
Visualization of Hyperbolic

3-Manifolds

JIMMY HARTFORD

Abstract

In this paper, we use the programming language, Python, along with
the software package, SnapPy, to generate fundamental domains of three
dimensional hyperbolic manifolds. We also discuss different strategies and
tools for visualization and how these are affected when viewed through the
Poincare model versus the Klein model

Contents

1 Introduction 2

2 Hyperbolic Manifolds 3

3 Triangulation and SnapPy 6

4 Fundamental Domain 8

5 Iterations of the Fundamental Domain 12

6 Visualizing the Manifold 14

7 Next Steps 17

A Python Procedure to Build the Fundamental Domain 19

References 21

1

JIMMY HARTFORD 2

1 Introduction

In mathematics, one of the primary ways to understand a concept is through
visualization. This is especially true with geometry and topology where spacial
knowledge of an object is of particular importance. However, visualization can
be a difficult concept to master when exploring objects that do not conform
to the familiar Euclidean model. The interior of a hyperbolic 3-manifold is
an example of a non-Euclidean space. Yet a visual representation of these
hyperbolic 3-manifolds is a convenient way to understand its structure.

In this paper, we outline the steps to construct such a visualization of the
interior hyperbolic 3-manifolds. This process used information gathered by the
program SnapPy.

SnapPy is a program for studying the geometry of 3-manifolds. The cur-
rent iteration of SnapPy was developed primarily by Marc Culler and Nathan
Dunfield and is based on the original SnapPea kernel written by Jeff Weeks.[2]

Working with SnapPy offers several advantages. First, at its heart SnapPy
is a Python command-line shell over the original SnapPea. Python is a cross-
platform programming language that has a wide use in mathematics and indus-
try. As a result, work done in, or in connection to SnapPy can be easily ported
to other applications.

SnapPy also provides a large library of manifolds and essential information
about their shapes. In particular, it provides the triangulation of the mani-
fold and shapes of the tetrahedra of that the manifold. Now, we can take a
known manifold to view and easily assemble the information needed to build
the visualization without constructing the manifold from scratch.

A third advantage for working with SnapPy in the development of a visu-
alization of the interior of hyperbolic manifolds is the developers have already
produced tools for visualizing of characteristics of the 3-manifolds in their li-
brary such as the Dirichlet domain. This tool can be adapted to display the
tessellation of fundamental domain without constructing such a visualization.

While using SnapPy and its resources simplifies the visualization process,
there are downfalls as well. Modifying the Dirichlet domain tool prevents us
from having to create graphics from scratch, but it also requires overriding and
redirecting its inherent functions. As of this writing this has not been entirely
completed.

The overall process developed in the following phases: First, retrieve the
triangulation of the selected manifold’s fundamental domain. Next, use the
triangulation to explore and map the shape of the fundamental domain and
identify the vertices of the tetrahedra that compose the fundamental domain.
Then, we draw the edges of the tetrahedra on the screen.

Finally, we move the eye, or camera, to the origin so that properly depict the
movement of light along the geodesics within the manifold, giving the viewer a
true presentation of the inside of the manifold.

JIMMY HARTFORD 3

2 Hyperbolic Manifolds

A manifold is a continuous space that, locally, takes on the properties of the
familiar Euclidean space. In other words, for any point, P , inside the manifold,
there exists a ball surrounding the point that resembles a ball in Euclidean
Space.

Manifolds can have a dimension of any positive integer, n, and we called a
manifold having n dimensions a n-manifold. Now, the local properties of an n-
manifold resemble Rn. While locally an n-manifold might resemble Rn, globally
the n-manifold may not maintain the properties of Rn.

To illustrate this, consider a rectangle. If we were to somehow glue each
pair of opposite sides together, we would have an object called a torus. Locally
(within the area of the rectangle), this torus will retain the original geometry
of the Euclidean rectangle. Globally, the situation is different.

