
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DESIGN, IMPLEMENTATION AND EVALUATION OF AN

IN-HOUSE CONTROLLER FOR SOFTWARE DEFINED

NETWORKING WITH APPLICATIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

YIMING XU
Norman, Oklahoma

2017

DESIGN, IMPLEMENTATION AND EVALUATION OF AN
IN-HOUSE CONTROLLER FOR SOFTWARE DEFINED

NETWORKING WITH APPLICATIONS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Sridhar Radhakrishnan, Chair

Dr. Charles D. Nicholson

Dr. Mohammed Atiquzzaman

Dr. Qi Cheng

Dr. Sivaramakrishnan Lakshmivarahan

c© Copyright by YIMING XU 2017
All Rights Reserved.

To Mi and my parents

Acknowledgements

Over the last five years, I have received support and encouragement from several

individuals. I would like to express my deepest gratitude to my advisor, Dr.

Sridhar Radhakrishnan, for his guidance and support for my Ph.D. study. Being

an excellent teacher and mentor, He has not only taught me numerous skills and

inspired me ideas in research, but also be a guide and supporter in this rewarding

journey.

I would like to thank my dissertation committee of Dr. Mohammed Atiquzza-

man, Dr. Charles Nicholson, Dr. Cheng Qi and Dr. Lakshmivarahan for their

valuable time, and invaluable feedback. I would like to extend my thanks to

Dr. Mahendran Veeramani for being a great tutor and partner. His passion for

research is always encouraging me to go further. I also would like to thank Wei

Guo, Asif Adnan, Michael Nelson, Dr. Chandrika Satyavolu and Dr. Amlan

Chatterjee for listening to and validating my ideas.

In addition, I would like to thank all the colleagues and managers in New

England Vascular Plant (NEVP) project and Grand River and Dam Authority

(GRDA) for their excellent work and funding support.

Finally, I’d like to extend my gratitude and thanks to my mother, my wife Mi,

and the rest of my family, without whom I would not be the person I am, and be

here doing this work I love.

iv

Table of Contents

List of Tables vii

List of Figures ix

Abstract x

1 Introduction 1
1.1 Software-Defined Networking, Concepts, Implementation and Challenges 1
1.2 OpenFlow Implementations and Datapath Performance 5
1.3 Internet of Things and Edge Computing, Challenges in Data Flow Ag-

gregation and Processing . 7
1.4 Delay Tolerant Network (DTN) implementation in SDN approach . . . 9
1.5 Organization of the Dissertation . 12

2 Design, Implementation and Evaluation of SDN In-House Controller 14
2.1 Introduction of Controllers in OpenFlow SDN 14

2.1.1 OpenFlow Protocol and Switch Specification 14
2.1.2 SDN Controller Design and Performance Evaluation 16

2.2 Distributed Controllers Solution in SDN 17
2.2.1 Flat Structure in Distributed Controllers in SDN 18
2.2.2 Hierarchical Structure of Distributed Controller in SDN 20
2.2.3 OpenFlow Data-Plane Implementation 21
2.2.4 Data-Plane Based Controller Implementation 22

2.3 SDN In-house Controller Design . 23
2.3.1 Features Analysis in SDN Controller 23
2.3.2 Contributions In This Work 24
2.3.3 In-house Controller Architecture 25

2.4 Network Global Information Synchronization in Distributed Controller . 27
2.4.1 Learning Switch Based Routing Mechanism in In-House Controller 28

2.5 In-House Controller Performance Study 29
2.5.1 Roundtrip Performance for Learning Switch Application 30
2.5.2 Performance Study with Video-based Rerouting Application . . 33

2.6 Summary . 35

3 A Networking Application Docking/Un-Docking Framework 37
3.1 Contributions In This Work . 38
3.2 Inside In-House Controller Application Docking/Un-Docking Scheme . . 39

3.2.1 Inside SDN Docker Framework 40
3.2.2 Docker Application Processing Framework 43
3.2.3 Application Binary Organization 43
3.2.4 Performance Study of Inside SDN Docker 47

3.3 Outside In-House Controller Application Docking/Un-Docking Scheme [71] 49
3.3.1 Virtualized Connection in Linux 50
3.3.2 Outside SDN Docker Framework 51
3.3.3 Application Docking Procedure 54
3.3.4 Application UnDocking Procedure 56

v

3.3.5 Switch In-House Controller Module 57
3.3.6 Testbed Implementation And Performance Study 58

3.4 Summary . 62

4 Flow Aggregation in Internet of Things 63
4.1 MQTT Flow Aggregation in SDN Docker 63

4.1.1 Contributions in This Work 65
4.2 Short Flow Aggregation in MQTT Protocol [70] 65

4.2.1 System Design and Implementation of MQTT Short Flow Aggre-
gation . 66

4.2.2 Testbed Setup of MQTT Short Flow Aggregation 68
4.2.3 Delivery Throughput Analysis of Fog Node 71
4.2.4 Conclusion . 74

4.3 Long Flow Aggregation of MQTT Protocol[73] 75
4.3.1 System Model of Long Flow Aggregation in SDN Docker 76
4.3.2 Framework Development of MQTT Long Flow Aggregation . . . 78

4.4 Performance Evaluation of MQTT Long Flow Aggregation 80
4.4.1 Evaluation Study of Traditional Fog Network 80
4.4.2 Proposed Framework and Performance Evaluation Study 82

4.5 Summary . 85

5 SDN Based Opportunistic Networking in Internet of Things [72] 86
5.1 Introduction to Delay Tolerant Network (DTN) Implementation 86

5.1.1 DTN2 Implementation . 87
5.1.2 IBR-DTN Implementation . 88

5.2 Flexible Packet Forwarding Scheme For DTN 88
5.3 Contributions in This Work . 90
5.4 Software-Defined DTN Infrastructure Offloading Framework 91
5.5 A Novel Software-Define Flexible DTN Forwarding Architecture . . . 95

5.5.1 L2 Forwarding Scheme for DTN Bundle Forwarding 95
5.5.2 Flexible On-the-fly Routing and Transport Services for Crowd-

Friendly Environments . 98
5.6 Framework Performance Study . 101

5.6.1 A Novel Performance Evaluation Experiment 102
5.6.2 Advanced Emulation with DTN nodes on RasperryPI 106

5.7 Internet of Hybrid Opportunistic Things [72] 108
5.7.1 Introduction to IoT and DTN Interconnecting 108
5.7.2 A Novel Framework for IoT and DTN Interconnection 109
5.7.3 System Evaluation and Conclusion 112

6 Conclusion 113
6.1 Future Work . 114

References 117

vi

List of Tables

2.1 Positioning of In-House Controller . 24

vii

List of Figures

1.1 SDN Architecture . 2
1.2 SDN Data-plane Architecture . 6
1.3 DTN Components and Event Scheduler [14] 11

2.1 Main components of a flow entry in a flow table [2] 14
2.2 Fields from packets used to match against flow entries 15
2.3 Open vSwitch Architecture . 22
2.4 Positioning In-House Controller In OpenFlow SDN Architecture 25
2.5 In-House Controller Internal Architecture 27
2.6 CDF of roundtrip time for learning switch application in Mininet emula-

tion environment . 30
2.7 CDF of roundtrip time for learning switch application in real testbed . . 30
2.8 CDF of roundtrip time for learning switch application in Mininet with

500 nodes . 31
2.9 Network topology used for video rerouting application testbed experiment 32
2.10 CDF for rerouting application on a testbed implementation 34
2.11 CDF for rerouting application on a Mininet implementation 34

3.1 Inside SDN Docker Architecture . 40
3.2 Inside SDN Docker Framework and Components 41
3.3 Inside SDN Docker Binary Image Organization 44
3.4 Performance results of Reactive implementation of Centralized framework

and our proposed Switch-inhouse controller framework 48
3.5 Performance results of Proactive implementation of Centralized frame-

work and our proposed Switch-inhouse controller framework 48
3.6 Virtualized Network Application Routing to A Peer Node 51
3.7 An SDN docker framework implementation connected to a local PC server.

Blue ports indicate virtual ports and Green ports indicate physical ports 53
3.8 Testbed implementation of the proposed framework. Blue ports indicate

virtual ports and Green ports indicate physical ports 58
3.9 Time taken for individual steps involved in application docking 61
3.10 Time taken for individual steps involved in application undocking . . . 61

4.1 MQTT Publisher-Broker Architecture 66
4.2 Proxy Broker Architecture in Aggregated Node 67
4.3 MQTT Network with Fog Node Testbed Setup. Each element inside

‘Host PC’ is run as virtual machine. ‘MQTT-Broker’ and ‘OvS’ represent
the same architecture as shown in Fig. 4.2, but running on Ubuntu OS. 69

4.4 Throughput performance for respective UDP and TCP clients, with Fog
node computing . 71

4.5 Congestion window size instantaneous vs average 74
4.6 Average throughput for different loss probability 75
4.7 Fog nodes internal architecture in long flow aggregation 77
4.8 Experiment network structure . 79
4.9 Traditional DTN-based WLAN offloading scenario with four infrastruc-

ture nodes, and one mobile node. 81

viii

4.10 Proposed SDN-based DTN offloading framework with four infrastructure
nodes, and one mobile node. 81

4.11 Fast retransmission throughput of the traditional fog network. 82
4.12 Fairness indices of traditional network vs proposed framework. 84
4.13 Total number of received IoT (MQTT) messages in the traditional network

vs proposed framework. 84

5.1 Traditional DTN-based WLAN offloading scenario with four infrastruc-
ture nodes, and one mobile node. 92

5.2 Proposed SDN-based DTN offloading framework with four infrastructure
nodes, and one mobile node. 92

5.3 A frame with DTN bundle application payload. The in-built SDN
controllers will perform deep-packet inspection on DTN primary blocks 93

5.4 Three vehicles platoon scenario: Traditional crowdsourced P2P DTN
forwarding . 95

5.5 Proposed SDN-based DTN Architecture. 96
5.6 Vehicle platoon scenario: Proposed SDN-based Layer-2 (L2) forwarding,

and parallel multicast forwarding to intermediate nodes storage. 97
5.7 Offloading Application: Performance comparison of number of bundle

copies in traditional DTN offloading and proposed SDN-based DTN
offloading frameworks, in a four DTN node infrastructure network. . . . 101

5.8 Vehicular Platooning Application: Improved delay performance of pro-
posed SDN-based DTN layer-2 forwarding, against the traditional DTN
forwarding. 101

5.9 The testbed snapshot used in the implementation and performance
evaluation study. 103

5.10 Heterogeneous DTN forwarding application: CDF Performance compari-
son of traditional IBR-DTN and proposed SDN-DTN offloading showing
the number of messages received by fraction of nodes in the network . . 105

5.11 Heterogeneous DTN forwarding architecture: CDF Performance compar-
ison of traditional IBR-DTN and proposed SDN-DTN offloading showing
the number of messages received by fraction of nodes in the network, in
a 10-nodes RaspberryPI experiment testbed 107

5.12 Proposed IoT-cum-DTN framework. 109
5.13 Proposed IoT-cum-DTN Gateway Node Architecture. The extended

modules are shown in blue shaded boxes. 110
5.14 Throughput comparison between MQTT-over-DTN and MQTT-cum-DTN112
5.15 Logic topology of the testbed. 112

ix

Abstract

Over the past several decades, there has been a dramatic improvement in net-

working technologies. Network devices and protocols are becoming more powerful

and complex. The vertical structure of the network protocol layers also leads to

a coupled control plane and data plane in data frames. To solve this issue from

a structural level, researchers introduced a new architecture of networking, the

Software Defined Networking (SDN). By decoupling the control plane and data

plane from a frame level and aggregating the protocols into software run in a

centralized controller dynamically, engineers obtained a new way to build and

control a network dynamically in real time.

Meanwhile, with the development of Internet of Things (IoT), data volume

from mobile devices and low power terminals are dramatically increasing. However,

the traditional cloud computing is still in a relatively centralized architecture,

which causes huge traffic volume of IoT applications in the network. To this

end, researchers proposed the concept of Edge Computing, which utilizes the

capacity of the edge nodes in the network to process data and aggregate data

from terminals.

This research introduces In-House Controller of SDN which has a distributed

characteristic and deployed within SDN nodes to minimize the costs in control

plane communication. The In-House controller also enables data processing and

aggregation capacity in access points which host these functionalities as SDN

applications. To research the system performance of the In-House controller in

x

different application scenarios, in this work, following applications were studied:

• Data flow aggregation of Message Queue Telemetry Transport (MQTT)

protocol in Internet of Things, an MQTT proxy in edge switch which is

aggregating short MQTT flows from multiple clients into a long MQTT flow

to reduce the control plane traffic overhead in TCP.

• A novel delay tolerant network architecture and a new convergence layer

over MQTT protocol in opportunistic networking. Using in-house controller

as host and event scheduler for Delay Tolerant Network (DTN) [47] modules

and convergence layers which run as applications guest applications in the

controller.

With the study of applications, this research also proposed a generalized frame-

work named as SDN Docker which support dynamically docking and un-docking

applications in network devices with the help of the In-House controller.

xi

Chapter 1

Introduction

Traditional IP network is growing fast in both scales of the network infrastructure

and traffic volume and variety. On the other hand, the vertical structure of

network protocols is making the network more complex and difficult to configure

and manage. To solve these issues, researchers proposed a new networking

architecture named as Software Defined Networking (SDN).

1.1 Software-Defined Networking, Concepts, Implemen-

tation and Challenges

SDN architecture was built in 2011. A typical SDN architecture including the

following key characters[1]

• Decoupled control plane and data plane. SDN extract the control plane

functionalities (packet forwarding and management) into a logically central-

ized controller which host network applications to define packet forwarding

rules in the network.

• Instead of using destination addresses, in SDN, forwarding rules are defined

by flows. A flow consists of two parts: matching rules and actions. Matching

rules defined by a customized combination of packet header fields and

corresponding values. Actions define the packet processing and forwarding

operations.

1

Figure 1.1: SDN Architecture

• Control logic is defined in an external entity in the network, also known as

SDN controller. The controller is a software platform which is able to host

network applications and provide them an abstracted, global view of the

network.

• By providing a programmable interface, applications are able to operate

packets and flows in the network to implement their functionalities.

Following these principles, multiple implementations of SDN has been proposed

and developed by researchers and industry fields. As one of the most widely

used standard, OpenFlow [2] protocol has been developed and deployed in both

network devices and controller software. OpenFlow implement SDN features from

the following perspectives:

2

Ports: Defined the functionalities ports on an OpenFlow switch. For physical

ports in an OpenFlow switch, corresponding operations to ingress and egress

packets are described. Meanwhile, logical ports forwarding packets to other

components (like controller, pipeline or broadcast port) in OpenFlow specification

are also described.

Flow Tables: Following the principle of SDN architecture, OpenFlow defined

the two parts of entries in a flow table: Matching rules and actions. Besides these

features, OpenFlow also defined the flow table pipeline, group and priority to

make multiple flow entry sets could coordinate with each other.

OpenFlow protocol: The protocol runs over TCP with an OpenFlow header

which includes the message type and associated actions for the packets interact

between controller and switches. This part of the specification is also considered

as the southbound API of SDN controllers.

Base on the OpenFlow specification, software for both switch side and con-

troller side are implemented to build an OpenFlow network in the real world.

On the switch side, OpenFlow for OpenWRT [4] was developed as an user space

implementation in Linux based systems like Ubuntu and OpenWRT. This imple-

mentation included most of the switch side features from OpenFlow specification

v1.0 to v1.3. Open vSwitch[36], implement virtualized switch datapath in kernel

space of Linux based systems which is also following the OpenFlow specification.

These implementations provide the possibilities to turn a regular physical network

device to an OpenFlow device. Moreover, they are open source software which is

able to modify for research purpose.

3

Comparing to switch side, controller side has more open source implementations

even in different languages, such as NOX [25], Floodlight [24], Ryu [26] and

OpenDaylight [27]. All these controllers implemented the southbound API to

OpenFlow switches and the northbound API to network applications. Performance

comparison of these controllers is also studied by researchers.

A centralized controller is one of the primary concern of SDN in the performance

of scalability. In a large scale network with thousands of switches, the centralized

controller will be the bottleneck of SDN network because of the capacity of

controller software (number of requests served per seconds) and the control plane

traffic volume exceeding the maximum throughput of the OpenFlow connection.

To solve this issue, researchers have been working on solutions from the different

perspectives: Flat structure distributed controller, hierarchy structure controller

deployment and hybrid distributed controller solution[3]. The idea of these

solutions is deploying distributed controllers in the network to reduce the scale of

the sub-network each controller taking charge of, and build a proper communication

mechanism between those controllers to maintain the global view of the entire

network.

To some extend the solutions above solved the scalability issue of the centralized

controller. However, even for a distributed controller which is close to the network

devices, the communication overhead of OpenFlow protocol is inevitable. A

latency between the flow management request and response could make the

request meaningless because of the changing of network flows in this very short

period of time. In this research, we introduce an In-House controller, which is

4

directly deployed in the OpenFlow components on the switch side. To reduce the

latency and packet loss between controller and switch, the In-house controller is

deployed in the switch and talking to the OpenFlow implementation through API

without using any network connections and OpenFlow protocols. Meanwhile, it

retains the southbound API to regular SDN controllers over OpenFlow, which

could be used to communicate with other In-House controllers in a hierarchy flavor

and be compatible to original OpenFlow setup. The In-House controller not only

makes the SDN switch could be controlled locally but also provides possibilities

for the switch to host application level functionalities in the device, which is far

beyond the functionality of a network switch.

1.2 OpenFlow Implementations and Datapath Performance

In practice, OpenFlow is most often added as a feature to an existing Ethernet

switch, IPv4 router or wireless access point in their operating system. Thanks

to OpenWRT, an open-source Linux distribution for embedded systems, which

support the OpenFlow implementations introduced above, the study to the lower

level implementation of OpenFlow component which provides the foundation to

In-House controller implementation. The structure of an OpenFlow data-plane

implementation on switch side is demonstrated as Fig. 1.2.

According to OpenFlow specification, the main functionalities of data plane

software has three parts: Data-path: The data plane component which is

taking charge of packet matching, counting, forwarding and modification in kernel

5

Figure 1.2: SDN Data-plane Architecture

or user space. It is the implementation of flow entries in OpenFlow. Control-

path: This component manages TCP connections to remote controller. OF-

Protocol: Protocol component for OpenFlow. This component implemented

OpenFlow protocol and pack/unpack OpenFlow packets send to or receive from

controller. The implementation of datapath decide the throughput of flow

entries in OpenFlow switch. In OpenFlow for OpenWRT implementation, the

datapath runs over raw IP stack with network devices API in Linux user space.

Compare to previous implementation, Open vSwitch use kernel space code to keep

traffic in flow entries in Linux kernel space to achieve a much higher throughput

for traffics in a flow.

As an application development and deployment tool, the well-known Docker

use containers to host application and its runtime environment. The Docker engine

builds and runs the docker image instance locally while the Docker hub is playing

6

as a remote server which is keeping the docker images. For network applications,

there are more obstacles than desktop or service applications in development

and deployment. Normally, network applications are hosted in network devices

which have limited computing and storage capacity. They also need extra network

configuration which is tightly combined with the global network configuration

which is hard to instantiate.

