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Rationale 

 Since rates of obesity are rising, it is important to assess the impact on human behavior, 

in order to fully understand individuals who are obese. There are multiple studies assessing the 

cause of obesity, but few address the impact of obesity on human behavior.   In performing this 

literature review, my main goal of this paper was to assess how obesity may lead to changes in 

behavior. The reason I chose this topic is because, as a student studying physiology and 

psychology, I am interested in how the body employs certain physiological processes in order to 

maintain homeostasis. Furthermore, I am interested in how altering physiology can affect 

psychology. For obese individuals, the imbalance between energy spent and energy intake causes 

the body to alter its physiological processes.   

 This paper will analyze the mechanism causing obesity, the genetics of obesity, and 

common psychological effects that obesity is believed to play a role in. Obesity is a complex 

process resulting from the interaction of multiple physiological systems. Some common 

behaviors associated with energy imbalance are stress eating, self-esteem issues, and even 

depression.  Through performing multiple literature searches, I have compiled many studies that 

provide explanations for how obesity affects behavior.  

Introduction 

A body mass index of above 30 km/m3 is considered obese (Bell et al., 2005).  Being 

overweight can lead to a variety of medical complications, decrease an individual’s average 

lifespan, and cause psychological problems.  To make matters worse, the issue is widely 

prevalent: nearly 1 in 3 American adults are classified as obese, and the trend is consistent 

worldwide (Flegal et al., 2002). Researchers believe that by 2030, 1.12 billion individuals will be 
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considered obese (Kelly, et al., 2008).  In addition to the growth of industrialization, the social 

characteristics of the workforce have changed. In terms of the workforce, people are now more 

urbanized and develop a sedentary lifestyle. This type of lifestyle incorporates a larger caloric 

intake, while having a decrease in energy expense, and both of these factors eventually result in 

obesity unless physical activity is incorporated (Bell et al., 2005).  When analyzing obesity, it is 

important to understand the implications of physiological and molecular processes.   

How obesity arises 

 The physiological aspect of weight regulation includes the interplay between the 

circulatory, nervous, endocrine, and digestive systems.  The hypothalamus obtains information 

about energy levels within the body from neurons, as well as from multiple hormones 

(Goldstone, 2006).  The nuclei involved in neural and hormonal regulation are the ventro-medial, 

paraventricular, and arcuate nuclei.  These three types of nuclei facilitate the recognition of 

signals involved in food intake and energy expenditure.  Within the arcuate nucleus, there are 

two categories of neurons that are crucial for information integration: (1) the agouti-regulated 

protein (AGRP) and neuropeptide Y (NPY) neurons and (2) the pro-opiomelanocortin (POMC) 

and cocaine-and amphetamine regulated transcript (CART). Both ARGP and NPY neurons fall 

into the category of orexigenic neurons, meaning they promote food consumption and reduce 

energy depletion, while POMC and CART neurons are anorexigenic neurons, meaning they 

inhibit food consumption and increase energy depletion. This intricate antagonistic relationship 

is essential for the balance of food intake and energy expenditure.  

 Peripheral endocrine signals utilize the NPY/AGRP neurons and the POMC/CART 

neurons in a variety of ways.  The role of insulin is to signal specific cells to take in glucose from 

the blood. Insulin has anorexigenic effects by stimulating the POMC/CART neurons, and 
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inhibiting the AGRP/NYP neurons; this allows the body to inhibit food consumption by 

increasing energy depletion through moving glucose into specific cells of the body.  The 

hormone leptin also has anorexigenic effects. Leptin plays a role in the long-term regulation of 

adiposity by stimulating the leptin receptor (LEPR) on the POMC/CART neurons and inhibiting 

NPY/ARGP neurons by binding to the LEPR receptors, both actions resulting in food 

consumption inhibition. Peptide YY3-36 is another hormone that leads to a decrease in food intake 

by binding to the Y2R receptor on the NPY/ARGP neurons.  The feeling of satiety is partly 

mediated by a gut hormone cholecystokinin (CCK).  The hormone ghrelin has orexigenic effects, 

and is secreted by the stomach and duodenum of the small intestine to increase food 

consumption. Ghrelin binds to the GHSR receptor located on NPY/ARGP neurons.  All of these 

signals are processed by the central arcuate nucleus and transmitted to downstream effector 

neurons.   

