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1 Introduction

In mathematics, a Fourier series is a way to represent certain functions as the
sum of simple sinusoids. More precisely, it decomposes any periodic function
(a signal) into a (possibly infinite) sum of sines and cosines. The Fourier
transform takes a signal and creates another function which gives you the
amplitude and phase shift of any sinusoid present within the signal at a given
frequency. Fourier analysis is hugely important, not only in mathematics but
also in a vast array of scientific and engineering applications.

In this paper, we will prove a fascinating property of Fourier series that
was originally discovered by Norbert Wiener. That is, if one has a non-zero
function represented as a Fourier series with the property that the partial
sums of the coefficients converge absolutely, then the reciprocal of that func-
tion may also be represented as a Fourier series with the same property. This
certainly qualifies as a very pleasing but surprising result – there appears to
be nothing which intuitively says that the reciprocal of a function should be
so well-behaved.

In this paper, we will show that functions with the properties mentioned
above are an example of a certain kind of space called a Banach algebra.
Several important theorems of such spaces will be developed, which will
eventually relate them to the field of complex numbers.
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1.1 Representing the Fourier Series

One way we might represent the Fourier series is as a sum of sine waves with
phase shifts:

f(t) =
A0

2
+
∞∑
n=1

An sin

(
2πnx

T
+ φn

)
We will let the period T = 2π in order to simplify things (so f will be

2π periodic instead of T periodic). We can use a trigonometric identity to
expand the addition inside the sine function, then relabel the constants in
order to write:

f(t) =
a0
2

+
∞∑
n=1

(an sin(nt) + bn cos(nt))

It is well known as a consequence of Euler’s equation that cos(nt) =
(eint + e−int)/2 and sin(nt) = (eint − e−int)/2i. Thus, if we let cn = an

2i
+ bn

2

for n ≥ 1, cn = −an
2i

+ bn
2

for n ≤ −1, and c0 = a0
2

, then

f(t) =
∞∑

n=−∞

cne
int

This representation is clearly the most elegant of the ones we have seen.

1.2 Representing the Fourier Transform

Suppose that f(t) =
∞∑

n=−∞
cne

int. Now, define f̂ : N→ C by

f̂(n) =
1

2π

∫ 2π

0

f(t)e−intdt

If the integral of the sum equals the sum of the integral (which depends
on uniform convergence), we can write

f̂(n) =
1

2π

∫ 2π

0

∞∑
k=−∞

cke
i(k−n)tdt =

∞∑
k=−∞

ck
1

2π

∫ 2π

0

ei(k−n)tdt
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If k = n, then 1
2π

∫ 2π

0
ei(k−n)tdt = 1. If k 6= n, then since eit is 2π-periodic,

1

2π

∫ 2π

0

ei(k−n)tdt =
1

2π

∫ 2π(k−n)

0

eiu

k − n
du =

1

2π

k − n
k − n

∫ 2π

0

eiudu

=
1

2π
(

∫ π

0

eiudu+

∫ π

0

ei(u+π)du) =
1

2π
(

∫ π

0

eiudu+

∫ π

0

e−iudu) = 0

We can conclude that f̂(n) = cn.

1.3 A Theorem about Fourier Series

Theorem 1. Suppose
∞∑

n=−∞
|cn| <∞. Then the function f(t) =

∞∑
n=−∞

cne
int

converges uniformly as a series. (Since each partial sum is continuous, we
then also know that f is continuous).

Proof. Let ε > 0. Choose N so that
∑
|n|>N

|cn| < ε. If n > N , then for all t,

|f(t)−
n∑

k=−n

cne
int| = |

∑
|k|>n

cke
ikt| ≤

∑
|k|>n

|ck| ≤
∑
|k|>N

|ck| < ε

2 The Theorem

The following theorem is the main result of this paper.

Theorem 2. Suppose
∞∑

n=−∞
|cn| < ∞ and let f(t) =

∞∑
n=−∞

cne
int. Suppose

f(t) 6= 0 and let g(t) = 1
f(t)

. Then there exists a sequence (bn) such that

g(t) =
∞∑

n=−∞
bne

int and
∞∑

n=−∞
|bn| <∞.

3 Some Lemmas and Definitions

In this section we will list some definitions and lemmas that should be useful
to us.
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Definition 3.1. f ∈ C(T) if f : R → C is continuous and 2π-periodic,
f(t+ 2π) = f(t) for all t ∈ R. T = R/(2πZ).