Learning from the Docker[37] framework, this work proposed an SDN Docker

framework which is used to instantiate network applications and host them in

network devices with dedicated configuration independent to each other. With

the help of Linux Container (LXC) [38] and virtual Ethernet device (which are

supported on OpenWRT and most of Linux distribution), network application

could be hosted in a container and occupy a dedicated virtualized connection to

the world outside through physical ports. The In-House controller will be the

Docker engine in this framework to manage the runtime of these applications. A

remote server which stores application images as a Docker hub is also enabled in

this framework.

1.3 Internet of Things and Edge Computing, Challenges

in Data Flow Aggregation and Processing

• One Delivery (At Most): Messages are delivered according to the best effort

of the network; an acknowledgement is not required. (Least level of QoS)

• One Delivery (At Least): Message sends at least once, some duplicate

7

message may exist, and an acknowledgement message is required.

• On Delivering (Exactly): Requires an additional protocol to ensure that the

message is delivered once and only once. (Highest level of QoS)

With these features, MQTT provide a lightweight reliable message transmission

mechanism over transport layer protocol as an IoT application.

Because of the characteristic of IoT traffic and its applications, we introduce

the concept of Edge Computing or Fog Computing in this work. Backbone

network structure in normal cloud computing environment cannot accommodate

the demands of IoT application due to flows competition on the backhaul links

and the long latency. By providing elastic resources and services, like storage,

computing and networking services, to end users at the edge of the network,

Fog computing could provide similar functionalities as cloud computing with

advanced features like low latency, geographical distribution, supported mobility

management and online data processing [6].

Because of the lightweight characteristic of MQTT, In this work, with the

help of SDN Docker framework, we propose a virtualized MQTT broker proxy in

edge nodes to provide an effective and reliable data delivery in Internet of Things

scenario. The proxy aggregate traffic flows from the clients which connect to the

host access point to reduce bandwidth competition and traffic volume in control

plane.

8

1.4 Delay Tolerant Network (DTN) implementation in

SDN approach

Delay Tolerant Network is oriented to the heterogeneous network that may lack

continuous connectivity. Packets are delivered in DTN in Bundle format[48]

with a primary block, which contains the source and destination entity ID and

application ID in DTN, and several data blocks which carry on payload data. To

achieve reliable packet delivery in this scenario, an architecture with the following

components have been proposed by researchers [13] [14] Convergence Layers:

To ensure packet delivery in a heterogeneous network, protocols in or above

transport layer are generalized into a concept of convergence layer. A convergence

layer could be a transport layer implementation, like UDP and TCP socket, or

an upper network application like FTP or Email. One node could have multiple

convergence layers in the same runtime. Two nodes have one or more same

convergence layers could talk to each other. Neighbour Management:

In a wireless opportunistic networking, mobile nodes communicate with each

other by chance of getting close. To claim the existence of node itself, a beacon

message is broadcasting over a wireless channel. This beacon message contains

convergence layers supported by the node and its configurations, like TCP port

number or email addresses etc.. By detecting this message, the node could find

neighbors getting close to it. Once a node with same convergence layer is detected,

the communication will begin. Storage:

As a pre-assumption of DTN scenario, limits of wireless radio range and

9

sparsity of mobile nodes decide nodes have very limited chance to meet another

node. To increase the probability of success in message delivery, in this scenario,

DTN nodes are following the principle of store and forward in message delivery.

DTN nodes carry messages by storage and deliver to neighbors by chance until

the message arrives its destination node. Routing modules:

Another pre-assumption of DTN nodes is limitations in energy consumption.

In the original scenario of DTN, communication in aerospace and deep space, nodes

have strictly constrained in energy consumption while transmitting a message

over wireless channels could one of the main consumers. To prevent unnecessary

packet transfer between nodes, researchers proposed many routing algorithms in

DTN. Several typical routing algorithms are listed as follows:

• Flooding routing: Always attempt to deliver all the messages stored on the

local node to neighbors.

• Static routing: Messages will not be delivered unless the next hop node

defined in routing table appears.

• Epidemic routing: Attempt to exchange messages which are not existing on

the peer node.

Beside of these routing algorithms, researchers also studied the pattern of meeting

probability of data mules (nodes) in the real world, which is not a completely

random opportunity. Algorithms derived from this idea like (PROPHET[15],

MaxProp[16] and RAPID[17] has been proposed and evaluated in a simulated

environment. Event scheduler:

10

Figure 1.3: DTN Components and Event Scheduler [14]

In DTN node implementation, event scheduler is a hub of all the modules above.

Events are raised while specific actions are finished in a specific module, like new

neighbor discovery or packet receiving from neighbors, to notify other modules to

do their work. The following graph shows its role in the whole architecture.

Coincidentally, this architecture exactly matches the structure of SDN Docker

framework, which is hosting network applications in threads and processes in

a single network node with multiple interfaces. With this inspiration, in this

work, we proposed an enhanced architecture of DTN node in SDN scenario. In

this architecture, modules and event scheduler are applications in SDN Docker.

The event scheduler hosted as an application thread in SDN In-House controller,

other modules are applications hosted in SDN Docker. Modules raise events

based on the configuration of the node. These events will be packed with internal

messages which go through the event scheduler. Event scheduler cooks these

internal messages with an In-House controller to maximize the probability of

message delivery and minimize the transmission time and a number of storage

copies in DTN node.

11

1.5 Organization of the Dissertation

Chapter 2 first reviews distributed controller implementations in SDN architecture

and introduces the OpenFlow implementation details in two open source software,

OpenFlow for OpenWRT and Open vSwitch. A performance comparison between

the In-House controller and other distributed controller solution will be made.

Base on the controller analysis, we propose our In-House Controller architecture.

To evaluate In-House Controller performance and make a comparison to commonly

distributed controllers and centralized controllers, we select several applications

in experiments.

Chapter 3 introduce our SDN Application docking/undocking framework, the

SDN Docker. Based on the In-House controller, we implement the SDN Docker in

two approaches, inside data plane, and outside data plane, to host different types

of application. A docking/undocking performance evaluation will be provided in

this chapter.

Chapter 4 focus on IoT traffic aggregation in edge nodes as a use case in SDN

docker. In this chapter, demonstrate two frameworks deployed in edge nodes by

SDN Docker to aggregate MQTT short and long flows. By analyzing MQTT short

flows aggregation over TCP and UDP connections, we show our performance

improvement in throughput. For long flows aggregation, we evaluate the fairness

and packet processing throughput of the system. A comparison between proposed

long flow aggregation framework and original framework also introduced in this

section.

12

Chapter 5 focus on the usage of SDN docker in DTN network. The implemen-

tation and architecture will be introduced, as well as an enhancement in event

scheduler. Several use cases of performance enhancement in DTN network, includ-

ing infrastructure data offloading, adjustable beacon message and convergence

layer and their performance comparison will be demonstrated. A novel DTN over

IoT setup which introduces MQTT as one of the convergence layers will also be

introduced in this chapter.

The last chapter will extend the content of this dissertation to future work in

SDN based IoT, Mobile IP, and Opportunistic Networking.

13

Chapter 2

Design, Implementation and Evaluation of SDN

In-House Controller

As the new and crucial component of SDN, controllers has been proposed along

with the Openflow protocols. such as ,NOXMT [21], Maestro [22], Beacon [23],

and Floodlight [24]. These controllers follow the SDN architecture in a centralized

style over Openflow protocol as one of SDN implementation.

2.1 Introduction of Controllers in OpenFlow SDN

2.1.1 OpenFlow Protocol and Switch Specification

OpenFlow specification defines features from the switching perspective. It covers

the components and the basic functions of the switch. An OpenFlow Switch

consists of one or more flow tables, one group table and an OpenFlow channel to

the controller.

A flow table consists of flow entries. Each flow table entry contains[2]:

• match fields: to match against packets. These consist of the ingress port

and packet headers, and optionally metadata specified by a previous table.

• counters:to update for matching packets.

Figure 2.1: Main components of a flow entry in a flow table [2]

14

Figure 2.2: Fields from packets used to match against flow entries

• instructions: to modify the action set or pipeline processing.

Groups represent sets of actions for flooding, as well as more complex for-

warding semantics (e.g. multipath, fast reroute, and link aggregation). As a

general layer of indirection, groups also enable multiple flows to forward to a

single identifier (e.g. IP forwarding to a common next hop). This abstraction

allows common output actions across flows to be changed efficiently. The group

table contains group entries; each group entry contains a list of action buckets

with specific semantics dependent on group type. The actions in one or more

action buckets are applied to packets sent to the group. The group could also

assign another group as one of its actions for next step packet processing.

Each flow entry contains a set of instructions that are executed when a packet

matches the entry. These instructions result in changes to the packet, action set

and/or pipeline processing. Supported instructions include:

• Apply-Action(s) qpply the specific action(s) immediately, without any

change to the Action Set. This instruction may be used to modify the packet

between two tables or to execute multiple actions of the same type. The

actions are specified as an action list.

15

• Clear-Action(s) clear all the actions in the action set immediately.

• Write-Action(s) merges the specified action(s) into the current action set.

If an action of the given type exists in the current set, overwrite it, otherwise,

add it.

• Write-Metadata writes the masked metadata value into the metadata

field. The mask specifies which bits of the metadata register should be

modified.

• Goto-Table next-table-id Indicates the next table in the processing

pipeline. The table-id must be greater than the current table-id. The

flows of the last table of the pipeline can not include this instruction.

2.1.2 SDN Controller Design and Performance Evaluation

Controller design is addressed in many types of research. To handle a high volume

of flow management request from the network, most centralized controllers focus

on multithreaded designs and the parallelism of multicore computer architectures

to improve the flow throughput. They have been designed as highly concurrent

systems, to achieve the throughput required by enterprise class networks and data

centers. As an example, by extending the NOX controller to a multithreaded

version, NOXMT shows significant improvement in flow throughput and this

improvement has near-linear scalability with the number of threads (cores). Mean-

while, the communication overhead between controller was noticed in studies. [28]

summarized a flow request into 4 steps:

16

I. Packet arrives switch with no matching roles.

II. Packet is encapsulated into OpenFlow header and sent to controller.

III. Controller build flow entries for switch(es) and send back to network.

IV. Switch receive the packet, decapsulate the OpenFlow packet from controller,

install flow entries and execute actions within.

Compare to the step 1 and 4 which are related to performance of switch

devices, the delay caused by step 2 and 3, which is determined by the controllers

resources along with the control programs capacity, bring more impact to the

performance of the whole procedure.

To solve these performance issues, researchers lay eyes on distributed controller

solutions. By controller distribution, 1) controller could be deployed closer to

network devices so the communication delay will be reduced; 2) number of switches

managed by one single controller could be limited to a reasonable size in large

scale SDN network.

2.2 Distributed Controllers Solution in SDN

The logically centralized controller in SDN brings benefits in networking pro-

grammability, easier management, and faster innovation because it enables flow-

level control over Ethernet switching and provides global visibility of the flows in

the network.[29]. However, control plane communication between the controller

and network devices, especially while the controller is deployed in a remote site,

17

will lead to overheads in control plane traffic which will cause performance issue in

scalability and time efficiency in the network. Fine-grained flow operation events

which are common in network operation make the situation even worse.

Meanwhile, because of the overhead, researchers have observed that the delay

in the arrival of a flow’s first packet and the controller’s installation of new flow-

table entries can create many out-of-order packets, leading to a collapse of the

flow’s initial throughput [30].

To address the issue, researchers proposed distributed controller solutions,

use multiple controllers in one network to provide rapid response to flow request

and offload traffic volume in the centralized controller. Meanwhile, to keep the

consistency, how to synchronize the global status of the networking is the major

concern in distributed solutions. The synchronization mechanism divides the

solutions into two group:

Hierarchical model: One or some (but not all) SDN controllers in the cluster

have the global network state.

Flat model: All of the SDN controllers in the cluster have the global network

state. In the following part, we will introduce the two models respectively.

2.2.1 Flat Structure in Distributed Controllers in SDN

Flat model controller distribution requires controllers to handle flow request

locally and share the updated network information by exchanging the update

via East/Westbound API. The exchanging mechanism could be classified in two

ways:[1]

18

• Polling: The controller periodically requests updates from all the other

controllers in the same domain. This mechanism mainly has two issues: 1)

The controller can not update network status in real-time. 2) Controller

repeatedly obtains same updates while there is no changing in the network.

• Publish/Subscribe: one controller subscribes updates from other con-

trollers in the domain. Each controller in the domain publishes updates to

all its subscribers while network status changed on itself. This mechanism

is more efficient than polling because for one update in the network only

one copy will be transferred to each controller.

HyperFlow[31] is a typical implementation of flat model controller distribution.

Controllers in HyperFlow manage different areas of the network which have no

overlap with each other. When a flow path needs to be setup among network areas

managed by different controllers, controllers along the path pass the serialized

OpenFlow message one by one to exact the flow information and apply the flows

in network devices under its control.

Other implementation like ElastiCon[32] focus on a dynamic assignment of

switches to controllers. With the master/slave controller setup in OpenFlow,

depends on controller load, a switch could seamlessly migrate between different

master controllers on the fly.

19

2.2.2 Hierarchical Structure of Distributed Controller in SDN

In a hierarchical model, researchers define local controllers and a root controllers

in the same network. Local controller and root controller communicate with each

other by East/Westbound interface. The local controller is deployed close to

network devices, while root controller is centrally deployed and connected to local

controllers. The root controller holds the global view of the network and takes

charge of synchronization among local controllers. Global OpenFlow requests are

also processed by the root controller. Local controllers are handling local request

from network devices which do not need to involve a global operation. If any

global operation needed in the network, local controllers will initiate the request

to root controller.

Several typical implementations of hierarchical controller model have been

accomplished by researchers. Distributed-SDN [20] designed Main Controller

(MC) as root controller in an ISP space and Secondary Controller (SC) as a

local controller in a home appliance usage scenario. An SC-MC communication

mechanism between these two components are designed as a customized protocol

incorporates security concern as an integral part of the framework. Kandoo[33]

implemented the hierarchical structure by identifying mouse flow and elephant

flow. If a flow is confirmed as an elephant flow, it will be handled by root controller.

Otherwise, for mouse flows, which happens much more frequently in traffic, will

be handled by applications in local controller.

IRIS[34] introduced a recursively deployed controller solution. Controllers are

20

deployed in layers and higher level controllers consider the lower level network

as a black box to communicate. Flow request will be forward up until the root

controller if the current level controller does not have sufficient information to

handle the request. After the request is processed, the response controller will

notify all the lower level controllers in the same subset recursively.

2.2.3 OpenFlow Data-Plane Implementation

OpenFlow data-plane reference is a minimum implementation built by Stanford

University originally in 2011. Based on this implementation, there have been

several OpenFlow data-plane implementations on switch devices.

Pantou[35], the OpenFlow component for OpenWRT, implement OpenFlow

data-plane in user space. To obtain frame level packet processing and forwarding

ability, It sends and receives L2 frames over Linux device socket. This implemen-

tation can be deployed in most of Linux based OS, especially suitable for low

power devices which have limitation in storage and memory size.

Open vSwitch [36] (Fig. 2.3) is another open source implementation of Open-

Flow data plane which can be deployed in OpenWRT. To obtain a higher per-

formance, Open vSwtich implement data-path in kernel space which provides

an faster packet processing and forwarding capacity. Components in user space

(OpenFlow protocol and control path) communicate with data-plane via Linux

UpCall[40] which make a kernel space program to execute a function in user space.

Besides these two implementations, some other implementations have been

posted by researchers and industry entities, like Pica8[41], Indigo[42] and Click[43]

21

Figure 2.3: Open vSwitch Architecture

etc..

2.2.4 Data-Plane Based Controller Implementation

With the SDN and OpenFlow specification, the controller software run in an

entity and communicate with OpenFlow devices through a TCP based connection.

This creates overhead in flow requests which make the flow management lost its

real-time efficiency even when the controller is deployed close enough to OpenFlow

switches. To address the issue, several researches lay eyes on the implementation

of OpenFlow components to embed flow management functionalities within data-

plane. DIFANE[44] propose authority switches that offloads flow management

functionalities into data-plane. A group of switches (namely, authority switches)

handles data packets by having a set of pre-installed rules distributed by a central

controller. However, unlike our framework, this work does not consider a full-

fledged application-thread dynamically installable and runnable inside a switch.

22

DevoFlow[30] introduced the controller functionality offloading integrated into

switches (namely, HP Procurve 5460zl) based on wildcard matching rules and

flow clone mechanism in OpenFlow to create sub-flows in OpenFlow data-plane

with local actions. However, this work creates flows in fixed granularity which

could only be chosen between wildcard flow or packet specific flows. Flow actions

in this work also need to be localized to switch side. For any unsupported actions,

it still needs help from the remote controller.

2.3 SDN In-house Controller Design

To eliminate the communication overhead and scalability issue in centralized

controller, and inherit the concurrent packet processing ability in traditional

centralized controller, in this work, based on Pantou and OvS, we propose our

In-House controller, an implementation of OpenFlow controller functionality in

data-plane.

2.3.1 Features Analysis in SDN Controller

Features in SDN controller could be summarized to following perspectives:

• Whole frame packet inspection, including packet payload parsing and pro-

cessing.

• Adding/Deleting flow entries and actions in switches by OpenFlow protocol.

• Flow monitoring by querying counters in existing flow entries.

23

• Parallel hosting applications in multiple threads in controller. Create pipeline

among different applications for one single traffic flow.

For any OpenFlow controller implementation, these features should be considered

and implemented within. Even in some single thread controller, applications could

be switched in different runtime.

2.3.2 Contributions In This Work

Table 2.1: Positioning of In-House Controller
Literature Centralized Distributed Local In-Switch Application Application Docking

DIFANE Semi-distributed Central controller Partial

DevoFlow X X

Kandoo Centralized Long-flows, Distributed short-flows Conceptual-(www.kandoo.org)

This Work Distributed and local In-House controller,for all flows X X

Table 2.1 positions our work with respect to the related research works on

SDN that focus on reducing the stress on the control-plane at the controller.

The work by authors in [44] proposes authority switches that offloads certain

functionalities of the controller. A group of switches (namely, authority switches)

handles data packets by having a set of pre-installed rules distributed by a

central controller. However, unlike our framework, this work does not consider

a full-fledged application-thread dynamically installable and runnable inside a

switch. The authors in [30], offloads the controller functionality integrated into

switches (namely, HP Procurve 5460zl) based on OpenFlow [29]. However, the

work does not consider dynamic application docking capability. The Kandoo [33]

[61] proposes a hierarchically distributed controller framework, that proposes a

hybrid way that has benefits of centralized and distributed system. The small

24

Figure 2.4: Positioning In-House Controller In OpenFlow SDN Architecture

flows will be handled by local (external) controllers and long flows (namely, the

elephant flows) are handled by the central controller. The Kandoo framework is

based on the Beehive distributed architecture framework. Though the authors

have mentioned the possibility of Kandoo being integrated within switches; to

the best of knowledge; this is still in conceptual stage, as a resource on such an

implementation available in public. For our comparative study, we study our

experiments by comparing the performance with respect to the centralized SDN

implementation and the Kandoo-based distributed implementation (wherein, one

physical controller is assigned to each network-switch).

