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I 

Abstract 

 In the field of environmental economics, cap and trade systems are an attempt at using a 

marketplace with as little government restriction as possible in order to reduce emissions of an 

undesirable pollutant. A hard cap on the amount of pollution allowed is set, and pollution permits 

allowing the holder to legally pollute are distributed in a variety of ways. Each year, the cap is 

lowered and fewer permits are allocated, forcing firms to streamline their processes to be more 

efficient so that they will need to purchase fewer permits each year. Several cap and trade 

programs like the EPA’s Acid Rain Program and the European Union’s Emissions Trading 

System have been implemented over the course of the last few decades. One such system that 

has been adopted in the Northeastern United States is the Regional Greenhouse Gas Initiative 

(RGGI), a group of nine U.S. states that have agreed to form a cap and trade program regulating 

carbon dioxide emissions from power plants. While cap and trade makes sense theoretically, 

experiments in public policy are carried out in the real world, not a controlled laboratory setting. 

This paper applies Bayesian modeling techniques using the statistical package R and its ability to 

interface with JAGS (Just Another Gibbs Sampler) to the yearly CO2 emissions data from power 

plants located in the RGGI member states to assess whether or not RGGI has been successful at 

reducing carbon emissions. JAGS software uses Markov Chain Monte Carlo algorithms, 

specifically Gibbs Sampling methods, to generate posterior distributions from the data given 

prior distributions. If it is ultimately determined that emissions have been falling under the 

RGGI, it may provide a template for other states and nations to design their own cap and trade 

programs. 
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II 

Theory and Development of Cap and Trade 

 While the push for the implementation of cap and trade systems in the United States 

began during the 1970s and 1980s, the preliminary ideas that would later evolve into what we 

know as cap and trade today originated with the writings of the economist Arthur Pigou. In his 

work The Economics of Welfare (1932), Pigou articulated for the first time a need for 

“internalizing the externalities.” In economics, an externality is an undesirable byproduct of 

production that is not accounted for in standard measures of marketplace activity like demand, 

supply, and price. One common example of an externality is pollution. When a new coal 

generating plant is built, the factory owners must pay typical fixed and variable costs such as 

property taxes, equipment fees, and employee salaries. However, there are many more costs that 

the factory causes but is not accountable for, such as the increased medical costs for the 

surrounding community due to the decrease in air quality from pollutants emitted by the factory. 

Pigou argued that producers had absolutely no incentive to stop performing the undesirable 

activity causing the externality (in this case, the carbon dioxide emissions from the coal plant) 

and that intervention in the marketplace is necessary. Pigou suggested that this intervention 

should come in the form of a tax on the polluting activity. By setting a per-unit tax that is 

equivalent to the marginal external social damage caused by producing pollutants past the 

economically efficient equilibrium, firms would begin to scale back and make their processes 

more efficient rather than pay the tax.  

 The Pigouvian approach of pollution taxation, while not a cap and trade system, paved 

the way for future economists and scholars to work with the idea of quantifying the price of 

pollution and designing methods to help with the abatement of pollution levels. Another 
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economist who followed in Pigou’s footsteps yet criticized many of his ideas was Ronald Coase. 

The approach that Coase took to abate pollution levels contrasted with that of Pigou, and argued 

that strict pollution taxation or governmental intervention in general was not necessary to 

achieve efficiency in the pollution marketplace. Known in policy and economics circles as the 

Coase Theorem, Coase argued that the way for a society or community to reach its efficient level 

of pollution control is to first determine which firms hold the relevant property rights to certain 

undesirable externalities, and then the firms or marketplace participants can engage in strict 

contract negotiations to reach the most efficient outcome (Coase 1960). Economist Steven 

Hackett (2011) illustrates the Coase Theorem using the example of a car repair shop and a local 

housing community. In Hackett’s example, the auto body shop holds the legal property rights 

and is allowed to operate, although they produce 120 decibels of noise pollution which is under 

the city’s legal limit for noise pollution. The housing community stands to gain $1 million if they 

can eliminate the noise from the car repair shop. Since the car repair shop owns the property 

right, they are legally not bound to do anything. Therefore, the housing community has two 

options: they can pay the shop $300,000 dollars to relocate somewhere else, or they can pay 

$100,000 dollars to equip the shop with sound-proofing materials. The Coase Theorem shows 

here that the efficient solution, without any government assistance necessary, would be for the 

two to enter into a contract where the housing community pays $100,000 dollars for the sound-

proofing materials, and gains $1 million from the reduced noise, resulting in a net benefit of 

$900,000. Conversely, if the car repair shop is producing 130 decibels of noise, which is over the 

legal limit, the two would reach an agreement where the repair shop would have to pay for the 

sound-proofing materials. 
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 The example above illustrates how the Coasian approach can be applied to situations 

involving air pollution. The car repair shop can be replaced with a coal plant that emits CO2 into 

the air, and the housing community still remains a housing community. The only regulation 

necessary is a simple cap on the amount of pollution. If the amount of pollution that the plant 

permits is less than the legal limit but still at a level undesirable by the community, then the 

community will pay the plant to streamline its processes and make them cleaner. If the amount of 

pollution that the plant emits is greater than the legal limit, then the plant will pay out of its own 

pocket to lower their emissions levels, or face a lawsuit from the community for violating the 

pollution standard. In general, the Coase Theorem purports itself to hold as long as it is feasible 

to assign property rights to certain participants, there is a net benefit to be had by environmental 

improvement, transaction costs are low, agreements are enforceable under law, and that free-

riders who are not paying for a benefit but reap its rewards are eliminated as much as possible 

(Hackett 2011). 

 Yet another alternative to both the Pigouvian and Coasian approaches to dealing with 

pollution through the marketplace is the “command and control” approach of governmental 

regulation. Command and control differs from the Pigou and Coase models in that it takes a 

heavier-handed approach in regulating exactly how firms reduce pollution levels. Rather than the 

Pigouvian approach of simply taxing firms if they over-pollute, or letting firms reach an optimal 

point of pollution through Coasian negotiations, command and control calls for specific 

guidelines as to how pollution will be reduced that are applied to all firms and strictly enforced 

by government regulators. One common example of command and control regulation includes 

requiring that car manufacturers install catalytic converters on vehicles. Another less strict form 
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of command and control comes in the form of uniform efficiency requirements on products like 

air conditioners and refrigerators.  

