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Abstract 
 

The	 term	 amyloid	 describes		 misfolded	 protein	 aggregates	 in	 which	 a	 highly	
ordered	 cross	 β-sheet	 pattern	 is	 adopted.	While	 there	 exist	 functional	 amyloids,	
the	 majority	 of	 known	 amyloids	 are	 associated	 with	 diseases	 in	 multicellular	
organisms.	 One	 example	 is	 the	 association	 is	 that	 between	 Amyloid	 β	 (Aβ)	 and	
Alzheimer’s	disease,	a	neurodegenerative	disorder	in	humans.	Several	mechanisms	
of	toxicity	have	been	proposed,	yet	a	lack	of	dynamic	data	prevents	a	full	molecular	
explanation	 for	 the	 toxicity	 of	 Aβ	 and		 other	 amyloid	 systems.	 Mutational	
effects		 often	 increase	 the	 degree	 of	 polymorphism	 in	 observable	 structures,	
compounding	 the	 issues	 with	 a	 molecular	 level	 examination.	 In	 this	 thesis,	
Molecular	Dynamic	(MD)	simulations	of	wild-type	and	mutant	sequences	of	both	
Aβ	 and	 Prion	 proteins	 are	 performed	 to	 explore	 the	 structural	 dynamics	 of	
amyloids	and	amyloid-like	systems.	The	data	generated	will	provide	physics-based	
explanations	of	the	traits	of	amyloids	on	a	molecular	level	which	may	guide	further	
physical	experimentation	into	the	mechanism	of	amyloid	toxicity	and	formation. 
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Chapter 1 - Introduction 
 

Organic life requires a complicated and balanced system of chemical machinery in 

order to exist and function. One primary component of this biochemical machinery is 

proteins. The sequence of amino acids in a peptide chain denotes the most rudimentary 

level of protein structure. These chains can then adopt specific spatial arrangements 

necessary for function via a process known as protein folding. The apparent disorder of 

the starting structure, coupled with the rapidity at which it adopts an ordered structure, 

leads to the conclusion that the energy landscape must have a funnel shaped topology.1,2 

While the funnel shaped energy landscape certainly provides an elegant explanation, it 

fails to fully describe observed dynamics of protein folding. Mutational experiments 

performed by Obran, Bryan et. al. on Streptococcus protein- G domains allowed for the 

creation of two distinct protein structures, with unique activity, that shared over 90% 

sequence homology.3-6 These studies underscore the need for a new paradigm for 

protein folding, in which the energy landscape possesses multiple funnels with 

pathways leading to multiple structures that exist in a dynamic equilibrium. This 

equilibrium may be shifted by mutation in the protein sequence and interaction with 

small molecules that change the structural dynamic. Due to the nature of the multi-

funnel landscape, multiple different folds may exist of the same sequence in a 

polymorphic system of structures, with the energy barriers between structures 

preventing rapid coversion.7 While methods of analyzing and fully mapping the energy 

landscape of protein folding are still in their infancy, computational probing using 
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molecular dynamics (MD) allows for the quick and robust analysis of small structural 

changes and their effects on the greater protein system.      

 

Often times shifts in a protein’s dynamic equilibrium is necessary for the function of a 

protein, such as in allosteric transitions. However, alternative pathways for protein 

folding can potentially lead to nonfunctioning or deleterious structures. Mutations or 

changes in environment that create these pathways are often associated with disease in 

humans. The formation and growth of highly structured aggregates of Tau and Amyloid 

β proteins has long been shown to be associated with Alzheimer’s disease.8,9 The 

aggregate formations, called amyloids, posses high structural stability largely due to the 

large number of hydrogen bonds, hydrophobic packing, and steric-zipper-like Van der 

Waals forces allowed by the cross β sheet pattern.10  

 

Due to the nature of the fibrilar aggregates, X-ray diffraction crystallography can only 

be used to determine a two dimensional structure.10-12 To enhance structural elucidation, 

solid state Nuclear Magnetic Resonance (ssNMR) may be employed to provide 

additional constraints. However, this still creates an undetermined system with more 

degrees of freedom than constraints.13 To bypass this limitation, molecular modeling is 

employed to generate an ensemble of structures that fit an energy function defined by 

experimental constraints. This allows for an ensemble of possible structures to be 

derived, the lowest energy of which may be deposited in the protein databank (PDB).14 

While these structures are invaluable to research, they provide little information on the 

dynamics of the protein systems. Many types of protein interactions occur on time or 
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size scales difficult to assess in a controlled environment and impossible to observe in a 

biological setting.10-12 To enhance the scope of experimentally derived structural data, 

computational methods may be employed to predict dynamics details on sub 

microsecond timescales with atomistic resolution. 

 

Common methods of computational prediction are molecular dynamics15-17 and Monte 

Carlo simultations.18,19 Monte Carlo simulations are valuable in that they may be used 

to assess the statistical weights of structures in an ensemble of states.20 While useful for 

assessing the shifts in population for protein structures, its field of use is beyond the 

scope of the research performed. Molecular dynamics may be used to generate realistic 

trajectories for proteins using Newtonian physics to calculate the forces.21 This allows 

for the assessment of structural qualities of proteins and the extrapolation of these 

qualities to their function in the protein folding and aggreagation22-24 The generated data 

may be used to identify key features to guide further experimentation.15,25 A more in-

depth exploration of computational methods and algorithms will be provided in 

Chapter 2: Molecular Dynamics Overview  

 

The consistency of molecular dynamics simulations is dependent on the accuracy of the 

empirical energy function that makes up the forcefield.26-28 Forcefields are designed and 

parameterized to model specific protein interactions, and the selection of improper 

forcefields will impact the reliability of the generated data. This makes the selection of 

the forcefield a critical step in the simulation protocals.29 For the experiments 

performed, the selection of forcefield was determined through root mean square 
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deviation (RMSD) analysis of structures in short simulations. The rationale behind this 

selection is that the deposited structures had to be highly energetically stable to be 

observable experimentally, and as such, without external perturbation structural 

characteristics should be preserved in the simulated trajectories. The forcefield that 

routinely generated the lowest RMSD for the pilot trajectories was CHARMM 27 with 

cmap corrections and CHARMM 36.26,30 Forcefields selection will be further explained 

in the method sections of the individual chapters.  

 

One of the questions where simulations can compliment experimentation is the role of 

polymorphism. While the cross β patterns are highly regular, there are multiple ways 

amyloid aggregates may be arranged into fibrilar super-structures. Many of the fibrilar 

morphologies may be observed simultaneously in experimental procedures.31 The 

ability of amyloid aggregates to exist as a system of polymorphic structures is of 

particular importance since amyloid fibrils can differ in growth rates and cytotoxicity 

based on their structure.32-34  

 

The	ensemble	of	polymorphs	is	shifted	by	mutations	in	the	peptide	sequence. The 

Iowa mutation of the Amyloid β protein is a key example of such a phenomenon. The 

arrangement of the β sheets is exclusively parallel in wild-type aggreagtes.35 However, 

when the Iowa mutation (D23N) is introduced in the sequence, aggregates can be 

observed forming with both parallel and antiparallel β sheet aragments.36 The antipallel 

Iowa mutant structures are observed slowly converting to parallel structures in vitro as 

illustrated in Figure 1.36 This behavior indicates that the Iowa mutation increases the 
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energy barrier of transition between antiparallel and parallel aggregates, creating 

observable metastable antiparallel aggregates. This change in equilibrium becomes 

important when considering the fact that the Iowa mutation is associated with more 

aggressive and early onset variants of Alzheimer’s disease.37,38 Thus an understanding 

of the transitional pathways between parallel and antiparallel aggregates and the factors 

changing the barrier of transition are both key to the development of chemical 

interventions to lessen the effects of Alzheimer’s Disease. A computational exploration 

of the structural properties of Iowa mutant and wild-type structures will be presented in 

Chapter 3: Stability of Iowa Mutant and Wild-Type Aβ-peptide Aggregates  

 

 

 

Figure 1: Antiparallel to parallel transition for Aβ Iowa mutant. Red marks the N-
terminal β –strand, blue the C-terminal β strand, and the salt bridge between reside 23 
and 27 is shown in orange (23) and purple (27). 

 

Iowa mutation illustrate the effect of substitution mutations on the structural dynamics 

of amyloid proteins. Deletion mutations can also cause unique changes in the 

observable fibrilar structures and their mechanisms of growth.39 A clear illustration of 

these effects can be seen in the Osaka mutation (ΔE22) of Aβ.40 This mutation, much 

like the Iowa mutation, is associated with both a unique structure and elevated 
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cytotoxicity.40 The structure adopted by Osaka mutant aggregates resemble a “Greek 

key” as opposed to the traditional hairpin structure as observed in Figure 2. However, 

unlike the Iowa mutation and observed structures, Osaka mutant aggregates may be 

used to seed wild-type peptides to adopt an Osaka mutant structure, but wild-type 

aggregates do not induce Osaka mutant peptides to form wild-type aggregate 

structures.41,42 This differs from the observations of the Iowa mutation in which all 

sequences eventually convert to a parallel hairpin structure.43  

 

 

Figure 2: A comparison of the greek key structure of the Osaka mutant (A) and the 
parallel hairpin structure of wildtype sequence Aβ. Important intersheet contacts are 
indicated by their Vander wall radius spheres and sequence number. Reprinted with 
permission from Stability of Osaka Mutant and Wild-Type Fibril Models. J Phys Chem 
B 119:13063-70. Copyright 2015 American Chemical Society. 

 

Up until this point, the discussion of amyloid structures has focused on systems derived 

from in vitro sources. This allows for a controlled setting in which the environment may 

be changed to observe the effects on nucleation.7 These studies all observe polymorphic 

systems of amyloid aggregates with predominantly either two-fold or 3-fold symmetry 

on the fibrilar axis. However, recent data provided by ssNMR on structures isolated 
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from patients’ brains post mortem indicate the presence of only a single structure in all 

regions of the brain with no observable polymorphism.44 Furthermore, these structures 

are patient-specific, with the two patients of the study showing aggregates of different 

morphologies. Since the nucleation of aggregates is relatively quicker than the initial 

aggregation, there must exist some mechanism for structural selection during the initial 

stage of aggregation. However, currently this mechanism is unclear, indicating the need 

for further understanding of the structural properties of amyloids. This question will be 

explored in Chapter 4:  Lack of Polymorphism in Aβ Aggregates from Patient 

Brains. 

 

 

		

	

	

	

Figure 3: Shows one of the struture of the patient derived system and the predomiate 3 
fold structure of in vitro derived system  

 

As previously discussed, structural data on fibrilar aggregates is typically generated as 

an ensemble of structures derived from experimental constraints. These structures are 

deposited in the Protein Data Bank (PDB) in order of increasing energy.14 This presents 

a problem for computational modeling of aggregate systems. Usually, the lowest energy 

may be considered the most statistically probable and a reasonable initial structure for 

simulation.34 However, since there are typically more intra-chain contacts in amyloids 

Patient-derived in-vitro 
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than inter-chain in the same layer,55 the intra-chain contacts will be weighted higher in 

the determination of the lowest energy structure. The structural stability of the 

aggregate super-structure is largely dependent on inter-chain contacts,55 thus the 

“lowest-energy” structure may not be the most physiologically relevant. Care must be 

taken in determining what structures from a fibrilar ensemble will be used as the basis 

for simulation as erroneous selection may bias the results. Previous research into the 

lack of polymorphism of patient-derived structures would be impacted by the potential 

bias introduced through exclusive use of low energy structures. As such, a follow up 

study was performed to investigate the structural variance observable in MD 

simulations using previously excluded structures from the ensemble. A comparison of 

structural dynamic differences of various NMR ensemble entries will be provided in 

Chapter 5: Stability Differences in the NMR ensembles of Aβ.         

 

While much of the current literature on amyloid aggregation focuses on the associated 

neurodegenerative diseases,45-47 mounting evidence suggests that amyloid fibrils can 

also be observed in a diverse set of tissue. An example of this range can be seen in 

systemic amyloidosis in which multiple organs can be observed concurrently forming 

cytotoxic amyloid plaques.48,49 The wide array of tissue that is affected by the amyloid 

plaques makes diagnosis difficult, with multiple disparate illnesses arising including 

congestive renal and cardiac system failure.50 Various different peptide chains are 

involved in the formation of systemic amyloidosis plaques, with the most common 

being the light-chain immunoglobulin κ protein.51 As previously discussed, the 

aggregation rate and structure is largely determined by the peptide sequence. The R61N, 
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G68D, and A84T mutations in the κ protein sequence are shown to enhance the 

aggregation rate resulting in structured, polymorphic aggregates while D82I is 

associated with the formation of largely unstructured, amorphous aggreagates.52-54 

Mutations are again shown to either enhance or reduce the number of structures 

observable in the polymorphic ensemble much like in the Iowa and Osaka mutation of 

amyloid β. This again illustrates the importance of understanding the physical 

interactions governing the aggregation of amyloid forming proteins. However, 

consideration of sequence mutations fails to explain the lack of polymorphism observed 

in amyloid β aggregate structures derived from patients suffering from Alzheimer’s as 

discussed in chapters 4 and 5. One	possible	explanation	is	that	amyloid	structures	

can	self-replicate	and	propagate,	i.e.	be	infectious,	similar	to	the	observed	

mechanisms	of	growth	in	misfolded	prion	structures. 

 

Figure 4: Dimer aggregate of light-chain κ protein showing the location of the various 
mutations in the sequence 

 

One possible explanation can be seen when considering the method of pseudo-

infectious method of proliferation employed by misfolded prion structures. Prions are 

found in a diverse set of organisms and are responsible for the development of neuronal 
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synapses.56-58 An important property of prion proteins is the induction of fold that 

occurs when misfolded prion protein, denoted as Scrapie prion protein (PrPSC), interact 

with healthy cellular prion protein (PrPC) leading to the conversion of PrPC into PrPSC.58 

This phenomenon creates a system in which misfolded prions are communicable upon 

ingestion of neuronal tissue from an “infected” organism.58,59 Diseases resulting from 

the misfolded state can be observed in humans (Creutzfeldt-Jacob) as well as other 

animals (Mad Cow Disease) and can often times jump the species barrier.58,59 While 

limited experimental evidence exists as to the exact structure of the misfolded prions, 

there is an associated drop in helicity (43% in healthy prion compared to 30% in 

misfolded) and a dramatic increase in β sheets (3% in healthy prions compared to 43% 

in misfolded).60-67 The elevated β sheet content in misfolded prion proteins and 

subsequent aggregation is similar to properties observed in amyloid aggregates. What’s 

more, prions can be induced to fully form amyloid aggregates via removal of the 

glycosylphosphatidylinositol (GPI) anchor at the C terminus.58,59 These findings suggest 

a common mechanism of aggregation and stabilization of aggregates which could be 

identified partially by an enhanced understanding of the physical properties of protein 

aggregate structures. Furthermore, the resulting data on how one pseudo-infectious 

predominate structure is generated using external cofactors could be used in refining the 

explanation of lack of polymorphism observed in certain amyloid systems. A discussion 

of this shared mechanism will be presented in Chapter 6: MD Simulations of RNA-

Mediated Prion Conversion. 
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Much of this text will focus on the structural dynamics and degree of polymorphism 

observable for amyloids and how they are affected upon distinct mutational and 

environmental changes. The effects of RNA interaction with prion protein will also be 

explored to provide an example of amyloid like mechanisms that exist throughout many 

proteins in the body that leads to one dominate structure. Note that the dynamics of this 

protein-RNA interaction can also be dramatically shifted with small mutations in the 

peptide sequence. The D178N mutation can be shown to be associated with an elevated 

risk of the formation of cytotoxic prion structures, while the M129V mutate prions 

possess a resistance to the misfolding mechanism.68,69 While the initial stages of prion 

conversion to infectious structure, alpha helical breakdown, can be observed in 

timescales accessible using computational methods, the formation of ordered β sheet 

structures occur far slower, and are difficult to observe without the usage of specialized 

expensive hardware.56,70,71 This puts these and other properties of protein structural 

dynamics outside the scope of computational methods available to traditional academic 

institutions, underscoring the need for novel methods to efficiently sample the structural 

landscape. The results of pilot studies investigating mutational effects on prion 

structural dynamics as well as a discussion on potential future techniques that may be 

used to expand the scope of the provided research will be presented in Chapter 7: 

Further Mutational Effects on Aggregation and Outlook on Computational 

Methods. 

  

The contained research seeks to utilize existing methods in molecular dynamics to 

explore the structural properties of amyloid and amyloid-like aggregates. Comparison 
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of trajectories generated from Iowa mutant sequence structures to those of wild-type 

sequence is used to determine the effects of the D23N mutation and how it shifts the 

stability of antiparallel aggregates to be metastable increasing the number of 

polymorphic structures. Subsequently, an evaluation of in vitro and patient-derived 

structures is performed to determine potential reasons for the selection of a single 

structure observed in patients from the polymorphic ensemble of structures in-vitro. A 

comparison of structures from the ensemble deposited for in-vitro and patient-derived is 

then used to show the importance of considering structures outside the lowest energy 

state. Finally, an analysis of prion proteins interacting with RNA snippets is shown to 

illustrate the initial stages of misfolding and aggregation observed following an 

amyloid-like mechanism and presents a mechanism for the selection of one aggregate 

structure from an ensemble of potential structures. These predictive studies can then be 

used as guides for future experimentation to focus the studies on key structural regions 

for the disruption of the aggregation process. 
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Chapter 2 - Molecular Dynamics Overview 

Protein structural determination is an arduous task due to the need for structures of 

relatively high rigidity for examinations via experimental methods.72-74 This rigidity is 

induced by various methods to enhance the sum of forces locking the protein in its 

folded state and eliminating entropic motion.75 While this process is useful for pairing 

down the structural ensemble to a manageable level, it is not without drawbacks. 

Evidence suggests that evolutionary pressures in organisms favor optimization of 

activity, not stability, for protein selection.76-80 Thus, experimental methods that favor 

the selection of stable structures may not provide a complete picture of a protein’s 

structural ensemble. Physics based computational predictions can therefore be 

employed to expand the understanding of the dynamic nature of proteins from initially 

rigid structures.  

 

One common method of structural prediction is through the use Molecular Dynamics 

(MD) simulations. MD simulations involve a process by which iterative numerical 

calculations are used to calculate the motion of a molecular system from the 

instantaneous forces generated from classical Newtonian mechanics. Typically MD 

predictions are made assuming the Born-Oppenheimer approximation of nuclear 

motion, that is to say quantum mechanical effects are ignored and atoms, or particles, 

are considered to be a single point mass.81 With this assumption, the relationship 

between mass of particle I, denoted by 𝑚! , and velocity !!!
!"

, where 𝑟! is a three 

dimensional vector is given by equation 1.15  
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!!!
!"
= !!

!!
    (1) 

 

with 𝑝! being the momentum of particle i. The net force 𝐹!  exerted on particle i can be 

described as the negative gradient of a potential energy function (𝑈) with respect to the 

position of the particle as denoted by equation 2.15 

 

𝐹! = − !"
!!!

    (2) 

 

This allows for the Newtonian equation of motion to be expressed for the particle as 

equation 3.15 

 

!!!
!"
= 𝐹!      (3) 

 

Positional changes are calculated on a finite timestep 𝛥𝑡  and can be expressed as the 

following Taylor series expansion (for a simplistic single dimensional model along the 

x axis) as shown in equation 4.15 

 

𝑥 𝑡 + 𝛥𝑡 = 𝑥 𝑡 + !" !
!"

𝛥𝑡 + !!! !
!!!

!!!

!
 +⋯    (4) 

 

where !" !
!"

 is the particle’s velocity and   !
!! !
!!!

 is the particle’s acceleration. Typically 

molecular mechanics numerical solutions are only calculated for velocity and 

acceleration, with other higher order terms approximated empirically.15 From this 
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simplification, the force of the simple single dimension system may be expressed as 

equation 5.15 

 

!!! !
!!!

= !!
!

    (5) 

 

Higher order terms in the Taylor series may be approximated as being equal to 0, 

however this leads to a lack of conservation of energy with significant drift of total 

energy for long time simulations.15  

 

Since integration is a relatively costly computationally process, there exists numerous 

methods to algorithmically integrate the equation for motion. The Verlet algorithm at 

timestep 𝑡 uses positional data from the previous step, 𝑥(𝑡 − 𝛥𝑡), and acceleration data 

at time t, !
!! !
!!!

 , to calculate the new positions for the subsequent step, 𝑥(𝑡 + 𝛥𝑡) as 

illustrated in equation 6.82 

 

𝑥 𝑡 + 𝛥𝑡 = 2𝑥 𝑡 − 𝑥 𝑡 − 𝛥𝑡 + !!! !
!!!

𝛥𝑡!    (6) 

 

This method of integration is employed in GROMACS and heavily optimized in version 

5.0 onward due to enhanced accuracy at the expense of computational performance.83 A 

variation of this integrator is the leap-frog algorithm, in which positional data at time 

(t), 𝑥 𝑡 , and velocities data from time 𝑡 − !"
!

, !" !
!"

𝑡 − !"
!