Lemma 3. Suppose
∞∑

n=−∞
|an| <∞ and f(t) =

∞∑
n=−∞

ane
int. Then f ∈ C(T)

and an = f̂(n).

Lemma 4. If f ∈ C(T) and f̂(n) = 0 for all n ∈ Z then f = 0

Lemma 5. If f ∈ C(T), an = f̂(n), and
∑
|an| <∞ then f(t) =

∞∑
n=−∞

ane
int.

Definition 3.2. f ∈ A if f ∈ C(T) and
∑
|f̂(n)| < ∞. Note, by the

previous lemmas, f ∈ A if and only if there exists an such that
∑
|an| < ∞

and f(t) =
∑
ane

int.

Definition 3.3. f ∈ Ck(T) if f, f ′, f ′′, ..., f (k) are continuous and f(t+2π) =
f(t)

Lemma 6. f ∈ C1(T) implies that f̂ ′(n) = inf̂(n)

Corollary 6.1. f ∈ C2(T) implies that f̂ ′′(n) = −n2f̂(n).

Lemma 7. f ∈ C(T) implies that |f̂(n)| ≤ 1
2π

∫ 2π

0
|f(t)|dt.

Corollary 7.1. C2(T) ⊆ A

Definition 3.4. If f ∈ A where f =
∑
ane

int and
∑
|an| <∞, then ‖f‖A =∑

|an|

Lemma 8. ‖ · ‖A is a norm on A.

4 Banach Spaces

This section contains some propositions and definitions about Banach spaces,
which we will define shortly. We know that if ‖ · ‖ is a norm on a vector
space X then there exists an induced metric d : X × X → R defined by
d(x, y) = ‖x− y‖.

Proposition 1. Suppose X, Y are normed vector spaces and T : X → Y is
linear. The following are equivalent:
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1. T is continuous

2. T is continuous at 0

3. There exists c > 0 such that ‖Tx‖Y ≤ c‖x‖X for all x ∈ X

Proposition 2. Let X be a vector space with norm ‖ · ‖. Then the in-
duced metric is complete if and only if for every sequence x1, ...,∈ X with∑∞

n=1 ‖xn‖ <∞,
∑∞

n=1 xn converges.

We will now define what a Banach space is.

Definition 4.1. A Banach space is a complete normed vector space.

It turns out that in certain circumstances the quotient space of a Banach
space is also a Banach space.

Definition 4.2. Let Y be a closed subspace of a Banach space X and X/Y
be the quotient space as an abelian group. Define ‖x+ Y ‖ = infy∈Y ‖x− y‖.

Proposition 3. If X is a Banach space and Y is a closed subspace, then:

1. ‖x+ Y ‖ is well-defined

2. ‖ · ‖ is a norm on X/Y

3. The metric space on X/Y induced by ‖ · ‖ is complete

We should also address the issue of taking a Riemann integral of a vector-
valued function. Recall that a partition P of [a, b] is (x0, ..., xn) where a =
x0 < x1 < ... < xn = b, and ‖P‖ = min{xj+1 − xj : j = 0, ..., n− 1}.

Definition 4.3. Let f be a function from the interval [a, b] to a Banach

space. We say
∫ b
a
f exists and equals I if for every ε > 0 there exists δ > 0

such that if P partitions [a, b], ‖P‖ < δ, and xj−1 ≤ tj ≤ xj then ‖I −∑n
j=1 f(tj)(xj − xj−1)‖ < ε.

All of the properties we would expect a Riemann integral to have work
out nicely for vector-valued functions.
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5 Banach Algebras

Definition 5.1. A Banach algebra is a complex Banach space A with a
multiplication operator defined making A into a ring, such that λ(xy) =
(λx)y = x(λy) for λ ∈ C and x, y ∈ A. Multiplication also has the following
property:

‖xy‖ ≤ ‖x‖‖y‖

If our space has an identity e, we will assume ‖e‖ = 1. We will use
the abbreviation CBAID for a commutative complex Banach algebra with
identity. Assume from now on that we are working in a CBAID called A.

Lemma 9. Multiplication is continuous. That is, if xn → x and yn → y
then xnyn → xy.

