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Abstract 

 Elizabethkingia meningoseptica is an opportunistic pathogen that is classified as Gram 

negative, rod-shaped bacterium. Notably, E. meningoseptica is capable of causing life-threating 

infections in infants and immunocompromised individuals. This bacterium is resistant to most β-

lactam antibiotics that physicians habitually use to treat Gram-negative bacterial infections. In 

this research project, our aim is to further understand and characterize the specific genes 

associated with antibiotic resistance in E. meningoseptica bacteria; specifically the genes that 

code for the β-lactamase enzymes capable of altering β-lactam antibiotics and thereby rendering 

them an ineffective treatment against such infections. In order to combat this multidrug-

resistance to antibiotics seen in countless microorganisms such as E. meningoseptica, research is 

needed to understand the function of β-lactamase enzymes and how they contribute to this 

resistance. Therefore, the purpose of this research project is to investigate the predicted 1872 β-

lactamase gene, bla1872, that could be associated with antibiotic resistance in E. meningoseptica, 

clone that gene into expression, and then characterize this gene in order to further understand its 

function and transcriptional level of regulation. 

 

Introduction 

 The published genomic sequence of Elizabethkingia meningoseptica ATCC 13253T strain 

shows there are 21 uncharacterized, putative β-lactamase genes that may be associated with the 

organism’s multidrug-resistant phenotype [23]. This research project aims to identify and 

characterize 1 of the 21 uncharacterized, putative β-lactamase genes encoded by E. 

meningoseptica. In my small subsection research project, we sought to isolate the region of E. 

meningoseptica that contains the 1872 carbapenem β-lactamase, bla1872.  
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 The following subsections will further explain the background and clinical relevance of 

E. meningoseptica, as well as expand upon what β-lactam antibiotics and β-lactamase enzymes 

are, how they work, and how bacteria may come to exhibit an antibiotic resistant phenotype. 

 

Background: 

 The genus Elizabethkingia (formerly known as Chryseobacterium and Flavobacterium) 

is a member of the Bacteroidetes phylum and belongs to the Flavobacteriaceae family [19]. 

Originally named Flavobacterium, this genus was categorized and thereby renamed 

Chryseobacterium in 1994; the re-categorization and renaming to Elizabethkingia occurred in 

2005 [19, 32]. This bacterial genus derives its name from Elizabeth O. King who, alongside her 

colleagues, was the first to describe Elizabethkingia bacterium associated with infant meningitis 

in 1958 [20]. Currently, the Elizabethkingia genus contains 5 separate species: E. 

meningoseptica, E. miricola, E. anophelis, E. sp. BM10, and E. endophytica [18, 19, 22].  

 All Elizabethkingia species are classified as rod-shaped Gram-negative bacteria that are 

non-spore-forming and non-motile [19]. Their colonies are circular, white-yellow in color, yet 

non-pigmented, semi-translucent, shiny with entire edges, and range in size from 1µm to 2µm 

[19]. Additionally, good growth is observed on TSA and nutrient agar plates at temperatures 

ranging from 25-37°C [19].  

 Elizabethkingia meningoseptica was first isolated and characterized in 1958 from a case 

of neonatal meningitis, but the journal article regarding their findings was not published until 

March of 1959 [20]. Most infections of this bacterial strain can be found in a hospital setting; 

however, this bacterium is ubiquitous and has also been found in soil, freshwater, marine 

environments, and on domesticated animals [6]. Testing, interpretation, and identification via 
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diagnostic and ancillary testing should be undergone with caution because E. meningoseptica is 

often misdiagnosed as another Elizabethkingia species. 

 

Clinical Relevance and Recent Outbreaks: 

 Elizabethkingia species are opportunistic pathogens that typically infect neonates and 

immunocompromised adults. Several different antibiotics have been used to treat such infections. 

However, most infections caused by Elizabethkingia species are unresponsive to habitually used 

antibiotic therapies because these strains exhibit a multidrug-resistance (MDR) phenotype. This 

MDR phenotype is strongly selected for as antibiotics are more widely used. 

