective of this study  

(1) Develop a unified inversion scheme that can be coupled to various type of 

relaxation models to independently process multi-frequency measurement of 

varied EM properties for purposes of improved EM-based geomaterial 

characterization. 

(2) Develop an inversion-based joint petrophysical interpretation of multifrequency 

effective electrical conductivity and dielectric permittivity logs derived from 

various combinations of laterolog, induction, propagation, and dielectric 

dispersion logs acquired in clay- and pyrite-rich shale formations.  

(3) Develop an inversion-based interpretation method to process dispersive electrical 

conductivity and dielectric permittivity logs acquired at dielectric-dispersion tool 

operation frequency.   

 

1.3 Organization of thesis 

The following is an outline and brief description of the remainder this thesis: 

Chapter 2 contains a literature review about the various dispersive electromagnetic 

properties laboratory measurements and broadband EM dispersion logs and interpretation 

models; 

Chapter 3 introduces a unified inversion scheme that can be coupled to various type of 

relaxation models to independently process multi-frequency measurement of varied EM 

properties; 

Chapter 4 elucidates our proposed inversion-based joint petrophysical interpretation of 

multifrequency effective electrical conductivity and dielectric permittivity logs derived 
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from various combinations of the four aforementioned downhole EM logs acquired in 

clay- and pyrite-rich shale formations; 

Chapter 5 elucidates the proposed open source inversion-based interpretation method to 

process dielectric dispersion log acquired in Bakken Petroleum System.   

Chapter 6 includes conclusions that can be drawn from the results presented in previous 

chapter.  
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Chapter 2: Literature Review 

2.1 Dispersive EM properties, laboratory measurements and relaxation models  

Dispersive electromagnetic (EM) properties of a geomaterial refer to electrical 

conductivity, dielectric permittivity, and magnetic permeability as a function of operating 

frequency (Marshall and Madden, 1959; Wong, 1979). Additionally, various polarization 

phenomena, such as membrane polarization (de Lima and Sharma, 1992), concentration 

polarization (Sumi, 1965), induced polarization (Seigel, 1959), Maxwell-Wagner 

polarization (Schurr, 1964), and dipolar/orientation polarization (Fuller and Ward, 1970), 

occur in geomaterials in the presence of external electromagnetic field that give rise to 

the frequency dispersions (frequency dependence) of electrical conductivity and 

dielectric permittivity measurements (Misra et al., 2016b). There are several experimental 

(e.g., Misra et al., 2015) and field-scale studies (e.g., Misra et al., 2016c) on frequency 

dispersions of conductivity and permittivity arising from polarization phenomena. 

Recently, there has been a push towards understanding the polarization phenomena and 

their effects on EM properties of geomaterials in the presence of conductive minerals 

(Revil et al., 2015; Misra et al., 2016a) and that in volcanic rocks (Revil et al., 2017).  

A relaxation model generally processes the multi-frequency conductivity, 

permittivity, or magnetic permeability measurements for purposes of EM-based 

geomaterial characterization, which involves estimation of empirical/physical parameters 

that are unique to the geomaterial with respect to the measured physical process. A 

relaxation model describes a measurable spectral property of a perturbed physical system 

returning to equilibrium using descriptive empirical parameters specific to the system and 

the property being measured. Relaxation models have been used for characterization of 
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soil (Lesmes and Friedman, 2005), mineral (Wong, 1979), hydrocarbon reservoirs (Revil 

et al., 2013), groundwater (Revil, 2012), subsurface contaminant, and geological 

formations. The dispersive EM measurement can be processed to estimate hydraulic 

conductivity (Binley et al., 2005), pore or grain size distribution (Revil and Florsch, 

2010), and mineral content (Gurin et al., 2015; Misra and Han, 2016a). In order to process 

a dispersive EM measurement, a deterministic or stochastic inversion algorithm can be 

applied to iteratively minimize the difference between the measurements and the 

numerical predictions of a relaxation model for a set of relaxation model parameters. 

Kemna et al. (1999) developed an inversion algorithm coupled with a finite-

element EM forward model to jointly invert for resistivity magnitude and phase, which 

were further analyzed based on an inversion algorithm coupled with Cole-Cole relaxation 

model to obtain additional petrophysical information. The inversion process was used by 

Kemna et al. (1999) to delineate subsurface hydrocarbon contamination at a former jet 

fuel depot and to image sulfide deposit in a metamorphic formation. Slater et al. (2006) 

conducted induced polarization measurements on saturated kaolinite-, iron-, and 

magnetite-sand mixtures for various weight fraction of the disseminated mineral 

constituents at various frequencies. The SIP measurements on the magnetite and iron 

mixtures were fitted using the Cole-Cole model predictions. The global polarization 

magnitude obtained from the Cole-Cole modeling of the IP measurements exhibited a 

single, near-linear dependence on the ratio of surface area to pore volume for the iron and 

magnetite mixtures. This relationship between SIP measurements and the ratio of surface 

area to pore volume was first identified by Börner and Schön (1991).  
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2.2 Broadband EM dispersion log 

Borehole-based EM measurements are regularly used to evaluate water saturation 

in geological formations for applications in hydrocarbon reservoir characterization, soil 

science, and hydrology. In the upstream oil and gas industry, water saturation estimates 

along the depth of a geological formation enables the estimation of original oil in place 

(Misra and Han, 2016a). Borehole-based EM measurements include four logs, namely 

galvanic resistivity (laterolog), induction, LWD propagation, and dielectric dispersion 

logs, operating at four distinct frequency ranges from 10 Hz to 1 GHz. Deployment of all 

the four EM tools in a single well followed by a joint interpretation of the multi-frequency 

conductivity and permittivity acquired over a broadband frequency range for water 

saturation estimation is not a common practice. 

It is not a common practice to measure permittivity along with resistivity when 

using the laterolog and induction logging tools. Moreover, it is not usual to run all the 

four types of EM tools in a single well followed by a joint interpretation of the broadband 

EM measurements; therefore, water saturation is generally estimated using only one of 

the four EM logging tool measurements. Conventional petrophysical interpretation of a 

single-frequency EM log tends to generate inconsistent water saturation estimation, 

primarily due to the IP effects on complex conductivity. Wang and Poppitt (2013) 

reported first-of-its-kind continuous broadband multifrequency conductivity and 

permittivity logs derived from EM induction, EM propagation and dielectric dispersion 

logs acquired in an organic-shale formation. Wang and Poppitt (2013) recommended a 

joint interpretation of broadband EM logs for improved estimations of water saturation 

and clay properties.  
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2.3 EM dispersion log interpretation models       

For purposes of water saturation estimation, several EM-measurement 

interpretation methods use frequency-independent empirical models to separately process 

the effective electrical conductivity and dielectric permittivity. There also exist several 

frequency-dependent geoelectromagnetic interpretation models, such as Stroud-Milton-

De (SMD) model (Stroud et al., 1986) and bimodal model (Sen et al., 1981), suited for 

dielectric dispersion logging measurements. Complex-refractive index (CRI) model and 

its modification Lichtenecker-Rother model (Sabouroux and Ba, 2011) are widely used 

to interpret the effective conductivity and permittivity of homogeneous and layering 

materials at frequencies close to 1 GHz to obtain water saturation estimates. SMD model 

accounts for the Maxwell-Wagner IP effect arising in brine-saturated sandstones and aids 

in the estimations of water saturation, formation water salinity, and tortuosity of the water 

phase (Donadille et al., 2016). SMD model breaks down for clay- and conductive-

mineral-rich formations. Dielectric relaxation models, such as Cole-Cole model, are 

frequency-dependent phenomenological model that can predict the conductivity and 

permittivity spectra arising due to the IP effects. However, being phenomenological 

model, the parameters of dielectric relaxation models do not represent petrophysical 

properties. All the above-mentioned models neglect the physical mechanism of IP effects 

of clays and conductive minerals; thereby generating inaccurate estimation of water 

saturation and total organic carbon (TOC) in clay- and conductive-mineral-rich mudrock 

formations (Misra and Han, 2016a; Misra and Han, 2016b). The IP effects arising from 

clay and conductive mineral grains influence charge carrier migration, 

accumulation/depletion and diffusion processes in brine saturated porous geological 
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formations; thereby altering the electrical and dielectric properties of the porous media 

(Misra et al., 2017).   

Misra et al. (2016a) derived a mechanistic electrochemical model, referred as the 

PS model, for geological mixtures containing clay and conductive minerals to evaluate 

the dependence of effective complex conductivity of the homogeneous conductive-

mineral-bearing geomaterials on the conductivity of host and inclusion material, size and 

shape of inclusions, and the measurement frequency. PS model is calibrated to honor 

Archie’s equation at low frequency (~ 1 Hz) and CRI model at high frequency (~ 1 GHz).  

In this thesis, the joint interpretation of the multifrequency conductivity and 

permittivity logs derived from EM induction, EM propagation and dielectric dispersion 

logs acquired in a North European organic-shale formation is accomplished using an 

inversion algorithm coupled with the PS model. The inversion-based interpretation 

method can estimate water saturation (𝑠𝑤), brine conductivity (𝐶𝑤), surface conductance 

of clays (𝜆𝑐 ), average grain radius of clays (𝑟𝑐 ), and average grain radius of pyrite 

inclusions (𝑟𝑖) which are parameters in PS model, in clay- and pyrite-rich formations. A 

similar mechanistic joint interpretation of the multi-tool, multifrequency EM logs 

generates consistent water saturation estimates (Misra and Han, 2016b). Consistent water 

saturation estimates improve formation evaluation, reservoir characterization, and 

reservoir development strategy.  
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Chapter 3: Unified Inversion Scheme of Various Relaxation Models 

3.1 Introduction of polarization and relaxation models 

Conductivity is a measure of a material’s ability to conduct an electric current and 

dielectric permittivity is the measure of resistance that is encountered when forming an 

electric field in a material and quantifies the sensitivity of a medium to an electric field 

excitation (Hizem et al., 2008). Conductivity and permittivity of geomaterials depend on 

water saturation, connate water salinity, porosity, tortuosity, wettability, clay content and 

distribution, conductive mineral content and distribution, grain sizes, grain texture, and 

pore size distribution. There are three main physical phenomena contribute to the 

dielectric permittivity: the electronic cloud of atoms displacement, electric dipoles 

coherent orientation, and IP effects. All these effects can be integrated into a macroscopic 

polarization density which expresses the density of permanent or induced electric dipole 

moments in dielectric materials (Hizem et al., 2008). The dielectric permittivity is a 

function of applied electric field frequency because there is a lag between changes in 

polarization and changes in electric field, which is referred as dielectric dispersion. 

Similar to this, conductivity dispersion can exist due to the lag between application of 

electric field and the transport of charge carriers, which is assumed to be negligible in our 

studies. 

Relaxation usually means the return of a perturbed system into equilibrium and 

each relaxation process can be characterized by one or combination of relaxation times. 

Relaxation models are phenomenological or mechanistic models used to describe the 

relaxation processes.  
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Dielectric relaxation models, such as Cole-Cole model, are frequency-dependent 

phenomenological model that can predict the conductivity and permittivity spectra arising 

due to the IP effects. However, being phenomenological model, the parameters of 

dielectric relaxation models do not directly represent petrophysical properties. There are 

also some physics based (mechanistic) mixing-models such as CRI and effective medium 

models, wherein the parameters of mechanistic models represent petrophysical properties 

that govern relaxation process and dispersion phenomena. 

3.2 Relaxation models of characterizing polarization mechanisms 

Cole-Cole model is the most frequently used relaxation model that was formulated 

to quantify the multi-frequency complex permittivity response of polar liquids and 

dielectrics. Cole-Cole model (Cole and Cole, 1941) is expressed as  

𝜀∗ = 𝜀𝑟∞ +
𝜀𝑟0−𝜀𝑟∞

1+(𝑖𝜔𝜏)1−𝛼
……………………………………………………………….(3.1) 

where 𝜀𝑟0  and 𝜀𝑟∞  are the low-frequency and high-frequency permittivity values, 

respectively, 𝜏 is the central relaxation time, 𝜔 = 2𝜋𝑓 is the angular frequency of EM 

measurement, 𝑓 is the frequency of EM measurement, and exponent 𝛼 controls the width 

of the loss peak, such that 0 < 𝛼 ≤ 1. For porous material, 𝜏 is typically between 10-3 to 

103 s (Kemna,2000). Cole-Cole model constitute special case of the Havriliak-Negami 

model that accounts for the broadness and asymmetry of dielectric dispersion curves. The 

Havriliak-Negami model (Havriliak and Negami, 1966) can be expressed as 

𝜀∗ = 𝜀𝑟∞ +
𝜀𝑟0−𝜀𝑟∞

[1+(𝑖𝜔𝜏)1−𝛼]𝛽
……………………………………………………...……..(3.2) 

where 𝛼 and 𝛽 are shape characteristics of the dielectric dispersion curve, such that 0 < 

,   1.  
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Pelton et al. (1978) modified the Cole-Cole model to obtain an impedance model 

to analyze complex impedance measurements over 10-2 Hz to 105 Hz made on 26 mineral 

deposits. The Pelton model can also be formulated in terms of resistivity as  

𝜌∗ = 𝜌0 [1 − 𝑚 (1 −
1

1+(𝑖𝜔𝜏)𝑐
)]……………………………………………..…..…..(3.3) 

where 𝜌∗ is the measured complex resistivity, 𝜌0 is the low-frequency resistivity and m 

is the chargeability, and 𝑐 = 1 − 𝛼 is the Cole-Cole model exponent. The value of the 

Cole-Cole model exponent 𝑐 is typically in the range 0.1 to 0.6 for mineral-bearing rocks 

(Pelton et al., 1978). The low-frequency resistivity values of sedimentary rocks are 

typically between 10 to 10000 m with most values less than 1000 m (Loke, 2001).  

A multiple Cole-Cole model for complex resistivity is expressed as 

𝜌∗ = 𝜌0 [1 − ∑ 𝑚𝑙 (1 −
1

1+(𝑖𝜔𝜏𝑙)
𝑐𝑙
)𝐿

𝑙=1 ]……………………..………………………(3.4) 

where L is the number of Cole-Cole models that are required to compositely match with 

complex resistivity measurements. Dual Cole-Cole model is often encountered in practice 

either to describe an IP response with two relaxation domains or to describe a single 

relaxation IP response contaminated by inductive and/or capacitive coupling associated 

with the measurement layout (Pelton et al., 1978; Kemna et al., 1999). The symbols 𝑚𝑙, 

𝜏𝑙  and 𝑐𝑙  represent chargeability, relaxation time and exponent value for the l-th 

dispersion term in the multiple Cole-Cole model, respectively.  

 

3.3 Literature review of inversion using relaxation models 

For purposes of EM-based geomaterial characterization, a multi-frequency EM 

measurement on a geomaterial is generally inverted using a specific relaxation model to 

estimate certain relaxation model parameters that generate best match between the 
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relaxation model predictions and the measured data (e.g., Revil et al., 2013). In doing so, 

the estimated parameters of the relaxation model serve as characteristics/identifiers of the 

geomaterial. Relaxation-model-based inversion methods commonly implement the 

Gauss-Newton algorithm (GNA) or Levenberg-Marquardt algorithm (LMA) (e.g., 

Kemna et al., 1999).  

Kemna (2000) proposed a single-frequency complex-resistivity inversion 

algorithm based on Tikhonov approach, which involves a univariate line search to find 

an optimum value of the regularization parameter for the stabilization functional.  The 

minimization of data misfit is performed iteratively by a regularized Gauss-Newton 

approach. Cole-Cole model was then fitted to the multi-frequency inversion-derived 

complex resistivity values of each block in the mineral-bearing formation by means of a 

nonlinear least-squares inversion procedure, using simple Marquardt-regularization.   

Xiang et al. (2001) inverted the complex impedance using Cole-Cole model. The 

proposed inversion algorithm consists of two parts: (a) multi-fold least-squares estimation 

that uses an assumed parameter for the frequency dependence of the Cole-Cole model, c, 

to estimate other Cole-Cole model parameters, namely the DC resistivity, 𝜌0 (c), 

polarizability or chargeability, m(c), and relaxation time, 𝜏(c) from the SIP data, and (b) 

search the optimal value of c using the golden section minimization algorithm. Cao et al. 