Proof. Given ε > 0, let ε0 = min(‖x‖ + ‖y‖, ε
2(‖x‖+‖y‖)) and choose N such

that m > N implies ‖xm − x‖ < ε0, ‖ym − y‖ < ε0. Now,

‖xmym − xy‖ = ‖xmym − xym − xy + xym‖

≤ ‖xm−x‖‖ym‖+‖x‖‖ym−y‖ ≤ ε0(‖ym−y‖+‖y‖)+ε0‖x‖ ≤ ε20+ε0(‖x‖+‖y‖)

≤ ε

2(‖x‖+ ‖y‖)
(‖x‖+ ‖y‖) +

ε

2(‖x‖+ ‖y‖)
(‖x‖+ ‖y‖) = ε

.

Proposition 4. If ‖x‖ < 1 then
∞∑
n=0

xn converges to (e − x)−1. (Define

x0 = e).

Proof.

(e− x) lim
N→∞

N∑
n=0

xn = lim
N→∞

N∑
n=0

(xn − xn+1) = lim
N→∞

(x0 − xN+1) = e

because ‖ · ‖ is continuous so ‖ lim
N→∞

xN‖ = lim
N→∞

‖xN‖ = lim
N→∞

‖x‖N = 0 and

so lim
N→∞

xN = 0.

Corollary 9.1. If x is invertible and ‖y‖ < ‖x−1‖−1 then x− y is invertible
and (x− y)−1 = x−1

∑
(x−1y)n.
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Proof.
‖x−1y‖ ≤ ‖x−1‖‖y‖ < ‖x−1‖‖x−1‖−1 = 1

Therefore (e − x−1y)−1 =
∑

(x−1y)n. But (e − x−1y)−1x−1(x − y) = (e −
x−1y)−1(e−x−1y) = e, so (x− y)−1 = (e−x−1y)−1x−1 = x−1

∑
(x−1y)n.

In a Banach algebra without an identity, we include “closed under scalar
multiplication” to the definition of “ideal”. Note that in a CBAID this is
redundant: λ ∈ C, x ∈ I (I an ideal) implies λx = (λe)x ∈ I.

Lemma 10. If I is a closed ideal of A, then A/I is a CBAID.

Proof. From Proposition 3 we know that A/I is a Banach space. We also
know that it forms a commutative ring with scalar multiplication working
correctly. There exists an identity if A has an identity.

Finally, we will show that ‖(x+ I)(y+ I)‖ ≤ ‖x+ I‖‖y+ I‖ for x, y ∈ A.
Given ε > 0 there exists z1, z2 ∈ I such that ‖x − z1‖ < ‖x + I‖ + ε and
‖y−z2‖ < ‖y+I‖+ε. Now, ‖(x+I)(y+I)‖ = ‖xy+I‖ = infz∈I ‖xy+z‖ ≤
‖xy + (z1y + xz2 + z1z2)‖ = ‖(x+ z1)(y + z2)‖ ≤ (‖x+ I‖+ ε)(‖y + I‖+ ε).
Taking the limit as ε→ 0, we have ‖(x+ I)(y + I)‖ ≤ ‖x+ I‖‖y + I‖.

Theorem 11. If I is a maximal ideal of A, then I is closed.

Proof. We must have Ī = I or Ī = A, because Ī an ideal and I ⊆ Ī. Now,
suppose s ∈ I such that ‖e−s‖ < 1. Then by Proposition 4, (e−(e−s)) = s is
invertible, so then I ⊇ (s) = A. This is impossible, therefore B(e, 1)∩ I = ∅.
Hence e 6∈ Ī, so Ī = I.

Definition 5.2. Define the spectrum of x to be

σ(x) = {λ ∈ C : x− λe is not invertible}

Note that if A were the set of square matrices, then σ(X) would be the
set of eigenvalues of X.

Lemma 12. σ(x) is a compact subset of C.

Proof. Say λ ∈ C\σ(x). This means x−λe is invertible. Corollary 11.1 says
that if |δ| = ‖δe‖ < ‖(x − λe)−1‖−1 = r then x − λe − δe = x − (λ + δ)e is
invertible. Thus B(λ, r) ⊆ C \ σ(x). This means that σ(x) is closed.