 Although ubiquitous in nature, Elizabethkingia infections are usually only seen on 

occasion. Typically, about 5-10 Elizabethkingia infections are reported per year in each state of 

the United States [10]. Normally, these recorded cases resulted in meningitis of neonates; or 

meningitis, blood infections, or respiratory infections in immunocompromised children and 

adults [10]. However, the number of Elizabethkingia bacterial infections seen in a clinical setting 

has increased drastically within the last year. According to the Center for Disease Control and 

Prevention (CDC) website, there have been two separate outbreaks of Elizabethkingia bacterial 

infections in the United States Midwest region since November of 2015; and, as of April of 

2016, there have been 59 confirmed cases of Elizabethkingia infections in Wisconsin, with 18 of 

those cases resulting in death [10]. Likewise, Michigan and Illinois both have one confirmed 

case of an Elizabethkingia infection, and both of these cases resulted in the deaths of the patients 

involved [10]. Notably, the majority of the patients in these reported cases are over the age of 65 

and all have underlying health problems that likely put them at an increased risk of contracting 

bacterial infections [10].  
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 Early identification and treatment for such outbreaks is imperative for the survival of 

infected patients. In order to determine which species of Elizabethkingia is responsible for the 

outbreak, the CDC utilizes two separate methods to differentiate between the three species: (1) a 

type of mass spectrometer called MALDI-TOF which is capable of detecting the “protein 

fingerprints” of the bacterium; and (2) optical mapping [10]. With the use of this technology, the 

CDC believes that Elizabethkingia anophelis is the species behind the recent outbreaks 

throughout the Midwestern region of the United States [10]. As of April of 2016, the CDC has 

yet to determine the source of these outbreaks. 

 

Β-Lactam Antibiotics: 

 Antimicrobial agents, which are also called antibiotics, have been used for the past 75 

years as a means of combating bacterial infections in humans and domesticated animals [3]. A 

large majority of these antibiotics function by targeting bacteria cell walls or cell membranes in 

such a way that they disrupt the cell and diminish its viability by inhibiting bacterial cell wall 

synthesis; however there are some antimicrobial agents that target a different part of the 

bacteria—besides the cell wall or call membrane—in order to disrupt the bacteria’s cellular 

functions beyond repair. Although there are several types of antimicrobial agents, β-lactam 

antibiotics—such as penicillins, cephalosporins, carbapenems, and monobactams—are often the 

first antimicrobial agent of choice by physicians for the treatment of Gram-negative bacterial 

infections, and they are also the most relevant for this research project (Table 1) [8, 21]. The 

effectiveness of these β-lactam antibiotics is waning as bacteria are evolving and utilizing drug-

inactivating β-lactamase enzymes; because of this, increasing multidrug resistance is a constant 

and legitimate concern for medical professionals and researchers that are attempting to develop 

novel and overall more effective antimicrobial agents that will combat such bacterial infections. 
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Table 1. Antimicrobial agents used in domesticated animals or humans that target the formation of 
a cell wall or cell membrane in the infecting bacteria. 

Class Subclass Target Use Examples  
β-lactams         

  Penicillins Cell Wall Animal Benzylpenicillin, ticarcillin, amoxicillin 
+/- clavulanic acid 

    Cell Wall Human 
Penicillin, ticarcillin, pipercillin, 
amoxicillin +/- clavulanic acid, 

piperacillin +/- tazobactam 
  Cephalosporins Cell Wall Animal Cephalexin, cephalothin, ceftiofur 

    Cell Wall Human Cephalexin, cephalothin, ceftasidime, 
cefepime 

  Carbapenems Cell Wall Human Doripenem, ertapenem, imipenem, 
cefepime 

  Monobactams Cell Wall Human Aztreonam 
Glycopeptides   Cell Wall Animal Avoparcin 

    Cell Wall Human Vanomycin, teicoplanin, telavancin 
Phosphonic 

Acid   Cell Wall Human Fosfomycin 

Lipopeptides   Cell 
Wall/Membrane Human Daptomycin 

Peptide 
antibiotics   Cell Membrane Human Polymyxin B, colistin (polymyxin E) 

Ionophores   Cell Membrane Animal Monensin, salinomycin 
 

 These β-lactam antibiotics operate as enzymes that act to disrupt the last step of bacterial 

cell wall synthesis. Specifically, these antibiotics target proteins called penicillin-binding 

proteins, also called PBPs, which are involved in the final steps of peptidoglycan synthesis—

peptidoglycan molecules are one of the main components in bacterial cell walls  [13]. These 

PBPs are proteins that exhibit a high binding affinity for penicillin and other β-lactam antibiotics 

and will bind covalently to such molecules [11, 31]. Thus, by binding to these antimicrobial 

agents, PBPs cannot perform their cellular functions; and, the cell wall synthesis, and thereby the 

cellular functions, of the bacterial cell are disrupted beyond repair—leading to the death of the 

microorganism.  
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 PBP is a major component in rod-shaped bacteria (bacilli), but it is only a minor 

component in sphere-shaped bacteria (cocci) [13]. Additionally, most helical-shaped bacteria 

have a similar PBP pattern comparable to that of rod-shaped bacteria [13]. However, these PBPs 

differ between different bacterial strains or mutants. 