 While the Pigouvian, Coasian, and command and control frameworks help paved the way 

for cap and trade to be developed, the theoretical ideas of the three approaches still needed to be 

fully fleshed out and developed into the cap and trade programs like those in place today. One 

work that is often referred to as the origin of cap and trade is J.H. Dales’ Pollution, Property, and 

Prices (1968). Dales, a University of Toronto economist, was in the process of researching a 

solution for water pollution issues in the Great Lakes areas around Toronto. Dales, in his own 

words, called pollution “a reflection of the amount of waste generated by a population and of the 

geographical concentration of population and production.” (Dales 1968).  Deeply committed to 

using the study of economics to help with pollution abatement, Dales acknowledged the 

Pigouvian approach of taxing polluters but was not satisfied with that approach. Dales instead 

offered his own design of a policy that “refers only to water-pollution; but the argument should 

apply equally well to air-pollution problems” (Dales 1968). Dales’ solution that he proposed was 

one of the first academic works to describe what is known today as cap and trade – creating a 

carbon market where firms can buy and sell pollution permits. Take the following quote from 

Dales as an example: 

Let us try to set up a “market” in “pollution rights.” The Board starts the process by creating a 

certain number of Pollution Rights, each Right giving whoever buys it the right to discharge one 

equivalent ton of wastes into natural waters during the current year…if half a million tons of 

wastes are currently being dumped into the water system, the Board would issue half a million 

Rights. All waste dischargers would then be required to buy whatever number of Rights they 

need…To put the market into operation, let us say that the Board decides to withhold 5 percent 

of the Rights in order to allow for the growth of production and population during the first year, 

and therefore offers 475,000 Rights for sale. Since the demand is for 500,000, the Rights will 

immediately command some positive price – say, 10 cents each. 
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 In just a few sentences, Dales took elements from each of the three pollution abatement 

frameworks discussed earlier and developed for the first time a cap and trade program. Dales 

argued that by establishing a regional price per ton for water pollution in the Great Lakes and 

charging firms for each ton of pollution that they produced through a permit system, over time 

growth in the industry would result in an increased demand for pollution permits, “and since the 

number of Rights issued by the Board cannot be increased the price of Rights will move upward” 

(Dales 1968). Given that the price of the permits would rise, firms would accordingly streamline 

their processes and make them cleaner so as to not have to purchase as many permits as before. 

Dales’ version of cap and trade was well thought out given that it was such a novel concept at the 

time, as he even foresaw the need to clarify that the market would set the prices for the permits, 

not the central regulatory board that would enforce compliance.  

 Ultimately, the approach that Dales outlined takes from each the Pigouvian and Coasian 

frameworks, but not the command and control approach. Cap and trade has traces of Pigouvian 

elements in the fact that it quantifies a price for pollution, something that had never been done 

before Pigou. Cap and trade’s Coasian roots stem from the fact that government regulation is 

kept to a minimum, with firms not being told how to reduce pollution and a marketplace being 

established to allow for firms to buy, sell, and trade permits as necessary. Dales thought that the 

costs of government regulation were far too high and accordingly shied away from incorporating 

command and control aspects into his cap and trade design, stating that “control by 

regulation…[is] likely to be unfair and inefficient (i.e., more costly to the polluters than some 

other scheme that would achieve the same reduction in pollution)” (Dales 1968). 

 After the work done by Dales and other similar work with initial cap and trade ideas by 

Thomas Crocker (1966) and W.D. Montgomery (1972), the next step was to get a cap and trade 
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system off of the pages of economics journals and into the real world. One of the first wide-

spread cap and trade programs was adopted by the United States in 1990, in the form of the 

Environmental Protection Agency’s Acid Rain Program. Throughout the 1970s and 1980s, it 

became apparent that American power plants were producing an abundance of sulfur dioxide, 

which when emitted would make its way back to Earth in the form of ecologically devastating 

acid rain. Seeking to solve the problem, the Bush White House under the counsel of various 

environmentalist groups such as the Environmental Defense Fund began looking at the 

implementation of cap and trade as an alternative to heavy-handed command and control 

regulation, which had been in place before and had not been working. Against the advice of 

some of his closest advisors, President Bush went with the cap and trade program, and it has 

worked well by most standards. Acid rain emissions fell by three million tons in the first year of 

the cap alone (1995) and continued falling steadily after that. By 2009, the Acid Rain program 

has been estimated to save the United States $122 billion annually in benefits from increased 

health of not only humans but natural ecosystems free from the harmful effects of acid rain 

(Conniff 2009). While far from the only example of cap and trade in the real world, the EPA’s 

Acid Rain Program was significant in that it showed the world that cap and trade could work in 

the real world, not just in the pages of an academic paper. 

III 

The Regional Greenhouse Gas Initiative 

 The Regional Greenhouse Gas Initiative (RGGI) is one such example of a cap and trade 

program like the one outlined by J.H. Dales that has been implemented in the United States, and 

is the cap and trade program of interest for this paper. The Regional Greenhouse Gas Initiative is 

an association of northeastern U.S. states that was originally formed in 2003, and began 

operating as a full cap and trade program at the start of 2009. So far, the program has operated 
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for two full control periods (2009-2011 and 2012-2014). The third control period began on 

January 1
st
, 2015 and will run through the end of 2017. Member states include Connecticut, 

Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and 

Vermont. New Jersey was at one time a part of the program, but Governor Chris Christie pulled 

the state from the program at the end of 2011. 

 The design of the Regional Greenhouse Gas Initiative cap and trade system involves 

three central components. The first is the cap that is set on the total permissible amount of carbon 

dioxide tons that can be emitted into the atmosphere. The original cap had been set at 

approximately 188 million tons in 2009, but by the end of 2012 the cap was leaving far too many 

permits unsold, undesirable in an auction system since unsold permits drive down the price of 

permits that are eventually sold. In the year 2013, the cap was scheduled to be approximately 165 

million tons, but only 91 million tons had been sold in all of 2012. Starting in 2014, the cap was 

lowered to the 2012 emissions level, 91 million tons, and lowers by 2.5% each year from 2015 to 

2020, at which point the cap will be re-evaluated. In order to meet the requirements of the cap, 

the program is divided into three-year control periods. The first control period lasted from 2009 

through 2011 and the second period lasted from 2012 through 2014. Regulated plants must prove 

that they have purchased a number of permits that is equal to the amount of tons that they 

emitted over the course of the three-year period.  

 The second major component to RGGI is its regulation of carbon-emitting sources in the 

member states. For the cap to work properly, accurate tracking of carbon emissions is absolutely 

necessary. If firms are able to emit carbon dioxide without it being tracked or reported properly, 

they will purchase far fewer permits than necessary and the program would be rendered 

meaningless. RGGI regulates carbon dioxide emissions from fossil fuel power plants located 
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within the member states that have a capacity of 25 MW or greater. Referred to as “CO2 Budget 

Sources” or more simply “sources,” the RGGI tracks emissions from each source within the 

states over the course of the control period. New York is the largest of the states in the RGGI, 

with 81 plants large enough to be defined as a source under the RGGI that purchased 

approximately 39% of the total permits auctioned off in 2014. The smallest RGGI member state 

is Vermont, which only has two regulated sources that purchased only approximately 1% of the 

total permits that were auctioned off in 2014. As stated previously, sources must prove at the end 

of each three year control period that they have purchased the requisite number of permits that is 

equal to the tons of CO2 that were emitted by that source over the course of the control period. 