Hypotheses on the genetics of obesity 

There are a variety of hypotheses explaining the genetics of obesity (Walley et al., 2009). 

The thrifty gene hypothesis incorporates the idea that evolution has tuned our bodies to enhance 

weight gain during periods of food deprivation.  When food deprivation is not present, weight 

gain ensues, because our finely tuned physiological processes have been programmed to prevent 

starvation rather than to regulate weight gain.  One hypothesis arguing against the thrifty gene 

hypothesis is the predation release hypothesis, which argues that during the evolution of 

humans, obesity would have been selected against, because predators would have easily captured 

the more obese individuals.  This hypothesis is partly based on the idea that famine alone was not 

a strong enough evolutionary force throughout human history to completely explain how obesity 

arises.  Another important component of this debate is the fetal programming hypothesis, which 
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is based on the notion that fetal development is dependent on the mother.  When the mother is 

over nourished or undernourished, a response will be present in the child. Often times, the thrifty 

gene hypothesis and the fetal programming hypothesis are grouped together, because they have 

certain components that are similar. A major distinction, however, is that the fetal programming 

hypothesis emphasizes the mother’s nutritional status, rather than the genes contributed to the 

offspring.  A newer idea for the cause of obesity is incorporated in the sedentary lifestyle 

hypothesis.  The basis of this hypothesis is that throughout the last 50 years, the average lifestyle 

has reduced physical activity, while simultaneously increasing the consumption of higher calorie 

and fat foods. The theory proposes that metabolic enzymes could have a substantial role in 

predisposition to obesity.  One theory that encompasses the variety of hypotheses of obesity is 

the complex hypothesis, which suggests that there is not a single genetic basis for obesity, but 

obesity is a consequence of multiple occurrences. It is important to realize that obesity is not 

caused by one factor and is not likely explained by just one hypothesis. Both genetic and 

environmental factors have a role in obesity.   

Genetic components of obesity 

 These physiological pathways previously described are necessary for weight control and 

energy storage or removal.  Therefore, the genes that regulate these physiological pathways are 

crucial for normal function. The progression of many severe early-onset forms of obesity is 

genetically determined (Bell et. al, 2005).  Although scientists know that genes that control the 

physiological processes associated with obesity do exist, this avenue of research is not fully 

resolved.  Genome-wide association studies (GWASs) and candidate gene studies have given 

researchers insight to which genes are involved in weight control. The first GWAS study 

identified that variation in introns of the fat mass and obesity-associated gene (FTO) in part 
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caused obesity (Frayling et al. 2007). The FTO gene is widely expressed throughout the brain 

and animal studies have provided evidence of high levels of expression throughout hypothalamic 

nuclei, which are critical for regulating energy balance (Walley et al, 2009). Genome wide 

studies have identified the genes involved in the physiological pathways of weight control, food 

intake, and energy storage/removal. Candidate gene studies have also been important to 

identifying which genes are associated with the homeostatic process of weight control.  

The concept of energy balance is simple: energy intake from feeding must balance energy 

expenditure from physical activity, basal metabolism, and adaptive thermogenesis. However, the 

genetic contribution to energy imbalance leading to obesity is more complex.  The genetic 

heritability of obesity is estimated to be around 40%, however, the mechanisms of heritability 

and implications to obesity are still being investigated (Price, 2002).  Current research indicates 

that the heritable variance of obesity may be a product of allelic dominance, recessivity, and non-

allelic gene interactions (Hager, et al 1998). For example, some genes are necessary to mediate 

the effects of others, as in the case of neuropeptide Y modulating the effects of leptin 

(Spiegelman and Flier, 2001). This is possible because both neuropeptide Y and leptin act on the 

paraventricular nuclei of the hypothalamus.  