(2005) inverted complex resistivity data using an improved genetic algorithm to 

overcome the instability and non-convergence issues associated with the estimation of 

Cole-Cole model parameters based on linear inversion theory. The proposed method does 

not need an initial model and gives global search solution.  
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As mentioned above, several published methods for deterministic inversion of 

multi-frequency EM measurements were found to be highly sensitive to the initial guesses 

of the unknown relaxation-model parameters (Chen et al., 2008), such that unique 

estimates of the relaxation-model parameters are generated for initial guesses lying in 

close vicinity to the optimal solution (Roy, 1999). Notably, we found several publications 

on the deterministic inversion of multi-frequency EM measurements did not report the 

model sensitivity to initial guesses of the unknown relaxation-model parameters (e.g., 

Tarasov and Titov, 2013). Several published inversion methods for multi-frequency EM 

measurements that implement regularization parameters or adaptive parameters in the 

mathematical formulation of the inversion scheme do not mention the chosen values of 

such parameters, for instance, the initial values and rate of change of damping parameter 

𝜆 and factor v in LMA (e.g., Lazović et al., 2014).  

 

3.4  Improved bounded Levenberg inversion algorithm  

3.4.1    Introduction of the unified inversion scheme 

In order to address all the above-mentioned shortcomings, we develop a unified 

inversion scheme that can be coupled to various type of relaxation models to process 

multifrequency measurement of various EM properties for purposes of consistent EM-

based geomaterial characterization. We implement a bounded Levenberg nonlinear 

inversion algorithm based on a fixed damping parameter and its iterative adjustment 

factor, irrespective of the type of measured property and the type of relaxation model, 

with jump-back-in and jump-out sequences. These features ensure that the inversion 
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scheme is universal and converges for initial guesses with uncertainty within 3-orders of 

magnitude freeing the inversion scheme from user inputs, biases, and errors. 

3.4.2    Nonlinear inversion as minimization 

The non-linear inverse problem discussed in this section involves estimation of 

relaxation model parameters that generate least misfit between the measured and modeled 

multi-frequency geoelectromagnetic measurements. The measurements used in this 

section are real and imaginary part of complex permittivity, or complex resistivity of a 

geomaterial measured at several frequencies. A bounded Levenberg algorithm (LA) is 

implemented to find the solution of this nonlinear inverse problem by simultaneously 

matching the real and imaginary part of the measured data with the relaxation model 

predictions for all the measurement frequencies. Fig. 3.1 illustrates the flowchart of the 

inversion scheme.  

In the proposed inversion scheme, a relaxation model 𝑅∗(m, ω) is first chosen to 

model the frequency-dispersive complex permittivity or complex resistivity of the 

geomaterial at a specific angular frequency ω of measurement. The relaxation model is 

described using a specific l-sized relaxation-model parameter vector m. Then, an n-sized 

modeled data vector 𝐃mod(𝐦)∗ is built as a collection of relaxation model predictions 

for the n frequencies of measurements and a specific relaxation-model parameter vector 

m, such that 𝐃mod(𝐦)∗ = [𝑅∗(𝐦,𝜔1); 𝑅
∗(𝐦,𝜔2); …… ; 𝑅

∗(𝐦, 𝜔𝑛) ]. Following that, 

the measured data 𝐃meas∗ is matched with modeled data vector 𝐃mod(𝐦)∗to find the 

vector m comprising the estimates of l relaxation-model parameters that quantitatively 

characterize the geomaterial under investigation. To that end, the inversion algorithm 

iteratively computes the l-sized vector mest comprising the estimates of l relaxation-model 
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parameters, such that the n-sized modeled data vector 𝐃mod(𝐦est)∗  best matches the 

measured data vector 𝐃meas∗. In other words, the inversion algorithm iteratively adjusts 

the vector of relaxation-model parameters m to compute the inverted relaxation-model 

parameter vector mest that minimizes the error between the measured data vector 

𝐃meas∗and the modeled data vector 𝐃mod(𝐦est)∗. This requires minimizing quadratic 

cost function C(m) at each iteration defined as 

𝐶(𝐦) = ∥ real[𝐃mod(𝐦est)∗ − 𝐃meas∗] ∥2
2+ 𝑤 ∙∥ imag[𝐃mod(𝐦est)∗  −

𝐃meas
∗
] ∥2

2……………………………………………………………………………(3.5) 

where ‖ ‖2
2 is the square of the L2 norm (or Euclidean length) and w is the n-sized weight 

factor which is expressed as 

𝑤 = 10𝑎……………………………………………………………………………...(3.6) 

where a is a positive integer computed as the ratio of magnitude of the real part to that of 

the imaginary part of the measured EM property. The weight factor 𝑤 in Eq. 3.5 is used 

to normalize the errors in real part and imaginary part to ensure that the inversion scheme 

honors both the errors.  

In this unified inversion scheme, the n-sized vector 𝐃∗ is replaced with vectors 𝛆∗ 

or 𝛒∗ when the measurement is complex permittivity or complex resistivity, respectively. 

For purposes of minimization, we define a n-sized cost function vector F(m). Individual 

components of the vector F(m) are referred as fi(m
k), where superscript k is used as the 

iteration count for the inversion scheme, mk is the l-sized relaxation-model parameter 

vector computed at the k-th iteration, and subscript i denotes one of the n frequencies of 

measurements. F(mk) is then expressed as  

𝐅(𝐦𝑘) = [𝑓1(𝐦
𝑘), 𝑓2(𝐦

𝑘), … 𝑓n(𝐦
𝑘)]𝑇…………………………...………...……..(3.7)                                                                                                                  
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where fi(m
k) is expressed in the form of the cost function formulation of Eq. 3.7 as 

𝑓𝑖(𝐦
𝑘) = [real(𝐃mod(𝐦𝑘)∗ − 𝐃meas∗)]𝑖

2 +w ∙ [imag(𝐃mod(𝐦𝑘)∗ −

𝐃meas∗)]
𝑖

2
…………………………………………………………………………….(3.8) 

Based on the Levenberg nonlinear inversion method (Aster et al., 2005), the 

inversion scheme can be expressed as  

[(𝐖d𝐉(𝐦
𝑘))T ∙ (𝐖d𝐉(𝐦

𝑘)) + 𝜆𝐈] ∙ ∆𝐦𝑘 = −(𝐖d𝐉(𝐦
𝑘))

T

∙ (𝐖d𝐅(𝐦
𝑘))….......…(3.9) 

where J(mk) is the n×l Jacobian matrix of F(mk), I is l×l identity matrix, superscript T is 

matrix transpose operator, ∆mk
 is the l-sized correction vector that determines the 

direction toward the convergence of relaxation-model parameter estimation. 𝐖d is the 

n×n data weight matrix and is the inverse of the data covariance matrix (e.g., Torres-

Verdín et al., 2000) and 𝜆 is the damping parameter. Using ∆𝐦𝑘 computed in Eq. 3.9, we 

can calculate the successive estimates for the relaxation-model parameters as  

𝐦𝑘+1 = 𝐦𝑘 + ∆𝐦𝑘…………………………………….…………………….…….(3.10) 

such that all elements of the l-sized vector mk+1 lie within the predefined lower and upper 

limits for each of the relaxation-model parameters.  

The Jacobian matrix of F(mk) is formulated as                     

𝐉(𝐦𝑘) =

(

 
 

𝜕𝑓1(𝐦
𝑘)

𝜕𝑚1
⋯

𝜕𝑓1(𝐦
𝑘)

𝜕𝑚𝑙

⋮ ⋱ ⋮
𝜕𝑓𝑛(𝐦

𝑘)

𝜕𝑚1
⋯

𝜕𝑓𝑛(𝐦
𝑘)

𝜕𝑚𝑙 )

 
 

……………………………………………..….(3.11) 

We implemented the first order central-difference formula to numerically approximate 

the derivative of fi(m
k) with respect to j-th unknown relaxation-model parameters 

formulated as  



18 

𝜕𝑓𝑖(𝐦
𝑘)

𝜕𝑚𝑗
≈
𝑓𝑖(𝑚𝑗

𝑘+∆𝑚𝑐𝑗
𝑘)−𝑓𝑖(𝑚𝑗

𝑘−∆𝑚𝑐𝑗
𝑘)

2∆𝑚𝑗
𝑘 ………………………………….….……….(3.12) 

where 𝐦𝑘 = [𝑚1
𝑘;𝑚2

𝑘; … ;𝑚𝑙
𝑘], ∆𝑚𝑐𝑗

𝑘=0.001𝑚𝑗
𝑘, 1≤j≤l, and 1≤i≤n.    

 

Figure 3.1 Flowchart of the unified inversion scheme 

 

In this proposed scheme, we do not search for global minimum. Rather, we 

randomly initialize the inversion scheme to perform multiple inversions within pre-

defined ranges for the unknown relaxation-model parameters. During the inversion, the 

estimates for the model parameters are selected as the solution of the inverse problem 

when: (a) the data misfit goes below a pre-defined threshold and (b) the frequency of 

occurrence of estimates are the highest among the multiple random initializations. As 

shown in Table 3.1 (synthetic case inversion), this selection criterion successfully 
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identifies the estimates that are closest to the true values, which were defined a priori to 

generate the synthetic measurements. 

3.4.3    Damping parameter and iterative adjustment factor 

Roy (1999) showed that an adaptive damping parameter made the inversion 

scheme more efficient and robust. The positive damping parameter 𝜆 is adjusted by the 

iterative adjustment factor v at each iteration to ensure fast convergence and accuracy of 

the estimated values of relaxation-model parameters. The damping parameter prevents 

singularities or near-singularities of the matrix (𝐖d𝐉(𝐦
𝑘))T ∙ (𝐖d𝐉(𝐦

𝑘)). The inversion 

formulation proposed in Eq. 3.9 simply moves down-gradient along the residual surface 

area for very large values of 𝜆. Conversely, for very small values of 𝜆, Eq. 3.9 reverts to 

GNA, which gives potentially fast but uncertain convergence (Aster et al., 2005). The 

general strategy is to use small values of 𝜆 but to switch to larger values of 𝜆 when the 

GNA-dominated inversion fails to make progress. That is to say, when the LMA leads to 

a reduction in C(m), 𝜆 is reduced by dividing by the factor v after each iteration. However, 

when the LMA doesn’t lead to a reduction in C(m), 𝜆 is increased by multiplying by the 

factor v after each iteration. One challenge associated with LMA is determining the value 

of 𝜆 and v. The inversion results for both synthetic and measured data cases exhibit good 

convergence and accuracy for only specific combinations of initial values of 𝜆 and v.  We 

chose the initial value of 𝜆 and v to be equal to 10 as inversion generates low data misfit 

error.  

 

3.4.4     Bounds of relaxation-model parameters and jump-back-in step 
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Unlike incorporating the transformations functions of model parameters into cost 

function (e.g., Kim and Kim, 2011), we propose an alternative method to ensure the 

estimates are bounded during the inversion. For the estimation of each relaxation-model 

parameter, upper and lower bounds are set to ensure that the estimated values of the 

parameters are physically consistent, such that  𝑙𝑗 ≤ 𝑚𝑗
𝑘 ≤ 𝑢𝑗  , where 𝑙𝑗  and 𝑢𝑗  are the 

lower and upper bounds, respectively, of the j-th relaxation-model parameter to be 

estimated, 𝑚𝑗
𝑘. The mid-point of the lower and upper bounds of the j-th relaxation-model 

parameter is 𝑀𝑗  and 𝑚𝑗
𝑘−1  is the estimated value of the j-th parameter at the k-1-th 

iteration. At k-th iteration, when 𝑚𝑗
𝑘  exceeds the set bounds, a jump-back-in step is 

initiated using 𝑚𝑗
𝑘−1 and the upper and lower boundaries for the j-th model parameter.  

Fig. 3.2 illustrates the algorithm of the jump back-in step aimed at automating the 

step based on the distance between the estimated value of the j-th parameter 𝑚𝑗
𝑘−1 at the 

k-1-th iteration and the boundary. The j-th relaxation-model parameter after the jump 

back-in step is 𝑚𝑗
𝑘′.  

In Fig. 3.2, there are four different scenarios when 𝑚𝑗
𝑘 exceeds the set bounds, 

algebraic manipulation will be applied to 𝑚𝑗
𝑘−1 that was within the bounds. After the 

algebraic manipulation, 𝑚𝑗
𝑘′ will be obtained as the value of the j-th relaxation-model 

parameter at the k-th iteration that will be within the bounds. For the algebraic 

manipulation applied to 𝑚𝑗
𝑘−1, we use an exponential function of the distance between 

𝑚𝑗
𝑘−1 and one of the bounds, such that when the distance between the 𝑚𝑗

𝑘−1 and the 

bound, which 𝑚𝑗
𝑘 exceeds, is small the 𝑚𝑗

𝑘′ after jump back-in step will also close to that 
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bound. There is a factor ‘0.25’ before the exponential function to guarantee that after the 

algebraic manipulation the estimates do not exceed the bounds. 

 

Figure 3.2 Flowchart of the jump back-in step 

 

 

3.4.5    Jump-out of local minima step 

We implement a scheme to jump out of local minima when the rate of change in 

the difference between modeled data and measured data with iteration is below a certain 

threshold in a window of 50 iterations. When a jump-out of local minima step is invoked, 

all the relaxation-model parameters are altered based on an automated algorithm. Fig. 3.3 

illustrates the criteria of initiating jump out step. When the data misfit error is larger than 

a pre-defined threshold and the rate of change in error stabilizes for 50 iterations, the 

inversion-derived estimates for the parameters have reached a local minimum. This 

requires initiation of the jump out step to get out of local minimum and reach the global 

minimum. To be specific, the jump out is initiated when the decline rate 𝑟1 for the misfit 

errors between adjacent iterations is lower than 0.01 and the decline rate 𝑟2 between k-th 
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and k-50-th iterations is lower than 0.1. For the j-th relaxation-model parameter, the 

midpoint of 𝑙𝑗 and 𝑀𝑗, which is the midpoint of the lower and upper bounds, is 𝑃𝑗 and the 

midpoint of 𝑀𝑗 and 𝑢𝑗  is 𝑄𝑗. The jump out step includes reflection of inversion-derived 

estimates along a plane, which is an algebraic manipulation of the parameter about a 

reflection point. The jump out algorithm can accommodate moving out of three local 

minima during the inversion. This requires three reflections (algebraic manipulation) 

along 𝑃𝑗 , 𝑀𝑗 , and 𝑄𝑗  planes, respectively. Fig. 3.3 shows the process for the first 

reflection along the 𝑃𝑗 plane. The j-th relaxation-model parameter after the jump out step 

is 𝑚𝑗
𝑘′. The second reflection is similar to the first one but along the 𝑀𝑗 plane. The third 

reflection uses either the lower boundary or upper boundary, i.e. 𝑚𝑗
𝑘  and 𝑚𝑗

𝑘′  are 

equidistant from 𝑙𝑗 and 𝑢𝑗 , respectively, or vice versa. The three consecutive reflections 

are initiated only when the error remains higher than the pre-defined threshold.  

 

Figure 3.3 Flowchart of the jump out step for the first reflection 
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3.4.6   Error in model predictions based on the estimated parameters 

Data misfit error is described in terms of the difference between modeled data 

based on the estimated relaxation-model parameters and the measured EM data. This data 

misfit error is expressed as 

𝐸𝑟𝑟𝑜𝑟 =

√
1

𝑛
∙ ∑ {[real(𝐃mod(𝐦𝑘) − 𝐃meas)]𝑖

2 + [imag(𝐃mod(𝐦𝑘) − 𝐃meas)]𝑖
2𝑛

𝑖=1 }...……(3.13) 

 

3.5 Synthetic cases validation 

In order to show the robustness of the newly developed inversion algorithm, we 

tested its performance by means of numerical simulation or synthetic case inversion.   

