

MICROFILMED - 1984

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

300 N. Zeeb Road Ann Arbor, MI 48106 .

8418584

Li, Meng-Hui

APPLICATION OF THE LOCAL-COMPOSITION MODEL TO A GENERALIZED EQUATION OF STATE FOR REPRESENTING VAPOR-LIQUID EQUILIBRIA OF NONIDEAL MIXTURES

The University of Oklahoma

Рн. Л. 1984

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

Copyright 1984

by

Li, Meng-Hui

All Rights Reserved

·

-

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

- 1. Glossy photographs or pages _____
- 2. Colored illustrations, paper or print _____
- 3. Photographs with dark background _____
- 4. Illustrations are poor copy_____
- 5. Pages with black marks, not original copy_____
- 6. Print shows through as there is text on both sides of page _____
- 7. Indistinct, broken or small print on several pages
- 8. Print exceeds margin requirements _____
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print _____
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Other_____

University Microfilms International

۰.

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

APPLICATION OF THE LOCAL-COMPOSITION MODEL TO A GENERALIZED EQUATION OF STATE FOR REPRESENTING VAPOR-LIQUID EQUILIBRIA OF NONIDEAL MIXTURES

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

•••

.

BY

MENG-HUI LI

Norman, Oklahoma

APPLICATION OF THE LOCAL-COMPOSITION MODEL TO A GENERALIZED EQUATION OF STATE FOR REPRESENTING VAPOR-LIQUID EQUILIBRIA OF NONIDEAL SIXTURES

APPRO YED am 87V

DISSERATION CONMITTEE

© 1984

· ·

. .

۰.

•

MENG-HUI LI

.

•

•

ALL RIGHTS RESERVED

.

ACKNOWLEDGHENTS

I would like to offer my sincere gratitude and appreciation to the following persons and organizations:

Professor K.E. Starling - for his guidance, inspiration and encouragement throughout this research.

Professors C.E. Locke, L.L. Lee, J.F. Scamehorn, and S.D. Christian - for serving on my advisory committee.

Dr. T.H. Chung for his helpful disscussions.

The Gas Research Institute, the University of Oklahoma School of Chemical Engineering and Materials Science - for financial support for this research and my research assistanceship.

My parents, my brother and my sister - for their encouragement, support and love throughout my education.

My wife, Hsiu-Jiuan - for her understanding, patience, encourgement and love.

iii

TABLE OF CONTENTS

·. •. .

ACKNO	DWLI	EDGE	I EN	TS	•	•	•	•	•	٠	•	•	-	•	-	•	•	•.	•	•	•	•	•	٠	•	j	iii
LIST	OP	TAE	BLE	S	•	•	-	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Vİ
LIST	0 P	ILI	. D S	TR	AT	10	NS		•	•	•	•	•	,	•	•	•	-	-	•	•	•	•	•	•	• 1	i i
ABSTI	RACI	r .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ix
																										<u>p</u> a	qe
I.	IN	roi	000	TI	ON	-	•	٠	•	-	-	-	•	,	•	•	-	•	•	٠	-	•	•	•	•	•	1
II.	LOC	CYT	CO	HP	05	11	I C	H	MO	DE	L	•		,	-	•	•	•	•	•	•	•	•	•	•	•	5
	-	5T A 7	ris	TI CO		L OS	ME II	CH	IAN N	IC •	AL	.]	[N]	ΓΞ	RF •	PRI	et a -	.T] -	101 •	N (DF •	L(•	-	AL	•	•	7
	(CONI	7IG	CO	AT MP	10	NA SIT	L 10	HE	L3	HO •	LI.	Z	F	• R I	ΞΞ •	EN -	I E I	ā G ! -	r : -	FR(-	мс •	L(•	-	A L -	•	10
III.	HI	KI N(; R	UL	.ES	F	RC	M	TH	E	LC)CI	L	С	02	190)SI	T	[0]		801	DE	L	•	•	-	12
]	LOCI REDI THE	AL JCE CO		MP TE	OS MP	II ER IG	IC AT RU	N UR ILE	MI E S	XI AN	ID ID		RU En	L I 5] -	25 (T) -	¥	•	•	•	•	•	•	•	•	•	12 15 16
IV.	RES	SOTI	rs	AN	ID.	DI DI	sc Sc	:05	SI	- 0 N	•			•	•	•	•	•	•	•	-	•	•	•	•	•	17
۷.	C 0 1	NCL	JSI	OM	IS	•	•	-	•	•	•	•	•	•	•	•	-	•	•	•	•	•	٠	•	•	•	75
REFE	RENG	Ces	•	•	•	•	•	•	-	-	-	•		•	•	•	-	-	•	-	•	•	•	•	•	•	78
NONEI	SCL)	ATU	2 E	•	•	•	•	•	•	•	-			•	-	•	•	•	•	•	-	•	•	-	•	•	82

	App	endix	page
. •	λ.	EQUATION OF STATE FOR PURE SUBSTANCES	- 84
	B .	COMPORNAL SOLUTION MIXING RULES	. 89
	c.	LCH RESULTS USING A MULTIFLUID MODEL FOR REDUCED DENSITY	. 94
	D.	ELUCIDATION OF MIXTURE PRESSURE PROBLEMS USING A MULTIFLUID MODEL	102
	E.	ELIMINATION OF THE MIXTURE PRESSURE PROBLEMS USING ONE FLUID MODEL	106
	P.	SAMPLES OF DETAILED CALCULATIONS OF VLE AND DEMSITY	110

.

LIST OF TABLES

.

.

•

TABLE		<u>page</u>
1_	VLE and Density Data Used in This Study	. 22
2.	VLE Calculations for Methanol-CO2 at 25 C	. 25
3.	VLE and Density Calculations for Five Binary System	as 28
4_	Redetermined Binary Interaction Parameters for Methanol-Benzene	. 33
5.	VLE Calculations for CO2 Binary Mixtures	. 37
6.	VLE Calculations for Acetone Binary Mixtures	. 46
7.	VLE Calculations for Nine Binary Mixtures	. 52
8.	VLE Calculations for Polar Binary Mixtures	. 64
A1.	Equation of State Universal Constants	. 86
A2.	Equation of State Pure-Component Parameters	. 87
C1.	VLE Calculations for Pive Binary Mixtures	. 96
с2.	Estimated P11 and P22 Using Multifluid Model for Reduced Density	105
E1.	Estimated P11 and P22 Using One Fluid Model for Reduced Density	109

LIST OF ILLUSTRATIONS

...

FIGUI	<u>RE</u>	page
1_	Local Composition Model	. 6
2.	P-X Diagram for Methanol-CO2 at 25 C	- 26
3.	Density Predictions for Acetone-Water	. 29
4.	P-X Diagram for Acetone-Water at 200 C	. 30
5.	T-X Diagram for Methanol-Benzene at 1 ATM	. 32
6.	T-X Diagram for Methanol-Benzene at 1 ATH	- 34
7.	P-X Diagram for Methanol-Water at 150 C	. 36
8.	P-X Diagram for Methane-CO2 at -54 C	. 38
9.	P-X Diagram for Methane-CO2 at -63 C	. 39
10.	P-X Diagram for CO2-n-Hexane at 25 C	- 40
11.	P-X Diagram for CO2-Benzene at 25 C	_ 41
12.	P-X Diagram for CO2-Benzene at 40 C	- 42
13.	P-X Diagram for CO2-n-Decane at 190 C	. 43
14.	P-X Diagram for CO2-n-Hexadecane at 391 C	_ 44
15.	P-X Diagram for Ethane-Acetone at 25 C	_ 47
16.	P-X Diagram for Propane-Acetone at 77 C	. 48
17.	T-X Diagram for n-Pentane-Acetone at 1 ATM	. 49
18.	P-X Diagram for Acetone-Benzene at 25 C	. 50
19.	P-X Diagram for Acetone-n-Heptane at 65 C	. 51
20.	P-X Diagram for Ethane-Methanol at 25 C	. 55
21.	P-X Diagram for Propane-Ethanol at 127 C	• 56

vii

.

22.	P-X Diagram for Benzene-Ethanol at 25 C 57
23.	T-X Diagram for Ethanol-n-Decane at 1 ATM 58
24.	T-X Diagram for n-Hexane-Propanol at 1 ATM 59
25.	T-X Diagram for Benzene-Propanol at 1 ATM 60
26.	T-X Diagram for Propanol-n-Decane at 0.4 ATX 61
27.	P-X Diagram for Methane-Water at 171 C 62
28.	P-X Diagram for Ethane-Water at 171 C 63
29.	P-X Diagram for Acetone-CO2 at 25 C 66
30.	T-X Diagram for Acetone-Ethanol at 1 ATM 67
31.	P-X Diagram for Methanol-Propanol at 50 C 68
32.	T-X Diagram for Ethanol-Propanol at 1 ATM 69
33.	T-X Diagram for Ethanol-Water at 1 ATM 70
34.	P-X Diagram for CO2-Water at 275 C
35.	P-X Diagram for H2S-Water at 171 C
36.	T-X Diagram for Ammonia-Water at 1 ATM
37.	T-X Diagram for Ammonia-Water at 10 ATM
C1.	P-X Diagram for Methane-CO2 at -54 C
c2.	P-X Diagram for CO2-n-Hexane at 25 C
сз.	P-X Diagram for Acetone-CO2 at 25 C
C4.	P-X Diagram for Ethane-Acetone at 25 C 100
с5.	P-X Diagram for Methanol-CO2 at 25 C 101
D1.	Plot of Pressure vs. Reduced Density for Acetone-
F 1	Plot of Procence vs. Reduced Density for Acetona-
1+ * e	Water

. .

.

viii

• • - ·

ABSTRACT

The statistical-mechanical local composition model has been applied to describe the composition dependence of a recently developed equation of state for use in vapor-liquid equilibria calculations. The composition-dependence for the mixture properties is derived from a local composition model expression for the Helmholtz free energy. The local composition mixing rules have been tested for a wide variety mixtures containing carbon dioxide, of binary mixtures: acetone, hydrogen sulfide, ammonia, methanol, ethanol, 1-propanol, water, etc. When compared with the conventional conformal solution model, a significant improvement is obtained for vapor-liquid equilibria predictions for strongly nonideal mixtures. This local composition model can be used to extend any corresponding-states type equation of state to mixtures.

ix

APPLICATION OF THE LOCAL-COMPOSITION MODEL TO A GENERALIZED EQUATION OF STATE FOR REPRESENTING VAPOR-LIQUID EQUILIBRIA OF NONIDEAL MIXTURES

CHAPTER I.

INTRODUCTION

Many engineering processes involve vapor-liquid separation processes such as flash separation, distillation, absorption, etc. Knowledge of phase equilibria is necessary for understanding these separation processes and efficient design of the separation process units requires quantitative information on the phase equilibria of mixtures.

The thermodynamic methods for calculating vaporliquid equilibria (VLE) usually are based on use of an expression for activity coefficients for the liquid phase along with the use of an equation of state for vapor fugacity coefficients or use of fugacity coefficients from an equation of state for both liquid and vapor phases. The activity coefficient approach works well at low reduced temperatures where the liquid phase is relatively incompressible and up to moderate pressures. However, when supercritical components are involved in the mixture, it is

necessary to use a hypothetical reference state for each of the supercritical components, which makes the calculations cumhersome. Also, the mixture critical region cannot be accurately described. The approach of using an equation of state for both the liquid and vapor phases, mixture containing supercritical components does not require the use of hypothetical standard states. Also, because the vapor and liquid phases are both described by the same equation of state, accurate descriptions of vapor liquid equilibrium at state conditions nearer the mixture critical point are possible.

The conventional method for equation of state prediction of mixture properties is based on the van der Waals one-fluid mixing rules, or the so-called Conformal Solution Model (CSM). It is supposed in the CSM that the properties of a mixture at temperature T, and pressure P, and composition x are the same as those of a hypothetical pure fluid (at the same T and P) whose characteristic parameters are functions of the composition x. These functions. called mixing rules, are quadratic in mole This model has been shown to work well for fraction. mixtures of nonpolar and slightly polar substances Starling et al., 1977; Peng et al., 1976; Robinson et al., 1977). One of the reasons that the conventional mixing rules do not work well for polar fluids is that the quidratic molefraction mixing rule for parameters does not hold at liquid

densities for non-simple mixtures [Whiting and Prausnitz, 1982].

Since the presentation of the local-composition concept (Wilson, 1964), this concept has been widely applied to develop models for liquid activity coefficients. The activity coefficient approach based on the local composition model has been tested for a wide variety of fluid mixtures including strongly nonideal liquid mixtures (Renon and Prausnitz, 1968; Bruin, 1970, 1971; Abrams and Prausnitz, 1975; Fredenslund et al., 1975).

Due to the successful applications of the local composition model to the activity coefficent approach in prediction of vapor-liquid equilibria, some attempts have been made to bridge the gap between the equation of state approach and the activity coefficient approach by using the local composition concept in equations of state. Huron and Vidal (1979) have introduced the excess Gibbs free energy formulation by Renon and Prausnitz (1968) into the energy parameter 'a' in the Redlich-Kwong equation of state. Vachhani and Anderson (1982) have applied the local composition formulism to the attractive part of the Soave-Pedlich-Kwong eqation of state and empirically introduced density dependence into the mixing rules. Whiting and Prausnitz (1982) have developed local composition densitydependent mixing rules for the attractive part of the van

der Waals equation of state. Mathias and Copeman (1983) have developed density-dependent local composition mixing rules to extend the Peng-Robinson equation of state to highly nonideal mixtures.