, are used to 



	 16 

simultaneously update positional and velocity data lists.84 For positional data the 

following algorithm is used 

 

𝑥 𝑡 + 𝛥𝑡 = 𝑥 𝑡 + !" !
!"

𝑡 + !"
!
𝛥𝑡    (7) 

 

For velocity data is calculated using equation 8.84 

 

!" !
!"

𝑡 + !"
!

= !" !
!"

𝑡 − !"
!
+ !!! !

!!!
𝛥𝑡    (8) 

 

For the performed simulations of this work, a leap-frog algorithm was selected for the 

integrator as the increased accuracy of a Verlet integrator was not shown to affect the 

results in a discernable manner, thus selection was made based on performance 

optimization.  

 

Methods of calculating potential energy functions are also an important aspect of 

molecular dynamic simulations. These functions are parameterized to approximate 

energy landscape while minimizing the needed degrees of freedom, allowing for both 

accurate and rapid predictions.85 One notable popular potential function is the 

CHARMM forcfield.26,86,87 While previous iterations of CHARMM used a different 

method of algorithmically predicting the potential-energy landscape, iterations after 

CHARMM27 use the scheme outlined in equation 9.26 

 

𝑈!"#$%% = 𝑈!"#$%$ + 𝑈!"!#!"#$#    (9) 



	 17 

 

in which 𝑈!"#$%$ is defined as equation 10.26 

 

𝑈!"#$%$ = 𝑈!"#$ + 𝑈!"#$% + 𝑈!" + 𝑈!"!!"#$% + 𝑈!"#$%#&$ + 𝑈!"#$    (10) 

 

𝑈!"#$ is a function of positional data bonded pairs 𝑏 and 𝑏! as well as parameterized 

force constant 𝐾! shown in equation 11.26 

 

𝑈!"#$ = 𝐾! 𝑏 − 𝑏! !
!"#$%     (11) 

 

𝑈!"#$% is a function of angular data for the bonded pairs 𝜃 and 𝜃! as well as 

parameterized force constant 𝐾! shown in equation 12.26 

 

𝑈!"#$% = 𝐾!  𝜃 − 𝜃! !
!"#$%     (12) 

 

𝑈!" is a function of positional data 𝑏!!! and 𝑏!!!! as well as parameterized force 

constant 𝐾!" shown in equation 13.26 

 

𝑈!" = 𝐾!" 𝑏!!! − 𝑏!!!! !
!"#$!!"#$%&'     (13) 

 

𝑈!"!!"#$% is a function of dihedral angular data 𝜑, phase shift data 𝛿, and periodicity 𝑛 

as well as parameterized force constant 𝐾! shown in equation 14.26 
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𝑈!"!!"#$% = 𝐾!((1+ cos 𝑛𝜑 − 𝛿 )!"!!"#$%     (14) 

 

𝑈!"#$%#&$ is a function of out of plane angular data 𝜔 and 𝜔! as well as parameterized 

force constant 𝐾! shown in equation 15.26 

 

𝑈!"#$%#&$ = 𝐾! 𝜔 − 𝜔! !
!"#$%#&$     (15) 

 

𝑈!"#$ is a correction term derived from backbone dihedral angular data 𝜙 and ψ for 

each residue. This is employed to more closely model experimental data using equation 

16.26 

 

𝑈!"#$ = 𝑢!"#$(𝜙,𝜓)!"#$%&"#     (16) 

 

𝑈!"!#"!$%$ is defined as the summation of two terms shown in equation 17.26 

 

𝑈!"!#"!$%$ = 𝑈!" + 𝑈!"!#    (17) 

 

where 𝑈!" is defined as the Lennard-Jones potential which is a function of the distance 

between mass centers i and j, 𝑟!", as well as forcefield specific parameters 𝜀!" and 𝑟!"!"# 

shown in equation 18.26 

 

𝑈!" = 𝜀!"!"!#"!$ !!"#$
!!"
!"#

!!"

!"

− 2
!!"
!"#

!!"

!

    (18) 
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𝑈!"!# is the electrostatic potential which is a functiom of distance between mass centers 

i and j, 𝑟!", the charges of these mass centers, 𝑞! and 𝑞!, and forcefield parameter 𝜖 

shown in equation 19.26 

 

𝑈!"!# =
!!!!
!!!"!"!#"!$ !"#$     (19) 

 

While many of the definitions of the potential function appear mathematically simple, 

each atom pair in a simulation theoretically represents multiple mathematical 

operations. This means performance decreases exponentially with system size, 

necessitating the need for a drastic reduction of operations. Typically cutoff schemes 

may be employed in which atoms outside of a predefined cutoff region are not 

considered for potential calculation. A “Simple-Cutoff” scheme involves the use of a 

circle of radius r. If 𝑟!" > 𝑟 the potential for a given interaction is set to zero.83 Note that 

due to differences between nonbonded and bonded interaction distance, two separate 

circles must be generated for each type of interaction.83 While more sophisticated 

methods of cutoff determination exist, they showed no change in accuracy for the 

system of study and a drastic decrease in performance.  Thus they will not be discussed 

in this text. 
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Chapter 3 - Stability of Iowa Mutant and Wild-Type Aβ-peptide 

Aggregates 

The following chapter was published in similar form in the Journal of Chemical Physics 

by the author of this dissertation as the following article: Stability of Iowa Mutant and 

Wild Type Aβ-Peptide Aggregates. J. Chem. Phys. 141:175101. All text and figures are 

taken with the permission of the publisher. 

Introduction 

Deposits of amyloids are associated with a growing number of human illnesses. An 

example is Alzheimer’s disease8, which is correlated with the appearance of fibrils in 

patient brains that are formed by β-amyloid (Aβ) peptides88. The amyloid deposits 

consist of elongated spines made of many β-sheets strands8 held together by a dense 

hydrogen-bonded network and steric-zipper-like van der Waals and hydrophobic 

forces89, which in turn depends on shape complementarity and the organization of β-

sheets into either a parallel or antiparallel structure90. Amyloid-forming peptides, such 

as Aβ, can simultaneously assemble into fibrils with different morphologies91. Such 

fibril polymorphism arises from differences in packing of the peptides into parallel and 

antiparallel β-sheets, proto-filaments, filaments, and fibrils92; and this polymorphism is 

important because the various fibril morphologies differ in growth rate and toxic 

potential93-95. Insight into this relationship is therefore crucial for understanding the 

disease mechanism, which in turn may open the way to new therapeutic strategies.  

 

One possible avenue to probe this relationship is by comparing the wild-type with the 

various pathogenic mutations that are known to modify the physicochemical properties 
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of the peptide96 and to cause early onset of Alzheimer’s disease. One example of these 

pathological Aβ mutants is the so-called Iowa mutant (D23N Aβ), which has higher 

neurotoxicity than wild-type Aβ43. While the existing experimental structures of wild-

type Aβ are built  out of in-register parallel β-sheets35, recent in vitro studies indicate  

Aβ (1–40) Iowa mutant (D23N) fibrils can contain either parallel or antiparallel β-

sheets97. The antiparallel D23N-Aβ1–40 fibrils propagate less efficiently in seeded fibril 

growth and were found to be thermodynamically meta-stable, transient, intermediates 

that convert over time into fibrils with parallel structure. Evidence for this conversion 

results from measurements of intermolecular dipole-dipole couplings among 13C labels 

at A21 methyl carbons, however,  there are no experimental structures of the parallel 

fibril Iowa mutant deposited in the Protein Data Bank98.  The larger stability of parallel 

configurations has been related to more ordered residues, longer β-strand segments, and 

interactions between cross-β units in parallel D23NAβ1–40 fibrils than found in 

antiparallel structures98. Additional factors that lead to a predominance of parallel 

structures are the more efficient packing of hydrophobic side chains at the C-terminal 

interface in the two fold and/or polar zipper interactions involving Q15, N23, or N27 

side chains98. 

 

The solid state NMR data of the Iowa mutant fibrils suggests that antiparallel cross-β 

motifs could also exist in other cases98. As antiparallel cross-β motifs also exist and are 

believed to be thermodynamically stable in polyglutamine99, this NMR data  casts 

further doubt on the widely accepted assumption that amyloid fibrils are  built out of in-

register parallel β-sheets100. Instead, the data suggest coexistence of parallel and 
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antiparallel conformations in Aβ. Even for wild-type Aβ where the existing 

experimental structures are built only out of in-register parallel β-sheets, there is 

evidence that the wild-type could exist to some extent in an antiparallel manner101. 

Hence, while both forms are cytotoxic to neuronal cell cultures98, it is reasonable to 

conjecture that the different pathologies are related to the different probabilities that 

both forms are observed in wild-type and Iowa mutant.   

 

Assuming such a scenario, it becomes important to understand the polymorphism and 

conformational stability of Aβ peptides. For this purpose, we have performed a series of 

molecular dynamic simulations of antiparallel and parallel two-folds (stacks) of Aβ15−40 

and D23N Aβ15–40 fibril-like oligomers.  Such molecular dynamics stability studies 

suffer from the problem that the energy landscape of amyloid aggregation is rugged. 

The achievable scope of protein aggregation102 computer simulations is limited as 

aggregation and conversion between forms of aggregates happen on time scales not 

accessible by molecular dynamics. One way to circumvent this problem is through use 

of stability studies, which do not directly model amyloid assembly but provide indirect 

input on the various factors that modulate fibril formation. An evaluation of the stability 

of the pre-formed initial structures requires that the system evolves with its natural 

kinetics. This excludes the use of enhanced sampling techniques such as generalized 

ensemble sampling and replica exchange molecular dynamics. Since these techniques 

rely on artificial dynamics103-105, they make it difficult to interpret the changes in 

stability observed during the simulation. Instead, we test in the present work a different 

approach where the computational costs are lowered by using reduced solvent masses 
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that lower friction and enhance conformational sampling106,107. Previous studies have 

also shown that reducing the masses of peptide side chain atoms in combination with 

solvent mass can enhance peptide conformation sampling107,108 and, in the present 

paper, we evaluate the efficiency of this approach in the context of protein aggregation. 

The approach is similar to another method for increasing sampling efficiency, namely 

raising the temperature of the system. However, unlike that method it avoids the 

problem that hydrophobicity is strongly temperature dependent which, in the case of 

high temperature simulations, may lead to significantly altered dynamics109. Mass-

scaling also will lead to artificial dynamics, but we conjecture that it leads to a smaller 

disturbance of the system and therefore smaller deviations from the natural dynamics. 

Using this improved sampling technique we then explore how the differences in 

stability between parallel and antiparallel forms are modulated by the sequence of 

amino acids in both wild-type and Iowa mutants.  

Materials and Methods 

In our simulations, we investigate the stability of aggregates of the wild-type and the 

Iowa-mutant of Aβ, both in configurations with parallel β-sheets and such with anti-

parallel β-sheets. The four start configurations are decamers built from two U-shaped 

penta-peptides with C terminal to C terminal interfaces whose structures were derived 

from the NMR amyloid fibrils (PDB codes, 2LNQ and 2LMO). The fibril-like 

oligomers used as starting configurations are made out of residues 15-40 for both 

Aβ15−40 and D23N Aβ15–40 peptides, which are capped with acetyl and amide groups in 

order to have equal length in the simulated molecules. This helps to avoid systemic 

error when comparing differences in the stability of the preformed oligomers of Aβ and 
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its Iowa mutant. We assume that the parallel D23NAβ1–40 oligomer structures closely 

resemble that of the parallel WT-Aβ1–40 structures, and the anti-parallel D23NAβ1–40 

oligomers closely resemble the anti-parallel WT-Aβ1–40. We thus replace the residue 

N23 of the experimentally known D23NAβ15–40 fibril (PDB id of 2LNQ) with D to 

generate the anti-parallel wild-type Aβ15–40  fibril-like oligomer.  The mutation is done 

by replacing the side chains of the targeted residues and keeping its original backbone 

conformations. The parallel D23N Aβ15–40 fibril model is generated in the same manner 

by replacing residue N23 with D in the experimentally determined wild-type Aβ10–40 

fibril (PDB id of 2LMO) structure and removing residues 10-14. The double-layered 

model of D23N-Aβ15-40 is constructed from the experimentally derived single layer by 

setting the interlayer distance between two pentamers to values between 9 Å, which is 

in the range of values observed via x-ray8. The two β-strands belonging to each peptide 

are offset from one another along the oligomer axis by roughly 5 Å as in the 

experimental structure of the parallel wild-type Aβ10-40 double-fold.  This allows for a 

more meaningful comparison between the two different structural models. The interface 

in the antiparallel model was then staggered to create a steric zipper that minimized 

clashes between residues. This was done by maximizing the distance between the initial 

side chain distances and orienting the stagger such that the bulky phenylalanine was 

positioned between glycine and leucine110. 

 

We ran several long all-atom explicit water molecular dynamic simulations in order to 

explain the structural and energetic differences between the parallel and antiparallel 

arrangement of the wild-type and Iowa mutant aggregates. Our molecular dynamics 
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simulations use a combination of the CHARMM27 force field with CMAP 

corrections86,87,111 with explicit water (TIP3P)112,113, a common choice for exploring 

amyloid peptide aggregation114,115, as implemented in the GROMACS program version 

4.6.2116. Hydrogen atoms are added with the pdb2gmx module of the GROMACS suite. 

The start configurations for all proteins are put in the center of a cubic box, with at least 

12 Å between the solute and the edge of the box99. We enforce periodic boundary 

conditions in all three directions to simulate a pseudo-infinite amyloid. In order to 

account for the periodicity, electrostatic interactions are calculated with the PME 

algorithm117-118. We use a time step of 2 fs. Hydrogen atoms are constrained with the 

LINCS119 algorithm,  while the Settle algorithm is used for water120. The temperature of 

310 K is kept constant by the Parrinello-Donadio-Bussi algorithm121 (τ = 0.1 fs) which 

is similar to Berendsen coupling but adds a stochastic term that ensures  a proper 

canonical ensemble121,122. In a similar way, the pressure is kept constant at 1 bar by the 

Parrinello-Rahman algorithm123 (τ = 1 fs). After energy-minimizing the solvated start 

configuration using first the steepest descent method, followed by conjugate gradient, 

the system is equilibrated in two steps of 500 ps, first in an NVT ensemble and secondly 

in an NPT ensemble at 1 bar. After equilibration, 300 ns trajectories are analyzed for 

each system to monitor how the oligomer structures evolve with time; however, 

averages are only calculated over the last 100 ns to ensure equilibrium conditions. Data 

are saved at 4.0 ps intervals for further analysis. For each system, we run three distinct 

simulations with different initial velocity distributions. Since they start from the same 

initial structure, these three trajectories are correlated, and error estimates from standard 

deviations therefore have to be taken with a grain of salt. However, comparing the three 
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trajectories gives some indication for reaching equilibrium and guarantees three 

maximal independent sets of measurements.  

 

Two sets of simulations were run for each of the four cases: one with the physical mass 

of the atoms in the molecules, and one where these masses are scaled by a factor of 0.5. 

Since the viscosity is proportional to mass, the mass-scaling leads to a reduced viscosity 

which in turn allows faster sampling of configurations. Comparing the two sets of 

simulations allows us to quantify the improvement in sampling efficiency. 

 

The molecular dynamics trajectories are analyzed with the tool set of the GROMACS 

package. Specifically, we monitor conformational changes and stability of the oligomer 

models through the time evolution of root means square deviations of the Cα atoms 

(RMSD), root mean square fluctuation (RMSF), hydrophobic contacts distances and 

hydrogen bonds, measured with the g_hbond and g_dist modules in GROMACS.  

Hydrogen bonds are defined by a distance cutoff between donor and acceptor of 0.36 

nm and an angle cutoff of 30°.  Configurations are visualized using PyMOL124.  

Result and Discussion 

Sampling Efficiency of Protein Aggregate Simulations 

We begin our analysis by comparing molecular dynamics simulations of the four 

systems (wild-type and Iowa mutant, with either parallel or anti-parallel β-sheet 

arrangement) that use physical masses with simulations. The physical masses are scaled 

by a factor of one half, corresponding to a reduced viscosity of the system.  As a metric 

to evaluate the efficiency of the two methods, we have calculated the root-mean-square 
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deviation (RMSD) to the start configurations as reference.  The expectation is that the 

RMSD increases faster in the systems with scaled mass than in the control system, with 

both eventually approaching a similar steady state. Such behavior is indeed observed for 

the antiparallel Iowa mutant protein system, where both the control system and the 

scaled mass simulations approach a final RMSD value of approximately 6 Å (Figure 

5A). This value is reached in the scaled mass simulations after only 7 ns while the 

control, run with full physical mass, requires 104 ns to reach this value (i.e. in this 

example we find an approximately 15 fold increase in efficiency). The improvement is 

even more dramatic in the case of the wild-type antiparallel model where the control 

system within 300 ns of simulation time never reaches the RMSD value of about 6.1 Å, 

whereas the scaled mass simulation approaches this value after only 30 ns (Figure 5B). 

Assuming again an increase in efficiency by a factor of 15, the control system would 

only approach this value after 450 ns, much longer than the simulation time of 300 ns 

for our systems. A qualitatively similar picture is also observed for the two systems 

with parallel sheet organization (Figure 5 C and D). However, the gain in efficiency in 

both systems (wild-type and mutant) is not large enough that the systems would 

approach a region of constant RMSD. This is not surprising, as the parallel 

configurations are expected to be much more stable.  
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Figure 5: A comparison of the RMSD and RMSF values for Iowa mutant and wild-type 
with physical mass (Green/Tan) and with scaled mass (Red/Blue). There is an 
observable increase in the models variance with time in the case of scaled mass 
simulations, and thus an increase in the overall sampling efficiency. (A) and (E) show 
the RMSD and RMSF respectively for antiparallel Iowa mutant (APIM). (B) and (F) 
show the RMSD and RMSF respectively for antiparallel wild-type (APWT). (C) and (G) 
show the RMSD and RMSF respectively for parallel Iowa mutant (PIM). (D) and (H) 
show the RMSD and RMSF respectively for parallel wild-type (PWT) 

 

Note that in all cases similar root-mean-square-deviation values are approached. 

Comparison of the root-mean-square fluctuation (RMSF) values for the last 100 ns of 

simulations (Figure 5 E-H) between the antiparallel and parallel full mass (green and 

tan respectively) and the half mass (red and blue respectively) shows little difference in 

the residue behavior of the equilibrated structure. From this, we conclude that the mass 

scaling does not alter the behavior of the overall structure to a large degree. We 

conclude that mass scaling can indeed enhance the sampling efficiency in simulations of 

protein aggregates, albeit more work needs to be done to optimize the mass tuning. This 
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will be explored in future studies. In the present work, we use only our reduced mass 

simulations for further analysis, as the sampling efficiency in all four cases is higher 

than in the regular molecular dynamics runs. 

 

Structural Stability of Wild-Type and Iowa Mutant Aggregates 

Following the trajectories of the four systems, we find that the Aβ15–40 and D23N Aβ15–40 

decamers have very similar dynamic behavior. Both parallel β-sheet variants (Figure 

5C and D) change less in their root-mean-square deviation values than the anti-parallel 

β-sheet variants (Figure 5A and B), but the RMSD values indicate that there are no 

significant differences in stability between the fibril-like oligomers of Aβ15–40 and D23N 

Aβ15–40. A more sensitive quantity is the root-mean-square fluctuation (RMSF), which 

allows one to distinguish between flexible and stable residues. The average RMSF is 

calculated for 6 of the 10 peptide-chains for the last 100 ns in each system, with the 1st, 

5th, 6th, and 10th chains removed due to aberrant flexibility caused by increased surface 

exposure. Both conformations of mutant and wild-type are highly flexible at the ends 

and in the loop regions of the protein strands, and much less so in the β-strand regions. 

The C-terminal region has a high RMSF value that can be explained by its C-C terminal 

bilayer hydrophobic interactions resulting from an increased solvent exposure. While 

less pronounced, high RMSF values are observed also for the three N-terminal residues.   

Face-to-face interactions observed in β1 (residues 18-22) and C-terminal to C-terminal 

hydrophobic interactions between adjacent β2 layers (residues 30-38) appear to lead to 

similar  relative stability in both antiparallel systems (Table 1) as these residues have 

the  the same average RMSF value of 1 Å in both antiparallel systems.  On the other 
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hand, the C-terminal to C-terminal interactions are more stable in the parallel form of 

both mutant and wild-type, leading for the residues 30-38 to  a RMSF value of less than 

1 Å (Figure 5). This suggests that this C-terminal to C-terminal interface is responsible 

for the increased stability that is observed experimentally for the parallel system of Aβ 

when compared to antiparallel Aβ. Note that the β1 region of both parallel systems 

(residues 18-22 in Figure 5) has an average RMSF of around 1.1 angstroms, which is 

more than the values observed in the antiparallel system. This is likely an artifact 

resulting from our truncation of the four ordered residues per peptide strand in the 

parallel model causing increased solvent exposure to normally buried residues. 