Three sets of synthetic data were generated using Havrilak-Negami model (complex 

permittivity data), Cole-Cole model, and dual Cole-Cole model (complex resistivity 

data). Synthetic data is generated based on the parameter values listed in Column 3 of 

Table 3.1 and contain 2% Gaussian noise. Following that, the synthetic data were inverted 

using the proposed inversion scheme coupled with a corresponding relaxation model. 

Column 4 of Table 3.1 lists the histogram for the 250 randomly chosen initial guesses for 

each of the model parameters. Column 5 lists the histogram of inversion-derived 

estimates that exhibit great convergence to the true parameter values. The performance 

of the inversion algorithm with the jump back-in and jump out step is not sensitive to the 

initial guesses. Table 3.2 focusses on the robustness of the inversion algorithm in the 

presence of various levels of Gaussian noise ranging from 0% to 5%. The inversion was 

performed on synthetic data generated using the dual Cole-Cole model of resistivity with 
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seven unknown model parameters. In the presence of 5% noise, the estimation of model 

parameter 𝜏2 exhibited highest inaccuracy of 10%, whereas the estimates of rest of the 

parameters exhibited less than 1% inaccuracy. 

Table 3.1 The inversion-derived estimates of Havrilak-Negami model, Cole-Cole 

model and dual Cole-Cole model parameters for inversion of synthetic dispersive 

data. 

 
Model Parameters  Parameters 

true values 

Parameters initial 

guess  

Estimated values Inverted 

values 

 

 

 

 

 

Havriliak

-Negami 

𝜀𝑟0 100 

  

99.85 

𝜀𝑟∞ 25 

  

24.34 

𝜏 (s) 

 

1×10-3 

  

1×10-3 

𝛼 0.3 

  

0.302 

𝛽 0.7 

  

0.682 

 

Cole-

Cole 

model 

 

𝑅𝑜 () 

 

50 

  

49.9 

𝑚 

 

0.5 

  

0.498 



25 

 

Cole-

Cole 

model 

 

𝜏 (s) 

 

1×10-3 

  

1×10-3 

𝑐 0.8 

  

0.805 

 

 

 

 

 

 

Dual 

Cole-

Cole 

model 

𝑅𝑜() 

 

500 

  

499.2 

𝑚1 0.4 

  

0.3974 

𝜏1 (s) 1×10-1 

  

0.0989 

𝑐1 0.5 

  

0.5097 

𝑚2 0.6 

  

0.5976 

𝜏2 (s) 1×101 

  

10.0885 

𝑐2 0.8 

  

0.814 
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Table 3.2 Inversion-derived estimates of dual Cole-Cole model parameter required 

to fit synthetic resistivity data containing various levels of Gaussian noise. 

 
Noise 

level 

Estimated 

𝑅𝑜() 

Estimated 

𝑚1 

Estimated 

𝜏1 (s) 

Estimated 

𝑐1 

Estimated 

𝑚2 

Estimated 

𝜏2 (s) 

Estimated 

𝑐2 

Without 

noise 

500 0.4 0.1 0.5 0.6 10 0.8 

1% 

Gaussian 

noise 

499.6 0.407 0.1 0.51 0.592 10.57 0.8 

2% 

Gaussian 

noise 

499.2 0.397 0.099 0.51 0.598 10.1 0.814 

5% 

Gaussian 

noise 

498 0.375 0.104 0.506 0.615 9 0.83 

 

 

3.6 Inversion of laboratory EM measurement  

Two laboratory measurement data inversion cases are illustrated to show the 

efficiency of the proposed unified inversion scheme. The first case is multifrequency 

complex permittivity inversion and the second case is complex resistivity inversion. 

 

Case 1: Five-Parameter Inversion of Havriliak-Negami Model Parameters 

We use the multi-frequency permittivity measurements on poly (methyl acrylate) 

at 30  ℃  reported by Havriliak and Negami (1966). The complex permittivity was 

measured using the General Radio Bridge (Type 1610-B) and Cell (Type 1690-A).  The 

complex permittivity measurements were acquired at seven frequencies: 31Hz, 100Hz, 
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310Hz, 1kHz, 3.1kHz, 10kHz, and 150kHz. They demonstrated that the 𝛼-relaxation 

process for poly (methyl acrylate) can be modeled using the Havriliak-Negami model, as 

described in Eq. 3.2. They graphically analyzed the plot of real part vs. imaginary part of 

the complex permittivity measurements to determine the five parameters of Havriliak-

Negami relaxation model that characterize the poly (methyl acrylate) sample under 

investigation.  

Our estimates of 𝜀𝑟0 , 𝜀𝑟∞ , 𝜏0 , 𝛼 , and 𝛽  using the proposed unified inversion 

scheme are all close to those reported by the authors (𝜀𝑟0 = 6.48, 𝜀𝑟∞ = 3.705, 𝛼 = 0.345, 

𝜏0 = 2×10-3 s, and 𝛽 = 0.392). The Havriliak-Negami relaxation model predictions of real 

relative permittivity (𝜀𝑟
,
) and imaginary relative permittivity (𝜀𝑟

,,
) based on inversion-

derived estimates of five parameters match the measured complex relative permittivity 

measurements with an absolute error less than 0.017 as shown in Fig. 3.5, which is smaller 

than the error based on the reported parameter values by Havriliak and Negami (1966). 

Fig. 3.4 shows successful convergence of the inversion-derived estimates for 5 randomly 

chosen initial guesses of model parameter  𝜀𝑟0, 𝜀𝑟∞, 𝛼, 𝜏0, and 𝛽. 

Efficacy of the jump out step can be explained based on the convergence for one 

of the initial guesses indicated by the dash line. The error of that inversion run (dashed 

line) remains higher than the pre-defined threshold and gets stable for more than 50 

iterations, which initiates the jump out sequence. The jump out step is initiated around 

75-th iteration, and the inversion run then converges to the global minimum where all 

other inversion runs converge.  



28 

 

Figure 3.4 Convergence of estimates of relaxation-model parameters and error as a 

function of iteration for inversion of multi-frequency measurement of complex 

permittivity. 
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Figure 3.5 Comparisons of real and imaginary permittivity measurements on poly 

(methyl acrylate) solution reported by Havriliak and Negami (1966) against the 

Havriliak-Negami relaxation model predictions based on the estimated parameters. 

 

Case 2: Seven-Parameter Inversion of Dual Cole-Cole Model Parameters        

The proposed inversion scheme is applied to the multi-frequency resistivity 

measurements on unconsolidated silica-sand samples reported by Kemna et al. (2005). 

We use Eq. 3.4 for L=2 to model the measured data. The samples have grain size of 125-

250 𝜇m and were saturated with 3×10-4 molar KCl solution (Kemna et al. 2005). They 

measured complex resistivity at 71 frequencies from 1×10-3 Hz to 1×105 Hz. The 

inversion-derived estimates successfully converged for broad range of initial guesses 

which are random chosen. Our estimates for the seven unknown relaxation-model 

parameters are: 𝜌0 = 773 m, 𝑚1 = 0.0069, log(𝜏1) = -1.1 (𝜏1 in s), 𝑐1 = 0.4, 𝑚2 = 0.45, 
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log(𝜏2) = -7.1 (𝜏2 in s), and 𝑐2 = 0.78, as shown in Fig. 3.6. The Cole-Cole relaxation 

model prediction based on our estimates of the seven parameters match the measured 

complex resistivity measurements with an absolute error of less than 1 m, as shown in 

Fig. 3.7.  

 

Figure 3.6 Convergence of parameter estimates and error as a function of iteration 

for inversion of multi-frequency measurement of complex resistivity of an 

unconsolidated silica-sand sample, published by Kemna et al. (2000). 
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Figure 3.7 Comparison of multi-frequency measurements of real and negative 

imaginary resistivity of an unconsolidated silica-sand sample against dual Cole-Cole 

model predictions based on inversion estimates. 

 

Table 3.3 compares the parametric estimates for the unconsolidated silica-sand 

sample by our proposed unified inversion algorithm and those obtained by Chen et al. 

(2008). The values of inverted parameters by our proposed unified inversion algorithm 

are almost all within the 95% highest probability domains (HPD) for stochastic method 

and 95% confidence interval (CI) in the Gauss-Newton method using initial guess close 

to stochastic inversion medians, which were both obtained by Chen et al. (2008). 

Although the Markov-chain Monte Carlo-based methods (stochastic methods) work well 

for a wide range of initial guesses, this method is computationally expensive. The initial 

guess for the deterministic Gauss-Newton-based inversion used by Chen et al. (2008) are: 
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𝜌0 = 770.77 m, 𝑚1 = 0.001, log(𝜏1) = -1 (𝜏1 in s), 𝑐1 = 0.5, 𝑚2 = 0.1, log(𝜏2) = -6 (𝜏2 

in s), and 𝑐2 = 1, which are close to the solution of the inversion problem.  

Table 3.3 Dual Cole-Cole resistivity model estimates for the silica-sand sample 

obtained using our proposed inversion method and those obtained by Chen et al. 

(2008). 

 
Cole-Cole 

model 

parameters 

Our 

estimates 

Chen et al. 

(2008) 

estimated 

medians based 

on stochastic 

method  

95%  

HPD 

Chen et al. 

(2008) 

estimates based 

on Gauss-

Newton 

95% 

           CI 

𝜌0(m) 773 773.33 (772.38,774.37) 773.40 (752.96,794.39) 

𝑚1 6.9e-3 6.9e-3 (6.7e-3,7e-3) 6.94e-3 (6.77e-3,7.11e-3) 

log(𝜏1) 

(𝜏1 in s) 

-1.1 -0.972 (-1.005,-0.933) -0.992 (-1.095,-0.889) 

𝑐1 0.4 0.423 (0.413,0.433) 0.418 (0.406,0.429) 

𝑚2 0.45 0.671 (0.305,1) 0.129 (0,0.262) 

log(𝜏2) 

(𝜏2 in s) 

-7.1 -7.462 (-7.734,-6.948) -6.406 (-7.989,-4.823) 

𝑐2 0.78 0.736 (0.719,0.754) 0.765 (0.725,0.804) 
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Chapter 4: Joint Broadband Conductivity and Permittivity Logs 

Inversion 

4.1  Introduction to different EM log tools and limitation of this work 

Laterolog tools are used in conductive borehole environments and operated at few 

discrete frequencies lower than 10 kHz with a depth of investigation ranging from 30 

inches to 90 inches. EM induction tools have similar depth of investigation as the laterlog 

tools, and they are designed primarily for resistivity measurements in wells drilled with 

moderately conductive muds or oil-based mud. EM induction tools typically operate at 

two discrete frequencies between 10 kHz and 60 kHz. Laterolog tool measures voltage 

potential at electrodes and induction tool measures the secondary voltage induced in the 

receiver coil that are converted to the resistivity (inverse of conductivity) of the formation. 

EM propagation resistivity tools generally operate at two discrete frequencies between 

400 kHz and 2 MHz. EM propagation tools measure the attenuation, phase shift, and 

travel time for EM waves traveling through the formation from source to receiver located 

in the tool body. The new-generation EM dielectric dispersion tool operate at multiple 

frequencies in the range of 10 MHz to 1GHz. Dielectric tools can measure continuous 

dielectric dispersion logs at 1-in vertical resolution and are suitable for low salinity, low 

contrast, carbonate, and heavy oil reservoirs. EM propagation and dielectric tools 

measure attenuation and phase shift that is transformed to effective conductivity and 

permittivity at multiple frequencies. 

The broadband conductivity and permittivity logs can be obtained by using 

combination of EM logging tools. In this chapter, we applied a mechanistic model (PS 

model) to process the broadband EM dispersion logs and the petrophysical parameters 

such as water saturation estimations can be obtained. PS model is a frequency-dependent 
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effective medium model and can be used to process multifrequency EM data. However, 

the EM dispersion logs are obtained by different EM tools which has different depth of 

investigation and vertical resolution. The vertical resolution of dielectric dispersion log 

is only 1-in, while for laterolog or EM induction tool the vertical resolution is more than 

1 ft. The inversion-based interpretation method doesn’t consider these effects and this 

method can only be applied in homogeneous formations. For formations that have thin-

bed layers, the method can’t be applied to estimate petrophysical parameters.  

 

4.2  Literature review of EM log inversion  

A joint inversion of galvanic resistivity (laterolog) and EM induction log was 

proposed by Mezzatesta et al. (1994) to improve the resolution of true formation 

resistivity estimates for improved evaluation of residual and movable hydrocarbon 

saturation. Glinskikh et al. (2014) implemented the Nelder-Mead simplex (direct search) 

algorithm coupled with dispersed clay mixing models (de Lima and Sharma, 1990) for 

petrophysical inversion of high frequency induction logs in the range between 0.875 and 

14 MHz acquired in a shaly sandstone formation in oilfields of West and East Siberia to 

estimate water saturation, porosity and clay fraction in the formation. LWD propagation 

deep resistivity tool operating at 125 kHz, 500 kHz and 2 MHz, was implemented to drill 

a high-angle well in a carbonate reservoir in onshore Abu Dhabi (Al-Ameri et al., 2015). 

They implemented an inversion technique to estimate the horizontal resistivity, vertical 

resistivity, and dip angle by minimizing a cost function consisting of the sum of data 

misfit and sum of constraints of formations models. In the inversion scheme, Levenberg-

Marquardt algorithm (LMA) was preferred over the steepest-descent method to increase 
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the speed of inversion. Hizem et al. (2008) used CRI model and SMD model to jointly 

invert the four-frequency dielectric dispersion logs in the range of 20 MHz to 1GHz to 

estimate the water saturation, formation water conductivity, and textural parameters. Han 

et al. (2017) combined Lichtenecker-Rother model and SMD model to process the four-

frequency dielectric dispersion logs for estimating water saturation, brine conductivity, 

homogeneity index and cementation index in Bakken Petroleum System.  

Various inversion algorithms have been developed to process the conductivity 

(resistivity) and permittivity measurements. The least square method is widely used and 

L2 norm objective function can include the data misfit term, regularization term (Al 

Marzooq et al., 2014), and constraints of formations models (Al-Ameri et al., 2015). The 

L2 norm objective function may only contain data misfit term (e.g. Lin et al., 1984). The 

Levenberg-Marquardt type algorithms have been implemented as the least square method 

in EM induction log inversion (Lin et al., 1984), LWD propagation resistivity log 

inversion (Al-Ameri et al., 2015) and multifrequency complex conductivity lab measured 

data inversion (Revil et al., 2015). Other inversion algorithms used to process the 

conductivity (resistivity) and permittivity data are Nelder-Mead simplex (direct search) 

algorithm (Glinskikh et al., 2014) and a combination of modified Gauss-Newton method 

and Monte Carlo algorithm (Zhou et al., 2016). Thiel et al. (2012) developed a robust 

Gauss-Newton inversion algorithm by introducing Huber error function to handle outliers 

in LWD propagation log measurements. The Huber function behaves like the L2 norm 

for small error values and approaches the L1 norm for large error values. In this section, 

we propose a modified LMA-based inversion method coupled with PS model (Misra et 

al., 2016a) to simultaneously process multifrequency permittivity and conductivity logs 
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acquired in the broadband frequency range of 1 kHz to 1 GHz. The proposed inversion 

algorithm has good convergence for wide range of initial guesses and the algorithm can 

be generalized because we identified a set of fixed parameters required for the robust and 

reliable joint inversion. 

 

4.3   Modified Levenberg-Marquardt inversion algorithm 

We modified the Levenrg-Marquardt inversion algorithm and the proposed 

inversion algorithm coupled with a mechanistic model (PS model) is applied to process 

the broadband EM dispersion logs to estimate the petrophysical parameters. In synthetic 

inversion cases, we introduce the data weight matrix which ensures that the error-

minimization process equally honors all data misfits, and scaling matrix which scales the 

different parameters. In field data inversion cases, the standard deviations of relative 

permittivity and conductivity logs are included in the inversion scheme. 

The nonlinear inverse problem discussed in this chapter involves the estimation 

of 3-5 PS model parameters that generate least misfit between the measured logs and the 

PS model predictions of multi-frequency effective permittivity and conductivity of clay- 

and pyrite-bearing formations. To demonstrate the efficacy of the proposed inversion 

scheme, synthetic logs with 5% Gaussian noise are simulated using the PS model at the 

log-acquisition frequencies of various combinations of the four aforementioned EM tools 

for pyrite- and clay-bearing formations. 