It is the purpose of this study to apply the local composition model to a recently developed equation of state for vapor-liquid equilibria prediction for strongly nonideal liquid mixtures.

CHAPTER II

LOCAL COMPOSITION NODEL

The local composition concept originates from the guasi-chemical theory of Guggenheim [1935, 1952 and 1966] for lattice gases. It is believed that the motion, position and orientation of a given molecule are strongly affected, due to intermolecular forces, by its neighborhood molecules. The neighborhood molecules are, in turn, affected by the given (central) molecule. When different types of molecules coexist in a mixture, a given (central) molecule may "prefer" to surround itself with one type of molecule rather than another type of molecule. Due to this preference, the molecules distribute non-randomly in the mixture. То visualize the physical meaning of the local composition model, we consider two representative fluid regions in a binary mixture as shown in Fig. 1. These two fluid regions have a type 'A' molecule and a type 'B' molecule as the center molecule, respectively. The local composition of the fluid region with a type "A" molecule as the center, is different from that of the fluid region with a type 'B' molecule as the center.

Type 1 Region Type 2 Region Center Center A O B \bullet The Number of Nearest Neighbors $n_{BA} = 3$ $n_{AB} = 3$ $n_{AA} = 3$ $n_{BB} = 2$

Coordination Number

Local Compositions

Figure 1.

Local Composition Model.

STATISTICAL RECHANICAL INTERPRETATION OF LOCAL COMPOSITION

A statistical mechanical interpretation of the local composition model has been given by Lee, et al. (1983). For a binary mixture of N_A molecules of type A and N_B molecules of type B, the expression for the number of neighborhood molecules surrounding a central molecule is given by the distribution functions(for simplicity a spherically symmetrical pair potential is assumed here), g(r)

$$\pi_{AA}(L_{AA}) \equiv \rho_{A} \int_{0}^{L_{AA}} dr \ 4\pi r^{2} \ \mathbf{s}_{AA}(r)$$
(2.1)

$$n_{BA}(L_{BA}) = \rho_{B} \int_{0}^{L_{BA}} d\tau \ 4\pi r^{2} s_{BA}(r) \qquad (2.2)$$

$$n_{AB}(L_{AB}) = c_A \int_{0}^{L_{AB}} dr \ 4\pi r^2 \ s_{AB}(r)$$
 (2.3)

$$n_{BB}(L_{BB}) = \rho_B \int_{0}^{L_{BB}} dr \ 4\pi r^2 s_{BE}(r)$$
 (2.4)

where n_{ij} is the number of i molecules surrounding one central j molecule with a spherical volume of radius L_{ij} , which is the radius appropriate for finding the first neighbors of a central molecule. Only the nearest-neighbor interactions are taken into account in the local composition model. Applying the potential of mean force(according to Kirkwood, 1935), eqn. (2.1) becomes

$${}^{\Pi}_{AA} {}^{(L}_{AA}) = {}^{D}_{A} \int_{0}^{L_{AA}} 4\pi r^{2} g_{AA}(r)$$

$$= {}^{D}_{A} \int_{0}^{L_{AA}} 4\pi r^{2} \exp \left[-\beta W_{AA}(r)\right]$$

$$= {}^{D}_{A} \quad \nabla_{AA} \exp \left[-\beta \overline{W}_{AA}\right] \qquad (2.5)$$

and eqn. (2.2) becomes

$$n_{BA}(L_{BA}) = p_{B} \int_{0}^{L_{BA}} dr 4\pi r^{2} s_{BA}(r)$$

$$= p_{B} \int_{0}^{L_{BA}} dr 4\pi r^{2} \exp \left[-\beta W_{BA}(r)\right]$$

$$= p_{B} \nabla_{BA} \exp \left[-\beta \widetilde{W}_{BA}\right] \qquad (2.6)$$

where V_{AA} is the spherical volume $\frac{4}{3} \pi L_{AA}^{3}$ and $V_{BA} = \frac{4}{3} \pi L_{BA}^{3}$. The latter equalities are obtained using the mean-value theorem of calculus, i.e., the potential of mean force W_{ij} is evaluated at some mean location in the region of integration to obtain \overline{W}_{ij} . β is 1/kT and k is the Boltzmann constant. Similar expressions can be obtained for eqns. (2.3) and (2.4).

The local compositions are defined as follows:

$$\mathbf{x}_{AA} = \frac{\mathbf{n}_{AA}}{\mathbf{n}_{AA} + \mathbf{n}_{BA}}$$
(2.7)

$$\mathbf{x}_{\mathbf{B}\mathbf{A}} = \frac{\mathbf{n}_{\mathbf{B}\mathbf{A}}}{\mathbf{n}_{\mathbf{A}\mathbf{A}} + \mathbf{n}_{\mathbf{B}\mathbf{A}}}$$
(2.8)

Combining the eqns. (2.5) - (2.8), the local compositions have the following forms,

$$\mathbf{x}_{AA} = \frac{\mathbf{x}_{A}}{\mathbf{x}_{A} + \mathbf{x}_{B} \Lambda_{BA}}$$
(2.9)

$$\mathbf{x}_{\mathbf{B}\mathbf{A}} = \frac{\mathbf{x}_{\mathbf{B}}^{\Lambda} \mathbf{B}\mathbf{A}}{\mathbf{x}_{\mathbf{A}} + \mathbf{x}_{\mathbf{B}}^{\Lambda} \mathbf{B}\mathbf{A}}$$
(2.10)

where Λ_{BA} is

.

$$\Lambda_{BA} = \frac{V_{BA} \exp(-\beta \tilde{W}_{BA})}{V_{AA} \exp(-\beta \tilde{W}_{AA})} = F_{BA} \frac{\exp(-N_{av} \tilde{W}_{BA}/RT)}{\exp(-N_{av} \tilde{W}_{AA}/RT)}$$
(2.11)

where F_{BA} is the ratio of V_{BA} to V_{AA} , and N_{av} is the Avogadro's number.

Thus, the local compositions are proportional to both the bulk composition and the Boltzmann factor whose argument characterizes the interaction of molecule pairs.

CONFIGURATIONAL HELBHOLTZ FREE ENERGY FROM LOCAL COMPOSITION

Assuming additivity, the total configurational internal energy of the binary fluid mixture can be obtained. from the contributions of two types of regions. The total configurational internal energy $U^*(U^*=U-U_{ideal\ gas})$ is determined (Whiting and Prausnitz, 1982) by

$$\frac{U}{N} = x_1 \left(x_{11}u_{11} + x_{21}u_{21} \right) + x_2 \left(x_{12}u_{12} + x_{22}u_{22} \right)$$
(2.12)

where u_{ij} is the molar configurational internal energy of a fluid whose molecules interact according to ij potential and N is the total number of moles. Substituting the local composition, x_{ij} , into the eqn. (2.12), we have

$$\frac{U'}{N} = \sum_{i} x_{i} \frac{\sum_{j} x_{j} F_{ji} u'_{ji} \exp(-N_{av} \overline{W}_{ji}/RT)}{\sum_{j} x_{j} F_{ji} \exp(-N_{av} \overline{W}_{ji}/RT)}$$
(2.13)

A relation for the configurational Helmholtz free energy which is consistent with the thermodynamic relation between the configurational Helmholtz free energy and the configurational internal energy,

$$\frac{\partial \left(\frac{A'}{NRT}\right)}{\partial \left(\frac{1}{RT}\right)} = \frac{U'}{N}$$
(2.14)

is (Lee, et al., 1983)

.

.

$$-\frac{\alpha'A'}{NRT} = \sum_{i} x_{i} \ln \sum_{j} x_{j} F_{ji} \exp(-N_{av} \overline{W}_{ji}/RT)$$
(2.15)

In eqn. (2.15) α' is a proportionality factor which relates the mean potential of mean force and the configurational internal energy,

$$u_{ji} = \frac{1}{\alpha'} \left[\frac{\partial (N_{av} \overline{W}_{ji} / RT)}{\partial (1 / RT)} \right]$$
(2.16)

CHAPTER III

MIXING RULES PROM THE LOCAL COMPOSITION MODEL

The composition dependence for equation of state calculations of mixture properties(VLE, PVT, etc.) can be derived from the local composition model expression for the Helmholtz free energy.

LOCAL COMPOSITION MIXING BULES

The form of the configurational Helmholtz free energy A* used in this study is (Lee, et al., 1983)

$$-\frac{\alpha^{i}A^{i}}{NRT} = \sum_{i} x_{i} \ln \sum_{j} x_{j} F_{ji} \exp(-N_{av} \overline{W}_{ji}/RT)$$
(3.1)

where \bar{w}_{ji} is the mean potential of mean force for a pair molecules of types j and i. F_{ji} is the volume ratio given by the following relation:

$$F_{ji} = \frac{V_{ji}}{V_{ii}} = \frac{\int_{0}^{L_{ji}} 4\pi r^{2} dr}{\int_{0}^{L_{ii}} 4\pi r^{2} dr}$$
(3.2)

where L_{ji} is the radius appropriate for selection of firstneighborhood coordination. For equally sized molecules, $L_{ji}=L_{jj}=L_{ii}$, and F_{ji} is equal to unity. Therefore, F_{ji} is equal to 1 for pure fluids. The configurational Helmholtz free energy and the mean potential of mean force can be related by considering a pure fluid. For a pure fluid, eqn. (3.1) becomes

$$N_{av} \tilde{W}_{ii} = \frac{\alpha' A_{ii}}{N_{i}}$$
(3.3)

Therefore, α' is a proportionality factor between the mean potential of mean force and the configurational Helmholtz free energy per mole.

Combining eqns. (3.1) and (3.3), the configurational Helmholtz free energy has the following form:

$$-\frac{\alpha^{*}\underline{A}^{*}}{RT} = \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \exp(-\frac{\alpha^{*}\underline{A}^{*}_{ji}}{RT})$$
(3.4)

where $\frac{A}{-ji}$ is the molar configurational Helmholtz free energy of a system of molecules which have j-i interactions only.

The Helmholtz free energy and the internal energy follow the relation,

$$\frac{\partial(\frac{A'}{T})}{\partial(\frac{1}{T})} = \underline{U}'$$
(3.5)

Thus, differentating eqn. (3.4) with respect to 1/T yields the molar configurational internal energy (assuming that Pji is independent of temperature)

$$\underline{U}' = \sum_{i} x_{i} \frac{\sum_{j} x_{j} F_{ji} - j_{ji} \exp(-\frac{\alpha' - j_{i}}{RT})}{\sum_{j} x_{j} F_{ji} \exp(-\frac{\alpha' - j_{i}}{RT})}$$
(3.6)

where $\underbrace{U'_{ji}}_{ji}$ is the molar configurational internal energy of a system of molecules with j-i interactions.

The expression for the configurational Helmholtz free energy, eqn. (3.4), with addition of the ideal gas part, can be differentiated with respect to volume to obtain the equation of state

$$P = \sum_{i} x_{i} \frac{\sum_{j} x_{j} F_{ji} P_{ji} \exp(-\frac{\alpha' A_{ji}'}{RT})}{\sum_{j} \sum_{j} F_{ji} \exp(-\frac{\alpha' A_{ji}'}{RT})}$$
(3.7)

 A'_{ji} , U'_{ji} , and P_{ji} in eqns. (3.4) - (3.7) are the properties of a system of molecules with j-i interactions and are calculated using the equation of state for pure substances. The equation of state for pure fluids used herein is a recently developed generalized equation of state for polar fluids (Khan, et al., 1983). The equation of state has been tested for different groups of substances, including normal paraffins (C2-nC20), ring compounds, and polar compounds (CO2, H2S, etc.), and polar and associating compounds (NH3, water, and alcohols, etc.). The results using the pure fluid equation of state are accurate enough for engineering design calculations. The equation of state and the pure fluid parameters are given in Appendix λ .

REDUCED TEMPERATURE AND DENSITY

For the equation of state used herein, A_{ij}^{\prime} , U_{ij}^{\prime} , and P_{ij} are functions of the reduced temperature, T_{ij}^{\star} , the reduced density, ρ_{ij}^{\star} and the structure parameter, λ_{ij} (see Appendix A). Herein the relations used for T_{ij}^{\star} and ρ_{ij}^{\star} are

$$T_{ij}^{\star} = kT/\epsilon_{ij}$$
(3.8)
$$\rho_{ij}^{\star} = \rho V_{x}^{\star}$$
(3.9)

where

$$\mathbf{v}_{\mathbf{x}}^{\star} = \sum_{\mathbf{m}} \sum_{\mathbf{n}} \mathbf{x}_{\mathbf{n}} \mathbf{v}_{\mathbf{m}\mathbf{n}}^{\star}$$
(3.10)

The use of the above relation for T_{ij}^* corresponds to a multifluid model, while the use of the above relation for ρ_{ij}^* corresponds to a one fluid model. Appendix. C presents relults using a multifluid model for ρ_{ij}^* (= ρv_{ij}^*), which yields exceptionally good results for mixtures of similarly sized molecules. Unfortunately, the multifluid model for

 ρ_{ij}^{\star} cannot be used for large molecular size differences. The one fluid model for ρ_{ij}^{\star} was chosen for use herein so that the problems encountered using the multifluid model for ρ_{ij}^{\star} for mixtures with large molecular size differences are not encountered (see Appendices D and E). It should be noted that by virtue of the choices for the relations for T_{ij}^{\star} and ρ_{ij}^{\star} used herein, the present formulation of the local composition model has characteristics of both one fluid and multifluid models. Because the present formulation can be applied regardless of mixture component molecular sizes, it is the most broadly applicable method considered.

