

EagleChat

 Kevin Ward, Chase Meadors, Sam Bretz, Cris Slaughter

ECEN 4024 – Capstone Design II

5/1/15

1

1 CONTENTS

2 Introduction .. 2

3 Operation Instructions .. 3

4 Hardware Design ... 4

4.1 Microcontroller ... 4

4.2 Random Number Generator ... 5

4.3 RF Module ... 5

4.4 Power .. 6

4.5 Board Design ... 6

4.6 Packaging .. 7

5 Software Design .. 8

5.1 Firmware Architecture .. 8

5.2 USB Communication ... 10

5.3 Radio Driver .. 13

5.4 Routing Protocol ... 14

5.5 Encryption ... 18

5.6 Android App .. 21

6 Project Constraints and Considerations .. 24

A. Team Meeting Minutes ... 26

B. Schematics and Layouts .. 33

C. Cost and Bill of Materials .. 35

2

2 INTRODUCTION

EagleChat is a small peripheral device that connects via USB to Android smartphones, which act as the

interface and controller for the device.

Whenever EagleChat devices are powered on, they act as routers and form an ad-hoc mesh network

with other EagleChat devices in the vicinity.

Whenever two EagleChat users have recognized each other as contacts, they can send messages to one

another over the mesh network, provided that a route can be found, simply by using the Android

application. These messages are fully end-to-end encrypted, and can only be interpreted by the sender

and receiver.

The application manages incoming and outgoing messages, informing the user if his or her message fails

to reach the destination.

In addition, the application allows two EagleChat users to register each other’s contact information

simply by scanning a QR code that is displayed in the app, and organizes all of a user’s contacts and

conversation threads.

EagleChat forms a device network without any central infrastructure. If a device moves to a different

location, or is powered down, any nodes depending on it for message transmission will simply attempt

to find a new route.

EagleChat delivers simple, secure communication in environments where other conventional mass

communication methods such as cell networks and the Internet may be controlled or censored.

This report will detail the hardware and software design of EagleChat. Unless noted otherwise, the lead

engineer listed for each section of the report is also the author of that section.

3

3 OPERATION INSTRUCTIONS

You will need at least two EagleChat devices and two modern Android phones to make use of the

functionality.

For each EagleChat device and phone, perform the following steps:

1. Install the EagleChat application, provided with this report

2. Plug the EagleChat board into the phone

3. Launch the EagleChat app – a screen will appear offering to set up a new EagleChat device

4. Enter the following information:

a. A name that will identify you to other users on the network

b. A password you will use to login to your device

c. A network ID that does not conflict with any other ID on the network

5. Press the check-mark button to commit the values and setup your EagleChat device.

Now that the EagleChat devices have been set up, you and your partner need to add each other as

contacts:

1. One user will navigate to the “My Details” page, where a QR code is displayed.

2. The other user will click the “+” button to add a contact, and then click “Scan QR Code” to read

the QR code on the first user’s screen.

3. The other user will then click the check-mark button to finish adding the contact.

4. Perform this process in reverse so that both users have added the other as a contact.

Now, any user can select that contact from the list and type a message. The application and the

EagleChat device will take care of establishing a route, and the other user will receive the message.

4

4 HARDWARE DESIGN

4.1 MICROCONTROLLER

Lead Engineer: Kevin Ward

The heart of the EagleChat system is the XMEGA 192a3u, an 8-bit microcontroller from Atmel, Inc. The

XMEGA line is an advanced RISC architecture CPU, available in a wide variety of configurations featuring

different combinations of peripherals and flash and SRAM sizes.

The following features of the XMEGA 192a3u are the most relevant to the EagleChat project [1]:

 Integrated USB controller and driver

 16 KB SRAM

 Built-in EEPROM

 CRC-16 module

 Real-time clock

 16-bit timers

 Multiple SPI modules

 Multiples I2C/TWI modules

 Easy to program 8-bit architecture

 Well supported by the Atmel Software Framework

The microcontroller runs the EagleChat firmware, and is responsible for communicating with the host

and the radio module, and performs all encryption related tasks.

[1] Atmel, “8/16-bit Atmel XMEGA A3U Microcontroller,” XMEGA A3U datasheet, July 2007 [Revised July

2014]

5

4.2 RANDOM NUMBER GENERATOR

Lead Engineer: Chase Meadors

Contributors: Kevin Ward

EagleChat requires secure random numbers in order guarantee that the encryption process is

cryptographically secure. The Atmel XMEGA chip does not have an on-board RNG, and this chip provides

a lightweight, simple, external solution.

We selected the Atmel ATSHA204A (http://www.atmel.com/devices/ATSHA204A.aspx), which has an

internal high-quality random number generator [1].

The chip communicates via a simple I2C interface, and integrates simply into our application. In addition,

we made use of a driver library already made available in the Atmel Software Framework (ASF) [2]. We

implemented a wrapper and API on top of the ASF driver, which can be found in the /sha204

subdirectory of the source code respository. The API provides the following functions:

 Initialize an ATSHA204A chip

 ‘Lock’ an ATSHA204 chip, which permanently commits the configuration of the device, allowing

it to provide random numbers

 Retrieve random numbers from the chip

[1] Atmel.com,. 'ATSHA204A'. N.p., 2015. Web. 1 May 2015.

4.3 RF MODULE

Lead Engineer: Sam Bretz

The communication device of the EagleChat system is the HopeRF RFM69HW, a monolithic device based

off of the Semtech SX1231H.

The following are the important features of this chip for EagleChat [1]:

 +20 dBm - 100 mW Power Output Capability

 High Sensitivity: down to -120 dBm at 1.2 kbps

 Low current: Rx = 16 mA, 100nA register retention

 Automatic RF Sense with ultra-fast AFC

We obtained a radio range of about 422’ under optimal conditions and configuration settings. I believe

range could be increased with fine trial and error tweaking of the radio driver configurations parameters

and various antenna counterpoise designs.

[1] HopeRF, “RFM69HW ISM TRANSCEIVER MODULE V1.3” Datasheet

[http://www.hoperf.com/upload/rf/RFM69HW-V1.3.pdf]

http://www.atmel.com/devices/ATSHA204A.aspx

6

4.4 POWER

Lead Engineer: Sam Bretz

We decided to solely power device through the USB cable without any internal batteries. A buffered pin

is connected through from the 5V line to tell the MCU if external power has been cut and to prepare the

device to be powered down. This device does not consume a lot of power, with the radio module

consuming by far the most at 130mA during transmission. A simple high efficiency solution was sought

after, yielding a specialized 5V to 3.3V LDO, the TLV1117LV33. With a quiescent current of

approximately 150uA at peak current consumption for our device, it was one of the most efficient

available while also being one of the cheaper units.