2.3.3 In-house Controller Architecture

Regular OpenFlow controllers communicate with data-plane via OpenFlow mes-

sages(PacketIn, PacketOut, FlowMod etc.). In-House controller intercept packet

frames between OpenFlow protocol and OpenFlow data-plane. Packet frames

25

will not be packed into OpenFlow messages but directly forwarded to the In-

House controller for further processing (Create/Modify/Delete flows, create other

actions). After the processing, the packet will be sent back to datapath and

forwarded. To implement this feature, we need a mechanism to filter frames which

failed to match any flow entries in the switch to the In-House controller. Also,

to be compatible with original OpenFlow controller, this mechanism also need

the ability to decide if a packet should be processed by the In-House controller or

regular controller. We implement this mechanism with wildcard flow entries with

generalized matching roles, lowest priority and an action which forwarding packet

frames to In-House controller API. Packets matched regular flow entries will not

be impacted because of their higher priority. Packets did not match any flow

entries, including the wildcard entry, still will be forwarded to a regular OpenFlow

controller.

The Fig 2.5 illustrated the internal structure of the In-House controller. In-

House controller host each application in a separated thread. Each thread contains

a message queue so the application can cooperate as a pipeline. Packet scheduler

is a thread which receiving packet frame from the In-House controller actions.

It decides which application should serve the packet. The application also can

send processed packet back to this thread for another application’s processing.

Applications in the In-House controller can generate flows and actions by OpenFlow

interface to communicate to datapath. To this end, the features of an SDN

controller have been satisfied in an In-House controller.

The OpenFlow interfaces implemented in different ways in different OpenFlow

26

Figure 2.5: In-House Controller Internal Architecture

data plane implementations. In Pantou implementation, datapath and OpenFlow

protocol are in the same space, so the OpenFlow interface in it is an API based

interface which can be directly used by In-House controller. As we introduced,

OvS deploys datapath in kernel space, so the universal interface is an UpCall

based communication mechanism between kernel space and user space. In-House

controller can use this mechanism to communicate to datapath component.

2.4 Network Global Information Synchronization in Dis-

tributed Controller

Global view of the network helps applications in SDN controller to know the

topology and make obtaining the current output like routing results. As we

introduced, to maintain the global view to the network, distributed controller

27

solutions developed different ways to implement this feature.

2.4.1 Learning Switch Based Routing Mechanism in In-House Con-

troller

As an application in In-House controller, learning switch is an efficient mechanism

to do optimized routing in a static network [18]. It also keeps optimized routing

decision for all clients in each node. Learning switch routing including the following

steps:

1: Source client send one packet to destination client with unique source ID

and destination ID (usually we use source and destination MAC address, so called

L2 Learning).

2: When packet arrives any node in the network, if both source and destination

address have never seen on this node, record the mapping between the ingress

port and source ID, then broadcast to all the other ports on that node except the

ingress port.

3: If the mapping of source ID exists in the node, consider the packet is

another copy broadcasted from other node and discard.

4: If the mapping of destination ID exists in the node, record the mapping

for source ID if the mapping does not exist, build a routing rule (flow entry in

OpenFlow context) for the source and destination ID and their mapped port.

In step 3, only the first packet for a specific client recorded in a mapping table.

This feature ensured the shortest path was chosen in this setup. However, in a

mobile network, clients could appear on different access points from time to time.

28

In this case, to identify if the client is moved, timestamps and timer in mapping

record are necessary. If the timestamp in a record has not expired in a timer, the

record is considered as a valid one which will not be replaced. Otherwise, the

record will be replaced with new timestamp and the timer will be reset.

In the following part, this application will help us to evaluate the performance

of controllers in different implement methods.

2.5 In-House Controller Performance Study

Having described the In-House controller framework, we now perform extensive

performance evaluation study to demonstrate the functional capability of the

core In-House controller module with respect to the centralized and distributed

SDN controller frameworks. Without loss of generality, this test enables a fair

comparison of our In-House controller framework with respect to the traditional

centralized and distributed SDN frameworks. For our study, in additional to

evaluating throughput performance across different frameworks; we also study the

performance by running two different full-fledged applications (namely, learning

switch application and video rerouting application) in our framework. The

comparative centralized and distributed frameworks will run these applications

on their external controllers.

For experiments, we run multiple (distributed) controllers on Mininet[19]

simulator hosts and use a virtual network to build the control plane connec-

tions. The data-plane network is also deployed in Mininet on a different physical

29

computer; which will be connected to the control plane network via a physical

port. This physical port could be considered as a port on the virtual switch in

the control plane network. In our testbed, we have configured two VirtualBox

machines and built a physical connection between them with no limit on the

bandwidth. The physical connection bandwidth of up to 1.45GBits/s is shared by

the switch-controller pairs.

2.5.1 Roundtrip Performance for Learning Switch Application

Figure 2.6: CDF of roundtrip

time for learning switch applica-

tion in Mininet emulation environ-

ment

Figure 2.7: CDF of roundtrip

time for learning switch applica-

tion in real testbed

In this section, we study the round trip delay performance of a learning-switch

application [18]. Traditionally, learning switch application runs on external SDN

controllers that enable paths in the network. This application maps different

MAC addresses to ports and subsequently installs the flow entries on the network

elements (such as switches).

30

Figure 2.8: CDF of roundtrip time for learning switch application in

Mininet with 500 nodes

Fig. 2.6 and Fig. 2.7 show the CDF of round trip delay for the respective

Mininet and testbed experiments. As shown in Fig. 2.6, our proposed In-House

controller framework outperforms both centralized and the distributed controller

implementations. Around 60% of flows take about 16 seconds of round-trip time in

In-House controller framework, as opposed to about 21 seconds of the centralized

and distributed controller frameworks; which is 23% decrease. Moreover, in the

In-House framework, all the flows take less than 23 seconds; as opposed to 26

and 27 seconds for the distributed and centralized controller implementations,

respectively. As evident from Fig. 2.7, a similar trend of improvement is observed

in the testbed results, as well. In the testbed experiments, all the flows require

less than 60 seconds of round-trip time for our In-House controller; whereas the

centralized and distributed controller frameworks, this delay is up to 90 seconds.

31

Figure 2.9: Network topology used for video rerouting application

testbed experiment

To extend the round trip experiment to a large scale, we create chain topology

with Mininet testbed to evaluate the round trip delay with 500 hops. As shown

in Fig. 2.8, as the experiment scale increasing, the result gap between different

solutions also increases. For in-house controller, all the ping packets finish their

round trip in 32 to 35 seconds while the centralized controller needs 37 to 48

seconds to receive all the packets. The distributed controller solution takes more

time to finish the round trip than these two solutions. The analysed reason of

this result is the controllers in Mininet environments are sharing memory and

local socket resource which lead to packets and retransmission attempts.

32

2.5.2 Performance Study with Video-based Rerouting Application

In typical mobile wireless networks, a moving host may perform handoffs between

different access points that serve the video traffic used by the host. During hand-

off events, the rerouting of network traffic happens in the network. The rerouting

can be a full-rerouting or partial rerouting. In the case of full rerouting; the

complete end-to-end routes will be torn down and a new end-to-end path is formed

as per the new hand-off position. In the partial rerouting, on the other hand,

only a portion of the path is changed. The testbed network topology is shown

in Fig. 2.9. The server is the Host1, a static machine serving video traffic to a

mobile user (namely, Host2), via an infrastructure composed of network of Linksys

(WRT54GL) switches, running OpenFlow-based SDN. The server provides the

video stream at the rate of 146KB=s (including video and audio). The detail of

events happen during a hand-off is given below:

1. The mobile host is physically disconnected from the original switch and

reconnects to a new neighboring switch.

2. The mobile host sends an ARP packet to the network and subsequently

receives a response from the network.

3. The controller (centralized, or distributed, or In-House) does the network

rerouting to enable connection between the server and the mobile host.

In a centralized controller framework, when the ARP request is received by the

new connected switch, by default (due to the absence of flow-rule), this request

33

s forwarded to the centralized controller. The controller responds with an ARP

reply to the mobile host. In our In-House controller this logic is implemented as

follows:

1. The In-House controller module generates a control message and send it to

the upper layer switch in the tree topology.

2. An ARP reply is also generated and sent to the mobile host.

3. Subsequently, new flow-entries are created based on the incoming port of

the ARP request.

4. Upon receiving the control message; the upper layer network switch do the

similar process of creating new flow-entries. For obvious reasons, in partial

rerouting experiment; when the control message comes from the same port

as per the old route the flow entries will not be updated.

Figure 2.10: CDF for rerouting

application on a testbed imple-

mentation

Figure 2.11: CDF for rerouting

application on a Mininet imple-

mentation

34

For video applications, the primary characteristic of a network is to deliver

video traffic with minimal jitter time. The reduced jitter time improves the

Quality-of-Experience (QoE). Fig. 2.10 and Fig. 2.11 show the CDF of jitter

time for two rerouting mechanisms across three different respective controller

frameworks.

Fig. 2.10 shows the CDF of jitter-time for three different frameworks across

to rerouting techniques. In a similar way, Fig. 2.11 shows the jitter-time CDF

performance for the respective Mininet emulation experiment. It is clear from Fig.

2.10 and Fig. 2.11 that the In-House controller based SDN docker switch signifi-

cantly improves the jitter time. The partial rerouting and full rerouting setups

for the respective frameworks show similar performance. While the distributed

controller performs the least; our In-House framework significantly outperforms

the centralized and distributed implementations.

2.6 Summary

In this work, we have proposed design and implementation of In-House Controller

under OpenFlow specification. With three different applications, namely, learning

switch application, video rerouting application, and infrastructure offloading

application; we have demonstrated the full functionality of the proposed framework.

The prowess of our implementation is extensively studied by comparing our the

performance with the traditional centralized SDN framework and the distributed

controllers framework. We believe this work provides novel research direction to

35

the SDN community that looks for a scalable and flexible solution closer to the

datapath.

36

Chapter 3

A Networking Application Docking/Un-Docking

Framework

Docker framework obtained tremendous success in recent years. Its context

container based implementation provide an exclusive runtime environment for

applications, which make the applications portable and easy to deploy. However,

in our SDN context, in the In-House controller, or even most of other regular SDN

controllers, applications are static configured, applications can not be deployed

in controllers runtime. Containers are also not available in controllers to make

applications maintain its own context. Therefore, in this work, we propose the SDN

Docker. We have the following design goals for our framework implementation:

I. Reduce Controller Overhead: To provide a framework to support controller

applications runnable inside network switch.

II. Application Docking Capability: Without restarting the switch, the frame-

work should support installable platform for new applications in the run-time.

III. Packet On-Demand Application: The incoming packet (of a flow) should

decide on the kind of application that needs to be installed and serviced.

IV. Concurrent Application Support: The framework should support multiple

applications to run concurrently in the form of threads inside the switch.

Therefore, different applications need to be installed, uninstalled, and man-

aged during the system runtime.

37

In OpenFlow specification, packets match no flow entries will be sent to a

controller for flow management operation. In actual implementation, controller

use applications to serve received packets. Network applications in SDN Controller

follow a certain procedure to process incoming OpenFlow messages. Controller

application listening OpenFlow channel to receive messages. Once a message

arrives, it parses the packet from header to payload to extract information from

it. With this information, the program insert does controller operations (flow

management in switches, packet forwarding etc.). Other listeners receiving events

in the network like nodes join or leave the network, link status, and statistics in

the network.

3.1 Contributions In This Work

In this section, we introduce two implementations of SDN application Dock-

ing/Undocking mechanism in the context of OpenFlow its data-plane implementa-

tion we introduced above, the Pantou and Open vSwitch. We also will discuss its

architectural implementation in detail. We developed an SDN-based auto-docker

framework (built on switch embedded controller paradigm) that automatically

identifies, and docks/undocks applications without end-user intervention. We

believe such an implementation that manages an applications ecosystem and also

effectively handles storage, computing, and networking resources of the switch

would greatly benefit the research community. The proposed framework uses a

remote common-pool for storing applications; and the required switches would

38

contact the remote docker-manager (an entity that maintains the common pool

applications repository) for the specific-version of binary image related to the

target switch hardware, for installation. In this manner, our framework would

enable network engineers to autonomously manage applications and its future

revisions. The contributions of this work are as follows:

• A novel SDN auto-docker framework is proposed and implemented. The

working prototype is developed using off-the-shelf network switches.

• An extensive evaluation study is performed to investigate the time taken

by individual stages involved in docking and undocking of two applications,

namely MQTT-based IoT application, and DTN application.

3.2 Inside In-House Controller Application Docking/Un-

Docking Scheme

Inside In-House controller application docking/un-docking framework (Inside SDn

Docker Framework) defined as an extension of the In-House controller. It provides

an application docking mechanism during the runtime of In-House controller. One

application management module is deployed in In-House controller to manage

the life cycle of SDN applications within. This solution prevent the restart of

controller software when a new application deployed in the framework, especially

when this restart is costly in SDN data plane.

39

Figure 3.1: Inside SDN Docker Architecture

3.2.1 Inside SDN Docker Framework

Fig. 3.1 shows the conceptual architecture of an SDN docker switch integrated to

the Internet cloud. Subject to the limited resources and the embedded network

switch hardware (running OpenWRT); we exploit the networking capability of the

switch to be connected an external resource for one-time application installation.

Unlike the forwarding rules entry made by the typical SDN controller; this

framework installs a full fledged application into the switch hardware. Therefore,

the switch runs the application in a standalone fashion processing packets within

the data-plane.

The docker framework stacks on the regular SDN OpenFlow implementation;

creating a platform for multiple applications docking capabilities. The docker

framework accesses the end-users packets and allows incoming packets application

40

Figure 3.2: Inside SDN Docker Framework and Components

requests to the Internet cloud. The remote server parses the packets content for

its application requirement. Subsequently, based on the network switch hardware

configuration along the packets path to the destination; the corresponding applica-

tion images are installed on the respective switches. This novel paradigm provides

more flexibility and manageability to the SDN framework while remaining close

to the data-path. Inspired the conceptual framework; we provide our actual

testbed implementation architecture in Fig. 3.2 The sequence of events of the

implemented framework is given below:

End-User Application Request Processing: The end-user (a host PC)

sends a packet to the demanded application encoded in the packet-payload to the

41

SDN docker switch. The docker framework forwards this request to the remote

server (a local PC). We believe that in future, this framework without loss of

generality can be incrementally extended with Internet connectivity to a server in

the Internet cloud.

Pool of Applications: The server maintains a collection of applications in

the XML format. This is a user maintained repository of applications in XML.

The server processes the necessary application using the XML parser and creates

a binary image appropriately configured and installable on the specific network

switch.

Binary Image Installation: The docker framework accesses the incoming

applications binary image and installs as a runnable thread in the switch. In this

work, we have considered three different applications (namely, learning switch,

video rerouting, and infrastructure offloading).

Acknowledge the End-User: Upon successful installation, the docker frame-

work informs both the remote application provider and the end-user with appro-

priate acknowledgments.

Flow Initiation: Upon receipt of the successful application installation, the

end-user initiates the traffic flow, that is processed by the switches within their

data plane. Thanks to the docker framework, the application is integrated within

the network switches.

42

3.2.2 Docker Application Processing Framework

In this section, we describe the application processing scheme implemented in the

framework. To dynamically docking/undocking application in different network

devices with different operating systems, we need to convert the application logic

to a binary image which could be executed by the framework.

3.2.3 Application Binary Organization

The binary image send to switch has three parts: message, variable and command

sequence.

• Variables defined reserved memory spaces in application images. Each

variable has an ID which will be applied in messages and command entries

for identification. Each variable also has a length to indicate the space taken

by the variable. The variable could be a number of a certain proto data

type, like unsigned int, whose length could be obtained by ”sizeof” function.

It also could be a message with a certain data structure, the length of the

variable is the total length of the message. The variable value could assign

to a certain field in a message or other variables. Variables are compiled

separately from the scripts.

• Messages are generated from all the .mes XML files. The .mes files are

defined according to protocol definitions. Each protocol has its own header

structure, so different structure may apply to different protocol message.

The user also could define payload structure to parsing the content of the

43

Figure 3.3: Inside SDN Docker Binary Image Organization

44

packet. Message contents may have two sources, user defined message and

received from a framework. In user defined message, the message is defined

in a mes file with structure and values. It will be compiled into message

part in the binary file. Content received from framework are obtained

from physical packets received by the In-House controller and dispatched

by the event scheduler. Each message may have multiple variables. These

variables could be located by an offset and length in a message space. When

a message received by the framework, the receive function automatically

fills the variable with a certain content part in the message which located

by offset and length. The whole message also could be stored as a variable.

In the mes document, any field marked with a variable name instead of the

data value is a variable field. When a message is sent out, the message fields

defined as variables will be automatically filled with current values in these

variables. The message is also compiled separately from the scripts.

• Atomic operations define all the operation could be done by the frame-

work. It works as bricks of applications so each application in the framework

is composed of atomic operations. Atomic operations can NOT dynamically

insert by compiled binary images. Add new atomic operation or extend

the functionality of a exist atomic operation need to re-compile the switch

application image and flash the switch to update in an offline way. All

atomic operations in the framework are defined in a functional style with

a uniform format (arguments and return values). each function mapped

45

to a unique ID statically. These IDs will be used in script XML parsing

to indicate which operation will be used. So the remote PC who is taking

charge of parsing XML document may have the same mapping of function

names and IDs. There are one special atomic operations called ”goto” in

the framework. This operation does not have to map on remote server, but

could be parsed from logical control operations like ”if” ”else” and ”for”.

Atomic operations have uniformed argument style. Each atomic operation

may have different numbers of arguments but each of the argument has

exactly same structure, a type indicator, and a value field. For each argument,

it could be one type out of three: value, variable and message. When a

message is a value type, the content of the argument is just the value data.

When it is variable, the content is the variable ID in the variable table.

When it is a message type, the content is the message ID in message table.

• Command sequences generated by parsing the script file on the remote

machine. It defines the logic flow of the application by link atomic operations

in a certain sequence. Each atomic operation has two pointers, true pointer,

and false pointer, to indicate which is the next atomic operation. For regular

atomic operations, it always uses the true pointer to point at next operation.

Unless errors or exceptions occur in atomic operation, the operation will

return with the false pointer to exit the program. For the ”goto” operation,

it may use the true pointer or false pointer. Take the loop logic, for example,

we use ”for” as a keyword in an XML document and attribute ”time” to

46

indicate the loop times. When it compiled to a ”goto” operation, the

operation will be attached at the end of the code segment of the loop. The

time number in the argument will decrease 1 every time when each loop is

finished and ”goto” operation was accessed. If the time argument is not

zero, it goes back to the beginning of the loop code segment with false

pointer, otherwise it goto the next operation out of the loop. ”if/else” logic

works in a similar way. ”goto” operations will attached at the beginning of

”if”, ”else”, or ”else if” code segment. When one of these ”goto” operation

matches the judgement condition, it will use true pointer which points

the next operation, otherwise, it uses false pointer to jump to next ”goto”

operation or the end of ”else” code segment to jump out. (please find the

demonstration of loop and if/else logic in attached graph).