Chromosomal location of obesity genes 

In order to fully understand the genetic source for obesity, genome-wide scans help 

determine the exact chromosomal location of genes involved in obesity.  Hager et al. (1998) 

performed genome-wide scans on 158 families (n=514) that showed signs of obesity, based on 

their body mass index (BMI). A BMI of greater than 30 kg/m2 is considered obese (Bell et al., 

2005).  One family member had a BMI of over 40 kg/m2, and at least one other family member 
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had a BMI of over 27 kg/m2. The individuals were genotyped for 380 microsatellite markers, and 

the distance between markers was estimated to be 9.1 ± 2.5 cM. A multipoint analysis indicated 

linkage in nine regions across the genome. One region in particular, an area on chromosome 10, 

showed an indication for linkage (Hager et al 1998). Genetic linkage refers to alleles located 

close together on a chromosome are inherited together during meiosis. Scanning for linkage is 

important because it will help determine the genes associated with obesity. Results showed a 

strong linkage on chromosome 2, due to the location of the proopiomelanocortin gene (POMC), 

which is important for the MC4R receptor within the paraventricular neurons of the 

hypothalamus.   Strong linkage on chromosome 5 is more difficult to analyze, and the research 

suggests that the prevalence of linkage is due to both a large amount of candidate genes for 

obesity located on this chromosome as well as the widespread duplication that the chromosome 

undergoes.  Furthermore, chromosomes 2 and 5 showed a connection with leptin serum levels 

(Hager et al 1998).  Although chromosome 2 and chromosome 5 contain genes associated with 

obesity, the highest allele frequencies are correlated with chromosome 10, indicating that there is 

a major locus for obesity on chromosome 10 (Hager et al 1998). However, it is important to note 

that human obesity is a result of genetic and environmental influences. Dong et al (2003) 

conducted a study assessing the gene interactions on chromosomes 7, 10, and 20 and found 

evidence of genes within chromosomes 10 and 20 that increase susceptibility to human obesity.  

The occurrence of gene regions correlated with obesity within chromosome 10 have been 

confirmed by Price et al. (2001).  

Importance of SIM-1 

One crucial gene responsible for the overweight phenotype is the mammalian homolog of 

the Drosophila single-minded 1 gene (SIM1 in mammals). This gene is one of only six linked to 
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obesity resulting from a single-gene mutation, a fact documented by comparing obese 

individuals to lean individuals, where obese individuals showed a mutation within SIM1, while 

lean individuals showed no mutation in SIM1 (Ahituv et al, 2007).  Haploinsufficiency of the 

gene has been connected to an increase in food intake, leading to obesity in both humans and 

mice (Holder et al, 2000). In mice with a heterozygous genotype for SIM1, while normal energy 

expenditure occurred, the mice failed to stimulate the paraventricular neurons (Kublaoui et al, 

2008). The paraventricular neurons are essential for energy homeostasis.  In a clinical study of a 

patient with haploinsufficiency of SIM1 gene, obesity was a result of the mutation. Since the 

patient only had one functional copy of the gene, the food intake was not regulated (Holder et al, 

2000).  The transcription target and/or the SIM1 gene itself is essential for the development of 

the supraoptic and paraventricular hypothalamic nuclei in mice. Holder and colleagues (2000) 

found that other genetic mutations typically associated with obesity, more specifically, the leptin 

gene, were not present in the genome-wide scan.  These are important mechanisms of food 

intake and energy homeostasis. 

The role of the MC4R receptor in energy homeostasis 

Paraventricular neurons also contain the melanocortin-4 receptor (MC4R), which is part 

of the food intake regulation and energy homeostasis (Gale et al, 2004).  The MC4R gene is 

activated by α-MSH hormone, which results from the breakdown of the prohormone 

proopiomelanocortin (POMC).  However, as mentioned previously, a mutation within the POMC 

gene on chromosome 2 can occur.  Mutations in the MC4R gene have similar effects to 

mutations in the SIM1 gene mentioned above, and monogenic obesity is the result of mutations 

within the MC4R gene in mice and humans (Vaisse, et al 1998). The results of the Holder et al. 

(2000) case study suggest that both the SIM1 and MC4R genes may play a physiological or 
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molecular role in controlling energy equilibrium and tall growth in this specific patient. 

Typically, normal growth is caused by the MC4R receptor, and inhibited by leptin deficiency. 

Since the patient had normal levels of leptin and a mutation within the SIM1 and MC4R genes, 

disruption of energy homeostasis and obesity was a result of the irregular genotype.  