THE COMBINING RULES

The pair characterization parameters, λ_{ij} , v_{ij}^{\star} , and ε_{ij} are functions of the corresponding pure fluid characterization parameters for components i and j, and are calculated herein using the following combining rules:

$$\lambda_{ij} = \frac{\lambda_{ii} + \lambda_{jj}}{2}$$
(3.11)

$$v_{ij}^{*} = \xi^{3} (v_{ii}^{*} v_{jj}^{*})^{\frac{1}{2}}$$
(3.12)

$$\varepsilon_{ij}^{0} = \zeta(\varepsilon_{ii}^{0} \varepsilon_{jj}^{0})^{\frac{1}{2}}$$
(3.13)

$$D_{ij} = \frac{D_{ii} + D_{jj}}{2}$$
 (3.14)

$$\varepsilon_{ij} / k = \varepsilon_{ij}^{0} / k + \frac{D_{ij}}{T}$$
(3.15)

where the subscripts ii and jj refer to the pure component parameters for components i and j, respectively, and ξ and ζ are binary interaction parameters. It would be more logical theoretically to base the relation for D_{ij} on known rules for dipole moments (geometric mean) than the arbitary arithmetic rule; however, it is necessary to estimate the induced polar effect for a mixture of nonpolar and polar fluid if the geometric mean for D_{ij} is used. For the sake of simplicity, an arbitary arithmetic rule, eqn. (3.14), is chosen. The values of characterization parameters for j-i interactions are set equal to those for i-j interactions.

COMPONENT PUGACITY

When dealing with phase equilibria problems, the fugacity coefficients for the components in solution must be evaluated. By applying the thermodynamic relation

$$\ln\left(\frac{\hat{f}_{i}}{x_{i}P}\right) = \int_{V}^{\infty} \left[\frac{\partial nZ}{\partial n_{i}} \left[T_{v}V_{v}n_{j\neq i} - 1\right] - \frac{dV}{V} - \ln(Z)\right]$$

(3.16)

The fugacity of ith component in solution has the following form:

$$\ln \frac{\hat{r}_{i}}{x_{i}} = -\frac{1}{\alpha'} \left[\ln \sum_{k} x_{k} F_{ki} \exp\left(-\frac{\alpha' \frac{A}{k} I}{RT}\right) - 1 + \sum_{j} x_{j} \frac{F_{ij} \exp\left(-\frac{\alpha' \frac{A}{j} I}{RT}\right)}{\sum_{k} x_{k} F_{kj} \exp\left(-\frac{\alpha' \frac{A}{k} I}{RT}\right)} \right]$$
$$+ \frac{1}{\alpha'} \left[\ln \sum_{k} x_{k} F_{ki} - 1 + \sum_{j} x_{j} \frac{F_{ij}}{\sum_{k} x_{k} F_{kj}} \right]$$
$$+ (z - 1) \left[1 + \overline{R}_{i} \right]$$
(3.17)

The derivative \overline{R}_i in eqn. (3.17) is:

.

$$\overline{R}_{i} = \frac{1}{V_{x}^{\star}} \frac{\frac{\partial V_{x}^{\star}}{\partial n_{i}}}{V_{x}^{\star}} = 2 \begin{bmatrix} \sum_{j} v_{jj}^{\star} \\ \frac{j}{V_{x}^{\star}} - 1 \end{bmatrix}$$
(3.18)

CHAPTER IV

RESULTS AND DISCUSSION

For purposes of comparison, vapor-liquid equilibria calculations were performed using both local composition and conformal solution mixing rules. The conformal solution model assumes that the mixture properties are the same as those of a hypothetical pure fluid characterized by equation of state characterization parameters (v^* , ε , and λ) which are functions of composition. In Appendix B the conformal solution mixing rules for v^* , ε and λ are given, along with relations for pertinent derived properties.

The value of α' in eqn. (3.4), is related to the coordination number, and is the proportionality factor between the mean potential of mean force and the configurational Helmholtz free energy. In the quasichemical theory (Guggenheim, 1952), for a lattice gas at low densities,

$$\alpha' = \frac{2}{Z} \tag{4.1}$$

where Z is the coordination number. For a simple cubic lattice Z=6, for a body-centred cubic lattice Z=8, and for a face-centred cubic lattice Z=12. If the coordination number in a dense fluid is approximately 8, the value of α ' should be around 0.25. In the original work of Wilson (1964), the
value $\alpha' = 1$ was used. In the work of Renon and Prausnitz (1968), α' is an empirical parameter which varies between 0.3 and 0.47. Abrams and Prausnitz (1975) used $\alpha' = 1$. It has been stated by Whiting and Prausnitz (1982) that α' should be an universal constant, otherwise the local composition model cannot be extended to multicomponent mixtures, and they use $\alpha' = 0.5$ in their work. We also choose α' equal to 0.5 in this work, the value used by Whiting and Prausnitz.

The quantity F_{ij} is the ratio of V_{ij} to V_{jj} , where V_{ij} is the volume appropriate for the selection of first-neighborhood coordination.

$$F_{ij} = \frac{V_{ij}}{V_{jj}}$$
(4.2)

For mixtures of equal sized molecules, the F_{ij} would be unity. To account for the value F_{ij} (i \neq j) the binary interaction parameter δ is introduced, where $V_{ij} = \delta^3 (V_{ii} V_{jj})^{\frac{1}{2}}$. Herein it is assumed that the firstneighborhood volume, V_{ii} , is proportional to the molar covolume parameter, V_{ij}^{*} , so that

$$F_{ij} = \delta^{3} \left(\frac{V_{ii}}{V_{jj}} \right)^{\frac{1}{2}}$$
(4.3)

Hereafter, We refer to the two mixing rules under study as CSM(conformal solution mixing rules) and LCM(local composition mixing rules).

The number of parameters used in the mixing rules generally affects the results in vapor-liquid equilibria The more binary interaction parameters are calculations. used, the more accurate results are expected. The mixture of methanol-CO2 was selected to test the effects of choosing varying numbers of binary interaction parameters used in the CSH and LCH. The experimental vapor-liquid equilibria data ranges used in this study are given in Table 1. In Table 2 results calculated from both the CSN and the LCN are given. The numbers of binary interaction parameters for the CSM are two, three, and four, and for the LCH are two, and three. Even with four binary interaction parameters, the CSM still cannot work well for the methanol-CO2 system (see Table 2). This indicates the composition dependence deficiency of the for strongly nonideal mixtures. CSM However, the LCM greatly improves on the CSM for vapor-liquid equilibria calculations for the methanol-CO2 system. The improvement in the fit of the methanol-CO2 data by use of the LCM is dramatical good using either two or three binary interaction parameters. In Fig. 2 the comparisons of results from the CSM with four binary interaction parameters and from the LCM with two and three binary interaction parameters are shown to illustrate the above remarks.

Based on multiproperty analysis (Starling, et al., 1971), it is believed that a reasonable mixing rule, in principle, should describe not only vapor-liquid equilibria

Table	1.	Vapor-liquid	eq	uilib	ria	and	density	data
		used	in	this	stud	ly		

System	Prop- erty	Reference	N o. of data pts	Te s per- ature C	Pressure range atm
****				*****	
Ethane- n-Butane	VLE den.	Mehra,1965 Kay,1940	19 49	65-121 0-140	32-55 5-55
Methane- n-Decane	VLE den.	Sebastian,1979 Reamer,1942	12 36	270-310 37-238	30-125 136-612
Methane- CO2	VLE	Eraw, 1978	20	-54 -63	6-63
CO2- n-Hexane	VLE	Ohgaki,1976	10	25	4-51
CO2- Benzene	VLE	Ohgaki,1976	17	25-40	8-76
CO2- n-Decane	VLE	Sebastian,1980	16	189-310	14-51
CO2- n-Hexadecane	VLE	Sebastian,1980	16	189-390	19-50
Ethane- Acetone	VLE	Katayama, 1976	8	25	4.7-39
Propane- Acetone	VLE	Thodos, 1978b	8	77	3.4-27
n-Pentane- Acetone	VLE	Karr,1962	11	31-49	1
Acetone- Benzene	VLE	Tasic,1978	11	25	.1530
Acetone- n-Heptane	VLE	Ratcliff,1972	8	65	.76-1.35

Table 1. (Continued)

System	Prop- erty	Reference	No. of data pts	Temper- ature C	Pressure range atm
	***-*				
Ethane- Nethanol	VLE	Katayama,1976	5	25	11-41
Methanol- Benzene	VLE den.	Nagata, 1969 Sumer,1967	18 15	58-76 20-40	1 1
Propane- Ethanol	VLE	Todos,1978a	16	127-151	6.8-54
Benzene- Ethanol	VLE	Smith,1970	9	25	. 11 16
Ethanol- n-Decane	VLE	Ellis,1961	11	80-160	1
n-Hexane- 1-Propanol	VLE	Prabhu, 1963	8	66-89	1
Benzene- 1-Propanol	VLE	Tojo,1973	50	77-96	1
1-Propanol- n-Decane	VLE	Ellis,1960	10	75-98	0_39
Nethane- Water	VLE	Culberson, 1951	10	171	13-204
Ethane- Water	VLE	Culberson, 1950	10	17 1	13-204
Acetone- CO2	VLE	Katayama, 1975	11	25	4-55
Methanol- CO2	VLE	Katayama, 1975	13	25	2-60

Table 1. (Continued)

.

.

System	Prop- erty	Reference	No. of data pts	Temper- ature C	Pressure range ata

Acetone- Ethanol	VLE	Amer, 1956	9	57-7 6	1
Acetone- Water	VLE den. den.	Griswold, 1952 Noda, 1982 Thomas, 1957	25 9 34	200 25 20-80	18-29 1 1
Methanol- 1-Propanol	VLE	Schmidt,1926	9	50	.1651
Methanol- water	VLE den.	Griswold, 1952 Mikhail, 1961	9 25	150 25-50	5.3-13.2 1
Ethanol- 1-Propanol	VLE	Kojima,1969	9	80-94	1
Ethanol- Water	VLE	Paul, 1976	12	78-96	1
Cn2- Water	VLE	Takenouchi, 1961	9	275	99-690
H2s- Water	V LE	Selleck,1952	11	171	13-170
Ammonia- Water	VLE	Clifford, 1933	20	10-170	1-10

24

Mixing Rules	No. of BIPs	Bin	ary Inte	raction	Paramete	a IS	λ.λ. D	. 3
		ξ	ζ	v 	T 	٥	K 1	<u>K2</u>
CSM	2	0.9634	1.0968				22.7	27.8
CSH	3	0.9614	1.1239	0-9498			22.7	26.6
CSH	4	0.9803	1.0835	0.8882	1.0532		37.9	9.78
LCE	Ն 2	0.7815	0.9531		**		18.7	5.72
LCH	3	J _ 9 9 97	0.9404			1.0722	9.13	3.24

Table 2. Vapor-liquid equilibria calculations using local cosposition and conformal solution mixing rules for methanol-CO2 at 25 C

a: $v_{ij}^* = \xi^3 (v_{ii}^* v_{jj}^*)^{\frac{1}{2}}$

 $\varepsilon_{ij}^{\circ} = \zeta(\varepsilon_{ii}^{\circ} \varepsilon_{jj}^{\circ})^{\frac{1}{2}}$

 $\lambda_{ij} = \nu \left(\frac{\lambda_{ii} + \lambda_{jj}}{2} \right)$

 $D_{ij} = \tau \left(\frac{D_{ii} + D_{jj}}{2} \right)$

b : set F_{ij} = 1

c : A.A.D. $z = \frac{1}{NP} \frac{NP}{\frac{k}{2}} \frac{k_{exp} - k_{cal}}{k_{exp}} x 100$

NP: number of data points

FIGURE 2. PRESSURE-COMPOSITION DIAGRAM

but also bulk properties, such as mixture density. Therefore, both vapor-liquid equilibria and mixture density data can be used to test the mixing rules. Pive systems, ethane-n-butane, methane-n-decane, acetone-water, methanolbenzene, and methanol-water were selected in the test. The vapor-liquid equilibria and the mixture density data were used simultaneously in multiproperty regression analysis to determine the optimal values of the binary interaction parameters for each system. A summary of the results is given in Table 3.

For mixtures of ethane-n-butane, and methane-ndecane, although both the CSM and the LCM fit the VLE and the mixture density data reasonably well, the LCM calculates mixture density slightly better. For mixtures of acetonewater, the CSM shows its poor results for both the VLE and the mixture density. For mixture density, the average absolute deviation percentage from the CSM is 7.9 % and from the LCM is 2.3 %. Fig. 3 is a plot of percentage deviation of calculated density versus density for the acetone-water system. As shown in Fig. 4, the acetone-water system forms a maximum pressure azeotrope at 200 C. The CSM gives very poor results for VLE near the azeotrope region; similar results were noted by Huron and Vidal (1979). The LCM gives quite accurate results near the azeotrope region, as shown in Fig. 4.