3.2.4 Performance Study of Inside SDN Docker

We performed a series of tests to evaluate the flow management rate (through-

put) for different types of controller implementations. We have evaluated the

throughput test for two settings: (i) proactive management, and (ii) reactive

management. We performed the experiments on both testbed and Mininet emu-

lation environment. For the testbed, we have considered one LINKSYS switch,

connected to a Host PC and a remote controller PC. For the Mininet environment,

we have used one local controller and Open vSwitch on the same physical PC, and

the connection between the controller and switch is enabled through localhost.

Since we considered a single switch network; we did not consider the distributed

47

controllers framework in our comparative study; due to its equivalence to a typical

centralized system.

Fig. 3.4 shows the flow-rate performance for a reactive management setting.

In this reactive scheme, the controller inserts flow tables in a reactive manner. In

other words, the controller reacts to every new packet received by inserting a flow-

rule according to the header information of the packet. After inserting the flow

entry, the controller immediately sends a reply to the source host of the incoming

packet. The time interval of these two packets is recorded as the flow-entry

management time. Due to the receiving buffer limitation on the physical switch;

packets may be lost; as a consequence, we have also measured the processing rate

in this experiment.

Figure 3.4: Performance results of

Reactive implementation of Cen-

tralized framework and our pro-

posed Switch-inhouse controller

framework

Figure 3.5: Performance results of

Proactive implementation of Cen-

tralized framework and our pro-

posed Switch-inhouse controller

framework

48

As shown in Fig. 3.4, our proposed In-House framework outperforms the cen-

tralized framework by 400%. The emulation experiments on Mininet environments

also show significant improvement of 20%. From Table. 2.1, it is evident that our

In-House controller framework processes significantly more flows.

Fig. 3.5 shows the similar evaluation for the respective proactive configuration.

In the proactive scheme, the controller inserts flow tables in a proactive manner.

The controller triggered by an incoming dummy packet. After the receipt of

the packet, the controller (in both centralized and In-House frameworks) inserts

flow-rules in a continuous manner. In our experiments, we have to insert 400

flow-entries each time. After each flow insertion, the controller replies with another

dummy packet to the source host (of the incoming packet). The time interval

between these two packets are recorded as the total time consumption of the 400

flow management operations.

As shown in Fig. 5, our proposed In-House framework, on the real testbed, out-

performs the centralized implementation with 190% improvement. Subsequently,

the performance on emulation shows a significant 3000% improvement for our

In-House framework.

3.3 Outside In-House Controller Application Docking/Un-

Docking Scheme [71]

Inside SDN Docker works as a compiler which converts network application script

logic into a binary format to load and execute in data-plane. Although it obtains

49

the speed in packet processing, the limitations are obvious. Atomic actions limited

operations the frameworks can do. Any operation not on the list of atomic

actions is not available for users. Real network applications, like application layer

protocols, are much more complicated than the script Inside SDN Docker could

express. Practically, for any SDN controller, host an upper layer protocol or

any network application (like an HTTP server) as an SDN controller application

is difficult. To solve these issue, we propose the Outside SDN Docker, which

still host application in network devices, but out of the data plane of OpenFlow

components.

3.3.1 Virtualized Connection in Linux

Thanks to the virtualization technologies in Linux based devices, we have the

possibility to host network applications in a virtualized container and its associated

context. Virtual Ethernet (veth) [45] is a kernel module supported most Linux

based OS including OpenWRT. It creates a pair of Ethernet devices which are

interconnected by a virtualized Ethernet connection. Virtual bridge created by

Open vSwitch is another key component in this setup. The OvS virtual bridge

contains SDN In-House controller, where we host controller functionalities for the

Outside SDN Docker. Another role of the virtual bridge is bridging the virtual

Ethernet connection to the real world, the physical Ethernet NIC on devices.

Fig. 3.6 demonstrate how a network application is routed to peer nodes outside

of the switch. The application is hosted in a Linux container (LXC) which is also

a virtualized environment. LXC can keep the context of the application while

50

Figure 3.6: Virtualized Network Application Routing to A Peer Node

migration happens in the network.

3.3.2 Outside SDN Docker Framework

With the virtualization technologies we introduced above, we can propose the

Outside SDN Docker Framework. End-User Application Request Processing: The

end-user (a host PC) sends an application packet of application which can be

identified by SDN docker switch. Identification rules defined by SDN Docker

configuration file created by the network administrator. Once the packet is

identified, the docker framework forwards a request to the remote application

repository server (a local PC). The request contains the applications name and

current network node’s architecture information like hardware platform and

operating system version.

• Pool of Applications: As the switch platform is built on OpenWrt, the

(remote) server maintains a collection of applications built in OpenWrt for

different target machines, such as Atheros AR7xxx/AR9xxx. To save time,

applications are compiled apriori (as binary images) for the switches to

download. Switches are pre-configured to connect to the remote server, via

51

a regular Internet connection.

• Binary Image Installation: In OpenWrt, applications are packaged in

ipk packages, which could be installed and removed by using opkg tools.

Each installed package can run as independent instances (also known as

processes) with different configurations. These processes life cycles are

managed by the Docker manager. For instance, in this work, we consider

MQTT broker and DTN as the two sample applications.

• Acknowledge the End-User: The docker manager will provide an ac-

knowledgment to remote file server after the file is successfully downloaded

and installed.

• Flow Initiation: Different from the Inside SDN Docker, for each applica-

tion, the docker manager creates a dedicated virtual Ethernet connection

to connect the application with the virtual switch. After successful virtual

connection setup and subsequent notification from the docker-manager, the

In-House controller will manage packet forwarding between applications

and physical ports by matching related fields in packet headers. However,

initially, when no flow entries are configured, the packets by default are

forwarded to the docker manager.

• Flow Tear-down: When the In-House controller receives a tear-down

message either in a certain form like TCP FIN packet or application-specific

messages like MQTT DISCONNECT (in IoT); the controller forwards a

copy of this packet to the docker-manager. Subsequent to the receipt of

52

Figure 3.7: An SDN docker framework implementation connected to

a local PC server. Blue ports indicate virtual ports and Green ports

indicate physical ports

the packet, the docker-manager will parse the packet, identifies the related

application, locates the respective virtual Ethernet connection for that

application, and subsequently removes the connection and ports from Open

vSwitch. Forwarding entries in the In-House controller will also be removed

after the session is closed.

53

3.3.3 Application Docking Procedure

In this section, we discuss in detail the functioning of the proposed docker

application framework. As shown in Fig. 3.7, the steps given below describe the

sequence of procedure from clients request until its first response:

• 1. The client (end-host) application sends its connection request to the

network. The packet will be matched by pre-configured generic flow matches

in the virtual switch, and subsequently received by the In-House controller.

• 2. The In-House controller looks-up its own managed flow entries, and if

there is a matching entry for the received packet, the packet will be forwarded

to the virtual port associated with the application instance. Otherwise, the

packet will be forwarded to the docker-manager. The In-House controller

will keep a record of original packet header fields and ingress port numbers

that are used at a later point in time.

• 3. The docker-manager upon receiving the packet will parse the respective

header and payload fields. With the help of configuration file of the docker-

manager, it will recognize the application to which the packet belongs. If

the specific application is not installed in the switch, the remote server

is contacted, by passing application-name and the target platform of the

switch.

• 4. As a response, the remote docker server sends the corresponding appli-

cation (binary image) installation packet to the switch. Subsequently, the

54

docker-manager embedded in switch would install, run, and connect the

application with a created virtual port.

• 5. The docker-manager sets original packets IP-TTL field in the IP header

to egress virtual port number and sends it back to the In-House controller

in the virtual switch.

• 6. The In-House controller reads the IP-TTL field of the received packet

as egress port number and sends it to the corresponding egress port with

the recovered IP-TTL field. Meanwhile, the In-House controller builds flow

entries within itself by packet header fields, which will forward the packet

between the newly created virtual Ethernet connection, and the original

ingress port.

• 7. The application bound to the newly created virtual Ethernet the connec-

tion will receive the request packet, processes it, and sends an appropriate

response packet back to the In-House controller.

• 8. The response packet will have reverse header addresses to request packet

and will be matched by the reverse flow entry created in Step 2. The

response will be forwarded to the physical port which is connected to the

end-host. Then the subsequent packets of the session will use flow entries

in the In-House controller to forward between application in switch and

end-host.

55

3.3.4 Application UnDocking Procedure

In this section, we present the procedure for undocking application without the user

intervention. For each running application, the undocking-part of the framework

requires a specific packet to notify that the current session is closing. For our

experiments, we have used the TCPs last FIN ACK packet (if the application

uses TCP transport) as an identification of the termination signal. Alternatively,

the application-level packets can be used identify a tear-down session, such as

MQTTs DISCONNECT packet. Upon identification of such packets, the In-House

controller initiates the tear-down process as given below:

• 1. The In-House controller will remove all the related flow entries for the

specific session. After which, the packet will be forwarded to the docker-

manager to finish the teardown procedure (TCP tear-down in our case). If

there is no session for that specific application, the In-House the controller

will also send a copy of the packet to the docker-manager.

• 2. The docker-manager use the information from the headers of the packet

looks up its record, and locates the virtual Ethernet ports created for this

application. Upon locating, the virtual port will be removed from Open

vSwitch and the virtual connection is teared-down.

• 3. Subsequently, the docker-manager will also terminate the application

instance which was running on the virtual port. To effectively utilize the

storage space in the switch, if the program has no instances currently running

after tear-down, the program will be uninstalled from the system.

56

3.3.5 Switch In-House Controller Module

The core functionality of the platform is built using two essential components

namely, the Open vSwitch and the docker manager application. The Open vSwitch

helps create virtual bridges for individual applications, and also comprises of an In-

House controller to enable packet forwarding decision making and implementation.

The docker manager application is implemented in the user-space of the OpenWrt

platform which is also connected to the Open vSwitch through virtual Ethernet

connection.

The In-House controller, embedded inside the Open vSwitch supports the typ-

ical SDN controller features such as packet creation, modification, and forwarding,

header and payload parsing, in-band control message creation and sending among

neighbor nodes. The end-to-end path selection is arbitrated by the In-House

controller with the help of learning switch application. Unlike traditional SDN

controller that modifies flow-tables in the switches, the modified controller in

the proposed framework helps users to create and load different applications

dynamically to Open vSwitch bridges. Multiple program instances can also be

run simultaneously without interfering each other.

For packets that have no matching flow-entries in the In-House the controller

will be forwarded by default to the docker manager process. As mentioned in

the configuration file, the docker manager will process the packet and performs

certain configurations settings for the corresponding application that the packet

belongs. If the application is not installed in the switch, the remote server is

57

Figure 3.8: Testbed implementation of the proposed framework. Blue

ports indicate virtual ports and Green ports indicate physical ports

contacted to get the corresponding application (in the form of compiled binary

image), install the application, and run it by binding the newly created virtual

Ethernet interface.

It is worthwhile to note that, the aforementioned two components do not

impact the original SDN/Openflow architecture. Hence all the Openflow features

in Open vSwitch bridge can co-exist with the proposed framework.

3.3.6 Testbed Implementation And Performance Study

For our implementation, we use Microtik Switch running on OpenWrt operating

system. Two applications considered are Internet of Things’ MQTT protocol and

DTN. Upon docking, both these applications are embedded within the switch, as

58

per the proposed framework. Subsequently, undocked (uninstalled) from the switch

as per the need. The following steps provide the functioning of the framework

from the context of MQTT application. The DTN application and its clients

function in a similar manner. Fig. 3.8 shows the block diagram of our testbed

implementation.

• As the MQTT application typically functions on top of TCP transport,

upon the MQTT client connected with the switch, the MQTT TCP SYN

packet is the first packet received at the physical port-3.

• By default forwarding configuration, the packet is sent to the docker manager

via the virtual port-0 (i:e:; veth0).

• The docker manager can parse the header and the payload of the received

packet to identify the application it needs for processing. In our implementa-

tion, we parse the header and match the port number dedicated for MQTT

in order to identify the MQTT application. The docker manager upon

identifying the application will request the remote server for downloading

the MQTT package for installation.

• The docker manager creates veth-1 with 2 virtual ports. One of the virtual

ports is bound to the Open vSwitch. Subsequently, configures another

virtual port by reading the destination field of the received packets IP

header.

• The docker manager sends the packet back to Open vSwitch with the newly

59

created veth virtual port number (in the Open Vswitch) being embedded in

the ip-ttl field.

• Open vSwitch receives the packet, forwards it to the appropriate egress port

with the recovered ip-ttl field. Prior to this event, the In-House controller

will create entries for bi-directional packet forwarding between recorded

ingress port and fetched egress port from the feedback packets ip-ttl field.

Fig. , shows time taken to compute different steps during docking respective

MQTT and DTN applications. Virtual configuration phase includes the virtual

switch and virtual Ethernet configuration including the work done to perform the

following tasks:

• Packet forwarding to the docker manager.

• Parsing packet header, and extract address fields such as IP and MAC.

• reate virtual Ethernet connections and virtual ports on the virtual switch.

• Configure virtual ports (such as IP address, and ARP).

• Set-up new flow-entries in the In-House controller.

The application download is performed on a connection with the Server, with an

average RTT of 0.978ms. Application installation phase includes both installation

and running. From Fig. 3.9, it is obvious that DTN consumed substantially more

time than MQTT, considering the light-weight nature of the later IoT application.

On the other hand, since DTN deals with physical node mobility in the order of

60

Figure 3.9: Time taken for individ-

ual steps involved in application

docking

Figure 3.10: Time taken for indi-

vidual steps involved in applica-

tion undocking

seconds, typical contact time of a DTN node is expected to persist in the units of

a few seconds, and such scenarios can greatly benefit from our proposed docking

framework. It also worth to note that the experiment results are obtained from

off-the-shelf low computing power switches, we expect an improved performance in

a high-end switching hardware. Subsequent to application docking, both MQTT

and DTN clients in future contacts had a fast response within 0:002s.

Fig. 3.10 shows the time consumption at different stages of application

undocking procedure for the MQTT protocol. For the DTN nodes, by their design,

they are tolerant to intermittent connectivity, therefore, they can be torn down at

any instant of time. Therefore, we did not consider the tear-down times for DTN

applications.

61

3.4 Summary

In this chapter, we have proposed the novel SDN docker Inside OpenFlow Dat-

aplane and Outside of OpenFlow Dataplane framework implementations and

presented the architectural design. We verify the improvement of throughput in

moving the controller logic into OpenFlow data plane in the Inside SDN Docker

solution. We also obtained the performance of application docking in Outside

SDN Docker and docking/undocking time consumption.

In future, we plan to extend this framework to support docker capability using

the Internet cloud. In this manner, a versatile SDN docking eco-system can be

created for efficient application management and improved performance. We

also use virtual Linux-based containers such as LXC to manage each application;

therefore the state of the running application can be managed and possibly porting

between physical switches can be investigated.

62

Chapter 4

Flow Aggregation in Internet of Things

Internet-of-Things (IoT) find practical use in a broad spectrum of applications.

With a potential increase in the number of IoT devices, the demand for big-data

analytics becomes a practical necessity; however, the performance of such analytics

depends on the pace of delivery offered by the underlying network transport.

Moreover, certain critical analytics such as detecting hazardous events require

a quick response. Critical analytics near the data source enables timely actions

to performed in controlling the hazard. The right place to utilize computational

resources for performing analytics would be at the edge switches. Utilizing the

edge switches resources and services for the end-users is called edge computing or

Fog computing [49]. In a metamorphic perspective, Fog is closer than the Cloud.

Hence the concept of computing at the edge switches (closer to the source of data

generation) is termed as Fog Computing.

4.1 MQTT Flow Aggregation in SDN Docker

In this work, we propose and implement Fog Computing architecture at the edge

switches using SDN. SDN enables programmability to the network switches, and

also provides a centralized control-plane controller to enable routing decisions

by appropriately utilizing available network resources. While integration of SDN

and IoT has been an active field of research in the recent past [50], to the best of

our knowledge, exploiting SDN to perform Fog computing has not been explored

63

yet. Being an application docking/undocking framework, as we introduced, SDN

docker is an ideal platform to host MQTT applications in an edge node. In this

manner, edge nodes behave as a discrete functional device that extends services

and resources to the end-users. However, without loss of generality, the SDN

controller can be used external to the switch (as in typical SDN environment) or

can be hosted in SDN docker; based on individual needs.

We chose Message Queuing Telemetry Transport (MQTT) [5] as the candidate

IoT protocol for our implementation. As we introduce, MQTT broker is the main

component for mediating messages between publishers and subscribers. In other

words, both subscribers and publishers exchange messages through the broker

node. IoT applications envisioned to connect small battery-cell powered devices

to the Internet, are typical of a low-form factor that generates/publish data in a

sporadic manner. However, potential large-scale deployments of such IoTs create

a huge aggregated traffic to the Broker nodes that causes congestion and thereby

reduced throughput (messages per second) in the network.

SDN Docker enables programmability in the network stacks thereby offering

flexibility and manageability to the network designers. To adapt MQTT-IoT

applications to large-scale operations, we host an MQTT proxy broker in SDN

Docker to play the role of aggregating independent MQTT clients traffic for

effective transport in the edge nodes.

As an IoT application protocol, MQTT runs over TCP to ensure a reliable

delivery. Depends on the size of data segments to delivery, the traffic pattern in

MQTT could be classified into long flows and short flows. Long flows can be found

64

in large size data segment delivery which needs a continuous TCP connection

with saturated traffic flow. Short flows happen in small pieces data delivery which

only has one or two TCP frame in a single connection. In this cases, control plane

messages like TCP handshake consume even more network resources than data

plane packets.

4.1.1 Contributions in This Work

In this work, we will analyze these two types of traffic flows aggregation in

edge node separately. For short flows, we develop and implement an SDN-based

proxy broker to play the role of aggregating independent MQTT clients traffic

for effective transport in the network. We also mathematically investigate the

improved performance and study the throughputs deviation from mean [51]; with

the help of large-deviations theory. For long flows, By highlighting the fact that

the key network delay is caused by the unfairness in the delivery throughput of IoT

clients, we propose an augmented transport-layer framework to achieve fairness

in the fog network system. By achieving fairness in the system, we improve the

delivery performance of the proposed network.

4.2 Short Flow Aggregation in MQTT Protocol [70]

The connections between publishers, broker, subscribers are enabled using standard

transport protocols such as TCP and UDP. As the IoT devices (MQTT-publishers)

are highly resource constrained devices, they establish a connection (say, using

TCP) with the broker whenever a new data needs to be published. On the other

65

Figure 4.1: MQTT Publisher-Broker Architecture

hand, the MQTT subscribers typically high computing devices (such as PCs)

will maintain connections with the broker all the time to receive topic-based

publish-messages. The ideal place to perform analytics is the MQTT-broker,

which is a central repository of all the published data. We henceforth focus our

attention on the MQTT-publishers and MQTT-brokers throughput in this work,

as shown in Fig. 4.1.

4.2.1 System Design and Implementation of MQTT Short Flow Ag-

gregation

For the MQTT network considered in Fig. 4.1, we enable the functionality of the

broker node in the edge switch (i:e:; the first-mile switch connecting the MQTT

publishers). This edge-switch with the broker functionality is henceforth called

the Fog node. The Fog node architecture is shown in Fig. 4.2. In order to enable

the Fog node to behave as an independent computing node, we use SDN Docker

66

Figure 4.2: Proxy Broker Architecture in Aggregated Node

to deploy proxy broker within the switch hardware. The Fog node serves the

following purposes:

• Behaves as actual broker for MQTT clients.