Suppose |λ| > ‖x‖. λe is invertible and ‖x‖ < ‖(λe)−1‖−1, so λe − x is
invertible. Therefore λ ∈ C \ σ(x). So σ(x) is bounded.
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6 The Hahn-Banach Theorem

6.1 The Real Version

Theorem 13. Let (X, ‖ · ‖) be a real normed vector space, S be a subspace
of X, and Λ : S → R be a linear function with a certain c > 0 such that
|Λx| ≤ c‖x‖ for all x ∈ S. Then there exists a linear function Λ̄ : X → R
where Λ̄

∣∣∣
S

= Λ and |Λ̄x| ≤ c‖x‖ for all x ∈ X.

Proof. LetO = {(Y, λ) : Y a subspace of X,S ⊆ Y, λ : Y → R is linear with λ
∣∣∣
S

=

Λ and |λx| ≤ c‖x‖ (∀x ∈ Y )}. We want there to exist (X, ·) ∈ O.

Define (Y1, λ1) ≤ (Y2, λ2) if Y1 ⊆ Y2, and λ2

∣∣∣
Y1

= λ1. (We say that (Y2, λ2)

is an extension of (Y1, λ1)). We will use Zorn’s Lemma to show that O has a
maximal element.

Suppose there is a chain Y ⊆ O, that is, a totally-ordered subset of a
partially-ordered set. Let Y =

⋃
Yα∈Y Yα. If x ∈ Y , there exists Yα ∈ Y with

x ∈ Yα; define λ : Y → R by λ(x) = λα(x). Since S ⊆ Yα ⊆ Y , we know

that λ
∣∣∣
S

= λα

∣∣∣
S

= Λ and we know |λx| = |λαx| ≤ c‖x‖. Given x, y ∈ Y ,

we know x ∈ Yα, y ∈ Yα′ for some Yα, Yα′ ∈ Y . WLOG let Yα′ ⊆ Yα using
total-ordering. Then x, y ∈ Yα and any linear comb ax + by ∈ Yα. Then
λ(ax + by) = λα(ax + by) = aλα(x) + bλα(y) = aλ(x) + bλ(y) and so λ is

linear. Therefore (Y, λ) ∈ O. By definition λ
∣∣∣
Yα

= λα, so (Y, λ) is an upper

bound for O.
Zorn’s lemma implies the existence of a maximal element (Y0, λ) ∈ O.

We claim that Y0 = X. Suppose x0 ∈ X\Y0. Let Y ′ = span(Y0, x0). Every
y ∈ Y ′ can be represented uniquely as y = y0 + ax0 (y0 ∈ Y0, a ∈ R). Check:
if y0 + ax0 = y′0 + a′x0 then (y0 − y′0) + (a− a′)x0 = 0, so a = a′ (otherwise
x0 = 1

a′−a(y0 − y′0) ∈ Y0), so y0 = y′0. Now, define λ′ : Y ′ → R by

λ′(y0 + ax0) = λ(y0) + aλ′(x0)

which is linear. We need to show that there exists a suitable value for λ′(x0).
Suppose y1, y2 ∈ Y0. Then λ′(y2) − λ′(y1) = λ(y2 − y1) ≤ c‖y2 − y1‖ ≤
c‖y2 + x0‖ + c‖y1 + x0‖, so −c‖y1 + x0‖ − λ′(y1) ≤ c‖y2 + x0‖ − λ′(y2). We
can choose λ′(x0) such that

sup
y1∈Y0

(−c‖y1 + x0‖ − λ′(y1)) ≤ λ′(x0) ≤ inf
y2∈Y0

(c‖y2 + x0‖ − λ′(y2))
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. Now, for a ≥ 0,

−c‖y0/a+ x0‖ − λ′(y0/a) ≤ λ′(x0) ≤ c‖y0/a+ x0‖ − λ′(y0/a)

−c‖y0 + ax0‖ − λ′(y0) ≤ aλ′(x0) ≤ c‖y0 + ax0‖ − λ′(y0)
|λ′(y0 + ax0)| = |λ′(y0) + aλ′(x0)| ≤ c‖y0 + ax0‖

A similar proof can be done for y0 − ax0. This means that (Y ′, λ′) ∈ O.
But then (Y0, λ) would not be maximal, so by contradiction we know that
Y0 = X.