 The third major component of the RGGI is the physical allocation or distribution of the 

allowances to the sources themselves. The RGGI ultimately leaves the authority of how to divide 

the permits up to the states, but each state has chosen to allocate a large majority of their permits 

through an auction method. In the first control period, about 90% of the total permits were 

distributed through competitive auctions. In 2014, 91% of permits were distributed through 

auctions, with the rest being distributed through accounts that individual states chose to set up 

and set aside some permits for future discretionary use. The average auction clearing price for 

permits in 2013 averaged out over the four quarters to approximately $2.92 per permit. 

 Blas Luis Perez Henriquez, the director of the Center for Environmental Public Policy at 

UC-Berkeley, identifies two more aspects of RGGI that are crucial to its operation in his 2013 

work Environmental Commodities Markets and Emissions Trading. The first is the RGGI 

established “reserve price” of $1.86 per ton. The reserve price serves an important function 

within the overall cap and trade framework because, as with any market based system, there 

exists the question of what to do once the problem is solved. The reserve price of $1.86 was set 
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in place in case emissions are reduced at such a high level that firms no longer wish to buy many, 

if any at all, of the pollution permits. In microeconomic theory, the reserve price acts as a price 

floor, since the price of permits may not fall below this price even if natural market demand 

dictates that the demand should fall below the price. The reserve price exists so that even if 

demand falls below the established reserve price, there will still be a mechanism in place for 

RGGI to earn the revenue necessary to continue operation. The reserve price is key to keeping 

administrative costs manageable, and Henriquez notes that the RGGI currently has “relatively 

low administrative costs of about 0.05 percent of the overall emissions allowance revenue.” 

(Henriquez 2013). 

 The other important factor of RGGI that Henriquez discusses is the program’s use of 

offset allowances for other projects outside the capped electric power generating sector. Sources 

are allowed to use up to 3.3% of their carbon permits on offset projects that seek to reduce 

pollution levels of either CO2, methane (CH4), or sulfur hexafluoride (SF6). These projects must 

take place within the nine-state region of the RGGI and similar reporting requirements to the 

standard capped power generating stations are applicable. While this aspect of RGGI has not 

been taken advantage of quite as much as policymakers would have anticipated, as firms attempt 

to lower CO2 levels, they may start taking some of the permits that they have already purchased 

but do not need and applying them to these sorts of projects. 

 The Regional Greenhouse Gas Initiative, while not the first cap and trade system 

implemented, or the largest, is an excellent case study example to measure the feasibility of such 

programs. The challenges that RGGI faces, such as cooperation across nine autonomous U.S. 

states, political pressures (including New Jersey’s withdrawal from the program under a 

Republican administration), and a complex system of regulation, reporting, auction-proctoring, 
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and cap-setting that all must work in unison together, are not challenges that are unique to RGGI 

alone. However, over the six years of its operation the Regional Greenhouse Gas Initiative has 

amassed a wealth of data from the budget sources over the nine states that can be neatly observed 

and analyzed. 

IV 

Bayesian Statistical Methods  

 This paper applies the use of Bayesian methods of statistical analysis to construct a 

method by which it can be determined whether or not the CO2 emissions among electric power 

plants in the nine member states have been reducing in RGGI member states. Before an outline 

of the methods used in this project, a background on Bayesian methods is necessary. 

 The origins of the idea that spawned the entire field of Bayesian statistics can be traced 

back to the works of two men, Thomas Bayes and Pierre-Simon Laplace. English statistician and 

Presbyterian minister Thomas Bayes, for whom the theory is named after, was one of the early 

probability theorists seeking to solve previously intractable problems in the realm of probability. 

Published posthumously in 1763 by a good friend and mathematician Richard Price, Bayes’ “An 

Essay towards solving a problem in the Doctrine of Chances” spawned an entire subfield of 

mathematical statistical analysis and a statistical framework that challenged classical or 

frequentist notions of statistical methods. Bayes sets up the terms of the problem that he is 

attempting to solve in the first lines of the essay – “Given the number of times in which an 

unknown event has happened and failed: Required the chance that the probability of its 

happening in a single trial lies somewhere between any two degrees of probability that can be 

named.” In other words, Bayes was attempting to learn the probability of a certain event 

occurring in the future based off of the number of times the event had either occurred or not 
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occurred in the past. The solution that he posed was both simple and yet radical in nature: 

incorporate prior information known about the problem, and if no prior information is known, 

simply make an educated guess, then go from there. 

 Bayes used the following example to illustrate his point: if he had his back turned to a 

table and had a colleague drop the ball anywhere on the table, he has no way of knowing where 

the ball is. Given that he has no prior information on the ball’s whereabouts, he assigns an equal 

probability (or likelihood that the ball lies on a certain point) to each point on the table. Next, his 

colleague drops a second ball onto the table and reports the location of the second ball relative to 

the first ball to Bayes. If he reports that the second ball lies above the first ball, then he has 

reason to believe that the first ball may lie on the bottom half of the table. If the colleague drops 

a third ball and reports that that ball also lies above the first ball, then that belief is only 

strengthened. This process can be repeated many times, and with each trial more information is 

gathered and factored into the decision that Bayes makes (Bayes 1763). Interestingly enough, 

Bayes’ Essay was not revolutionary at the time of its release. Bayes himself never published it, 

and after its posthumous publication it sat largely unread for about a decade. It was the 

mathematician Pierre-Simon Laplace that took the concept Bayes invented and brought it into 

mainstream mathematics. Pierre-Simon Laplace was a mathematician that independently 

rediscovered what Bayes had outlined in 1774. Laplace, who was known for contributing to both 

Bayesian and frequentist statistical methods, mathematically defined the work that he and 

Thomas Bayes had done in the field of conditional probability: the probability that event A 

occurs conditional on event B occurring is the probability of event B occurring conditional on 

event A times the probability of event A occurring divided by the probability of event B 
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occurring. The following is an expression of Bayes’ Theorem in its most elementary form given 

the probabilities of two events A and B occurring: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

 A more complex version of Bayes’ Theorem dealing with probability distributions rather 

than single events can be rewritten in the following way, given observed data 𝑦 and random 

parameter 𝜃: 

𝑓(𝜃|𝑦) =  
𝑓(𝑦|𝜃)𝑓(𝜃)

𝑓(𝑦)
 

 The difference between Bayesian methods and “classical” or frequentist statistics lies in 

how the two methods utilize prior information. D.J. Bartholomew in his work “A Comparison of 

some Bayesian and Frequentist Inferences” illustrated the difference between the two. 

Bartholomew considers a general problem in which we have a random sample of observations 

𝑥 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} on a continuous random variable with density function 𝑓(𝑥, 𝜃). We wish 

to make an inference about the parameter 𝜃 based off the random sample of observations that we 

have. If we follow the Bayesian approach, we will first specify a prior distribution for 𝜃 based 

off what we know about the parameter. Then we multiply by the likelihood function of the 

parameter and arrive at new distribution, referred to as the “posterior” distribution. This new 

distribution reflects the prior information that we incorporated into our problem. If we gain new 

information about the event we are studying, we can update the probability again, with our 

previous posterior distribution becoming the new prior. This can be expressed formally as: 

posterior ∝ prior × likelihood 
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This fits with Bayes example of the ball dropping scenario. As Bayes gains new information 

about other balls relative to the first ball, he updates his probability of the ball being located at a 

certain point based off of this information. In contrast, the frequentist approach to this problem 

does not treat the parameter 𝜃 as a random variable, and does not incorporate prior information 

into any probability distributions derived in the course of the problem. All inference is based off 

various test statistics calculated using sample data, not any prior information known about the 

samples.  