System	Mixing rules	ξ	ζ	δ	den.	К 1	K 2	x 1	x 2	y 1	y 2
							 A.	A.D. 9			
Ethane-	CSM	1.0006	0.9992		2.15	1. 35	2.19	2.28	2.07	1.91	3.8
n-Butane	LCM	1.0047	0.9843	1.0283	1,96	1.69	2.29	2.94	3_03	2.06	4.57
Nethane-	C5M	1.0741	1.1163		1.07	4.97	4.28	4.33	2.13	3.07	4.56
u-vecane	TCH	1.0884	0.5675	0.6281	1.04	4.05	2.35	4.94	1.98	1. 18	3. 29
Acetone-	CSM	0.9797	1.0012		7.90						
water	LCM	1.0862	0.8850	1.1613	2.26						
Nethanol	CSM	1.0027	0.9210		3.10						
-Reuzene	LCM	0.9954	0.7943	0.7570	2.20						
Nethanol	CSM	1.0174	1_0094		3.18	5.75	5.54	4.44	4.59	3.00	1.99
-water	LCM	1.0184	0.9825	1.0934	2.83	4.34	5.43	3.45	1.55	3.58	4.39

.

.

FIGURE 3. THE DEV. OF DENSITY PREDICTIONS VS. DENSI TY

FIGURE 4. PRESSURE-COMPOSITION DIAGRAM

For the methanol-benzene system, the CSM gives a reasonable fit to mixture density data; however, the CSM calculates the VLE very poorly(see Fig. 5). The LCM calculates the VLE quite well except in the high methanol concentration range. The pure fluid equation of state predicts the boiling point (at one atmosphere) of methanol with an error of 2.4 C(expermental, 64.7 C; predicted, 62.3 The inaccurate pure component boiling point prediction C). for methanol from the equation of state artifically distorts the VLE calculations near the range of pure methanol. In order to prove this point, one of the equation of state parameters for methanol, λ , was redetermined to match the experimental boiling point at one atmosphere. The redetermined λ is 2.1495, which gives the corresponding boiling point 64.71 C. Using this new λ for pure methanol, both the CSM and the LCM binary interaction parameters for the methanol-benzene system were redetermined and are given in Table 4. As is shown in Fig. 6, the LCH VLE results have been greatly improved in the high methanol This test demonstrates that the concentration range. accuracy of the equation of state predictions of pure fluid properties is of great importance for calculations of mixture properties.

Even though methanol and water are both polar and associating substances, the methanol-water system is not a strongly nonideal system in terms of the activity

FIGURE 5. TEMPERATURE-COMPOSITION DIAGRAM

Mixin	ng	Binary	Interaction	Parameters
Rute:	•	ξ	ζ	δ
		****	******	
CSM		0.9722	0.9165	
LCM		1. 1736	0.7456	0.9144
note:	The re	determined	λ for methan	nol is 2.1495

Table 4. The redetermined binary interaction parameters for methanol-benzene system at one atm using the redetermined λ for methanol

FIGURE 6. TEMPERATURE-COMPOSITION DIAGRAM

coefficients. The activity coefficients at dilute compositions at 150 C are 2.6 and 1.6 for methanol and water, respectively (Griswold, 1953). The CSM gives good results for both mixture density and VLE for the methanolwater system (see Table 3). The LCM yields slightly better VLE results than the CSM for the methanol-water system, as shown in Fig. 7.

Overall, for nonpolar mixtures such as ethane-nbutane, and methane-n-decane, the LCM gives as good or slightly better results than the CSM. For strongly nonideal mixtures such as acetone-water, methanol-benzene, and methanol-carbon dioxide, the LCM is obviously superior to the CSM.

The applicability of the LCM has also been tested for other polar mixtures, including systems containing carbon dioxide, acetone, methanol, ethanol, 1-propanol, water, ammonia, and hydrogen sulfide.

For mixtures of carbon dioxide with hydrocarbons, five systems, methane-carbon dioxide, carbon dioxide-nhexane, carbon dioxide-benzene, carbon dioxide-n-decane, and carbon dioxide-n-hexadecane were selected for test. A summary of the results is given in Table 5. The LCM gives quite good results as shown in Figs. 8-14. Por system of carbon dioxide-benzene, the improvements in the calculations of the liquid composition by use of the LCM are shown in

FIGURE 7. PRESSURE-COMPOSITION DIAGRAM

System	Mixing rules	ξ 	ς 	δ 	<u>к</u> 1	к 2	x 1	x2	y 1	y2
							A. A. D.	%		
Methane-	CSM	0.9867	0. 97 18		3.71	5.00	3.34	4.30	2.25	6.9
02	LCM	1.0429	0.8459	1.1320	3.45	3. 25	2.90	2.91	1.45	2.9
C02-	CSM	1.0430	0.8723		8.93	15.4	9.73	9.09	0.45	22.
n-nexane	LCM	1,1736	0.7819	1. 1824	4.34	12.3	4.85	4.75	0.33	13.
CO 2-	CSM	1.0286	0.9405		7.70	15.2	8.07	12.1	0.29	24.
penzene	LCM	1. 20 44	0.7870	1.1369	1.65	13.7	1.64	5.70	0_11	9.1
C02-	CSM	1.0539	0_9082		8.38	5.41	6.24	1.18	2.52	4.3
n-vecane	LCH	1.2433	04 7511	1. 1255	3.76	2.66	3.10	0.50	1.24	2.4
co2-	CSM	1.0799	0.9051	- -	12.9	8.92	12.5	2.72	1.19	8.1
decane	LCM	1.3504	0.7200	1.1274	10.2	9.81	10.8	2.32	1.72	10.

Table 5. Vapor-liquid equilibria calculations using local composition and conformal solution

•

LCM : Local Composition Mixing Rules

FIGURE 10. PRESSURE-COMPOSITION DIAGRAM

FIGURE 11. PRESSURE-COMPOSITION DIAGRAM

FIGURE 13. PRESSURE-COMPOSITION DIAGRAM

۰.,

FIGURE 14. PRESSURE-COMPOSITION DIAGRAM

Figs. 11-12. For the carbon dioxide-n-hexadecane system, the ratio of the V* is 7.6 : 1 (v* are 0.21, and 1.59 for carbon dioxide and n-hexadecane, respectively). The LCM and the CSM have similar results for carbon dioxide-nhexadecane system.

For mixtures of acetone and hydrocarbons, five systems, ethale-acetone, propane-acetone, n-pentane-acetone, acetone-benzene, and acetone-n-heptane were selected to test the model. In Table 6 a summary of the results for mixtures of acetone and hydrocarbons is given. For the ethane-acetone system, the LCM yields accurate results for the liquid compositions as shown in Fig. 15. Fig. 17 shows results for the n-pentane-acetone system, having a minimum azeotrope temperature. The phase behavior of the n-pentaneacetone system is very well represented by the LCM.

For mixtures of alcohols and hydrocarbons, seven systems, ethane-methanol, propane-ethanol, benzene-ethanol, ethanol-n-decame, n-hexane-1-propanol, benzene-1-propanol, and 1-propanol-n-decame were selected to test the model. For mixtures of water with hydrocarbons, methane-water, and ethane-water were selected for test. In Table 7 a summary of the results for these nine systems is given. The systems of alcohol-hydrocarbon are typically difficult to fit. For the ethane-methanol system, the LCM greatly improves results for liquid phase compositions, compared to the CSM as shown

System	Mixing rules	ξ 	ζ 	δ 	<u>қ</u> 1 	К 2	x 1 	x2	<u>y</u> 1	y2
							A. A. D.	x		
Et hane-	CSM	0.9588	0.9644		19.6	38.4	27.3	25.5	0.36	18.9
ACETOR	LCM	0.8993	0.8914	1.0497	9.95	13.5	11.7	15.6	0-40	21.2
Propane-	CSM									
Acetone	LCM	1.1227	0. 92 18	1.0981	4.30	5.82	7.35	13.1	2.75	16.5
n-Pentane	CSM									
Acetone	LCM	1.1459	0. 9048	0., 9510						
Acetone-	CSM	0.9888	0.9767							
Renzene	LCM	0.9677	0.9820	0.9886						
Acetone-	CSM	0.9480	0.8919							
n-neptane	LCM	1.2544	0.6982	0.8997	2.85	5.01	3.81	7.96	1.39	5.94

Table 6. Vapor-liquid equilibria calculations using conformal solution and local composition mixing rules for acetone binary mixtures

FIGURE 15. PRESSURE-COMPOSITION DIAGRAM

FIGURE 16. PRESSURE-COMPOSITION DIAGRAM

FIGURE 17. TEMPERATURE-COMPOSITION DIAGRAM

FIGURE 19. PRESSURE-COMPOSITION DIAGRAM

		Table 7.	Vapor-1 local c mixin	liquid eq compositi ng rules	uilibri on and for nii	ia calo confoi ne bina	culatio cmal so ary mi:	ons usi olution xtures	ing 1	
System	Nixing rules	ξ	ζ	δ	K 1	К 2	χ1 	x2	y 1	y 2
							A.A.D.			
Ethane-	CSM	0.9448	1.0879		35.8	9.63	62.3	7.95	0.12	14.3
nethanol	LCM	0.7210	0.9322	1.0226	16.7	4.16	19.3	3.55	0.06	7_41
Propane-	CSN	0,9921	1.0328		6.47	5.62	8.35	4.83	4.88	8.91
Ethanol	LCJ	1.1193	0.8505	1.0284	5.16	3.47	4.89	3.50	2.96	5.57
Benzene-	CSN									
Ethanor	LCM	1.3106	0.6930	0.9401						
Ethanol-	CSM	1.1086	0.8429		19 . 9	5.21	20.7	3.56	1.82	5.64
n-pecane	LCM	1. 30 27	0.6152	0.9710	10.3	3.73	11.4	1.27	1.67	3.85
n-Hexane-	CSM									
Propanor	LCM	0-9090	0.9305	0.9614	11_8	6.64	12.8	4.59	4.55	10.6
CSM :	Conform	al Solu	 tion Mix	ing Rules	- 5					
LCM :	Local C	Composit	ion Mixi	ng Pules						

.

System	Mixing rules	ξ 	ζ	δ	к 1	К 2	x 1	x 2	y 1	y2
							A. A. D.	3		
Benzene-	CSM									
Propanor	LCM	1.1644	0.8373	0.9327						
Propanol-	CSM	1.1232	0. 8840		6.90	10.5	7.42	15.6	0_91	9.19
n-Decane	LCN	1. 2883	0.7440	0.9935	5.39	9.00	6.23	9.64	0.93	8.47
Methane-	CSM	0.8323	0.9969		1.96	0.90	2.39	0.01	0.50	0.90
Water	LCM	0.9523	0.5952	1. 1666	2.27	1.40	2.83	0.01	0.69	1.40
Ethane-	CSM	0.8169	0.7889		4.32	1.69	4.88	0-01	0.62	1.69
Water	LCN	1,0321	0.6198	1.2492	1.97	2. 27	2.00	0.01	0.93	2.27

LCM : Local Composition Mixing Rules

in Fig. 20. Mixtures of benzene-ethanol and benzene-1-propanol form azeotropes, as shown in Figs. 22, and 25. The LCM describes behavior reasonably well for the benzene-ethanol, and benzene-1-propanol systems.

Por polar mixtures, eight systems, acetone-carbon dioxide, acetone-ethanol, methanol-1-propanol, ethanol-1-propanol, ethanol-water, carbon dioxide-water, hydrogen sulfide-water, and ammonia-water were selected to test the model. A summary of the results is given in Table 8. Comparisons of the experimental and the predicted compositions for these eight systems are shown in Figs. 29-37. The LCM generally provides a better fit to the experimental values than the CSM.

FIGURE 21. PRESSURE-COMPOSITION DIAGRAM

FIGURE 22. PRESSURE-COMPOSITION DIAGRAM

FIGURE 23. TEMPERATURE-COMPOSITION DIAGRAM

FIGURE 24. TEMPERATURE-COMPOSITION DIAGRAM

FIGURE 25. TEMPERATURE-COMPOSITION DIAGRAM

FIGURE 27. PRESSURE-COMPOSITION DIAGRAM

FIGURE 28. PRESSURE-COMPOSITION DIAGRAM

System	Mixing rules	ξ	ζ	δ	к1 	K 2	x 1	x2	y 1	y2
							A. A. D.	x		
Acetone- CO2	CSM	1.0268	0.9644		19.8	6.17	4_54	5.43	21.8	0.30
	LCM	1.2054	0.8265	1.0986	9.02	2.57	6.38	2.70	10.6	0.19
Acetone-	CSH	0.9857	0.9819							
Et hanol	LCM	0.8655	1,0133	0.7857	7.89	6.10	10.7	5.75	5.24	3.46
Methanol-	CSM	0.9949	0. 9851		3.98	5.62	6.60	16.2	4.29	19 . 8
Propanol	LCM	0.7969	1.0379	0.9858	3.97	5.12	5.10	12.2	3.64	15.0
Et hanol- Propanol	CSM	1.0126	0.9954		3.41	3. 32	9.74	11.1	8.39	12.6
	LCN	1.1R17	0.9368	1.0744	3.03	2 . 9 5	6.84	9.77	6.53	12.4
Et hanol-	CSM									
Water	LCH	0.8655	1.0133	0.9950	3.20	3.70	5.75	2.28	5.02	3.29

Table 8. Vapor-liquid equilibria calculations using local composition and conformal solution mixing rules for polar binary mixtures

Table 8. (Continued)

System	Mixing rules	ξ	ζ	δ	К1	К 2	x 1	x2	y 1	y2
							A.A.D.	x		
C02-	CSM	0.6735	0.8434		54.9	51.4	44.1	1.94	54.4	51.7
water	LCM	1.0615	0.9289	1.2397	10.6	6.92	14.0	0.74	10.2	7.46
H2S-	CSM	0.9757	1.0798		10.4	3.12	10.6	0.37	1.06	3.02
water	LCM	0.7939	0.9455	1.0507	4.12	2.47	4.57	0.15	0.62	2.60
Ammonia-	CSM	1.0641	1_1797		12.5	9.80	17.0	3.83	3.71	10.5
water	LCM	1.0216	1.0876	0.9318	5.26	11.1	7.52	1.87	3.10	11_4

•

.