In the proposed inversion scheme, n-sized measured data vectors 𝐏𝐞𝐫𝐦meas and 

𝐂𝐨𝐧𝐝meas represent the log-derived or synthetically generated effective permittivity and 

conductivity values of a pyrite- and clay-bearing formation acquired at n distinct EM log-



37 

acquisition angular frequencies, namely, 𝜔1, 𝜔2, …., 𝜔𝑛. The goal is to estimate l-sized 

PS model parameter vector mprop that best represents the petrophysical properties, such 

as water saturation, brine salinity, clay surface conductance, and average size of IP-

causing grains, of the subsurface formation under investigation. To that end, PS model is 

used to generate the n-sized modeled data vectors 𝐏𝐞𝐫𝐦mod(𝐦) and 𝐂𝐨𝐧𝐝mod(𝐦), 

comprising PS model predictions at n distinct log-acquisition frequencies for a specific l-

sized PS model parameter vector m. The modeled data vectors can be expressed as  

𝐏𝐞𝐫𝐦mod(𝐦) = [𝑃𝑒𝑟𝑚(𝐦,𝜔1), 𝑃𝑒𝑟𝑚(𝐦,𝜔2),…𝑃𝑒𝑟𝑚(𝐦,𝜔𝑛)]………………...(4.1) 

and 

𝐂𝐨𝐧𝐝mod(𝐦) = [𝐶𝑜𝑛𝑑(𝐦,𝜔1), 𝐶𝑜𝑛𝑑(𝐦,𝜔2),…  𝐶𝑜𝑛𝑑(𝐦,𝜔𝑛) ]………………...(4.2)   

where the PS model-generated Perm(m,𝜔𝑖 ) and Cond(m,  𝜔𝑖 ) represent the modeled 

effective permittivity and conductivity of a pyrite- and clay-bearing formation computed 

at a specific log-acquisition angular frequency 𝜔𝑖  for a specific l-sized PS model 

parameter vector m. Following that, the modeled data vectors 𝐏𝐞𝐫𝐦mod(𝐦est)  and 

𝐂𝐨𝐧𝐝mod(𝐦est) are matched with the measured data vectors 𝐏𝐞𝐫𝐦meas and 𝐂𝐨𝐧𝐝meas 

to find the PS model parameter l-sized vector mest that best characterizes the pyrite- and 

clay-bearing formation under investigation.  

We defined an n-sized data misfit vector F(m) for purposes of minimization. 

Individual components of the vector F(m) are referred as fi(m
k), where superscript k is 

used as the iteration count for the inversion scheme, mk is the l-sized PS model parameter 

vector computed at the k-th iteration of the inversion, and subscript i denotes one of the 

n log-acquisition frequencies. F(mk) is thus expressed as  

𝐅(𝐦𝑘) = [𝑓1(𝐦
𝑘), 𝑓2(𝐦

𝑘), … 𝑓n(𝐦
𝑘)]𝑇……………………………………………(4.3)                                                                                                         
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where fi(m
k) is expressed as 

𝑓𝑖(𝐦
𝑘) = [𝐏𝐞𝐫𝐦mod(𝐦𝑘) − 𝐏𝐞𝐫𝐦meas]

𝑖

2
+ [𝐰 ∙ (𝐂𝐨𝐧𝐝mod(𝐦𝑘) −

𝐂𝐨𝐧𝐝meas)]
𝑖

2
………………………………………………………………………...(4.4) 

where 𝑖 = 1, 2, . . . , 𝑛 and w is the n-sized weight factor vector formulated as 

𝐰 =
𝐏𝐞𝐫𝐦meas

 𝐂𝐨𝐧𝐝meas
………………………………………………………………………...(4.5) 

The weight factor vector in Eq. 4.5 is used to normalize the errors in effective 

permittivity and conductivity to ensure that the inversion scheme equally honors both the 

errors in conductivity and permittivity. For the synthetic cases studied in this paper, the 

elements of weight factor vector are typically in the range of 20-700 at log-acquisition 

frequencies of dielectric tools, 1 ×  103 to 2 ×  104 at propagation log-acquisition 

frequencies, and 1× 105 to 1× 106 at induction log acquisition frequencies.  

We modified the LMA by introducing n×n data weight matrix 𝐖d and l×l scaling 

matrix 𝐖s into the mathematical formulation of the LMA inversion scheme. During the 

error-minimization process of an inversion scheme, the total data misfit, computed based 

on the inversion-derived estimates, is a function of data misfits computed at each 

frequency of the EM measurement. The weight-factor vector w ensures that the data 

misfit at a given frequency equally honors the measured/modeled values of permittivity 

and conductivity. On the other hand, the Wd matrix ensures that the error-minimization 

process equally honors all data misfits computed at each of the EM-measurement 

frequencies. To that end, Wd scales the data-misfit vector F(m), whereas the vector w 

scales the errors in permittivity and conductivity components at any given frequency. The 

data at low frequencies get more weight compared to those at high frequencies without 
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the Wd matrix, whereas permittivity components get more weight compared to the 

conductivity components without vector w.   

To ensure the generality of the inversion algorithm, we did not implement a 

reference vector 𝐦𝑅 , which represents the prior knowledge of parameter values that 

mitigates the non-uniqueness issues in the modified LMA. The modified LMA scheme 

used for error minimization is expressed as 

[(𝐖d𝐉(𝐦
𝑘)𝐖s)

T ∙ (𝐖d𝐉(𝐦
𝑘)𝐖s) + 𝜆𝐈] ∙ 𝐖𝑠

−1 ∙ ∆𝐦𝑘 = −(𝐖d𝐉(𝐦
𝑘)𝐖s)

T ∙

(𝐖d𝐅(𝐦
𝑘))………………………………………………………………………….(4.6) 

where J(mk) is the n×l Jacobian matrix derived of F(mk), I is l×l identity matrix, 

superscript T is matrix transpose operator, ∆mk
 is the l-sized correction vector generated 

at the k-th iteration that determines the direction towards the convergence of the unknown 

PS-model parameters during the estimation process, and 𝜆 is the damping parameter, 

which is adaptively adjusted by a constant damping factor v during the course of the 

iteration to ensure faster convergence. Based on the damping parameter, the proposed 

modified LMA interpolates between Gauss-Newton algorithm (GNA) and gradient 

descent method. We applied the same values of damping parameter 𝜆  and constant 

damping factor v in all cases in Chapter 4 as those in Chapter 3. The Jacobian matrix 

J(mk) is formulated in the same form as it in Chapter 3. Using the correction vector 

generated in Eq. 4.6, we can calculate the successive estimates for the unknown PS-model 

parameters as  

𝐦𝑘+1 = 𝐦𝑘 + ∆𝐦𝑘………………………………………………………...………..(4.7) 
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such that all elements of the l-sized vector mk+1 lie within the predefined lower and upper 

limits. The way to define the bounds of PS model parameters and the jump-back-in step 

are similar to those in Chapter 3. 

The matrix 𝐖d is the n×n data weight matrix which is a diagonal matrix with 

elements equal to the inverse of the sum of measured effective permittivity square and 

weighted conductivity square formulated as  

𝐖d = (

1

(𝐏𝐞𝐫𝐦meas)1
2+(𝐰∙𝐂𝐨𝐧𝐝meas)1

2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

(𝐏𝐞𝐫𝐦meas)𝑛
2+(𝐰∙𝐂𝐨𝐧𝐝meas)𝑛

2

)……………….(4.8) 

In several published inversion schemes, the weight matrix 𝐖d is the inverse of the data 

covariance matrix (e.g., Torres-Verdín et al., 2000) describing the estimated variance for 

each particular measurement and the estimated correlation between measurements or the 

estimated uncertainties in the data due to noise contamination. However, in our inversion 

scheme, the only function of proposed formulation of 𝐖d  is to scale the effective 

permittivity and conductivity at various logging frequency. Scaling is required because 

the effective permittivity at galvanic resistivity tool frequency is nearly 4 orders of 

magnitude larger than that at the highest dielectric dispersion tool frequency and the 

effective conductivity at highest dielectric dispersion frequency is generally 2 orders of 

magnitude larger than that at galvanic tool frequency.  

𝐖s is l× l scaling diagonal matrix that ensures that the Jacobian matrix in 

Equation 6 remains non-singular during the inversion iterations. 𝐖s is expressed as 

𝐖s = (
10𝛼1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 10𝛼𝑙

)…………………………………………………………...(4.9) 
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where the parameters (𝛼1, 𝛼2, ⋯, 𝛼𝑙) are the exponents in the diagonal denote the order 

of magnitude difference between the expected estimates for the l unknown PS-model 

parameters. The values of 𝛼1 , 𝛼2 , ⋯ , 𝛼𝑙  correspond to the unknown PS-model 

parameters, namely water saturation, brine conductivity, surface conductance of clay, 

clay grain size, and pyrite grain size, that was assumed to be -1, 0, -6, -6, and -4, 

respectively, for the cases investigated in this paper. Without the first-of-its-kind scaling 

matrix 𝐖s , the Jacobian matrix tends to become singular or badly scaled during the 

inversion iteration. There can be an order of 6 variation in the magnitudes of PS model 

parameters; consequently, without the scaling matrix, the inversion scheme can generate 

inconsistent estimates for some parameters because the corresponding elements in the 

Jacobian matrix tend to become much larger than the other elements. Rather than scaling 

parameters in the first, we propose another way to scale parameters by introducing the 

scaling matrix into the inversion scheme. For example, the range of water saturation is 

between 0 to 1 and the range of surface conductance is between 1×10-8 S to 1×10-5 S, 

which is 5 orders of magnitude variation in the parameter values. In such a case, 𝛼1 

corresponding to water saturation is assumed to be -1 and 𝛼3 corresponding to surface 

conductance of clay is assumed to be -6.   

 

4.4  Synthetic case study 

Synthetic data inversion was applied on three specific synthetic layers. Table 4.1 

displays the assumed petrophysical properties of the three synthetic formations. Synthetic 

Layer 1 is a pyrite-rich and smectite-type conductive clay-bearing oil-filled formation; 

Synthetic Layer 2 is a pyrite-rich and kaolinite-type nonconductive clay-rich water-filled 



42 

formation; and Synthetic Layer 3 is a smectite-type conductive clay-rich brine-filled 

formation.  

Table 4.1 Assumed petrophysical properties of the three synthetic layers used for 

this study. The parameters shown with a gray background were also used as the 

inversion-derived estimates.  

  
Parameters Unit Layer 1 Layer 2 Layer 3 

Volume fraction of pyrite grains, 𝑉𝑖 % 5 3 1 

Bulk conductivity of pyrite,  𝑆𝑖 S/m 1000 5000 1000 

Relative permittivity of pyrite,  𝜀𝑟𝑖  30 30 30 

Diffusion coefficient of pyrite,  𝐷𝑖  m2/s 10-6 5×10-6 10-6 

Radius of pyrite grains,  𝑟𝑖 µm 30 100 50 

Volume fraction of clay,  𝑉𝑐 % 30 60 50 

Relative permittivity of clay,  𝜀𝑟𝑐  5 5 5 

Surface conductance of clay, 𝜆𝑐 S 5×10-6 10-6 5×10-6 

Radius of spherical clay grains,  𝑟𝑐  µm 0.3 1 0.5 

Volume fraction of sand,  𝑉𝑠 % 45 20 30 

Surface conductance of sand, 𝜆𝑠 S 10-9 10-9 10-9 

Radius of sand grains,  𝑟𝑠 µm 500 500 500 

Porosity of rock, 𝜑 % 20 17 19 

Bulk conductivity of brine,  𝐶𝑤 S/m 3 1 10 

Relative permittivity of brine,  𝜀𝑟𝑏  80 80 80 

Diffusion coefficient of brine,  𝐷𝑏  m2/s 10-9 10-9 2×10-9 

Relative permittivity of hydrocarbon, 𝜀𝑟ℎ𝑦  3 3 3 

Water saturation, 𝑠𝑤  % 20 90 80 

 

Case 1: Inversion of synthetic data generated at laterolog, induction, propagation and 

dielectric dispersion frequencies without Gaussian noise 

The inversion method was applied to synthetic effective permittivity and 

conductivity data for a pyrite- and clay-bearing formation generated using the PS model 

at laterolog (1kHz), induction (26 kHz, 52 kHz), propagation (400 kHz, 2 MHz) and 

dielectric (20 MHz, 100 MHz, 400 MHz, 1 GHz) log-acquisition frequencies. This 

presents an ideal situation when effective conductivity and permittivity of a given depth 

in a pyrite- and clay-bearing geological formation are measured at 9 frequencies using 

the four EM downhole tools available in the industry. For this comparative study, the 

synthetic data is generated for a formation that is assumed to be similar to Synthetic Layer 
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1, which is pyrite-rich and smectite-type conductive clay-bearing oil-filled formation. 

The method was tested for its accuracy in estimating 𝑠𝑤, 𝐶𝑤, 𝜆𝑐, 𝑟𝑐, and 𝑟𝑖. Fig. 4.1 shows 

the synthetic effective permittivity and conductivity data generated using PS model at 

four aforementioned EM logs frequencies. When plotting the relative permittivity as a 

function of frequency, logarithmic scale is used in y-axis that compresses the effect of 

noise in permittivity.  

The inversion-derived estimates successfully converged after 13 iterations for 

broad range of initial guesses of  𝑠𝑤, 𝐶𝑤, 𝜆𝑐, 𝑟𝑐, and 𝑟𝑖 in the ranges of 0.1 to 0.9, 0.5 to 

10 S/m, 5×10-7 to 1×10-5 S, 0.1 to 3 𝜇m, and 10 to 300 𝜇m, respectively. Our estimates 

for the five unknown PS model parameters are: 𝑠𝑤 = 0.2, 𝐶𝑤 = 3 S/m, 𝜆𝑐 = 5×10-6 S, 𝑟𝑐 

= 0.3 𝜇m, and 𝑟𝑖 = 30 𝜇m. These estimates match well with the original parameter values, 

listed in Table 4.1, assumed for Synthetic Layer 1, which were used to generate the 

synthetic data without Gaussian noise shown in Fig. 4.1. The PS model prediction based 

on our estimates of the five parameters match the synthetic effective permittivity and 

conductivity with relative error of less than 1×10-6. The bounds of the unknown PS model 

petrophysical parameters during inversion were: 0 ≤ 𝑠𝑤 ≤ 1,  0 ≤ 𝐶𝑤 ≤ 15 S/m ,1×

10−8 ≤ 𝜆𝑐 ≤ 1×10
−5 S, 0 ≤ 𝑟𝑐 ≤ 10 𝜇m, and 1 ≤ 𝑟𝑖 ≤ 1000 𝜇m. Contour plots in Fig. 

4.2(A) and 4.2(B) depict LMA-based inversion method in terms of error minimization 

for a specific set of initial guesses of the model parameters, namely 𝑠𝑤 = 0.5, 𝐶𝑤 = 7 S/m, 

𝜆𝑐 = 5×10-7 S, 𝑟𝑐 = 0.2 𝜇m, and 𝑟𝑖 = 50 𝜇m. The contours present relative error of data 

misfit in logarithmic scale; for example, contour of -1 indicates a relative error of 0.1. 

Fig. 4.2(A) illustrates the changes in water saturation and brine conductivity estimates 

and Fig. 4.2(B) illustrates the changes in the estimates of clay properties: surface 
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conductance of clay and radius of spherical clay grains during the first 15 iterations that 

resulted in the convergence of inversion-derived estimates. To avoid repetition in 

reporting the observed trends, we do not present the changes in the estimates of radius of 

pyrite grains.  