 Bayesian methods are applicable to this project as well as countless others through the 

use of Markov Chain Monte Carlo (MCMC) methods, which are used to generate samples from 

posterior distributions of models both simple and complex. One specific software that can 

conduct Bayesian analysis through interfacing with the statistical package R is JAGS (Just 

Another Gibbs Sampler). Before we discuss the finer details of using JAGS for the analysis of 

RGGI data, MCMC methods in addition to Gibbs sampling must be discussed.  

 Markov Chain Monte Carlo (MCMC) algorithms are not new, as they were first 

developed by a team of physicists in 1953 (Metropolis et. al, 1953). However, over the last two 

decades the use of MCMC algorithms has increased greatly. The goal of an MCMC algorithm is 

to construct a Markov chain that will converge to a target distribution. In the case of a Bayesian 

analysis, this is the previously discussed posterior distribution 𝑓(𝑦|𝜃). A Markov chain is a 

certain type of stochastic process where the distribution of a parameter 𝜃 at a certain sequence of 

time 𝑡 depends only the immediately previous sequence of the random variable, and none other. 

(Ntzoufras 2009). For this project, Gibbs sampling is the specific form of MCMC algorithms that 

will be utilized. Gibbs sampling was developed by Stuart and Donald Geman in their 1984 paper 

“Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” The 
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original paper developed the Gibbs sampling subset of Metropolis’ MCMC algorithms as an 

application to be applied to the restoration of degraded images in the digital picture processing 

field. Statistician Jim Albert explains a more general use for Gibbs sampling. The Gibbs 

sampling method starts with a parameter vector of interest that takes the form 𝜃 = (𝜃1, … , 𝜃𝑝). 

The joint posterior distribution of 𝜃, denoted as [𝜃|𝑑𝑎𝑡𝑎], can be found by constructing a 

Markov chain simulation algorithm from the joint posterior distribution by simulating individual 

parameters from the set of all p conditional distributions of the form [𝜃1|𝜃2, … , 𝜃𝑝, 𝑑𝑎𝑡𝑎] (Albert 

2009). By simulating one value of each parameter from the conditional distributions, we 

complete one cycle of Gibbs sampling. Under these conditions, the output from the Gibbs 

algorithm will eventually converge to the posterior distribution that we are interested in. Gibbs 

sampling methods have become extremely popular, and the package JAGS has made Gibbs 

sampling even more accessible to researchers. 

V 

Methods 

 The Regional Greenhouse Gas Initiative, as a part of the strict monitoring aspect of the 

program, has collected carbon emissions data in the form of mass tons of CO2 emitted per year 

on 172 budget sources over the course of the past six years (2009-2014). The budget sources are 

power plants in the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New 

Hampshire, New York, Rhode Island, and Vermont that have an operating capacity of 25 

megawatts (MW) or higher. The only missing data is for certain years when particular power 

plants chose not to operate. Over the course of six years, the 172 budget sources provided a total 

of 999 emissions data points and 33 missing points, for a total of 1032 total data points. To begin 

the analysis, profile plots of the emissions for each of the states were constructed using the 
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statistical package R. The year (2009-2014) was plotted on the x-axis and the amount of carbon 

dioxide emitted by each individual site was plotted on the y-axis, with a contiguous line 

connecting the six emission points for each specific site. All sites within an individual state were 

included on the profile plot for that state. The profile plots for each state are included in 

Appendix A at the conclusion of the paper. Once plotted, the profile plots can give a rough 

outline of the trends that I seek to analyze using MCMC methods and Gibbs sampling. From the 

profile plots, a general downward sloping trend can be observed in several of the states 

(Massachusetts, Maryland, Maine, and Rhode Island are a few where a clear decreasing trend is 

observed).  

 The brunt of the statistical analysis comes in the form of using JAGS (Just Another Gibbs 

Sampler) and its ability to interface with R. By defining a simple Bayesian model, reading in the 

data, and setting the parameters of interest, R interfaces with JAGS through the “rjags” package 

to simulate a specified number of samples from the posterior distribution we are seeking to 

define. In order to utilize the Gibbs sampling, several steps were necessary. The first is to clean 

the raw data and format it into an accessible form. From the Regional Greenhouse Gas 

Initiative’s website, the emissions values in Mass Tons of CO2 per year at each budget source 

were obtained. Data for all 172 budget sources over the course of the six years was compiled into 

a single comma-separated value (.csv) file as it is convenient to import .csv files into R.  

 The next step is to define the Bayesian model to use in the analysis. If we let 𝑌𝑖𝑡 equal the 

single emission value for the i-th site (𝑖 = 1,2, … 172), and year t, then we can set up a number 

of possible models to attempt to predict posterior values of 𝑌𝑖𝑡. The model chosen in this case is 

based off of the plot containing all of the raw data for all 172 sites onto a single profile plot. The 
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raw data plot for all 172 sites was constructed in R and appears below. From this data, a model 

must be proposed. 

 

 While the raw data plot is cluttered with 172 separate profile lines, if one follows the 

thickest cluster of lines, it appears that one trend that the data follows is first increasing, then 

decreasing, then a flattening out at the end. A possible model that could capture this trend of 

increase, then decrease, then flattening out is a polynomial of degree 3, or a cubic polynomial. 

The model that I propose is as follows: 

𝑌𝑖𝑡 = 𝛽0𝑖 + 𝛽1𝑖𝑡 + 𝛽2𝑖𝑡
2 + 𝛽3𝑖𝑡

3 + 𝜀𝑖𝑡 

where 𝑌𝑖𝑡 is the individual emissions variable defined above and the parameters 

𝛽0𝑖, 𝛽1𝑖, 𝛽2𝑖, 𝑎𝑛𝑑 𝛽3𝑖are site-specific random parameters that affect the shape of the distribution. 
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Once prior distributions are assigned, this model becomes a Bayesian model that we can apply 

Gibbs Sampling techniques to. We can assign the following prior distributions to the parameters 

of the model: 

𝛽0𝑖 ~ 𝑁(𝜃0, 𝜏0
2)  

𝛽1𝑖 ~ 𝑁(𝜃1, 𝜏1
2) 

 𝛽2𝑖 ~ 𝑁(𝜃2, 𝜏2
2) 

𝛽3𝑖 ~ 𝑁(𝜃3, 𝜏3
2) 

𝜀𝑖𝑡 ~ 𝑁(0, 𝜏2) 

For these prior distributions, 𝜃0, 𝜃1, 𝜃2, 𝑎𝑛𝑑 𝜃3 represent the mean values of the posterior mean 

for 𝛽0𝑖, 𝛽1𝑖, 𝛽2𝑖, 𝑎𝑛𝑑 𝛽3𝑖, and 𝜏0
2, 𝜏1

2, 𝜏2
2, 𝑎𝑛𝑑 𝜏3

2  represent the mean value of the variance of the 

same posterior distributions. It becomes necessary to set prior distributions for these parameters 

as well, as these are the parameters we ultimately wish to estimate. The following priors are 

assigned: 