 

 In all four cases, the oligomer models for the Aβ wild-type and Iowa 

mutant keep the general characteristics and topologies of their initial conformation 

(Figure 6). The β-sheet-loop-β-sheet topology is stable in all chains of all oligomers 

and the hydrophobic interface between the U-shaped stacks stays intact throughout the 

simulation. However, the outer chains and the turn regions have an enhanced flexibility 

as shown in the above RMSF analysis.  Hence, both parallel and antiparallel 

organizations are stable and therefore can contribute to the polymorphism during 

amyloid fibril formation. Previous simulations of the U-turn polymorphism of Aβ17-42 

by Miller et al 94 also showed that both parallel and antiparallel arrangements are stable 

and can contribute to a polymorphic population.  
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Figure 6: The structures of Aβ wild-type and Iowa mutants at end of 300 ns simulation 
compared with the corresponding minimized start configurations of the three 
independent trajectories over of (A) D23N Aβ15–40 antiparallel β-sheet where green is 
starting configuration and red is the structure after 300ns of simulation; (B) wild-type 
Aβ15–40 antiparallel β-sheet where blue is starting configuration and tan is the structure 
after 300ns of simulation; (C) D23N Aβ15–40 parallel β-sheet where green is starting 
configuration and red is the structure after 300ns of simulation and (D) wild-type 
Aβ15–40 parallel β-sheet where blue is starting configuration and tan is the structure 
after 300ns of simulation. 

 

 

Table 1: Average hydrophobic residues distance of the C-terminal to C-terminal 
interactions of β-sheets in adjacent layers measured in angstroms. The standard 
deviation (calculated from averaging over three trajectories for the last 100 ns of the 
simulation)  is shown in parenthesis.  

	

C to C Interface Dist Dist    
Antiparallel Iowa Mutant Start Average Run 1 Run 2 Run 3 

G29-E22' 10 13.4 (0.6) 13.5 (0.5) 14.4 (0.7) 12.5 (0.7) 
I31-F20' 9.6 8.9 (0.4) 8.8 (0.3) 9.2 (0.4) 8.7 (0.4) 

G33-V18' 9.9 8.31 (0.4) 8.6 (0.4) 8.1 (0.4) 8.3 (0.4) 
M35-K16' 9.5 10.5 (0.5) 11.7 (0.5) 10.4 (0.4) 9.4 (0.6) 

      
Antiparallel Wild Type Start Average Run 1 Run 2 Run 3 

G29-E22' 10.3 11.7 (0.6) 12.1 (0.5) 10.7 (0.5) 12.4 (0.7) 
I31-F20' 10 8.6 (0.3) 9.2 (0.4) 7.8 (0.3) 8.7  (0.3) 

G33-V18' 9.6 8.2 (0.4) 8.7 (0.4) 7.8 (0.4) 8.1 (0.4) 
M35-K16' 10.6 9.9 (0.4) 11.2 (0.4) 9.2 (0.4) 9.2 (0.5) 

      
Parallel Iowa Mutant Start Average Run 1 Run 2 Run 3 

I31-M35' 8.4 9.8 (0.3) 9.7 (0.4) 9.7 (0.3) 10.1 (0.3) 
G33-G33' 7.2 8.1 (0.4) 8.2 (0.4) 8.0 (0.3) 8.3 (0.4) 
M35-I31' 8.2 9 (0.3) 8.9 (0.4) 9.0 (0.3) 9.0 (0.3) 

      
Parallel Wild Type Start Average Run 1 Run 2 Run 3 

I31-M35' 8.4 10 (0.4) 9.9 (0.3) 9.8 (0.3) 10.3 (0.5) 
G33-G33' 7.4 8.4 (0.4) 8.0 (0.3) 8.2 (0.4) 9.1 (0.5) 
M35-I31' 8.2 9.2 (0.4) 9 (0.4) 9.1 (0.4) 9.6 (0.4) 
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Energetics of Wild-Type and Mutant Aggregates 

The above findings from visual and RMSF analysis are also confirmed by an analysis of 

side chain contacts, hydrogen bonds, and the secondary structure content. The fibril-like 

oligomers of both the Aβ wild-type and Iowa mutant have tightly packed β-sheets with 

complementary side chains acting as a steric zipper89,125 along the C-terminal interfaces 

of the double layer interface (see Figure 7A and B). We have monitored the distance 

between the Cα atoms complementary side-chains of the first β-sheet to the second β-

sheet for the last 100 ns of the simulation in order to get further insight into their role in 

stabilizing the four different simulated oligomers. Our analysis of the data is shown in 

Table 2. The distances between G33−G33, and M35−I31 residues in the parallel β-sheets 

are smaller than 9.5 Å, while the distance for the I31−M35 pair is slightly larger than 10.0 

Å. These distances are close to the experimental values of 8–11 Å89, indicating a good 

fit between the interacting amino acid side chains, which keeps the oligomer intact 

during the simulation. The contacts between the residues G29−E22 in the antiparallel β-

sheet model is larger than the experimental value of 8–1189 and increases by about 2 Å 

during the simulation, indicating poor packing between these residues. However the 

remaining pairs of residues that are involved in the C-terminal β-sheets interface have a 

tight inter-digitation, keeping the structure in both wild-type and Iowa mutant stable.  
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Figure 7: Face-to-face interactions between β-sheets of a single fold and side-chain 
interactions in the double fold along the interface between C-terminal β-sheets for 
decamers of Aβ wild-type and Iowa mutant. (A) Side chain interactions of the double 
fold along the C-terminal β-sheets interface residues I31/M35, G33/G33 and 
M35/I31 of parallel β–sheet double fold and (B) Side chain interactions of the double 
fold along the C-terminal β-sheets interface residues G29/E22, I31/F20, G33/V18 and 
M35/K16 of antiparallel β–sheet double fold. The side-chains involved in the 
complementary interactions are shown in sphere with yellow spheres representing the 
face-to-face interactions between β-sheets of the single fold residues and brown spheres 
representing C-C terminal sidechain interactions between protein layers. Parallel 
systems are shown in green and antiparallel are shown in blue (C) Face-to-face 
interactions between β-sheets of the single fold residues Q15/V36, L17/L34, 
F19/I32 and A21/A30 of Aβ15–40 parallel β–sheet, (D) Face-to-face interactions 
between β-sheets of the single fold residues Q15/V36, L17/L34, F19/I32 and 
A21/A30 of D23NAβ15–40 antiparallel β–sheet  

 

Another type of interaction that is important for stabilizing the fibril-like oligomers is 

the face-to-face interactions between β-sheets in each single fold (see Figure 7C and 

D). Table 2 displays the results of the face-to-face interaction dynamics for the last 100 

ns of the simulation.  Among selected pairs of residues for both the parallel and 

antiparallel experimental oligomer models, the distances increase during the simulation 

for the antiparallel conformation more than for the parallel. The face-to-face contacts in 

the parallel structure tighten during the simulation by about 1 angstrom. This may be 



	 34 

due to a better steric fitting of adjacent side chains in parallel conformations than in 

antiparallel ones that have been proposed by Antzutkin et al90.  Additional stability 

results from the ordering of residues 10-14 in the parallel structure while the same 

residues are disordered in the antiparallel structures35,98. As the face-to-face distance 

indicates how well the side chain packing is, our simulation points out differences 

between the two  systems. These differences are not enough by themselves to establish 

differences in thermodynamic stability; however, they point to face-to-face interactions 

as an important  factor contributing  towards differences in stability. The looser fit 

between the side chains, as determined from the β-sheet to β-sheet distances at the 

interface (Table I) and the face-to-face interactions (Table II) leads to a creation of a 

cavity in the anti-parallel aggregates that does not exist in the parallel form.  We 

conjecture that the more efficient   packing between β-sheets makes  the parallel 

aggregates more stable than the antiparallel forms. 
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Table 2: Averaged sheet to sheet interactions measured in angstroms for the last 100ns 
of the simulation. The standard deviation (calculated from averaging over three 
trajectories)  is shown in parenthesis. 

 

Root-mean-square deviation and root-mean-square fluctuations differ by approximately 

1Å  between the parallel and the antiparallel conformations.   This difference and the 

one in packing   indicate that the parallel conformation is only slightly more stable than 

the antiparallel conformation. However,  our set-up underestimates the stability  of 

parallel aggregates as we have removed residues 9-14 of the parallel structure in order 

to have the same size in all our structures (simplifying our simulation set-up). These 

residues are part of the ordered β-sheet in the parallel-structure fibril, but are disordered 

in and do not contribute to the stability of the antiparallel experimental structure. The 

presence of these additional five residues in the N-terminal region of the full-sized 

	

Face to Face Interface Dist Dist    
Antiparallel Iowa Mutant Start Average Run 1 Run 2 Run 3 

Q15-V36 8.4 9.3 (0.7) 8.8 (0.7) 9.4 (0.6) 9.6 (0.7) 
L17-L34 9.5 10.1 (0.5) 10.1 (0.4) 9.6 (0.5) 10.8 (0.5) 
F19-I32 9.5 10.4 (0.5) 9.9 (0.4) 10.2 (0.4) 11.0 (0.6) 

A21-A30 9.9 10.6 (0.5) 10.0 (0.5) 11.1 (0.5) 10.8 (0.6) 
      

Antiparallel Wild Type Start Average Run 1 Run 2 Run 3 
Q15-V36 8.6 9.1 (0.6) 8.8 (0.6) 9.5 (0.6) 9.1 (0.7) 
L17-L34 9.6 9.8 (0.5) 10.1 (0.5 9.7 (0.5) 9.7 (0.4) 
F19-I32 9.6 9.9 (0.4) 10.3 (0.5) 9.8 (0.4) 9.7 (0.4) 

A21-A30 10 10.6 (0.5) 10.3 (0.5) 11.1 (0.5) 10.3 (0.5) 
      

Parallel Iowa Mutant Start Average Run 1 Run 2 Run 3 
Q15-V36 14.7 12.9 (0.7) 12.7 (0.8) 13.9 (0.7) 12 (0.6) 
L17-L34 13.9 12.0 (0.5) 12.9 (0.6) 11.2 (0.5) 11.9 (0.4) 
F19-I32 12.3 12.0 (0.5) 12.0 (0.6) 11.7 (0.4) 12.4 (0.5) 

A21-A30 11.5 11.1 (0.6) 10.4 (0.6) 11.7 (0.5) 11.3 (0.5) 
      

Parallel Wild Type Start Average Run 1 Run 2 Run 3 
Q15-V36 14.5 13.5 (0.8) 13.8 (0.7) 14.2 (0.9) 12.5 (0.9) 
L17-L34 13.3 12.1 (0.6) 12.9 (0.5) 12.5 (0.7) 11 (0.5) 
F19-I32 12.3 11.9 (0.5) 12.1 (0.5) 11.6 (0.5) 12.1 (0.5) 

A21-A30 11.5 10.5 (0.6) 11.2 (0.6) 9.2 (0.6) 11.2 (0.8) 
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parallel fibril increases further  the differences in stability between the two forms but is 

not accounted for in our simulations. 

   

Another important factor in stabilizing the supra-molecular organization of amyloid 

peptides126 is the arrangement of hydrogen bonds. We have analyzed the extent of 

hydrogen bonds in order to determine whether there is a difference between parallel or 

anti-parallel β-sheet organizations of the wild-type and Iowa mutant oligomers. We find 

that the total number of hydrogen bonds is comparable for Iowa mutant and wild-type in 

both parallel and anti-parallel systems. However, the number of backbone, side chain 

and side chain-backbone (i.e. protein-protein) hydrogen-bonds are slightly larger (by 

18(8) bonds) in the antiparallel systems than the parallel systems (see Figure 8) of 

Aβ15–40 and D23N Aβ15–40. On the other hand, the number of hydrogen bonds between 

the aggregate and the surrounding solvent is larger in the antiparallel configuration than 

in the parallel one by about the same amount (21.9(19) bonds). However, the error in 

the latter number is large and makes an interpretation difficult. No signal for a 

preference of one over the other configuration was found in the solvent-solvent 

hydrogen bonding. From these results, we conjecture that, in the experimentally 

determined structures, the four additional ordered residues in the parallel arrangement 

of Aβ10–40 increase the number of hydrogen bonds and therefore stabilize this structure 

over that of the anti-parallel D23N Aβ15–40 oligomer. This is also in agreement with the 

experimental data and will make the parallel form more stable than the antiparallel 

form35,98. 
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Figure 8: Hydrogen bonding of Aβ wild-type and Iowa mutant involving residues 15-
40 and plotted versus time. This shows the main chain to main chain hydrogen bonding 
in the first row for (A) antiparallel Iowa mutant (APIM), (B) antiparallel wild-type 
(APWT), (C) parallel Iowa mutant (PIM), (D) parallel wild-type (PWT). The second row 
show side chain to side chain hydrogen bonding for (E) antiparallel Iowa mutant, (F) 
antiparallel wild-type, (G) parallel Iowa mutant, (H) parallel wild-type. The third row 
shows the hydrogen bonding for (I) antiparallel Iowa mutant, (J) antiparallel wild-type, 
(K) parallel Iowa mutant, (L) parallel wild-type. The three independent runs are shown 
in red, blue, and pink.  

 

Evidence for this conjecture is also found in our monitoring of the secondary structure 

during the simulation. Given that amyloid fibrils are composed mainly of β-sheets, this 

quantity provides information on the relation between interactions that involve the β-

strand motif and the stability of the aggregates127. Table 3 lists the average secondary 

structure content from the DSSP analysis for the initial structure and the last 100 ns of 
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each system. As a general tendency, we find lower β-sheet content in the decamers with 

parallel organization than in such with antiparallel structure. The increased β-sheet 

content in the latter case could contribute to the stability of the antiparallel 

organizations and could explain how this structural organization can compete with the 

parallel conformation98. Wei et al98 have proposed that the difference in the number of 

ordered residues (50% of antiparallel  versus 75% in parallel oligomers) is responsible 

for the thermodynamic preference of parallel over antiparallel structures. However, our 

simulation of Aβ15-40 fibril-likes oligomer of Aβ wild-type and Iowa mutants indicates 

that the antiparallel structure has a slightly larger percentage of β-sheet secondary 

structure. This difference may be due to limitations of our model, which considers only 

residues 15-40.  While residues 1-15 are disordered in the experimentally determined 

antiparallel D23N Aβ15–40 fibril, in the Aβ wild-type fibril only residues 1-10 are 

disordered. We therefore would expect more β-sheet secondary structure in simulations 

than seen in the experimental Aβ10-40 parallel β-sheet oligomer. Hence, our results 

suggest that the relative stability of parallel β-sheet over antiparallel β-sheet 

conformations dependents on the larger number of ordered residues in the parallel β-

sheet conformation. 
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Table 3: Average secondary structure of the wild-type Aβ and Iowa mutant antiparallel 
and parallel sheet structure structures during the initial structure and last 100 ns.  The 
standard deviation between the three runs is shown in parenthesis.  
 

Free Energies of Wild-Type and Iowa Aggregates 

Common paradigm is that the protein-aggregation landscape resembles a rugged valley 

with numerous close local minima corresponding to different polymorphic forms of 

fibrils. Multiple polymorphic aggregates can emerge during fibril formation, with 

different environmental conditions favoring different polymorphic forms over the 

others128,129. In order to gain further insight into the relative stability of our four 

oligomers we have done MM-PBSA calculations of the oligomers allowing us to 

monitor their interactions130 through calculating approximate binding free energies from 

molecular simulations131,132. While the MM-PBSA approach in general does not 

replicate the absolute binding free energy values, 133 it was chosen by us  because it 

allows one to calculate quickly an estimate for differences in the free energy of binding, 

and  because it usually exhibits a good correlation with experimental data134. In the 

present study the binding energy between the two β-sheets (that is between the 

pentamers that form the decamer) are estimated with the MM-PBSA methodology as 

implemented in AMBER12 using the using the all atom AMBER99SB force field and 

TIP3P water model. Before starting the MM-PBSA analysis, all water molecules and 

ions were excluded from the trajectory. The dielectric constants used for the solute and 

	

System Percentage of secondary structure of the initial 

sample 

Percentage of secondary structure averaged over 200-

300ns 

Helix Beta Sheet Turns Random Helix Beta Sheet Turns Random 

Antiparallel Iowa 

mutant 

0 49.59 13.11 37.30 1.1 (0.49) 51.65 (0.59) 16.96 (0.45) 30.29 (1.47) 

Antiparallel Wild type 0 47.48 15.87 36.65 0.56 (0.86) 50.01 (0.8) 18.41 (1.91) 31.01 (1.18) 

Parallel Iowa mutant 0 46.33 14.26 39.41 1.3 (1.11) 44.43 (1.71) 18.41 (2.89) 35.87 (2.68) 

Parallel Wild type 0 46.28 14.96 38.76 2.82 (2.37) 44.68 (1.75) 19.90 (0.8) 32.59 (1.1) 
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surrounding solvent are 1 and 80, respectively. Multiple molecular dynamics runs (three 

trajectories of 40 ns that unlike our production runs did not utilize mass-scaling) were 

performed for each of the four double layer aggregate models and carefully equilibrated 

for 5ns before the production run. Such an approach is preferable over a single long 

time run as it leads to a more efficient sampling of phase space.  The MM-PBSA single 

trajectory approach is used to calculate the binding energy. Snapshots are gathered at 

intervals of 40 ps during the 40 nanoseconds of simulation leading to 1000 equally 

spaced snapshots for each single trajectory from the three 40 ns MD trajectories. For 

our analysis we use the Python implementation of MM-PBSA as provided with 

AmberTools 12135. The results of the binding energy in Table 4 are the average of the 

three calculations. Note that we did not account for entropic contributions to binding 

since we compare only systems that are very similar where these contributions could 

even raise the overall uncertainty in the calculated binding energies136. For a detailed 

discussion, see 137,138.  

 

Table 4: Binding energies and standard deviations as calculated with the MM-PBSA 
approach, including its components (Kcal/mol) for the four   fibril models. The standard 
deviation (calculated from averaging over three trajectories) is shown in parenthesis. 

 

§ Δ∆G is the difference in binding free energy ΔGbinding between the parallel and 
antiparallel conformation of Aβ wild-type and Iowa mutant. The negative values 
indicate that parallel conformations are more stable than the corresponding antiparallel 
conformations. ΔGbinding = ΔEvdw + ΔEele + ΔGsol; ΔGsol = ΔEPB + ΔESA. Here, ΔEvdw is 
van der Waals energy and ΔEele is the non-solvent electrostatic energy. The 
contributions to the solvation free energy are split into a nonpolar and polar part. ESA is 
a nonpolar contribution to solvation free energy; ΔGPB is electrostatic contributions to 
the solvation free energy calculated by the Poisson-Boltzmann equation.  The nonpolar 

System ∆Evdw ∆Eele ∆EPB ∆ESA ∆Enon-polar ∆Epolar ∆Gbinding Δ∆G§  
Parallel Wild-type -325.0(12.3) -96.2(111.6) 187.6(89.2) 181.4(3.6) -143.6(8.7) 91.4(22.6) -52.2(26.5) -21.6  

Antiparallel Wild-type -351.1(18.1) -307.23(36.7) 431.8(20.7) 195.7(7.9) -155.3(10.2) 124.7(18.4) -30.6(9.2)   

Parallel Iowa mutant -344.8(9.2) -457. 7(31.6) 546.1(42.8) 192.3(0.8) -152.6(8.7) 88.3(17.3) -64.3(24.2) -23.4  

Antiparallel Iowa mutant -351.1(22.1) -670.3(64.2) 782.8(60.3) 197.7 (10.0) -153.4 (12.4) 112.5(24.4) -40.9(14.4)   
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term (∆Enon-polar) consists of the van der Waals interaction energies (EvdW) and the 
nonpolar contribution to the solvation free energy (ESA). The polar term (∆Epolar) is the 
sum of Coulomb interaction energy (Eelec) and polar contribution to the solvation free 
energy (EPB).  Various entropic contributions are neglected in our MM-PBSA 
approximation.  
 

The obtained  binding  energies listed in Table 4 are in agreement with the 

experimental observation that the parallel Iowa mutant is more stable than the transient 

antiparallel structure98,  and that while there is experimental evidence for the possibility 

of wild-type  Aβ existing in an in antiparallel form99 all experimental determined 

models of Aβ are build out of of parallel β-sheets35.  This high-energy difference 

predicted by our MM-PBSA calculation suggests that the conversion between parallel 

and antiparallel forms cannot be achieved by simple rearrangement (since it  is a 

topological difference), but is most likely due to individual strands detaching from the 

less stable antiparallel form  and assuming the more stable parallel β-sheet 

structure98,134,135 . 

 

We have further analyzed the various components in order to identify the dominant 

factors in the binding affinity. The van der Waals (ΔEvdw), electrostatic term (∆Eele) and 

nonpolar terms (∆Enon-polar) favor complex formation in all cases. The nonpolar 

solvation (∆ESA) which describes the process of transferring a nonpolar molecule from 

vacuum to water including the creation of a cavity in water, is unfavorable in all cases. 