Leptin and leptin receptor 

Of indisputable importance in the regulation of human obesity is the hormone leptin, 

regulated by the OB gene. Leptin acts to reduce body fat by controlling food consumption. Reed 

et al (1996) examined obesity in 78 families and mapped the OB gene in obese and lean family 

members.  The researchers tested for the possibility of linkage disequilibrium of the OB gene 

region and frequent transmission from parent to an obese offspring, and concluded that linkage 

disequilibrium in the OB region was consistent with extreme obesity, thus the OB gene is linked.  

The leptin receptor, Ob-Rb, is a cytokine receptor located primarily in the hypothalamus 

that utilizes kinases for signal transduction (Flier, 2004). Leptin administration has been shown 

to reduce body mass and decrease food intake by binding to the Ob-Rb receptor and causing a 

cascade of events in the hypothalamus (Flier, 2004). It has been shown that animals given leptin 

voluntarily consumed less food in addition to a change in metabolism (Halaas et al. 1995). As a 

result of the decreased food intake, the body mass of the subjects decreased, but the metabolic 

changes observed cannot be completely explained by leptin. In order to explore the mechanism 

of leptin, Soukas et al., 2000 utilized oligonucleotide microarrays on wild-type and ob/ob mice 

treated with leptin to relate the gene expression in adipose tissue of leptin deficient ob/ob and 

wild type mice. The gene expression in ob/ob white adipose tissue was drastically different from 

that in lean mice, providing evidence for leptin’s role in obesity. Leptin deficiency, along with an 

ob/ob genotype, alters normal gene expression in adipose tissue of obese mice. Furthermore, a 
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shortage of leptin affects crucial genes regulating fatty acid biosynthesis (fatty acid synthase, 

FAS, in particular) (Kim and Spiegelman, 1998).  The presence of FAS was decreased in white 

adipose tissues of obese mice compared to wild-type mice. FAS is crucial for catalyzing the 

reactions of the conversion of malonyl-CoA to fatty acids.  If FAS is not present, fatty acids will 

not be created from glucose in the blood (Loftus et al. 2000). Further evidence of leptin’s ability 

to decrease fat in adipocytes was provided by Frühbeck et al. (1997).  Leptin has not only been 

found in adipocytes and the hypothalamus, but also in skeletal muscles and the stomach (Wang, 

et al.,1998). The effects of this hormone in these areas are not yet known, but further 

investigations could provide evidence for the physiological importance of leptin in these areas.   

Although leptin does cause a decrease in food intake, obesity can still develop despite 

high leptin levels. To a certain degree, the body can develop leptin resistance (Coll et al, 2007). 

It is believed that leptin resistance evolved to allow for energy storage in times of high resources, 

in anticipation of times of less food availability (Neel, 1999). A mechanism of leptin resistance is 

the inability of leptin to freely cross the blood brain barrier, thus inability to reach the leptin 

receptor and elicit responses in the hypothalamus (Spiegelman and Flier, 2001). Researchers 

have tested and obtained support for this hypothesis by injecting leptin directly into the brain to 

suppress food intake, compared to injecting leptin into the peripheral route that did not result in 

food intake suppression (Van Heek et al. 1997).  Leptin acts as a control over obesity, but has its 

limits. Since the role of leptin is to switch the body from a fasted to a fed state, it functions to 

control obesity (Considine et al. 1996). However, after an organism is obese for a long period of 

time, the organism loses sensitivity to leptin. Initially, leptin accomplishes its role by preventing 

the action of two orexigenic (appetite stimulant) peptides and promoting the action of two 

anorexigenic peptides by directly acting on arcuate neurons via the Ob-Rb receptor. (Spiegelman 
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and Flier, 2011).   

The role of insulin 

The primary role of insulin is to control blood glucose levels, which is crucial in 

regulating energy balance. Insulin cooperates with leptin to facilitate the role of leptin by acting 

as a regulator of leptin abundance within fat cells (Spiegelman and Flier, 2001). Further evidence 

for the link between leptin and insulin is that triglyceride accumulation in non-adipose tissue 

(more specifically muscle and liver tissues) is suppressed due to leptin receptor signaling, and 

this contributes to insulin resistance (Emanuelli et al., 2000). Furthermore, insulin levels 

decrease in the fasting state and increase in a fed state due to insulin’s role as a glucose transport 

facilitator (Wood and Trayhurn, 2003). Although insulin is not the primary peripheral signal to 

the central nervous system to regulate energy balance, it does have a role in energy balance.  