 

Antimicrobial resistance mechanisms: 

 Over the course of evolution, natural selection has selected for bacterial strains that may 

exhibit one or several mechanisms to overcome antibiotics and demonstrate multi-drug 

resistance. Fundamentally, all antibiotic resistance mechanisms aim to prevent the antibiotic drug 

for binding to its target receptor in the infecting bacteria. Examples of these mechanisms include 

the following: (1) drug efflux, (2) inactivation of antibiotic drugs, (3) changes to the membrane, 

and (4) altering the cellular targets of antibiotic drugs. The combination of these different 

antibiotic resistant mechanisms contribute to the complexity of the multi-drug phenotype, which 

can contribute to the difficulty in treating bacterial infections caused by drug-resistant 

microorganisms. 

 E. meningoseptica mainly uses β-lactamase enzymes—which are the most prevalent 

method utilized by bacteria to combat β-lactam antimicrobials. β-lactamase enzymes are 

effective at creating an antimicrobial drug resistance because β-lactam antibiotics can be altered 

and rendered ineffective since these enzymes are capable of cleaving a molecular bond in the 

antibiotic and therefore opening the β-lactam ring. Once altered, β-lactam antibiotics are no 

longer capable of binding to their target receptor within the bacterial cell. 

 Notably, E. meningoseptica ATCC 13253T exhibits a multi-drug resistant phenotype and 

has been shown to be resistant to 19 of the 30 antibiotics listed on Table 2 [7, 9, 20, 24]. 
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Table 2: E. meningoseptica ATCC 13253T Antimicrobial Susceptibility 

Antibiotic Susceptibility 
 

Antibiotic Susceptibility 
Amikacin R 

 
Linezolid R 

Aztreonam R 
 

Minocycline S 
Cefamandole R 

 
Neomycin R 

Cefepime R 
 

Oxacillin R 
Cefoxitin R 

 
Piperacillin S 

Ceftazidime R 
 

Piperacillin/Tazobactam S 
Ceftriaxone R 

 
Quinupristin/Dalfopristin R 

Chloramphenicol R 
 

Rifampin S 
Ciprofloxacin S 

 
Spectinomycin R 

Clindamycin S 
 

Streptomycin R 
Erythromycin I 

 
Tetracycline R 

Fusidic Acid S 
 

Ticarcillin/Clavulanic Acid R 
Gentamicin R 

 
Tigecycline R 

Levofloxacin S 
 

Trimethoprim/Sulfamethoxazole S 
Lincomycin R 

 
Vancomycin S 

Abbreviations: R = resistant; S = susceptible; I = intermediate-resistance 
 

 

Efflux pumps: 

 One mechanism that microorganisms utilize in order to evade antibiotics is a drug efflux 

pump. Drug efflux pumps actively transport antibiotic drugs out of the bacterial cell so that these 

antimicrobial drugs are incapable of binding to their target receptors inside the cell. There are 

different types of efflux pumps, but they all can be placed into one of five different groups: (1) 

resistance-nodulation-division family (RND), (2) major facilitator superfamily (MFS), (3) ATP-

binding cassette family (ABC), (4) small multidrug-resistance family (SMR), and (5) multidrug 

and toxic compound extrusion family (MATE) [24].  

 In Gram-negative specimens, like E. meningoseptica, the RND-type efflux pumps are 

what contribute in their resistance to a wide range of antibiotics [25]. The RND-type efflux 

pumps consist of three membrane complexes: an outer membrane complex, a membrane fusion 



	 9	

protein, and a resistance-nodulation-division transport protein. [27]. All three of these 

membranes work together in order to create a proton-drug antiport that can pump the antibiotic 

molecules out of the bacterial cell [27]. 