6.2 The Complex Version

Theorem 14. Let (X, ‖·‖) be a complex normed vector space, S be a subspace
of X, and Λ : S → C be a linear function with a certain c ∈ R, c > 0 such that
|Λx| ≤ c‖x‖ for all x ∈ S. Then there exists a linear function Λ̄ : X → C
where Λ̄

∣∣∣
S

= Λ and |Λ̄x| ≤ c‖x‖ for all x ∈ X.

Proof. Define λ : S → R by λx = <(Λx). λ is R-linear and |λx| ≤ c‖x‖. So
the real Hahn-Banach Theorem implies that there exists R-linear function

λ̄ : X → R where λ̄
∣∣∣
S

= λ and |λ̄x| ≤ c‖x‖ for all x ∈ X.

Let Λ̄x = λ̄x−iλ̄(ix). From the R-linearity of λ̄, we know that Λ̄(x+y) =
Λ̄x + Λ̄y for x, y ∈ X and that Λ̄(cx) = aΛ̄(x) for a ∈ R. Now, Λ̄(ix) =
λ̄(ix)− iλ̄(i2x) = λ̄(ix)− iλ̄(−x) = λ̄(ix) + iλ̄(x) = i(λ̄(x)− iλ̄(ix)) = iΛ̄(x).
Therefore Λ̄(ax) = aΛ̄(x) for a ∈ C.

Let s ∈ S. Then Λ̄(s) = λ̄(s) − iλ̄(is) = λ(s) − iλ(is) = <(Λs) −
i<(Λ(is)) = <(Λs)− i<(iΛs) = <(Λs)− i(−=(Λs)) = Λs. So Λ̄

∣∣∣
S

= Λ.

Let x ∈ X, x 6= 0 and a = conj(Λ̄x)/|Λ̄x|. Then |Λ̄x| = aΛ̄x = Λ̄(ax) =
λ̄(ax)−iλ̄(iax). Since λ̄ is real, −iλ̄(iax) is =(|Λ̄x|) = 0. So (|Λ̄x| = λ̄(ax) ≤
c‖ax‖ = c|a|‖x‖ = c‖x‖.

Corollary 14.1. Let X be a complex normed vector space and x0 ∈ X. There
exists linear Λ : X → C with |Λx| ≤ ‖x‖ for all x ∈ X and Λx0 = ‖x0‖.

Proof. Let S = span(x0) and define Λ : S → C by Λ(ax0) = a‖x0‖. Then
|Λx| = |Λ(ax0)| = |a‖x0‖| = ‖ax0‖ = ‖x‖. Using the complex HBT with

c = 1, there exists linear Λ̄ : X → C with Λ̄
∣∣∣
S

= Λ and |Λ̄x| ≤ c‖x‖ = ‖x‖
for x ∈ X.
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Corollary 14.2. Let X be a complex normed vector space and x0 ∈ X. If
Λx0 = 0 for every continous linear function Λ : X → C, then x0 = 0.

7 Some Complex Analysis

Let Ω ⊆ C be open and f : Ω→ C.

Definition 7.1. We say f is analytic if f is differentiable on Ω. (That is,

for all z ∈ Ω, f ′(z) = lim
h→0

f(z+h)−f(z)
h

exists).

Definition 7.2. We say f is holomorphic in Ω if it has a power series
representation. (That is, for all z0 ∈ Ω, there exists a series (cn) and r > 0

such that f(z) =
∞∑
n=0

cn(z − z0)n for |z − z0| < r.

One of the main results of complex analysis is that these two concepts
are equivalent for single-variable complex functions.

Theorem 15. If f ∈ H(C) (f is “entire”) and lim
z→∞

f(z) = 0 then f = 0.

Proof. This theorem can be proven from a consequence of the Maximum
Modulus Theorem or Liouville’s Theorem.

Let’s extend this concept to Banach spaces.

Definition 7.3. Say X is a Banach space and that Ω ∈ C is open. We say
f ∈ H(Ω, X) if f : Ω→ X and for all z ∈ Ω, lim

h→0

f(z+h)−f(z)
h

exists.