Battery life reduction of the phone while being used was not fully measured but it was not noticed

during testing and use. Complete analysis highly depends on network node and message density. With

the radio module consuming 16mA in receive mode, 130mA in transmit mode, and a transmit to receive

duty cycle of 15% this would use approximately 33mAh of capacity over an hour. 15% is estimated to be

rather high transmission ratio based on transmission and receive timings. Accounting for the efficiency

of the various regulators in both the phone and device this results in approximately 50mA consumption.

An average modern phone battery has approximately 2200mAh of capacity.

4.5 BOARD DESIGN

Lead Engineer: Sam Bretz

EagleChat's board design prioritized small size and good RF characteristics. This lead to our final design

with a decently small size and acceptable RF characteristics when mounted inside metal packaging to

serve as the antenna counterpoise.

 Size: 1.67” x 1.36” (2.27sq in)

 Mounting holes are in a standard 1” x 1” square pattern allowing for ease of mounting.

 Antenna is of a screw-on-PCB design that allows for easy assembly

 Hard wired USB interface to connect to the phone

 Exclusively uses SMD components except for connector headers and antenna

Refer to Appendix B for PCB diagrams.

7

4.6 PACKAGING

Lead Engineer: Sam Bretz

The ideal packaging solution would meet the following criteria:

 Universal device compatibility

 Non-permanant mounting with ease of removal

 Would not cause the phone to disrupt the RF antenna pattern creating dead reception zones

After heavy design consideration some of these criteria are nearly mutually exclusive. Due to the nature

of varying modern phone sizes, making a universal phone case is impractical. The only universal solution

to satisfy all three is to have it as a dongle.

The enclosure takes the form of a simple pocketed enclosure with antenna port, stress relieved USB

cable slot, and a hole for the reset button.

Material of the enclosure is rather unimportant unless considering durability, while the only electrically

stipulated requirement to maximize range is to have a good ground shield the length and width of the

enclosure to act as the counterpoise of the antenna. This could be done with a stamped steel shield,

vapor deposited metal coating, or by having a solid metal enclosure. We made a single enclosure with

aluminum and one out of 3D printed PLA. When considering manufacturability an injection plastic

molded enclosure with stamped steel shield would be most practical.

The current 3D printed enclosure specifications are as follows:

 Dimensions including antenna: 3.6” x 1.75” x 0.5”

 Weight: 0.7oz

8

5 SOFTWARE DESIGN

5.1 FIRMWARE ARCHITECTURE

Lead Engineer: Kevin Ward

Contributors: Chase Meadors

Overview

The EagleChat firmware is written in C and is compiled using the AVR port of GCC. It is organized into

several modules that either provide a hardware driver interface or serve as convenience layers for high

layers. At the top layer, the main function in app/main.c is responsible for coordinating the work of the

different modules and enforces the expected behavior of the system.

Each module will be discussed in its own section, but here is an overview of the modules composing the

firmware:

 app -- Top level code that integrates all modules

 protocol -- Implements the Peregrine host communication protocol

 cdc -- Interface to the CDC USB stack, used for communicating with the host device

 keys -- Stores configuration data and encryption keys

 crypto -- Encrypts and decrypts data

 sha204 -- Drives the SHA204p random number generator IC

 routing -- Manages the receptions and forwarding of packets

 radio -- Drives the RFM69HW radio module and handles sending and receiving data frames

9

Architecture

The firmware has an asynchronous architecture, where all input and output is handled by interrupts and

is buffered until it is ready to be sent/consumed. The routing handling code is run at regular intervals on

a timer interrupt, to prevent a long running operation on the main "thread" from causing dropped

packets.

The firmware’s main loop performs the following actions as quickly as possible:

 Process new incoming messages from the host, which are collected and buffered

asynchronously.

 Perform requested actions based on the incoming message, such as queueing packets for

transmission through the radio stack

 Process received packets from the network stack, which are collected and buffered

asynchronously, and decrypt them

And on a timed regular basis:

 Instruct the routing stack to process its send queue

 Instruct the routing stack to process received frames

In addition, the firmware implements BURN functionality. When instructed by the host phone, the board

will erase all contents of the on-board EEPROM, which is where secure keys and other information is

stored.

Build system

The firmware is designed to be built on Unix-like systems. The build system is based on the venerable

make utility, and uses a base makefile derived from the makefile included with ASF.

Dependencies

The EagleChat firmware has the following build dependencies:

 AVR-GCC 4.2+

 AVR-Libc

 Atmel Software Framework

Build Instructions

After installing required dependencies, copy the file conf.mk.bak in the firmware project root to

"conf.mk", and edit the file to reference the root directory of a local copy of ASF.

To build the firmware, at the terminal change to the /app directory. Invoke make:

eagle-chat-firmware/app$ make

The firmware will compile and result in several product files. The firmware binary is contained in

main.hex and is suitable for upload to the EagleChat peripheral.

10

Source Code

Our source code repository is located at https://github.com/EagleChat/eagle-chat-firmware, and our

development occurs on branch develop.

A copy of our production source code is also included on the accompanying CD, under eagle-chat-

firmware. When we refer to the source code repository, we are referring to this folder.

Android application development is located in https://github.com/EagleChat/eagle-chat-app

5.2 USB COMMUNICATION

Lead Engineer: Kevin Ward

Contributors: Chase Meadors

The EagleChat peripheral communicates with its host device through a Communications Device Class

(CDC) driver over USB. Our implementation builds on the Atmel Software Framework's CDC

implementation. The CDC device class is used for "virtual com ports" and other serial devices. It appears

to the host operating system as a serial port, tty, serial modem or similar, and provides a simple byte

based communication interface.

From a software perspective, this module is very straightforward. The details of the USB interface

(vendor ID, product ID, baud rate) are configured in a header file, config/conf_usb.h. The ASF

provides several functions for reading and writing to the data stream. We then wrote convenient

wrapper functions to accomplish common writing and reading tasks. This code is available in cdc/cdc,

and includes functions for:

 Writing a string followed by an integer

 Writing a string followed by a byte in hexadecimal form

 Reading a line of bytes from the host

In addition, the cdc module allows the firmware to tell when a connection has been established or

closed.