Now that the edges of the rectangle are connected, someone travelling along
the surface of the rectangle no longer has to stop once reaching the edge. This
traveller could continue beyond the edge and continue in the same direction
(or any direction) without end. In this way, the surface of torus is like an
infinite plane. However, the surface area of the torus is the same as the original
rectangle. So once she passes the edge of the rectangle, she will reenter the
rectangle at the opposite side of the rectangle. Continuing along in the same
direction, the traveller will reach her starting place. If she were to continue, she
would see the same scenery from the first leg of her journey.

Figure 1: Traveller crossing the edge of the rectangle

From the external point of view we take, observing the torus, it is obvious
to us that the traveller has somehow circled back to her starting place on the
torus. To anyone living on the surface of the torus, however, they would merely
see a plane that continued to infinity in all directions. They would also observe
that the world on the surface somehow repeats after moving a certain distance.
They might observe that despite the infinite nature of the surface there is only
a finite area that is unique.

If our traveller drew a map of her journey, she would draw the original
rectangle. Then, she draws another rectangle to show where she crossed the
edge. If she continued on a long journey, she would continue adding rectangles
to show her process. Similarly, if the traveller moved in any other direction, she
could add copies of the rectangle connected to the other edges of the first.

The traveler might observe that copies of the rectangle could be used to tile

JIMMY HARTFORD 4

Figure 2: Tiling space with the rectangle

the entire plane. Such a tiling is called the universal cover of the space. Given
a space, we say a subset of the space is the fundamental domain if copies of the
subset can be used to form the universal cover of the space.

On our 2-manifold, the torus, the fundamental domain is the original rect-
angle, a polygon. We should note that if we cut open and unfolded the torus
along different edges, we would have a different rectangle. This different rect-
angle could also be used to created the universal cover of the plane.

Now, let us consider a cube. If we somehow glued the opposite faces of
the cube together, this would form a 3-manifold. Locally, the 3-manifold looks
like the familiar three dimensional Euclidean space, but globally it takes on the
properties similar to the torus. Like the 2-manifold, our new 3-manifold has a
fundamental domain, the cube that we began with.

Our focus in this paper going forward will be so called hyperbolic 3-manifolds.
A hyperbolic 3-manifold is a 3-manifold where the local the geometry is that of
H3.

Much of the work regarding these hyperbolic 3-manifolds is built on discov-
eries by William Thurston. First, Thurston showed that any knotted link is
either, torus, satellite, or hyperbolic. He also showed that if a tube in the form
one of these hyperbolic knots is drilled out from a three-sphere, the resulting
manifold will have a hyperbolic geometry. [6] The figure-eight knot is an exam-
ple of such a hyperbolic knot. And we will call the manifold, created by drilling
out the this knot, the figure-eight knot complement. This naming reminds us
that the manifold is not the knot but what is left once the knot has been re-
moved. Throughout the remainder of the paper, we will use the figure-eight
knot complement as our example.

Figure 3: Figure-Eight Knot.

Like the manifold formed by the gluing the faces of the cube has a fundamen-
tal domain that is a polyhedron (the cube), the figure-eight knot complement

JIMMY HARTFORD 5

will as well. The first step in visualising inside of the hyperbolic manifold will
be to find the shape of this fundamental domain. But first, let us consider what
the inside looks like.

Inside the hyperbolic manifold, the first observation should be that we will
observe that the manifold exhibits a hyperbolic geometry. This means that
we will need to visualize our model using either a three dimensional Poincare
disk or Klein disk to model our manifold (i.e. the interior of a sphere). In the
Klein model geodesics are viewed as straight lines, but in the Poincare model,
geodesics are viewed as arcs bending towards the origin.

We are interested in what we would see inside the manifold. Let us first
assume light rays travel along geodesics. If we place a camera at the center of
either the Klein ball or the Poincare ball, we see the same thing, as if we were
actually looking along hyperbolic geodesics.