 

β-Lactamase Enzymes: 

 Numerous strains of bacteria produce β-lactamase enzymes that can result in a multidrug-

resistant phenotype in that bacterium. Essentially, these β-lactamases hydrolyze the β-lactam ring 

found in all β-lactam antibiotics and thereby inactive these drugs, rendering them ineffective 

treatments.  

 In regards to E. meningoseptica ATCC 13253T, three β-lactamase enzymes have already 

been characterized: blaB class B metallo-β-lactamase in 1998 (Figure 1), CME-1 class A serine 

β-lactamase in 1999, and blaGOB a class B metallo-β-lactamase in 2000 [4, 5, 12, 18, 29]. 

However, according to the published genomic sequence of Elizabethkingia meningoseptica 

ATCC 13253T strain there are 21 uncharacterized, putative β-lactamase genes that may be 

associated with the organism’s multidrug-resistant phenotype [23].  

Figure 1. Crystal structure of BlaB  β-lactamase from E. meningoseptica. In this figure, the enzyme 
is in complex with D-captopril [12]. 
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Classifying β-Lactamase Enzymes: 

 β-lactamase enzymes can be classified and named on the basis of their functional 

properties and molecular characteristics. There are four different molecular classes that a β-

lactamase enzyme can be sorted into: A, B, C, and D [9]. β-lactamase enzymes are typically 

classified into one of these four classes upon bioinformatics analysis of the bacterial genome; 

however, these classes are then confirmed using biochemical techniques in the laboratory. 

 Classes A, C, and D are all serine β-lactamase enzymes that have a conserved serine 

residue in their active site to coordinate and align their antibiotic substrate in order to 

successfully hydrolyze the β-lactam ring [9]. Furthermore, Classes A, C, and D β-lactamase 

enzymes are differentiated depending on their size and conserved, characteristic amino acid 

sequence motifs. For example, Class C β-lactamases are the largest of the three: they typically 

have a molecular size greater than 35 kDa, whereas Class A and Class C β-lactamases have a 

molecular size less than or equal to 31 kDa. Additionally, Class A, C, and D β-lactamases can 

also be differentiated by examining their characteristic motifs: Class A β-lactamases will have 

S70TSK, S130DN, E166XXLN, and K234TG motifs; Class C β-lactamases will have S64TSK, 

Y150AN, and K315TG motifs; Class D β-lactamases will have S70TFK, S118XV, Y144GN, and 

K216TG motifs [1, 2, 5, 14, 15, 16, 17, 26, 30]. 

 Class B β-lactamase enzymes are all metallo-β-lactamases that have 1 or 2 Zn2+ atoms at 

their active site to coordinate and align their antibiotic substrate in order to successfully 

hydrolyze the β-lactam ring [9]. Additionally, there are 3 different subclasses within Class B β-

lactamases; but since our putative β-lactamase for this research project does not fall under Class 

B, we will not expand on its subclasses. 
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 The β-lactamase we are manipulating in this research project, bla1872, is a putative Class 

C serine-β-lactamase. Class C β-lactamases are considered cephalosporinases because they 

actively bind and cleave the β-lactam ring in cephalosporin antibiotic drugs [9]. 

  

Materials and Methods 

 For this experiment, we ended up focusing our attention on isolating and cloning the 

specific region of E. meningoseptica that contains the 1872 carbapenem β-lactamase, bla1872. I 

was given a preliminary plasmid (see below) that contained the coding sequence, plus 500 bases 

up and downstream, from which we wanted to transfer the coding sequence into a new vector.  

By taking the original plasmid and creating a new clone, we will then be capable of controlling 

the induction of the promoter for the bla1872 gene with the use of IPTG. The steps we used to 

obtain our eventual pSKB3-Em1872 clone are outline below (Figure 2). 

 

Figure 2. Procedural steps used to obtain the pSKB3-Em1872 clone.  

 
 

Material: 

 I was assigned the pSTV28-Em1872 plasmid at the beginning of this research project. 

 

1st Alkaline Lysis Plasmid Prep: 

 We first centrifuged the pSTV28-Em1872 bacterial culture sample. The supernatant was 

discarded and the bacterial pellet was kept. We then added 100.0 µL of Solution I (Tris buffer 

and RNase) to tube containing the pellet and subsequently suspended the pellet with the use of a 
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vortex. Next, we added 200.0 µL of Solution II (SDS, NaOH) to the tube and mixed the contents 

by gentle inversion. Similarly, 150.0 µL of Solution III (Potassium Acetate) was then added to 

the tube and also mixed by inversion. The sample was then centrifuged and the supernatant was 

removed and placed into a new tube; the pellet was discarded.  Once the supernatant was placed 

into a new tube, 500.0 µL of 95% ethanol was added, and then contents were again mixed by 

gentle inversion. Our sample was then placed in the freezer at -20°C overnight. 