The functions in cdc are used pervasively throughout the firmware. Every module that does any sort of

printing or reading is built on top of this module. Host Communication Protocol

Communication between the EagleChat peripheral and its host (Android phone, PC) is structured

according to a custom protocol. This protocol is nicknamed Peregrine to distinguish it from other

protocols used in this project.

The Peregrine protocol is based on commands from the host and replies from the peripheral. All

commands and replies are composed of printable ASCII characters and are terminated with a newline

character (0x0A).

Commands follow this basic scheme:

https://github.com/EagleChat/eagle-chat-firmware
https://github.com/EagleChat/eagle-chat-app

11

Command

[command byte][0x0A]

For example, issuing a command to generate an encryption key-pair is simply

k[0x0A]

Command with arguments:

[command byte]:arg1:arg2 ...[0x0A]

For example, passing a message to be broadcast would look like this:

s:123:This is the text of the message.[0x0A]

Replies follow a similar scheme. Replies are always prefixed with ‘x’, and are followed by a colon-

delimited messages. Successful execution of a command is indicated with "x:OK". If the command

cannot be completed or fails, this will be indicated by "x:FAIL" or "x:FAIL:[Error

description]".

Binary data is always transmitted by first encoding it in printable hex-format (e.g. 0x12 is sent as ‘1’

followed by ‘2’). It should be interpreted by first parsing it back into raw binary. The length of the

resulting array will be half of the length of the hex-encoded string.

The exception to binary data encoding is in commands requiring the address of another node. These are

encoded in printable decimal form (e.g. 123 as "123").

See the table on the following page for a complete summary of available commands and replies.

12

Message received

In addition, when a message has been received and decrypted by the peripheral, it will notify the host

by sending a "message received" message, using the following format:

r:[2 hex characters](address):[message string]

where address is the network ID of sender, and message string is the decrypted contents of the message

Command Format Description Replies

Send message s:[addr]:[message] Queues the contents of message
string to be encrypted and
transmitted to the node with the
specified address.

x:OK

x:FAIL:INVALID: NO

ADDRESS

x:FAIL:INVALID: NO

CONTENT

x:FAIL:No public key

entry for that node

Set public key
for contact

p:[addr]:[64 hex] Stores the 32-byte public key for
node with specified address and
computes the shared key

x:OK

Generate keys K Generates a new keypair x:OK

Set ID i:[2 bytes hex] Sets this node's network ID x:OK

x:FAIL:Node Id must

be < 255

Set password h:[60 bytes hex] Sets the password hash to be
used for authentication

x:OK

Authenticate a:[60 bytes hex] Attempts to log-in to the
peripheral

x:OK

x:FAIL

Commit
configuration

c Saves the peripheral's set up
data and confirms that it has
been fully set up

x:OK

x:FAIL:All components

not configured

Erase all data BURN Erases the peripheral's non-
volatile memory section and
resets the MCU.

No reply, immediate execution of
command

Get public key g:p Gets the peripheral's public key x:[64 characters hex]

Get network ID g:i Gets the peripheral's network ID x:[2 characters hex]

Get status g:s Gets the peripheral's
configuration status

x:[2 characters hex]

Print routing
table

d:r Debugging command that prints
the peripheral's current routing
table entries

Text describing the current state of
the routing table

13

Implementation

The app/host_rx.c and app/host_tx.c modules buffer input and output messages until they are ready to

be consumed/sent; app/protocol.h and protocol.c contain protocol definitions and convenience

functions for formatting replies; and app/main.c is responsible for interpreting and responding to

commands appropriately.

5.3 RADIO DRIVER

Lead Engineer: Sam Bretz

Contributors: Kevin Ward, Chase Meadors

We based our Radio software on an existing Arduino library that drives the RFM69 family of HopeRF

radio modules. The library was open source, written and provided by Low Power Lab [1].

The library provides a simple API that approximately implements network functionality up to the data

link layer (layer 2 in the OSI model).

The API automatically handles all radio physical settings, frame headers, and acknowledgements (ACKs).

Since the library was for the Arduino platform, we made extensive changes in order to make a custom

port for our platform. We also added new features. Some of our changes were:

 Re-implementing the send functions to enable data sizes over 61 bytes – a limit that was

imposed by the original library. This involved changing the send functions to use the on-board

FIFO in the RFM69 in a different way

 Re-implemented CRC functionality to work with the new send functions

 Fixed bugs relating to incorrect reading of the radio RSSI values

In addition, we then wrapped the radio library in a higher level wrapper that integrated nicely into the

rest of our application.

The custom RFM69 library can be located in /radio/RFM69.h and /radio/RFM69.cpp

The radio wrapper and API can be located in /radio/radio.h and /radio/radio.cpp

[1] GitHub,. 'Lowpowerlab/RFM69'. N.p., 2015. Web. 1 May 2015.

14

5.4 ROUTING PROTOCOL

Lead Engineer: Chase Meadors

Contributors: Kevin Ward

EagleChat’s radio driver provides full data link layer functionality (layer 2 of the OSI model) to guarantee

reliable point-to-point acknowledged transmission of frames from one point to another. Our goal in

designing the routing protocol was to engineer a reliable implementation of the “IP Layer” (layer 3 of

the OSI model) that manages routes and the transmission of packets from any arbitrary node to

another.

Our protocol was influenced by researching AODV – Ad-hoc on-demand distance vector routing [1].

AODV is a mesh routing protocol used in ZigBee, and contains many advanced features to improve

network efficiency and reliability.

Since there were no implementations of AODV or similar protocols that would integrate into our project

in the time allotted, we designed a custom routing protocol that contains the most basic ideas from

AODV.

Our routing protocol is based on packets with headers containing the following information:

 Source (node id)

 Destination (node id)

 Type (enumeration)

There are four packet types:

 CONTENT – a normal packet containing a message

 RRQ – route request packet

 RUP – route update packet

 FAIL – route failure

In addition, RRQ and RUP packets have the following additional information in their header:

 RRQ ID – a unique ID that identifies a particular route request

 Hop count – A value tracking the length of the node path that the RRQ travels

Nodes also posses a routing table whose entries have the following information for each destination:

 Next Hop – a node ID that represents the next hop to the destination

 Original RRQ ID – a number specifying the RRQ that generated this entry

 Failures – A number keeping track of the number of times transmissions using this entry failed

The next few figures demonstrate the three major processes occurring in the routing module:

When a new Packet is queued for transmission by the rest of the system, the following process occurs:

15

Route exists to
Destination?