 
Figure 4.1 Synthetic data with and without 5% Gaussian noise at one laterolog 

(~Hz), two induction (~kHz), two propagation (~MHz), and four dielectric 

frequencies (~MHz to 1 GHz) generated assuming parameters for Synthetic Layer 

1. 
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Figure 4.2 Changes in (A) water saturation and brine conductivity estimates and 

those in (B) surface conductance of clay and radius of spherical clay with associated 

relative error of data misfit obtained during the modified LMA-based inversion of 

synthetic data shown in Fig. 4.1 (representing the conductivity and permittivity 

response of Synthetic Layer 1). The dash line identifies the estimates generated by 

the modified LMA. The start point for both the methods is 𝑺𝒘 = 0.5, 𝑪𝒘 = 7 S/m, 𝝀𝒄 
= 5×10-7 S, 𝒓𝒄 = 0.2 𝝁m, and 𝒓𝒊 = 50 𝝁m. 

 

Case 2: Inversion of synthetic data generated at laterolog, induction, propagation and 

dielectric dispersion frequencies with 5% Gaussian noise 

Fig. 4.3 shows that, in the presence of 5% Gaussian noise in the synthetic data 

(Fig. 4.1), the inversion-derived estimates for modified LMA successfully converged for 

the broad range of initial guesses, which is similar to that adopted for the previous case 

involving synthetic data without Gaussian noise. Row 1 in Tables 4.2-4.6 list the 

inversion-derived estimates obtained by processing the synthetic response of Synthetic 

Layer 1 containing 5% Gaussian noise. Water saturation estimates followed by brine 

conductivity estimates are generated at higher accuracy compared to the 𝜆𝑐, 𝑟𝑐, and 𝑟𝑖 

estimates.The modified LMA-based estimates for the five unknown PS model parameters 

are (also, listed in Tables 4.2-4.6) 𝑠𝑤 = 0.201, 𝐶𝑤 = 2.97 S/m, 𝜆𝑐 = 5.2×10-6 S, 𝑟𝑐 = 0.285 

𝜇m, and 𝑟𝑖 = 35.4 𝜇m. These estimates are close to the original parameter values, listed 
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in Table 4.1, assumed for Synthetic Layer 1 that were used to generate the synthetic data 

with 5% Gaussian noise, as shown in Fig. 4.1. The PS model prediction based on our 

estimates of the five parameters match the synthetic effective permittivity and 

conductivity with relative error of close to 1×10-2.  

 
Figure 4.3 Convergence of modified LMA-based inversion estimates of PS-model 

parameters and relative error (between modeled data based on the estimated 

parameters and the synthetic data) as a function of iteration during the inversion of 

synthetic data with 5% Gaussian noise generated for the Synthetic Layer 1. 

Inversion results for five different sets of initial guesses of the model parameters are 

shown in the figure. 

 

Case 3: Inversion of synthetic data generated at one induction and four dielectric 

dispersion frequencies with 5% Gaussian noise  
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As mentioned earlier, a subsurface log acquisition plan generally does not involve 

all the four types of logging tools. There have been several oil-field log-acquisition efforts 

involving induction and dispersion logs (e.g., Pirrone et al., 2011; Han et al., 2017), 

induction and propagations logs (e.g., Altman et al., 2008; Misra et al., 2016c), and 

propagation and dispersion logs (e.g., Wang and Poppitt, 2013; Little et al., 2010). 

Notably, most of the existing induction log interpretation techniques only generate 

resistivity estimates and assume the permittivity of the formation to be 1 (Misra and Han, 

2016a) that is unrealistic in the presence of large volume fractions of clays and pyrite. 

Application of the proposed inversion technique is challenging due to the following 

reasons: (1) the EM logs are acquired in a well at limited number of frequencies, generally 

between 2 to 5 frequencies (Han and Misra, 2017), (2) permittivity logs are not generated 

during the interpretation of laterolog and induction log interpretation, and (3) different 

volumes of a formation are investigated at different log-acquisition frequencies. 

Therefore, in this section, we apply the modified LMA-based inversion method to 

synthetic conductivity and permittivity data generated under the constraints of 

measurements obtained at less than 6 discrete frequencies and in absence of permittivity 

data at induction and laterolog frequencies, wherein the effective relative permittivity is 

assumed to be 1. The inversion algorithm is tested on synthetic data with 5% Gaussian 

noise.  

Synthetic permittivity and conductivity data (Fig. 4.4) is generated using the PS 

model at one induction (26 kHz) and four dielectric (20 MHz, 100 MHz, 400 MHz, 1 

GHz) log-acquisition frequencies. The proposed inversion algorithm is applied to the 

five-frequency synthetic data to estimate three model parameters, namely, water 
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saturation, bulk conductivity of brine, and surface conductance of clay. 5% Gauss noise 

to the synthetic effective permittivity and conductivity data, as shown in Fig. 4.4. 

Inversion-derived estimates for the three unknown PS model parameters assumed for this 

study are: 𝑠𝑤 = 0.79, 𝐶𝑤 = 10.6 S/m, and 𝜆𝑐 = 4.7×10-6 S, which are reported in Tables 

4.2-4.4 in and are close to the original parameter values, listed in Table 4.1, assumed for 

Synthetic Layer 3. The PS model predictions based on inversion-derived estimates of the 

three parameters match the synthetic effective permittivity and conductivity (with 5% 

Gauss noise) with relative error of less than 3×10-2. Inversion-derived estimates for 

Synthetic Layer 3 are consistently less inaccurate compared to those for Synthetic Layer 

1 because the data for Synthetic Layer 1 were acquired at 9 frequencies compared to 5 

frequencies for Synthetic Layer 3. 
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Figure 4.4 Synthetic data with and without 5% Gaussian noise at one induction 

(~kHz) and four dielectric (~MHz to 1 GHz) frequencies generated assuming 

parameters of Synthetic Layer 3. Data at induction frequency does not have a 

corresponding relative permittivity value, in accordance with current practices in 

log acquisition. 

 

 

Case 4: Inversion of synthetic data generated at two propagation and four dielectric 

dispersion frequencies with 5% Gaussian noise 

As mentioned earlier, there is oil-field log-acquisition effort to deploy EM 

propagation tool during logging while drilling (LWD) followed by dielectric dispersion 

tool as a wireline logging run. Such tool deployment in a well will typically provide 

conductivity and permittivity data at six frequencies in the range of 1 MHz to 1 GHz. In 

order to simulate this scenario, PS model is used to generate synthetic effective 

permittivity and conductivity data at propagation (400 kHz, 2 MHz) and dielectric (20 
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MHz, 100 MHz, 400 MHz, 1 GHz) log-operation frequencies acquired in a pyrite- and 

clay-bearing formations. Parameters mentioned in Table 4.1 for the Synthetic Layer 2 are 

used as default parameters and the objective of inversion of the six-frequency synthetic 

data is to accurately estimate the 𝑠𝑤, 𝐶𝑤, 𝜆𝑐, and 𝑟𝑐. Fig. 4.5 shows the synthetic effective 

permittivity and conductivity data predicted by PS model for Synthetic Layer 2 at 

propagation and dielectric dispersion log acquisition frequencies. 

Our estimates for the four PS model parameters are: 𝑠𝑤 = 0.89, 𝐶𝑤 = 1.03 S/m, 𝜆𝑐 

= 1.05×10-6 S, and 𝑟𝑐 = 1.03 𝜇m, which are reported in Tables 4.2 – 4.5 and are close to 

the original parameter values, listed in Table 4.1, assumed for Synthetic Layer 2 that were 

used to  generate the synthetic data shown in Fig. 4.5 The PS model prediction based on 

our estimates of the four parameters match the synthetic effective permittivity and 

conductivity with relative error of less than 5×10-2. Inversion-derived estimates for 

Synthetic Layer 2 are consistently less inaccurate compared to those for Synthetic Layer 

1 because the data for Synthetic Layer 1 were acquired at 9 frequencies compared to 6 

frequencies for Synthetic Layer 2. 
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Figure 4.5 Synthetic data with and without 5% Gaussian noise at two propagation 

(~MHz) and four dielectric (~MHz to 1 GHz) frequencies generated assuming 

parameters of Synthetic Layer 2. 

 

Table 4.2 Relative errors in water saturation estimates obtained using the joint 

inversion of multifrequency conductivity and permittivity data containing 5% 

Gaussian noise for three synthetic layers. 
Synthetic 

Layer 

Estimated 

𝑠𝑤  

True 

𝑠𝑤  

Error in 

𝑠𝑤  (%) 

1 0.201 0.2 0.65 

2 0.89 0.9 1.1 

3 0.79 0.8 1.25 

 

Table 4.3 Relative errors in brine conductivity estimates obtained using the joint 

inversion of multifrequency conductivity and permittivity data containing 5% 

Gaussian noise for three synthetic layers. 
Synthetic 

Layer 

Estimated 

𝐶𝑤 (S/m) 

True 

𝐶𝑤 (S/m) 

Error in 

𝐶𝑤 (%) 

1 2.97 3 1 

2 1.03 1 3 

3 10.6 10 6 
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Table 4.4 Relative errors in clay surface conductance estimates obtained using the 

joint inversion of multifrequency conductivity and permittivity data containing 5% 

Gaussian noise for three synthetic layers. 
Synthetic 

Layer 

Estimated 

𝜆𝑐 (S) 

True 

𝜆𝑐 (S) 

Error in 

𝜆𝑐 (%) 

1 5.2×10-6 5×10-6 4 

2 1.05×10-6 1×10-6 5 

3 4.7×10-6 5×10-6 6 

 

Table 4.5 Relative errors in clay radius estimates obtained using the joint inversion 

of multifrequency conductivity and permittivity data containing 5% Gaussian noise 

for two synthetic layers. 
Synthetic 

Layer 

Estimated 

𝑟𝑐  (𝜇m) 

True 

𝑟𝑐  (𝜇m) 

Error in 

𝑟𝑐  (%) 

1 0.285 0.3 5 

2 1.03 1 3 

 
Table 4.6 Relative errors in pyrite radius estimates obtained using the joint 

inversion of multifrequency conductivity and permittivity data containing 5% 

Gaussian noise for one synthetic layer. 
Synthetic 

Layer 

Estimated 

𝑟𝑖 (𝜇m) 

True 

𝑟𝑖 (𝜇m) 

Error in 

𝑟𝑖 (%) 

1 35.4 30 18 

 

4.5 Application in organic-rich gas shale formation  

Broadband EM measurements in the frequency range of 1 Hz to 1 GHz are 

generally performed on geological core samples in laboratory environment. However, 

there is only one example of subsurface broadband EM dispersion data acquisition 

reported by Wang and Poppitt (2013), which was processed later by Han and Misra 

(2017). Wireline induction logging tool operating at 26 kHz, LWD propagation logging 

tool operating at 1 MHz and 2 MHz, and wireline dielectric-dispersion logging tool 

operating at 20 MHz, 100 MHz, 260 MHz, and 1 GHz were deployed in an organic-rich 

shale formation in Northern Europe for acquiring broadband conductivity- and 

permittivity-dispersion logs. We improved and revised the proposed inversion algorithm 

for inverting this broadband conductivity and permittivity dispersion logs. In this field 



53 

case, contrary to conventional acquisition practices, permittivity log was acquired at the 

induction-log acquisition frequency. 

Data misfit vector for field data inversion was modified because the standard 

deviations of relative permittivity and conductivity logs are notably different. In doing so, 

the inversion scheme requires minimizing quadratic cost function C(m) formulated as 

𝐶(𝐦)  = ∥
𝐃mod(𝐦est)−𝐃meas

𝝈
∥2
2…………………………………………………….(4.10) 

where 𝐃mod(𝐦est)  represents modeled data vector based on estimated model 

parameters, 𝐃meas represents the measured data vectors, and 𝝈 is the standard deviation 

vector for the broadband permittivity and conductivity logs. The first seven elements in 

the vectors are related to permittivity, and the remaining seven are related to conductivity 

for the seven frequencies of measurement. The data misfit vector 𝐅′(𝐦) is thus expressed 

as a combination of 7 conductivity and 7 permittivity measurements in the broadband 

frequency as follows -  

𝐅′(𝐦𝑘) = [𝑓′
1
(𝐦𝑘), 𝑓′

2
(𝐦𝑘),… 𝑓′

14
(𝐦𝑘)]

𝑇
…………………………………….(4.11)                                                                                                   

where f’i(m
k) is expressed as  

𝑓′𝑖(𝐦
𝑘) =

Dmod(𝐦est)
𝒊
−Dmeas𝑖

𝜎𝑖
 ……………………………………………………...(4.12) 

where 𝑖 = 1, 2, . . . ,14, where the first seven elements (𝑖 = 1, 2, . . . ,7) are related to 

permittivity measurements and the remaining seven elements ( 𝑖 = 8, 9, . . . ,14 ) are 

related to conductivity measurements. The elements in data misfit vector 𝐅′(𝐦) are in 

similar order of magnitude after dividing the broadband permittivity and conductivity 

logs with the standard deviation vector into the cost function. Therefore, the weight 



54 

matrix 𝐖d and weight factor w are not needed for the field case study. For the field case 

study, the modified Levenberg-Marquardt inversion scheme is revised to 

[(𝐉(𝐦𝑘)𝐖s)
T ∙ (𝐉(𝐦𝑘)𝐖s) + 𝜆𝐈] ∙ 𝐖𝑠

−1 ∙ ∆𝐦𝑘 = −(𝐉(𝐦𝑘)𝐖s)
T ∙ (𝐅(𝐦𝑘))……..(4.13) 

We selected two depths in the organic-rich shale formation under investigation. 

XX09 m is a pyrite- and clay-rich zone and XX52 m is clay rich zone. The joint 

petrophysical inversion algorithm processed the broadband conductivity and permittivity 

dispersion logs acquired at these two depths. Table 4.7 displays the 𝑠𝑤, 𝐶𝑤, 𝜆𝑐, 𝑟𝑐 and 𝑟𝑖 

estimates and other petrophysical properties for these two depths. Based on the 

estimations, depth XX09 m is low salinity, water-bearing zone, whereas depth XX52 m 

is low-salinity, oil-bearing zone. For those two depths, the radius of clay is around 0.1 

𝜇m and surface conductance of clay is low, which is lower than 1×10-7 S. The radius of 

pyrite in depth XX09 m is around 170 𝜇m.  

Table 4.7 Inversion-derived and assumed petrophysical properties of two depths in 

the organic-rich formation. Joint inversion of induction, propagation and dielectric 

dispersion logs was performed at the two depths. The five inversion-derived 

estimates are shown with a gray background. 

 
Parameters Unit Depth XX52 Depth XX09 

Volume fraction of pyrite grains, 𝑉𝑖 % 0 2.3 

Bulk conductivity of pyrite,  𝑆𝑖 S/m - 1000 

Relative permittivity of pyrite,  𝜀𝑟𝑖  - 30 

Diffusion coefficient of pyrite,  𝐷𝑖  m2/s - 1×10-5 

Radius of pyrite grains,  𝑟𝑖 µm - 172 

Volume fraction of clay,  𝑉𝑐 % 60 47 

Relative permittivity of clay,  𝜀𝑟𝑐  6 6 

Surface conductance of clay, 𝜆𝑐 S 6.6×10-8 2.5×10-8 

Radius of spherical clay grains,  𝑟𝑐  µm 0.13 0.1 

Volume fraction of sand,  𝑉𝑠 % 31 43 

Surface conductance of sand, 𝜆𝑠 S 10-9 10-9 

Radius of sand grains,  𝑟𝑠 µm 500 500 

Porosity of rock, 𝜑 % 9 7.7 

Bulk conductivity of brine,  𝐶𝑤 S/m 0.48 0.38 

Relative permittivity of brine,  𝜀𝑟𝑏  80 80 

Diffusion coefficient of brine,  𝐷𝑏  m2/s 1.5×10-9 1.5×10-9 

Relative permittivity of hydrocarbon, 𝜀𝑟ℎ𝑦  3 3 

Water saturation, 𝑠𝑤  % 100 46 



55 

 

Inversion-derived estimates obtained using different combinations of EM logs 

were compared to find out the best combination of EM logging tools for the desired near-

wellbore characterization. Tables 4.8 and 4.9 display the 𝑠𝑤, 𝐶𝑤, 𝜆𝑐 and 𝑟𝑐 estimates for 

the depths XX52 m and XX09 m, respectively, for the various combination of EM logs. 