Similarly,  the polar solvation term opposes the protein-protein binding due to 

polarization of the solvent environment by the solute. The favorable electrostatic 

contribution (ΔEele) between the proto-filament pairs, which due to the destabilizing 

electrostatic repulsions by charged amino acids is larger in an in-register parallel β-sheet 
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structure than in the anti-parallel β-sheet structure with its pairing of negatively and 

positively charged groups, is cancelled by the electrostatic solvation term (∆EPB). 

 

For both the Iowa mutant and wild-type Aβ does the binding energy of the two parallel 

and antiparallel conformations suggest a slightly higher thermodynamic stability of the 

parallel organization over that of the antiparallel one. While free energy perturbation 

and other free energy calculations methods are more accurate than the MM-PBSA 

approach we used139, this ranking of the stability could explain the experimental 

observation of the conversion of the less stable antiparallel Iowa mutant into the more 

stable parallel conformation fibril.98,140  While our data are noisy with only small 

differences, they are supported  by a recent theoretical study by Okamato et al141 using 

the ab initio MP2/6-31G method  that also   found  the parallel conformation in both the 

wild-type and Iowa mutants  more stable than the antiparallel ones.   

 

Conclusion 

We have investigated in silico the stability of decamers of Aβ wild-type and its Iowa 

mutant that are reported to exhibit either an antiparallel or parallel β-sheet organization.  

Simulations with scaled mass are compared with such simulations where the physical 

masses are unchanged. Our data demonstrates that mass-scaling leads indeed to 

increased sampling efficiency by reducing the viscosity of the system. Similar to the 

more common raising of system temperature, this allows for an easier escape from local 

minima and therefore enhanced sampling while at the same time keeping deviations 

from the natural dynamics small.  In some cases we found with mass scaling 
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improvements in sampling efficiency by factors 15. There is potential for further 

refinement of selective scaling to provide even greater yields in efficiency. Even with 

this increase in efficiency our simulations clearly do not cover the time scales on which 

the conversion of antiparallel to parallel forms is observed in experiments. However, 

signals for these transitions can be found by comparing the stability of wild-type and 

mutant in the two forms.  An analysis of the free energy of binding by MM-PBSA of 

our data as derived from configurations that originated from these enhanced molecular 

dynamics simulations, indicates that the parallel forms of both wild-type and Iowa 

mutant aggregates are the most stable, while the antiparallel aggregates is less stable for 

the Iowa mutant and least stable for the wild-type.  This ranking of stabilities is 

consistent with previous experimental results and is explained by us with the 

dependency of the structurally important sheet-to-sheet interface interactions on the side 

chain complementarity. The direct alignment of hydrophobic interactions in the in-

register parallel oligomers makes them more stable than the antiparallel aggregates. The 

parallel supra-molecular organization could be due to favorable residues stacking while 

each adjacent residue overcome potential repulsive charge interactions making it 

energetically more favorable than the antiparallel aggregates90. However, our data 

demonstrate that both parallel and anti-parallel β-sheet fibrils can exist under 

physiological conditions even though they have differences in thermodynamic and 

structural stability. Hence, both forms may contribute to the polymorphism of Aβ 

aggregates. David Eisenberg and co-workers 142 utilizing the parallel β-sheet fibril 

models of an Alzheimer’s peptide in combination with computer modeling, have found 

several compounds that reduce amyloid toxicity. Our data suggest that these results 
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could be improved by using for Aβ aggregation inhibitor design as templates not only 

parallel, but also anti-parallel β-sheet fibrils.  

 

The slightly higher thermodynamic stability of the Iowa mutant oligomers in its parallel 

organization over that of the mutant in antiparallel form is supported by previous 

experimental measurements showing slow inter-conversion of antiparallel aggregates 

into parallel ones.  Our calculations indicate that this conversion is energetically costly.  

This suggests that the conversion is not a simple re-arrangement but rather involves the 

detachment of monomers from the less stable antiparallel form and re-aggregation into 

the more stable parallel  structure. Future plans include computational studies that rely 

on novel sampling techniques currently under development in our lab.  
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Chapter 4 - On the Lack of Polymorphism in Aβ-peptide Aggregates 

Derived from Patient Brains 

The following chapter was published in similar form in Protein Science by the author of 

this dissertation as the following article: On the Lack of Polymorphism in a-Peptide 

Aggregates Derived from Patient Brains. Protein Science 24:923-935. All text and 

figures are taken with the permission of the publisher. 

 

Introduction 

Amyloid Beta (Aβ) oligomers and fibrils found in the extracellular space of the brain 

and on the walls of cerebral blood vessels in Alzheimer's patients 143 cause, or at least 

contribute to, the outbreak of Alzheimer’s disease. Hence, characterizing the 

organization of these aggregates may help to combat or reverse the effects of the disease 

55. Multiple in vitro studies have shown that Aβ fibrils are polymorphic, and that their 

structures depend on the conditions encountered during their nucleation 7. However, 

solid-state NMR data of fibrils acquired post mortem indicate lack of such 

polymorphism in the brains of Alzheimer’s patients 44. Only a single, patient-specific, 

form of aggregates was found in samples of several regions in the brains of two 

deceased patients 44. The form of this patient-specific structure is correlated with the 

aggressiveness of the disease in the patient 44. The question arises why only a single 

(patient specific) form is found in patient brains, and how these patient-derived forms 

differ from the ones observed in vitro.   

 



	 46 

Amyloid formation is difficult to observe directly in experiments and computer 

simulations. The later suffer from the problem that aggregation, and conversions 

between different forms of aggregates, takes hours or longer, i.e. happens on time scales 

that are not accessible in molecular dynamic simulations 17,144. For this reason, we 

address the above question by comparing the stability of structurally distinct Aβ 

amyloid fibrils in atomistic molecular dynamics simulations with explicit solvent. 

Specifically, we study a two-fold in vitro model of Aβ fibrils (PDB code: 2LMO), a 

threefold in vitro model (PDB code: 2LMP), and the three-fold in vivo (patient-derived) 

model  (PDB code: 2M4J).  While faster than direct aggregation simulations, such 

stability investigations are still computationally taxing, and often the temperature is 

raised to increase sampling speed 144,145. In the present paper, we use a different 

approach, reducing the viscosity of the system through mass scaling. Long-time all-

atom explicit solvent molecular simulations are performed of in vitro and vivo Aβ fibril 

models of various arrangements and sizes. The so-generated data are used to evaluate 

the conformational stability of the assemblies in order to provide insights into (a) 

structural stability,  (b) hydration in the cavities, and  (c) the role of intra and inter-

sheets packing. Our goal is to determine through these enhanced molecular dynamic 

simulations the factors that modulate the stability of Aβ-fibrils and lead to the lack of 

polymorphism in the fibrils collected from patient brains. This is important, as 

knowledge of the specific forms that  (Aβ) oligomers assume in the environment of 

patient brains could lead to new approaches in development of drugs targeting 

Alzheimer’s disease. The difference between the in vivo and in vitro fibril models also 

questions the relevance of previous computational studies that were based on the in 
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vitro models and explored the effect of mutations, alternate fibril morphologies or 

nucleation, in cross-seeding or for in silico structure-based search of inhibitors or 

imaging agents 93,146-149. 

 

Our simulations indicate that the brain-derived model is less stable than the two in vitro 

models. The three-fold in vivo and in vitro fibril models are characterized by a central 

hydrated channel that may explain the toxicity of the amyloids as such channels 

interfere with nerve cells communication by changing membrane potential, and also 

may cause cell death due to loss of solutes.  

 

Structural Characterization of the Experimentally Derived  in vivo and in vitro Aβ 

Fibril Models 

Incubation of Aβ peptides in buffer under shaking conditions leads to formation of 

fibrils with two-fold symmetry while under quiescent conditions the resulting fibrils 

have a twisted morphology and a three-fold symmetry 35,150. These in vitro fibrils, with 

either two-fold or three-fold symmetry with respect to the axis of fibril growth, differ in 

the arrangement of the ordered strand-loop-strand, inter-peptide packing, and in the 

inter-residue interactions. For in vitro fibrils with three-fold symmetry, an ssNMR-

derived molecular model is only available for Aβ9-40. Both two-fold and three-fold in 

vitro Aβ fibril models display a similar strand-loop-strand unit, in which residues 10-22 

and 30-40 form two β-strands connected by a loop. However, fibril symmetry and 

number of β cross units per layer differ in the two models. In the two-fold fibrils the 

side chains of D23 and K28 form salt bridges in the loop region that are absent in the in 



	 48 

vitro fibril with three-fold symmetry (Figure 9B-C). On the other hand, the in vivo 

fibril structure (seeded with an extract from an Alzheimer’s patient’s brain tissue) has a 

three-fold symmetry, with the entire Aβ40 sequence participating in the ordered structure 

built out of strand-loop-strand units.  

 

Both the in vivo and the three-folded in vitro (Figure 9) models are stabilized by side 

chain hydrophobic interactions between the two β-strands (for example F19-L34 

contacts). The N-termini of the chains (with a majority of charged and polar side chains, 

residues G9-E22 for in vitro and residues D1–E22   for in vivo) are exposed to the exterior 

bulk solvent while the C-termini (including the majority of hydrophobic amino acid side 

chains, residues A30-V40) face the internal fibril surface (Figure 9A-C) and form 

interior channels in the center of the fibrils. Both termini are connected by a turn region 

consisting of residues 25-29. The channels in the center of the fibrils contain rows of 

water when hydrated 150. The three-fold in vitro and in vivo models differ in how the 

three β-layers are packed through a hydrophobic center, different contacts between 

residues. For instance, in the in vivo model there are salt bridges between residues D23-

K28, residues 1–8 are ordered, and residues 30–40 lack a single β-strand (Figure 9 A-

B), with several kinks and bends in the β2 strand that results in non-parallel contact of β1 

and β2  (Figure 9A). However, the in vitro fibril forms parallel (non-kinked) contacts 

between β1 and β2 strands (Figure 9 B-C). The side chains of I31 and V39 are in close 

contacts between strand-loop-strand units in the central cavity and contribute to the 

stabilization of the in vitro model three fold. The in vivo models, on the other hand, 
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have the close contact between strand-loop-strand units in the central cavity, between 

I32 and V40 (Figure 9 A-B).   

 

Figure 9: In vivo (three fold symmetry) and in vitro (three-fold and two-fold symmetry) 
SSNMR structural models of Aβ40 fibrils. (a) The three-fold in vivo Aβ40 fibrils model 
(PDB code 2M4J) with the entire residues 1–40 structurally ordered.  Six strands within 
the strand-loop-strand units are shown. The three strand-loop-strand units are colored 
blue, green, or black for clarification. The side chains of D23 (red) and K28 (magenta) 
form a salt bridge (indicated with an arrow). (b) The three-fold in vitro model, 
consisting of three strand-loop-strand  structures (PDB codes 2LMP) with six strands 
(repeats) within the strand-loop-strand motifs shown. The three strand-loop-strand 
units are colored blue, green, or black for clarification. Only residues 9–40 are shown. 
(c) The two-fold in vitro Aβ40 fibril model, consisting of two strand-loop-strand  
structures with nine strands (2LMO). The side chains of D23 (red) and K28 (magenta) 
form a salt bridge (indicated with an arrow). Residues 9–40 are shown in which the β-
sheets are associated through C-terminal-to-C-terminal interfaces. The two strand-loop-
strand units are colored blue and green. In all models, we display hydrophobic contacts 
between F19 (red color) and L34 (yellow color) in each strand-loop-strand units as 
spheres. The I32 and V40 form contacts between different cross-β units in the in vivo 
three fold aggregate; similar contacts are formed in the in vitro three-fold conformer 
between I31 and V39 (shown as spheres). The in vivo three fold also forms contacts 
between the side chain of R5 and V24 adjacent layers; while in the in vitro three fold it 
involves H14 and V40 (shown as spheres in brown color). The hydrophobic cavity is 
formed by residues M35 and V40 for the three-fold in vivo model and M35 for the in vitro 
model (shown gray spheres) 

 

All three fibril models share  common hydrophobic contacts (i.e. the hydrophobic 

between F19 and L34) between the two layers in the strand-loop-strand units, with a 

parallel β-sheet in each layer. The in vivo three-fold model also forms contacts between 

the side chains of R5 of one layer with V24 of the adjacent layer, while the in vitro three-
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fold forms similar contacts involving H14 and V40. The hydrophobic core of the interior 

channel in the in vivo model consists of M35 and V40 residues, however in the in vitro 

model with three-fold symmetry the core consists of only M35 residues. 

Material and Methods 

Construction of the Fibril-Like Oligomer Models 

In order to compare in vivo and in vitro structures of Aβ aggregates we chose three 

NMR-based models derived by the same laboratory (the Tycko group at NIH, 

http://www.niddk.nih.gov/about-niddk/staff-directory/intramural/robert-tycko/) as this  

minimizes errors resulting from different experimental protocols for purification and 

characterization of the aggregates. These three models include two in vitro fibril 

models, one two-fold (PDB-ID: 2LMO) and one three-fold (PDB-ID: 2LMP); and the 

in vivo fibril model which has three-fold symmetry (PDB-ID: 2M4J). The positive- and 

negative-stagger 2-fold-symmetric Aβ40 fibril models were deposited separately by 

Petkova et al 35 with PDB entries 2LMN and 2LMO, respectively. Recent 

computational studies151 of models of Aβ40 fibrils suggest that only the negative 

stagger model (PDB code: 2LMO) can form left-handed helical superstructures, the 

twist that has been observed in scanning electron microscopy studies of amyloid 

superstructures 152. In contrast to the negative stagger model, the positive-stagger Aβ

40 fibril filaments cannot adopt the super-structural helical twist. The negative stagger 

is suggested as Aβ40 fibril that is physiologically relevant151. The free energy surface 

153 for negative and positive stagger structures based on extensive molecular dynamics 

simulations coupled with umbrella sampling is found to be consistent with prior data 
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that suggest that positive-stagger Aβ40 fibril cannot adopt the super-structural helical 

twist. Therefore in our simulation we selected negative stagger model (PDB code: 

2LMO) because such periodic alignment of β-hairpins would lead to the 

experimentally detected left-handedness of fibrils for the two-fold Aβ fibril model151. 

In order to probe the stability of the three forms, we have generated a cascade of models 

of increasing size, with three, six and twelve layers for oligomers with three-fold 

symmetry (Figure 10-11) (each layer made out of three Aβ chains), and nine and 

eighteen layers of two Aβ chains for oligomers with two-fold symmetry (Figure 12).  

 

The in vivo model 2M4J is made out of three layers, while the in vitro model 2LMP 

has six layers. Each layer is made out of three Aβ chains. Models with equal number of 

layers are derived by, for instance, removing surplus chains in the 2LMP aggregate, or 

forming a six-layer in vivo model by aligning two copies of the three-layered 2M4J 

such that the inter-strand distances are ∼4.7 angstroms.  In the same way, we generate 

twelve layer systems by aligning two six-layer systems, requiring again inter-strand 

distances to be ∼4.7 angstroms. In the same way, we take the two-fold 2LMO model 

which is made of six layers of two strand-loop-strand units, and built out of it models 

with either nine or eighteen layers. In this way, we arrive at models with two-fold 

symmetry that have the same number of chains as the models with three-fold symmetry. 

The oligomer with nine layers is constructed using the six layers coordinates of the 

2LMO structure, and three additional layers are added by aligning the strands in such a 

way that the contacts mirror the ones in the NMR model, setting the inter-strand 

distances again to ∼4.7 angstroms. This process was repeated to generate the eighteen 



	 52 

layers system. Since N-terminal residues 1−8 residues are structurally disordered in the 

two the 2-fold and 3-fold in vitro ssNMR based structures Aβ40 fibrils (PDB entries 

2LMN and 2LMO) respectively 35, we did not included residues 1–8 in the MD 

simulations on in vitro structures simulations. 

Simulation Protocol 

In order to probe the stability of the various aggregates we run a number of long all-

atom explicit water molecular dynamic simulations relying on a combination of the 

CHARMM27 force field (with CMAP corrections 154,155 ) with explicit water 

(TIP3P)156,157, a common choice for exploring amyloid peptide aggregation,158,159  as 

implemented in the GROMACS program version 4.6.2160. MD simulations were 

performed using as the starting structure the first structure of the 10 and 20-member 

lowest energy NMR structural ensembles for both the in vitro and in vivo fibril models 

respectively 35,44. We use the pdb2gmx module of the GROMACS suite to add hydrogen 

atoms. The molecules are put in the center of a cubic box, with at least 12 Å between 

the solute and the edge of the box. Periodic boundary conditions are enforced, and 

electrostatic interactions are calculated with the PME algorithm161,162. We use a time 

step of 2 fs. Hydrogen atoms are constrained with the LINCS163algorithm, while for 

water the Settle algorithm is used164. The temperature of 310 K is kept constant by the 

Parrinello-Donadio-Bussi algorithm 165 (τ = 0.1 fs) which is similar to Berendsen 

coupling but adds a stochastic term that ensures  a proper canonical ensemble 166. In a 

similar way, the pressure is kept constant at 1 bar by the Parrinello-Rahman algorithm 

123 (τ = 1 fs).  In order to increase sampling, we use mass-scaling of all solvent atoms 

(masses are scaled by a factor of 0.5), which effectively decreases the viscosity of the 
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solvent. In previous work167 , we found that such mass-scaling can lead to modest 

improvement of factors 2-8 in sampling efficiency without disturbing the dynamics of 

the system.  

 

After energy-minimizing the solvated start configuration, using first steepest descent 

followed by conjugate gradient, the system is equilibrated in two steps of 500 ps, first in 

an NVT ensemble and secondly in an NPT ensemble at 1 bar. After equilibrization, we 

perform 300 ns of molecular dynamics simulations of the three-fold fibril models with 

three and six layers, and the two-fold model with nine layers. Due to limitations in 

computational resources are the  three-fold systems with twelve layers and the two-fold 

system with eighteen layers only simulated for  100ns.  

 

For each system, data are saved at 10 ps intervals in the so-obtained trajectories, and are 

analyzed to monitor the evolution of oligomer structures  with time. For each system, 

we run three distinct simulations with different initial velocity distributions. Note, 

however, that these three trajectories are correlated since they start from the same initial 

structure. Hence, error estimates calculated from standard deviations over the three runs 

have to be taken with a grain of salt. The trajectories are analyzed with the tool set 

available in the GROMACS package. We monitor conformational changes and stability 

of the our systems by measuring the time evolution of the root-means-square deviations 

of the C⍺ atoms (RMSD), root-mean-square fluctuation (RMSF), radius of gyration 

(Rg), pore diameter, secondary structure contents, hydrophobic contacts and hydrogen 

bonds. PyMOL is used for visualizing structural changes and for generating images. 
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Results 

 

Table 5: The average C⍺ RMSD (Å) calculated for residues 9-40 for all systems, 
Radius of gyration (Å), inner pore diameter for the three folds (Å), main chain and side 
chain hydrogen bonds. Standard deviations are calculated over three independent runs 
and listed in brackets. 

 

In order to get an impression of the relative stability of the various aggregates we start 

our analysis by visually comparing the initial and final structures. Measurements of the 

root-mean-square deviation (RMSD) and Radius of Gyration (Rg) quantify these 

observations and are listed in Table 5.  The three-layered in vivo model looses its initial 

structure in all three runs, as the three U-shaped subunits separate rapidly and 

dissociate, while the in vitro fibril model with three-fold symmetry is more stable but 

still subjects to large structural shifts. The low stability of the two models is not 

surprising as hydrophobic contacts at the C-terminal-C-terminal (CC) interface between 

the U-shaped subunits are not sufficient to stabilize the three-fold in small oligomers 

(i.e. three layers in each strand-loop-strand subunits) (Figure 10). Increasing the size to 

six layers increases the stability of both models. The U-shaped subunits now stay in 

contact throughout the simulation via the hydrophobic interface, but show some drift 

along this interface. The Radius of gyration is larger in the in vivo model than in the in 

vitro model indicating that the latter is more compact. The strand-loop-strand 

	
Systems C⍺ RMSD (Å) Radius of 

gyration (Å) 
Inner pore diameter 
for the three-fold  

Normalized main chain 
hydrogen bonds 

Normalized side chain 
hydrogen bonds 

6 layer 3 fold in vivo model 12.5 (4.4) 66.2 (13.9) 20.2 (2.5) 0.36 (0.01) 0.15 (0.01) 

6 layer 3 fold in vitro model 9.8 (1.7) 45.3 (10.1) 19.9 (1.4) 0.44 (0.01) 0.06 (0.01) 

9 layer 2 fold in vitro model  9.8 (.5) 60 (17.0) N/A 0.39 (0.02) 0.07 (0.01) 

12 layer 3 fold in vivo model 9.6 (1.3) 42.2 (7.8) 19.4 (1.8) 0.32 (0.02) 0.16 (0.01) 

12 layer 3 fold in vitro model 6.8 (0.5) 31.2 (4.9) 19.6 (1.6) 0.38 (0.01) 0.07 (0.01) 

18 layer 2 fold in vitro model  7.7 (0.9) 36.4 (2.4) N/A 0.36 (0.01) 0.07 (0.01) 
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conformation of the three subunits, which constitutes a common motif for the Aβ 

peptides,168 is maintained in most of the aggregates; with the N-terminal residues tightly 

packed and therefore more stable than the C-terminal (C) residues. However, the 

contacts between the subunits are only partially retained. Hence, while with increased 

size the hydrophobic CC interface contacts in the six-layer systems become stronger, 

they are still not sufficient to stabilize its three-fold geometry (Figure 11). On the other 

hand, both twelve-layer systems keep the topologies and general characteristics of their 

initial conformations. While the exposed outer chains and turn regions are highly 

flexible, the sheet-turn-sheet topology is stable in both models. The hydrophobic 

contacts are more pronounced than in the smaller-sized systems, and stable throughout 

the simulations (Figure 10 and Figure 11). The smaller Radius-of-gyration values show 

that both the in vivo and in vitro twelve-layer models with three-fold symmetry are 

more compact than the smaller aggregates of the same topology. At the same time, the 

differences between in vivo and in vitro models become smaller as the system size 

increases.  
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Figure 10: Snapshots of the three-fold in vivo and in vivo fibril models (consisting of 3 
layers), at the start and end of a 300 ns molecular dynamics simulation. The three 
strand-loop-strand units are colored blue, green, or black. F19, L34 and M35 are shown as 
spheres colored red, yellow or gray. 