Mark a route request as
pending / in progress

Initiate route request

NO

Forward toward dest

Pack Packet into Frame

NO

In addition, the following process that manages route requests occurs ‘constantly’ (whenever serviced)

Pending route
Request resolved?

Route request
Timed out?

NO

Mark Route Request as
not in progress

Notify appropriate
entities that a route

cannot be found

The following page shows the process that occurs upon frame reception:

16

R
e

ceive
d

 p
acke

t.
Ty

p
e?

R
U

P (R
ou

te U
p

date)

In
va

lid
ate ro

u
tin

g ta
b

le e
n

try to

th
e

 d
e

stin
atio

n
 th

at ge
n

erated
 th

e

ro
u

te
 failu

re

FA
IL (R

ou
te e

rro
r)

R
e

cen
tly

R
e

-b
ro

ad
cast?

P
u

sh
 o

u
r n

o
d

e
 ID

 o
n

to

th
e

 h
o

p
 stack

N
O

Is th
is

Th
e d

e
stin

atio
n

?

R
R

Q
 (R

ou
te R

eq
u

est)

N
O

U
p

d
ate

 ro
u

tin
g

 tab
le

s
w

ith
 ro

u
te

 to
 o

rigin
a

to
r

YES

Se
n

d
 a R

U
P

 (R
o

u
te

u
p

d
ate) to

 th
e

o

rigin
ato

r

Fo
rw

a
rd

 to
w

a
rd

 d
e

st

Is th
is

Th
e d

e
stin

atio
n

?

M
a

rk o
u

r p
e

n
d

in
g ro

u
te

req

u
e

st as re
so

lved

R
e

-b
ro

ad
cast

P
o

p
 th

e
 h

o
p

 stack an
d

u

p
d

ate
 ro

u
tin

g ta
b

le
s to

o

rigin
ato

r an
d

 d
e

st

N
O

YES

Is th
is

Th
e d

e
stin

atio
n

?

C
O

N
TEN

T

Q
u

e
u

e fo
r rece

p
tio

n
 b

y
rest o

f syste
m

N
O

H
a

ve ro
u

te to

d
e

stin
a

tio
n

?
Fo

rw
a

rd
 to

w
a

rd
 d

e
st

YES

Se
n

d
 a FA

IL (R
o

u
te

failu
re

) to
 th

e
 sen

d
e

r

N
O

U
n

p
ack p

acket fro
m

fram

e
YES

17

Finally, a brief description of the route request process from a holistic perspective:

Suppose that node A queues up a packet addressed to node B, but fails to have a route (as

demonstrated in the diagram above). Then:

1. Node A creates a new RRQ packet, initializing hop count to 0, and broadcasts it.

2. Every other node in the vicinity receives the RRQ, and checks if they have recently forwarded

the RRQ with this ID. If not, they push their own ID onto the stack in the packet contents and re-

broadcast the packet

3. When the destination hears the RRQ, it initiates a RUP, which will be sent in reverse order along

the hop stack built up inside the RRQ

4. Each node that hears the RUP on the way back will update their routing tables.

As part of routing development, I also developed a visualization tool and simulator of the algorithm built

in JavaScript and HTML5. Kevin Ward also collaborated on this project. The simulator contains a

complete “port” of our routing algorithm, and simulates its behavior in large dense networks of nodes.

The demonstration can be viewed at http://cemulate.github.io/mesh-routing.

The source repository is, of course, also on GitHub and can be viewed at

http://github.com/cemulate/mesh-routing.

http://cemulate.github.io/mesh-routing
http://github.com/cemulate/mesh-routing

18

5.5 ENCRYPTION

Lead Engineer: Chase Meadors

Contributors: Kevin Ward

EagleChat uses encryption techniques to guarantee the safe sending of messages between registered

partners in the system. One of the core design goals in this project was to provide cryptographically

secure communication. Indeed, any information travelling over the wireless channel in our system is

fully encrypted, and can only be decrypted by the sender and receiver for which the information is

addressed.

We use Elliptic Curve cryptography, a form of public-key-based encryption. To accomplish our

implementation, we used AVR NaCl (http://munacl.cryptojedi.org/atmega.shtml). AVR NaCl is an

implementation of the more well-known C library NaCl (http://nacl.cr.yp.to/), for the Atmel

microprocessor architecture.

NaCl consists of three major components [1]:

 The Curve25519 Diffie-Hellman key exchange function. This functionality takes advantage of the

mathematics of Elliptic Curves (actually using the particular curve, Curve25519, which is

recognized as ‘strong’) to compute shared secrets between two communication partners.

 The Salsa20 stream cipher. This algorithm is responsible for encrypting the message using the

shared secret.

 The Poly1305 message-authentication code, the algorithm allowing the authentication (and thus

decryption) of messages using the shared secret.

The following illustrates the process used in EagleChat to secure communication between two partners,

Alice and Bob.

http://munacl.cryptojedi.org/atmega.shtml
http://nacl.cr.yp.to/

19

Alice and Bob each possess a public and secret key, that are unique and securely generated at device

setup.

Alice and Bob exchange public keys whenever they register as contacts with each other.

Alice and Bob are now able to compute an (identical) shared secret key, using their own secret key and

the partner’s public key. Alice and Bob both compute this key at the time of contact registration, and

store it.

Alice and Bob now have all the information they need to communicate with each other. The following

picture shows what happens when Alice sends a message to Bob:

20

Alice uses the shared secret key, and a randomly generated nonce, to secure the message, and then

bundles this information together into the message she sends to Bob.

Bob can use the nonce and his (identical) shared secret key to decrypt the message.

This encryption system is made cryptographically secure by incorporating the ATSHA204 random

number generation chip (detailed in its corresponding section) to generate keys and nonces.

The encryption implementation and API can be found in the /crypto subfolder of the source

repository.

 [1] Bernstein, Daniel, Tanja Lange, and Peter Schwabe. Securing Communication. 1st ed. 2013. Web. 30

Apr. 2015.

21

5.6 ANDROID APP

Lead Engineer: Kevin Ward

The EagleChat Android App serves as the user interface for the EagleChat system, as well as fulfilling

other important functions. The EagleChat app is responsible for:

 Text message entry

 Text message display

 Contact management

 Public key exchange and update

 Source of content packets

 Destination of content packets

The app consists of several layers which handle a different area of

functionality. The block diagram to the right illustrates this

separation of concerns.