Corollary 15.1. Suppose X is a Banach space, f ∈ H(C, X), and lim
z→∞

f(z) =

0. Then f = 0.

Proof. Let λ : X → C be a bounded linear function. We claim that λ ◦ f ∈
H(C). Since f ∈ H(C, X), f ′(z) exists for all z. Now,∥∥∥∥λ(f ′(z))− λ(f(x+ h))− λ(f(z))

h

∥∥∥∥
X

=

∥∥∥∥λ(f ′(z)− f(x+ h)− f(z)

h

)∥∥∥∥
X

≤ ‖λ‖
∥∥∥∥f ′(z))− f(x+ h)− f(z)

h

∥∥∥∥
X

which → 0 as h → 0. So the “derivative” of λ ◦ f exists for all z. We know
that for ε > 0 there exists A such that |z| > A implies ‖f(z)‖X < ε/‖λ‖. So
|λ(f(z))| ≤ ‖λ‖‖f(z)‖X < ε. By Theorem 15, λ ◦ f = 0. By Corollary 14.2,
f(z) = 0.
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8 The Spectrum of x is Non-Empty

Let A be a CBAID throughout. Let G = {x ∈ A : x is invertible}. Note
that G is open (x ∈ G and ‖y‖ < ‖x−1‖−1 implies x− y ∈ G).

Lemma 16. The map x 7→ x−1 is continuous on G.

Proof. If ‖y‖ < ‖x−1‖−1 then (x−y)−1 = x−1(e−x−1y)−1 = x−1
∑

(x−1y)n =
x−1 + x−2y+ x−3y2 + ... so (x− y)−1− x−1 = x−2y(e+ x−1y+ (x−1y)2 + ...).
Therefore

‖(x−y)−1−x−1‖ ≤ ‖x−2‖‖y‖(‖e‖+‖x−1‖‖y‖+(‖x−1‖‖y‖)2+...) =
‖x−2‖‖y‖

1− ‖x−1‖‖y‖

which → 0 as ‖y‖ → 0.

Lemma 17. If x, x − y, y ∈ G then (x−1 − (x − y)−1)y−1 = −x−1(x − y)−1

(analagous to 1
x
− 1

x−y = −y
x(x−y)).

Proof.

(x−1 − (x− y)−1)x(x− y) = (e− x(x− y)−1)(x− y) = (x− y)− x = −y

Corollary 17.1. If x ∈ G, then (analogous to
(
1
t

)′
= −1

t2
),

lim
y→0,y∈G

(x−1 − (x− y)−1)y−1 = −x−2

Lemma 18. If ‖x‖ < 1 then ‖(e− x)−1‖ ≤ 1
1−‖x‖ .

Proof.

‖(e− x)−1‖ =

∥∥∥∥∥
∞∑
n=0

xn

∥∥∥∥∥ ≤
∞∑
n=0

‖x‖n =
1

1− ‖x‖

Theorem 19. If A is a CBAID and x ∈ A then σ(x) 6= ∅.
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Proof. Suppose σ(x) = ∅. Define F : C→ A by F (λ) = (x− λe)−1. Then F
is a differentiable and in fact F ′(λ) = (x−λe)−2. Noting that if h ∈ C, h 6= 0
then he ∈ G, we can show this:

lim
h→0

F (λ+ h)− F (λ)

h
= lim

h→0
((x− (λ+ h)e)−1 − (x− λe)−1)(he)−1

= lim
h→0

(((x−λe)−he)−1−(x−λe)−1)(he)−1 = lim
y→0,y∈G

(((x−λe)−y)−1−(x−λe)−1)y−1

= (x− λe)−2

Now, if λ ∈ C, |λ| > ‖x‖, then
∥∥x
λ

∥∥ < 1, so by Lemma 18

‖F (λ)‖ = ‖(x− λe)−1‖ = |λ−1|
∥∥∥∥(xλ − e)−1

∥∥∥∥ ≤ |λ−1| 1

1−
∥∥x
λ

∥∥
So lim

λ→∞
F (λ) = 0. Since F is differentiable, Corollary 15.1 implies that

F (λ) = 0 for all λ. But (x− λe)−1 = 0 is false, therefore σ(x) 6= ∅.

As a consequence we have the following:

Corollary 19.1. If A is a CBAID and every non-zero element of A is in-
vertible then A = {λe : λ ∈ C}, so A ∼= C

Proof. Let x ∈ A. Since σ(x) 6= ∅, there exists λ ∈ C so x − λe is not
invertible. Hence x− λe = 0.

9 Complex Homomorphisms

Definition 9.1. A complex homomorphism of A is a linear ring homomor-
phism ϕ : A→ C such that ϕ(e) = 1. The set of all complex homomorphisms

of A is known as the “maximal ideal space” of A and is denoted Â.