,

сэп

LCM : Local Composition Mixing Rules

FIGURE 29. PRESSURE-COMPOSITION DIAGRAM

FIGURE 30. TEMPERATURE-COMPOSITION DIAGRAM

FIGURE 31. PRESSURE-COMPOSITION DIAGRAM

FIGURE 32. TEMPERATURE-COMPOSITION DIAGRAM

FIGURE 34. PRESSURE-COMPOSITION DIAGRAM

FIGURE 35. PRESSURE-COMPOSITION DIAGRAM

FIGURE 36. TEMPERATURE-COMPOSITION DIAGRAM

FIGURE 37. TEMPERATURE-COMPOSITION DIAGRAM

CHAPTER V

CONCLUSIONS

A local composition model has been applied to describe the composition dependence of mixture thermodynamic properties. The method has been applied using a recently developed equation of state for use in vapor-liquid equilibria and mixture density calculations. The equation of state utilizes reduced temperature and reduced density as the independent variables for calculation of all dependent variables, such as pressure, Helmholtz free energy, etc. The composition dependence for the equation of state mixture properties is derived from the local composition model expression for the Helmholtz free energy, which is, in essence, a multifluid model for the thermodynamic properties of mixtures.

In this work, a multifluid model is adopted for the reduced temperature and a one fluid model is adopted for the reduced density. Choosing these relations for the reduced temperature and reduced density, the present formulation of the local composition model has characteristics of both onefluid and multifluid models.

is demonstrated that if multifluid models It are adopted for both the reduced temperature and the reduced density, the local composition model expression used for the mixture pressure can become infinite when component **n**olecular size differences are sufficiently large (even at conditions where the real fluid mixture is known to exist at finite pressure). On the other hand, it is shown that the present formulation, in which a one fluid model is used for the reduced density, works well even for mixtures whose component molecules differ appreciably is size, i.e., the CO2-n-hexadecane and acetone-water systems. In fact. the present formulation can be applied to any mixture regardless of the mixture component molecular sizes.

For strongly nonideal mixtures, such as acetone-water and methanol-benzene, the present formulation describes vapor-liquid equilibrium behavior accurately. On the other hand, it is demonstrated that the conformal solution model, which is a totally one fluid model does not work well for these strongly nonideal mixtures.

It should be noted that the present local composition mixing rules can be applied to extend virtually any corresponding-states type equation of state to mixtures.

As a summary, the present formulation of the local composition model has the following desirable characteristics:

1). The method works well for both mixture density

and vapor-liquid equilibria.

- The method works for mixtures in which components differ appreciably in size.
- 3). The method works well for a wide variety of fluid mixtures, ranging from nonpolar to highly polar fluids.
- 4). The method can be applied to extend any correspondingstates type equation of state to mixtures.

REFERENCES

Abrams, D.S. and Prausnitz, J.M., 1975. Am. Inst. Chem. Eng. J., 21: 116.
Amer, H.H., Paxton, R.R., and Van Winkle, M., 1956, I. & E. C., 48: 142.
Bruin, S., 1970. Ind. Eng. Chem. Fundam., 9: 305.
Bruin, S. and Prausnitz, J.M., 1971. Ind. Eng. Chem. Process Dev. Develop., 10: 562.
Clifford, I.L., and Hunter, E., 1933, J. Phys. Chem., 37: 101.
Culberson, O.L., and Mcketta, J.J., 1950, Petro. Trans., AIME, 189: 319.
Culberson, O.L., and Mcketta, J.J., 1951, Petro. Trans., AIME, 192: 223.
Ellis, S.R.M., Mc Dermott, C., Williams, J.C.L., 1960, Proc. of the Intern. Symp. on Dist., Inst. Chem. Engrs., London.
Ellis, S.R.M., and Spurr, J.M., 1961, Brit. Chem. Eng., 6: 92.
Fredenslund, A., Jones, R.L. and Prausnitz, J.M., 1975. AIChE J., 21: 1086.
Griswold, J., and Wong, S.Y., 1952, Chem. Eng. Prog. Sympos. Series, 48: [3] 18.
Gugyenheim, E.A., 1935. Proc. R. Soc. (London), Ser. A, 148: 304.
Guggenheim, E.A., 1952. Mixtures. Oxford University Press, London.
Guggenheim, E.A., 1966. Applications of Statistical Mechanics. Oxford University Press, London.
Huron, M.J. and Vidal, J., 1979. Fluid Phase Equilibria, 3: 255.

Karr, A.E., Lo, T.C., and Bieber, H.H., 1962, J. Chem. Eng. Data, 7: 327. Katayama, T. and Ohgaki, K., 1975. J. Chem. Eng. Japan, 8: **99** Katayama, T., Obgaki, K. and Sano, F., 1976. J. Chem. Eng. Data, 21: 55. Kay, W.B., 1940, I. & E. C., 32: 353. Khan M., 1983. A new generalized equation of state for polar and nonpolar pure fluids. Ph.D. Dissertation, University of Oklahoma. Kirkwood, J.S., 1935, J. Chem. Phys., 3: 300. Kojima, K., and Ochi, K., 1969, Kagaku Kogaku, 33: 352. Lee, L.L., Chung, T.H. and Starling, K.E., 1983. Pluid Phase Equilibria, 12: 105. Lee, L. L., Mo, K.C. and Starling, K.E., 1977. Bunsen-Gesellschaft fur Physikalische Chemie, :81 1043. Mathias, P.M. and Copeman, T.W., 1983. Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept. Hehra, V.S. and Thodos, G., 1965, J. Chem. Eng. Data, 4: 307. Mikhail, S.Z., and Kimel, W.B., 1961, J. Chem. Eng. Data, 6: 533. Mollerup, J., 1981. Pluid Phase Equilibria, 7: 121. Mraw, S.C., Hwang, S.C. and Kobayashi, B., 1978. J. Chem. Eng. Data, 23: 135. Nagata, I., 1969, J. Chem. Eng. Data, 14: 418. Noda, K., Ohashi, M., and Ishida, K., 1982, J. Chem. Eng. data, 27: 326. Ohgaki, K. and Katayama, T., 1976. J. Chem. Eng. Data, 21: 53. Paul, R.N., 1976, J. Chem. Eng. Data, 21: 165. Peng, D.Y., and Robinson, D.B., 1976. Ind. Eng. Chem. Fundam., 15: 59.

Prabhu, P.S., and Van Winkle M, 1963, J. Chem. Eng. Data, 8: 210. Ratcliff, G.A., and Maripuri, V.O., 1972, J. Chem. Eng. Data, 17: 366. Reamer, H.H., Olds., R.H., Sage, B.H., and Lacey, W.N., 1942 I. & E. C., 34: 1526. Penon, H. and Prausnitz, J.M., 1968. Am. Inst. Chem. Eng. J., 14: 135. Robinson, D.B., Peng, D.Y. and Ng, H.J., 1977. Proc. 56th Ann. Conv. Gas. Process. Assoc., 56: 11. Sage, B.H., Lacey, W.N., Beamer, H.H., and Olds, B.H., 1943, I. & E.C., 34: 790. Schmidt, G.C., 1926, Z. Phys. Chem., 121: 221. Sebastian, H. M., Lin, H. M., Simmick, J.J., and Chao, K.C, 1979, J. Chem. Eng. Data, 24: 146. Sebastian, H.M., Simnick, J.J., Lin, H.M., Chao, K.C., 1980, J. Chem. Eng. Data, 25: 138. Selleck, F.T., Carmichael, L.T., and Sage, B.H., 1952, I. & E. C., 44: 2219. Shing, K.S. and Gubbin, K.E., 1983. The chemical potential in nonideal liquid mixtures: computer simulation and theory, Molecular Physics. Smith, V.C., and Pobinson, R.L., 1970, J. Chem. Eng. Data, 15: 391. Starling, K. E., Cox, K.W., Bono, J.L., and Kwok, Y.C., 1971, I.SE.C. Fundamentals, 10: 245. Starling, K. E., and Lee, L. L., et al., 1978, "Self-Consistent Correlation of Thermodynamic and Transport Properties", Pinal Report GRI/AGA/BB-111-1/77-36, Gas Research Institute and American Gas Association, Arlington, VA. Sumer, K.H., and Thompson, A.R., 1967, J. Chem. Eng. Data, 12: 489. Takenouchi, S., and Kennedy, G.C., 1961, Am. J. of Sci., 262: 1055. Tasic, A., Djorvdjevic, B., Grozdanic, D.G., Afgan, N., and Malic, D., 1978, Chem. Eng. Sci., 33: 189.

Thodos, G., Gomez-Nieto, M., 1978a, AIChE, 24: 672.

Thodos, G., Gomez-Nieto, N., 1978b, Chem. Eng. Sci., 33: 1589.

Thomas, K.T., Mcallister, R.A., 1957, AIChE, 3: 161.

Tojo, G., Ccon, J., Bao, M., and Arce, A., 1973, An. Real. Soc. Espan. De Fis. Y Quin., 69: 1177.

Vachhani, H.N. and Anderson, T.P., 1982. Mixing rules based on the two-fluid theory for representing highly nonideal systems with an equation of state.

Whiting, W.B. and Prausnitz, J.M., 1982a. Fluid Phase Equiliria, 9: 119.

Wilson, G.M., 1964. J. Am. Chem. Soc., 86: 127.

NOMENCLATURE

.

	Α'	total configurational Helmholtz free energy
	<u>A</u> '	molar configurational Helmholtz free energy
	Ai	equation of state constants
	B ⁽⁰⁾	equation of state universal constants, isotropic reference
	B ^(p)	equation of state universal constants, perturbation
		contribution
	с	equation of state constant in eqn. (A2)
	D	equation of state characterization polar parameter
	f _i	component fugacity in solution
	g	radial distribution function
₽ _i	- <u>H</u> ⁰ i	molar enthalpy departure
	k	Boltzmann's constant
	К	equilibrium constant
	L _{BA}	radius of sphere appropriate for finding first-neighborhood
		molecules
	N _{av}	Avogadro's number
	Ρ	pressure
	r	radius of sphere
	R	gas constant
₽i	- <u>s</u> i	molar entropy departure
	Т	temperature

Ŭį	- U ⁰ i	molar internal departure
	۷*	equation of state characterization volume parameter
	V _{j1}	first neighborhood volume
	W _{ji}	potential of mean force
	۵ پ _{ji}	mean potential of mean force
	×i	mole fraction of component i
	×ji	local composition of j molecules around a i molecule
	Z	compressibility factor
	α	a proportionality factor between \bar{W}_{ii} and A'_{ii}
	β	1/kT
	δ	a binary interaction parameter in F _{ii}
	ε ⁰	equation of state characterization parameter, nonpolar
	3	equation of state characterization energy parameter
	ζ	a binary interaction parameter
	λ	equation of state characterization structure parameter
	ν	a binary interaction parameter
	ξ	a binary interaction parameter
	ρ	density
	τ	a binary interaction parameter

Appendix A

EQUATION OF STATE FOR PURE SUBSTANCES

The equation of state for pure fluids used herein is a recently developed generalized equation of state for polar fluids(Khan, et al., 1983), i.e.

$$Z = 1 + \lambda Z_{conf}^{(0)} + (\lambda - 1) Z_{conf}^{(p)}$$
 (A1)

where $z^{(0)}$ and $z^{(p)}$ are configurational compressibility factors: the isotropic reference and the pertubation contributions, respectively. The guantity λ is a structural parameter which characterizes the steric effects of structured molecules. Both $z^{(0)}$ and $z^{(p)}$ are assumed to have the same functional form

$$z_{conf.} = (A_1 + \frac{A_2}{T^*} + \frac{A_3}{T^*2} + \frac{A_4}{T^*3} + \frac{A_5}{T^*5}) \rho^* + (A_6 + \frac{A_7}{T^*}) \rho^{*2} + A_8 \rho^{*3}$$

+ $(\frac{A_9}{T^{*3}} + \frac{A_{10}}{T^{*4}} + \frac{A_{11}}{T^{*5}}) \rho^{*2} \exp(-c\rho^{*2})$
+ $(\frac{A_{12}}{T^*3} + \frac{A_{13}}{T^{*4}} + \frac{A_{14}}{T^{*5}}) \rho^{*4} \exp(-c\rho^{*2}) + \frac{A_{15}}{T^*} \rho^{*5}$ (A2)

where $\rho^{\bullet} = \rho V^{*}$, $T^{*=} kT/\epsilon$, and V^{*} and ϵ are characteristic volume and energy parameters, respectively. Note that the

constant 'C' in eqn. (A2) is equal to 31.67113. The other constants A_i are given in Table A1.