User Interface

The topmost layer of the EagleChat application is the user interface.

In Android applications, the user-facing part is usually a subclass of

the Android Activity class. An "activity" displays a user interface on

the phone or tablet device, handles events and inputs generated by

the user (e.g. screen taps, keyboard entry), and manages the app

lifecycle (e.g. creation, destruction). As such, most of the EagleChat

consists of various activity subclasses that allow to do one of several

tasks. The tasks a user can perform with the app include:

 Configuring an EagleChat peripheral

 Displaying a QR code representing the user's contact information

 Adding another user's contact information to app's contact database

 Choosing a contact to start a conversation

 Sending text messages

 Receiving text messages

Each of these tasks are represented by a dedicated activity subclass. The workflow is designed to be as

familiar and intuitive as possible, and should be self explanatory to anyone who has used a text

messaging app and registered for a service (e.g. website, app) before. Detailed instructions on how to

use the app are included in the Operation Instructions section.

In addition, the application provides a “BURN” feature, which erases all contents of the database (in

addition to the index file of the database), and then instructs the connected EagleChat device to BURN

as well, effectively “factory resetting” the device.

Database

22

All data about sent and received text messages and contacts is centralized in an SQLite database [1].

Android components are designed to access a data set through a "content provider", an object

conforming to a specific interface that exposes a standard set of data manipulation methods [2]. As

such, our database is wrapped in a content provider interface. This allows decoupling between the

activities which modify and consume messages and contacts and the exact method in which they are

stored.

Peregrine Communication Layer

This layer implements the Peregrine Host Protocol specification as described in the Host Communication

section. It is responsible for translating the desired action of another part of the app, for example,

retrieving the peripheral's public key, into the message format required by the protocol. These protocol

messages are sent to the USB driver to then be transmitted to the peripheral. The Peregrine layer also

receives responses from the peripheral and interprets them.

The Peregrine layer is implemented as an Android service and several helper classes. An Android service

is an application component that runs in the same process as the activities of the application, but has no

user interface. The service is started when an EagleChat peripheral is connected to the host device and

acts as the sole manager of the connection.

The service registers with the Database for notifications about new text messages, which are initially

marked as unsent. When notified of new messages available for sending, the service formats the

message data and transfers it to the peripheral.

When the peripheral receives and decrypts a packet, this data is transferred to the host's USB driver and

then to the Peregrine service. The service unpacks the data, and if the data represents a text message,

inserts a new row into the database. The service will also send an acknowledgement, or ACK, message

back to the sender.

The service expects to receive an ACK from the destination for each message that is sent, and maintains

a list of un-ACKed messages. After a timeout to allow for network latency, if a message has not been

ACKed it will be resent. Once ACKed, the message's database row is updated to reflect that it has been

successfully sent and received by the destination node.

Text message format

The app includes extra data about a text message, in addition to the destination address and the

message contents. This extra content is a sequence number, a 32-bit integer that is stored along with

the text message in the app's database and serves to distinguish one message from another. This

number is encoded in base64 format before transmission, and is decoded from base64 to a 32-bit

integer by the destination upon reception.

For example, a text message with sequence number 1 and contents "check out my message, bro", would

be encoded like this:

mAAAAAQ==check out my message, bro

23

The initial 'm' lets the receiver know this packet should be interpreted as a text message, the sequence

"AAAAAQ==" is the 32-bit sequence in base64 format, and the rest of the string is the message contents.

The sequence number is encoded in base64 to avoid the byte representing a newline to appear

accidentally, as that would cause the following contents to be interpreted as a new transmission.

ACK message format

When the service acknowledges a received text message, it sends an ACK message which references the

sequence number of the received message back to the sender.

Following on the previous example, the receiver of a message with sequence number 1 would reply with

an ACK message like this:

aAAAAAQ==ACK

Where the sequence number is encoded as before, but the initial character is 'a' to indicate the contents

should be interpreted as an acknowledgement. The content of the message after the sequence number

is not important, but having a human readable message is useful for debugging purposes.

USB Driver

The final component of the EagleChat application is the interface between the application and the

Android host's USB system. For this purposes, we use the open source library "usb-serial-for-android"

 [1] Developer.android.com, 'android.database.sqlite | Android Developers', 2015. [Online]. Available:
http://developer.android.com/reference/android/database/sqlite/package-summary.html. [Accessed:
01- May- 2015].
[2] Developer.android.com, 'Content Providers | Android Developers', 2015. [Online]. Available:
http://developer.android.com/guide/topics/providers/content-providers.html. [Accessed: 01- May-
2015].
[3] usb-serial-for-android. https://github.com/mik3y/usb-serial-for-android, 2015.

24

6 PROJECT CONSTRAINTS AND CONSIDERATIONS

All engineering projects must address certain factors external or tangential to the design of the system,

such as legal or political implications, as well manufacturability and environmental impact. The

EagleChat project was developed with the following constraints in mind.

Legal

As a product that uses encryption, EagleChat may be subject to export restrictions as defined by the

Bureau of Industry and Security [1]. However, we believe that as a project that simply uses an open

source encryption that is not distributed with the source, we believe the project would not actually fall

into a restricted category. The library AVR-NaCl could conceivably be restricted from being made

available to those in other nations, which could prevent successful replication of the project outside of

the United States. We have purposely chosed to make use of an existing library without modifications to

avoid falling into th category of restricted encryption software.

Social

As EagleChat is a fully open source and freely available design, it is intended to be equally available to all

people. We attempted to create a communication platform that is not controlled by any specific entity,

be that a government, corporation, or social group. We believe that EagleChat does not favor any social

group, ethnicity, or nation over another.

Political

There is currently a strong debate in the United States [2] and the U.K. [3] over the use of encryption to

protect the privacy of communications. The law enforcement agencies of these countries imply that

they have the right to inspect all the data and communications associated with their citizens, while

many in the technology industry believe that all citizens have the right to protect their digital assets

from prying eyes. As EagleChat is designed to allow secure, tamper-proof, private communication, we

have clearly taken sides with those who believe digital privacy is our right.

Manufacturability

EagleChat uses exclusively SMD components, and has a low component count. One of our goals when

designing the project was that the boards be inexpensive and easy to assemble – even by a private

party. In addition, in case the products could not be purchased, the components could be distributed as

a small kit – able to be put together by a single person.