𝜃0 ~ 𝑁(0, 106) 

𝜃1 ~ 𝑁(0, 106) 

𝜃2 ~ 𝑁(0, 106) 

𝜃3 ~ 𝑁(0, 106) 

𝜏0
2 ~ 𝐺𝑎𝑚𝑚𝑎(.1, .1) 

𝜏1
2 ~ 𝐺𝑎𝑚𝑚𝑎(.1, .1) 

𝜏2
2 ~ 𝐺𝑎𝑚𝑚𝑎(.1, .1) 

𝜏3
2 ~ 𝐺𝑎𝑚𝑚𝑎(.1, .1) 

𝜏2~ 𝐺𝑎𝑚𝑚𝑎(.1, .1) 
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where 𝜏2 represents the variance of the error term in the regression term in the cubic polynomial 

model. Now that all necessary priors have been defined, the next step in the process is to 

translate the model defined above into appropriate code that can be read by R and JAGS. The 

following is the code that describes our model. A few comments on the code follow. 

model{ 
 
   # N observations 
 
   for (i in 1:N) { 
    
   y[ind[i, 1], ind[i, 2]] ~ dnorm ( mu[i], tau ) 
 
   mu[i] <- beta0[ind[i, 1]] +  beta1[ind[i, 1]] * ind[i, 2] + beta2[ind[i, 1]] * pow(ind[i, 2],2) +  
   beta3[ind[i, 1]] * pow(ind[i, 2],3) 
 
   }  
 
   # Priors 
 
   for (i in 1:m){ 
 
    beta0[i] ~ dnorm(theta0, tau0) 
    beta1[i] ~ dnorm(theta1, tau1) 
    beta2[i] ~ dnorm(theta2, tau2) 
    beta3[i] ~ dnorm(theta3, tau3) 
 
   }  
 
   theta0   ~ dnorm (0, 1.0E-6) 
   theta1   ~ dnorm (0, 1.0E-6) 
   theta2   ~ dnorm (0, 1.0E-6) 
   theta3   ~ dnorm (0, 1.0E-6) 
   tau0   ~ dgamma(.1, .1) 
   tau1   ~ dgamma(.1, .1) 
   tau2   ~ dgamma(.1, .1) 
   tau3   ~ dgamma(.1, .1) 
   tau   ~ dgamma(.1, .1) 
 
} 
 

 The indicator matrix notation at the top of the code is necessary because the data is not 

exactly symmetric. This will come into play when we run the R script in the next step. An 

additional note should be made regarding the monitoring of our various 𝜏 parameters. When our 

model is run, we will want the values of these parameters to be somewhat large, because JAGS 
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measures the precision parameter, 1 𝜏⁄ . In other words, whenever we monitor the tau parameter 

in our output, we note that 𝜏 is equivalent to 𝜎−2, 𝑜𝑟 1
𝜎2⁄ . If the value is extremely small, then 1 

over that value will result in an extremely large error, meaning that our model is near useless as 

the error component accounts for almost all of the variation.  

 The final step in the process is to define the code to use to interface between JAGS and 

R. The following is the script that was run in R to produce the results described in Section VI. A 

few comments follow after the code. 

rawdata <- read.csv("allstatesEmissionsData.csv") 
 
emission=rawdata[,3] 
emission[emission==0]=NA 
 
#### Set-Up of Emission Matrix 
y=matrix(NA,172,6) 
for (i in 1:172){ 
 y[i,]=emission[((i-1)*6+1):(i*6)] 
} 
 
##### Standardize values due to large variance in emissions across sites 
for (i in 1: 172){ 
 y[i,]=(y[i,]-mean(y[i,]))/sqrt(var(y[i,])) 
} 
plot(y[1,],type="l",ylim=c(-2,2)) 
for (i in 2:172){ 
 lines(y[i,]) 
} 
 
#### An indicator matrix is necessary given that we have some missing values 
ind=c(NA,NA) 
for (i in 1:172){ 
 for (j in 1:6){ 
  if (!is.na(y[i,j])) { 
   ind=rbind(ind,c(i,j)) 
  } 
 } 
} 
ind=ind[-1,] 
 
N=dim(ind)[1]  # Total Missing Values 
m=172  # Total Number of Sites 
 
#### JAGS: Gibbs Sampling Using JAGS 
library("rjags") 
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library("coda") 
 
data <- list(y=y,ind=ind,N=N,m=m) 
inits <- list(list(tau0=1,tau1=1,tau2=1,tau3=1,tau=1,theta0=0,theta1=0,theta2=0,theta3=0)) 
parameters<-c("tau","tau0","tau1","tau2","tau3","theta0","theta1","theta2","theta3") 
 
model <- jags.model("rggimodelcode.txt",data=data,inits=inits,n.chains=1,n.adapt=0) 
update(model,n.iter=50000) # burn-in samples 
output <- coda.samples(model,parameters,n.iter=50000,thin=1) 
 

 The values are standardized by subtracting each value by the quantity of its expected 

value divided by its standard deviation. This becomes necessary due to the large amount of 

variation between sites (some sites only emit a few thousand tons of CO2, while others emit 

hundreds of millions of tons). The indicator matrix in the model code is set up in the R script as 

well. Because the data is not symmetric, we need a loop that will read through the indicator 

matrix and detect missing values, denoted by “NA” in the comma-separated value master data 

file. 

 The last few lines of code dealing with JAGS specifically are the key to producing the 

output necessary to conduct the analysis. First, the R libraries “rjags” and “coda” are loaded. 

“rjags” is the library that allows the user to interface between R and JAGS. “coda” is a package 

that contains many useful output analysis functions that can be used for MCMC output. 

Functions in “coda” include the ability to calculate means, standard deviations, and to produce 

various plots from the posterior distributions of the specific parameters that we are monitoring in 

the MCMC analysis. The next steps are to define the data, the initial values to start the algorithm 

with, and the parameters to monitor. As defined earlier, we are monitoring the mean value of the  

posterior means for the site-specific parameters and mean values of the posterior variances of the 

site-specific random parameters as well as 𝜏. We set the initial values for the chain to begin at 0 

for each of the means, and 1 for each of the variances. Next, the text file where the Bayesian 

model is defined is imported in, and the Gibbs sampler is ready to be run. We specify that 50,000 
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random sample iterations will be taken, and then thrown out, upon which a second round of 

50,000 sample iterations will be taken. This process is called “burning-in” and is common when 

running MCMC algorithms. To be absolutely sure that the samples have properly converged to 

the posterior distribution that we are trying to measure, we take an extremely large number of 

samples and throw out the first round of samples, as they could have been biased by the initial 

values chosen for the parameters. With the last line of the code, we use “coda” to take the second 

round of 50,000 iterations, as well as to create the object “output” that will contain the results of 

the MCMC algorithm to be summarized. With these steps, the algorithm is ready to be run. The 

results will be summarized in the following sections. 