The energy parameter for polar and associating substances is assumed to be temperature dependent

$$\varepsilon / k = \varepsilon^{o} / k + \frac{D}{T}$$
 (A3)

where ε^{0} corresponds to the energy parameter for nonpolar contributions, and D is a polar parameter which characterizes multipolar and associating effects.

The equation of state parameters for pure substances are given in Table A2.

The configurational Helmholtz free energy is given by the following relation

$$\frac{A^{*}}{RT} = \int_{0}^{0} (Z - 1) \frac{\partial \rho}{\rho} + \ln(\rho RT)$$

$$= \ln(\rho RT) + (A_{1} + \frac{A_{2}}{T^{*}} + \frac{A_{3}}{T^{*2}} + \frac{A_{4}}{T^{*3}} + \frac{A_{5}}{T^{*5}}) \rho^{*}$$

$$+ \frac{1}{2}(A_{6} + \frac{A_{7}}{T^{*}}) \rho^{*2} + \frac{1}{3} A_{8} \rho^{*3} + \frac{1}{2c} (\frac{A_{9}}{T^{*3}} + \frac{A_{10}}{T^{*4}} + \frac{A_{11}}{T^{*5}}) (1 - \exp(-c \rho^{*2}))$$

$$+ \frac{1}{2c^{2}} (\frac{A_{12}}{T^{*3}} + \frac{A_{13}}{T^{*4}} + \frac{A_{14}}{T^{*5}}) [(1 - (1 + c \rho^{*2}) \cdot \exp(-c \rho^{*2})]]$$

$$+ \frac{1}{5} (\frac{A_{15}}{T^{*}}) \rho^{*5} \qquad (A4)$$

Universal	constants $B_1^{(0)}$ and	B ^(p) to be used
	in eqn. Al	
	$A_{i} = \lambda B_{i}^{(0)} + (\lambda - 1)$	B ₁ (p)
i	B ₁ (0)	B ^(p) i
1	2.502374	0.52182
2	-7,269612	-0.7378
3	-4.530912	-2.5604
4	-1.5257331	-5.2527
5	0.3796055	-0.12
6	5.3624275	-3.3753
7	-2.8683227	17.1053
8	15.288658	-19-274
9	20.989132	7 9 . 29
10	24.738498	6-8475
11	-36-289745	15.57
12	-207.76901	-104-
13	1152.7599	-453.804
14	246.49642	149_091
15	229-89942	850.

Table A1.

.

Table A2. Pure-component parameters for eqn. (A1)

Component	ε/k R (V* cu.ft./lbmole	λ	D R ²
Methane	270.8	0.2591	1.0333	0
Ethane	390.3	0.3359	1.4097	0
Propane	449.8	0.4252	1_6470	0
n-Butane	501.9	0.5145	1.8190	0
n-Pentane	534. 2	0.6039	2.0582	0
n-Hexane	556.5	0.6932	2.3028	0
n-Heptane	573.6	0.7826	2_5514	0
n-Decane	619,6	1.0506	3.1904	0
n-Hexadecane	655, 2	1. 5855	4.6499	0
Benzene	669.3	٥ <u>-</u> 5066	1_8279	0
c02	358.9	0.2090	1.3665	21287.5
H25	498.5	0.2544	1.0250	24570.7
Acetone	599. 1	0.4485	1.6208	40498.6
Ammonia	492.1	0. 1536	1.6566	10909-5
Methanol	525.8	0.2673	2.1111	59193 .7
Ethanol	476.3	0.3330	2.1563	99107.9
1-Propanol	506-0	0.4042	2.4794	73636.1
Water	789.4	0.1088	1.8376	15847.9

The equation of state has been tested for different groups of substances, including normal paraffins(C2-nC20), ring compounds, and polar compounds (CO2, H2S, etc.), and polar and associating compounds (NH3, water, and alcohols, etc.). The results are accurate enough for engineering design calculations.

Appendix B

COMPORMAL SOLUTION MIXING BULES

The conformal solution mixing rules, a so called "one-fluid model", assume that the mixture properties are the same as those of a hypothetical pure fluid characterized by equation of state characterization parameters which are functions of composition. The following mixing rules are used to obtain mixture characterization parameters as functions of composition (Lee et al., 1977):

$$V_{\mathbf{x}}^{\dagger} = \sum_{\mathbf{i}} \sum_{\mathbf{x}_{i} \mathbf{x}_{j}} V_{\mathbf{i}j}^{\dagger}$$
(B1)
$$\varepsilon_{\mathbf{x}} V_{\mathbf{x}}^{\dagger} = \sum_{\mathbf{i}} \sum_{\mathbf{x}_{i} \mathbf{x}_{j}} \varepsilon_{\mathbf{i}j} V_{\mathbf{i}j}^{\dagger}$$
(B2)

along with the mixing rule

$$\lambda_{\mathbf{x}} \mathbf{v}_{\mathbf{x}}^{\dagger} = \sum_{\mathbf{i}} \sum_{\mathbf{j}} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{j}} \lambda_{\mathbf{i}} \mathbf{j} \mathbf{v}_{\mathbf{i}} \mathbf{j}$$
(B3)

The subscript x represents the mixture characterization parameters for the hypothetical pure fluid. The combining rules used to calculate the pair characterization parameters are the same rules as eqns. (3.11) - (3.15).

The reduced density and the reduced temperature are evaluated as follows:

$$\mathbf{T}^{\star} = \mathbf{k} \, \mathbf{T} \,/ \, \mathbf{\varepsilon}_{\mathbf{X}} \tag{B4}$$

$$\rho^{\star} = \rho V_{\mathbf{X}}^{\star} \tag{B5}$$

By substituting the values of λ_x , T^* , and ρ^* into eqn. (A1), the equation of state for mixtures is obtained.

The expressions for enthalpy departure and entropy departure involve the derivative of compressibility factor with respect to temperature. Since the energy parameter for polar fluids is temperature dependent, the derivative of the compressibility factor of mixtures with respect to temperature is the following relation,

$$T\left(\frac{\partial Z}{\partial T}\right)_{\rho} = T^{\star}\left(\frac{\partial Z}{\partial T^{\star}}\right) \left[1 - T^{\star}\left(\frac{\partial \varepsilon_{\chi}}{\partial T}\right)_{\rho^{\star}}\right] \quad (B6)$$

where $\frac{\partial \varepsilon_x}{\partial T}$ is

$$\left(\frac{\partial \varepsilon_{\mathbf{x}}}{\partial T}\right)_{p \star} = - \frac{\sum \sum \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{j}} \mathbf{v}_{\mathbf{ij}}^{\star} - \frac{\mathbf{D}_{\mathbf{ij}}}{\mathbf{T}^{2}}}{\mathbf{v}_{\mathbf{x}}^{\star}}$$
(B7)

The internal energy departure is related to the equation of state hy the following equation:

$$\frac{\underline{U} - \underline{U}^{o}}{R T} = - \int_{0}^{\rho} T \left(\frac{\partial Z}{\partial T}\right)_{\rho} \frac{d\rho}{\rho}$$
(B8)

Combining eqns. (A1), and (B6)-(B8), the internal energy departure has the form,

$$\frac{\Psi - \Psi^{0}}{R T} = \left[1 - T^{*} \left(\frac{\partial \varepsilon_{x}}{\partial T}\right)_{\rho^{*}}\right] x \left[-\int_{0}^{\rho^{*}} T^{*} \left(\frac{\partial Z}{\partial T^{*}}\right)_{\rho^{*}} \frac{d \rho^{*}}{\rho^{*}}\right] \\ = \left[1 - T^{*} \left(\frac{\partial \varepsilon_{x}}{\partial T}\right)_{\rho^{*}}\right] x \\ \left\{\left(\frac{A_{2}}{T^{*}} + \frac{2 A_{3}}{T^{*}^{2}} + \frac{3 A_{4}}{T^{*}^{2}} + \frac{5 A_{5}}{T^{*}^{5}}\right) \rho^{*} \\ + 0.5 \frac{A_{7}}{T^{*}} - \rho^{*^{2}} + \frac{1}{2c} \left(\frac{3A_{9}}{T^{*}^{3}} + \frac{4A_{10}}{T^{*}^{4}} + \frac{5A_{11}}{T^{*}^{5}}\right) \left[1 - \exp(-c\rho^{*}^{2})\right] \\ + \frac{1}{2c^{2}} \left(\frac{3A_{12}}{T^{*}^{3}} + \frac{4A_{13}}{T^{*}^{4}} + \frac{5A_{14}}{T^{*}^{5}}\right) \left[1 - (1 + c\rho^{*}^{2}) \exp(-c\rho^{*}^{2})\right] \\ + \frac{1}{5} \frac{A_{15}}{T^{*}} - \rho^{*^{5}} \right\}$$
(B9)

The enthalpy departure can be obtained as follows,

$$\frac{H - H^{\circ}}{R T} = (Z - 1) + \frac{U - U^{\circ}}{R T}$$
(B10)

The entropy departure can be obtained using

$$\frac{S-S^{\circ}}{R} = \frac{U-U^{\circ}}{RT} - \frac{A-A^{\circ}}{RT}$$
(B11)

where the Helmholtz free energy departure can be obtained from eqn. $(\lambda 4)$.
The fugacity, fi, of the ith component in a mixture is:

$$\ln\left(\frac{\hat{f}_{i}}{x_{i}P}\right) = \int_{V}^{\infty} \left[\frac{\partial nZ}{\partial n_{i}} \left[T, V, n_{j\neq i} - 1\right] \frac{dV}{V} - \ln(Z) \quad (B12)$$

Combining the eqns. (A1), and (B1)-(B3), the fugacity of ith component in solution has the following form:

$$\ln\left(\frac{\hat{f}_{i}}{x_{i}}\right) = \overline{R}_{i}\left(Z-1\right) + \left(\frac{B-B^{\circ}}{RT} - \frac{S-S^{\circ}}{RT}\right) + \overline{E}_{i}\left[\frac{B-H^{\circ}}{RT} - (Z-1)\right] / \left[1-T^{*}\frac{\partial \varepsilon_{x}}{\partial T}\right] + \overline{L}_{i}\int_{0}^{\rho^{*}}\frac{\partial Z}{\partial \lambda_{x}}\frac{d\rho^{*}}{\rho^{*}}$$
(B13)

The integral function in eqn. (B13) is:

$$\int_{0}^{p^{\star}} \frac{\partial Z}{\partial \lambda_{x}} \frac{dp^{\star}}{p^{\star}} = \left(c_{1} + \frac{c_{2}}{T^{\star}} + \frac{c_{3}}{T^{\star^{2}}} + \frac{c_{4}}{T^{\star^{3}}} + \frac{c_{5}}{T^{\star^{5}}} \right) p^{\star} + \left(c_{6} + \frac{c_{7}}{T^{\star}} \right) p^{\star^{2}} + c_{8} \frac{p^{\star^{3}}}{3} + \left(\frac{c_{9}}{T^{\star^{3}}} + \frac{c_{10}}{T^{\star^{4}}} + \frac{c_{11}}{T^{\star^{5}}} \right) \frac{1}{2c} \left[1 - \exp(-cp^{\star^{2}}) \right] + \left(\frac{c_{12}}{T^{\star^{3}}} + \frac{c_{13}}{T^{\star^{4}}} + \frac{c_{14}}{T^{\star^{5}}} \right) \frac{1}{2c^{2}} \left[1 - (1+cp^{\star^{2}}) \exp(-cp^{\star^{2}}) \right] + \frac{1}{5} \frac{c_{15}}{T^{\star}} p^{\star^{5}}$$
(B14)

where $C_i = B_i^{(0)} + B_i^{(p)}$ i = 1, 15 (B15)

The derivatives in eqn. (B13) are:

.

$$\overline{R}_{i} = \frac{1}{v_{x}^{\star}} \frac{\partial v_{x}^{\star}}{\partial n_{i}} \bigg|_{T_{y}v_{y}n_{k\neq i}} = 2 \bigg[\frac{\sum_{j=1}^{\Sigma} v_{j}^{\star}}{v_{x}^{\star}} - 1 \bigg]$$
(B16)

•

$$\overline{E}_{i} = \epsilon_{x} \frac{\partial \epsilon_{x}}{\partial n_{i}} = 2 \begin{bmatrix} \sum_{i=1}^{\Sigma} x_{i} \epsilon_{i} v_{ij}^{*} \\ \frac{1}{2} \sum_{i=1}^{\Sigma} v_{i}^{*} \\ \frac{1}{2} \sum_{i$$

$$\overline{L}_{i} = \frac{\partial \lambda_{x}}{\partial n_{i}} = \lambda_{x} \left\{ 2 \left[\frac{\sum_{i=1}^{L} \lambda_{ij} v_{ij}^{*}}{\lambda_{x} v_{x}^{*}} - 1 \right] - \overline{R}_{i} \right\}$$
(B18)
$$T, V, n_{k \neq i}$$

.