 The following day, the samples were centrifuged. The pellet that resulted was kept, and 

the supernatant was discarded. Next, 500.0 µL of 70% ethanol was added and the sample was 

then centrifuged once more. Once again, the supernatant was then discarded and the pellet was 

kept. Subsequently, 50.0 µL of sterile H2O was added to the sample. Finally, the sample was 

placed in a water bath at 37°C for 10 minutes and then returned to freezer. 

 

PCR and Gel Check: 

 Polymerase chain reaction (PCR) amplification was used in order to increase the amount 

of the bla1872 coding sequence we had to manipulate. Three separate tubes, with different 

combination of reagents, were prepared and then allowed to undergo PCR (Table 3). 

 After amplification was complete, a 1% agarose gel was made with 50.0 mL of TBE and 

0.50g of agarose powder. Samples from each of the three were loaded alongside a 1 Kb+ DNA 

ladder in order to verify that the bla1872 coding sequence was amplified correctly. 
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Table 3. PCR set-up/reagent amounts used. 

  Tube 1 Tube 2 Tube 3 
dH2O 31.0 µL 31.0 µL 29.5 µL 
5X phusion buffer 10.0 µL 10.0 µL 10.0 µL 
10mM dNTP 1.0 µL 1.0 µL 1.0 µL 
pSTV28-Em1872 plasmid  1.0 µL 1.0 µL 1.0 µL 
10µM Fwd Primer 2.5 µL 2.5 µL 2.5 µL 
10µM Rev Primer 2.5 µL 2.5 µL 2.5 µL 
50.0 mM MgCl2 0.0 µL 1.5 µL 1.5 µL 
DMSO 1.5 µL 0.0 µL 1.5 µL 
Phusion DNA taq 0.5 µL 0.5 µL 0.5 µL 

 

 

1st Restriction Digest: 

 All three tubes of PCR product were combined, and water was added to the sample in 

order to reach a total volume of 500.0 µL. Next, 500.0 µL of phenyl-chloroform-isoamyl alcohol 

was added. Then the sample was placed on a rocker, centrifuged, and the aqueous phase was 

removed and placed into a new tube. 500.0 µL of chloroform-isoamyl alcohol was added to the 

sample, it was placed on a rocker, and then centrifuged. Once the second aqueous phase was 

removed and placed into a new tube, 1.0 µL of glycogen blue and 1.0 mL of 95% EtOH was 

added to the sample and placed in the freezer at - 20°C. 

 The following day, the thawed sample was centrifuged and the supernatant was 

discarded. 500.0 µL of 70% EtOH was added to the pellet and the sample was centrifuged again, 

with the supernatant being discarded. Our PCR pellet was then re-suspended in 30.0 µL of sterile 

H2O and our 1st restriction digest was set-up (See Table 4). Finally, the digest tube was placed in 

a 37°C water bath overnight. The next morning the sample was returned to the freezer. 
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Table 4. Restriction Digest #1 Set-up/Contents. 

dH2O 44.5 µL 
10X cutsmart buffer 7.0 µL 
bla1872 PCR product  15.0 µL 
Bam HI-HF 1.75 µL 
SacI-HF 1.75 µL 

 

 

Ligation: 

 In order to set up our ligation, we first had to clean up our digest product. Water was 

added to the sample in order to reach a total volume of 100.0 µL. Next, 500.0 µL of PB buffer 

was added and our sample was loaded into the DNA cleanup column. Once in the column, the 

sample was centrifuged and the flow-through liquid was discarded. Then, 750.0 µL of PE buffer 

was added and the same was again centrifuged, with the flow-through liquid being discarded. 

The DNA sample was the eluted off the column with 30.0 µL of sterile H2O. 

 Once the bla1872 DNA sample was purified, our ligation was set-up (Table 5) and 

allowed to sit at room temperature overnight.  