Typically, we view these models from the outside and there is an obvious
distinction between the two; however, if we are standing at the center of the
model, the bends of the Poincare lines will point directly at us. So, once we are
visualizing the the interior of the manifold, there will be no visible difference
between the two. Since it will be far simpler later on to draw straight lines in
Klein model, we will use the model for any calculations such as distance that
might be necessary.

Another observation inside the manifold should be that if we can see far
enough in front of us, we will see a copy of ourselves in the distance. And if
there is an object near us, we will see that same object, again, in the distance.
The same would be true if we looked off in any direction inside the manifold. If
our vision is particularly good, we might even be able to see multiple iterations
of ourself standing in the distance. This means when we build our visualization
of the our manifold, building one fundamental domain will not be sufficient; we
will need to make many copies.

Figure 4: Seeing one’s self in the distance.

We need to consider one more observation before moving on. Recall our
manifold was formed by drilling out a knot. Where will this knot be in relation
to us at the origin? The answer can be a little hard to see but boundary of the
manifold will be the edge of the knotted tube as it cuts through our space. As
a result, there should be some piece of the fundamental domain that does not
glue to some other point. And these pieces will be at infinity. Ultimately, this
means that our fundamental domain will be an ideal polyhedron with vertices
at infinity. The consequences of this are that all our vertices will be the on
boundary of the model (i.e. the surface of the sphere). [7]

JIMMY HARTFORD 6

3 Triangulation and SnapPy

The first step, in building our visualization is develop a fundamental domain
of the manifold. Once, we have created one, we can use it as template for
making copies of it. Recall that the manifold really only consists of the one
fundamental domain. The extra copies are simply the visualization of what it
look like beyond its edge.

Because it is a polyhedron of some kind, the fundamental domain, and really
the entire manifold, can be broken into a set of tetrahedra with a list of how they
are glued together. This allows SnapPy to store the entire manifold in terms of
this triangulation. Figure 5 shows how SnapPy displays the triangulation for
the figure-eight knot compliment.

Figure 5: SnapPy Triangulation for Figure-Eight Knot Complement.

In SnapPy, the tetrahedra are indexed using the convention 0, 1, 2, . . . , n−1,
where n is the number of tetrahedra in the triangulation. Then each of the four
vertices of a given tetrahedron will be given an index, 0, 1, 2, 3.

Figure 6: Left: A Tetrahedron with Vertices labeled. Right: A Tetrahredon
with Respective Faces labels.

SnapPy also adopts the convention of identifying a given face on the tetrahe-
dron by the vertex opposite to it. For example, Face

(
0
)

will be the face opposite

to Vertex
(
0
)
.

SnapPy’s triangulation provides a list of tetrahedra as well as how each is
of the faces in tetrahedra glued to the others. In the table, each row represents
the information of the respective tetrahedron with the first row being Row

(
0
)
.

Then, each row is broken up into two main parts.
The first part is a set of four numbers. This states what tetrahedron each

Face on the the first tetrahedron is neighboring. For instance, in the triangula-
tion of the figure-eight knot compliment, Figure 5, the first part of the first row
has [1 1 1 1]. The first number ”1” says that Face

(
0
)

of Tetrahedron
(
0
)

glues

to a face on Tetrahedron
(
1
)
. Observe, since there is only one other tetrahedron

in our triangulation, all four faces glue to somewhere on Tetrahedron
(
1
)
. And

JIMMY HARTFORD 7

all four faces of Tetrahedron
(
1
)

glue back to some face on Tetrahedron
(
0
)
.

The second part of the row is a set of four sets each, itself, comprised of four
elements. This states how each vertex lines up to another. Each subset of the
second part corresponds to a face: the first subset corresponds to Face

(
0
)

of

Tetrahedron
(
0
)
, the second subset corresponds to Face

(
1
)

of Tetrahedron
(
0
)
,

and so on. The element of each subset identifies the respective neighboring
vertex in on neighboring tetrahedron identified in the first part. For example,
part two of row one has [0 1 3 2], [1 2 3 0], [2 3 1 0], [2 1 0 3]. This tells us
that on Face

(
0
)

of Tetrahedron
(
0
)
, verticies 0, 1, 2, 3 glue to vertices 0, 1, 3, 2 of

Tetrahedron
(
1
)
, respectively.