Neuropeptide Y 

Neuropeptide Y (NPY) is another mechanism for regulating energy balance, and is 

widely expressed throughout the nervous system.  NPY acts through G-coupled protein receptors 

in the PVN neurons to control energy equilibrium (Spiegelman and Flier, 2001). Studies have 

shown that animals lacking NPY have normal body weight and have normal feeding habits, but 

NPY deficiency enhances obesity in mice with the ob/ob genotype. This provides evidence for 

the role of NPY in facilitating the full response of leptin deficiency (Erickson et al, 1996). 

The genetics of obesity are being pieced together quickly, and scientific knowledge about 

the genetic factors contributing to obesity is expanding. What is causing the rise in prevalence of 

obesity? The susceptibility for obesity has been present for a long time, so the rise in cases of 
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obesity is likely due to a changing environment, such as the increased availability of food and 

changing food composition, in addition to a less active lifestyle.  The mechanism for weight 

control requires energy intake to balance energy expenditure and when this balance is not met, 

obesity arises. Further evidence for complex causes of obesity is provided by low frequency of 

mutations within genes, so obesity cannot be linked to genetic factors alone.   

Hormone imbalance leading to behavioral changes 

Another component of obesity, besides genetic predisposition or mutations, is the 

environment that contributes to the psyche of an individual. There are multiple effects of obesity 

on human behavior.  Multiple studies have attempted to determine the effect of obesity on 

behavioral components, and what exactly is causing behavioral deviations.    

The mechanism of stress eating 

One topic of investigation is stress eating.  The stress response is a crucial mechanism for 

maintaining allostasis. The body’s reaction to stress is meant to be beneficial, but it can lead to 

dramatic changes in an individual’s physiology, psychology, and behavior.  The stress response 

is mediated by the hypothalamus-pituitary-adrenal (HPA) axis. Corticotropin-releasing hormone 

(CRH) within the PVN initiates the stress response, and ACTH is secreted from the anterior 

pituitary (Cohen, 2000). ACTH stimulates the zona fasciculate within the adrenal cortex to 

release cortisol.  The presence of cortisol initiates the negative-feedback mechanism of the HPA 

axis, and cortisol is no longer secreted (Jacobson and Sapolsky, 2001).  The negative feedback 

mechanism is crucial for individuals to maintain a healthy physiological state because a 

prolonged stress response has adverse effects on the organism.  Typically, the stress response 

decreases blood flow to areas that are not necessary for movement, which induces appetite 
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suppression, as epinephrine induces the ‘fight or flight’ response (Sherwood, 2001). During the 

‘fight or flight response’, non-essential processes are down regulated, while processes essential 

for avoiding the stressor are enhanced.  Throughout this short term stressor, digestion is deemed 

as a non-essential process. However, exposure to a long term stressor has been shown to enhance 

food consumption (Oliver et al 2000).  This is mostly a result of the hyperactivation of the HPA 

axis, resulting in high cortisol levels (Torres and Nowson, 2007). It is important to realize the 

relationship that both cortisol and CRH have on feeding behavior. Since cortisol is a steroid 

hormone, it has a longer half-life since it is a steroid hormone, and therefore has longer effects 

on appetite. CRH, on the other hand, is a peptide hormone, so it has a short half-life, and 

therefore has immediate effects on appetite.  

Adam and Epel (2007) researched the effect of two different stressors, threat stressors 

and challenge stressors, on eating. The hypothesis was that a more controllable stressor, the 

challenge stressor, would not have as large of an effect on eating when compared to threat 

stressors.  A threat stressor typically encompasses a situation in which an individual had little 

control, and characteristics of defeat, embarrassment, or fear are felt by the individual present. A 

challenge stressor typically involves a challenging, but controllable situation, and the individual 

feels as though they have the resources to cope with the stressor. Previous research has shown 

that increased levels of glucocorticoids often cause an increase in calorie consumption (Tataranni 

et al, 1996). A high response to stress results in higher cortisol levels, and this could explain why 

stress eating and food cravings occur. Furthermore, higher cortisol levels also lead to amplified 

visceral fat accumulation, because areas composed of visceral fat have a high prevalence of 