Fig. 4.6 and 4.7 present the comparison of modeled and measured broadband permittivity 

and conductivity data for depths XX09 m and XX52 m, respectively. The water saturation 

and brine conductivity estimates are relatively similar for all the log combinations. For 

the depth XX52 m, the combination of induction and dielectric dispersion logs and the 

combination of induction, propagation and dielectric dispersion logs led to the largest 

data misfit. The combination of induction and dielectric dispersion logs generated 1-order 

of magnitude higher surface conductance and radius of clay estimates compared to those 

obtained from other combinations. For the depth XX09 m, water saturation estimates are 

slightly different for the various combinations, such that the largest difference is 0.14 

saturation unit. Dielectric dispersion log interpretation generates the highest water 

saturation of 0.53, and the combination of LWD propagation and dielectric dispersion 

logging tool generates the lowest water saturation of 0.39, as listed in Table 4.9. Brine 

conductivity, surface conductance, and radius of clay estimates are relatively similar 

when using different combinations of EM logs for the depth XX09 m. Radius of pyrite 

estimates vary with log combinations ranging from 172 𝜇m to 350 𝜇m. The combination 

of induction, propagation, and dielectric dispersion logs and the combination of 

propagation and dielectric dispersion logs exhibit high data misfit for the second field 

cases. Estimates derived from only dielectric dispersion logs exhibit smallest data misfit 
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in both the cases; however, the application dielectric dispersion logs are suitable in low-

salinity formation and in wells with low borehole rugosity. Combining various EM logs 

accounts for the effects due to polarization mechanisms in various frequency ranges; 

thereby facilitating improved water saturation estimates.  

Table 4.8 Estimated petrophysical properties and data misfit in depth XX52 m in an 

organic-rich formation when performing petrophysical inversion of various 

combinations of logging tools.   

 

Logging tool 

combination 

Est. 𝑠𝑤  

(fraction) 

 

Est. 𝐶𝑤 

(S/m) 

 

Est. 

𝜆𝑐 (S) 

 

Est. 

𝑟𝑐  (𝜇m) 

 

Data misfit 

(fraction) 

 

Induction + Propagation 

+ Dielectric dispersion 
1 0.48 6.6×10-8 0.13 0.2316 

Dielectric dispersion 1 0.58 7.2×10-8  0.13 0.1272 

Induction + Dielectric 

dispersion 
1 0.35 5.9×10-7 1.31 0.2587 

Propagation + Dielectric 

dispersion 
1 0.49 7.2×10-8 0.14 0.1327 

 

Table 4.9 Estimated petrophysical properties and data misfit in depth XX09 m in an 

organic-rich formation when performing petrophysical inversion of various 

combinations of logging tools.   

 

Logging tool 

combination 

Est. 𝑠𝑤  

(fraction) 

Est. 𝐶𝑤 

(S/m) 

Est. 

𝜆𝑐 (S) 

Est. 

𝑟𝑐  (𝜇m) 

Est. 

𝑟𝑖 (𝜇m) 

Data misfit 

(fraction) 

 

Induction + Propagation 

+ Dielectric dispersion 
0.46 0.38 2.5×10-8 0.1 172 0.2275 

Dielectric dispersion 0.53 0.43 2.6×10-8  0.1 392 0.1367 

Induction + Dielectric 

dispersion 
0.43 0.42 2.5×10-8 0.1 194 0.1386 

Propagation + Dielectric 

dispersion 

0.39 0.54 2.8×10-8 0.1 352 0.2385 
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Figure 4.6 Comparison of broadband conductivity- and permittivity-dispersion 

measurements against those modeled using the inversion-derived estimates for 

depth XX09 m in the organic-rich shale formation. 
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Figure 4.7 Comparison of broadband conductivity- and permittivity-dispersion 

measurements against those modeled using the inversion-derived estimates for 

depth XX52 m in the organic-rich shale formation. 
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Chapter 5: Dielectric Dispersion Log Interpretation in Bakken 

Petroleum System 

5.1  Inconsistent water saturation in the Bakken Petroleum System 

The Bakken formation is one of the largest contiguous deposits of oil and natural 

gas in the North America and is late Devonian to early Mississippian in age occupying 

about 200,000 square miles of the subsurface. This formation is a three-member 

succession that includes an upper black shale (Upper Bakken), a middle sandy siltstone 

(Middle Bakken), and a lower black shale (Lower Bakken). The BPS integrates the three-

member succession with overlying Mississippian-aged limestone of Lodgepole formation 

and underlying dolostone of Three Forks formation. The BPS is a hybrid play with 

conventional formations, which include Scallion, Middle Bakken, Sanish and Three 

Forks formations, and source rock intervals, which include the Lower and Upper Bakken 

shales. The unconventional aspects of BPS include very low permeability conventional 

reservoir sections, as well as combined shale-rich source and reservoir intervals. This is 

contrast to most unconventional shale plays, in which a single stratigraphic interval 

comprises both the reservoir and source rock (Gary et al., 2015). 

For improved characterization of the BPS, conventional triple combo logs and 

advanced downhole measurements were run in a vertical well. The advanced 

measurements include: (1) triaxial induction resistivity for thin-bed analysis; (2) 

multifrequency dielectric dispersion for water saturation estimation; (3) NMR 

measurements for porosity, free fluid and kerogen identification; (4) geochemical 

spectroscopy for mineralogy and total organic carbon (TOC); and (5) dipole sonic for 
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dynamic rock properties estimation. The water-filled porosity was measured on cores by 

Dean-Stark analysis.  

Gary et al. (2015) reported that water saturation estimates obtained from triaxial 

resistivity induction log, NMR log, dielectric dispersion log, Techlog Quanti-ELAN, 

and Dean-Stark core measurements are not consistent and can vary up to 0.6 water 

saturation units. In this chapter, we develop a global search inversion algorithm coupled 

with three geoelectromagnetic mixing models to interpret the dielectric dispersion logs 

at four frequencies acquired across the BPS to estimate water saturation, water salinity 

of the formation, homogeneity index, and cementation index in the BPS. Unlike service 

company’s dielectric inversion results, water saturation estimates obtained using the 

proposed interpretation method are not an exact value but a range of possible values 

within a desired accuracy. These estimates were compared against those obtained from 

induction resistivity log, NMR log, Quanti-ELAN solver, service company’s dielectric 

inversion, and Dean-Stark core measurements. 

 

5.2 Dielectric dispersion log interpretation models 

Mixing models are used to process the effective conductivity and permittivity 

data obtained using subsurface logs for purposes of water saturation estimation. The 

frequency-invariant complex-refractive index method (CRIM) is widely used to 

interpret the effective conductivity and permittivity of homogeneous materials at 

frequency close to 1 GHz. Experimental investigations have shown that the effective 

permittivity and conductivity of fluid-filled granular materials can be modeled using the 

frequency-invariant Lichtenecker-Rother’s model (LR model), which is expressed as 
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(𝜀∗)𝛼 = (1 − Ф)𝜀𝑚
𝛼 + 𝑆𝑤Ф𝜀𝑤

∗ 𝛼 + (1 − 𝑆𝑤)Ф𝜀𝑜
𝛼…………………………………(5.1) 

where the complex quantity is identified by * superscript, 𝜀∗ is the complex permittivity 

of a geomaterial or formation, 𝜀𝑚  is the matrix permittivity, 𝜀𝑤
∗  is the complex 

permittivity of pore-filling water, 𝜀𝑜 is the pore-filling hydrocarbon permittivity, Ф is the 

total porosity of the geomaterials, 𝑆𝑤  is water saturation, and 𝛼  is the geometrical 

arrangement factor ranging from -1 to 1. In this chapter, the parameter 𝛼 is used as the 

homogeneity index, such that 𝛼 = ½ indicates a non-layered homogeneous medium, 𝛼 = 

1 indicates a layered medium with layers parallel to the propagating electric field, and 𝛼 

= -1 indicates a layered medium with layers perpendicular to the propagating electric 

field. Notably, 𝛼 = ½ transforms the LR model to CRI model. In order to respect the 

complexity of the formations in BPS, we implement LR model instead of CRI model.  

Application of LR model to interpret the 1-GHz permittivity and conductivity logs 

generates inaccurate water saturation because the parameter estimation is unconstrained 

with two log inputs due to the lack of information on the formation water conductivity 

(salinity), permittivity of the formation water, rock matrix, and hydrocarbon, and the 

parameter 𝛼. We couple LR model with two dielectric dispersion models, namely SMD 

model and PS model, which can be applied at four dielectric-dispersion log-acquisition 

frequencies. The resulting integrated model generates more accurate water saturation 

estimates because the parameter estimation is now constrained with eight log inputs. The 

SMD model was developed for clean brine-saturated rocks and is expressed as 

𝜀∗ = (Ф𝑤)
𝑚 + [1 − Ф𝑤

𝑚]𝜀𝑚 − 𝜀𝑚𝛤 (Ф𝑤, 𝑚,
𝜀𝑤
∗

𝜀𝑚
)……………………………….....(5.2) 
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where Ф𝑤 is water-filled porosity, such that Ф𝑤 = 𝑆𝑤Ф, and m is the rock textural 

parameter that indicates cementation/tortuosity describing the rock geometry (Han et 

al., 2012). In this chapter, we estimate m as a cementation index. However, SMD model 

is not applicable for clay- and pyrite-rich formation. The LR, CRIM, and SMD models 

neglect the interfacial polarization (IP) effects of clays and conductive minerals; thereby 

generating inaccurate estimation of water saturation and TOC in clay- and conductive-

mineral-rich mudrock formations (Misra and Han, 2016a; Misra and Han, 2016b). 

Misra et al. (2016a) derived a mechanistic electrochemical model, referred as PS model, 

to evaluate the dependence of effective complex conductivity of geological mixtures on 

the electrical properties of the host and inclusion materials, size and shape of inclusions, 

and the measurement frequency. PS model is coupled in the proposed integrated model 

to accurately quantify the dielectric dispersion response of formations rich in clay and 

pyrite. Table 5.2 lists the petrophysical parameters in the PS model. Misra et al. (2016c) 

used the PS model to interpret multifrequency induction log measurements.  

 

5.3 Modified Levenberg-Marquardt inversion algorithm 

The nonlinear inverse problem discussed in this section involves estimation of 

petrophysical parameters that generate least misfit between the measured dielectric 

dispersion logs and integrated model predictions of multi-frequency effective 

permittivity and conductivity. In the proposed inversion scheme, the measured data 

vectors Permmeas and Condmeas containing 4 elements each representing the log-derived 

effective multifrequency permittivity and conductivity values of formation obtained at 

the 4 distinct dielectric-dispersion log-acquisition angular frequencies, namely, 𝜔1, 𝜔2, 
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𝜔3, and 𝜔4. The goal is to estimate petrophysical parameter vector mprop comprising 

water saturation (𝑆𝑤), formation water conductivity(𝐶𝑤), homogeneity index (m), and 

cementation index (𝛼) of a specific depth in the BPS. To that end, the integrated 

dielectric-dispersion interpretation model, which combines LR, SMD and PS models, is 

used to generate the modeled data vectors Permmod(m) and Condmod(m) comprising 

model predictions at the 4 distinct dielectric-dispersion log acquisition frequencies for a 

specific model parameter vector m made of estimates for the four unknown model 

parameters, namely 𝑆𝑤, 𝐶𝑤, m, and 𝛼. The measured and modeled data vectors can be 

expressed as 

𝐏𝐞𝐫𝐦mod/meas(𝐦) = [𝑃𝑒𝑟𝑚(𝐦,𝜔1), 𝑃𝑒𝑟𝑚(𝐦,𝜔2),…𝑃𝑒𝑟𝑚(𝐦,𝜔4)]……...........(5.3) 

and 

𝐂𝐨𝐧𝐝mod/meas(𝐦) = [𝐶𝑜𝑛𝑑(𝐦,𝜔1), 𝐶𝑜𝑛𝑑(𝐦,𝜔2),…  𝐶𝑜𝑛𝑑(𝐦,𝜔4) ]…………...(5.4) 

The measured data vectors Permmeas and Condmeas are matched with modeled 

data vectors Permmod(m) and Condmod(m) by varying the estimated model parameter 

vector mest. The vector mest that generates best fit between the data and prediction 

represents the characteristic petrophysical properties of a specific depth in the BPS. To 

that end, the inversion algorithm iteratively computes the vector mest to find the best 

match. The inversion scheme requires minimizing the quadratic cost function C(m) at 

each iteration defined as 

𝐶(𝐦) = ∥ 𝐏𝐞𝐫𝐦mod(𝐦est) − 𝐏𝐞𝐫𝐦meas ∥2
2+∥ 𝐂𝐨𝐧𝐝mod(𝐦est) −

𝐂𝐨𝐧𝐝meas ∥2
2…………………………………………………………..…………..…(5.5) 

For purposes of minimization, we defined a cost function vector F(m) of 4 

elements. Individual components of the vector F(m) are referred as fi(m
k), where 
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superscript k is the iteration counter for the inversion scheme, mk is the model 

parameter vector computed at the k-th iteration of the inversion, and subscript i denotes 

one of the 4 log- acquisition frequencies. F(mk) is thus expressed as 

𝐅(𝐦𝑘) = [𝑓1(𝐦
𝑘), 𝑓2(𝐦

𝑘), … 𝑓4(𝐦
𝑘)]𝑇……………………………………………(5.6) 

where fi(m
k) is expressed as 

𝑓𝑖(𝐦
𝑘) = [𝐏𝐞𝐫𝐦mod(𝐦𝑘) − 𝐏𝐞𝐫𝐦meas]

𝑖

2
+ [𝐂𝐨𝐧𝐝mod(𝐦𝑘) − 𝐂𝐨𝐧𝐝meas]

𝑖

2
……(5.7) 

where i = 1, 2, 3, and 4. 

We modified the Levenberg-Marquardt algorithm (LMA), for purposes of 

nonlinear inversion (Aster et al., 2013; Misra and Han, 2016a), by introducing scaling 

matrix 𝐖s into the mathematical formulation of the LMA inversion scheme and 𝐖s is a 

4×4 diagonal matrix. The modified LMA doesn’t implement a reference vector mR, 

which mitigates the non-uniqueness of the inverse problem but constrains the solution 

space around m. The modified inversion scheme is expressed as  

[(𝐉(𝐦𝑘)𝐖s)
T ∙ (𝐉(𝐦𝑘)𝐖s) + 𝜆𝐈 + 𝛼

2𝐈] ∙ 𝐖𝑠
−1 ∙ ∆𝐦𝑘 = −(𝐉(𝐦𝑘)𝐖s)

T ∙ 𝐅(𝐦𝑘) − 𝛼2𝐈 ∙

𝐖𝑠
−1 ∙ 𝐦𝑘………………………………………………………………………...…..(5.8) 

where mk is the interpretation model parameter vector computed at the k-th iteration of 

the inversion, F(mk) is the cost function vector, J(mk) is the Jacobian matrix of F(mk), 

Δmk is the correction vector generated at the k-th iteration that determines the direction 

towards the convergence of the interpretation model parameter estimation process, λ is 

the damping parameter, 𝛼 is the regularization parameter, I is an identity matrix, and T is 

matrix transpose operator. The Jacobian matrix J(mk) is formulated in the same form as 

it in Chapter 3. And the way to define the bounds of integrated dielectric-dispersion 
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interpretation model parameters and the jump-back-in step are similar to those in Chapter 

3. 𝐖s is expressed as 

𝐖s = (
10𝛼1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 10𝛼4

)…………………………………………………………...(5.9) 

where the parameters (α1, ⋯, α4) in the diagonal scaling matrix denote the order of 

magnitude difference between the estimates of the 4 unknown model parameters. The 

parameters α1, α2, α3, and α4 correspond to the water saturation, formation water 

conductivity, homogeneity index, and cementation index, respectively, and their values 

are assumed to be 0, 2, 0, and 1, respectively.  