• Serves as a platform for performing analytics at the Fog node.

• Needs to communicate with the end-host broker server for storage and

exhaustive deferred analysis. It should be noted, that an external communi-

cation from a Fog node serves multiple purposes such as connecting with

another Fog node; in a distributed brokers environment.

The MQTT publish-messages arrive at the physical port of the Fog (switch)

node. The switch integrated controller acts as a single proxy-publisher will

maintain a TCP connection with the remote end-host broker, and publishes all

of the received messages from the real MQTT publisher clients. To respond to

the MQTT publishers the Fog node runs the entire MQTT broker integrated

67

within the switch; which is communicated to the SDN controller through virtual-

ports (as shown in Fig. 4.2). Before sending the publish-messages, the MQTT

publisher establishes application-layer connections with the Broker. To this end,

the publisher will send MQTT Connect message to the broker (Fog node) and

upon receiving the Connect-ACK message the actual publish-message is sent.

The Open vSwitch (OvS) communicates to external hosts through physical

ports of the switch, and internally with the MQTT broker through a virtual port.

The SDN controller forwards the MQTT messages between (external) MQTT

clients and switch-integrated MQTT broker. In order to send the received MQTT

messages from Fog-broker node to the remote broker, we created a separate thread

of MQTT publisher running inside the embedded broker that maintains TCP

connection with the remote end-host broker.

The SDN controller can serve as a platform for performing analytics by parsing

the MQTT payload contents to retrieve topic and associated data value. For

instance, a threshold-based analytics can be performed as follows: The data on the

topic temperature can be detected for beyond safe-limit values. Other analytics

include statistical analysis of the received data. We plan to incorporate such

features in our future implementations.

4.2.2 Testbed Setup of MQTT Short Flow Aggregation

Our testbed environment consists of 2 PCs, and 4 switches (namely, the Mikrotik

RB2011IAUS). The PCs run on Ubuntu OS 12.04, the switches run on Open-

Wrt 15.05. The Fog node; containing integrated SDN controller is run within a

68

MQTT-Broker server

OvS

MQTT

Broker

2

1

10

IoT Virtual Hosts

Host PC

Physical Switch 1Physical Switch 2Physical Switch 3Physical Switch 4

Fig. 5. MQTT Network with Fog Node Testbed Setup. Each element inside ‘Host PC’ is run as virtual machine. ‘MQTT-Broker’ and ‘OvS’
represent the same architecture as shown in Fig. 2, but running on Ubuntu OS.

2 4 6 8 10
0

500

1,000

1,500

Loss probability (in %)

T
hr

ou
gh

pu
t

(i
n

m
es

sa
ge

s
pe

r
se

co
nd

)

Analytical throughput
Fog node TCP clients
Fog node UDP clients

Fig. 6. Throughput performance for respective UDP and TCP clients,
with Fog node computing

reached up to 250 messages per second (which is
lower than the Fog nodes throughput performance.
Subsequently, the throughput was close to 0, due to
the failure of (large number of) TCP handshaking
processes attempting to establish connections with
the broker.

VII. CONCLUSION

In this paper, we have proposed an SDN-based
Fog computing architecture and developed its work-
ing prototype. Subsequently, we have mathemat-
ically studied the throughput offered by the Fog
node, and our experimental results tend to follow
roughly in-line with the analysis. It is also demon-
strated that the Fog node delivers at a significantly

higher throughput, as compared with the respective
traditional client and end-host setup. In future, we
plan to study the performance of the considered set
up, in the presence of wireless IoTs.

REFERENCES

[1] S. Yi, C. Li, and Q. Li, “A survey of Fog computing: Concepts,
applications and issues,” in Mobidata ’15: Proceedings of
Workshop on Mobile Big Data, 2015, pp. 37–42.

[2] K. Sood, S. Yu, and Y. Xiang, “Software defined wireless
networking opportunities and challenges for Internet of things:
A review,” IEEE Internet of Things Journal, vol. PP, no. 99,
pp. 1–1, 2015.

[3] “MQTT - Message Queuing Telemetry Transport,”
http://mqtt.org.

[4] P. Loiseau, P. Gonalves, J. Barral, and P. V.-B. Primet, “Mod-
eling TCP throughput: An elaborated large-deviations-based
model and its empirical validation,” Performance Evaluation,
vol. 67, no. 11, pp. 1030–1043, 2010.

[5] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif,
“Publish/subscribe-enabled software defined networking for ef-
ficient and scalable IoT communications,” IEEE Communica-
tions Magazine, IEEE, vol. 53, no. 9, pp. 48–54, 2015.

[6] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang,
“A hierarchical distributed fog computing architecture for big
data analysis in smart cities,” in ASE BD&SI ’15: Proceedings
of the ASE BigData & Social Informatics, 2015, pp. 28:1–28:6.

[7] S. Lee, H. Kim, D.-K. Hong, and H. Ju, “Correlation analysis
of MQTT loss and delay according to qos level,” in ICOIN ’13:
Proceedings of the International Conference on Information
Networking, 2013, pp. 714–717.

[8] A. Dembo and O. Zeitouni, Large Deviations Techniques and
Applications. Jones and Bartlett, Boston, 1993.

[9] J. Barral and P. Loiseau, “Large deviations for the local
fluctuations of random walks,” Stochastic Processes and their
Applications, vol. 121, no. 10, pp. 2272–2302, 2011.

[10] “Mosquitto - An open source MQTT broker,”
http://mosquitto.org.

Figure 4.3: MQTT Network with Fog Node Testbed Setup. Each

element inside ‘Host PC’ is run as virtual machine. ‘MQTT-Broker’

and ‘OvS’ represent the same architecture as shown in Fig. 4.2, but

running on Ubuntu OS.

virtual switch environment, namely Open vSwitch (OvS) v10.0.

For scalability reasons, and from high computational resource perspective,

we ran IoT devices (MQTT publishers) as a set of virtual hosts, and the Fog

node as virtual devices both deployed in a single physical PC. The testbed

environment is shown in Fig. 4.3. In our experiments, we ran 10 Mininet virtual

hosts as MQTT publishers, 1 MQTT broker (Mosquitto - an open-source broker

implementation [68]), and 1 virtual switch using OvS. However, without loss of

generality, our implementation can run on physical switches and real devices.

Our network consists of 4 physical switches in a line topology with a physical

MQTT broker run by an end-host PC. Each of the physical switches 1 to 4 run a

respective instance of OvS that manages two physical ports, namely the input and

output ports. We considered the third switch, namely ‘Physical Switch 3 ’ as the

bottle neck by controlling delay, bandwidth, and packet loss probability; through

emulation using Network Emulator (NETEM). The internal Fog node Broker

69

receives and processes all of the publisher’s request- and data messages; and send

appropriate feedback. The integrated controller apart from forwarding messages

can also be used to perform In-House analytics (by providing features for parsing

MQTT message’s payload). For analytical tractability, we used Bernoulli loss

model (with loss probability p) in our experiments. Therefore the loss probability

function Pr(S) is given by

Pr(S) = 1− (1− p)S. (4.1)

Fig. 4.4, shows the throughput results of respective UDP and TCP MQTT clients.

For both the cases, the throughput follows the trend roughly close to the analytical

throughput. In contrast, the throughput for the same experiments without Fog

node is zero; because the input MQTT traffic is significantly higher as it could not

compete to establish connections with a physical end-host broker. Therefore, it is

clear that for large scale IoTs the Fog node is essential for transportation. For the

traditional setup (without Fog node), with native MQTT clients connected to the

remote end-host broker, for similar input traffic configurations, the connections

were not stable. For initial few moments of time, the throughput reached up to 250

messages per second (which is lower than the Fog nodes throughput performance.

Subsequently, the throughput was close to 0, due to the failure of (large number

of) TCP handshaking processes attempting to establish connections with the

broker.

70

MQTT-Broker server

OvS

MQTT

Broker

2

1

10

IoT Virtual Hosts

Host PC

Physical Switch 1Physical Switch 2Physical Switch 3Physical Switch 4

Fig. 5. MQTT Network with Fog Node Testbed Setup. Each element inside ‘Host PC’ is run as virtual machine. ‘MQTT-Broker’ and ‘OvS’
represent the same architecture as shown in Fig. 2, but running on Ubuntu OS.

2 4 6 8 10
0

500

1,000

1,500

Loss probability (in %)

T
hr

ou
gh

pu
t

(i
n

m
es

sa
ge

s
pe

r
se

co
nd

)

Analytical throughput
Fog node TCP clients
Fog node UDP clients

Fig. 6. Throughput performance for respective UDP and TCP clients,
with Fog node computing

reached up to 250 messages per second (which is
lower than the Fog nodes throughput performance.
Subsequently, the throughput was close to 0, due to
the failure of (large number of) TCP handshaking
processes attempting to establish connections with
the broker.

VII. CONCLUSION

In this paper, we have proposed an SDN-based
Fog computing architecture and developed its work-
ing prototype. Subsequently, we have mathemat-
ically studied the throughput offered by the Fog
node, and our experimental results tend to follow
roughly in-line with the analysis. It is also demon-
strated that the Fog node delivers at a significantly

higher throughput, as compared with the respective
traditional client and end-host setup. In future, we
plan to study the performance of the considered set
up, in the presence of wireless IoTs.

REFERENCES

[1] S. Yi, C. Li, and Q. Li, “A survey of Fog computing: Concepts,
applications and issues,” in Mobidata ’15: Proceedings of
Workshop on Mobile Big Data, 2015, pp. 37–42.

[2] K. Sood, S. Yu, and Y. Xiang, “Software defined wireless
networking opportunities and challenges for Internet of things:
A review,” IEEE Internet of Things Journal, vol. PP, no. 99,
pp. 1–1, 2015.

[3] “MQTT - Message Queuing Telemetry Transport,”
http://mqtt.org.

[4] P. Loiseau, P. Gonalves, J. Barral, and P. V.-B. Primet, “Mod-
eling TCP throughput: An elaborated large-deviations-based
model and its empirical validation,” Performance Evaluation,
vol. 67, no. 11, pp. 1030–1043, 2010.

[5] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif,
“Publish/subscribe-enabled software defined networking for ef-
ficient and scalable IoT communications,” IEEE Communica-
tions Magazine, IEEE, vol. 53, no. 9, pp. 48–54, 2015.

[6] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang,
“A hierarchical distributed fog computing architecture for big
data analysis in smart cities,” in ASE BD&SI ’15: Proceedings
of the ASE BigData & Social Informatics, 2015, pp. 28:1–28:6.

[7] S. Lee, H. Kim, D.-K. Hong, and H. Ju, “Correlation analysis
of MQTT loss and delay according to qos level,” in ICOIN ’13:
Proceedings of the International Conference on Information
Networking, 2013, pp. 714–717.

[8] A. Dembo and O. Zeitouni, Large Deviations Techniques and
Applications. Jones and Bartlett, Boston, 1993.

[9] J. Barral and P. Loiseau, “Large deviations for the local
fluctuations of random walks,” Stochastic Processes and their
Applications, vol. 121, no. 10, pp. 2272–2302, 2011.

[10] “Mosquitto - An open source MQTT broker,”
http://mosquitto.org.

Figure 4.4: Throughput performance for respective UDP and TCP

clients, with Fog node computing

4.2.3 Delivery Throughput Analysis of Fog Node

The Fog node maintains a TCP connection with the end-host broker and transports

the IoT (MQTT-clients’) published messages that are stored for future exhaustive

analytics. We are now interested in throughput of the published messages sent

by the Fog node in the considered system. Our system model comprises of 10

end-hosts trying to establish 250 TCP sessions over wired connections to the edge

switch (i.e., Fog node). Subsequently, the Fog node uses TCP Reno connection to

connect with the end-host broker for transferring published messages. Each MQTT

publish message is considered to use the entire Maximum Segment Size (MSS) of

the underlying TCP transport. Therefore, the TCP throughput computation is

sufficient to get the throughput of MQTT messages. Without loss of generality,

71

the MQTT throughput is a function of TCP segments’ throughput.

IoTs are naturally deployed in large scale and the data generated is considered

to potentially fall in the regime of ‘Big data’. As a result of continuous data being

transported in the network, the TCP connection (at the Fog node) is long-lived

and therefore it is sufficient to analyze the throughput of this TCP in its congestion

avoidance phase. A long-lived TCP Reno’s congestion window (in packets) can

be modeled by Markov chain [75].

Let the congestion window S denotes a total number of S publish-messages

being transmitted by the Fog node. The possible congestion window values are

finite, and are given as E = {1, s, Smax}; where Smax is the maximum congestion

window at the sender (Fog) node. The transition matrix T of the Markov chain

representing the congestion window size (on each RTT instant) is denoted by [75]:

TS,S′ =

1−Pr(S), if S ′ = min(S + 1, Smax)

Pr(S), if S ′ = max(bS
2
c, 1)

0 otherwise.

(4.2)

where Pr(S) represents the loss-probability at the congestion window is of size S.

It is reasonable to assume that the Markov chain is irreducible and aperiodic. A

classical result on Large-Deviations Principle (LDP) states that an irreducible and

aperiodic Markov chain, with finite state space, holds a large deviations spectrum

as given below [75]:

lim
ε→0

lim
N→∞

1

N
log Pr(S

(N) ∈ [α− ε, α + ε]) = f(α) (4.3)

where, S
(N)

= 1
N

∑N
i=1 Si is the sample mean S congestion window size scale N ,

72

and f(α) is the large deviations spectrum as representing the Legendre-Fenchel

transform of the logarithmic moment generating function Λ, and is given below:

f(α) = inf
q∈R

(Λ(q)− αq)) (4.4)

For our context, the large-deviations spectrum f(α) can be computed from the

Markov chain transition matrix T. The authors in [77] have shown that the large

deviations spectrum can be obtained as the spectral radius’(ρ) logarithm of the

matrix R(q) = exp(qj)Tij. Hence,

f(α) = inf
q∈R

(log ρ(R(q))− αq) (4.5)

lim
ε→0

lim
n→∞

1

n
log

#{i ∈ {1, · · · , xn} : S
(n)

i ∈ [α− ε, α + ε]}
xn

= f(α) (4.6)

Eq. 4.6 can be equivalently represented as below:

#{i ∈ {1, · · · , xn} : S
(n)

i ∈ [α− ε, α + ε]}
xn

∼
1�n�N

enf(α) (4.7)

The probability function in Eq. 4.3 refers to fractions observed over large

number of independent realizations (i.e., multiple independent TCP flows). In

our study, we are dealing with a single TCP flow between the Fog node and the

end host.

Interestingly, the authors in [78] have shown an ergodic form of LDP to

hold on almost every realization. Considering a single realization of finite-size

(Si)i∈{1,s,N}, and its mean at scale n. In other words, the single realization of size

N is considered as parts of xn consecutive intervals of size n where xn = bN
n
c.

The mean over ith interval is given by, S
(n)

i = 1
n

∑i
y=(i−1)n+1 Sy. The result in

73

50 100 150

4

6

8

10

Average

Time in seconds

C
on

ge
st

io
n

w
in

do
w

(
in

se
gm

en
ts

)

Fig. 3. Congestion window size instantaneous vs average

2 4 6 8 10

2

4

6

8

10

12

Link-loss probability (in %)

Fo
g

no
de

th
ro

ug
hp

ut
(i

n
m

es
sa

ge
s/

R
T

T
)

S
(1)

at f(↵) = 0
Testbed throughput

Fig. 4. Average throughput for different loss probability

Therefore it is clear from Eq. 2 that the throughput
remains close to mean S

(1)
and the probability of

being in all other values would exponentially de-
grade. Figure 4 validates the throughput at Fog node
obtained from the testbed, against the analytical
throughput obtained satisfying f(↵) = 0 in Eq. 7.

VI. TESTBED SETUP

Our testbed environment consists of 2 PCs, and
4 switches (namely, the Mikrotik RB2011IAUS).
The PCs run on Ubuntu OS 12.04, the switches
run on OpenWrt 15.05. The Fog node; containing
integrated SDN controller is run within a virtual

switch environment, namely Open vSwitch (OvS)
v10.0.

For scalability reasons, and from high compu-
tational resource perspective, we ran IoT devices
(MQTT publishers) as a set of virtual hosts, and
the Fog node as virtual devices both deployed in
a single physical PC. The testbed environment is
shown in Fig. 5. In our experiments, we ran 10
mininet virtual hosts as MQTT publishers, 1 MQTT
broker (Mosquitto - an open-source broker imple-
mentation [10]), and 1 virtual switch using OvS.
However, without loss of generality, our implemen-
tation can run on physical switches and real devices.

Our network consists of 4 physical switches in a
line topology with a physical MQTT broker run by
an end-host PC. Each of the physical switches 1 to
4 run respective instance of OvS that manages two
physical ports, namely the input and output ports.
We considered the third switch, namely ‘Physical
Switch 3’ as the bottle neck by controlling delay,
bandwidth, and packet loss probability; through
emulation using Network Emulator (NETEM). The
internal Fog node Broker receives and processes all
of the publishers request- and data messages; and
send appropriate feedback. The integrated controller
apart from forwarding messages, can also be used
to perform in-house analytics (by providing features
for parsing MQTT message’s payload). For analyti-
cal tractability, we used Bernoulli loss model (with
loss probability p) in our experiments. Therefore the
loss probability function Pr(S) is given by

Pr(S) = 1 � (1 � p)S. (8)

Fig. 6, shows the throughput results of respective
UDP and TCP MQTT clients. For both the cases,
the throughput follows the trend roughly close to the
analytical throughput. In contrast, the throughput for
the same experiments without Fog node is zero; be-
cause the input MQTT traffic is significantly higher
as it could not compete to establish connections
with physical end-host broker. Therefore, it is clear
that, for large scale IoTs the Fog node is essential
for transportation. For the traditional setup (without
Fog node), with native MQTT clients connected to
the remote end-host broker, for similar input traf-
fic configurations, the connections were not stable.
For initial few moments of time, the throughput

Figure 4.5: Congestion window size instantaneous vs average

Eq. 4.6 holds for almost every (single) realization [75], for a large value of xn. An

essential property of large-deviations spectrum is that it is independent of scale n,

and satisfies the following:
if α = S

(∞)
then f(α) = 0, and

else if α 6= S
(∞)

then f(α) < 0.

(4.8)

Therefore it is clear from Eq. 4.7 that the throughput remains close to mean

S
(∞)

and the probability of being in all other values would exponentially degrade.

Figure 4.6 validates the throughput at Fog node obtained from the testbed, against

the analytical throughput obtained satisfying f(α) = 0 in Eq. 4.8.

4.2.4 Conclusion

In this work, we have proposed an SDN-based Fog computing architecture and

developed its working prototype. Subsequently, we have mathematically studied

74

50 100 150

4

6

8

10

Average

Time in seconds

C
on

ge
st

io
n

w
in

do
w

(
in

se
gm

en
ts

)

Fig. 3. Congestion window size instantaneous vs average

2 4 6 8 10

2

4

6

8

10

12

Link-loss probability (in %)

Fo
g

no
de

th
ro

ug
hp

ut
(i

n
m

es
sa

ge
s/

R
T

T
)

S
(1)

at f(↵) = 0
Testbed throughput

Fig. 4. Average throughput for different loss probability

Therefore it is clear from Eq. 2 that the throughput
remains close to mean S

(1)
and the probability of

being in all other values would exponentially de-
grade. Figure 4 validates the throughput at Fog node
obtained from the testbed, against the analytical
throughput obtained satisfying f(↵) = 0 in Eq. 7.