 

 

Figure 11: Snapshots of three-fold in vivo (A and B) and in vitro (C and D) fibril 
models consisting of either six or twelve layers, at the start and end of the respective 
molecular dynamics simulations. The three strand-loop-strand units are colored blue, 
green, or black. F19, L34 and M35 are shown as spheres colored in red, yellow and gray. 
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A similar size dependence is also observed in the simulations of the in vitro models 

with two-fold symmetry. The size-dependent stability of all our oligomers is in 

agreement with previous numerical studies of amyloid micro-fibrils where the fibril 

geometry no longer changes with system size once a critical fibril length (about 20 

layers) is approached 169. Because the number of contacts along the CC interface is in 

the two-fold models larger than in the ones with three-fold symmetry, the two-fold 

models are more stable and the strands separate less than equally-sized models with 

three-fold symmetry (Figure 12).  For instance, we find that the six-layered in vivo 

model with its three-fold symmetry has a larger root-mean-square deviation (12.5 Å) 

between final and initial configuration than the in vitro model of same size and topology 

(∼9.8 Å), which in turn is larger than the equal-sized model with two-fold symmetry 

(∼7.1 Å). Note that as size increases, the average root-mean-square-deviations became 

smaller, and the difference between the three systems decreases.  Our simulations also 

indicate that the outermost strands are in all models (both such with two-fold symmetry 

and such with three-fold symmetry) more flexible than the strands located in the center 

(Figure 10-12). This instability at the edges of a growing fibril may provide a flexible 

docking point for incoming Aβ peptide while at the same time maintaining the 

underlying structure of the fibril 143,170. As more Aβ peptides are added and the fibril 

grows, the previously exposed molecules will adopt a more stable structure (Figure 10-

12).   
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Figure 12: Snapshots of in vitro two-fold Aβ fibril model consisting of 9 layers (A) or 
18 layers (B) at the start and end of molecular dynamics simulations of 300 ns and 
100ns respectively. The two strand-loop-strand units are colored blue, and green. F19, 
L34 and M35 are shown as spheres colored in red, yellow and gray. 

 

Amyloids  consist of  extended intermolecular β-sheets, and  the more stable the β-

sheets are in an amyloid, the more likely the β-sheet and β-strands stack together tightly 

in an aggregate. Hence, high β-sheet content correlates with the stability of amyloids. 

For this reason, we have compared the changes in secondary structure between the 

energy-equilibrated structure (0 ns) and the last 100 ns or, for larger systems sizes, 50 

ns, of the molecular dynamics trajectories. Our data, calculated with the DSSP 125 

software, are listed in Table 6 and indicate that the original parallel, in-register, β-sheet 

is conserved in all cases. The in vivo model has a twist in the β2 strand that results in 

non-parallel contact of β1 and β2.  As a result, it has about 10 % less residues in a β-sheet 

than the in vitro aggregates with three-fold symmetry of similar size. However, in both 
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the six and twelve-layer in vivo models the original β-sheet is maintained, and even 

increases slightly by ∼4% and ∼3%, respectively, in the last 100 ns (50 ns for the 

twelve-layer system). The twelve-layer in vitro model with three-fold symmetry also 

maintains its overall architecture, however, its β-sheet content decreases by about 6 %. 

The slightly higher level of regular β-sheet in the in vitro model results from the kinked 

and non-parallel sheets that differ in the location and length of residues. At small 

aggregate size, in vitro oligomers with two-fold symmetry have less β-sheet content 

than those with three-fold symmetry. This difference is because in oligomers of in vitro 

systems with three-fold symmetry, more of the β2 region is buried inside the 

hydrophobic inner core. However, this difference becomes smaller as the systems grow, 

and is negligible for our largest models. This is because even in the oligomers with two-

fold symmetry, the solvent exposure gets smaller and side chains are better packed as 

the number of chains grows, thus allowing the aggregates to maintain most of their 

initial β–sheet structure. The size dependence of β-sheet structure is in agreement with 

the root mean square fluctuations (RMSF) values shown in Figure 13 that indicate 

significantly higher flexibility for the smaller size aggregates than observed for larger 

size aggregates.  
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Table 6: Frequency ofβ-Sheet secondary structure in the three-fold and two-fold 
models. The values are presented as percentages for the energy-equilibrated structure (0 
ns) and the last 50 ns of the molecular dynamics trajectory. Standard deviations are 
calculated over three independent runs and listed in brackets.  

	
 

 

Figure 13:	Average root-mean-square-fluctuation (RMSF) for the in vivo three-fold (A 
and B), in the vitro three-fold (C and D), and the in vitro two-fold systems (E and F).    

 

	
 
 System 

Percentage of β-Sheet secondary structure  
of the energy minimized structure 

Percentage of  β-Sheet secondary structure  
averaged over last 50 ns 

 
6 layer 3 fold in vivo model 29% 34% (1.7) 

6 layer 3 fold in vitro model 45% 44%  (1.4) 

9 layer 2 fold in vitro model  36% 39%  (0.9) 

12 layer 3 fold in vivo model 28% 31% (1.2) 

12 layer 3 fold in vitro model 45% 39% (0.7) 

18 layer 2 fold in vitro model  38% 39% (0.5) 
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The thermodynamic stability and the dynamical changes of the amyloid fibrils are 

modulated by local interactions such as hydrogen bonds or salt bridge, and hydrophobic 

side chain packing 8,55,171,172. Polymorphism implies different arrangements of β-sheets 

in amyloid fibrils and therefore differences in the network of hydrogen bonds that 

determines the structural characteristics and properties of amyloids 55,115. Previous 

computational studies have demonstrated that due to differences in the contribution of 

hydrophobic interaction and hydrogen bonds 169 oligomers with double fold are more 

stable than such with the three-fold symmetry. For this reason, we have also analyzed 

the hydrogen bond networks observed in our models (Table 5). The number of 

hydrogen bonds is normalized per amino acids to take into account the differences in 

size, and to enable comparisons between the in vivo models (consisting of residues 1 to 

40) and in vitro models (consisting of only residues 9 to 40).  

 

 The in vitro fibrils have a larger number of backbone hydrogen bonds (Table 5) than 

the in vivo model. This difference highlights the reduced stability of this fibril and is  in 

agreemnt with our visual inspection and the data for RMSD, Rg, RMSF and secondary 

structure discussed above. Similar to the other quantities, as the size of the aggregates 

increases, the difference in the number of hydrogen bonds between the various models 

becomes smaller. However, the in vivo model has an increased content of side chain 

hydrogen bonds compared to in vitro models. This is because of the higher flexibility of 

the N-terminal residues, and several kinks and bends (Figure 13) with a twisting 

movement (Figure 9), that bring side-chain hydrogen-bond donor and acceptor groups 

closer together, and increase in this way the number of side chain hydrogen bonds 
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(Table 5) in the N–terminal region.  As a consequence, residues that are far apart are 

brought together in the in vivo fibril,  thereby breaking the backbone hydrogen-bonding. 

Unlike in the folded state, where most interactions between residues are intra-

molecular, inter-molecular interactions (steric zippers contacts) between amino acid 

residues173 dominate in amyloids. These interactions include inter-chain backbone 

hydrogen bonding and such between side chains in adjacent β-sheets, or inter-peptide 

(i.e. lateral packing) hydrophobic interactions of hydrophobic residues 174.  

 

We first measure the intra-molecular interaction through hydrophobic contacts between 

phenylalanine (F19) and leucine (L34) in adjacent β-sheets of the strand-loop-strand 

units (Figure 9). This allows us to explore the effect of this particular contact on the 

structure of the various aggregates (see Table 7-8). In the in vitro two-fold system of 

nine and eighteen layers the distance between F19 and L34 is about 10 Å (see Table 8).  

This distance is comparable to experimental values in which the β-sheets are typically 

apart by about 9-10 Å when two β-sheets pack together in amyloid fibrils. On the other 

hand, the F19–L34 contact distance for models with three-fold symmetry is within the 

range of 11.5 Å  (in vivo model) or 10 Å in the in vitro model (Table 4). Both values 

are again close to the experimentally measured ones, but slightly larger than the ones 

seen in the models with two fold symmetry. This indicates that side chains of amino 

acids present in the two β-sheets’ intra-digitation of the hydrophobic steric zipper are 

responsible for retaining the strand-loop-strand motif. Visual inspection (Figure 10-12) 

also indicates that the difference in stability arises from the differences in the strand-

loop-strand units interface contacts, and not from the instability of the strand-loop-
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strand subunit themselves. Hence, the difference in inter-strand-loop-strand units 

contacts (as opposed to intra-strand-loop-strand units contacts) is responsible for the 

structural variation in the three systems.  

 

Table 7: Hydrophobic contacts distances of the in vivo and in vitro three-fold systems. 
Measured hydrophobic contacts include such between F19 and L34 in each β-hairpin; the 
I32 and V40 form contacts between different cross-β units in the in vivo three-fold, and 
the corresponding contacts in the in vitro three-fold conformer formed by  I31 and V39. 
We also monitor in the in vivo three-fold contacts between the side chains of R5 and V24 
of adjacent layers, and the corresponding contacts in the in vitro three-fold between H14 
and V40. In three fold models, the hydrophobic cavity is formed by residues M35 and V40 
for in vivo model and M35 for in vitro model. Standard deviations are calculated over 
three independent runs and listed in brackets. 

 

Other stabilizing inter-molecular interactions are contacts between the side chains of 

residues located at the edge of the strand-loop-strand units (between the C-terminal and 

N terminal edges of adjacent strand-loop-strand units). Examples are the contacts 

between residues R5 and V24 of the adjacent of strand-loop-strand units in in vivo three-

fold, H13 and V40 of the in vitro three-fold, and H13 and V40 within the strand-loop-

strand units of the in vitro two-fold. The contact distances in Table 3-4 show that in the 

six-layer in vivo model with three-fold the Cα-Cα distance measured between residues 

R5 and V24 grows from an initial 10 Å to 26 Å averaged over the last 100ns.  Hence, 

side chain packing between R5 and V24 is not sufficient to conserve the U-shaped 

Timeframe 6 layer 3 fold in vivo 
model 

6 layer 3 fold in vitro 
model 

12 layer 3 fold in vivo 
model 

12 layer 3 fold in vitro 
model 

§  <F19L34> <F19/I34> <F19/L34> <F19/L34> 
Initial 11.6 (1.1) 10.9 (1.7) 11.2 (1.2)  10.3 (1.5) 
Final 50ns 11.5 (2.9) 10.7 (2.1) 11.3 (1.1) 10.0 (1.2) 
 <V40/I32> <V39/I31> <V40/I32> <V40/I32> 
Initial 18.4 (2.1) 10.3 (3.1) 17.1 (1.5) 10.2 (1.3) 
Final 50ns 19.9 (1.5) 20.0 (1.2) 17.9 (1.1) 19.7 (0.8) 
 <M35/M35> <M35/M35> <M35/M35> <M35/M35> 
Initial 23.3 (1.3) 18.8 (2.2) 23.5 (1.8) 18.2 (1.4) 
Final 50ns 20.7 (2.7) 18.3 (3.0) 19.4 (1.5) 19.6 (1.2) 
 <R5/V24> <H11/V40> <<R5/V24> <R5/V24> 
Initial 10.4 (2.4) 19.8 (3.1) 10.2 (1.5) 19.4 (1.5) 
Final 50ns 26.1 (4.2) 17.6 (2.9) 12.9 (2.6) 17.6 (0.8) 
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motifs. However, in the twelve-layer in vivo structure, the R5 and V24 contact distance 

changes by only about 2.5 Å. The H14 and V40 contact distances at the edge of the 

strand-loop-strand units between the N-terminal and C-terminal decrease by 

approximately 1.5 Å to about 17.5 Å, irrespective of size (Table 7). Hence, similar 

combinations of favorable hydrophobic interactions stabilize the strand-loop-strand 

units in both the six and twelve layer in vitro models with three-fold symmetry.  

 

Table 8: Hydrophobic contacts distances in the in vitro two-fold systems. Measured 
hydrophobic contacts include these between F19 and L34 in each β-hairpin, and the G33 
and M35 contacts between different adjacent β-sheet layers across the hydrophobic core. 
We also monitor in in vitro two-fold contacts between the side-chains of H13 and V40 in 
adjacent layers. 

 

The interior channel in the three-fold has few hydrophobic contacts between CC 

termini-interfaces, while the experimental fibril model with two-fold symmetry mostly 

consists of a longer hydrophobic inter-molecular steric zipper. Thus contacts among 

subunits are obviously different in models with two-fold and three-fold symmetry. We 

monitor the distances between selected hydrophobic amino acids interactions that are 

involved in connecting the strand-loop-strand units at the points where they meet in the 

inner region of the amyloid fibril models. The side chains of V40 and I32 in the in vivo 

fibril model (V39 and I31 for in vitro three-fold) form hydrophobic contacts at the corners 

<F19/L34>  <F19/L34>  
Initial 10.2 (0.8)  10.1 (0.5) 
Final 50ns 9.9 (0.6)  9.4 (0.3) 
<I31/G37> 9 layer 2 fold <I31/G37> 18 layer 2 fold 
Initial 10.1 (0.6)  10.1 (0.4) 
Final 50ns 10.6 (0.4)  9.9 (0.3) 
<H13/V40>  <H13/V40>  
Initial 15.8 (2.4)  15.9 (1.4) 
Final 50ns 18.0 (0.4)  15.5 (1.2) 
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of adjacent strand-loop-strand units (Figure 9A-B).  The contacts between the V40 to 

I32 of adjacent strand-loop-strand units of the in vivo models and that of V39 to I31 

between adjacent strand-loop-strand units in three-fold in vitro models are listed in 

Table 7-8. These distances (Table 7) grow from their initial values of ≈17.5 Å and 10 

Å, respectively. A previous shorter simulation of the eight layers in vitro three-fibril 

model indicated values of ≈6-7 Å for the distance of V39-I31 residues, a result suggesting 

that proximity of these residues stabilizes the cavity along the fibril axis. However, our 

much longer simulations indicate that such side-chain (V40-I32 and I31-V39) packing is 

not sufficient to hold the adjacent strand-loop-strand units together. We rather believe 

that in the three-fold fibril models the stiff three strand-loop-strand units prevent 

internal hydrophobic segments from getting closer due to larger twist 175.   

 

The hydrophobic contacts (Table 8) measured between F19 and L34 in each strand-loop-

strand units for the two-fold in vitro models are around 10 Å, close to experimental 

values92. The side-chain contacts in the hydrophobic core of the double layer include 

those between I31 to G37, G33 to M35 and G37 to I31 across the adjacent β-sheet. Their 

values in Table 4 indicate that Cα-Cα distance are within the range of 9.5 to 10.0 Å, 

which is characteristic for lateral association of two β-sheet. Visual inspection of the 

two-fold structures indicates that the larger steric zipper interface stabilizes such 

contacts much better than in the three-fold fibril models characterized by small steric 

zipper (with Cα-Cα at interface being ≈19.0 Å) and less efficient packing between U-

shaped units 34,176. However, the Cα-Cα distance between H13 and V40 in the termini of 

the in vitro two-fold model is larger, indicating flexibility of residues at edge. Hence, 
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our simulations imply that larger number of interface contacts in the two-fold systems 

leads to their higher stability over the three-fold systems, with the in vivo three-fold 

being the least stable (Figures 10-12). We conjecture that in aqueous environment 

nucleation of the in vivo model would be the slowest. 

  

 

Figure 14: The amyloid aggregates of Aβ with in vivo (A) and the in vitro (B) three-
fold accommodate water molecules in their hydrophobic core of the in vivo (A). Note 
that the corresponding experimental fibril structures of Aβ (PDB ID: 2M4J, and 2LMP) 
do not contain water.  

	
As it is already known that in in vitro models with two-fold symmetry the hydrophilic 

cavities within strand-loop-strand units form a water channel 125,147,169, we limit here 

our examination to the systems with three-fold symmetry. Here, we find a water 

channel within the central hydrophobic cavity as the interaction between the strand-

loop-strand subunits at their edge in the C terminal region of the three-fold creates a 

pore in which hydrophobic side chains of M35 are lining the inner surface. We estimate 

the pore diameter by measuring the distance between the central M35 residues of the 

adjacent U-shaped sub-units and averaging these values 177. The observed pore diameter 

range of 19.5-20 Å for the 6 and 12 layer Aβ oligomers  (Table 5) is comparable to the 

average pore diameter of 15�20 Å that was observed in experiments of amyloids 
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formed by E22GAβ1�40 170. The resulting interior channels are water-accessible 150,178.  

This can be seen in a snapshot from an equilibrated part of the simulation (5 ns of 

simulation) where water molecules enter into the interior channel (Figure 14) 147. The 

average number of water molecules around each side-chain is shown in Figure 15 for 

both the in vivo model and the in vitro systems with three-fold symmetry. The presence 

of water in the central pore 92,115 observed in our molecular dynamics simulations 

suggests cell membrane leakage as a possible mechanism for oligomer-mediated 

toxicity 170. The possibility that oligomers of Aβ could be formed outside the 

membrane, bind to the cell surface and then span the membrane for the formation of 

active channels has been proposed by Shafrir et al 179. Further computational studies 

study of Aβ aggregation with three-fold symmetry in the presence of lipid membranes 

may help to identify which of the amyloid peptide models are stable and remain 

sufficiently open for ion diffusion.  Note that a similar pore with side chains of M35 

lining the inner surface was also observed by Stroud et al 168 in the toxic Aβ42 fibrillar 

oligomer model.  
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Figure 15: Average number of water molecules within 4 Å of each side-chain Cβ 
carbon as measured for both in vivo and in vitro three-fold systems. Solvation exposure 
of side-chain hydrophobic core in the three-fold models and hydrophilic cavities in the 
two-fold system indicates the existence of water in the hollow. (A) In vivo three-fold 
with six layers (2M4J6), (B) in vitro three-fold with six layers (2LMP6),  (C) In vivo 
three-fold with twelve layers (2M4J12) and (D) in vitro three-fold with twelve layers 
(2LMP12). 

 

Discussion 

We have compared the stability of various in vivo and in vitro Aβ fibril models using 

all-atom explicit solvent molecular dynamics simulations. We find water molecules 

flowing in the hydrophobic cavity of the models with three-fold symmetry (both in vivo 

and in vitro). This observation   suggests water-leakage as a potential mechanism for the 

toxicity of amyloids. While in vitro grown Aβ fibrils are polymorphic, and their 

structures depend on the conditions encountered during their nucleation, fibrils acquired 
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post mortem from the Alzheimer’s patient’s brain lack such polymorphism and appear 

in a single, patient-specific form. Lu et al 44 discussed three possible reasons for the 

formation of a sole structure in patient brains: 1) that there is a mechanism for selection 

of a single oligomer via the brain’s environment; 2) multiple oligomers form but only 

one is stable, either by internal or external means; 3) only one structure is stable enough 

to exist after death. Our simulations exclude the third possibility as they indicate that 

the three-fold brain-derived model is less stable than the in vitro Aβ amyloid fibrils, 

both such with three-fold symmetry and such with a two-fold structure. The weak 

stability we observed in our simulation contradicts the Lu et al 4 argument of the 

stability as criteria for the lack of polymorphism. While the current evidence we have is 

indirect, further evidence could be provided in future studies on quantitative 

information about thermodynamic stability using Free Energy Perturbation (FEP) or 

other accurate methods of free energy calculation. The difference in stability is due to 

the different frequencies of hydrophobic contacts between inter- strand-loop-strand sub 

units: the two-fold system is more stable due to a longer association of the β-sheets of 

the two adjacent strand-loop-strand units through tight side chain complementary. The 

difference in stability between the various forms depends on the size of the aggregates 

and decreases as the aggregates grow.   