 

Table 5. Ligation Set-up/Contents. 

dH2O 11.0 µL 
10X ligation buffer 2.0 µL 
bla1872 digest sample 4.0 µL 
T4 DNA ligase 1.0 µL 
SKB3 vector 2.0 µL 

 

 

Transformation: 

 To set up our transformation, 2.0 µL of our ligation solution was added to 20.0 µL of our 

competent cells (E. coli DH5α) and allowed to incubate on ice for 30 minutes. Next, we heat-

shocked our sample for 30 sec. in a 42° C water bath and the sample was then immediately 

placed back on ice. Subsequently, 200.0 µL of SOC media was added to the sample and it was 
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placed in the shaker at 37° Celsius for 2 hours. Finally, 100.0 µL of the sample was plated onto a 

kanamycin agarose plate and allowed to grow overnight in the incubator set at 37°C.  

 Ten colonies were selected the next day and placed into separate tubes containing LB 

broth with kanamycin. Samples were allowed to grow overnight in the incubator set at 37°C. 
 

2nd Alkaline Lysis Plasmid Prep: 

 The same steps used in the 1st Alkaline Lysis Plasmid Prep were also used in this step 

(see above). However, instead of using pSTV28-Em1872 bacterial culture, we used the selected 

colonies from our transformation that hopefully contain the pSKB3-Em1872 clone. 
 

2nd Restriction Digest/Gel Check: 

 A second restriction digest was set up in order to determine if we had isolated the 

pSKB3-Em1872 clone (see Table 6). The 2nd digest tube was placed in a 37°C water bath 

overnight and then placed in the freezer at - 20°C. 

 

Table 6. Restriction Digest #1 Set-up/Contents 

dH2O 9.0 µL 
10X cutsmart buffer 2.0 µL 
pSKB3-Em1872 plasmid 5.0 µL 
XhoI 2.0 µL 
XbaI 2.0  µL   

  

 Next, a 1% agarose gel was made with 50.0 mL of TBE and 0.50g of agarose powder. 

The sample from the digest solution was loaded alongside a 1 Kb+ DNA ladder in order to verify 

that the pSKB3-Em1872 clone was transformed correctly. 
 

Sequencing: 

 In order to verify that we did indeed isolate the pSKB3-Em1872 clone, a 20.0 µL DNA 

sample of our pSKB3-Em1872 clone was sent to the OSU Biochemistry and Molecular Biology 
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Recombinant DNA and Protein Core Facility alongside the clone’s T7 promoter and 7T 

terminator. Finally, we will know if we created our new clone by comparing the genomic 

sequence of our putative pSKB3-Em1872 clone and the published genomic sequence of E. 

meningoseptica ATCC 13253T [23]. 

 

Results 

 In order to verify that the bla1872 coding sequence was amplified correctly, a 1% agarose 

gel was loaded with all 3 of our PCR samples alongside a 1 Kb+ DNA ladder. The bla1872 

coding sequence is approximately 1545 base pairs (bp), and we see this same size band in the 

lanes containing the PCR contents of Tube 1, Tube 2, and Tube 3—which indicated that we 

amplified our DNA successfully (Figure 3). 

 

Figure 3. Post-PCR agarose gel. Bands at approximately 1545 bp indicate that we successfully 
amplified the pSTV28-Em1872 DNA. 

 

 

 

 In order to determine if our pSKB3-Em1872 plasmid was successfully obtained, a 1% 

agarose gel was loaded with all 10 of our Restriction Digest #2 samples alongside a 1 kb plus 
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DNA ladder. Because we cleaved the pSKB3-Em1872 plasmid with at XhoI and XbaI, we 

expect to see two bands at approximately 5200 bp and 1700 bp if our transformation was 

successful.  In lanes contain Tube 7 and Tube 9 we see two bands at 1700 bp (the bla1872 insert) 

and 5200 bp (the remaining E. coli DNA)—which indicates that we amplified our obtained a 

putative pSKB3-Em1872 clone (Figure 4). 

 Finally, upon comparing the genomic sequence of our putative pSKB3-Em1872 clone 

alongside the published genomic sequence of E. meningoseptica ATCC 13253T, we were able to 

determine that we were successful in creating our desired pSKB3-Em1872 clone (Figure 5) 

needed for the future research goals of this project. 