Economics

The components of one board, as detailed in the cost section of the report, cost about 25 dollars in

total. We feel that the boards are quite economic and affordable by hobbyists.

[1] Bureau of Industry and Security, 'Commerce Control List - TELECOMMUNICATIONS AND
“INFORMATION SECURITY”', 2012.
[2] G. Gross and G. Gross, 'Obama administration's encryption concerns meant to start a debate',
PCWorld, 2015. [Online]. Available: http://www.pcworld.com/article/2896355/obama-administrations-
encryption-concerns-meant-to-start-a-debate.html. [Accessed: 01- May- 2015].

25

[3] S. Landau, 'What David Cameron Doesn’t Get', Lawfare, 2015. [Online]. Available:

http://www.lawfareblog.com/2015/01/what-david-cameron-doesnt-get/. [Accessed: 01- May- 2015].

26

A. TEAM MEETING MINUTES

1/15/15

 First day of class

 team assignments and discussions

 class expectations

1/20/15

 Discussed crytpo methods: Elliptic curve diffie-Helman and microcc

 Libraries: libsodium (crytpolibrary)

 Discussed final day of proposal prepration

 Also discussed major systems of project: RF, IR, Crypto, Application Layer, Packet, and USB

stack

 RF communicator: nRF240L01+Module

 Discussed possibilities of how to maintain anonymity so that if it’s determined messages are

sent, it’s not clear who the messages came from.

 ways to exchange QR codes

1/22/15

 Meeting cancelled

1/26/15

 Deliverables? What will we work towards?

 avoid unclarity with them

 What will be accomplished by next week? Board order, parts order, code widgets

 Top level flowchart

 Stumbling blocks

 RF ground plane

 problems with USB driver implementation

 How will we do prototyping

1/29/15

 How will we do prototyping

 Present app flowchart

27

 Protocols used/to use?

 AODV

 mesh network-existing

 board order

 ordering from mouser

 build chain setup

 difficulties with Atmel

 uploading code to board

 Next week

o parts in

o boards and some testing

o packaging dev

o Final report

2/2/15

 mesh network-existing

 Discussed more about crypto methods

 Elliptic curve diffie-Helman and microcc

 Discussed utilization of app

 Discussed expected issues with implementation of radio

o Size

o Range

o Interference

2/5/15

 Discussed utilization of app

 Talked planned implentation of routing

 problems that may arise

 system utilized for routing

 how many nodes to use

 Discussed USB and difficulties with CDC

 Discussed future packaging ideas

o dongle that attaches to phone

o container that looks similar to mint container

o velcro application

 updates on status of boards

28

2/9/15

 block diagram revamp

 document with data/measurements that support operation of subsystem

 how to break up subsystems

 power consumption and battery life

 think about specifications

o range of 100-200ft

o 21dB antenna

2/12/15

 Finalized specifications for presentation

 Continued working on code for radio and crypto

 Discussed issues with board costs

 Worked on budget and Sam presented costs for production to group

2/16/15

 Meeting cancelled

2/19/15

 App presentation

o Burn Function

o Adding Contacts

o Sending and receiving messages

o layouts

2/23/15

 Presented specifications

 Presented board

 Early build app overview

 Overview of QR code and adding new contacts

 Burn function

 Cipher used Salsa 20

 Prove encryption key erasure

 look around kernel to see deleted and overwritten file

 USB

 Be able to explain what to do/have working prototype next week

29

2/26/15

 updates on status of boards

 Discussed what to talk about during prototype demonstration

o SHA

o USB

o Radio

o Packaging

 Did more work on coding together for networking and routing

 Started to write some of the data necessary for supplemental documentation for design

proposal

 Discussed updated board design and how SRAM will be implemented

3/2/15

 Discussed crypto

 Discussed salt library

 Discussed board layout issues

 Went over demonstration

o have phone talk to board

o board will receive message from terminal and show encrypted text

o Prove that when it decrypts, a stored version of data is being sent

o radios communicating

 Discussed converting from C to C++ with library

3/5/15

 updates on status of boards

 Prepared final paperwork for prototype demonstration

 Demonstrated prototypes

3/9/15

 Meeting cancelled

3/12/15

 updates on status of boards

 Working to discover encryption overhead

o 30 bytes enc. overhead, 1 byte sender, 1 byte receiver, 16-bit CRC, and 16-bit packet

number/flags/extras.

30

 Discussed characteristic for design of final board and packaging

 clearance for antenna and end of screw on bottom of casing

 mounting hole diameter for antenna screws

 Discussed problems implementing acks

 perhaps receiver has to have delay in main loop for sender to get acks

3/16/15

 Spring break

3/19/15

 Spring break

3/23/15

 Considered how future implementation of AODV documents will be done for project

 Succesfully got acks working

o Problem was value used to store wait time for ack was not of correct type and also true

time to send ack is too much

 Working on possible reference implementation of AODV

 Discussed date for new board orders

3/26/15

 Continued work on implementation of FIFO

 Discussed sending packets longer than 66 bytes

 Discussed CRC chip problems

 when sending long packets, large amounts of time reported to set CRC okay register

 possible that use of outside CRC check will be used

 Issues sending packets and data over PuTTY, so talked about using microcom instead

 Discussed problems implementing main as a pure C file and how radio file must be cpp file due

to accessing of class meth-ods

3/30/15

 updates on status of boards

 Issues with sending packets

 dropped packet percentage lowered

 Layer progress

31

o at level 2

 Discussed progress on SRAM and issues setting correct pin assignments

4/6/15

 Made progress on routing

 working on notification that packet has been sent successfully between nodes

 Discussed possible distances or sending of packets

4/9/15

 updates on status of boards

 discussion for SSK use

 sent over the network to the receiver (because it's calculated from the sender's private key and

the receiver's public key)?

 Use nodes public key to compute using a private key?

 more FIFOs implemented for host messages

 More disscussion about how to code read and write functions for SRAM

 Discussed app demo for test run presentation

4/13/15

 Discussed routing progress

 Talked about issues with SRAM implementation

 Data being sent twice when it should be sent once

 seeing erroneous output

 Gave updates on group members

 Discussed moving code to C++

4/16/15

 Trial Project Presentation

 Tested range of devices

4/20/15

 Project Demo

 Discussed presentation

o What it will do?