 

While our simulations indicate that the initial morphology is well maintained for all 

three models of the largest-sized aggregates, the significant lower stability of the in vivo 

model when compared to both forms of in vitro models (two-fold symmetry and three-

fold symmetry) indicates that the brain-derived in vivo structures cannot be generated 
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easily under in vitro conditions, i.e. in solution. Note however, that our simulations are 

limited by the solvent model and require counter-ions to neutralize the system; whereas 

the fibrils formed under more physiologically relevant conditions include different ionic 

strengths and cofactor molecules such as membrane and proteins 173. As the brain-

derived aggregates strongly resemble fibril structures of Aβ formed in the presence of 

the lipid vesicles 180, it seems likely that the lack of polymorphism in the brain-derive 

fibrils is due to the different environmental condition by that the  in vitro and in vivo 

models are grown. We anticipate that the results from our simulation will provide a 

basis for further studies into structural differences and differences in propagation 

mechanism between the brain-derived Aβ-fibril structure and the in vitro models, 

knowledge that is important for rational design of aggregation inhibitors and imaging 

agents.  
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Chapter 5 - Stability Differences in the NMR Ensembles of Amyloid β 

Fibrils 

 
The following chapter was published in similar form in the Journal of Theoretical 

Computational Chemistry by the author of this dissertation as the following article: 

Stability Differences in the NMR Ensembles of Amyloid β Fibrils. J. Theor. Comput. 

Chem. 15: 1650059. All text and figures are taken with the permission of the publisher. 

 

Introduction 

Alzheimer’s, as well as other amyloid diseases, is characterized by the presence of 

amyloid fibrils that appear green under ultraviolet light after staining with Congo 

Red.8,143 These fibrils contain highly ordered cross β arrangements held together by 

steric zipper van der Waals, hydrophobic packing, and hydrogen bonding networks.9,10 

The cytotoxicity and growth rates of the fibril aggregates are largely dependent on the 

structural arrangement and side chain packing.93,115,181 In order to understand the 

pathogenesis of these diseases, one needs to know at a molecular level the structure of 

the fibrils and their precursors.55 For instance, aggregates of the amyloid beta (Aβ) 

peptide are implicated in Alzheimer’s disease, and differences in their molecular 

structure correlate with the disease progress.182-184 Interestingly, fibrils derived  post 

mortem from the brains of Alzheimer patients appear in a single, patient-specific form44 

while in vitro grown Aβ-fibrils are polymorphic.7 In a recent study185 we excluded the 

possibility that the lack of polymorphism in patient-derived fibrils is due to larger 

stability of the brain-derived model over that of the  in vitro models. We arrived at this 
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conclusion from an analysis of the stability of  various fibril fragments followed over 

long molecular dynamics trajectories. The molecular structure of these fibrils were 

resolved experimentally by solid state NMR (ssNMR). However, determining the 

structure of a protein or aggregate from measured NMR signals is an underdetermined 

problem.13  Hence, molecular modeling with a given energy function is used to generate 

an ensemble of configurations that are compatible with the NMR signals. The subset of 

configurations with the lowest energies is then deposited in the Protein Data Bank 

(PDB), with the entries ordered according to their energy14. Following common 

practice181, we have considered in our earlier study   only the first entry (i.e., the one 

with the lowest energy). This approach is justified if one can assume that the  NMR-

derived-configurations form a good approximation of the canonical ensemble at 

physiologically relevant temperature. This approximation is less valid for solid-state 

NMR than for NMR of solvated molecules.186,187 Considering only the first entry 

therefore may skew a computational study if  the NMR entries differ significantly and 

the simulation is not sufficiently long to yield equilibrium configurations (which would 

be independent on the start configuration). In order to ensure that our previous results, 

comparing patient-derived and in vitro generated fibrils, are not biased by considering 

only the first NMR entry we study in the present paper how stability investigations of 

amyloids depend on  the choice of a specific NMR entry as  start configuration. In 

addition, we consider the role of staggering on the stability of fibrils. 

 

For this purpose, we investigate the differences in stability between the members of 

NMR ensembles for the three-fold  patient-derived fibril model (PDB-ID: 2M4J)44 and 
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the three-fold in-vitro fibril  (PDB-ID: 2LMP)150, that were the focus of our earlier 

study.  In a β hairpin loop, the relative position of the β sheets is used to determine the 

stagger of the overall structure. If there is no displacement such that the β sheets are 

aligned in the same plane on the z-axis, the structure does not posses staggering. 

However, displacement of the second β sheet of peptide chain n along the z-axis such 

that it interacts with the first β sheet chain n+1 is positive staggering. Conversely, 

displacement such that the second β sheet of chain n interacts with the first β sheet chain 

n-1 is negative staggering. This creates structures with unique sets of contacts meaning 

they may be functionally distinct.35 The in-vitro model 2LMP has positive staggering, 

and in order to test the role of staggering on fibril stability we now consider additionally 

its counterpart with negative staggering (PDB-ID: 2LMQ).150 Note that no staggering 

has been observed in the patient-derived structure. While monitoring long molecular 

dynamics trajectories we measure quantities such as root-mean-square deviation, radius 

of gyration and secondary structure content for two members of each system: the first 

entry (i.e. the lowest energy configuration) and the entry in the NMR ensemble that has 

the largest Cα-Cα root-mean-square deviation to the first entry, i.e. differs most from it. 

These configurations are entry #20 (9.3 Å) for the patient-derived fibril model 2M4J, 

entry #2 (3.7Å) for the positively staggered in vitro fibril model 2LMP, and entry #6 

(3.2 Å) for its negatively staggered counterpart 2LMQ. The numbers in brackets are the 

root-mean-square-deviations of these entries to the corresponding first NMR entry. 

Comparing molecular dynamics simulations of these systems, we observe significant 

variations in molecular flexibility, compactness, and secondary structure between the 

entries. Of particular interest is the presence of a water-soluble central channel. 
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Experimentally, water accessible pores have been observed with a diameter of 15-20Å 

from E22GAβ1-40 aggregates.150,170,178 This data suggests a membrane leakage mechanism 

of cytotoxicity for Aβ. We previously observed the presence of channels of similar 

dimensions between residues 28-40 of both in vivo and in vitro models with 6 or more 

peptide layers with a pore diameter around 20Å. In this study we confirm that these 

channels are present in all simulated trajectories through comparison of the Inner pore 

diameter. To maintain parity with the original study, the inner pore diameter is 

estimated in the same manner, by averaging the distances between residues M35 of the 

same peptide layer. In addition, we find for the in vitro model that the negatively 

staggered models are less stable than the positively staggered one that we previously 

studied. On the other hand, the earlier focus on the first entry let to an underestimation 

of the stability of the patient-derived fibril.  While our new results do not change the 

overall conclusions of our earlier investigation, they demonstrate that the full NMR 

ensemble and different staggering patterns should  be considered for a physiologically 

relevant description of Aβ fibrils. 

 

Materials and Methods 

Model Generation 

As in our previous work we consider fibril fragments of six and twelve layers in order 

to test how the stability of fibril fragments changes with size of the fragments. The 

patient-derived model 2M4J, as deposited in the  Protein Data Bank, contains three 

protein layers, while the in-vitro models 2LMQ and 2LMP has six protein layers, with  

each layer assembled from  three coordinated Aβ chains and having three-fold 
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symmetry. In order to create a six-layer patient-derived model we duplicate the three-

layer  2M4J structure, align them in the xy plane, and then moved them along the z-axis 

until  the  inter-strand distances are ∼4.7 angstroms. In the same way, we generate 

twelve layer systems by aligning two six-layer systems, requiring again the inter-strand 

distances to be ∼4.7 angstroms. As the first eight N-terminal residues are structurally 

disordered and not present in the in vitro 2LMP and 2LMQ ensemble entries, we 

exclude them  in our simulations. However, these residues are present in the NMR 

ensemble data for the patient-derived 2M4J model where they form junctures between 

adjacent strands in the same layer. For this reason, these residues are accounted for in 

our simulation of the patient-derived model, but in order to compare the different 

models these residues are excluded in the measurement of the analyzed quantities. 

 

Simulation Protocol 

In order to compare the stability of the various fibril fragments selected from respective 

the NMR ensembles, we run three long molecular dynamic simulations for each model, 

using as all-atom force field CHARMM27  (with CMAP corrections188,189 and modeling 

solvent interactions with TIP3P water190,191, a common computational setup for 

simulations of  amyloid β peptide aggregation.192,193 We use the  GROMACS program 

(version 4.6.2)194 adding hydrogen atoms with the pdb2gmx module. The peptide chains 

are put in the center of a box filled with water molecules such that there is at least a  12 

Å distance between protein and the  edges of the cubic box. Electrostatic interactions 

are calculated with the PME algorithm115,195  to account for the periodic boundary 

conditions. The equations of motions are integrated with a time step of 2 fs. Hydrogen 
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atoms are constrained with the LINCS algorithm,196 while for water the Settle algorithm 

is used.197 The temperature of 310 K is kept constant by the Parrinello-Donadio-Bussi 

algorithm198 (τ = 0.1 fs) which is similar to Berendsen coupling but adds a stochastic 

term that ensures a proper canonical ensemble.199 In a similar way,  the pressure is kept 

constant at 1 bar by the Parrinello-Rahman algorithm 200 (τ = 1 fs). 

After solvation, the protein is allowed to relax to an energy-minimized state, which is 

subsequently equilibrated in a 2 ns NVT-ensemble  simulation followed for another 2ns 

by a pressure coupled NPT ensemble simulation. After equilibration, three 300 ns 

molecular dynamic trajectories in a NPT ensemble are followed for the  selected Aβ 

fibril structures. The trajectories differ  in their randomly generated initial velocities and 

are considered by us as independent when calculating error estimates, i.e., we neglect 

correlations resulting from the three trajectories sharing the same initial fibril structure. 

Trajectory data are saved every 4 ps and examined using the analysis tools in the 

GROMACS software package. Specifically, we measure root-means-square deviations 

of the Cα atoms (RMSD), pore diameter of the oligomer cavity, secondary structure 

contents, solvent accessible surface area (SASA), radius of gyration (Rg) and hydrogen 

bonding. PYMOL is used for imaging and visualization of our data. As the in vitro fibril 

fragments do not include the first eight residues, we either  exclude the residues when 

calculating quantities for the patient-derived fibril models or where appropriate by 

normalizing them according to the different number of residues. 
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Results 

 
Due to the creation of artificial contacts between patient derived (2M4J) models in the 

construction of six and twelve layer systems from the original three layer structure, the 

validity of the created contact must first be confirmed before further analysis is 

performed. All artificial contacts are at the point of contact between the three layer 

structures, therefore the only contacts to be compared are interlayer. To this end, we 

compared the hydrogen bond occupancy of the created contacts to interlayer contacts 

present in the original structure presented in Table 9. This comparison indicates that 

there is little difference between the artificial contacts occupancy and the contacts 

present in the original structure, as well as the interlayer contacts of both in vitro 

structures. This shows that the hydrogen-bonding network at the artificial contact 

appears to have formed properly. This is also shown in the visual analysis of the system 

as many of the observed changes involve changes in intralayer contacts, which were not 

artificially generated. 

 

 
Table 9: A comparison of the hydrogen bonding occupancies of the artificial interlayer 
contacts to those present in the original structure. Note that since 2LMP and 2LMQ 
were deposit as six layer constructs, there is no artificial contacts 

 

H-Bond Occupancy 0-100ns artificial 0-100ns original 200-300ns artificial 200-300ns original 
2M4J(Entry 1) 6 Layer 70.3% (3.1) 69.9% (3.4) 75.1% (3.1) 72.6% (4.8) 
2M4J(Entry 1) 20 Layer 72.8% (4.0) 70.1% (3.3) 79.2% (2.6) 82.2% (2.4) 
2M4J(Entry 20) 6 Layer 71.6% (3.6) 70.5% (3.7) 76.5% (2.2) 77.9% (1.9) 

2M4J(Entry 20) 20 Layer 73.0% (3.4) 73.2% (2.9) 80.1% (1.8) 81.5% (2.5) 
2LMP(Entry 1) N/A 72.7% (3.2) N/A 77.2% (2.7) 
2LMQ(Entry 1) N/A 73.1% (3.9) N/A 78.3% (2.5) 
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 In a recent comparison of Aβ fibril models185 we have seen  that the stability of both in 

vitro and the patient-derived fibrils increases with the size of the fragments, but that the 

patient-derived fibrils are less stable than the in vitro ones. We arrived at this 

conclusion by visual inspection of 300 ns-long molecular dynamics trajectories which 

started with structures build from the first entries (i.e. the lowest energy configurations) 

of the respective  NMR ensembles. Comparing these trajectories we found also  a  

larger radius of gyration, lower β-sheet content and a lower number of backbone 

hydrogen bonds for the patient-derived fibrils. One goal of the present investigation is 

to test whether these previous results are biased by our choice of the start configuration. 

For this purpose, we have now added new simulations which  start from  these entries in 

the various NMR ensembles that  differ maximally from the respective first entries.  

 

 

 

Figure 16: Start (A) and final configurations (B-D) of three 300 ns long trajectories 
from simulations of   the six-layer model derived from entry #20 of the patient-derived 
fibril 2M4J. For comparison we show also the start (E) and final configurations (F-H) of 
three trajectories that start from models derived from lowest-energy configuration (entry 
#1) as used in our previous study.185   
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Figure 17: Start (A) and final configurations (B-D) of three 300 ns long trajectories 
from simulations of   the twelve-layer model derived from entry #20 of the patient-
derived fibril 2M4J. For comparison we show also the start (E) and final configurations 
(F-H) of three trajectories that start from models derived from lowest-energy 
configuration (entry #1) as used in our previous study.185   

 

Figure 18: Start (A) and final configurations (B-D) of three 300 ns long trajectories 
from simulations of   the six-layer model derived from entry #2 of the  positive 
staggered  in vitro fibril 2LMP. For comparison we show also the start (E) and final 
configurations (F-H) of three trajectories that start from models derived from lowest-
energy configuration (entry #1) as used in our previous study.185   
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Figure 19: Start (A) and final configurations (B-D) of three 300 ns long trajectories 
from simulations of   the six-layer model derived from entry #6 of the  negative 
staggered  in vitro fibril 2LMQ. In the second row we show also the start (E) and final 
configurations (F-H) of three trajectories that start from models derived from lowest-
energy configuration (entry #1).   

 

In same way as in our previous work, we start our analysis with a visual inspection of 

the various trajectories. As an example, we show in Figure 16 the start and final 

configuration of the six-layer model derived from entry #20 of the patient-derived fibril 

2M4J. This entry differs from the previously used lowest-energy configuration (entry 

#1) by a root-mean-square-deviation of 9.3 Å.  For comparison we show also the 

corresponding structures for the first entry that was used in our previous study. Similar 

figures for the same system with twelve layers are shown in Figure 17, and for the two 

in vitro systems in Figures 18 and 19. Visual inspection of these structures is 

complemented by measurements of the root-mean-square deviation (RMSD) and 

Radius of Gyration (Rg) as listed in Table 10.  

For the patient-derived fibril (Figure 16) the lowest-energy configuration loses its 

central column over the course of the simulation, and the repeating chains become   
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elongated or stretched. On the other hand, we find that the fibril build out of the entry 

#20 remains intact over the course of the simulation and keeps its central column 

despite some ‘shearing’ along the fibril growth axis. This difference in stability is also 

seen in the time evolution of the root-mean-square deviation shown in Table 10: in the 

simulation that started from the first entry of the NMR ensemble, the final configuration 

differs from the start configuration by 14.5 (2.9)  Å and has a radius of gyration of 55.6 

(8.4) Å, while the final configuration in the simulation started that started from entry 

#20 has a radius of gyration of 37.9 (6.7) Å and differs by only  7.9 (0.7) Å from the 

start configuration. Comparison of the inner pore indicates that the channel is better 

maintained in trajectories started from entry #20, with  an average diameter of 20.2 

(1.1) Å compared to that of entry #1, 24.2 (3.2) Å. The difference between NMR 

models becomes smaller, but for the most part persists when going to larger systems. 

The inner pore appears to be of similar stability between the two entries with a pore 

diameter value of 20.1 (2.2) Å and 19.7 (1.2) Å for entry # 1 and #20 respectively. Any 

difference in the measure is likely due to noise. For the fibril with twelve layers is the 

root-mean-square deviation between final and start configurations 10.2 (1.9) Å when 

starting from the first entry, and 7.6 (0.7) Å when starting from entry #20. The radius of 

gyration at the end of the simulation again larger for the first entry than for entry #20: 

48.2 (3.5) Å versus 43.4 (2.7) Å, but the difference between both values is also smaller 

than in the case of the six-layer system. This smaller difference can be also seen by 

visual inspection of the structures in Figure 17. Hence, we find that the stability of  the 

patient-derived fibril in molecular dynamics simulations seems to depend strongly on 

the choice of the NMR entry that is chosen. However, this difference in stability 
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between the various entries decreases when going to larger systems. Note that the 

difference in stability between the two entries is not due to variations in their hydrogen 

bonding pattern. The less stable first entry has in  both the six-layer and the twelve layer 

systems a larger number of main-chain  - main-chain hydrogen bonds while the number 

of main-chain - side-chain and side-chain  side -chain hydrogen bonds differs little, see 

Table 10. Together with the decreasing deviation in stability with increasing fibril size, 

this suggest that the d stability of the two entries depends not so much on the hydrogen 

bonding pattern but on the packing of hydrophobic residues. This can also be seen from 

the solvent accessible surface area (SASA) measurements that are listed separately for 

hydrophobic and hydrophilic residues  in Table 10. For both the six-layer and the 

twelve-layer systems we find that the hydrophobic residues have a larger surface area 

exposed to the solvent for the less stable first entry than the corresponding residues have 

in the more stable entry #20.  

 

Table 10: Average root-mean-square deviation between Cα-atoms (Cα RMSD) in the 
final and the start configuration (Å), calculated for Residues 9–40, Radius of Gyration 
(Å), Inner Pore Diameter  (Å), number of  Main-Chain – Main Chain, Side- Chain – 

System Cα 
RMSD 

Radius 
of 
Gyration  

Inner 
Pore  
Diameter 

Hydrogen Bonds SASA 
Main 
Chain 

Side 
Chain 

Mixed Total Non-polar polar 

Six-layer patient-derived model 

#1 14.5 (2.9) 55.6 (8.4) 24.2 (3.2) 0.40 (0.02) 0.12 (0.1) 0.13 (0.01) 538.0 180.9 (5.7) 357.0 (4.8) 
#20 7.9 (0.7) 37.9 (6.7) 20.2 (1.1) 0.30 (0.02) 0.14 (0.02) 0.14 (0.01) 530.4 166.5 (3.2) 363.9 (6.0) 
Twelve-layer patient-derived model 

#1 10.1 (1.9) 43.4 (2.7) 20.1 (2.2) 0.41 (0.02) 0.11 (0.01) 0.14 (0.01) 527.1 178.6 (6.1) 348.5 (3.2) 
#20 7.6 (0.7) 48.2 (3.5) 19.7 (1.2) 0.28 (0.01) 0.15 (0.02) 0.13 (0.01) 506.2 158.8 (2.7) 347.4 (2.9) 
Six-layer in-vitro model (positive staggering) 

#1 7.5 (0.3) 33.9 (7.8) 19.6 (1.4) 0.42 (0.01) 0.12 (0.02) 0.07 (0.01) 636.3 227.2 (5.5) 409.2 (5.8) 
#2 7.0 (0.4) 33.5 (6.0) 24.1 (4.6) 0.43 (0.03) 0.11 (0.01) 0.07 (0.01) 651.7 242.3 (4.6) 409.4 (5.4) 
Six-layer in-vitro model (negative staggering) 

#1 9.4 (0.8) 38.9 (7.7) 19.5 (1.8) 0.43 (0.02) 0.13 (0.01) 0.07 (0.01) 623.1 223.1 (5.1) 400.0 (4.1) 
#6 8.6 (0.5) 40.8 (5.9) 24.9 (5.1) 0.41 (0.02) 0.12 (0.02) 0.06 (0.02) 640.4 240.7 (4.8) 399.7 (4.6) 
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Side- Chain and Main-Chain - Side-Chain Hydrogen Bonds, solvent accessible surface 
area (SASA) for all residues, for polar residues only and for non-polar residues only. 
The various NMR ensemble entries are marked by their identifier 

The variation in stability between NMR ensemble entries  is also much smaller for the 

in vitro structures 2LMP (positive staggering)  and 2LMQ (negative staggering) for 

which we only have studied six-layer systems. For the positive staggered system we 

find final  root-mean-square-deviations of 9.4 (0.8) Å and 8.6 (0.5) Å for  the two NMR 

entries, and corresponding values of 7.5 (0.3) Å and 7.0 (0.4) Å for the negatively 

staggered system, i.e. the staggering  has a larger influence on the stability than the 

choice of NMR-entry. Note, however, that for both the  positively and negatively 

staggered systems  we find a stronger hydrophobic packing of the first entry in the 

respective NMR ensembles, see the variation in solvent accessible surface area for 

hydrophobic residues in Table 10, which leads to a higher stability  of the central 

column and a about  5 Å smaller inner pore diameter. Visual inspection of the structures 

in Figures 18 and 19 also shows that despite these differences the NMR entries of the in 

vitro structures vary less than the corresponding configurations of patient-derived 

fibrils. This smaller variability is likely due to the fact that the start configurations also 

differ less: ~3.1 Å  for both in vitro models compared to a  difference of 9.3 Å for the 

patient-derived model.  