VI 

Results 

 The following output was yielded after the R script defined above was run through the R 

and JAGS interface. The dimension of the output was a 50,000 sample iteration chain with 9 

monitored parameters. The mean and standard deviations of the monitored parameters are 

presented below: 

Monitored Parameter Mean Standard Deviation 

𝜏2 1.40725 0.080695 

𝜏0
2 18.13165   9.375206 

𝜏1
2 61.51307  17.858926 

𝜏2
2 149.48072 28.858246 

𝜏3
2 637.00078 75.272043 
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𝜃0 -1.36612 0.176942  

𝜃1 1.47257  0.186335 

𝜃2 -0.41247 0.059559 

𝜃3 0.03357 0.006556 

 Histograms for the distribution of each of the parameters are provided in Appendix Ce. 

The parameters that we are most interested in for the purposes of the analysis are 𝜃0 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝜃3 

as they are the estimated posterior means of the random site-specific 𝛽 parameters. To recall, the 

proposed model for the raw data is  

𝑌𝑖𝑡 = 𝛽0𝑖 + 𝛽1𝑖𝑡 + 𝛽2𝑖𝑡
2 + 𝛽3𝑖𝑡

3 + 𝜀𝑖𝑡 

Taking from the table of estimated posterior means, the algorithm has suggested that an equation 

to represent the trend of carbon emissions over time across the budget sources of the Regional 

Greenhouse Gas Initiative is  

𝑌𝑖𝑡 =  −1.36612 + 1.47257𝑡 − 0.41247𝑡2 +  0.03357𝑡3 

The graph of the equation is as follows: 
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Finally, density plots of the nine monitored parameters are produced: 

 

VII 

Conclusions 

 From the results presented in Section VI, several conclusions can be drawn. First, we can 

see that the posterior distributions for the tau parameters converged correctly, as their density 

curves all take the general shape of a gamma distribution with a right-skewed distribution. If we 

recall, the prior distribution for each of these parameters was set as a gamma distribution. The 

posterior distributions for the means of the site-specific theta parameters all take approximately 
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normal distribution shapes as expected, but are not as smooth as the tau parameter density 

curves, and have several observed spikes and valleys. For example, while 𝜃0 𝑎𝑛𝑑 𝜃3 are 

relatively smooth normal curves, 𝜃1 has a valley near its mean around 1.4 and then a spike 

around the 1.6 mark. 𝜃2 experiences a similar trend, but in the reverse direction, with a spike 

coming first and then a valley at approximately the mean value of -0.4.  

 The mean value of the parameter tau is of special interest. As mentioned earlier, in JAGS 

the parameter 𝜏 represents the precision parameter and is denoted by 1 𝜎2⁄ . Therefore, since 

𝜏 = 1.40725, we can derive that the posterior mean of the variance of the error term is 

1
1.40725⁄ = .7106. This is desirable, since if we had a large variance then that would mean that 

almost all of the model would have been explained by the error term, and little or none explained 

the rest of the site-specific random parameters. Based off these results, there is evidence to show 

that the model that we arrived at from the posterior distribution 

𝑌𝑖𝑡 =  −1.36612 + 1.47257𝑡 − 0.41247𝑡2 +  0.03357𝑡3 

is a model that describes the trend that emissions at site i and year t follow. Based off of the 

graph, we see the increasing trend up to year two, then a slight decreasing trend until year 5, and 

then a flattening off at the end of year 6.  

  This trend supports the claim that, since the adoption of RGGI by the nine member 

states, the trend of steadily increasing yearly carbon emissions has begun to reverse. One 

explanation is that after imposition of the RGGI at year 0, it took a period of two years to start to 

see an effect in emissions. After the two year period, firms began to feel the crunch of having to 

purchase permits at an auction system, and began to emit less. Additionally, it likely took the 

firms a year or two to update the technology within the power plants to emit fewer mass tons of 

carbon dioxide. Despite this, the results of the MCMC output do not by any means purport to 
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conclusively prove that RGGI is the reason for this trend. There are a multitude of other factors 

that could come into play when it comes to explaining the decreasing trend in carbon emissions, 

such as energy prices, world economic conditions (2009 and 2010 were marked by the aftermath 

of the economic downturn of 2007 and 2008, for example), political conditions (New Jersey was 

pulled from the RGGI by its Governor in 2011 and was accordingly left out of this dataset), and 

technological advancements that could affect energy and carbon demand. A full economic 

benefit-cost analysis review of the RGGI could help to determine the role that these other factors 

could be playing, but MCMC and Gibbs sampling have been used to show that there is an 

identifiable trend in carbon emissions over the six operating years of the Regional Greenhouse 

Gas Initiative. 
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IX 

Appendices 

Appendix A – Profile Plots of Original Emissions Data by State 
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Appendix B – Raw Data 

The following is the raw data used in the analysis. The format of the data is as follows: each line 

represents one specific budget source. The six numbers listed in each line are the six emissions 

values (in mass tons of CO2) for that specific site over the course of 2009-2014. An ‘x’ denotes a 

missing value. I have separated the data by state for comparative purposes. 

Connecticut:  

8816.913, 13298.557, 17420.909, 5289.988, 8958.307, 19050.855, 
37598.673, 94974.059, 29822.296, 32971.112, 30946.44, 50624.194, 

40037.228, 79355.764, 29794.375, 25028.604, 20398.163, x, 

138706.313, 293961.399, 98389.585, 151335.782, 111514.632, 204283.777, 
2201.2, 2733.4, 2837.2, 2005.4, 3612.8, 2942.1, 

1174538.335, 1389597.279, 554068.133, 156454.144, 765427.358, 910431.528, 
132750.417, 149117.046, 75347.012, 90539.455, 105511.332, 202434.845, 

3923.85, 5443.175, 3470.135, 4428.614, 6258.867, 9088.839,  

221521.825,189124.425, 214275.15, 66007.875, 941.6, 5384.025, 
1588593.801, 1596730.456, 68066.659, x, x, x,  

4254.325, 6245.325, 3356.425, 14771.225, 16098.079, 11132.812, 

87315.009, 93122.474, 45773.253, 31600.867, 60494.425, 4058.951, 
1122589.016, 1387544.509, 1217775.3, 1240495.679, 1301248.899, 946551.509, 

1507231.775, 1450649.45, 1628812.418, 1529513.814, 1593751.11, 936228.109, 

936228.109, 1168751.142, 1603614.869, 2260904.429, 1931244.831, 1977547.848, 1978767.008, 
63547.308, 130267.86, 105167.064, 63059.12, 31188.341, 21794.082, 

19986.4, 41322.187, 30160.512, 19905.502, 9990.584, 9298.561, 

x, x, 633057.535, 1454502.535, 1180471.842, 806932.416, 
Delaware:        

720.2, 1009.9, 449.6, 574.6, 193.6, 3406.4, 

685345.65, 665965.45, 548042.825, 755064.975, 271833.825, 597705.664, 
2345073.7, 2342049.025, 1602430.4, 1502778.75, 1630927.875, 858849.2, 