VI. TESTBED SETUP

Our testbed environment consists of 2 PCs, and
4 switches (namely, the Mikrotik RB2011IAUS).
The PCs run on Ubuntu OS 12.04, the switches
run on OpenWrt 15.05. The Fog node; containing
integrated SDN controller is run within a virtual

switch environment, namely Open vSwitch (OvS)
v10.0.

For scalability reasons, and from high compu-
tational resource perspective, we ran IoT devices
(MQTT publishers) as a set of virtual hosts, and
the Fog node as virtual devices both deployed in
a single physical PC. The testbed environment is
shown in Fig. 5. In our experiments, we ran 10
mininet virtual hosts as MQTT publishers, 1 MQTT
broker (Mosquitto - an open-source broker imple-
mentation [10]), and 1 virtual switch using OvS.
However, without loss of generality, our implemen-
tation can run on physical switches and real devices.

Our network consists of 4 physical switches in a
line topology with a physical MQTT broker run by
an end-host PC. Each of the physical switches 1 to
4 run respective instance of OvS that manages two
physical ports, namely the input and output ports.
We considered the third switch, namely ‘Physical
Switch 3’ as the bottle neck by controlling delay,
bandwidth, and packet loss probability; through
emulation using Network Emulator (NETEM). The
internal Fog node Broker receives and processes all
of the publishers request- and data messages; and
send appropriate feedback. The integrated controller
apart from forwarding messages, can also be used
to perform in-house analytics (by providing features
for parsing MQTT message’s payload). For analyti-
cal tractability, we used Bernoulli loss model (with
loss probability p) in our experiments. Therefore the
loss probability function Pr(S) is given by

Pr(S) = 1 � (1 � p)S. (8)

Fig. 6, shows the throughput results of respective
UDP and TCP MQTT clients. For both the cases,
the throughput follows the trend roughly close to the
analytical throughput. In contrast, the throughput for
the same experiments without Fog node is zero; be-
cause the input MQTT traffic is significantly higher
as it could not compete to establish connections
with physical end-host broker. Therefore, it is clear
that, for large scale IoTs the Fog node is essential
for transportation. For the traditional setup (without
Fog node), with native MQTT clients connected to
the remote end-host broker, for similar input traf-
fic configurations, the connections were not stable.
For initial few moments of time, the throughput

Figure 4.6: Average throughput for different loss probability

the throughput offered by the Fog node, and our experimental results tend to

follow roughly in-line with the analysis. It is also demonstrated that the Fog node

delivers at a significantly higher throughput, as compared with the respective

traditional client and end-host setup.

4.3 Long Flow Aggregation of MQTT Protocol[73]

Though fog networks offer better delivery performance than a traditional cloud-

based network, from the IoT analysis perspective, we show that a naive approach

of using IoT analytics atop a fog network is not sufficient enough to offer best

delivery results. Therefore, in this work, we focus on a critical issue of identifying

and eliminating the heterogeneous delays of different IoT flows, in the native fog

network setup. In our study, we found that the underlying network transport-layer

75

typically designed for connecting remote systems (as used in cloud-based network

models) would counteract in a fog network scenario, and cause unfairness among

different IoT clients. This causes a significant delay in performing IoT analytics,

at the fog node.

Having identified the key components that contribute to the delay for fog-

based network elements, we further propose an augmented transport layer based

framework that provides fairness among IoT clients. To the best of our knowledge,

for the first time, we address the fairness issues in the fog networks and propose

network solutions to enable the IoT clients to deliver improved and fair throughput

performance.

4.3.1 System Model of Long Flow Aggregation in SDN Docker

For our study, we use similar testbed setup to short flow aggregation study. We

use MQTT in long flow TCP connection with QoS 0 configuration to prevent

extra acknowledge transmission. Moreover, as the MQTT application functions

over TCP transport in the network, the reliability is ensured. The application-user

that needs the final computed data can participate (as a client) by running as

MQTT subscriber connected to the fog node (i:e:; MQTT broker). N number of

IoT clients connect to the fog node (at the edge of the network), as well as to the

cloud server over the network. The different IoT client flows are aggregated in the

fog node, before being transported to the remote cloud server. Without loss of

generality, we have included this cloud node (as subscriber node) to get the results

analyzed by the fog node. Though this is not an essential part of the network,

76

Figure 4.7: Fog nodes internal architecture in long flow aggregation

for the sake of completeness, we have used a generic network architecture that

also encourages the users to connect to the fog node through the networks such

as Internet.

Every MQTT publisher device that generates data will send it to the MQTT

broker device. Each transmitted message will be associated with a special MQTT

field known as topic. For instance, if the publisher publishes temperature data

to the broker, the possible topic say temperature can be associated with the

published data.

77

4.3.2 Framework Development of MQTT Long Flow Aggregation

Figure 4.7 shows the internal architecture of the fog node that we have used for

our study. We have used the IBMs Really Small Message Broker (RSMB), as the

light-weight MQTT server for the fog node. The IoT clients (MQTT publishers)

are wire connected to the fog nodes RSMB broker through an edge switch. The

Message Buffer and Calculator module will buffer the clients publish messages and

compute the analytics necessary for the application. Without loss of generality, we

have used averaging of received packets as the computing function. Each MQTT

published message from the clients is time indexed with a sequence number. We

do this by having a 4-bytes of MQTT application payload representing a sequence

number, and another 4- bytes containing the actual message. The fog node

performs the average computation by using these sequence numbers associated

with the messages.

Fig. 4.8 shows the experiment network structure used for evaluation. N =

9 hosts (i:e; IoT clients) are connected through bridge switches to the fog node

which is connected via an edge OpenFlow switch. The link to the edge switch

has the bottleneck bandwidth of 100Mbps. To have a seamless functionality, the

hosts are unaware of the internal fog nodes IP address, they typically assume

a traditional cloud based architecture and are aware of the remote brokers IP

address. Through SDN-based flow steering, we internally modify the incoming

flows destination IP address to the fog nodes IP address. In this manner, we

achieve a transparent fog node analytics in our network architecture.

78

Figure 4.8: Experiment network structure

79

4.4 Performance Evaluation of MQTT Long Flow Aggre-

gation

According to the introduction of MQTT architecture, we can notice that the data

transmission from aggregated gateway to broker server, which is over long flow TCP

connection in transport layer, is also important to the network performance. In this

section, we extend the framework to TCP long flow use case. By introducing the

metric of fairness index, we reveal the relation between the fairness among clients

and the congestion window size in TCP connection. Meanwhile, by improving

the fairness, we will show an improvement in aggregated data flow with an data

processing procedure in aggregate node.

4.4.1 Evaluation Study of Traditional Fog Network

Study of Traditional Fog Network Using the custom-made network architecture

described in the previous two sections, we study the performance of a setup

that uses a naive approach of using MQTT-based communication in fog network,

we henceforth call this naive setup as traditional fog network. The throughput

performance of the traditional fog network is shown in Fig. 4.9. The bottom

portion of the figure shows the individual IoT clients throughput, and the top red

line-plot shows the total received throughput in the network. It is clearly observed

that the individual instantaneous throughput of each client is not fair on the

network. As a consequence, the Calculator Module which performs analytics needs

to wait for an extended time until all the clients send their generated messages

80

(with the same time-index). This depends on the delivery delay of the most

unfairly treated IoT client in the network, at that instant of time. Therefore, it is

paramount to ensure fairness to all of the clients connected to the fog node, which

reflects on the improved delivery performance, and faster analytics computation

time.

Figure 4.9: Traditional DTN-

based WLAN offloading scenario

with four infrastructure nodes,

and one mobile node.

Figure 4.10: Proposed SDN-based

DTN offloading framework with

four infrastructure nodes, and one

mobile node.

A deeper inspection of our experimental results revealed a huge number of

retransmissions being transmitted at the transport layer of the network. The

result is retransmission attempt is shown in Fig. 5. As evident from the figure, a

substantial amount of communication resource has been wasted in retransmission.

Even though we have used wired links typically used in static IoT network settings,

the queue loss at the bridge switches and edge switch caused significant packet

drops that triggered retransmissions at the transport layer of the network.

81

Figure 4.11: Fast retransmission throughput of the traditional fog network.

4.4.2 Proposed Framework and Performance Evaluation Study

From Fig. 4.11 it is evident that the native congestion control mechanism of the

TCP has created the negative impact on the fog communication. With the idea of

fog network architecture, that enables communication of IoT clients a proximate

fog server node that is very few hops away can be given a preferred stop and wait

fashion of transmission at the transport layer than with regular congestion control

mechanism.

We, therefore, in our framework, we virtually made the transport layer insen-

sitive to the congestion control algorithm, and instead we enabled the transport

layer to work in a stop-and-go fashion of sending each segment (or equivalently

MQTT messages) only after positively receiving ACKs for the previously sent

segment. This simple mechanism enabled to have a strict fairness in the system,

82

and our proposed framework in the fog network setting showed almost perfect

fairness, while still utilizing the same total throughput as used by the traditional

network. Fig. 4.10, shows the throughput performance of our proposed framework

in the same fog network setting. As evident from the bottom portion of the

figure, we observe an almost perfect fairness for every individual IoT client in the

network. The Calculator Module in the fog node in our proposed communication

framework received the same timeindexed MQTT messages almost instantly. To

systematically quantify the fairness achieved by the respective traditional and

proposed network frameworks, we used the popular Jains Fairness Index [52] as

the fairness performance measure. The Jains Fairness Index [52] is computed as

follows:

fairnessindex =

(
n∑
i=1

E[Ti])2

n ∗
n∑
i=1

E[Ti]2
(4.9)

where E[Ti] is the throughput of TCP flow i and n are the total number of flows

in the network. The fairness indices of 9 IoT clients for the respective traditional

fog network and the proposed framework is shown in Fig. 4.12. As evident from

this figure, it is clear that our proposed framework achieved perfect fairness 100%

for most of the time. On the other hand, the traditional fog network severely

suffered from fairness issues. To further understand the negative impact caused

by the unfairness in the traditional fog network, we show the number of actually

received MQTT messages at the fog node over the duration of the experiment, in

Fig. 4.13. It is clear that the number of received messages in our framework is by

several orders of magnitude higher than the traditional fog network that spent

83

Figure 4.12: Fairness indices of traditional network vs proposed framework.

Figure 4.13: Total number of received IoT (MQTT) messages in the

traditional network vs proposed framework.

84

substantial amount time and communication resources in retransmissions. We

have performed all of these experiments on real testbed prototype. In the testbed,

nine Raspberry Pi 3 [60] devices have been used as MQTT-based IoT clients that

run on Ubuntu Mate 16.04 platform, with a modified version of Mosquitto 1.4.9

MQTT publisher. The fog node is a Ubuntu-based PC with Intel Core i7 2.4GHz,

8GB main memory, that runs an RSMB MQTT broker application.

4.5 Summary

In this work, we have proposed a Fog computing architecture hosted in SDN Docker

and developed its working prototype. Subsequently, we have mathematically

studied the throughput offered by the Fog node, and our experimental results

tend to follow roughly in-line with the analysis. It is also demonstrated that the

Fog node delivers at a significantly higher throughput, as compared with the

respective traditional client and end-host setup.

With the help of real testbed experiments, we also have extensively studied

the fog network performance and identified the unfairness among the IoT clients

as the key bottleneck that significantly degrades the performance of the network.

To this end, we devised a novel framework to restore fairness among the IoT

clients and thereby achieved significant improvement in the delivery throughput

performance of different flows to the fog node.

85

Chapter 5

SDN Based Opportunistic Networking in

Internet of Things [72]

Inspired from Interplanetary Internet, Delay-Tolerant Networks (DTNs) have

been envisaged to provide opportunistic communications in terrestrial application-

scenarios that exhibit intermittent and/or disrupted connectivity [53]. Example

application scenarios include extending Internet from connected urban places

to remote disconnected rural areas, through DTN data mules. The domain of

DTN-based applications is growing to much broader context. Of late, DTNs

find potential use in new application sectors such as infrastructure offloading

[54]. To this end, cellular offloading is a promising area of research that leverages

mobile P2P connectivity (such as LTE machinetype communications) to conserve

spectrum resources.

5.1 Introduction to Delay Tolerant Network (DTN) Im-

plementation

As a part of Internet Research Task Force (IRTF), the Delay-Tolerant Networking

Research Group (DTNRG) focus on interconnecting highly heterogeneous networks

together even if end-to-end connectivity may never be available. Examples of

such environments include spacecraft, military/tactical, some forms of disaster

response, underwater, and some forms of ad-hoc sensor/actuator networks. It

may also include Internet connectivity in places where performance may suffer

86

such as developing parts of the world [66].

As the reference implementation from DTNRG, DTN2 focus on components

architecture and functionalities as a DTN node. DTN2 use Bundle Protocol [48],

a general overlay network protocol to encapsulate messages exchanged between

nodes. The Bundle Protocol Agent and all its support code are implemented as a

user space daemon called ”dtnd”. The daemon has a configuration and control

interface which can be run remotely over a TCP connection when the daemon is

running ’daemonized’ (i.e., without a control terminal).

Following the implementation in DTN2, IBR-DTN has implemented as an

optimized light weight DTN implementation for low power systems. It could run

on any Linux based system including the OpenWRT we introduced, which makes

the IBR-DTN can be deployed on network devices.

5.1.1 DTN2 Implementation

DTN2 has a fairly comprehensive set of DTN functionality, including the appli-

cation API, support for custody, initial support for some of the DTN security

protocol, return receipts, a number of convergence layers including TCP, Bluetooth

and LTP (Licklider Transport Protocol) and an extensive collection of routing

protocols including the ones we introduced in chapter 1. Optimization still needed

in some components design and implementation. DTN2 uses persistent storage to

maintain state when the daemon is stopped so that bundles and other informa-

tion can be reloaded on restart. Various storage mechanisms can be configured,

including a file system, in-memory and multiple database interfaces like Berkeley

87

DB, MySQL, and SQLite.

5.1.2 IBR-DTN Implementation

IBR-DTN following the reference architecture of DTN2. It introduces an event

scheduler as the kernel of the DTN node. All the operations in modules like new

neighbor discovery and bundle exchange with neighbors are considered as an event

and always operated by the event scheduler first. Modules are threads forks from

the daemon program. They communicate with the event scheduler by wait/notify

API. When an event raised by a module, event scheduler decides which module

the event should be forward to.

Comparing to DTN2, IBR-DTN removed the persistent database API which

is not applicable in an low power device. The develop libraries are also relied

on plain glibc[76] which is applied in DTN2. However, the common features

like Bundle Protocol Agent, Convergence Layers, Beacon Module and Persistent

Modules are still following the design of DTN2.

5.2 Flexible Packet Forwarding Scheme For DTN

In the current era of crowdsourced network participants, a communication

paradigm must allow IP-agnostic forwarding to encourage any participant to

seamlessly join or leave a crowdsourced network system. Thanks to the DTNs

epidemic style of forwarding which is inherently crowd-source friendly, by en-

abling content-based forwarding capabilities to the nodes. However, a deeper

understanding reveals underlying challenges and inefficiencies that need to be

88

addressed:

Not crowd-friendly multi-hop forwarding: While DTNs epidemic forwarding

can help to communicate with a mobile node with any IP, multi-hop infrastructure

nodes on the other hand still might not be able to communicate with (more than

two-hops away) mobile node as they need IP address of the mobile node to build

their routing/forwarding table.

Flooded Infrastructure: Crowd-friendly epidemic DTN routing can populate

the infrastructure network nodes with an unnecessary redundant exchange of

messages leading to network overload.

Recently, mobile crowdsourcing is gaining traction, thanks to the advanced P2P-

based wireless technologies such as WiFi Direct, and energy-efficient Bluetooth

4.0. DTNs store, carry, and forward communication paradigm can be well suited

to the store, compute, and forward strategy of mobile crowdsourcing. All of

these promising new application scenarios, require a revival of the present DTN

architecture to seamlessly and effectively support communications with minimal

resource utilization.

DTN has been considered as a promising candidate for infrastructure offloading

such as cellular offloading [55], [56], [57]. These works encourage the use of DTN

to offload traffic from the infrastructure. However, to the best of our knowledge, a

unified DTN architecture that supports effective communication in a crowd-source

compatible offloading environment is not addressed in the literature.

The research related to SDN and DTN is a relatively unexplored and new. The

authors in [58], consider an intermittently-connected vehicular ad hoc network

89

scenario and propose an SDN-based routing framework for efficient message prop-

agation in the considered network. A central SDN controller gathers information

about the vehicular nodes, and thereby enable the controller to compute global

routing strategies. While the scenario is based on Vehicle to Infrastructure (V2I)

framework, the roadside base stations are connected to a central controller. In

this work, the authors consider a lightly-coupled SDN, wherein the SDN control

plane is utilized effectively forward DTN bundles. On the other hand, our work

deeply-integrates SDN, by forming a core part in the DTN architecture, that

enables flexible DTN communication.

5.3 Contributions in This Work

This work highlights the areas of improvement required in the current DTN archi-

tecture and motivates the need for a flexible (or dynamic) forwarding paradigm

that is well suited for infrastructure offloading, as well as mobile crowd sourcing

application scenarios. The naive approach of enabling infrastructure (say, WLAN)

offloading through DTN can be possible by enabling edge nodes to have DTN

functionality. Such primitive approaches enable the infrastructure nodes to offload

data to mobile DTN nodes in a limited P2P fashion i.e., between a mobile node

and its proximate infrastructure node. An interior infrastructure node cannot

have the opportunity to directly contact such mobile nodes. However, a trivial

solution to provide offloading access to interior nodes is to enable multicast-style

(many-to one) offloading possible through IP-routing inside the infrastructure,

90

and by modifying the DTN beacons TTL field to propagate multi-hop inside the

infrastructure.

In this work, we address the aforementioned challenges through novel SDN-

based flexible forwarding techniques that enable multi-hop infrastructure nodes to

communicate the mobile node, even without requiring to know the mobile nodes

IP addresses. Thanks to the SDNs programmability feature [29], we can also

eliminate unnecessary redundant message exchanges among the infrastructure

nodes. With powerful deep-packet inspection capabilities of SDN, we were able

to provide a scalable and efficient solution of containing the redundant DTN

messages exchanged by the infrastructure nodes. Apart from infrastructure

network applications, we also examine ad-hoc mobile vehicular networks and

apply SDN based Layer-2 forwarding to vehicular DTN nodes in order to reduce

delay in vehicle platooning applications.

5.4 Software-Defined DTN Infrastructure Offloading Frame-

work

In this section, we consider a WLAN infrastructure offloading framework (with

DTN nodes) that encourages crowdsourced mobile DTN nodes to participate in

carrying infrastructure generated bundles[48] . The schematic diagram of the

considered scenario is shown in Fig. 5.1. The mobile DTN node is considered from

that crowdsource participant, therefore, the IP address of the node is typically

assumed as not known to the infrastructure nodes.