glucocorticoid receptors compared to other regions of the body (Djurhuus, et al 2002).  
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Studies have shown support for the relationship between chronic stress and obesity. Epel 

et al. (2001) researched the effect of stressors on caloric intake in women.  The results showed a 

statistically significant increase in caloric intake in women with higher cortisol levels. The 

women who responded more to the stressor also seemed to consume more sweet foods than the 

women who did not respond as much to the stressor.  The main finding of this study is that the 

cortisol response could partly determine which individuals are more likely to consume more 

calories in response to stress, and which individuals consume less food after stress. It is 

important to note that cortisol levels do not cause an increase in eating. Instead, the interactions 

between cortisol and other energy regulating hormones is responsible for the variation in eating 

behavior in response to stress.  

Energy homeostasis is controlled by multiple hormone actions and interactions.  The 

relationship between cortisol and insulin is influenced by stress, and is just one example of the 

multiple hormone interactions crucial for energy balance.  Lambillotte et al., (1997) revealed 

that, in mice, cortisol directly prevents insulin secretion from beta cells of the pancreas in mice.  

Furthermore, cortisol impairs the ability of insulin to move GLUT-4 to the surface of the muscle 

cell. These inhibitory actions of cortisol eventually lead to insulin resistance in mice.  Research 

has also shown that when insulin and high cortisol levels are present, lipid mobilization is 

inhibited, and this promotes fat accumulation by inhibiting lipolysis (Martinez-Botas et al., 

2000). An increase in visceral fat exacerbates obesity because excess visceral fat supplies a 

higher amount of intracellular glucocorticoids.   

Another important hormonal interaction for the regulation of energy is the relationship 

between cortisol and leptin.  It has been established that the main role of leptin is to decrease 

food intake. In a study involving rat subjects, the amount of leptin sensitivity was decreased 
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when glucocorticoid levels increased (Zakrzewska et al., 1997). When the rats were given a 

larger dosage of exogenous glucocorticoids, the rats overate, despite high levels of leptin.  This 

finding suggests that high glucocorticoid levels could make it more likely for individuals to 

develop leptin resistance, which would eventually cause obesity phenotypes.  

Stress eating is not the only psychological and physiological interaction in association 

with obesity phenotypes.  Various psychological studies have attempted to explore the effect of 

obesity on certain behavioral characteristics.  One point of interest is between obesity and body 

image.  

The contribution of obesity on body image 

The impact of obesity on an individual’s psychology is composed of physical as well as 

social processes. The physical processes of weight gain include increased cortisol release and 

changes in neurotransmitters, which affect body image. The social processes associated with 

obesity are often negative.  Some common personality traits often suggested as associated with 

obese individuals are: laziness, incompetency, emotional instability, and sloppiness (Puhl, et. Al, 

2001). If these personality traits are common stereotypes against obese individuals, it is likely the 

individual consciously realizes the negative stereotypes, and internalizes this negative stigma.   

This social process has a negative impact on an individual’s self-esteem. There are four 

main contributors to negative self-perception: social comparison, sociocultural, negative 

verbalization, and maturational status (Thompson, 2002).  Furthermore, research suggests that 

body image is a cognitive realization, rather than solely physical (Schwartz and Brownell, 2003).    

Body dissatisfaction is a strong predictor of other risk factors (Leon, et. al 1993).  Cash et al 

(1990) measured perception of body image in three groups of individuals: participants who were 
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currently overweight, formerly overweight, and never overweight.  Researchers found that the 

individuals who were formerly overweight could not reach the same positive body image as an 

individual who had never experienced being overweight (Cash et al., 1990).  This ‘phantom fat’ 

example provides evidence for the idea that although the physical stigma associated with obesity 

is visually gone when an individual loses weight, the negative stigma associated with their 

previous obesity can remain with the individual and affect the individual mentally.   

Schwartz and Brownell (2004) explain an alternative view to the psychological distress 

associated with obesity.  They argue that negative body image is typically associated with other 

signs of psychological distress, and that individuals who have psychological distress due to body 

image are in a fragile psychological state to begin with.  They point out that the individuals 

would be more likely to lose weight and improve their physical health if their mental health 

improved as well. Although one might place more importance on negative physical health due to 

obesity, negative psychological distress can contribute to overall poor health as well.  