We don’t yet have a geometric structure for these tetrahedron; the trian-
gulation is just a list vertices and faces that some how glue together. How-
ever, the diagrams in Figure 7 help visualize how the two tetrahedra that make
the figure-eight knot complement fit together. The diagram on the left shows
Tetrahedron

(
0
)

and how each Face glues to the Faces of Tetrahedron
(
1
)
. And

the diagram on the right does the same for Tetrahedron
(
1
)
. The list of numbers

in brackets are taken straight from the SnapPy triangulation for the respective
Face.

Figure 7: Gluing Diagram for the Figure-Eight Knot Complement.

If we look at Face
(
3
)

in Tetrahedron
(
1
)
, we have the list [2 1 0 3]. Looking

at Figure 6, tells us that gluing works in both directions. And later, we will
define a transformation that will send one face to the other. This shows that
the inverse transformation will send us back to the identity as expected.

Figure 8: SnapPy Tetrahedron Shapes for Figure-Eight Knot Complement.

The other piece of information we need to build our fundamental domain
that SnapPy provides is the tetrahedron shapes. The tetrahedron shapes are a
list of complex numbers, one for each tetrahedron.

JIMMY HARTFORD 8

Recall, the vertices of our fundamental domain (and now the tetrahedra that
compose it), will be on the surface of the sphere. As a result we can display the
vertex positions as complex projective coordinates.

In the complex plane, positions will be depicted as a pair of complex num-

bers,
(
α, β

)
, where

(
α, β

)
= λ

(
α, β

)
=
(
λ(α), λ(β)

)
, α, β, λ ∈ C, and α and

β are not both 0. This pair of complex numbers generate a line that will pass

through the sphere at a given point. Note,
(

1, 0
)

represents the north pole of

the sphere and
(

0, 1
)

represents the south pole.

Thurston’s equations are in terms of these projective coordinates and the
solutions are cataloged in SnapPy as the tetraherdon shapes.[3][2]

Using a method developed by Luo [5], we can to find the fourth position of
the tetrahedron based on the shape listed in the SnapPy’s tetrahedron shapes
and positions of the base face we already established:

Let
(
a1, a2

)
,
(
b1, b2

)
,
(
c1, c2

)
, be pairs of complex coordinates represent-

ing the base of our new tetrahedron. Let z be the complex number from
SnapPy’s list of tetrahedron shapes corresponding to the tetrahedron we
are building.

Let d = a1b2 − b1a2.

Let X =

[
b2/d −b1/d
−a2/d a1/d

]
, and

[
c′1
c′2

]
= X

[
c1
c2

]
.

Our new position,
(
d1, d2

)
= X−1

[
−z/c′1
−1/c′2

]
.

Once we have built one tetrahedron in the the triangulation, we can use it
as the starting point for the next.

After we find all the vertices of the fundamental domain, we must convert
those coordinates into R3 so that our graphics program can draw them.

4 Fundamental Domain

The triangulation in SnapPy depicts the manifold combinatorically. From this
we want to build a fundamental domain so we have a geoemetric structure that
we can visualize. To build the fundamental domain, we must systematically
look at each tetrahedron in the triangulation, and find its vertices. Then, we
look at its neighbors.

To do this, we must pick a starting point. And systematically explore every
face of every tetrahedron in the triangulation. The process described here is
based on Python code written by Henry Segerman, a version of which is avail-
able in Appendix A.

JIMMY HARTFORD 9

Here is the triangulation for the figure-eight knot complement again for
reference as we explore its tetrahedra.