Appendix C

LCH RESULTS USING A HULTIFLUID HODEL FOR REDUCED DENSITY

This appendix is devoted to the LCN, using a multifluid model for reduced density, $\rho_{ij}^* (= \rho v_{ij}^*)$, for mixtures of similarly sized molecules. The fugacity coefficients for the components in solution has the following form,

$$\ln \frac{\hat{f}_{i}}{x_{i}} = -\frac{1}{\alpha^{*}} \left[\ln \sum_{k} x_{k} F_{ki} exp(-\frac{\alpha' A_{ki}'}{RT}) - 1 + \sum_{j} x_{j} \frac{F_{ij} exp(-\frac{\alpha' A_{ij}'}{RT})}{\sum_{k} x_{k} F_{kj} exp(-\frac{\alpha' A_{kj}'}{RT})} \right]$$
$$+ \frac{1}{\alpha^{*}} \left[\ln \sum_{k} x_{k} F_{ki} - 1 + \sum_{j} x_{j} \frac{F_{ij}}{\sum_{k} x_{k} F_{kj}} \right]$$
$$+ (2 - 1)$$
(C1)

where A_{-ji}^{i} is the molar configurational Helmholtz free energy of a system of molecules which have j-i interactions only.

The value of α 'in eqn. (3.4), is related to the coordination number, and is chosen to be 0.5 in this work. The F_{ij} values are calculated using eqn. (4.3). The δ is introduced as a binary interaction parameter for each binary mixture.

Five binary systems, methane-carbon dioxide, carbon dioxide-n-Hexane, acetone-carbon dioxide, ethane-acetone, and methanol-carbon dioxide were selected in the test. In Table C1 a summary of the results is given. Figs. C1 to C5 are plots of pressures versus experimental and calculated compositions.

Overall, the results calculated from the LCM are better than those from the CSM. For the methane-CO2 system, (V* for methane is 0.26 and for CO2 is 0.21), both the CSM and the LCM calculate the VLE reasonably well, as shown in Piq. C1. For mixtures in which components differ is size, such as the CO2-n-Hexane (V* for CO2 is 0.21, and for nhexane is 0.69), the LCM yields accurate calculations for the liquid phase compositions, as shown in Fig. C2. For the acetone-CO2 system, a significant improvement is obtained in k-value calculations by use the LCM (see Table C1). Both the ethane-acetone and the methanol-carbon dioxide are strongly non-ideal mixtures. The CSM apparently does not work well for these two strongly nonideal systems(see Pigs. C4, and C5). However, the LCM greatly improves on the CSM for vapor-liquid equilibria calculations for these two strongly nonideal systems.

At this point, a conclusion can be drawn that for strongly nonideal mixtures of similarly sized components (v_1^*/v_j^* less than 3.3), the LCH, using a multifluid model for reduced density, is obviously superior to the CSM.

System	Mixing rules	ξ 	ζ 	δ	К 1 	К 2	<u>κ</u> 1	x2	y 1
							A. A. D.	, X	
Nethane-	CSM	0.9867	0.9718		3.71	5.00	3.84	4.30	2.25
02	LCM	1.0325	0. 8638	0.9804	3.26	3.11	3.40	2.03	1.60
CO2 n-Hexane	CSM	1.0430	0.8723		8.93	15.4	9.73	9.09	0.45
	LCM	1.2752	0.6485	0.8721	2.22	11.8	2.43	1.05	0.29
Acetone	CSM	1_0272	0.9647	-	19.8	6.17	4.54	5.43	21.8
02	LCM	1.1029	0.8232	1_0414	5.70	1.03	4.87	1.19	10.0
Et hane	CSN	0.9588	0.9644		19.6	38.4	27.3	25.5	0.36
ACELOIR	LCN	1_0460	0.7906	1.0733	4.09	5. 27	4.44	7.79	0.13
Nethanol	CSM	0.9634	1.0968	~	22.7	27.8	27.9	60.7	33.8
02	LCM	1.0503	0.7931	1.0498	2.33	2 . 17	4.82	2.26	5,14

Table C1. Vapor-liquid equilibria calculations using local composition and conformal solution mixing rules for five binary mixtures

FIGURE C3 . PRESSURE-COMPOSITION DIAGRAM

FIGURE C4. PRESSURE-COMPOSITION DIAGRAM

Appendix D

ELUCIDATION OF MIXTURE PRESSURE PROBLEMS USING A MULTIFLUID MODEL FOR REDUCED DENSITY

The LCH, using a multifluid model for ρ_{ij}^* (= ρV_{ij}^*), has been shown to work well for nonideal mixtures of similarly sized molecules such as methanol-carbon dioxide, and ethane-acetone. However, for mixtures with large molecular size differences, problems are encountered using the multifluid model for ρ_{ii}^{\star} (= ρv_{ii}^{\star}). Using the multifluid model for ρ_{ii}^{\star} (= ρV_{ii}^{\star}), the local composition model expression used for the mixture pressure (eqn. (3.7)) can become infinite when component molecular size differences are sufficiently large (even at conditions where the real fluid mixture is known to exist at finite pressure). For example, the ratio of V*(volume parameter) is 4 : 1 for the acetone-water system [V* for acetone is 0.45, and for water is 0.11 cu.ft./lbmole). The experimental pressure for the acetone-water system at 200 c ranges from 15.8 to 30.1 atm (Grisvold, 1952). Fig. D1 shows plots of pressure versus reduced density, based on multifluid model, for pure acetone and pure water on the same diagram. The saturated liquid densities at 200 C are 0.55 and 2.99 lbmole/cu.ft. for pure

FIGURE D1. PLOT OF PRESSURE VS. REDUCED DENSITY

acetone and pure water, respectively. In this and most cases, the excess volume is small, of the order of 5 % of the total volume at most, so the mixture density for acetone-water generally will fall between the pure fluid densities (in this instance 0.55, and 2.99 lbmole/cu.ft.) For a mixture density (ρ) of 1.5 lbmole/cu.ft., the corresponding pressure P_{11} for acetone is 6.8x10⁵ atm, using $\rho_{11}^{*} = 1.5 \pm 0.45 = 0.675$. When a density of the mixture (ρ) is 2.5 lbmole/cu.ft., the corresponding pressure P₁₁ for acetone is $2x10^7$ atm, using $\rho_{11}^* = 2.5 \pm 0.45 = 1.125$. In Table D1. the estimated pressures at these two mixture densities for the acetone-water system at 200 C is given. For a mixture density approaches to 2.99 lbmole/cu.ft. (pure fluid density for water), the corresponding pressure for acetone approaches to infinite. This phenomena cause the local composition model expression for the mixture pressure to be infinite; consequently, there is no calculated mixture liquid density exists to match the experimental mixture pressure.

Table D1. Estimated P11 and P22 in eqn. (3.7) using a multifluid model for reduced density for Acetone(1)-Water(2) system at 200 C.								
p lbmol/cu.ft.	ρ [*] ₁₁	p11 atm 	¢ 22	p22 atm	-			
1.5	0.675	6-8x10 ⁵	0.165	-690				
2.5	1.125	2.0x10 ⁷	0.275	- 1402				

3.	Tc, C	den.(sa	turated, 2	00C) V	1*			

1.	TC, C	den.(saturated, 200 C) lbmole/cu.ft.	cu.ft./lbmole
Acetone (1)	235	0.5525	0.45
Water (2)	318.7	2.9989	0.11

Appendix E

ELIBINIATION OF THE MIXTURE PRESSURE PROBLEMS USING ONE FLUID NODEL FOR REDUCED DENSITY

In this study, the one fluid model for ρ_{ii}^{\star} was used. it is now of interest to check whether the same mixture pressure problems, which impedes the LCH, using a multifluid model for $\rho_{ij}^* (= \rho v_{ij}^*)$, to calculate the properties of mixtures of dissimilarly sized molecules (acetone-water system), still occurs(see Appendix D). To calculate P11 and P22 for acetone-water system, we need to calculate ρ_{ij}^{*} from v_{x}^{*} , which involves the binary interaction parameter, ξ , and the composition. The binary interaction parameter, ξ , set equal to 1.0862, which is an arbitary choice. Three compositions, 0.25, 0.5, and 0.75 are chosen for illustration. The values of V_x^* are 0.195, 0.281, and 0.365 for composition of 0.25, 0.5, and 0.75, respectively. In Pig. E1 plots of pressure verse reduced density, based on one fluid model eqn. (3.9), for pure acetone and water on the same diagram are given. The P11 and P22 have the same ρ^* , but they have different T^* , and λ .

The mixture density, based on the ideal solution mixing, can be estimated from the composition and the

FIGURE EL PLOT OF PRESSURE VS. REDUCED DENSITY

saturated liquid densities for pure components (assumed both exist) as follows,

$$\rho_{I} = \frac{1}{v_{I}} = \frac{1}{x_{1} / \rho_{1} + x_{2} / \rho_{2}}$$
(E1)

where ρ_1 , and ρ_2 are the saturated liquid densities at system temperature for pure component 1 and 2, respectively. The mixture densities, based on the ideal solution mixing, are 1.423, 0.933, and 0.694 lbmole/cu.ft. for compositions of 0.25, 0.5, and 0.75, respectively. The corresponding calculated P11 and P22 at mixture densities, based on the ideal solution mixing, are given in Table E1. Since the excess volume usually is small, it is expected that the mixture density should fall in the neighborhood of the density, based on the ideal solution mixing. Therefore, the pressure, calculated from the the mixture density, should close to the pressure, estimated from the mixture density based on the ideal solution mixing. Since neither P11 nor P22 is an extremely large value, the calculated mixture pressure, eqn. (3.7), can match the experimental pressure.

Table 21. Estimated P11 and P22 in eqn. (3.7) using a one fluid model for reduced density at ideal solution mixture densities for Acetone(1)-Water(2) system at 200 C.

Composition x1	v*	a V Ideal Solution	ρ 1bmol/ft3	^م : i.j	p11 atm	P22 atm
0.25	0.195	0.703	1.423	0.278	284	-777
0. 50	0.281	1.072	0-933	0.262	81	-576
0.75	0.365	1_441	0.694	0.253	30	-452

a.	TC, C	den. (saturated, lbmole/cu.ft	200 C) •
			*
Acetone (1)	235	0.5525 (den1)
Water(2)	318.7	2_9989 (den2)

٠.,

Ideal solution mixing, Volume; Vm = x1 v1 + x2 v2 = x1/den1 + x2/den2 Appendix F

Samples of the detailed calculations of vapor-liquid equilibria and mixture density Table F1. Detailed calculations of vapor-liquid

equilibria from LCM(see Table 2)

MIXTURE IS : METHANOL(1) - CO2(2)

DATA SOURCE: RATAYAMA, 1976

	T (R)	P(PSIA)	X1 (EXP)	X1 (CAL)	DEV.	¥1 (EXP)	Y1 (CAL)	DEV.
1	536.670	31_699	0.98500	0.98479	-0.0	0-0798	0.0789	-1.1
2	536.670	8 1. 97 4	0.95900	0.95797	-0.1	0.0315	0.0315	0_0
3	536.670	137_ 951	0.93000	0.92708	-0.3	0.0203	0.0194	-4.3
4	536 .670	251.008	0.86900	0.86089	-0-9	0.0122	0.0115	-5.5
5	536.670	435.295	0.74400	0.73949	-0.6	0.0083	0.0076	-8.1
6	536.670	599 .597	0.63900	0.61059	-4-4	0.0072	0.0064	-11-5
7	536.670	690.271	0.55000	0.52493	-4.6	0.0070	0.0060	-13.7
8	536.670	791.821	0_ 39000	0.39876	2-2	0.0071	0.0059	-17-1
9	536.670	819.596	0.33800	0.34770	2.9	0_0078	0.0059	-24-8
10	536.670	84 8 . 98 8	0.19000	0.12856	-32.3	0_0074	0.0058	-21.0
11	536.670	86 7.79 9	0.07750	0.05759	-25.7	0.0070	0.0053	-24.9
12	536.670	873.824	0.06750	0-04897	-27.5	0.0074	0.0050	-32.7
13	536.670	888,814	0,04270	0.03266	-23.5	0.0063	0.0042	-33.9
	T (R)	P(PSIA)	X2 (EXP)	X2 (CAL)	DEV.	Y2 (EXP)	Y2 (CAL)	DEV.
1	536.670	31.699	0.01500	0.01521	1.4	0.9202	0.9211	0.1
2	536.670	81_974	0.04100	0-04203	2.5	0.9695	0.9685	-0-0
3	536.670	137.951	0.07000	0.07292	4.2	0.9797	0.9806	0.1
4	536.670	251.008	0.13100	0-13911	6.2	0.9878	0.9885	0_1
5	536.670	435-295	0.25600	0.26051	1.8	0.9917	0.9924	0.1
6	536.670	599 . 597	0.36100	0.38941	7.9	0.9928	0.9936	0.1
7	536.670	690-271	0.45000	0-47507	5.6	0.9930	0.9940	0.1
8	536.670	79 1 82 1	0_61000	0-60124	-1.4	0.9929	0-9941	0.1
9	536.670	819.596	0.66200	0.65230	-1.5	0.9922	0.9941	0.2
10	536.670	848.988	0.81000	0.87144	7.6	0.9926	0.9942	0.2
11	536.670	867.799	0.92250	0.94241	2.2	0.9930	0.9947	0.2
12	536.670	873.824	0.93250	0.95103	2.0	0.9926	0.9950	0.2
13	536.670	888_814	0.95730	0.96734	1.0	0-9937	0.9958	0.2