There is optimistic research for improving body image.  The idea of cognitive-behavioral 

therapy has been shown to improve body image in obese women (Rosen et al., 1995).  This 

therapy does not focus on weight loss, but on changing the mentality surrounding obesity.  

Women who participated in this study showed an improvement in self-esteem without losing 

weight.  Other forms of therapy include wellness programs.  This type of therapy is focused on 

healthy eating and social support for obese individuals.  Bacon et al. (2002) followed participants 

throughout a wellness program, and one year after the beginning of the program.  The 

researchers found that body image had significantly improved.  Both the cognitive-behavioral 

therapy and wellness approach to improving body image show that self-perception can increase 

without weight loss.  
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The relationship between stress eating and increased cortisol levels made me think about 

how negative body image could be incorporated into this process.  To my knowledge, no study 

has investigated my hypothesis that a positive feedback mechanism could partly explain this 

relationship.  As mentioned earlier, research shows that stress eating is partly due to an increase 

in cortisol levels.  Also, negative body image is typically seen in individuals who view 

themselves as fat.  So, it could be possible that stress causes an increase in caloric intake, which 

results in a negative body image, and this negative body image causes internal stress in the 

individual, which leads to stress eating again.  This positive feedback mechanism could be used 

to explain how obesity evolves over an individual’s life.  Obesity is a gradual process, and is 

explained through genetics, environment, and psychology. The possible positive feedback 

mechanism in obese individuals is similar to addictive behavior in individuals who abuse drugs.  

Obesity and depression 

Obesity is shown to have a relationship with other psychological disorders, such as 

depression.  Obesity-depression comorbidity may be a result of individuals who are more 

depressed at baseline (Stunkard et al., 2003), so it is important to assess the starting levels of 

depression when conducting studies investigating obesity and depression levels. Pine et al. 

(2001) described a positive connection between children with depression and adult BMI taken 

10–15 years later. Other studies have shown that the occurrence of depression is higher in obese 

individuals than in the general population (Evans, et al 2005).  

The linkage between obesity and depression is not completely clear; does obesity 

influence the likelihood of being depressed, or do depressive symptoms increase the likelihood 

of becoming obese? One idea is that depressed individuals have a distorted physiological 
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response to stress, which promotes an unhealthy lifestyle that ultimately results in obesity 

(Bornstein et al., 2006). The alternative mechanism is that a continuous negative body image due 

to obesity results in the development of depression (Luppino et al., 2010).  Luppino and 

colleagues (2010) found that obese individuals had a 55% higher risk of forming symptoms of 

depression.  Their study showed that depressed individuals had a 58% higher risk of developing 

an obese phenotype. These results indicate that there are bidirectional associations between 

obesity and depression. Hasler et al. (2003) studied mood disorders in nearly 600 young adults 

until they reached the age of 40.  Nearly 19% of the participants were overweight, and 

researchers found a positive association of atypical depression in these participants. Although 

studies have shown positive associations between obesity and psychological disorders, the 

relationship between obesity and depression is still obscure (McElroy et al., 2004).  On the other 

hand, it is important to not oversimplify the issue.   

Some depressed patients also suffer from high cortisol levels, which as stated earlier, can 

lead to an increase in caloric intake (Brown et al., 2004).  A higher cortisol level would translate 

to a chronic stressor, which activates the HPA axis.  Chronic stress has been found to increase 

caloric intake, which could eventually lead to obesity. Most research conducted on depressed 

patients has been based on studies measuring basal HPA activity (Halbreich et al., 1985), and 

tests meant to assess the negative feedback mechanism of the HPA axis (Carroll et al., 1981).  

One explanation for higher susceptibility of people with depression to increased cortisol levels is 

the lower number of glucocorticoid receptors and decreased receptor sensitivity  (Huizenga et al., 

2000). 

It is difficult to provide a concise effect of obesity on differing human behaviors because 

there are multiple causes of obesity, and numerous consequences from obesity from individual to 
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individual.  The interplay between physiology and psychology has slowly begun to be realized, 

but many details need to be uncovered.  Researchers have thoroughly studied various hormones 

and their role in regulating energy homeostasis. The effects of these hormones are seen 

throughout the body, and the next step for researchers is to determine what occurs within the 

brain to contribute to behavioral responses to obesity.   
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