91

Figure 5.1: Traditional DTN-

based WLAN offloading scenario

with four infrastructure nodes,

and one mobile node.

Figure 5.2: Proposed SDN-based

DTN offloading framework with

four infrastructure nodes, and one

mobile node.

As shown in Fig. 5.1, the network consists of four infrastructure DTN source

nodes, namely A, B, C, D, and a mobile DTN node. The infrastructure nodes are

the DTN source nodes configured with epidemic forwarding. The infrastructure

nodes are considered to have configured with IP-layer forwarding to enable

communication among them. As a result of epidemic-style based DTN routing,

and internal IP-layer connectivity, every source bundle generated in the network

is flooded to all other DTN nodes in the infrastructure. This clearly causes

unnecessary redundant bundle transmissions inside the network.

To avoid unnecessary internal transmissions, we propose an SDN-based in-

frastructure offloading framework that enables a unicast style-forwarding to the

incoming regular mobile DTN node from a participating crowdsource user. The

schematic diagram of the proposed SDN-based DTN offloading infrastructure

92

Figure 5.3: A frame with DTN bundle application payload. The

in-built SDN controllers will perform deep-packet inspection on DTN

primary blocks

framework is shown in Fig. 5.2. Each infrastructure DTN node is built with an

integrated SDN controller functionality. Unlike traditional centralized external

SDN controller for the nodes, we incorporate independent dedicated controller

functionality in each node in the infrastructure. Individual SDN controllers are

empowered with the deep-packet inspection.

The deep-packet inspection is performed by the SDN controllers at the Layer-2

of the OSI reference model. In our context, the deep-packet inspection is performed

on the DTN bundle header fields of the received MAC frame, as shown in Fig. 5.3.

This enables the SDN controllers to parse and differentiate various DTN control

and data bundles. For instance, the controllers are equipped to differentiate the

summary vector bundles(meta data of bundles used by epidemic routing) and,

data bundles. In addition to deep packet inspection, our SDN controllers are also

programmed to construct custom summary-vector bundles. When a mobile-host

comes to the proximity of the infrastructure node, the inbuilt controller that

93

receives summary vector from the mobile host. The inbuilt SDN controller of

the proximate infrastructure node, would in turn multicast the received summary

vector to all other infrastructure nodes. This creates an artificial situation of other

infrastructure nodes as if they have a mobile DTN node in their vicinity. When

each infrastructure nodes send their summary vectors as a response, the reference

infrastructure node with a real mobile node in its vicinity, would construct a

compound summary vector comprising of all the individual summary vectors, and

send it to the mobile node.

In this manner, a unicast style of communication is performed among the

infrastructure nodes without flooding among each other. Therefore, our proposed

SDN-based of- floating framework enables to use storage at the infrastructure

nodes efficiently. It is worth to note that the summary vector bundle construction

is a non-trivial process that involves bloom filter-based bundles list storage.

To also equip the framework to cater mobile crowdsourced nodes with unknown

IP, our architecture also supports static routing wherein, the integrated SDN

controllers can use fake internal IPs that can be substituted in the place of

incoming mobile DTN nodes, which enables effective communication between

static-routing configured infrastructure DTN nodes, and any crowdsourced mobile

DTN nodes.

94

Figure 5.4: Three vehicles platoon scenario: Traditional crowdsourced

P2P DTN forwarding

5.5 A Novel Software-Define Flexible DTN Forwarding

Architecture

Having studied the efficacy of SDN-based DTN forwarding in DTN-based infras-

tructure offloading setup, we now turn our focus to regular DTN communication

focusing on a P2P style of ad-hoc connectivity. We consider a use case of vehicular-

based intermittently connected mobile networks. In particular, we consider a

DTN based communication among a platoon of vehicles equipped with DTN

nodes. Since this also reflects a crowdsourced fashion of participants, an epidemic

or flooding routing scheme is considered as an appropriate routing strategy.

5.5.1 L2 Forwarding Scheme for DTN Bundle Forwarding

The traditional DTN-style of forwarding is schematically shown in Fig. 5.4,

with three vehicles forming a tandem arrangement. The source DTN bundle

is epidemically forwarded through a crowdsourced intermediate vehicle, to the

95

Figure 5.5: Proposed SDN-based DTN Architecture.

destination node in the tail end of the platoon. As the bundle is inspected for

destination fields at the DTN application layer, the bundles have to pass through

the entire stack of the intermediate nodes which causes additional processing

delay in these nodes.

To overcome the DTN application layer processing at the intermediate nodes,

we propose a new SDN-based DTN architecture built from the ground-up. The

proposed architecture is shown in Fig. 5.5. The core of the architecture is

built around the Open vSwitch daemon controlled by SDN controller through

OpenFlow protocol. Unlike the traditional setup of external SDN controller, we

integrated a built in controller running inside the Open vSwitch daemon in each

node. In addition to the controller, the DTN daemon event scheduler, and various

96

Figure 5.6: Vehicle platoon scenario: Proposed SDN-based Layer-2

(L2) forwarding, and parallel multicast forwarding to intermediate

nodes storage.

routing modules are also integrated within Open vSwitch daemon. The other

modules such as DTN application API service module, storage module (to store

and retrieve bundles from secondary storage), convergence layers, and beacon

generation modules are run as independent processes connected to the Open

vSwitch through virtual network interfaces.

In this manner, we provide a modular connectivity of individual DTN modules

interconnected with a powerful and flexible Open vSwitch based SDN controller

at the core. As the Open vSwitch controller operates at the Layer-2 of the OSI

network model, unnecessary application layer delays are avoided. Therefore,

the intermediate DTN nodes can utilize the deep packet capability of the SDN

controller to forward non-destined bundles to the neighbors. This substantially

reduces the processing delays at the intermediate nodes. The forwarding style

of the proposed SDN-based layer2 bundle transfer is shown in Fig. 5.6. The

received beacons indicate the convergence layer choice of the incoming DTN node.

97

Therefore, with the SDN-controller at the nucleus of our proposed controller, we

can dynamically configure routing and convergence layer appropriate to commu-

nicate with the neighbor nodes. Therefore, our framework is conducive to the

crowdsourced environments wherein the neighbor DTN nodes configurations are

not known apriori.

It is also worthwhile to note that, as the beacon messages are sent through

out the contact, whenever the nodes in contact want to switch the convergence

layer (based on the consuming applications demand), they can intimate the new

convergence layer usage in the next beacon message. Our constant deep packet

parsing controller, upon receiving this beacon message will dynamically switch to

different convergence layer. In this manner, we flexibly operate with per-packet

based heterogeneous forwarding.

5.5.2 Flexible On-the-fly Routing and Transport Services for Crowd-

Friendly Environments

In addition to the L2 forwarding in vehicular platoon applications, our proposed

modular architecture enables DTN node to identify the routing configuration of

any proximity nodes through deep packet inspection. For instance, a received

summary vector identifies the neighbor nodes epidemic routing feature. The

Open vSwitch entity controls the packet forwarding and also manages different

components in the DTN node. All the applications connect to the OvS entity

via virtual Ethernet connection (veth). To avoid internal message exchange,

each of these applications was bound to an IP address that belongs to a unique

98

subnet. This refrains the applications from talking to each other without passing

through OvS entitys routing. The physical ports that connect to outside world

(say, neighbor nodes) are also bound to the OvS entity.

The beacon module in the DTN nodes listen to all of the physical ports that

bind to the OvS entity. The OvS entity listening on these ports, upon receiving a

beacon message from one of the physical port, will multicast to routing modules

and convergence layer modules as internal messages (with changed destination IP

and port numbers appropriately).

The convergence layer component has two channels, a UDP port for exchang-

ing messages with other components within OvS-DTN boundary, and another

convergence layer is for the neighbors. The beacon message received from outside

neighbor will indicate the convergence layer information. This allows the recipient

DTN node to establish communication with the neighbor node with appropriate

convergence layer, in a dynamic manner.

1) Sequence of Actions in SDN-DTN Upon meeting New Neighbor:

All DTN nodes periodically emit beacon messages containing the local EID and

convergence layer information

• Beacon message exchange: Upon receiving beacon message (through the

physical port), the message is multicast to the difference convergence layer

modules and routing modules.

• Convergence layer setup: According to the received beacon messages, for

newly found neighbors; the convergence layer modules create sockets bound

99

to the modules local network devices.

• Bundle exchanges: Convergence layer receive bundles from neighbors. If

the first bundle is a summary vector, it is forwarded to the internal epi-

demic/prophet routing modules. On the other hand, if the bundle is a

regular DTN data bundle, the convergence layer will send the bundle to

flood and static routing modules. In this manner, with the help of SDNs

deep-packet inspection, the bundle were going to the appropriate routing

modules.

Therefore, our proposed architecture makes dynamic onthe-fly routing decisions

which is vital for crowd-sourced environments.

2) Handling Internally Generated Bundles:

• Bundle assembling: Locally received application messages are encapsulated

into a DTN bundle with appropriate Destination and Source EIDs.

• Bundle transferring: Applications send the encapsulated bundle to API

server module. The API server sends this new bundle to the routing modules

for forwarding.

• Bundle Routing: Routing modules upon receiving the bundle, checks for the

destination ID. And sends the bundle (according to the routing protocol).

100

5.6 Framework Performance Study

For our performance study, we developed and implemented our proposed archi-

tecture frameworks and tested on Mikrotik routers running OpenWrt 15.05. The

end hosts serving as source and destination DTN nodes were usual PC with core

i7 processors running on Ubuntu 12.04. The traditional DTN frameworks used

for the comparative study were implemented with IBR-DTN [8], an embedded

DTN2 open-source implementation architecture.

Figure 5.7: Offloading Applica-

tion: Performance comparison of

number of bundle copies in tra-

ditional DTN offloading and pro-

posed SDN-based DTN offloading

frameworks, in a four DTN node

infrastructure network.

Figure 5.8: Vehicular Platooning

Application: Improved delay per-

formance of proposed SDN-based

DTN layer-2 forwarding, against

the traditional DTN forwarding.

Fig. 5.7 shows the performance plot for the use case 1, demonstrating the

SDN-based offloading framework. It is clear that the proposed framework of

101

SDN-based DTN offloading effectively reduced the redundant bundles. On the

other hand, with increasing source bundle generation, the increase in redundant

copies in the network occurs in the traditional DTNstyle offloading scenario, in

which case the total number of redundant bundles is directly the multiple of total

nodes in the network. This clearly shows the fact that the traditional offloading

infrastructure is not scalable. Fig. 5.8 shows the improved delivery delay achieved

by the proposed SDN-based flexible DTN architecture, in the vehicle platoon

application scenario. With powerful deep packet inspection capabilities, we can

achieve a significant decrease in delay by bypassing over layer-2 forwarding at

the intermediate nodes. Thanks to the SDNs deep packet inspection capabilities

and dynamic forwarding support through programmable network flows. The

performance improvement scales well with increasing number of hops in the

network, which is quite intuitive.

5.6.1 A Novel Performance Evaluation Experiment

Typical existing DTN simulation experiments (such as ONE simulator) while

conceptually represent the DTN node functionality, and mainly focus on the

intermittent connectivity as the main component of functionality. To study the

efficiency of our proposed DTN node architecture against the real-implementation

of existing DTN architecture; we have developed a novel experimental design

that represents the DTN node implementations and emulates the DTN network

connectivity using the public connectivity traces available. In this manner, our

experiments are one step closer to reality than the simulation experiments. At the

102

Figure 5.9: The testbed snapshot used in the implementation and

performance evaluation study.

core of our emulation testbed, we use SDN controller as the central manager that

accepts the mobility traces as the input. At the moment we support any ONE

simulator compatible mobility traces in our experiments. However, without loss

of generality, any mobility trace with node ID and connection and disconnection

time information can be easy to ONE simulator format mobility trace with the

help of a simple script.

The SDN controller manages a single Open vSwitch that manages communi-

cations between the DTN nodes. To ensure scalability, we implement DTN nodes

103

in LXC containers. A virtual interface added to the node (LXC container) would

act as its network device. The central OvS device acts as a bridge with ports

connecting the DTN nodes enclosed in LXC containers. We consider 98 LXC

containers equipped with Ubuntu 12.04 LTS 32-bit OS, and the central OvS is

based on Open vSwitch 2.3.90 version. The conceptual diagram of the emulation

experiment is shown in Fig. 5.9. The entire emulation experiment runs on a single

Physical PC with Intel Core i7 2400Ghz CPU, and with 16GB RAM, running

Ubuntu 14.04 LTS 64-bit OS. 1) Connectivity Management: The connectivity

is managed by the central OvS, wherein each DTN node (contained in LXC) is

connected via virtual Ethernet interface (veth). We use SDN flows in the OvS to

manage connectivity between DTN nodes. An incoming flow matching at OvS

matching a DTN node X would be connected to the appropriate DTN node Y

as dictated by the mobility trace script at that time instant. In this manner,

the nodes connectivity is managed under the governance to the mobility trace

script. 2) Opportunistic Connection Trace Script: Without loss of generality, in

this work, we have used the Reality Mining trace-set [59] from the MIT Human

Dynamics Labs. The Reality Mining trace in the ONE simulator format consists

of rows of connecting and disconnect events represented as tuples. Each tuple

consists of four elements namely, node X, node Y, absolute time in the experiment

and connection-event (such as CONNECT/DISCONNECT). Hence, each row in

the trace denotes the connect or disconnect event of a pair of DTN nodes. The

trace consists of 98 nodes connectivity collected for 195 days. We found many

instant connections, where the time period of node connections is 0 seconds. In

104

Figure 5.10: Heterogeneous DTN forwarding application: CDF Perfor-

mance comparison of traditional IBR-DTN and proposed SDN-DTN

offloading showing the number of messages received by fraction of

nodes in the network

105

such cases, we set a random connection less than 1 seconds to utilize the instant

node connections. The controller will create and send fake beacon messages to

both nodes after a flow setup, to initiate connections between nodes. Without

loss of generality, for our performance study, we compare the mixed DTN routing

with 50% network nodes configured with epidemic routing and the rest with the

flooding-based routing protocol. While in traditional DTN implementation (such

as IBR-DTN) the heterogeneous nodes do not exchange packets thereby severely

limit their precious contact opportunities. On the other hand, our proposed

implementation used every possible contact present in the network. As evident in

Fig. refFig:dtn11, close to 50% of nodes received more than 50% of the received

messages. On the other hand, around 22% of the nodes received close to 50% of

messages by the traditional DTN nodes.

5.6.2 Advanced Emulation with DTN nodes on RasperryPI

We took a more practical evaluation approach by using real DTN nodes installed

on the RasperryPI devices. Due to limited (10) number of RasperryPI devices,

we arbitrarily chose 10 nodes and their contacts from the MIT trace set. The

corresponding performance plot Fig. 5.11 also shows the similar trend, thereby

proving the efficacy of our proposed SDN-based DTN forwarding framework.

106

Figure 5.11: Heterogeneous DTN forwarding architecture: CDF Perfor-

mance comparison of traditional IBR-DTN and proposed SDN-DTN

offloading showing the number of messages received by fraction of

nodes in the network, in a 10-nodes RaspberryPI experiment testbed

107

5.7 Internet of Hybrid Opportunistic Things [72]

5.7.1 Introduction to IoT and DTN Interconnecting

To extend connectivity over disrupted environments, the latest research [62], [63],

[64] on Internet of Things (IoT) is focused on enabling IoTs to be connected to

the Internet with the help networks such as Delay-Tolerant Networks (DTNs). For

instance, to enable a delay tolerant IoT, the authors in [62] propose and implement

DTN Bundle Protocol (BP) binding for IoTs Constrained Application Protocol

(CoAP). This implementation [62] embeds DTN stack into the device, and the IoT

application interacts with the integrated-DTN through a custom developed API,

thereby creating a paradigm of IoT-over-DTN architecture. The authors in [63]

consider a light-weight DTN BP protocol custom tailored for hardware-constrained

IoT devices. The authors in [65] extend AllJoyn, a D2D-based communications

framework with custom opportunistic communications.

The works such as [62], [63] that rely on Delay-Tolerant transport model as

communications substrate would not benefit from IoT communications typical

semantics such as the publish-subscribe model of forwarding. As a consequence,

delivery performance of the IoT messages depend on the factors related to the

DTN transport such as routing, and other (non-IoT) DTN bundles carried by the

regular DTN nodes.

As an example application, we consider a practical urban mobile environment

encompassing static IoT sensor nodes (publishers) deployed geographically over

a region. A crowdsourced DTN mule provides opportunistic connectivity to the

108

Figure 5.12: Proposed IoT-cum-DTN framework.

deployed IoT publishers by carrying IoT messages in the form of bundles and

delivers to a set of remote IoT receiving devices (subscribers) that are connected

to the Internet. The DTN mule is crowd-sourced to carry any DTN traffic in

the region of interest (including non-IoT traffic). In such scenario, an end-to-end

DTN transport approach such as [62] can suffer from reduced delivery throughput

of IoT messages, as the deliverer (i.e., DTN mule) is agnostic to the IoT messages

encapsulated in the DTN bundle as a payload.

5.7.2 A Novel Framework for IoT and DTN Interconnection

To preserve the semantics of IoT, and also seamlessly utilize the DTN-based

communications an IoT-cum-DTN based framework is essential. To the best

of our knowledge, such a framework of IoT-cum-DTN is not proposed and im-

plemented. To this end, we propose a novel Internet of Hybrid Opportunistic

Things framework based on the aforementioned IoT-cum-DTN paradigm. The

proposed IoT-cumDTN architectural framework is shown in Fig. 1. To realize an

architecture of the IoT-cum-DTN node proposed in the framework as shown in

109

Figure 5.13: Proposed IoT-cum-DTN Gateway Node Architecture.

The extended modules are shown in blue shaded boxes.

Fig. 5.12; the following design principles are necessary:

• Transparent DTN connectivity: The IoT-cum-DTN node should communi-

cate as a peer DTN node with regular-DTN nodes.

• Transparent IoT P2P connectivity: The IoT-cum-DTN node should enable

P2P communication with the respective IoT publisher and IoT subscriber

nodes.

• DTN IoT Interoperability: To fully utilize DTNs persistent storage and

robustness from node failures, the IoT-cum-DTN node needs to seamlessly

encapsulate IoT messages as DTN bundles. Subsequently, the IoT messages

have to be retrieved (from bundles) upon meeting a regular IoT node.

110

To realize an architecture with the aforementioned design principles, a vertical-

plane integration of IoT and DTN stacks is necessary. To this end, we propose

IoT as a convergence layer transport to the existing DTN stack and empower

convergence-layer adapter with bundle construction and storage access. For our

implementation, we have used a standard DTN2 reference implementation for

embedded devices, namely IBR-DTN [5]. The IoT protocol considered is MQTT-

SN [14], a client-server based publish/subscribe messaging transport protocols

for wireless nodes such as Sensor Networks. The native MQTT-SN is based on

the client-server model, different neighbor discovery beacons are used by the

respective server and clients for identifying their peer nodes. We, therefore,

modified MQTT-SN towards using a custom beacon protocol to enable simple

P2P neighbor discovery. As the payload-contents of custom neighbor discovery

beacon are not used by MQTT-clients, we used the beacons payload to contain

information necessary for the regular DTN nodes to recognize them.