- -

	T (R)	P(PSIA)	K1 (EXP)	KI (CAL)	DEV.	K2(EXP)	K2 (CAL)	DEV.
1	536.670	31.699	0-08102	0-08011	-1.1	61.3467	60.5424	-1.3
2	536.670	8 1_ 97 4	0.03285	0.03289	0_1	23.6219	23-0455	-2-4
3	536.670	137.951	0.02183	0.02095	-4-0	13,9957	13,4465	-3.9
4	536.670	251.008	0.01404	0.01340	-4-6	7.5405	7.1055	-5-8
5	536.670	435.295	0.01116	0.01032	-7.5	3-8738	3-8094	+1.7
6	536.670	599 . 597	0.01127	0.01043	-7-4	2,7501	2-5516	-7.2
7	536.670	690.271	0.01273	0.01151	-9-6	2,2067	2-0922	-5.2
8	536.670	79 1.82 1	0-01821	0.01475	-19-0	1-6277	1-6534	1_6
9	536.670	819_596	0.02308	0-01688	-26-9	1-4988	1-5240	1.7
10	536.670	84 9. 98 8	0.03895	0-04547	16.7	1-2254	1,1408	-6 9
11	536.670	867.799	0-09032	0.09123	1.0	1_0764	1.0555	-1 9
12	536.670	873 824	0-10963	0_10177	-7.2	1_0645	1.0462	-17
13	536.670	888_814	0.14754	0.12743	-13.6	1.0380	1.0295	-0.8
			1	• •				

,

9.13	13
A-A-D- 7 OF K	2 NPTS
3-24	13

equilibria from CSM(see Table 2)

MIXTURE IS : METHANOL(1) - CO2(2)

DATA SOURCE: KATAYAMA, 1976

	T (R)	P(PSIA)	X1 (EXP)	X1 (CAL)	DEV.	¥1(EXP)	Y1(CAL)	DEV.
1	536-670	31.699	0.98500	0.98571	0.1	0.0798	0.0793	-0.6
2	536.670	8 1 _ 97 4	0.95900	0.96118	0.2	0.0315	0.0319	1.4
3	536.670	137.951	0.93000	0.93375	0_4	0.0203	0.0199	-2.0
4	536.670	251.008	0.86900	0.87683	0.9	0.0122	0_0121	-0-9
5	536.670	435.295	0.74400	0.77231	3_8	0.0083	0.0084	1_0
6	536-670	599 . 597	0.63900	0.63968	0.1	0.0072	0.0074	2.2
7	536_670	690.271	0.55000	0.47815	-13.1	0.0070	0_0071	1.9
8	536.670	79 1 82 1	0.39000	0.12579	-67.7	0.0071	0.0060	-15-8
9	536.670	819_596	0.33800	0.08889	-73.7	0.0078	0.0053	-32.3
10	536.670	848.988	0_ 19000	0.05870	-69.1	0.0074	0.0044	-41.1
11	536.670	867 .79 9	0.07750	0.04278	-44-8	0.0070	0.0037	-47.8
12	536.670	873.824	0_06750	0.03815	-43.5	0.0074	0.0034	-54.0
13	536.670	888.814	0.04270	0.02749	-35.6	0.0063	0-0027	-56.5
	T (R)	P(PSIA)	X2 (EXP)	X2 (CAL)	DEV.	Y2 (EXP)	Y2 (CAL)	DEV.
1	536.670	31.699	0.01500	0.01429	-4.7	0-9202	0.9207	0.1
2	536.670	81.974	0_04100	0-03882	-5.3	0.9685	0.9681	-0.0
3	536.670	137.951	0.07000	0.06625	-5.4	0.9797	0.9801	0.0
4	536 .67 0	251.008	0.13100	0.12317	-6.0	0.9878	0.9879	0.0
5	536.670	435.295	0.25600	0.22769	-11.1	0.9917	0.9916	-0-0
6	536.670	599.597	0_ 36 10 0	0.36032	-0-2	0.9928	0.9926	-0-0
7	536.670	690.271	0,45000	0.52185	16_0	0_9930	0.9929	-0-0
8	536.670	791.821	0.61000	0.87421	43.3	0.9929	0.9940	0.1
9	536.670	819.596	0.66200	0.91111	37.6	0.9922	0.9947	0.3
10	536.670	84 8. 98 8	0.81000	0_94130	16.2	0_9926	0.9956	0.3
11	536.670	86 7.79 9	0.92250	0.95722	3.8	0.9930	0.9963	0.3
12	536.670	873.824	0.93250	0_96185	3.1	0.9926	0.9966	0-4
13	536.670	888.814	0.95730	0.97251	1.6	0.9937	0.9973	0.4

	T (R)	P(PSIA)	K1 (EXP)	K1 (CAL)	DEV.	K2(EXP)	K2 (CAL)	DEV.
1	536.670	31.699	0.08102	0.08044	-0.7	61.3467	64.4140	5-0
2	536.670	8 1. 97 4	0.03285	0.03323	1.2	23.6219	24-9387	5_6
3	536_670	137.951	0.02183	0.02130	-2-4	13.9957	14.7941	5.7
4	536.670	251.00 8	0_01404	0.01379	-1_7	7.5405	8.0209	6.4
5	536.670	435.295	0.01116	0.01086	-2.7	3.8738	4.3552	12.4
6	536_670	599 <u>-</u> 597	0.01127	0.01150	2.0	2.7501	2.7549	0.2
7	536.670	690_271	0.01273	0.01492	17.2	2.2067	1.9026	-13.8
8	536.670	791.821	0.01821	0.04753	161.1	1_6277	1.1370	-30.1
9	536.670	819.596	0.02308	0.05944	157.6	1.4988	1.0918	-27.2
10	536.670	848.988	0.03895	0.07425	90.6	1.2254	1.0577	-13.7
11	536.670	867.799	0.09032	0.08533	-5.5	1.0764	1.0409	-3.3
12	536 .67 0	873.824	0.10963	0.08921	-18.6	1.0645	1.0361	-2.7
13	536-670	888.814	0.14754	0.09966	-32.5	1.0380	1.0255	-1.2

•

A. A. D. % OF 37. 9	K 1	NPTS 13
A.A.D. % CP 9.78	K 2	NPTS 13

Table F3. Detailed calculations of mixture density from LCM(see Table 3)

MIXTURE IS : ACETONE(1) - WATER(2)

DATA SOURCES: NODA, 1982 (NPTS=9) THOMAS, 1957 (NPTS=34)

T (R)	P (PSIA)	X1	DEN (EXP) LBNOLE,	DEN (CAL) /CU.FT.	% DEV
536.670	14.700	0-05830	2.9905	3.0536	2.1089
536.670	14.700	0.14600	2.4705	2.4531	-0.7055
536.670	14.700	0.20560	2.2006	2.1614	-1.7833
536.670	14,700	0.30200	1.8618	1.8097	-2.7968
536.670	14.700	0.45970	1.4763	1.4246	-3.5070
530+670	14.700	0.52660	1-3539	1.3054	-3.5798
536.670	14.700	0.61810	1.2145	1.1710	-3.5801
530-070	14.700	0. 76990	1.0351	1.0008	-3.3117
530.070	14.700	0.00000	0.98/1	0.9562	-3.1398
527 670	14.700	0.00020	0.0430	0.0347	-1.7503
527.670	14 700	0.99020	0.8536	0.0303	-1 9027
527-670	14.700	0.99740	0.8543	0.0302	-1.0037
527-670	14.700	0_ 98880	0-8568	0.8708	
527.670	14,700	0, 98740	0-8577	0.8418	-1-8598
527.670	14.700	0, 78840	1-0238	0-9916	-3-1506
527.670	14.700	0.49060	1.4247	1.3774	-3,3163
527.670	14.700	0.25010	2.0408	1,9979	-2-1044
527.670	14.700	0.14500	2.4863	2-4750	-0-4519
536.670	14.700	0.99580	0.8460	0.8300	-1-8957
536.670	14.700	0.80310	1.0029	0.9704	-3.2377
536.670	14.700	0.48210	1.4321	1.3824	-3.4699
536.670	14.700	0.38020	1.6497	1.5966	-3.2186
536.670	14.700	0.25300	2.0211	1.9734	-2.3570
536.670	14.700	0.14550	2.4741	2.4558	-0.7357
536.670	14.700	0.06935	2.9152	2.9627	1.6296
559.673	14.700	0.99580	0.8302	0.8129	-2.0899
559.673	14.700	0.76460	1.0221	0.9853	-3.6025
559.673	14.700	0.50120	1.3755	1.3221	-3.8796
559.673	14.700	0.37220	1.6450	1.5862	-3.5770
559.673	14.700	0.25020	2.0049	1.9487	-2.8072
559.673	14.700	0.14520	2.4501	2.4161	-1.3873
559.6/3	14.700	0.07166	2-8787	2.8962	0.6087
501.700	14.700	0.99580	0.8145	0.7965	-2.2041
501.700	14.700	0. /8130	0.9875	0-9506	~3.7361
591 760	14.700	0. 20050	1-3814	1.3244	-4.1255
581.760	14 700	0. 24000	▼●2043 つ // 202	1.721J	-3.203/
581.760	14.700	0 07152	2043U3 2 8567	2.3033	-1.9211
599 867	14.700	0.11000	2.50207	2+0520 2 5/10/1	-1 7100
6 18, 030	14,700	0,04716	2-9885	2. 3434	
6 18 . 0 30	14_700	$0_{-}02063$	3,1997	2.2215	0 KQKN
636.300	14,700	0.02109	3,1792	3.1765	-0-0904 -0-0846
				3	4.0040

AVE. ABS. PERCENT. NO. OF PTS. 2.25967

Table F4. Datailed calculations of mixture density from CSM(see Table 3)

٠

.

MIXTURE IS : ACETONE(1) - WATER(2)

.

DATA SOURCES: NODA, 1982 (NPTS=9) THOMAS, 1957 (NPTS=34)

T (R)	P(PSIA)	11	DEN (EXP)	DEN (CAL)	\$ DEV
	• •		LBMOLE/CU.FT.		
536-670	14.700	0 05830	2 9905	3 3570	9 00 <i>11</i> 1
536,670	14-700	0, 14600	2.4705	J 7700	12 2113
536.670	14.700	0. 20560	2.2006	2 1 9 5 7	12 29/10
536.670	14.700	0. 30200	1.8618	2.4332 2.120u	13 9011
536-670	14.700	0_ 45970	1-4763	1.6566	12 2093
536.670	14.700	0, 5266 0	1.3539	1.5021	10-9476
536.670	14.700	0.61810	1.2145	1.3219	8.8447
536.670	14.700	0.76990	1.0351	1.0846	4.7783
536.670	14.700	0.81950	0.9871	1.0203	3.3539
527.670	14.700	0.99920	0.8496	0.8350	-1.7190
527.670	14.700	0.99820	0.8503 .	0.8359	-1-6893
527.670	14.700	0.99340	0.8536	0.8404	-1.5464
527.670	14.700	0.99240	0.8543	0.8413	-1.5191
527.670	14.700	0.98880	0.8568	0.8447	-1_4113
527_670	14.700	0.98740	0.8577	0.8460	-1.3700
527.670	14.700	0_ 78840	1.0238	1.0682	4.3366
527.670	14.700	0.49060	1.4247	1.5942	11-9007
527.670	14.700	0.25010	2.0408	2.3278	14_0635
527.670	14.700	0.14500	2.4863	2.7956	12.4419
536.670	14.700	0.99580	0.8460	0-8314	-1.7316
536.670	14.700	0.80310	1.0029	1.0409	3.7901
530.070	14.700	0.48210	1.4321	1.6025	11.8985
530-070	14_700	0.38020	1.649/	1.8707	13.3919
536.670	14-700	0.25300	2.0211	2.3006	13.8313
536 670	14-700	0. 14550	244/41	2.1/4/	12-1513
559 673	14.700	0.00935	2.9132	3.1900	9-4480
559-673	14.700	0 76460	1 0221	1 0702	- 1-9249
559.673	14.700	0. 50120	1 3755	1 5292	4-7009
559,673	14.700	0. 37220	1.6450	1 8602	12 0772
559-673	14.700	0. 25020	2-0049	2.271µ	13 2025
559.673	14,700	0.14520	2.4501	2.7297	11_4145
559.673	14.700	0.07166	2-8787	3-1251	8-5588
581.760	14.700	0.99580	0.8145	0.7979	-2.0382
581.760	14.700	0.78130	0.9875	1-0279	4-0925
581.760	14.700	0.48550	1.3814	1.5368	11.2532
581.760	14.700	0.24860	1.9849	2.2398	12.8404
581.760	14.700	0.14400	2.4303	2.6918	10.7615
581.760	14.700	0.07152	2.8567	3.0773	7.7199
599.867	14.700	0.11000	2-5938	2.8273	9.0050
618.030	14.700	0.04716	2.9885	3.1417	5.1243
618.030	14.700	0.02063	3.1992	3.3065	3.3517
636.300	14.700	0.02109	3.1792	3.2621	2.6094
				•	

AVE. ABS. PERCENT. NO. OF PTS. 7.90054

43 •