 Routing reported finished

32

 Discussed casing

 Discussed polishing application

 fixing bugs and adding new features

 Working on high level Ack functionality

 Range test results roughly 240ft

 Future security holes

33

B. SCHEMATICS AND LAYOUTS

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

a

aaaaa
a

a

a
a

3
/9

/2
0
1
5

6
:3

1
:2

9
 P

M
C

:\U
sers\T

o
sh

ib
a\D

ro
p
b
o
x
\eag

le-ch
at-sh

ared
\p

ro
to

-d
ev

-b
o
ard

\M
ain

 S
ch

em
atic.S

ch
D

o
c

T
itle

S
ize:

N
u
m

b
er:

D
ate:

F
ile:

R
ev

isio
n
:

S
h
eet

o
f

T
im

e:

A
4

P
F

1
/S

Y
N

C
/O

C
0
B

/X
C

K
0

4
7

P
F

0
/S

Y
N

C
/O

C
0
A

4
6

P
A

0
/S

Y
N

C
/A

D
C

0
/A

D
C

8
/A

C
0
/A

R
E

F
6
2

P
A

1
/S

Y
N

C
/A

D
C

1
/A

D
C

9
/A

C
1

6
3

P
A

2
/S

Y
N

C
/A

S
Y

N
C

/A
D

C
2
/A

D
C

1
0
/A

C
2

6
4

P
A

3
/S

Y
N

C
/A

D
C

3
/A

D
C

1
1
/A

C
3

1

P
A

4
/S

Y
N

C
/A

D
C

4
/A

D
C

1
2
/A

C
4

2

P
A

5
/S

Y
N

C
/A

D
C

5
/A

D
C

1
3
/A

C
5

3

P
C

3
/S

Y
N

C
/O

C
0
D

/O
C

0
B

H
S

/T
X

D
0
/S

C
L

O
U

T
1
9

P
C

4
/S

Y
N

C
/O

C
0
C

L
S

/O
C

1
A

/S
S

2
0

P
C

5
/S

Y
N

C
/O

C
0
C

H
S

/O
C

1
B

/X
C

K
1
/M

O
S

I
2
1

P
C

6
/S

Y
N

C
/O

C
0
D

L
S

/R
X

D
1
/M

IS
O

/R
T

C
O

U
T

2
2

P
D

0
/S

Y
N

C
/O

C
0
A

2
6

P
D

1
/S

Y
N

C
/O

C
0
B

/X
C

K
0

2
7

P
D

2
/S

Y
N

C
/A

S
Y

N
C

/O
C

0
C

/R
X

D
0

2
8

P
D

3
/S

Y
N

C
/O

C
0
D

/T
X

D
0

2
9

P
D

4
/S

Y
N

C
/O

C
1
A

/S
S

3
0

P
D

6
/S

Y
N

C
/D

-/R
X

D
1
/M

IS
O

3
2

P
D

7
/S

Y
N

C
/D

+
/T

X
D

1
/S

C
K

/C
L

K
P

E
R

/E
V

O
U

T
3
3

P
E

2
/S

Y
N

C
/A

S
Y

N
C

/O
C

0
C

/R
X

D
0
/S

D
A

O
U

T
3
8

P
E

3
/S

Y
N

C
/O

C
0
D

/T
X

D
0
/S

L
C

O
U

T
3
9

P
E

4
/S

Y
N

C
/O

C
1
A

/S
S

4
0

P
E

5
/S

Y
N

C
/O

C
1
B

/X
C

K
1
/M

O
S
I

4
1

P
E

0
/S

Y
N

C
/O

C
0
A

/S
D

A
/S

D
A

IN
3
6

P
A

6
/S

Y
N

C
/A

D
C

6
/A

D
C

1
4
/A

C
6
/A

C
1
O

U
T

4

P
A

7
/S

Y
N

C
/A

D
C

7
/A

D
C

1
5
/A

C
7
/A

C
0
O

U
T

5

P
B

7
/S

Y
N

C
/A

D
C

1
5
/A

D
C

7
/A

C
7
/A

C
0
O

U
T

/T
D

O
1
3

P
C

0
/S

Y
N

C
/O

C
0
A

/O
C

0
A

L
S

/S
D

A
/S

D
A

IN
1
6

P
C

1
/S

Y
N

C
/O

C
0
B

/O
C

0
A

H
S

/X
C

K
0
/S

C
L

/S
C

L
IN

1
7

P
C

2
/S

Y
N

C
/A

S
Y

N
C

/O
C

0
C

/O
C

0
B

L
S

/R
X

D
0
/S

D
A

O
U

T
1
8

P
D

5
/S

Y
N

C
/O

C
1
B

/X
C

K
1
/M

O
S

I
3
1

P
E

1
/S

Y
N

C
/O

C
0
B

/X
C

K
0
/S

C
L

/S
C

L
IN

3
7

P
F

4
/S

Y
N

C
5
0

P
F

5
/S

Y
N

C
5
1

P
F

7
/S

Y
N

C
5
5

P
F

2
/S

Y
N

C
/A

S
Y

N
C

/O
C

0
C

/R
X

D
0

4
8

P
B

1
/S

Y
N

C
/A

D
C

9
/A

D
C

1
/A

C
1

7

P
B

6
/S

Y
N

C
/A

D
C

1
4
/A

D
C

6
/A

C
6
/A

C
1
O

U
T

/T
C

K
1
2

P
E

7
/S

Y
N

C
/T

X
D

1
/S

C
K

/T
O

S
C

1
/C

L
K

P
E

R
/E

V
O

U
T

4
3

P
B

0
/S

Y
N

C
/A

D
C

8
/A

D
C

0
/A

C
0
/A

R
E

F
6

P
B

2
/S

Y
N

C
/A

S
Y

N
C

/A
D

C
1
0
/A

D
C

2
/A

C
2
/D

A
C

0
8

P
B

5
/S

Y
N

C
/A

D
C

1
3
/A

D
C

5
/A

C
5
/T

D
I

1
1

P
F

6
/S

Y
N

C
5
4

P
B

4
/S

Y
N

C
/A

D
C

1
2
/A

D
C

4
/A

C
4
/T

M
S

1
0

P
C

7
/S

Y
N

C
/O

C
0
D

H
S

/T
X

D
1
/S

C
K

/C
L

K
P

E
R

/E
V

O
U

T
2
3

P
E

6
/S

Y
N

C
/R

X
D

1
/M

IS
O

/T
O

S
C

2
4
2

P
B

3
/S

Y
N

C
/A

D
C

1
1
/A

D
C

3
/A

C
3
/D

A
C

1
9

P
F

3
/S

Y
N

C
/O

C
0
D

/T
X

D
0

4
9

P
R

1
/S

Y
N