 

It is interesting to compare of the positive and the negative staggered in vitro structures. 

Focusing on the first entries of the respective NMR ensembles (the top rows in Figures 

18 and 19) we see that both staggering arrangements maintain the overall three-fold 

structure throughout the 300 ns trajectory. This can be also seen from a comparison of 

radius of gyration  and inner pore diameter, also shown in Table 10. However,  the 
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negatively staggered 2LMQ is less stable than the  positive staggered system, 2LMP, 

with final root-mean-square-deviations of 9.4 (0.8) Å versus 7.5 (0.3) Å, and while both 

systems started from  similar start structures, the trajectories deviate over the 300 ns of 

simulation. In the positively staggered 2LMP the internal column is preserved as 

indicated by the triagonal arrangement of the gray M35 residues (Figure 19). 

Furthermore, the yellow and red contacts (L34 and F12) show that the hairpin units are 

well maintained. 

 

We also see well ordered hairpin loops on the negatively staggered 2LMQ, however, 

the central column appears to be unstable and sometimes even  re-assembles into a fibril 

with two-fold symmetry. The slightly smaller stability of the   positive stagger model 

may be due to a lower β sheet content. Using the DSSP201 implementation in 

GROMACS we have calculated the changes in secondary structure between the energy-

equilibrated structure (0 ns) and the last 100 ns of the molecular dynamics trajectories. 

In the 2LMP structure  are at the start  45% of residues part of a beta-sheet, and at the 

end only 42 (1) %, while in the 2LMQ structure initially 47 % of residues are part of a 

beta-sheet, and this number stays constant: 47 (2) %.  

 

Discussion and Conclusion 

We have compared in a recent article the differences in stability between an in vitro 

fibril with three-fold symmetry and a patient-derived fibril with the same symmetry. We 

extend these investigations in this article by addressing two potential shortcomings of 

the earlier work: first, we studied previously only the stability of the first entry (the 
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lowest-energy configuration) of the respective ssNMR ensembles; and secondly, we had 

ignored the existence of fibrils with different staggering for the in vitro fibril structure 

(the patient-derived structure does not have staggering). Hence, our previous 

conclusion, that the lack of polymorphism in patient-derived fibrils is not due to larger 

stability of the brain-derived model over that of  in vitro models, depends on the 

assumption that fibril stability differs little between the ssNMR entries and does not  

depend strongly on the staggering. Evaluating now also the stability of different  entries 

in the respective ssNMR ensembles, and of structures with other staggering, our new 

simulations lead to two observations.  

First, the variation in stability between the  NMR entries depends on the specific system 

and, not surprisingly, seems to reflect the diversity of the ensemble. For the patient-

derived structure the difference in the entries is about 9 Å, and we find large differences 

in stability. On the other hand, for the in vitro fibril structures the differences between 

the NMR entries are only between 3-4 Å, leading to much smaller differences in 

stability. However, while this seems to imply that we have previously underestimated 

the stability of six-layered patient-derived fibrils, the new data do not change our 

conclusion. In addition, differences between NMR entries disappear with increasing 

fibril size. Already for our twelve-layer patient-derived fibril fragment are the 

deviations much smaller.  

Our second observation is that for the in vitro model  the negatively staggered models 

are less stable than the  positively staggered one. The negative staggering  disrupts  

stabilizing bonds between the three-fold motif leading to a rapid conversion to a two 

fold like structure. Hence, our new data show the importance of considering staggering 
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when evaluating the stability of certain fibril arrangements, however, both arrangements 

are more stable than the patient-derived fibril structure. 

 We  conclude that while our new results do not undermine the overall conclusions of 

our earlier investigation, they demonstrate that the complete NMR ensemble and 

different staggering patterns must be considered for a physiologically relevant 

description of Aβ fibrils. 
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Chapter 6 - Molecular Dynamics Simulations of Early Steps in RNA-

Mediated Conversion of Prions 

 
The following chapter was published in similar form in Protein Science by the author of 

this dissertation as the following article: Molecular Dynamics Simulations of Early 

Steps in Rna-Mediated Conversion of Prions. Protein Sci 26:1524-1534. All text and 

figures are taken with the permission of the publisher. 

 

Introduction 

Prions are proteins commonly found in a wide range of species including bacteria and 

fungi.  In mammals and birds they play a role in the growth and maintenance of 

neuronal synapses 56-58; and mis-folded prions (usually addressed in this form as scrapie 

form or PrPSC, while prions in their functional form are called PrPC) assemble into cell-

toxic aggregates that are the cause for a number of neurodegenerative diseases in 

humans (Creutzfeldt-Jacob, Kuru, Fatal Familial Insomnia) and animals (Scrapie, 

Bovine Spongiform Encephalopathy).58,59 While the structure of the infectious PrPSC 

state is not known, circular dichroism measurements indicate  a lower helicity (43% in 

PrPC compared to 30% in PrPSC) and a larger β sheet content  (3% in PrPC compared to 

43% in PrPSC) than seen in the native PrPC structures that are resolved and  deposited in 

the  Protein Data Bank.66 In the often studied mouse prion (total length of 254 residues) 

the loss of helicity results  from the helix proximal to the N-terminal domain referred to 

as helix A60-67 (residues 143 to 161) converted into a beta sheet,  while the central helix 
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B (172-196) and the C-terminal helix C (200-229) stay intact.  The now generally 

accepted protein-only hypothesis of Stanley Prusiner states that  mis-folded prions are 

infectious, i.e.,  a prion protein in its disease-causing  PrPSC form  can convert an 

unfolded prion, or one that is in its native PrPC state,  into its  own form.202 Hence, prion 

diseases progress by a nucleation mechanism where initial mis-folded prions seed the 

spread of the cell-toxic aggregates. There is evidence183,203,204 that such 

“infectiousness’’ of aggregates plays also a role in Alzheimer’s and other  amyloid 

diseases.  Hence, the rate-limiting factor in all these diseases is the formation of the 

initial seed that nucleates the growth of the toxic aggregates. Data on the initial stages 

of aggregation can be immensely valuable as the list of diseases associated with fibrillar 

aggregates is numerous and continually growing.205 Recent evidence206,207 strongly 

indicates the pregnancy specific disorder preeclampsia to be associated with protein 

aggregations, which has previously been shown to be associated with elevated levels of 

expression for prion protein.208 This knowledge underscores the potential impact of 

structural data for the initial stages of prion aggregation for a wide array of disorders 

affecting multiple areas of the body.  

There is experimental evidence that polyanions, such as polyadenosine RNA (poly-A-

RNA), can catalyze conversion of the native  PrPC form into    PrPSC seeds through 

interacting with the N-terminal of the prion at either a segment made from residues 21 -

31 or at the segment made from residues 111-121.56,209 For instance, the deletion of 

polybasic domain 21-31 creates prion proteins that do not undergo conversion to the 

infectious state in the presence of poly-A-RNA.210 However, it is not clear how 
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interactions between the RNA and  these two  polybasic segments lead to unfolding of 

helix A and its re-folding into a beta-sheet. 

In the present paper we use molecular dynamics simulations to probe this mechanism 

and to identify early steps in the conversion of PrPC into PrPSC upon binding to RNA. 

The mouse prion, for which the wealth of experimental data is available, is compared 

with the medically more relevant   human prion protein allowing us to assess the effect 

of sequence on the mechanism of conversion. As the N-terminal domain  (residues 1 -

121) has not been resolved in the PrPC structures of mouse (254 residues) and human 

(253 residues) prion protein  (deposited in the Protein Data Bank (PDB) under 

identifiers 2L40 and 2LSB), it is not possible to study directly in silico how docking of 

RNA to the PrPC structure modulates the stability of helix A and its conversion to a 

beta-sheet. For this reason, we have augmented the experimental structures with 

structure predictions of the N-terminal domain. Comparing proposals from the well-

established MODELLER, which is based largely on homology modeling and 

refinement,211,212 and ITASSER, which used Replica Exchange Monte Carlo 

simulations to construct models from known structural templates,213-215   programs we 

generate initial protein structures for the docking of the prions in their PrPC form with 

poly-A-RNA fragments. The quality of the predicted structures are inferred prior to 

docking by comparing the scores from three separate assessments: RAMPAGE216, 

ERRAT217 and ProQ218. The stability of such complexes, predicted by the docking 

software Autodock,219 is then evaluated in 300 ns long all-atom molecular dynamics 

simulations with an explicit solvent. Through monitoring the protein’s secondary 

structure, contacts formed with the RNA fragment and the protein (specifically helix A 
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and polybasic domains of the N-terminal region), and root mean square fluctuation of 

residues in both the bound and unbound state of prion proteins, we characterize how the 

interaction between RNA and prion protein modulates the transition from the cellular 

prion protein to its infectious scrapie form.  

Materials and Methods 

Model Generation 

In mammals, prion proteins are anchored to the cellular membrane via a 

glycosylphosphatidylinositol (GPI) anchor at the C terminus, added to the protein after 

cleavage of the last 24 C-terminal residues.57,58 Simulations of the protein anchored to 

the membrane are computationally expensive, and in order to explore efficiently  the 

dynamics of RNA-prion interactions, we chose an unanchored prion model for our 

study. This requires to use in our   simulations  the non-cleaved protein  (of length 253 

residues for human prions  or  254 residues  for mouse prions) to prevent the presence 

of an erroneously charged C terminus.  In order to study the conversion of the PrPC  

form into the disease-causing  PrPSC state by molecular dynamic simulations we  need a 

suitable model of the mouse or human prion protein in its native   PrPC  structure. These 

structures have been only partially resolved by X-ray diffraction, with the N-terminal 

first 121 residues missing in the structures deposited in the Protein Data Bank (PDB)  

under PDB-ID  2LSB (human) and  2L40 (mouse). As binding of the RNA to the 

protein is supposed to involve  these N-terminal residues, we propose to extend the 

PDB models by adding the N-terminal first 121 residues,  taking as their  structure one 

predicted by the well-established MODELLER or ITASSER programs.211-215 While 

both software packages rely on aligning a protein sequence to existing structures, they 
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differ in the prediction protocols and protein models. Comparisons of the C terminal 

residues and critical polybasic residues between prediction algorithms showed an 

RMSD less than 5 Å showing key features were maintained regardless of method of 

structural prediction. Hence, by comparing  two independent sets of predictions we 

hedge our  study against potential biases.  For both packages we select the two 

structures that have the highest ranking, and allow them to relax in a short, 5 ns long 

molecular dynamic run at T=310 K and 1 bar pressure. From each trajectory we then 

collect ten evenly spaced configurations for quality assessment. Model quality was 

calculated by averaging the scores of RAMPAGE216, ERRAT217 and ProQ218 and 

comparing them to a cutoff value. We then find the RNA complexed structures using 

the docking software Autodock 25, dock these configurations to a five-nucleotide 

snippet of poly-A-RNA, allowing free rotation around all single bonds in the poly-A-

RNA. Autodock 25 was selected as the docking software as it has been used extensively 

to model docking to both large proteins and RNA.220,221 We choose a fragment size of 

five nucleotides because this was in recent experiments  the minimal size  where photo-

degradation does not change the rate of conversion.222,223 The predictions by either 

MODELLER or ITASSER lead to a total of two times ten docked structures for each 

software package (MODELLER/ITASSER) and protein (human/mouse), that are used  

as start point for short molecular dynamics simulations of 10 ns length  at T=310 K.  In 

29 (25) of the 40 runs for  the human (mouse)  prion protein, the RNA got detached 

from the protein, and we discarded the corresponding docked  structures.  Analyzing the 

remaining 12 docked structures for the human prion, we identified three stable binding 

sites for the human protein.  Site 1 is found five times and corresponds to the  binding 
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between the RNA  and the prion protein at  the polybasic domain of residues  21-31. 

Site 2  involves the interaction with polybasic domain of residues 111-121 and is found 

four times, and site 3 (found three times) involves the residues 135-145 located in the 

N-terminal helix A. For the mouse prion protein we find four binding sites in the 15 

docked structures that did not dissolve in the molecular dynamics runs. These include 

the three binding sites seen for the human prion protein and  a fourth one, involving the  

residues 1-5 of the positively charged N-terminal.  Site 1 is found  five times, site 2 

three times,  site 3 four-times, and site 4 three-times. Out of the docked structures that 

share the same binding site we then choose for each protein (human/mouse) and 

prediction algorithm (ITASSER/MODELLER) a structure for further analysis with the 

smallest root-mean-square-deviation over the 10ns run, i.e, the structure that appeared 

to be most stable. Note that in the case of the human prion we also repeated the above 

protocol for the post-translated protein where the C-terminal 23 residues are cleaved. 

This test led to the same predicted binding sites. The complexes with full-length protein 

the residues 230-253 do not form contacts with either the poly-A-RNA fragment or 

helix A, and the structure of this segment changes by approximately 10 Å in the 

simulations described below. This indicated that residues 230-253 do not appear to 

interact with key regions for prion conversion, thus we conclude that the post-

translational cleavage does not affect the conversion between  PrPC  and  PrPSC form of 

human and mouse prion in our model.  
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Simulation Protocol 

The stability of the so-derived  2 x 3 (2 x 4) docked structures predicted for the human 

(mouse) prion protein  by either MODELLER or ITASSER was studied in longer 

molecular dynamics simulations,  and compared with the outcome of control 

simulations of the two proteins (in their predicted configurations) without being docked 

to the RNA. These simulations rely on  the GROMACS software package version 

4.6.583 and utilize the CHARMM36 force field with associated nucleic acids 

parameters30,224-226 and  TIP3P water molecules227,228, a common choice for simulation 

of amyloid-β  systems which aggregate via pathways similar to that of prions112,229,230. A 

cubic box with a side length of 12 Å is placed around the center of mass of the docked 

and undocked peptide systems. As this solvent box has periodic boundaries, 

electrostatic interactions are calculated using the PME algorithm231,232 (36,37). The 

various RNA-prion complexes are first minimized by steepest descent,  before being 

equilibrated in a succession of  a 2 ns molecular dynamics run in a constant number 

volume temperature (NVT) ensemble and a 2 ns run in a constant number pressure 

temperature (NPT) ensemble.  

 

The six human prion and eight mouse prion protein  structures, generated with the 

protocol described above,  are the start point for long molecular dynamics simulations 

of 300 ns length in a NPT ensemble  at 310 K and 1 bar pressure that allow us to probe 

the stability of the various systems. The equations of motions are integrated with  a 2 fs 

time step, where  hydrogen atoms are constrained by the LINCS algorithm119 and water 

using the Settle algorithm (39). The temperature is held constant at a physiological 
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temperature of 310K by a Parrinello-Donadio-Bussi thermostat120,233 (τ = 0.1 fs),  and 

pressure is similarly held constant at 1bar by the Parrinello-Rahman algoritht (τ = 1 

fs).234 As the simulation was not being performed on GPUs, a group cutoff scheme was 

used, as we would not gain noticeable performance increases with a Verlet scheme. Due 

to the system size, neighbor searching was set to grid with a cutoff of 1.5 nm. Long-

range electrostatics was handles by Particle Mesh Ewald with cubic interpolation and 

grid dimension set to 0.15 nm. 

 

Generating different velocity distributions we follow each system in three trajectories in 

order to get a simple estimate for the statistical fluctuations. Data are saved every 4 ps 

to allow for  analysis with the tools available in GROMACS. Primarily, we measure the 

following quantities:  root-means-square deviations of the Cα atoms (RMSD), 

secondary structure contents, contact distances and hydrogen bonding footprint. 

Configurations are visualized using PYMOL.43  

 

Results and Discussion 

Model Confirmation 

Quality assessment of predicted structures was preformed by comparing the scores of 

three separate methods of validation: RAMPAGE216, ERRAT217 and ProQ218. The 

cutoff used for the RAMPAGE score required the relaxed trajectory to have an 

aggregate of more than 85% of residues in favored regions and less than 0.8% (2 

residues or less) in disfavored regions. Validation by ERRAT required the trajectories 

to have an average quality factor greater than 90%, as this suggests an acceptable 
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model216. ProQ predicts two scores, LGscore and MaxSub with cutoffs of 2.5 and 0.1 

respectively.235 Averages for all analyze structures are presented in Table 11. 

 

Table 11: The average quality scores of trajectories used for docking provided by three 
separate methods of validation. Standard deviation is presented in parenthesis. 

 

Visual Inspection 

Eight docked structures (one for each of the four binding sites as predicted by either 

ITASSER or MODELLER) of the mouse prion – RNA complex, and six of the human 

prion – RNA complex, were followed in three independent trajectories over 300 ns to 

evaluate the stability of the complexes. We start our analysis of these 42 trajectories 

with a visual inspection of the final configurations. As a control, we also simulated the 

four unbound mouse, and three unbound human, prion protein structures, predicted by 

MODELLER and ITASSER, in three trajectories having the same length and using the 

same protocols as for the RNA-protein complexes.   From the docked structures we 

were able to identify three binding sites for the human prion, and both docked and 

unbound structures are shown in Figure 20.  The corresponding structures for the 

mouse prion, where we found four binding sites, are shown in Figure 21.   

 
 

Sequence Rampage Favored Rampage Allowed RAMPAGE Disallowed ERRAT 
ProQ 
LgScore 

ProQ 
MaxSub 

Human Modeller 88.6% (3.5) 11.0% (2.1) 0.6% (0.2) 90.32% (2.1) 0.265 (0.05) 3.4 (0.4) 
Human ITASSER 90.7% (2.8) 8.8% (2.8) 0.4% (0.2) 92.02% (3.2) 0.350 (0.10) 3.8 (0.6) 
Mouse Modeller 87.2% (4.0) 12.4% (4.2) 0.5% (0.3) 90.03% (2.2) 0.27 (0.20) 3.5 (0.5) 
Mouse ITASSER 89.3% (3.0) 10.3% (2.6) 0.4% (0.1) 91.91%(2.4) 0.330 (0.08) 3.7 (0.4) 
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Figure 20: Binding motifs observed for the human prion protein. The upper row 
displays the unbound systems and the lower row the bound ones.  Helix A is drawn in 
blue, helix B in yellow, the polybasic domain of residues 21-31 in red, and polybasic 
domain of residues 121-131  in orange (binding site 2 only). Blue spheres denote the N 
terminal domain while red spheres denote the C terminal domain. 

 

Figure 21: Binding motifs observed for the mouse prion protein. The upper row 
displays the unbound systems and the lower row the bound ones.  Helix A is drawn in 
blue, helix B in yellow, the polybasic domain of residues 21-31 in red, and polybasic 
domain of residues 121-131  in orange (binding site 2 and 4 only). Blue spheres denote 
the N terminal domain while red spheres denote the C terminal domain. 
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In the six trajectories that followed the time evolution of the RNA docked to the mouse 

prion protein at site 1 (the polybasic segment of residues 21-31), a pincer-like structure 

between helix A (shown in blue) and the polybasic domain (shown in red) is quickly 

formed and encapsulates the RNA (shown in brown). This pincer motif is also seen in 

the corresponding six trajectories for the human prion protein bound with RNA at the 

polybasic segment of residues 21-31. This motif is characterized by distinct contacts 

between RNA and Protein which we list in Table 12. Note that this motif does not 

differ between structures generated by MODELLER or ITASSER,  but it is not 

observed in the control simulations of the unbound proteins. In the trajectories of the 

prion-RNA complex where this motif appears, helix A dissolves over the course of the 

simulations, but not in the control simulations of the unbound proteins. Since this loss 

of helicity in the bound protein occurs in the same region where it is seen in the 

conversion to the infectious state, we conclude that this polybasic-helical pincer motif 

initiates the  conversion to the infectious state.  This direct interaction with helix A does 

not affect the secondary structure of the other helixes B and C, again in line with 

experimental results.62 In the region of alpha helix A, and the surrounding coils, we see 

the generation of transient β structures indicating the potential conversion to the PrPSC 

state as shown in Figure 22. However, these structures are not consistently observed 

across all trajectories and when observed oscillate between coil and sheet conformation, 

indicating that our 300ns trajectories are not sufficiently long to sample the conversion 

to the infectious state.  
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Figure 22: Secondary structure of the prion protein for system of RNA docked to site 1. 
Residues with β sheet secondary structure are indicated by yellow; α helices are 
indicated by purple; RNA is indicated by brown; coils are indicated by gray, and the 
polybasic domain 21-31 is indicated by red. Transient β strands around docking site are 
circled in a red dotted line while sheets that are from the PDB are circled in a yellow 
solid line. Blue spheres denote the N terminal domain while red spheres denote the C 
terminal domain. 

 

Table 12: Contacts between RNA and prion that define the helix pincer motif. 