Let n be the number of tetrahedra in the triangulation.
Let L = {0, 1, . . . , n−1}. We will use L to determine if we have looked

inside a particular tetrahedron in the triangulation. Then, we will look at
a neighboring tetrahedron with index, i. If i ∈ L, then we will move to
that tetrahedron, remove i from the set L, and explore Tetrahedron

(
i
)
. If

i /∈ L, then we have already look in there and we can move on.
Let us define n×4 arrays, P , V , where rows represent the corresponding

tetrahedron and positions in each row correspond to the respective vertex
of the corresponding tetrahedron.

Let the entries of P be one of the following: “i” for interior, “e” for
exterior, or “-” representing a face we have not traversed. Let us set all
entries in P to ”-”. This array will provide several pieces of information.
First, during the process an “-” entry will tell us that this is a face we
need to look at. Once the process is completed there will be only “e” and
“i” entries. This will tell us if that face is an interior face of exterior face
for the fundamental domain we have built.

In the triangulation, each tetrahedron has vertices indexed 0, 1, 2, 3.
But we want also each vertex of the fundamental domain to have a unique
index so we can assign a unique position that we can visualize.

As we go along we will indicate a vertex in a given tetrahedron by
the tetredhon index followed by its local face index, i.e. “Tetrahedron

(
i
)
:

Face
(
j
)
”. When we want identify a vertex by it global index, we will say

Vertex
(
x
)
.

Let the entries of V be unique integers representing the global index
for the Vertex

(
i
)

of Tetrahedron
(
j
)

corresponding to entry vi,j ∈ V .
Each time we discover an unexplored tetrahedron in the tetrahedron,

we will also discover a new vertex whose coordinates we need to find. With
the positions representing the face that we passed through to discover the
new tetrahedron being used as the base, we will use the method method
in the previous section to establish this new position. we will start with

the first three positions begin
(

1, 0
)

,
(

0, 1
)

,
(

1, 1
)

, representing the top,

bottom, and a point on the equator of the sphere.

Since, we can choose any tetrahedron to start at, it makes sense to
start exploring from Tetrahedron

(
0
)

in the figure-eight knot complement.
So, let, i = 0. First, we check whether we have been here before. This

is the first one; so, it is new. Now, we remove i from the list L.

JIMMY HARTFORD 10

Since this is the first tetrahedron in our triangulation, we know that its
local vertex indices will be the same as it local positions. So, row 0 of V
will be [0 1 2 3]. This indicates that Tetrahedron

(
0
)
: Face

(
0
)

is indexed

globally by Vertex
(
0
)

and Face
(
1
)

is Vertex
(
1
)

Face
(
2
)

is Vertex
(
2
)

and

Face
(
3
)

is Vertex
(
3
)
.

Tetrahedron
(
0
)

has four faces. Again it makes sense to start with

Face
(
0
)
. Define ji be the local face index for our current tetrahedron.

And let j0 = 0.
P0,0 is “-”. So, we know this is an unexplored face. Looking back at

the triangulation table, we see that on Tetrahedron
(
0
)
: Face

(
0
)

glues to

Tetrahedron
(
1
)
: Face

(
0
)
.

We set P0,0 = “i” and P1,0 = “i”.
The vertices that make up Tetrahedron

(
0
)
, Face

(
0
)

are the other three

vertices, so 1,2,3. And they glue to to faces on Tetrahedron
(
1
)

1, 3,

2 (by the triangulation table above). This tells us that Tetrahedron
(
1
)
:

Face
(
1
)

is globally the same vertex as Tetrahedron
(
0
)
: Face

(
1
)
. Similarly,

Tetrahedron
(
0
)
: Face

(
2
)

is Tetrahedron
(
1
)
: Face

(
3
)
, and Tetrahedron

(
0
)
:

Face
(
3
)

is Tetrahedron
(
1
)
: Face

(
2
)
. This leaves Tetrahedron

(
1
)
: Face

(
0
)

which will be a new point. The next available integer is 4. So, Tetrahedron
(
1
)
:

Face
(
0
)

is Vertex
(
4
)
. And now, row 1 of V will be [4 1 3 2].