Schmitt et al. (2011) reported that the dielectric measurements at 1GHz, which 

can be modeled using CRI model, lose sensitivity to water salinity for salinity above 60 

kppm. Donadille et al. (2016) reported that dielectric dispersion models such as SMD 

and bimodal lose their sensitivity at even lower water salinity compared with CRI 

model. All these models exhibit negligible sensitivity for porosity lower than 0.05 p.u. 

This loss of sensitivity of the forward models to water-filled porosity and salinity breaks 

down LMA-based inversion schemes. However, the newly developed inversion 

algorithm proposed in this paper introduces a scaling matrix Ws to improve the 

inversion capabilities for high salinity and low porosity scenarios. For instance, in the 

synthetic case presented below in this paper, the inversion-derived estimates are unique, 

accurate, and converge despite the large formation water conductivity of 50 S/m (>300 

kppm) for wide range of initial guesses. This is possible due to the implementation of 

the scaling matrix. 
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Data misfit is the difference between the modeled data based on the inversion- 

derived estimates and the measured dielectric-dispersion log data. The data misfit is 

expressed as a relative error defined as 

𝑅𝑒𝑙. 𝐸𝑟𝑟 = [
1

4
 ∑ (

𝐏𝐞𝐫𝐦mod−𝐏𝐞𝐫𝐦meas

𝐏𝐞𝐫𝐦meas
)
𝑖

2

+ (
𝐂𝐨𝐧𝐝mod−𝐂𝐨𝐧𝐝meas

𝐂𝐨𝐧𝐝meas
)
𝑖

2
4
𝑖=1 ]

0.5

…………….(5.10) 

 

5.4  Synthetic case study 

Synthetic Case 1:  

The inversion scheme was tested on synthetic effective permittivity and 

conductivity data containing 5% Gaussian noise generated using the integrated 

dielectric dispersion interpretation model at four dielectric log-acquisition frequencies, 

namely 22 MHz, 100 MHz, 350 MHz, and 960 MHz. The integrated dielectric 

dispersion interpretation model combines SMD model, applied at 22 MHz, 100 MHz, 

and 350 MHz, with LR model, applied only at 960 MHz. Table 5.1 mentions the 

properties of Synthetic Formation 1 used for generating the synthetic permittivity and 

conductivity data. The Synthetic Formation 1 identifies a clay-lean, oil-bearing 

formation. There is no pyrite in the Synthetic Formation 1 and 5% Gaussian noise is 

added to the synthetic data. The water salinity in the Synthetic Formation is very high 

(250 kppm), mimicking the high salinity Bakken formation. Inversion-derived estimates 

of the four unknown integrated model parameters are sw = 0.51, Cw = 40.8 S/m, α = 

0.605, and m = 1.715, which are close to the original parameter values, listed in Table 

5.1, assumed for the Synthetic Formation 1. The inversion-derived estimates and data 

misfit at each iteration is illustrated in Fig. 5.1. The integrated model prediction based 
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on our estimates of the four parameters match the synthetic effective permittivity and 

conductivity with relative error close to 2×10-2. 

Table 5.1 Assumed physical properties of the Synthetic Formation 1. Inversion was 

performed to estimate the parameters highlighted in grey.  

 
Parameters Values  

Volume fraction of clay 12 % 

Volume fraction of sand 82 % 

Porosity of rock 6 % 

Bulk conductivity of brine (𝐶𝑤) 40 S/m 

Water saturation (𝑠𝑤) 50 % 

Homogeneity index (𝛼) 0.62 

Cementation index (m) 1.7 

 

 
Figure 5.1 Convergence of inversion-derived estimates of unknown integrated 

model parameters and relative error as a function of iteration for the inversion of 

synthetic data with 5% Gaussian noise generated for the Synthetic Formation 1 

using the integrated model. 

 

 

Synthetic Case 2:  
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The inversion scheme was tested on synthetic effective permittivity and 

conductivity data containing 5% Gaussian noise generated using the integrated 

dielectric dispersion interpretation model at four dielectric log-acquisition frequencies, 

namely 22 MHz, 100 MHz, 350 MHz, and 960 MHz. The integrated dielectric 

dispersion interpretation model combines PS and SMD model, applied at 22 MHz, 100 

MHz, and 350 MHz, with LR model, applied only at 960 MHz. Table 5.2 mentions the 

properties of Synthetic Formation 2 used for generating the synthetic permittivity and 

conductivity data. The Synthetic Formation 2 identifies a kaolinite-type nonconductive 

clay-rich, brine-bearing formation. There is no pyrite in the Synthetic Formation 2 and 

5% Gaussian noise is added to the synthetic data. The water salinity in the Synthetic 

Formation 2 is very high (320 kppm), mimicking the high salinity Bakken formation. 

Inversion-derived estimates of the four unknown integrated model parameters are sw = 

0.845, Cw = 50.6 S/m, α= 0.593, and m= 1.839, which are close to the original 

parameter values, listed in Table 5.2, assumed for the Synthetic Formation 2. The 

inversion-derived estimates and data misfit at each iteration is illustrated in Fig. 5.2. 

The integrated model prediction based on our estimates of the four parameters match 

the synthetic effective permittivity and conductivity with relative error close to 10-2. 
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Table 5.2 Assumed physical properties of the Synthetic Formation 2. Inversion was 

performed to estimate the parameters highlighted in grey.  

 
Parameters Values  

Volume fraction of clay 43 % 

Relative permittivity of clay 5 

Surface conductance of clay (𝜆𝑐) 10-6 S 

Radius of spherical clay grains (𝑟𝑐) 1 µm 

Volume fraction of sand 50 % 

Surface conductance of sand 10-9 S 

Radius of sand grains 500 µm 

Porosity of rock 7 % 

Bulk conductivity of brine (𝐶𝑤) 50 S/m 

Relative permittivity of brine 80 

Diffusion coefficient of brine 10-9 m2/s 

Relative permittivity of hydrocarbon 3 

Water saturation (𝑠𝑤) 85 % 

Homogeneity index (𝛼) 0.6 

Cementation index (m) 1.82 

 

 

 
Figure 5.2 Convergence of inversion-derived estimates of unknown integrated 

model parameters and relative error as a function of iteration for the inversion of 

synthetic data with 5% Gaussian noise generated for the Synthetic Formation 2 

using the integrated model. 
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5.5  Application in Bakken Petroleum System 

Field Case:  

For a clay-lean zone, for e.g. Middle Bakken, the integrated model combines the 

SMD model, applied at 22 MHz, 100 MHz, and 350 MHz, with the LR model, applied 

only at 960 MHz. This integrated model inverts the dielectric dispersion log acquired in 

the Middle Bakken and other similar clay-lean formations. On the other hand, for a 

clay-rich zone, for e.g. Upper and Lower Bakken formations and parts of Three Forks, 

the integrated model combines the PS and SMD model, applied at 22 MHz, 100 MHz, 

and 350 MHz, with the LR model, applied only at 960 MHz. Inversion of multi-

frequency dielectric logs was performed to estimate water saturation, formation water 

conductivity, homogeneity index, and cementation index across 400-feet depth interval 

in BPS. 

For the inversion of synthetic effective permittivity and conductivity data 

containing 5% Gaussian noise, a regularization parameter is introduced in the 

mathematical formulation of the modified-LMA scheme to mitigate the non-uniqueness 

of the problem. However, for the inversion of real subsurface effective permittivity and 

conductivity data, the non-uniqueness issues could not be solved by introducing a 

regularization parameter. To that end, global search algorithm was implemented around 

the modified LMA-based inversion, as described in Fig. 5.3. First of all, 250 initial 

guesses of the petrophysical parameters are randomly generated in the predefined search 

space spanning three orders of magnitude. Then the modified-LMA inversion generates 

the estimates parameters for each of these initial guesses. Following that, a line search 

method is applied to find the smallest error in the search space. Finally, the inverted 
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petrophysical parameters corresponding to the smallest error are selected as the estimated 

values of integrated model parameters, 𝑆𝑤, 𝐶𝑤, 𝑚, and 𝛼. 

 
 

Figure 5.3 Global-search modified-LMA inversion. 

The field data inversion results are not converged for 250 initial guesses and 

generates different petrophysical parameter estimation for similar level of accuracy 

(error). The global minimum among the 250 estimates parameters can be biased to 

represent the petrophysical properties of the formation because of the noise in the data. 

So the petrophysical parameters such as water saturation estimates for a specific depth 

obtained using the proposed interpretation method is not one single value but a range of 

possible values within a desired accuracy. Fig. 5.4 illustrates the flow chart of the 

proposed dielectric-dispersion log interpretation method. The first three steps are the 

same as the aforementioned global search inversion method. Then a range of possible 

petrophysical parameters values within a desired accuracy which is user defined is 

determined. In this chapter, we define the desired accuracy to 10% of the global minimum 
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error. The inverted petrophysical parameters corresponding to the error within the desired 

accuracy are recorded and the minimum and maximum values of each recorded 

petrophysical parameter can be decided. Then the range of possible petrophysical 

parameters values can be generated. 

 

 

Figure 5.4 Flow chart of the proposed dielectric-dispersion log interpretation 

method. 

 

Three Forks formation has dolostone with laminations of dolo-siltite and 

interbedded with clay-rich, conglomeratic dolo-mudstone (Gary et al, 2015). Fig. 5.5 

presents the inversion result for the depth XX864 ft in the Three Forks formation that is 

clay lean. Measured data is presented as discrete points and model predictions are 

present as continuous curves. The measured effective permittivity and conductivity data 

is matched with the integrated model (SMD+LR) predictions, which provide better data 

fit compared to SMD+CRI model predictions. Integration of LR model performs 
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comparatively better than the integration of CRI model because LR model does not 

assume homogeneity of the formation under investigation. Moreover, inversion with LR 

model generates the homogeneity index 𝛼 providing an improved log-base 

characterization.  

 
Figure 5.5 Comparison of effective conductivity and permittivity measurements and 

model predictions for depth XX864 ft in Three Forks formation.  

 

The Middle Bakken formation is the most internally complex of the BPS and is 

primarily bioturbated, silt-dominated, shallow-marine deposits (Gary et al., 2015). 

Global search inversion is performed along the Middle Bakken. The efficiency of the 

inversion results is presented for the depth XX736 ft in the Middle Bakken formation 

that is clay lean. Fig. 5.6, 5.7, 5.8, and 5.9 are 3D error plots showing the inversion-

derived water saturation, formation water conductivity, cementation index, and 

homogeneity index, respectively, for 250 randomly generated sets of initial guesses of 
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the integrated model parameters during the global search inversion. These figures 

demonstrate that, unlike service company’s dielectric inversion results, water saturation 

estimates obtained using the proposed interpretation method are not an exact value but a 

range of possible values within a desired accuracy in a user-specified search space. The 

estimated cementation index and homogeneity index are more converged for 250 initial 

guesses compared with estimated water saturation and water conductivity. Fig. 5.10 

compares effective conductivity and permittivity log measurements with the integrated 

model predictions based on the inversion-derived estimates that generates the minimum 

data misfit within the search space. The estimated ranges of possible petrophysical 

parameters values within a desired accuracy (10%) are: 𝑆𝑤 is between 0.935 to 0.997, 

𝐶𝑤 is between 30.63 S/m to 35.4 S/m, 𝑚 is between 1.98 to 2, and 𝛼 is between 0.46 to 

0.471. 

 

Figure 5.6 Frequency of inversion-derived Sw estimates for depth XX736 ft along 

with data misfit for 250 randomly generated sets of initial guesses of integrated 

model parameters. 
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Figure 5.7 Frequency of inversion-derived Cw estimates for depth XX736 ft along 

with data misfit for 250 randomly generated sets of initial guesses of integrated 

model parameters. 

 

 

Figure 5.8 Frequency of inversion-derived m estimates for depth XX736 ft along 

with data misfit for 250 randomly generated sets of initial guesses of integrated 

model parameters. 
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Figure 5.9 Frequency of inversion-derived 𝜶 estimates for depth XX736 ft along 

with data misfit for 250 randomly generated sets of initial guesses of integrated 

model parameters. 

 

 

Figure 5.10 Comparison of effective conductivity and permittivity measurements 

and model predictions for depth XX736 ft in the Middle Bakken formation.  
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The previous two cases were from clay-lean depths, where the global-search 

inversion scheme is coupled to integrated model that combines SMD and LR models. 

However, for the clay- and pyrite-rich units, SMD and LR model cannot account for the 

IP effects of pyrite and clay; thereby, generating inaccurate water saturation estimates. 

In such cases, we implement the global search inversion algorithm coupled with 

integrated model that combines PS, SMD and LR models. Efficiency of the inversion 

results is shown for the depth XX874 ft in the Three Forks formation that is rich in clay 

and pyrite. Fig. 5.11 compares the effective conductivity and permittivity log 

measurements against the SMD+LR integrated model predictions and PS+SMD+LR 

integrated model predictions computed based on the inversion-derived estimates of the 

model parameters that result in minimum data misfit. For this case, the PS+SMD+LR 

integrated model is physically consistent; therefore the predictions of PS+SMD+LR 

integrated model have better data fit as compared to those of SMD+LR integrated 

model, as shown in Fig 5.11. The water saturation estimate obtained using the 

SMD+LR integrated model is 100%, whereas that obtained using the PS+SMD+LR 

model is 82% (80.8% - 85%). 
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Figure 5.11 Comparison of effective conductivity and permittivity measurements 

and model predictions for depth XX874 ft in the Three Forks formation.  

 

The parameters in PS model are listed in Table 5.2 and some petrophysical 

parameters are unknown such as radius of spherical clay grains and surface conductance 

of clay. Since there are only four sets of dielectric data including conductivity and 

permittivity, the values of radius of spherical clay grains and surface conductance of 

clay can’t be estimated by inversion or will increase the non-uniqueness and uncertainty 

of the problem. We fixed the values of radius of spherical clay grains, 𝑟𝑐, and surface 

conductance of clay, 𝜆𝑐, (𝜆𝑐 = 1×10-6 S, 𝑟𝑐 = 1 𝜇m). We found that the inverted 

petrophysical parameters such as water saturation are not sensitive to the values of 

radius of spherical clay grains and surface conductance of clay. Table 5.3 illustrates the 

inversion results of Synthetic Case 2 without 5% Gaussian noise by using different 
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values of radius of spherical clay grains and surface conductance of clay. The results 

prove that the estimated petrophysical parameters are close to the formation true 

petrophysical parameters values for radius of spherical clay grains and surface 

conductance of clay different from the true radius of spherical clay grains and surface 

conductance of clay in the Synthetic Formation 2.   

Table 5.3 Inversion results of Synthetic Case 2 without 5% Gaussian noise by using 

different values of radius of spherical clay grains and surface conductance of clay. 

 
Clay properties 𝑆𝑤 𝐶𝑤 𝛼 m 

𝜆𝑐 = 1×10-6 S, 𝑟𝑐  = 1 𝜇m 0.85 50 0.6 1.82 

𝜆𝑐 = 5×10-7 S, 𝑟𝑐  = 2 𝜇m 0.84 53.2 0.594 1.813 

𝜆𝑐 = 5×10-7 S, 𝑟𝑐 = 0.5 𝜇m 0.853 49.6 0.6 1.82 

𝜆𝑐 = 1×10-7 S, 𝑟𝑐  = 0.2 𝜇m 0.841 52.2 0.595 1.813 

𝜆𝑐 = 1×10-7 S, 𝑟𝑐  = 0.1 𝜇m 0.876 46.7 0.604 1.81 

𝜆𝑐 = 5×10-6 S, 𝑟𝑐  = 5 𝜇m 0.847 50.4 0.6 1.821 

𝜆𝑐 = 1×10-5 S, 𝑟𝑐  = 10 𝜇m 0.847 50.5 0.6 1.82 

 

We used this dielectric-dispersion log interpretation method to process 

multifrequency dielectric data in totally 55 depth of the science well intersecting BPS. 

Fig. 5.18 shows the range of these petrophysical parameters within a desired accuracy 

(10%). In some depths such as XX630.5 ft, the estimated water saturation and water 

conductivity show wide range within a desired accuracy while in other depths such as 

XX677 ft these petrophysical parameters are converged for 250 initial guesses. Fig. 