 

In the preliminary short trajectories, a strong binding of the RNA molecule to the prion 

proteins was also observed for binding site 2, defined as the region around the polybasic 

 0-100ns  200-300ns 
Contacts with Helix A 
144 ASP 144 ASP 
145 TRP 145 TRP 
147 ASP 147 ASP 
148 ARG 148 ARG 
  139 HIS 
  140 PHE 
  146 GLU 
  149 TYR 
  150 TYR 
Contacts in the Neighborhood of Polybasic Domain of Residues 21 -
31 
25 ARG 25 ARG 
27 LYS 27 LYS 
34 GLY 34 GLY 
35 GLY 35 GLY 
33 THR 33 THR 
41 GLN 41 GLN 
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domain of residues 111-121. In the 300ns long trajectories of complexes formed with 

this binding site we do not see the formation of the pincer-motif seen in the simulation 

of complexes with binding site 1. This is likely because helix A (residues 140-161) is 

too close to the binding site and a pincer arrangement would lead to steric clashes. 

Consequently, the secondary structure changes not more in the simulation of the bound 

prion protein than in that of the unbound protein. Again we find little difference 

between human and mouse proteins, and models generated with either ITASSER or 

MODELLER.  

 

The RNA fragment can also interact with mouse and human prion proteins at binding 

site 3, made of residues 135-145, which partially overlaps with the  helix A  (residues 

140-161). As with the complexes involving binding site 1, we observe in multiple 

trajectories the formation of the helical-polybasic pincer motif, and the dissolution of 

helix A happens even faster when the RNA binds to site 3 than when it binds to site 1. 

This may be because when binding at site 3, the RNA binds directly to the helix A, and 

only later forms the helical-polybasic pincer, which then traps the RNA in a region 

close to the helix A. This observation is further supported by data from two trajectories 

for RNA bound to the mouse ITASSER structure at site 3. While in two of the three 

trajectories the RNA separated from the protein (at ~75ns and ~95ns, respectively), the 

complex persisted in one trajectory where, unlike in the other two trajectories, the 

pincer between the polybasic domain and helix A is formed and helix A dissolves.  
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Binding site 4 involves the RNA interacting with residues 1-5 of the N terminal domain 

and occurs only in mouse prion, despite that mouse and prion protein have the same 

sequence in this region. However, in the three structures where the RNA binds to the 

protein at site 4, the N-terminal residues 1-5 are   within 5 Å to the polybasic domain 

111-121 with which they form a pocket around the RNA.  As the unbound systems, 

RNA-bound systems at binding site 4 do not change secondary structure. Because of the 

close proximity to the polybasic domain of residues 111-121, one may consider binding 

site 4, which is only observed for a single structure predicted by MODELLER, as a 

variant of binding site 2.  As most of the structures, predicted by MODELLER, have the 

first five N-terminal residues within 5 Å to the   polybasic domain 111-121, binding site 

4 may be in artifact of the protein structure prediction method. 

 

Our visual inspection of the 42 trajectories suggest that RNA can initiate conversion 

into the infectious scrapie form when binding to the prion protein at sites 1 and 3. 

Hence, we focus in our further analysis on these two binding sites. As we find little 

differences between ITASSER and MODELLER generated structures, we will no 

longer distinguish between them, but combine them in our analysis. Hence, in the 

following analysis our statistics are calculated for prion proteins of respective human or 

mouse sequence from the total of 6 trajectories (3 from ITASSER and 3 from 

MODELLER) for both binding sites 1 and 3.  
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RMSF Analysis 

One way to quantify the effects of docking RNA to specific regions of the prion protein 

is by comparing the root mean squared fluctuation (RMSF) of residues in the various 

RNA-prion complexes. These are shown in Figure 23 for all residues of human or 

mouse prion. The figure displays for each residue the ratio of RMSF measure for the 

bound protein divided by the corresponding value measured for the unbound prion. A 

value larger than one therefore implies that a given residue is more flexible when RNA 

binds to the prion than in the unbound protein. In agreement with the visual inspection 

of the various trajectories,  we find for both human and mouse prion docked to either 

site 1 or 3  a characteristic spike in region 150-180, which  includes many residues of 

helix A (140-161),  that  is not seen for the other binding sites (data not shown). 

Binding to these two pockets leads for the human prion protein also to increased 

flexibility in the region of residues 35 – 90. This higher flexibility results from a loss of 

contacts between polar residues in this segment and helix A after binding of the RNA to 

the protein. The frequency of such contacts falls, with the standard deviations between 

trajectories presented in parenthesis, from 32.1% (7.2) in undocked structures to 12.1% 

(2.9) in docked structures. A similar decrease of frequency for such contacts is also 

observed for the mouse protein when the RNA is binding to site 1 and site 3, declining 

from 31.1% (4.4) in undocked to 10.1 (3.3) in docked structures, and consequently an 

increase in flexibility is observed for the segment of residues 35-90.  

 

The distribution of the residue RMSF corroborates our previous observation that 

formation of the pincer-like structure leads to dissolution of helix A. This dissolution is 
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also seen in Table 13 where we show how the probability to find 1+4 - backbone 

hydrogen bonds, characteristic for α- helices,  changes along  the trajectories. The helix 

starts dissolving by losing hydrogen bonds involving residues 144-148, which are also 

the  ones that first form contacts with the RNA. As the simulations evolve, further 

helical back bone hydrogen bonds break, especially the bond between Tyr150 and 

Glu146, and TYR149 and ANS153; all residues that now also form contacts with the 

RNA fragment.  

Figure 23: RMSF values measured for residues in docked structures divided by that 
measured in undocked structures.  Ratios for the human prion protein are shown in the 
upper row, and ratios for the mouse protein in the lower row.  The left column shows 
the ratios for structures docked to binding site 1, and the right column that for binding 
site 3. The ratio is calculated by dividing the average RMSF value for a given residues 
in the docked protein-RNA structure to the average RMSF of the undocked protein. The 
green line indicates a ratio of one.  
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Table 13: The probability of a given helical contact averaged over the trajectories 
where the polybasic-helix pincer motif is seen.   

 

The net- effect of the loss of backbone hydrogen bonds in helix A and the newly formed 

contacts of residues in this segment with the RNA is an increase in the total number of 

hydrogen bonds; i.e., the binding of the RNA is despite the loss of helix-stabilizing 

hydrogen bonds energetically favorable. This can be seen from Table 14 where this 

relative increase is shown for both human and mouse prion protein, at both binding 

sites. The control simulations show no noticeable growth in the number of hydrogen 

bonds while the bound forms do show an increase, with a larger growth observed for 

binding to site 1. In order to emphasize this point we show in Table 14 also the 

differences in the total number of hydrogen bonds. Average over the first 100ns there is 

only a weak signal, in that there is only an increase of about six hydrogen bonds; 

however, this number increases to about ten or more hydrogen bonds over the last 100 

ns of the simulations. Hence, despite the dissolution of helix A additional backbone 

Backbone Hydrogen Bond Control Undocked RNA Docked 0-100ns RNA Docked 200-300ns 
VAL161-PRO157 50.0% (3.7) 45.1% (4.6) 10.1% (2.5) 
VAL160-HIS155 75.4% (1.2) 55.4 (3.1) 15.6% (2.5) 
GLN159-MET154 88.6% (3.6) 61.5% (3.7) 20.4% (4.1) 
ASN158-ASN153 81.7% (3.5) 65% (4.4) 19.5% (3.5) 
PRO157-ASN153 45.5% (4.1) 43.4 (3.8) 20.4 (4.0) 
ARG156-GLU152 78.7% (2.3) 65.5% (7.7) 20.9% (3.7) 
HIS155-ARG151 97.9% (4.2) 81.0% (8.3) 51.0% (3.4) 
MET154-TYR150 74.3% (3.1) 65.6% (7.4) 30.5% (4.4) 
ASN153-TYR149 86.1% (3.8) 50.1% (4.2) 0% (0) 
GLU152-ARG148 97.1% (2.1) 71.70% (9.2) 21.70% (4.2) 
ARG151-ASP147 94.7% (3.0) 40.6% (5.3) 20.6% (3.5) 
TYR150-GLU146 98.8% (1.3) 60.1% (4.9) 10% (2.1) 
TYR149-TRP145 91.5% (4.5) 41.2% (4.1) 15.0% (4.8) 
ARG148-ASP144 75.6% (5.1) 42.5% (6.2) 22.5% (4.9) 
147ASP-143ARG 96.9% (1.9) 62.1% (4.8) 25.6% (3.2) 
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hydrogen bonds appear, possibly indicating the start of formation of another ordered 

structure.  

 

 

Table 14: Number of main chain - main chain hydrogen bonds averaged over three 
trajectories for each pocket of the human sequence. Δ Bonds is calculated as the 
difference between the docked and undocked average main chain – main chain 
hydrogen bonds.  

 

The decrease in helicity resulting from the loss of stabilizing backbone hydrogen bonds 

in helix A is also seen in Table 14. While there no change in the control, the average 

helicity decreases from about 43% to 32% for both proteins and binding sites. However, 

binding of the RNA with the protein leads not only to a loss of helical structures but 

also to a gain in β arrangements. This effect is small but significant if one considers in 

addition the life times that such sheet-like element exist. For this reason, we list  in 

Table 15 also the  β strand occupancy, defined as the average amount of time a β-strand 

can be observed along the trajectory. While there is only an increase of ~4.5% in total β 

strand propensity, the average life time of observed transient β strands grows by  

approximate 25%, which may indicate the beginning transition to the β sheet rich PrPSC  

structure.  

  
0-100ns 
    

200-300ns 
    

 
Ctrl Docked   Ctrl Docked   

Name 
Average Number 
MC-MC H Bonds 

Average Number 
MC-MC H Bonds Δ Bonds 0-100ns 

Average Number 
MC-MC H Bonds 

Average Number 
MC-MC H Bonds 

Δ Bonds 100-
300ns 

Pocket 1 Human 78.3 (2.9) 84.2 (4.8) 5.9 (3.5) 78.9 (2.3) 91.4 (3.0) 12.5 (2.7) 
Pocket 3 Human 71.9 (3.4) 78.2 (5.4) 6.3 (4.2) 84.6 (2.9) 94.9 (3.0) 10.3 (2.9) 
Pocket 1 Mouse 72.5 (4.0) 77.6 (4.8) 5.1 (4.1) 71.4 (4.3) 84.1 (3.7) 12.7 (3.9) 
Pocket 3 Mouse 75.1  (4.5) 79.1 (3.3) 4.0 (3.5) 74.7 (4.5) 75.5 (3.9) 10.8 (4.2) 
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Table 15: Average secondary structure content and β-strand occupancy of the C 
terminal domain (residues 121 to 253) of for all trajectories of structures with 
polybasic-helix pincer, i.e.,  binding sites 1 and 3. The averages are calculated for the 
first and for the  last 100ns in order to show the evolution of the structures. Occupancy 
is defined as the percentage of time a given residue exists in a beta strand confirmation.  

 

In order to emphasize the shift in hydrogen bonding and the corresponding structural 

rearrangements we show in Figure 24 a contact map of the human prion (upper 

triangle) and mouse prion (lower triangle). For this figure, we measured the frequency 

of backbone-backbone hydrogen bonds in both docked and undocked structures, and the 

color coding marks  the difference between these two frequencies. A reddish coloring 

indicates that a given hydrogen bond is more frequently seen in the bound structure than 

in the unbound one, and a greenish color that this hydrogen bond is more common in 

the unbound structure than in the bound one. We find the strongest signal for contacts 

involving residues 140-161, which are part of a helix in the native structure. In this 

region,  there is  a decline of helical contacts (see the greenish coloring of points 

parallel to the diagonal that mark 1-4 hydrogen bonds) and a corresponding increase in 

contacts that suggest  β arrangements (the reddish colored  data points orthogonal to the 

diagonal).  

Time Human Mouse 
 Control Docked Control Docked 
Helicity 
0-100 ns 43.1% (1.8) 38.9% (2.7) 39.2% (0.9) 36.6% (2.2) 
200-300 ns 41.9% (1.6) 32.0% (2.3) 42.7% (1.3) 31.5% (2.4 
β Strands 
0-100ns 4.3% (1.3) 6.9% (1.6) 4.2% (1.2) 6.5% (1.7) 
200-300ns 4.5% (1.2) 8.8% (1.8) 4.4% (1.5) 9.1% (1.4) 
β Strand Occupancy 
0-100 ns 26.7% (1.4) 38.4% (4.6) 26.2% (1.3) 37.8% (4.0) 
200-300 ns 27.9% (1.3) 57.9% (4.2) 28.2% (1.2) 57.3% (4.5) 
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Figure 24: Difference between the frequency of backbone H-bond contacts found in the 
bound  prion protein and the frequency of such contacts found in the unbound protein. 
Diagonal elements correspond to helical contacts and linear clusters orthogonal to the 
diagonal correspond to β strand contacts. The upper triangle shows the contact map for 
the human prion protein and lower triangle the map for the mouse prion protein. The 
helix A  region is shown enlarged in the inset.  

 

Conclusion 

We have simulated the effect  of polyadenosine RNA bound to human and mouse 

prions on the  stability and secondary structure of these proteins.  Potential binding sites 

were predicted with Autodock where unresolved parts of the experimental prion 

structures (in their PrC form) where assumed to take structures predicted by standard 

software packages ITASSER and MODELLER.  The RNA-prion complexes, generated 

in this way, where followed in long molecular dynamics simulations. In cases were the 



	 108 

RNA binds with the N-terminal polybasic segment 21-31, or directly with the N-

terminal helix A, we observe that binding of the RNA leads to formation of a pincer-

like structure between helix A  and the polybasic domain that encapsulates the RNA.   

Because of steric clashes, the pincer cannot be formed when the RNA binds to the 

polybasic region 121-131, the other predicted binding site. Formation of the pincer 

seems necessary to recruit and trap the RNA, and it precedes dissolution of helix A, 

which starts with the N-terminus of the helix and the helix subsequently unraveling 

toward its C-terminal end.  As the molecular dynamic trajectories proceed the helical 

contacts are replaced by short β-strand arrangements that eventually will lead to the 

characteristic high β-sheet content of disease-causing mis-folded  PrPSC prion structure. 

This picture differs little between mouse and human prion protein, i.e. is independent of 

the sequence differences between the two proteins. Hence, our results suggest a 

mechanism by  that RNA binding to the prion protein at the segment 21-31 can trigger 

the conversion of the   cellular prion protein structure PrPC  to its infectious scrapie  

PrPSC form that then becomes the seed for formation of toxic amyloids. The shift in 

structure upon interaction with RNA from helix to coil could indicate the presence of 

intermediate states in the process of prion conversion. Recent evidence suggests that 

these intermediates can affect aggregation and conversion rates due to the energy 

barriers between the intermediates and mis-folded proteins.236 Furthermore, increasing 

the flexibility of an aggregate intermediate structure has been shown to reduce the time 

for conversion to a mis-folded state for amyloid β.237 Amyloid β aggregates have also 

been shown to have α helical intermediate structures, which go through a similar 

breakdown and conversion to β sheets in the aggregation process.238 These studies 
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coupled with our observations of similar behavior suggest a possible relationship 

between the initial stages of amyloid aggregation and prion conversion. While the 

importance of this mechanism for prion diseases is not clear, our results put an 

interesting twist on the “protein-only” hypothesis in which prions are converted solely 

through interaction with other prion proteins. 
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Chapter 7 – Further Mutational Effects on Aggregation and Outlook 

on Computational Methods 

Deletion Mutation Effects on Amyloid Structure 

The Osaka mutation (ΔE22) of amyloid peptides leads to the formation of a unique 

“Greek key” structure for the aggregate system.239 This structure possesses solvent 

permeable pores with a mean diameter of 20.8Å compared to the wild-type sequence 

structure’s mean pore diameter of 11.1Å.183 This allows for far more solvent molecules 

to be observed in the pore during computational simulations as illustrated in Figure 25.  

 

Figure 25: A comparison of solvent molecules found in solvent accessible pores 
between Osaka mutant (A) and wild-type (B) Aβ fibrils Reprinted with permission from 
Stability of Osaka Mutant and Wild-Type Fibril Models. J Phys Chem B 119:13063-70. 
Copyright 2015 American Chemical Society. 

Using the same experimental methods discussed in Chapter 4, Osaka mutant structures 

can be shown to posses an average flow rate of 30 solvent molecules ns-1 as compared 

to 12.3 solvent molecules ns-1 observed in the wild-type structure.183 This data is 

important when considering a proposed mechanism for amyloid toxicity of membrane 

leakage. In this mechanism, amyloid fibrils form ion permeable pores that allow for the 

unregulated flow of ions into and out of the neurons, depolarizing the membrane 
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potential and leading to an eventual loss of function and cellular death.240 The elevated 

flow rate of solvent molecules183 can be used to infer increased ion permeability of the 

Osaka mutant which can then be associated with its higher toxicity compared to the 

wild-type239 to provide evidence for the membrane leakage mechanism of cytotoxicity.  

However, ions traveling through the pore of amyloids is difficult to observe 

computationally using existing methods. Assuming a standard density for water of 1 

g/mL and an extracellular ion concentration on the mM scale, derived from 

cerebrospinal concentrations of potassium and calcium241, an approximate ratio of 1 ion 

per 5,000 to 10,000 water molecules can be derived. Using the previous mean flow rate 

of 30 solvent molecules ns-1 183, an approximate time-step of 150 to 300ns can be 

calculated for each ion permeation event. This data suggests that to observe statistically 

relevant data on the flow of ions through the pores of an amyloid formation using 

physiochemical conditions requires microseconds of data to be generated. This timecale 

is far outside what is accessible using traditional molecular dynamics methods. 

Furthermore, even statistical methods may not be able to adequately map the transition 

of such an infrequent and quick event as they traditionally provide population data and 

do not relate to one specific trajectory.103-105 This underscores the need for methods that 

drastically enhance the rate of sampling, while maintaining the accuracy of traditional 

molecular dynamics. 

 

Mutational Effects on Prion Proteins 
 
Further illustration of the need for novel computational methods can be shown in an 

expansion of the data presented for the interaction of prions with RNA snippets. The 
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structural dynamics of prions can be drastically altered by single point mutations, much 

like amyloid proteins. The D178N mutation is associated with elevated risk of 

formation of scrapie structures, as well as a suggested increase in the polymorphism of 

observed scrapie structures.68 The M129V mutation conversely can be shown to be 

associated with a higher resistance to the formation of scrapie structures as well as 

increased polymorphism in the healthy cellular prion proteins.69 Using the experimental 

setup described in Chapter 5, the following changes can be observed in the hydrogen 

bonding map upon introduction of the D178N and M129V mutation illustrated in 

Figure 26. The D178N mutation (Figure 26 B) enhances the rate of helical breakdown 

when compared to the wild-type (Figure 26 A), with both helix 1 and 3 of the C 

terminal region breaking down after 300ns. Furthermore, the N terminal residues are 

observed forming a helical formation, which restricts the motion of polybasic domain 1 

(residues 21-31) and enhances the frequency of contacts between the RNA and the 

polybasic domain. The M129V mutation (Figure 26 C) is observed with minimal 

helical breakdown in helices 1 and 3 of the C terminal region.  
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Figure 26: The mutational effects on the hydrogen bonding map of prion proteins after 
a 300ns computational simulation upon interaction with polyadenosine RNA. (A) 
indicates the original sequence, (B) indicates the D178N mutation and (C) indicates the 
M129V mutation. Red circles show the region of critical polybasic domain (residues 
21-31) as well as helix A (residues 143 to 161) and helix C (residues 200 to 229) 

 

The changes in the prion-RNA complex dynamics can be used to infer a potential cause 

for the increase in polymorphism of the scrapie form of the D178N mutant. The data 

suggests the elevated levels of helical breakdown would allow an increase in degrees of 

freedom during the formation of the misfolded structures due to loss of helical contacts 
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in helix C in addition to helix A (Figure 26 B). However, as the formation of the β 

sheets rich C terminal domain of the scrapie form is not observed in any computational 

simulation, the pathway between cellular and scrapie prion forms is not fully explored 

in the trajectories. There may be unforeseen transitional structures that are not 

accounted for in the data. The observation of the exact dynamics of the formation of 

both folded and misfolded structures occurs on a timescale inaccessible to 

computational methods outside of employing folding biased potential models242 and 

expensive specialized equipment.70,71 This hurdle is especially cumbersome as 

computational costs traditionally increase with system size following an exponential 

function.15 The scaling function can be converted to a more manageable power law 

function through the use of sophisticated statistical techniques103-105, yet this change is 

often not enough to sample the full structural landscape of medium to large size proteins 

or protein systems. To increase the purview of the scale and types of interactions 

observable using computation there is a constant need for novel methods which enhance 

sampling while maintaining physiological relevance. 

 

Outlook 

The knowledge gained from the experiments presented in this manuscript may be used 

to provide a valuable roadmap for further physical experimentation into the dynamics of 

amyloid and amyloid-like mechanisms of formation, stabilization, and proliferation. 

The studies had to be restricted to comparisons of relative stability between systems and 

inference of possible mechanisms due to limitations in the methodology available at the 

time. As the field continues to evolve and develop novel methods of system sampling, 
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including those listed here243, there will be a potential shift in the system sizes and types 

of interactions accessible using computational methods.  
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