The following can be called the “Fundamental Theorem” of CBAID.

Theorem 20. Suppose A is a CBAID and x ∈ A. Then x is not invertible
if and only if there exists ϕ ∈ Â such that ϕ(x) = 0.
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Proof. [⇐=] If ϕ(x) = 0 then for all y, ϕ(xy) = ϕ(x)ϕ(y) = 0 6= 1 = ϕ(e),
so xy 6= e.

[=⇒] Suppose x is not invertible. Let I be the ideal generated by x,
I = {xy : y ∈ A}. If x is not invertible then e 6∈ I so I is a proper ideal. So
I ⊆ J , where J is a maximal (proper) ideal. Now we showed in Theorem 11
that J is closed, hence by Lemma 10 A/J is a CBAID. We also know that
since J is maximal that A/J is a field: every non-zero element of A/J is
invertible. Hence by the previous corollary A/J ∼= C. Therefore there exists

ϕ ∈ Â with J = ϕ−1(0). This means ϕ(x) = 0 since x ∈ J .

Here is another important fact about complex homomorphisms:

Theorem 21. If A is a CBAID and ϕ ∈ Â then |ϕ(x)| ≤ ‖x‖ for all x ∈ A.

Proof. Suppose ‖x‖ < 1. Then e − x is invertible, so ϕ(e − x) 6= 0, hence
ϕ(x) 6= 1. So, ‖x‖ < 1 =⇒ ϕ(x) 6= 1. This shows that |ϕ(x)| ≤ ‖x‖ for all
x, because if |ϕ(x)| > ‖x‖ then we would have y = x/ϕ(x) with ‖y‖ < 1 and
ϕ(y) = 1.

10 Final Proofs

Let

A =

{
f : f =

∞∑
n=−∞

cne
int,

∞∑
n=−∞

|cn| <∞, cn ∈ C

}
And define ‖f‖A =

∑
|cn|. A is a CBAID. (We know the norm is complete

from Theorem 1 and Proposition 2).

If f ∈ A, define Sn =
n∑

k=−n
cke

ikt. We know ‖f − Sn‖A → 0 as n →

∞ because
∑
|k|>n
|ck| → 0. Let ϕ ∈ Â. From Theorem 21 we know ϕ is

continuous, so ϕ(Sn)→ ϕ(f) as n→∞.
Define en = eint ∈ A. Note en = (e1)

n. Now, ϕ(en) = (ϕ(e1))
n. Let

α = ϕ(e1). Then |α| ≤ ‖e1‖ = 1 and |1/α| = |ϕ(e−1)| ≤ ‖e−1‖ = 1.
Therefore |a| = 1. Say α = eit, some t ∈ T.

Lemma 22. If f ∈ A and ϕ ∈ Â, there exists t0 ∈ T such that ϕ(f) = f(t0)
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Proof. There exists t0 ∈ T such that eit0 = ϕ(e1). Therefore ϕ(en) = eint0 for

all n ∈ Z. Suppose f =
∞∑

k=−∞
cke

ikt =
∞∑

k=−∞
ckek. Then Sn =

n∑
k=−n

ckek and

ϕ(Sn) =
n∑

k=−n
ckϕ(ek) =

n∑
k=−n

cke
ikt0 = Sn(t0). Finally, ϕ(f) = lim

n→∞
ϕ(Sn) =

f(t0).

Now, the moment of truth:

Theorem 23. Say f ∈ A and f(t) 6= 0 for all t ∈ T. Let g = 1
f

. Then
g ∈ A.

Proof. Say ϕ ∈ Â. There exists t ∈ T such that ϕ(f) = f(t) 6= 0. So

ϕ(f) 6= 0 for all ϕ ∈ Â. Therefore by Theorem 20, f is invertible: there
exists g ∈ A such that fg = 1.

11 Conclusion

We have shown that which was to be demonstrated. This result may have
at first seemed surprising, but by now it should seem much more reasonable.
We showed that the set of functions which can be represented by Fourier
series with the property that the partial sums of their coefficients converge
absolutely form a special kind of space called a commutative Banach algebra
with identity. We also showed that such spaces are deeply connected to
the field of complex numbers. By studying the invertibility of elements of a
CBAID and relating them the to the invertibility of complex numbers, we
were able to show that every non-zero function in the space has an inverse.
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