The architecture of the IoT-cum-DTN node based MQTTSN and IBR-DTN

is shown in Fig. 5.13. In addition to the regular UDP, and TCP convergence

layer, we have implemented MQTT components as a new convergence layer. The

MQTT Convergence Layer Adapter (CLA) binds the MQTT components, namely

broker, publisher, the subscriber to the IBR-DTNs Bundle daemon. Furthermore,

we extended MQTT CLA with a cross-layer design, to have direct access to the

IBR-DTNs persistent storage. This cross-layer design, enables the MQTT-CLA

and underlying MQTT stack to act as an independent IoT process, that enacts the

transparent IoT P2P connectivity. The MQTT-CLA also has the feature of DTN

111

bundle construction from the received MQTT message from an IoT publisher, and

de-encapsulate bundle to retrieve actual MQTT message for the IoT subscriber

reception.

5.7.3 System Evaluation and Conclusion

Figure 5.14: Throughput compar-

ison between MQTT-over-DTN

and MQTT-cum-DTN

Figure 5.15: Logic topology of the

testbed.

We evaluate the system by running MQTT over traditional DTN nodes and

over our proposed framework. We define three nodes, respectively publisher,

broker and subscriber in the network. Publisher continuously sending packets

to the subscriber in the saturated volume of traffic. Fig 5.15 demonstrated the

logical connections of the nodes. By evaluating these two frameworks, we obtain

the result that proposed MQTT-cum-DTN solution is nearly 4 times better than

the MQTT-over-DTN solution (Fig. 5.14).

112

Chapter 6

Conclusion

In this work, it starts from the analysis of OpenFlow architecture and its controller

specification. By identifying the communication overhead between OpenFlow

controller and OpenFlow data-plane, we focus on the implementation of OpenFlow

data-plane to see if we can reduce this overhead by moving controller features

into the data-plane implementation.

By utilizing OpenFlow protocol interface in datapath component of OpenFlow

data-plane, we implement necessary features in an SDN controller on data-plane,

so called In-House controller. Also, with the help of existing flow entry imple-

mentation and its priority feature, we implement the mechanism to filter packets.

In this way, we make the In-House controller being compatible with the original

setup.

Based on this In-House controller implementation, we design two mechanisms to

docking network applications in devices. Inside SDN Docker focus on converting

application logic to a readable binary image to dynamically load and run on

the device framework. Outside SDN Docker leverage features of the In-House

controller, virtual Ethernet, and Linux Containers to dock complicated programs

as controller applications. These features brought us possibilities in dynamically

deploying applications on network nodes, which is important to our works on

MQTT flow aggregation and DTN implementation.

In the topic of MQTT aggregation, we use SDN Docker to dock MQTT

113

application in edge nodes. by modeling TCP traffic from the edge nodes to a

remote server, we reveal the relationship between the congestion window size and

the packet loss rate on the nodes on the route. Meanwhile, by aggregating short

MQTT flows, we achieve a significant throughput improvement on the scenario

of multiple publishers competing for bandwidth on edge node. For long flow

aggregation, we proved that the fairness of publishers on the same access points is

also related to the congestion window. When we limit the size of the congestion

window on the publishers, we will achieve an improved fairness without loss of

throughput in total.

By noticing that DTN node owns a similar architecture to the Outside SDN

docker, we improve the DTN node in an SDN approach. With the help of In-House

controller, we can dynamically change the configuration of convergence layers

and routing mechanisms for specific DTN bundles. This approach improved the

connectivity of DTN nodes as well as the transmission capacity between peer

nodes.

6.1 Future Work

Networking world is keeping evolving with the improvement of hardware capacity

of network devices. Data-plane packet processing and forwarding technologies

are also improved. These facts bring more possibilities to moving control plane

operation into data plane components in the network with separated packets.

As a library implementation, Intel DPDK[67] has embedded some control plane

114

functionalities into data plane. It also provides APIs for programmers to build

network applications. By utilizing these APIs, In-House controller and Inside SDN

Docker can save development work on atomic operations and compiling issues.

Another issue in distributed controller need to be addressed is global in-

formation synchronization among distributed controllers. As application level

functionalities, data need to be stored in the distributed controllers for further use.

For example, in mobility management, user equipment’s latest access nodes need

to be recorded for hand-off use. How to retrieve this information from the network

is crucial to system performance. Hierarchy structure distributed controllers like

Kandoo[33] try to store global information in the root controller. It is easy to keep

data consistency in one single controller but the communication overhead from the

lowest level node to the root controller is inevitable. Other works like Ubiflow[69]

try to solve the problem with distributed storage solution like consistency hash.

This solution store global information in different spots in the network. The

storage location is decided by a hash mapping between user equipment ID and

node ID. This solution provides scalability by preventing storing all data in one

node. However, retrieving data from a random node in the network is still difficult.

The storage location could be far from the consumer node, while it still needs to

do mapping calculation to locate it.

Interned of Things in mobile network scenario has been noticed by researchers

by the development of MANET and VANET. In our work, we did an experimental

work on combining DTN node with MQTT functionalities, which provide IoT

nodes with opportunistic network features. In the future, we can apply this

115

framework to other IoT applications to improve the connectivity of IoT entities

in different scenarios.

116

References

[1] D. Kreutz, F. M. V. Ramos, P. Veŕıssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, ”Software-defined networking a comprehensive survey,”.
Proceedings of the IEEE, 103(1), 2015.

[2] ”OpenFlow switch specification version 1.4.0,”. 2013. [Online].Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/OpenFlow/OpenFlow-spec-v1.4.0.pdf

[3] M. Karakus, A. Durresi, ”A survey: Control plane scalability issues and
approaches in software-defined networking (SDN),”. Computer Networks, 112,
2017.

[4] ”OpenWrt Wiki,”. 2017 [Online].Available: https://wiki.openwrt.org/start

[5] ”MQTT Specification v3.1.1,”. 2014 [Online].Available: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf

[6] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, ”Fog computing and its role in
the internet of things,”. MCC ’12 Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, 2012. Pages 13-16

[7] Y. Wang, J. Bi, ”A Solution for IP Mobility Support in Software Defined
Networks,” ICCCN ’14 Proceedings of International Conference on Computer
Communication and Networks, 2014.

[8] ”RFC4423, Host Identity Protocol (HIP) Architecture,” 2006 [On-
line].Available: https://tools.ietf.org/html/rfc4423

[9] ”RFC5944, IP Mobility Support for IPv4, Revised,” 2010 [Online].Available:
https://tools.ietf.org/html/rfc5944

[10] ”RFC6740, Identifier-Locator Network Protocol (ILNP) Architectural De-
scription,” 2012 [Online].Available: https://tools.ietf.org/html/rfc6740

[11] ”RFC4830, Problem Statement for Network-Based Localized
Mobility Management (NETLMM),” 2007 [Online].Available:
https://tools.ietf.org/html/rfc4830

[12] ”RFC5050, Bundle Protocol Specification” 2007 [Online].Available:
https://tools.ietf.org/html/rfc5050

[13] Delay Tolerant Networking Research Group. ”DTN Reference Implementa-
tion,” 2006. [Online].Available: http://www.dtnrg.org/docs/code/

[14] M. Doering, S. Lahde , J. Morgenroth, L. Wolf, ”IBR-DTN: an efficient
implementation for embedded systems,” CHANTS ’08 Proceedings of the third
ACM workshop on Challenged networks, 2008. Pages 117-120

117

[15] ”RFC6693, Probabilistic Routing Protocol for Intermittently Connected
Networks” 2012 [Online].Available: https://tools.ietf.org/html/rfc6693

[16] J. Burgess, B. Gallagher, D. Jensen, B. N. Levine, ”MaxProp: Routing for
Vehicle-Based Disruption-Tolerant Networks,” INFOCOM ’06 Proceedings of
the 25th IEEE International Conference on Computer Communications, 2006.

[17] A. Balasubramanian, B. Levine, A. Venkataramani , ”DTN routing as a
resource allocation problem,” SIGCOMM ’07 Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer communi-
cations 2007. Pages 373-384

[18] S.A. Shah, J. Faiz, M. Farooq, A. Shafi, S. A. Mehdi ”An architectural
evaluation of SDN controllers” ICC ’13 Proceedings of the IEEE International
Conference on Communications, 2013.

[19] ”Mininet: An instant virtual network on your laptop (or other PC)” 2012
[Online].Available: http://mininet.org

[20] M. A. Santos, B. A. Nunes, K. Obraczka, T. Turletti, B. T. de Oliveira,
C. B. Margi, ”De-centralizing SDNs control plane” LCN ’14 IEEE 39th
Conference on Local Computer Networks, 2014, pp. 402405.

[21] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, R. Sherwood, ”On
Controller Performance in Software-Defined Networks” Proceedings of the
2nd USENIX conference on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services, ser. Hot-ICE12., Berkeley, CA, USA:
USENIX Association, 2012, pp. 1010

[22] Z. Cai, A. L. Cox, and T. S. E. Ng, Maestro: A System for Scalable OpenFlow
Control, Rice University, Tech. Rep., 2011.

[23] D. Erickson, The Beacon OpenFlow controller, in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking, ser.
HotSDN 13. New York, NY, USA: ACM, 2013, pp. 1318

[24] Floodlight is a Java-based OpenFlow controller” 2012 [Online].Available:
http://www.projectfloodlight.org/floodlight/

[25] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S.
Shenker, NOX: towards an operating system for networks, Computer Commu-
nication Review., 2008.

[26] Nippon Telegraph and Telephone Corporation, Ryu Network Operating
System, 2012. [Online]. Available: http://osrg.github.com/ ryu/

[27] OpenDaylight, OpenDaylight: A Linux Foundation Collaborative Project,
2013. [Online]. Available: http://www.opendaylight.org

118

[28] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, On scalability of software-
defined networking, Communications Magazine, IEEE, vol. 51, no. 2, pp.
136141, 2013.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, OpenFlow: enabling innovation in campus
networks, SIGCOMM Computer Communication Review, vol. 38, no. 2, pp.
6974, Mar. 2008.

[30] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S.
Banerjee, DevoFlow: scaling flow management for highperformance networks,
Computer Communication Review, vol. 41, no. 4, pp. 254265, Aug. 2011.

[31] A. Tootoonchian and Y. Ganjali, HyperFlow: a distributed control plane for
OpenFlow, in Proceedings of the 2010 internet network management conference
on Research on enterprise networking, ser. INM/WREN10., Berkeley, CA,
USA: USENIX Association, 2010, pp. 33.

[32] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, Elasticon:
An elastic distributed SDN controller, in Proceedings of the Tenth ACM/IEEE
Symposium on Architectures for Networking and Communications Systems,
ser. ANCS 14., New York, NY, USA: ACM, 2014, pp. 1728.

[33] S. Hassas Yeganeh and Y. Ganjali, Kandoo: A framework for efficient and
scalable offloading of control applications, in Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, ser. HotSDN 12., New York,
NY, USA: ACM, 2012, pp. 1924.

[34] S. H. Park, B. Lee, J. Shin, and S. Yang, A high-performance IO engine for
SDN controllers, in Third European Workshop on Software Defined Networks,
2014, p. 2.

[35] Y. Yiakoumis, J. Schulz-Zander, and J. Zhu, Pantou : OpenFlow
1.0 for OpenWRT, 2011. [Online]. Available: http://www.openflow.org/
wk/index.php/OpenFlow 1.0 for OpenWRT

[36] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
Extending networking into the virtualization layer. in proceeding of Hotnets,
2009, pp. 16.

[37] Docker, Docker - Build, Ship, and Run Any App, Anywhere, 2017. [Online].
Available: https://www.docker.com/

[38] ”LXC Containers”, 2017, [Online]. Available: https://linuxcontainers.org/

[39] L. D. Xu, W. He, S Li IEEE Transactions on Industrial Informatics, VOL.
10, NO. 4, NOVEMBER 2014

119

[40] UpCall, ”Linux man page”, 2017, [Online]. Available:
https://linux.die.net/man/8/cifs.upcall

[41] Pica8, Pica8 3920, 2013. [Online]. Available: http://www.pica8.org/
documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf

[42] Indigo ”Indigo - Open Source OpenFlow Switches,” [Online]. Available:
http://www.projectfloodlight.org/indigo/

[43] Y. Mundada, R. Sherwood, and N. Feamster, An openflow switch element for
click, in Symposium on Click Modular Router. Citeseer, 2009, p. 1. [Online].
Available: http://www.cc.gatech.edu/ yogeshm3/click symposium2009.pdf

[44] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, Scalable flow-based
networking with difane, SIGCOMM Computer Communication Review, vol.
41, no. 4, pp. , Aug. 2010

[45] IP Link, ”Linux man page”, 2017, [Online]. Available:
https://www.systutorials.com/docs/linux/man/8-ip-link/

[46] Mosquitto, ”Mosquitto An Open Source MQTT v3.1/v3.1.1 Broker”, 2017,
[Online]. Available: http://mosquitto.org

[47] ”RFC4838, Delay-Tolerant Networking Architecture,” 2007 [Online].Available:
https://tools.ietf.org/html/rfc4838

[48] ”RFC5050, Bundle Protocol Specification,” 2008 [Online].Available:
https://tools.ietf.org/html/rfc5050

[49] S. Yi, C. Li, Q, Li ”A Survey of Fog Computing: Concepts, Applications and
Issues,” Mobidata ’15 Proceedings of the 2015 Workshop on Mobile Big Data ,
Pages 37-42

[50] K. Sood, S. Yu, and Y. Xiang, Software defined wireless networking opportu-
nities and challenges for Internet of things: A review, IEEE Internet of Things
Journal, vol. PP, no. 99, pp. 11, 2015.

[51] P. Loiseau, P. Gonalves, J. Barral, and P. V.-B. Primet, Modeling TCP
throughput: An elaborated large-deviations-based model and its empirical
validation, Performance Evaluation, vol. 67, no. 11, pp. 10301043, 2010.

[52] R. Jain, D.-M. Chiu, and W. R. Hawe, ”A quantitative measure of fairness and
discrimination for resource allocation in shared computer system.,” Eastern
Research Laboratory, Digital Equipment Corporation, 1984.

[53] F. Warthman, Delay-Tolerant Networks (DTNs) - A Tutorial. [Online]. Avail-
able: http://www.ipnsig.org/reports/DTN Tutorial11.pdf

120

[54] Z. Li, Y. Liu, H. Zhu, and L. Sun, Coff: Contact-duration-aware cellular
traffic offloading over delay tolerant networks, IEEE Transactions on Vehicular
Technology, vol. 64, no. 11, pp. 52575268, 2015.

[55] K. Ezirim and S. Jain, Taxi-cab cloud architecture to offload data traffic from
cellular networks, in WoWMoM 15: Proceedings of the IEEE International
Symposium on World of Wireless, Mobile and Multimedia Networks, 2015, pp.
16.

[56] Y. Li, M. Qian, D. Jin, P. Hui, Z. Wang, and S. Chen, Multiple mobile data
offloading through disruption tolerant networks, IEEE Transactions on Mobile
Computing, vol. 13, no. 7, pp. 15791596, 2014.

[57] X. Zhuo, W. Gao, G. Cao, and S. Hua, An incentive framework for cellular
traffic offloading, IEEE Transactions on Mobile Computing, vol. 13, no. 3, pp.
541555, 2014.

[58] M. Zhu, J. Cao, D. Pang, Z. He, and M. Xu, Sdn-based routing for efficient
message propagation in vanet. in WASA, ser. Lecture Notes in Computer
Science, vol. 9204. Springer, 2015, pp. 788797.

[59] N. Eagle and A. (Sandy) Pentland, Reality mining: Sensing complex social
systems, Personal Ubiquitous Computing., vol. 10, no. 4, pp. 255 268, Mar.
2006. [Online]. Available: http://dx.doi.org/10.1007/s00779- 005-0046-3

[60] Raspberry Pi ”Raspberry Pi - Teach, Learn, and Make with Raspberry Pi”
[Online]. Available: https://www.raspberrypi.org/

[61] Kandoo Kandoo: Scale your sdn, [Online]. Available:
http://www.kandoo.org.

[62] M. Auzias, Y. Maheo, and F. Raimbault, CoAP over BP for a delaytolerant
internet of things, in FiCloud 15: Proceedings of the International Conference
on Future Internet of Things and Cloud, 2015, pp. 118123.

[63] P. Raveneau and H. Rivano, Tests Scenario on DTN for IOT III Urbanet
collaboration, Inria - Research Centre Grenoble Rhone- Alpes ; INRIA,
Technical Report RT-0465, 2015. [Online]. Available: https://hal.inria.fr/hal-
01187114

[64] D. Amendola, F. D. Rango, K. Massri, and A. Vitaletti, Efficient neighbor
discovery in RFID based devices over resource-constrained DTN networks, in
ICC 14: Proceedings of the IEEE International Conference on Communications,
2014, pp. 38423847.

[65] D. A. L. Nuevo, D. R. Valles, E. M. Medina, and R. M. Pallares, OIoT: A
platform to manage opportunistic IoT communities, in IE 15: Proceedings of
the International Conference on Intelligent Environments, 2015, pp. 104111.

121

[66] DTNRG ”Delay-Tolerant Networking Research Group” [Online]. Available:
https://sites.google.com/site/dtnresgroup/

[67] DPDK ”Data Plane Development Kit” [Online]. Available: http://dpdk.org

[68] Mosquitto ”An Open Source MQTT v3.1/v3.1.1 Broker” [Online]. Available:
https://mosquitto.org

[69] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, UbiFlow:
Mobility management in urban-scale software defined IoT, in 2015 IEEE
Conference on Computer Communications (INFOCOM), 2015, pp. 208216

[70] Y. Xu, V. Mahendran, S. Radhakrishnan, ”Towards SDN-based fog comput-
ing: MQTT broker virtualization for effective and reliable delivery” in 8th
International Conference on Communication Systems and Networks (COM-
SNETS), 2016

[71] Y. Xu, V. Mahendran, S. Radhakrishnan, ”SDN docker: Enabling application
auto-docking/undocking in edge switch” in IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2016

[72] Y. Xu, V. Mahendran, S. Radhakrishnan, ” Internet of Hybrid Opportunistic
Things: A novel framework for interconnecting IoTs and DTNs” in IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS),
2016

[73] Y. Xu, V. Mahendran, S. Radhakrishnan, ” Fairness in Fog Networks: Achiev-
ing Fair Throughput Performance in MQTT-based IoTs” inn IEEE Consumer
Communications and Networking Conference Workshops (CCNC WKSHPS),
2017

[74] Y. Xu, V. Mahendran, S. Radhakrishnan, ” SoftDTN: A Software-Defined
Network Based DTN Routing Architecture”, Submitted to IEEE Communica-
tions Letters, 2017

[75] P. Loiseau, P. Gonalves, J. Barral, and P. V.-B. Primet, Modeling TCP
throughput: An elaborated large-deviations-based model and its empirical
validation, Performance Evaluation, vol. 67, no. 11, pp. 10301043, 2010.

[76] Glibc, ”The GNU C Library (glibc)”, [Online]. Available:
https://www.gnu.org/software/libc/

[77] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications.
Jones and Bartlett, Boston, 1993.

[78] J. Barral and P. Loiseau, ”Large deviations for the local fluctuations of
random walks”. Stochastic Processes and their Applications, vol. 121, no. 10,
pp. 22722302, 2011.

122