	 18	

Figure 4. Post-Restriction Digest #2 1% agarose gel to screen for potential pSKB3-Em1872 clones. 
LEFT: The lanes of Tube 7 and Tube 9 (barely visible on this picture) show two separate bands at 
approximately 5200 bp and 1700 bp. RIGHT: Repeated Post-Restriction Digest #2 1% agarose gel 
on Tube7 and Tube 9 to verify that there were bands at approximately 5200 bp and 1700 bp on a 

full scale gel. 

 
  

Figure 5. Plasmid map of the verified pSKB3-Em1872 clone obtained. 
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Future Direction 

 After successfully cloning the bla1872 β-lactamase gene of E. meningoseptica into the 

BL21 DE3 E. coli strain, my successors will then screen this clone against several β-lactam 

antibiotics via a Kirby-Bauer Disk Susceptibility and a MIC assay. The Kirby-Bauer test will 

determine bacterium resistance to each individual antibiotic. The MIC assay will be completed in 

order to determine the antibiotic concentration range in which a bacterium exhibits resistance. 

The Kirby-Bauer test and the MIC assay will demonstration if bla1872is a true β-lactamase 

capable of hydrolyzing β -lactam antibiotics. Both the Kirby-Bauer test and the MIC assay are 

further explained in individual sections below. 

 Once we determine if it is a β -lactamase we then want to purify and characterize the 

enzyme. Our clone will be grown and induced to produce the bla1872 β-lactamase gene of E. 

meningoseptica. This bla1872 product will then undergo protein purification, and, once purified 

the bla1872 enzyme will be characterized via enzyme kinetics in order to meet the requirements 

for publication. 
 

Kirby-Bauer: 

 A Kirby-Bauer test is a microbiologic method used to determine a microorganism’s 

sensitivity to an antimicrobial agent. In this method, nutrient agar plates are prepared with the 

desired antibiotic. Then, the bacteria to be screened is spread on the agar plate, and allowed to 

grow—often overnight—at the optimal temperature of growth for that specific specimen. Upon 

examining the colony growth on the agar plate, there should be a zone of inhibition; this is the 

area of the media where the microorganism is incapable of growing because the antibiotic is 

effective at combating the pathogen. The size of this zone of inhibition reveals the 

microorganism’s degree of sensitivity to the concentration of antibiotic used: the bigger the zone 
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of inhibition, the more sensitive it is to that antibiotic; the small the zone of inhibition, the more 

resistant it is to that antibiotic. 

 Since bla1872 is a putative group 1, class C β-lactamase that has a high binding affinity 

and capability of hydrolyzing cephalosporins, we will screen bla1872 against this type of β-

lactam antibiotic. Specifically, by screening our bla1872 clone against these antimicrobial 

agents, our aim in is to determine its specific degree of required resistance against numerous 

clinically relevant β-lactam antibiotics. We expect to see smaller zones of inhibition in the plates 

containing our pSKB3-Em1872 clone with its induced bla1872 β-lactamase when compared to 

our positive control Bla-B (one of E. meningoseptica’s already characterized metallo-β-

lactamase enzymes) which should show larger zones of inhibition. 
 

MIC: 

 The Minimum Inhibitory Concentrations assay (MIC) is a test used to determine the 

lowest concentration of antibiotics that is needed to inhibit a microorganism’s growth after an 

overnight incubation period. Whereas the Kirby-Bauer test will tell us if a microorganism is 

resistant at a certain concentration of antibiotic, the Kirby-Bauer gives us the concentration range 

in which a bacterium is resistant to a certain antimicrobial agent. 

 

Conclusion 

 Our ultimate goal in this research project is to eventually clone, express, isolate, and 

characterize the bla1872 β-lactamase enzyme of E. meningoseptica, in addition to the other 

punitive β-lactamase enzymes that have yet to be cloned and characterized. Although we were 

only able successful in obtaining the required clone during my year in the laboratory, my 

successors will continue this project to characterize the bla1872 β-lactamase enzyme, with the 

hopes of a publication at the completion of this project. 
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 In the grand scheme of things, we hope that this research project will help fill the 

knowledge gap regarding β-lactamase genes in E. meningoseptica so as to provide a more 

comprehensive understanding of bacterial-mediated antibiotic resistance in this bacterium, as 

well as other bacteria that exhibit similar multidrug-resistance via Type 1, Class C β-lactamase 

enzyme. Although more research is needed to understand these β-lactamase enzymes and how to 

combat their function in multidrug-resistance, we are optimistic that the knowledge acquired in 

this research project will assist in the development of more effective antibiotic drugs in the 

future. 
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