5.12, 5.13 and 5.14, 5.15 are 3D error plots showing the inversion-derived water 

saturation, formation water conductivity of depth XX677 ft and XX630.5 ft, 

respectively, for 250 randomly generated sets of initial guesses of the integrated model 
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parameters during the global search inversion. In Lodgepole which is a limestone 

formation and has low porosity (around 3%) and small pore size, the range of water 

saturation and water conductivity is wide within a desired accuracy. And in upper part 

of Middle Bakken which exhibits relatively lower formation water conductivity 

compared with other formations and wide range of pore size distribution, the range of 

water saturation and water conductivity is also wide. 

 

Figure 5.12 Frequency of inversion-derived Sw estimates for depth XX677 ft along 

with data misfit for 250 randomly generated sets of initial guesses of integrated 

model parameters. 
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Figure 5.13 Frequency of inversion-derived Cw estimates for depth XX677 ft along 

with data misfit for 250 randomly generated sets of initial guesses of integrated 

model parameters. 

 

 
Figure 5.14 Frequency of inversion-derived Sw estimates for depth XX630.5 ft along 

with data misfit for 250 randomly generated sets of initial guesses of integrated 

model parameters. 
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Figure 5.15 Frequency of inversion-derived Cw estimates for depth XX630.5 ft along 

with data misfit for 250 randomly generated sets of initial guesses of integrated 

model parameters. 

 

5.6  Validation of inversion-derived estimates  

Comparison of Water Saturation Estimates in BPS: 

Presence of thin-beds in Three Forks formation mandates the use of triaxial 

induction resistivity measurement and dielectric dispersion measurements for accurate 

water saturation estimation. The water saturation obtained from thin-beds analysis of 

triaxial induction resistivity logs agrees with water saturation reported from Dean Stark 

analysis in the lower part of Middle Bakken, upper part of Three Forks, and Lodgepole 

(Gary et al., 2015). In this well, the thin-beds in Three Forks formation, which has 

smaller size of pores indicated by NMR pore size distribution, cause erroneously high 

water saturation, which is shown in the comparison of water saturation obtained from 

traditional induction resistivity or Quanti-ELAN solver and core measurements. Our 

estimates of water saturation estimates are closer to the core measurements. 

The water saturation estimated by Quanti-ELAN solver interpreted most parts of 

Lodgepole and Three Forks formation are 100% water-bearing zones, which is contrast 
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to values estimated by other logs and core measurements. The water saturation 

interpreted by induction logs via Archie equation indicates that most formations are 

100% water-bearing except for Upper and Lower Bakken, which is totally inconsistent 

with core measurements as well as knowledge of the reservoir. The high frequency 

dielectric dispersion log is well-suited for the estimation of water saturation for the 

large contrast between the permittivity of water and other components of the formation 

(Donadille et al., 2016). The dielectric dispersion logs interpreted by the newly 

developed global search algorithm generate not an exact water saturation but a range of 

possible values within a desired accuracy in a user-specified search space and our 

estimation of water saturation shows a good agreement with core measurements.  

Fig. 5.16 and 5.17 compares water saturation estimates obtained using various 

methods. Our estimates of water saturation and those obtained using the service 

company’s dielectric inversion exhibit the best match with Dean-Stark’s core water 

saturation in the Middle Bakken and Three Forks formations. However, in the part of 

Lodgepole, Scallion, and Upper Bakken formations, our estimates of water saturation 

are closer to those obtained from NMR logs, which disagrees with the extremely high 

estimates obtained using the service company’s dielectric inversion. Both Lodgepole 

and Scallion are limestone formations with wide range of pore size distributions and 

natural fractures, which enhances the reservoir quality. Service company’s dielectric 

inversion and NMR log interpretation generate quite different water saturation 

estimates. Interestingly, our estimates of water saturation in False Bakken are close to 

values obtain from induction logs, in contrast to service company’s dielectric inversion-

derived estimates and NMR interpreted water saturation, which indicate 65%-water-
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saturated hydrocarbon-bearing zone. False Bakken is an organic-rich shale formation 

containing 2 to 4 weight percentage of organic carbon and has wide pore size 

distribution indicated by NMR T2 distribution curve in Fig. 5.17 in Track 9. Water 

saturation obtained by NMR logs, which have a relative shallow depth of investigation 

(DOI) ranging from 1 to 4 inch, is close to 0.2 water saturation unit in lower part of 

Lodgepole, False Bakken, Scallion, Upper Bakken, upper part of Middle Bakken and 

Lower Bakken. While in lower part of Middle Bakken, NMR interpreted water 

saturation is much higher than that in the upper part. In the middle part of Three Forks 

the NMR interpreted water saturation is high and close to the dielectric dispersion logs 

interpreted water saturation.  
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Figure 5.16 Track 1 is the depth, Track 2 contains the top and bottom of various 

formations in BPS, Track 3 is the gamma ray, Track 4 contains the neutron porosity, 

density porosity and ELAN total porosity, Track 5 is the induction resistivity in 

horizontal direction and formation anisotropy, Track 6 contains the volume 

fractions of various minerals, Track 7 contains the dielectric dispersion conductivity 

logs at four frequencies, Track 8 contains the dielectric dispersion permittivity logs 

at four frequencies, and Track 9 contains water saturation estimated using various 

methods, wherein the red curve is water saturation estimate obtained using the 

proposed global-search inversion and the blue curve is that obtained by 

Schlumberger dielectric inversion. 
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Interpretation of the Newly Generated Logs: 

The estimated values of water saturation and formation water salinity in Middle 

Bakken are in the ranges of 0.5 to 1 and 205 kppm to 250 kppm, respectively. While the 

water salinity values (reported as formation water conductivity in logs) in other 

formations are much higher, in the range of 300 kppm to 360 kppm. Gary et al. (2015) 

observed that log-derived water saturation estimates correlate better with the Dean-

Stark’s core water saturation values computed using fluid salinity of 360 kppm and oil 

density of 0.802 g/cm3. In Bakken formation, water from wells producing oil is about an 

order of magnitude more saline than modern sea water (Peterman et al., 2014). Wang et 

al. (2012) also reported that the formation water salinity in Bakken can be as high as 150 

kppm to 300 kppm. The measurements of macroscopic thermal neutron capture cross-

section, referred as sigma measurements is strongly depend on the formation water 

salinity. Donadille et al (2016) developed a joint inversion of the dielectric dispersion and 

sigma measurements for more accuracy estimation of formation water salinity to solve 

the sensitivity loss of water conductivity (salinity) at high salinity for dielectric dispersion 

measurements. Nonetheless, the newly developed LMA-based inversion algorithm 

proposed in this paper introduces the scaling matrix 𝐖s  to enable robust inversion 

without a loss in forward model sensitivity for high formation water conductivity, as 

demonstrated is the synthetic case discussed in this paper.  

There is a good agreement between the formation water conductivity estimated 

by our dielectric dispersion interpretation method and obtained by the service company’s 

dielectric inversion in Middle and Lower Bakken formation, as shown in Track 4 of Fig. 

5.17. For other formations, our estimated formation water is more saline than that 
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obtained by service company’s dielectric inversion. Unlike the formation water salinity 

obtained by service company dielectric inversion in the Lodgepole formation that 

fluctuates a lot in a short depth interval, our estimates of water salinity exhibit a relatively 

stable trend within each formation.    

The inversion-derived homogeneity index ( 𝛼 ) obtained using our method 

indicates the presence of layering and heterogeneity in the Lower Three Forks and Middle 

Bakken formation. In agreement with the inversion-derived homogeneity index, Middle 

Bakken does exhibit a range of grain size and sorting from poorly sorted, argillaceous 

siltstone to moderately well sorted fine-grained sandstone. H-Index1 (Eq. 5.11) and H-

Index2 (Eq. 5.12) are two formation homogeneity indices calculated based on mineral 

contents are illustrated in Fig. 5.17 in Track 6. A reduction in values of H-Index1 and H-

Index2 from 1 indicates an increase in heterogeneity.  In Fig. 5.17, homogeneity reduces 

with increase in depth as indicated by H-Index2 due to an increase in clay content. In 

Middle Bakken formation, inversion-derived and mineral-content-based homogeneity 

indices show similar trends and appear to be correlated. H-Index2 that indicates increase 

in heterogeneity due to increase in clay shows good correlation with 𝛼. Moreover, the 

anisotropy calculated from RTScanner that indicates an increase in layering correlates 

well with 𝛼. 

𝐻 − 𝐼𝑛𝑑𝑒𝑥1 =
𝑉𝑄𝑢𝑎𝑟𝑡𝑧

𝑉𝑄𝑢𝑎𝑟𝑡𝑧+𝑉𝐶𝑎𝑙𝑐𝑖𝑡𝑒+𝑉𝐷𝑜𝑙𝑜𝑚𝑖𝑡𝑒
…………………………………………...(5.11) 

𝐻 − 𝐼𝑛𝑑𝑒𝑥2 =
𝑉𝑄𝑢𝑎𝑟𝑡𝑧+𝑉𝐶𝑎𝑙𝑐𝑖𝑡𝑒+𝑉𝐷𝑜𝑙𝑜𝑚𝑖𝑡𝑒

𝑉𝑄𝑢𝑎𝑟𝑡𝑧+𝑉𝐶𝑎𝑙𝑐𝑖𝑡𝑒+𝑉𝐷𝑜𝑙𝑜𝑚𝑖𝑡𝑒+𝑉𝐶𝑙𝑎𝑦
………………………………....…..(5.12) 

The inversion-derived cementation index (m) indicates enhanced tortuosity and 

cementation in the Upper and Lower Bakken formations, which can be explained based 
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on the high kerogen content (>20%) and low values of effective porosity. The Upper and 

Lower Bakken formation also show wide range of pore size distribution illustrated in Fig. 

5.17 in Track 9 that conforms with the enhanced tortuosity/cementation estimated by our 

proposed interpretation method.  The m values are also high in False Bakken and Scallion 

formations that have a great volume fraction of narrow pore sizes, as shown in Fig. 5.17 

Track 9.  The inversion-derived m estimates increase with increase in isolated porosity, 

as shown in Fig. 5.17 Track 8. Fig. 5.18 reports the estimated water saturation, formation 

water conductivity, homogeneity index and cementation index ranges within a desired 

accuracy, which can be obtained by the method described in Fig. 5.4. 
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Figure 5.17 Track 1 contains the top and bottom of various formations in BPS,  

Track 2 is the depth, Track 3 contains water saturation estimated using various 

methods, wherein the red curve is water saturation estimate obtained using the 

proposed global-search inversion and the blue curve is that obtained by 

Schlumberger dielectric inversion, Track 4 is the formation water conductivity 

estimate and the black curve is that obtained by Schlumberger dielectric inversion, 

Track 5 is the inversion-derived homogeneity index, Track 6 is the formation 

homogeneity index calcualted using mineral contents, Track 7 is the inversion-

derived cementation index, Track 8 contains the permeability and isolated porosity 

(total-effective) of the formation, Track 9 is NMR T2 distribution. 
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Figure 5.18 Track 1 contains the top and bottom of various formations in BPS,  

Track 2 is the depth, Track 3 contains estimated water saturation range within a 

desired accuracy, Track 4 is the range of estimated formation water conductivity, 

Track 5 is the range of estimated inversion-derived homogeneity index, Track 6 is 

the range of estimated cementation index, Track 7 contains the relative error of the 

inversion of field data using the integrated model and the relative error of the SMD 

and LR, respectively, Track 8 contains the total porosity and the ratio of effective 

porosity and total porosity of the formation, Track 9 is the formation homogeneity 

index calcualted using mineral contents, Track 10 is NMR T2 distribution. 
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Chapter 6: Conclusion 

(1) The unified inversion scheme is tested in few synthetic cases in which different 

relaxation models are coupled into the inversion scheme and results show that the 

proposed inversion scheme is robust for various levels of Gaussian noise ranging 

from 0% to 5%. 

(2) The unified inversion scheme is negligibly sensitive to the initial guesses of the 

relaxation-model parameters exhibiting convergence and accuracy up to 3-orders 

of magnitude of the initial guesses. 

(3) Consistent estimates of water saturation, surface conductance and average radius 

of clay grains, and formation water conductivity can be obtained by jointly 

processing the broadband effective permittivity and conductivity logging data 

acquired at 4 to 9 discrete log-acquisition frequencies. 

(4) The proposed open source dielectric dispersion log inversion-based interpretation 

method ensures consistent estimation of water saturation, formation water 

salinity, homogeneity index, and cementation index in clay-lean and clay-rich 

units. The proposed interpretation methodology is robust because (1) the inversion 

performs a global search, (2) the inversion is coupled to a forward model that 

integrates Lichtenecker–Rother model, Stroud-Milton-De model, and PS model, 

a mechanistic pyrite-clay dispersion model, and (3) a scaling matrix is 

implemented in the inversion scheme to improve the inversion results at high 

salinity and low porosity. 

(5) The estimated water saturation by the newly developed dielectric dispersion log 

interpretation method gets better agreements with values obtained by Dean Stark 
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analysis and NMR log interpretation as compared to the water saturation 

estimated by service company’s dielectric interpretation. Nonetheless, for several 

depths, Schlumberger’s inversion, NMR interpretation, Dean-Stark’s core water 

saturation, and our inversion-derived estimates are in good agreement.  
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Appendix: Nomenclature 

𝜀∗          =     Complex permittivity 

𝜀∞          =     High-frequency permittivity 

𝜀0          =     Low-frequency permittivity 

𝜀𝑤
∗                 =     Complex water permittivity 

𝜀𝑜                 =     Hydrocarbon permittivity 

          =     Exponent in Havriliak-Negami model 

𝛽          =     Exponent in Havriliak-Negami model 

Ф                  =    Total porosity of geomaterials 

Ф𝑤               =     Water-filled porosity 

𝜏          =     Central relaxation time (s) 

𝑓          =     Frequency of EM measurement (Hz) 

𝜔          =     Angular frequency of EM measurement (rad/s) 

𝑍∗          =     Complex impedance 

𝑅0          =     DC (low frequency) resistance () 

m          =     Chargeability 

𝑐          =     Cole-Cole model exponent 

𝜌∗          =     Complex resistivity 

𝜌0          =     Low-frequency resistivity 

𝜎∗          =     Complex conductivity 

𝜎0          =     Low-frequency conductivity 

𝜎∞          =     High-frequency conductivity 

𝑠𝑤                 =    Water saturation 



100 

𝐶𝑤                =     Brine conductivity 

𝜆𝑐                 =     Surface conductance of clay 

𝑟𝑐                  =    Radius of clay 

𝑟𝑖                  =    Radius of pyrite 

R(m, ω)        =    Relaxation model 

m                  =    Model parameter vector 

mest                      =    Estimated model parameter vector 

mk                 =    Model parameter vector computed at the k-th iteration 

∆mk              =    Correction vector 

𝐃mod(𝐦)     =    Modeled data vector 

𝐃mod(𝐦est) =    Modeled data vector based on estimated model parameter vector 

𝐃meas           =    Measured data vector 

𝐏𝐞𝐫𝐦meas    =     Log-derived effective permittivity 

𝐂𝐨𝐧𝐝meas    =     Log-derived conductivity 

𝐏𝐞𝐫𝐦mod(𝐦) =    Modeled effective permittivity 

𝐂𝐨𝐧𝐝mod(𝐦)  =    Modeled conductivity 

C(m)            =     Quadratic cost function 

F(m)            =     Cost function vector    

fi(m
k)           =     Individual components of cost function vector   

J(mk)           =     Jacobian matrix of F(mk) 

I                   =     Identity matrix 

w                 =     Weight factor vector 

𝐖d              =     Data weight matrix 



101 

𝐖s              =      Scaling matrix 

𝝈                  =     Standard deviation vector   

𝜆                  =     Damping parameter  

v                  =     Constant factor  

Subscripts 

l        =    Size of model parameter vector 

n                 =      Size of data vector 

i                  =      One of the n frequencies of measurements 

r        =    Relative 

Superscripts 

k        =    Iteration number 

mod            =     Modeled 

meas           =     Measured 

est               =     Estimated 

 