5284.776, 29286.784, 15545.951, 51264.581, 8726.882, 23647.66, 

651583.304, 1218247.035, 1952486.783, 2536173.116, 2205734.677, 2250268.531, 
511.307, 3683.57, 2200.305, 692.721, 1503.564, 1778.84, 

7995.031, 18547.282, 11846.876, 7918.66, 14022.307, 23712.328, 

11817.163, 20480.441, 17393.261, 21054.522, 53520.697, 99648.512, 
x, x, x, x, 98597, 38818, 

Maine:        

242370.257, 198691.014, 107641.962, 77824.537, 211640.686, 231609.629, 
809077.204, 813063.986, 766547.607, 787071.331, 793406.434, 259499.339, 

357730.12, 489272.653, 416387.104, 357370.991, 352862.397, 241987.115, 

995235.229, 1130402.253, 778158.393, 532676.38, 161783.128, 485856.856, 
223947.846, 232582.932, 187548.532, 166212.43, 81648.687, 182987.859, 

1015132.021, 1079444.68, 1081176.299, 1018916.747, 1011081.964, 775593.17, 

Maryland:        
6860722.39, 6329727.781, 6610419.074, 5322511.886, 5452082.252, 5597267.314, 

1216247.191, 1047894.313, 1242441.56, 944062.864, 862110.143, 652192.742, 

5710.072, 18141.758, 18499.38, 29033.373, 12767.037, 13101.96, 
2379234.629, 1818364.332, 1760349.375, 1360548.515, 1607263.174, 1472680.048, 

36687.651, 68506.891, 59305.997, 75942.847, 73306.144, 100321.32, 

2731.501, 11881.736, 14040.28, 19710.179, 14457.489, 17070.882, 
0, 7566.076, 410.185, 9270.704, 19921.211, 5775.482, 

25300.075, 11920.45, 18142.2, 5203.35, 7484.725, 21064.953 

142375.156. 313114.047, 108129.996, 92982.151, x, x, 
4452075.443, 5197729.604, 4421483.07, 4201655.099, 3228435.958, 3326883.065, 

2378038.742, 3019789.381, 1469866.972, 1205436.613, 1149403.715, 1357912.728, 

6382061.111, 7969125.452, 6895629.344, 5216654.12, 3986507.823, 6192869.979, 
82654.096, 294107.771, 183915.577, 244563.735, 193914.035, 188681.793, 

x, x, 896818.081, 655870.484, x, x, 

1291525.165, 1562314.757, 1626206.833, 1539522.399, 1624845.293, 1119915.97, 
995739.92, 950699.213, 1034649.823, 937960.491, 811734.715, 805683.735, 

317579.529, 288774.121, 270798.4, 329880.861, 450925.378, 458347.615, 

Massachusetts: 
3653056.593, 4147801.93, 4101694.034, 3734514.167, 3156045.608, 830650.11, 

5695.4, 6209.1, 6795, 2969.1, 6023.4, 14928.3, 
763347.781, 788764.267, 560386.129, 717225.806, 394812.098, 634430.142, 

486174.797, 113669.388, 52459.869, 41192.229, 81389.075, 331041.563, 
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595045.3, 523436.25, 138269.775, 151659.525, 136660.6, 9775.875, 

138612.98, 954.7, x, x, x, x, 
6879086.775, 6403811.775, 3446000.3, 2004806.8, 3626206.475, 2677733.675, 

1481923.046, 1421294.046, 725807.559, 302615.367, 412068.294, 304011.297, 

106258.925, 95540.975, 56573.628, 56824.25, 32007.343, 31596.626, 
14880.2, 72868.705, 34518.373, 41692.35, 43845.878, 44679.275, 

2065.9, 10341.3, 6655.2, 6447.6, 3455.4, 4921, 

21525.173, 64275.137, 40260.909, 55918.281, 59763.575, 99581.252, 
70946.575, 172839.575, 89477.6, 71720.175, 76079.95, 132606.3, 

4432.7, 6149.8, 1121.1, 896.8, 362.8, 3705.1, 

136875.44, 477526.908, 309498.719, 196869.568, 134069.813, 215699.484, 
91249.175, 277924.675, 413130.375, 428435.3, 353423.6, 385508.45, 

1600.449, 955.311, 3517.709, 2469.818, 0, x, 

1395.68, 15444.466, 2577.306, 2547.255, 2324.597, 1695.058, 
15834.325, 99307.8, 101461.576, 156283.926, 128718.066, 60300.953, 

18072.329, 61583.746, 52249.041, 69799.109, 66444.966, 62685.733, 

24912.028, 46027.097, 50978.836, 74240.627, 29053.587, 41183.813, 
104646.297, 196733.961, 104982.171, 191311.706, 104200.31, 226700.343, 

125069.18, 253759.708, 464428.527, 304324.539, 374305.693, 417958.282, 

310171.929, 438745.718, 465074.014, 336465.944, 491676.22, 400278.088, 
840536.413, 855778.512, 1012773.425, 853283.236, 621498.656, 766821.931, 

800242.038, 760568.834, 477845.918, 797217.537, 887712.115, 999554.779, 

654829.666, 770641.711, 898572.912, 884206.075, 814875.682, 922320.143, 
1312588.54, 1722428.368, 2017761.53, 1732543.972, 1640249.546, 1354743.165, 

New Hampshire:        

2597794.748, 2815039.578, 2216309.483, 1395642.239, 1504475.068, 1197597.083, 
1200053.747, 1102320.003, 784144.805, 668152.719, 787572.394, 631125.092, 

197436.227, 216602.575, 127608.15, 68600.156, 89708.068, 137277.589, 
1708459.023, 1445639.434, 1687224.126, 2103628.891, 1507273.63, 1534946.206, 

633312.122, 840701.638, 1181247.383, 944578.095, 317361.066, 454352.583, 

New York:         
49819.207, 90594.276, 110450.448, 75765.355, 112749.696, 44651.053, 

0, 0, 0, 0, 0, 0, 

26492.052, 24580.835, 36983.204, 39918.57, 213.118, 48451.623, 
632554.6, 627182.55, 1057835.55, 1074279.375, 873495.1, 731693.877, 

1397289.55, 1406017.932, 2078577.911, 2837662.924, 2491125.641, 2185112.71, 

43867.4, 43964, 61661.8, 97073, 60847, 38147.2, 
1087807.838, 1302980.568, 956695.804, 949542.64, 785079.303, 684423.211, 

2400222.854, 2520542.067, 1725377.385, 2349886.339, 1515418.914, 1130222.251, 

15719.225, 17960.925, 40143.575, 50681.425, 21543.625, 5713.951, 
22976.786, 57100.644, 71885.985, 96113.818, 122646.429, 125115.115, 

1516133.175, 1802421.79, 1787877.292, 2059239.544, 1658654.171, 1885360.955, 

230687.085, 223656.684, 218080.561, 261569.519, 334373.451, 209166.604, 
1229.6, 4142.4, 1714.7, 0, 0, 0, 