Now, we need to find the position of Face
(
1
)

Tetrahedron
(
0
)
. We

started with positions
(

1, 0
)

,
(

0, 1
)

,
(

1, 1
)

. So these will be Vertex
(
0
)
,

Vertex
(
1
)
, Vertex

(
2
)
, respectively. We use the process described in the

previous section and find Vertex
(
3
)

is at
(

0.5 +
√
3
2 i, 1

)
.

And now we will the use base vertices Vertex
(
1
)

=
(

0, 1
)

, Vertex
(
2
)

=(
1, 1
)

, Vertex
(
3
)

=
(

0.5+
√
3
2 i, 1

)
, to find Vertex

(
4
)
, the result of which is(

(−0.5−
√
3
2 i), (−1.5−

√
3
2 i)
)

. We now have built Tetrahedron
(
1
)
. Staying

here, we will look at its faces.
Let i = 1 and remove 1 from L. Let j1 = 0. P1,0 = “i”. This tell us

that we have already looked in this direction (in particular, this where we
came from).

Let j1 = 1. P1,1 is “-”. So, we know this is an unexplored face. Looking
back at the triangulation, we see that on Tetrahedron

(
1
)
: Face

(
1
)

glues

to Tetrahedron
(
0
)
: Face

(
2
)
.

Now we look at L and see if Tetrahedron
(
0
)

needs to be explored.

0 /∈ L, so Tetrahedron
(
0
)

does not need to be explored. (This means that

we have completely mapped Tetrahedron
(
0
)

or we are in the process and
got sidetracked looking in our current location. In fact, there is a total of
five unique positions in the fundamental domain of the figure-eight knot
complement and at this point, we have actually found all five. We could
stop now; however, we need to verify that this is the case).

JIMMY HARTFORD 11

Since, we have already looked here, we need to explore Tetrahedron
(
0
)

we set P1,1 = “e” and P0,2 = “e”. And move on to j = 2. (If it were not
then this face would not be on the exterior of the face so we would mark
it with an “i”, Then, we would start the whole process again inside this
new tetrahedron. And systematically look at each of its faces).

Now, let j1 = 2. Tetrahedron
(
1
)
: Face

(
2
)

glues to Tetrahedron
(
0
)
:

Face
(
1
)
. Again, we know Tetrahedron

(
0
)

has been explored, so we set
P1,2 = “e” and P0,1 = “e”. And we will find a similar result at j1 = 3, so
we can set P1,3 = “e” and P0,3 = “e”.

We have now explored every face of Tetrahedron
(
1
)
. Next, we move

back to where we left off in Tetrahedron
(
0
)
.

Let j0 = 1, P0,1 is not “-”, so we can move on.
Let j0 = 2, P0,2 is not “-”, so we can move on.
Let j0 = 3, P0,3 is not “-”, so we can move on.
Now, we have explored all of the faces of Tetrahedron

(
0
)
.

The next step, will be to set i to the next entry in our list L, of
tetrahedra left to do. In this case, we see L is now empty, so we are done.

Note: We chose to start with Tetrahedron
(
0
)

and look at faces in order 0, 1,
2, 3 each time. This is a somewhat arbitrary choice. We could instead start
with the last tetrahedron and move in the opposite direction. The same could
have been done for faces. Or we could even find a random order (assuming we
had way to track that each face of each tetrahedron was explored.) The result
of this would be a different polyhedron for the fundamental domain. However,
once we begin building and drawing other copies of the fundamental domain,
there should be no detectable difference.

Completing this procedure will assign a unique global index to every vertex
in the fundamental domain, identify the coordinates of each of these unique
vertices, and tells us which Faces are interior. The list of interior versus exterior
Faces will be needed in the following section.