C
/X

T
A

L
1

5
9

R
E

S
E

T
/P

D
I_

C
L

O
C

K
5
7

P
D

I/P
D

I_
D

A
T

A
5
6

P
R

0
/S

Y
N

C
/X

T
A

L
2

5
8

U
1
A

A
T

x
m

eg
a1

9
2
A

3
U

-A
U

A
V

C
C

6
1

G
N

D
6
0

V
C

C
4
5

V
C

C
5
3

G
N

D
2
4

G
N

D
3
4

V
C

C
1
5

V
C

C
2
5

G
N

D
4
4

G
N

D
5
2

V
C

C
3
5

G
N

D
1
4

U
1
B

A
T

x
m

eg
a1

9
2
A

3
U

-A
U

1

O
U

T
2

IN
3

O
U

T
4

G
N

D

U
2

T
L

V
1
1
1
7
L

V
3
3
D

C
Y

T

V
C

C

G
N

D

G
N

D

1
0
u
H

L
1

In
d
u
cto

r

1
0
u
F

C
1

C
ap

3

V
C

C

G
N

D

G
N

D

1
0
0
n
F

C
2

C
ap

1
0
0
n
F

C
3

C
ap

C
S

1

S
O

2

N
C

3
V

S
S

4

S
I

5
S
C

K
6

H
O

L
D

7

V
C

C
8

U
3

2
3
K

6
4
0
-I/S

T

1
2

3
4

S
W

1

R
eset

G
N

D

R
1

1
0
K

R
2

1
0
0
R

V
C

C
2

1
2

3
4

S
W

2

U
S

B

G
N

D R
4

1
0
0
k

R
3

1
0
0
R

V
C

C
2

1
2

3
4

5
6

P
1

P
D

I

V
C

C
2

V
C

C
2

G
N

D

V
C

C
2

G
N

D

R
S
T

1

D
IO

0
2

3
.3

V
8

G
N

D
9

A
N

T
1
0

G
N

D
1
1

S
C

K
1
2

M
IS

O
1
3

M
O

S
I

1
4

S
S

1
5

D
IO

1
3

D
IO

2
4

D
IO

3
5

D
IO

4
6

D
IO

5
7

U
5

R
F
M

6
9
H

W

G
N

D

V
C

C

G
N

D

R
5

1
0
K

R
6

1
0
K

V
C

C
2

V
C

C
2

1

A
n
t1

A
N

T
8
6
8
P

W
L

P

P
C

0
P
C

1

P
C

4
P
C

5
P
C

6
P
C

7

P
D

0
P
D

1
P
D

2
P
D

3
P
D

4
P
D

5
P
D

6
P
D

7

P
E

3
P
E

4
P
E

5
P
E

6
P
E

7

P
F

0
P
F

1
P
F

2
P
F

3
P
F

4
P
F

5

P
F

7

P
A

0

R
7

1
0
0
k

R
8

1
5
0
k

G
N

D

5
V

1
0
0
n
F

C
6

C
ap 1

0
0
n
F

C
7

C
ap 1

0
0
n
F

C
8

C
ap 1

0
0
u
F

C
9

C
ap

2

V
C

C
2

1
0
0
n
F

C
1
0

C
ap

V
C

C
2

1
0
0
n
F

C
5

C
ap

G
N

D
4

V
C

C
8

S
C

L
6

S
D

A
5

U
4

A
T

S
H

A
2
0
4
A

D
+

D
-

2 14 35

P
2

U
S
B

EagleChat Board v1.0 Schematic

34

[APPENDIX C]

R
8

L
1

C
1

R
7

1

C9

USB

2

U
2

U
1

R5
C

2

C
5

R4

C
8

R
6

D
F

U

C
3

R
e

s
e

t

R3

C
7

U4

EagleChat

R
1

R
2

C
6

C1a

Eaglea hat

EagleChat Board v1.0 Top Layer

EagleChat Board v1.0 Bottom Layer

35

C. COST AND BILL OF MATERIALS

Bill of Materials for EagleChat Board v1.0

Mfr. # Manufacturer Description Part # Qty.

GRM31CE70G107ME39L Murata
SMD/SMT 1206 100uF 4volts

X7U + - 20%
C9 1

ADTSM63SVTR Apem
Tactile Switches SW TACT

SPST
SW1, SW2 2

ANT-868-PW-LP Linx Technologies Antenna 1/4 Wave 868MHz ANT1 1

VJ0805G106KXQTW1BC Vishay
SMD/SMT 0805 10uF 10volts

X5R 10%
C1 1

VJ0805Y104MXXAC Vishay
SMD/SMT .1uF 25volts X7R

20%

C2, C3, C5-8,

C10
6

MLZ2012N100L TDK Fixed Inductor 500mA 10uH L1 1

WCR0603-10KFA TT Electronics
SMD 0603 10 KOhm 1% Tol

AEC-Q200
R1, R5, R6 3

CRCW0603100RFKEA Vishay SMD 1/10watt 100ohms 1% R2, R3 2

CRCW0603100KFKEA Vishay SMD 1/10watt 100Kohms 1% R4, R7 2

CRCW0603150KFKEA Vishay SMD 1/10watt 150Kohms 1% R8 1

ATxmega192A3U-AU Atmel MCU AVR8 192KB FLSH 16KB U1 1

TLV1117LV33DCYR Texas Instruments
LDO Voltage Regulators 1A

3.3V
U2 1

23K640-I/ST Microchip SRAM 64K 8K X 8 2.7V U3 1

ATSHA204A-XHDA-T Atmel CryptAuthEE SHA256 TWI U4 1

36

Prototyping costs

 Electronic ICs and passive components - $79.34

 RFM69HW radio module x 4 - $19.10

 PCBs x 6 - $29.00

Total: $127.44

Final design construction costs

 Electronic ICs and passive components - $94.29

 RFM69HW radio module x 6 - $27.70

 PCB x 6 - $22.90

Total: $144.89

Component expenses per unit

 Electronic ICs and passive components - $15.72

 RFM69HW radio module - $4.62

 PCB - $3.82

Total: $24.15

Total project cost: $286.80