105708.32, 124180.801, 0, 0, 399267.685, 501515.449, 

131980.778, 224887.567, 155944.471, 264223.814, 774643.973, 924580.711, 
10332.528, 38525.567, 40229.849, 41371.273, 46876.744, 24223.823, 

24223.823, 1163709.4, 1113414.5, 1186705.325, 958593.5, 1133670.05, 1198840.77, 

303007.357, 863505.663, 924779.44, 918563.752, 970612.272, 978951.791, 
9798.699, 15213.559, 10079.854, 33293.791, 20839.084, 48973.158, 

31464.224, 72444.183, 45694.94, 74568.194, 56461.669, 123785.976, 

2704.926, 6605.525, 3559.134, 13030.465, 1710.297, 6613.115, 
1711295.046, 1889770.062, 1235532.026, 554794.829, 907301.143, 847888.258, 

347566.794, 332601.985, 215094.757, 298137.119, 217888.557, 276946.811, 

1070700.222, 96999.85, x, x, x, x, 
0, 2522, 0, 12766, 54964, 134004, 

2130336.381, 1775864.634, 969307.181, 331982.554, 0, 4441.593, 

674502.5, 876097.55, 690756.825, 771586.775, 780254.55, 1058191.875, 
1796065.75, 2420393.65, 2098656.675, 2306882.1, 2402563.525, 1695458.35, 

33015.354, 86189.708, 91514.367, 125221.58, 131772.789, 113306.657, 

x, 465052.026, 1621961.843, 1586557.78, 1248631.706, 1190399.036, 
31902.825, 42028.575, 58025.2, 38059.875, 67686.675, 41454.15, 

69618.025, 126250.875, 221751.45, 97726.725, x, x, 

2605, 17015.325, 8440.075, 39368.125, 27135.5, 20703.05, 
27683.004, 33486.8, 31810.575, 29183.9, 37849.925, 27152.5, 

55945, 150789.1, 202959.075, 110679.05, 3259.1, 5969.2, 

30547.375, 61118.875, 52473.225, 83632.275, 85509.9, 122026.525, 
274949.087, 292898.785, 12123.115, 0, 0, 0, 

455795.166, 599104.657, 113357.495, 0, 0, 0, 

9132.263, 26779.593, 19935.746, 30965.746, 26618.009, 34276.18, 
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39208.55, 30463.325, 19416.475, 16542.6, 23961.15, 11006, 

9965.194, 26390.76, 19597.049, 35046.402, 29029.3, 27121.994, 
150.43, 210.05, 160.075, 272.525, 257.26, 55.1, 

54741.446, 87563.7, 49842.9, 59904.8, 79696.1, 29667.1, 

2073692.621, 2269699.024, 1635259.706, 809796.388, 1201619.582, 1343781.348, 
212395.1, 292301.725, 432211.25, 316819.075, 431260.925, 326004.425, 

94377.05, 140985.725, 77155.425, 69525.05, 75589.325, 170259.975, 

2153.3, 5096.95, 6430, 13834.575, 25795.45, 36255.325, 
2507.625, 6722.325, 7745.85, 36036.075, 27525.525, 14464.5, 

3852.4, 11600.2, 6532.525, 31003.25, 32946.5, 40096.7, 

1297631.275, 1531734.554, 1393805.722, 2411464.509, 2283822.427, 1961101.706, 
283299.398, 322360.059, 302781.829, 352291.42,, 325012.087, 373919.814, 

11432.224, 1123.137, 1781.207, 3546.881, 3397.429, 440.22, 

12698.901, 3840.256, 4656.939, 8205.263, 13063.62, 20841.207, 
7201.975, 26919.95, 31669.425, 139385.525, 198594.775, 157623.8, 

753.505, 3138.303, 1980.607, 3468.811, 1641.742, 1044.856, 

223843.051, 269674.794, 214840.311, 237872.182, 228878.481, 161733.487, 
208400.401, 88665.563, 0, 186614.811, 74661.413, 127231.076, 

181346.129, 207690.217, 191486.286, 209263.775, 216622.55, 153935.378, 

7565.974, 31757.866, 49923.935, 29434.865, 29133.695, 22836.469, 
2333084.625, 3053542.4, 2318832.125, 2143250.775, 2072903.525, 1819009.55, 

2892702.631, 3067427.747, 2228116.921, 730779.34, 540266.827, 436704.413, 

76853.825, 69661.952, 70660.093, 65766.969, 92180.704, 89667.931, 
115460.825, 96675.525, 52276.025, 162598.025, 129675.025, 77254.95, 

1304189.576, 1349506.624, 1349696.513, 1347619.869, 1468078.442, 1436079.283, 

428291.425, 427778.125, 401522.55, 389253.75, 339165.45, 328093.85, 
35505.741, 50786.581, 65222.701, 57549.692, 62724.412, 25370.202, 

94067.867, 81018.449, x, x, x, x, 
1874271.925, 2117359.675, 1951657.374, 2354018.842, 1565848.823, 2165200.115, 

1110.841, 14667.449, 4733.347, 36913.728, 43322.355, 25013.529, 

594395.482, 455709.986, 505787.544, 585673.103, 579984.407, 447880.635 
4260.75, 10432.2, 59296.7, 117310.55, 135579.2, 122108.525, 

594792.568, 214743.848, 203160.049, 244782.808, 270395.425, 120079.992, 

924164.337, 885988.338, 1035035.803, 864583.565, 1026930.852, 611003.767, 
180.457, 1460.375, 1546.625, 956.65, 1819.35, 39.65, 

15653.724, 25530.215, 16625.932, 16398.229, 15876.534, 10169.291, 

3469912.399, 4399354.327, 3771125.188, 2198965.255, 2196386.523, 1694452.588, 
4178.65, 5917.25, 2166.325, 18239.025, 12914.025, 11095.957, 

405992.313, 435556.859, 399574.441, 396507.736, 281303.684, x, 

11252.078, 40943.811, 49286.044, 42076.278, 47300.73, 28845.418, 
48276.85, 73922.6, 39451.575, 59320.825, 51150.95, 32367.1, 

627.1, 2002.5, 4443.7, 2184.9, 2816.2, 2591.4, 

Rhode Island:        
882037.05, 959672.1, 1195976.25, 1257818.6, 748706.325, 831508.8, 

256880.71, 375423.296, 354582.736, 424406.055, 342501.121, 297466.622, 

8763.525, 28029.775, 12581.428, 3555.014, 593.126, 2964.305, 
284638.535, 361039.869, 401003.829, 353210.619, 304441.343, 294493.493, 

671541.293, 482242.045, 690929.501, 695232.245, 534011.152, 476229.591, 

1312921.792, 1297984.594, 1291508.32, 1001562.937, 840851.668, 704966.382, 
Vermont:        

1648.7, 3419.4, 6166.9, 2080.3, 2386.4, 2149.1, 

316.6, 336.6, 370, 238.8, 374.5, 376.3 
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Appendix C – Histograms of Posterior Outputs 
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