For the figure-eight knot complement we have
Face Types:
[i e e e]
[i e e e]

Global Vertex Indicies:
[0 1 2 3]
[4 1 3 2]

Vertex Coordinates:
0:
(

1, 0
)

, 1:
(

0, 1
)

, 2:
(

1, 1
)

,

3:
(

0.5 +
√
3
2 i, 1

)
, 4:

(
(−0.5−

√
3
2 i), (−1.5−

√
3
2 i)
)

JIMMY HARTFORD 12

5 Iterations of the Fundamental Domain

Now, we that we have built a fundamental domain. We need to make copies at
different locations in the Klein model. To do this, we need to create a group of
matrices that will map the location of one face to another.

Again, using the figure-eight knot as an example, suppose we wanted to
find the fundamental domain that is glued to Tetrahedron

(
0
)
: Face

(
3
)
. First,

we need to identify its coordinates. Tetrahedron
(
0
)
: Face

(
1
)

is composed

of Tetrahedron
(
0
)
: Face

(
0
)
, Face

(
1
)
, and Face

(
2
)

which have global indices,

Vertex
(
0
)
, Vertex

(
1
)
, and Vertex

(
2
)
, respectively.

Using the SnapPy triangulation table, we see that these vertices glue to
Tetrahedron

(
1
)
: Face

(
2
)
, Face

(
1
)
, and Face

(
0
)
, respectively. This gives us

Vertex
(
3
)
, Vertex

(
1
)
, and Vertex

(
4
)
.

Since the new copy of the fundamental domain will be such that it is built on
the coordinates of the previous copy, we need a map that will send the starting
coordinates of the new fundamental domain to finishing coordinates of previous.

To do this we will need to find a matrix M that send
(

1, 0
)

,
(

0, 1
)

,
(

1, 1
)

to each set of starting positions, and a matrix N that will sends
(

(−0.5 −
√
3
2 i), (−1.5 −

√
3
2 i)
)

,
(

0, 1
)

,
(

0.5 +
√
3
2 i, 1

)
to each set of starting positions.

Then by multiplying M and N−1 together, we have a will have map that sends
the ending coordinates to the new starting coordinates.

Let (p1, p2), (q1, q2), (r1, r2) be the triple of complex coordinates for our
face we want to map to.

Let X =

[
p1 q1
p2 q2

]−1
, and Let

[
y1
y2

]
= X

[
r1
r2

]
.

And M =

[
p1y1 q1y2
p2y1 q2y2

]
.

This will yield:

M =

[
1 0
0 1

]
, and N =

[
−.5−

√
3
2 i 0

−1.5−
√
3
2 i −.5

√
3
2 i

]
.

Now, our new transform, A = M ×N−1 =

[
−.5−

√
3
2 i 0

−1 −.5
√
3
2 i

]
.

Note that if we map the Tetrahedron
(
0
)
: Face

(
0
)

to Tetrahedron
(
1
)
: Face

(
0
)
,

neighboring internal faces, we would get the identity matrix. This makes sense
because the coordinates of one face are the same as the coordinates of the other.
This will be true for all interior faces. As a result we can immediately ignore
these faces. It should also be clear that there will be an even number of interior
faces; for each interior face in a given tetrahedron, there exists an other interior
face other some of tetrahedron to which it is glued.

After ruling out the interior faces of the figure-eight knot complement, we are
left with six exterior faces. And for each face, we have a matrix transformation.
Note there will be an even number number of exterior faces as well. For every

JIMMY HARTFORD 13

gluing, there is inverse gluing that creates a fundamental domain in the other
direction. So, for a transformation matrix A, there is another transformation
matrix a such that a = A−1.

Suppose v = [a, b] is the position for a vertex within the original fundamental
domain. Then vA will be the corresponding position of vertex v in the copied
fundamental domain generated by matrix A.

Adding the identity, I, we have a group, G = 〈I, A,B,C〉 which will act
on the coordinates of the fundamental domain vertices. In particular, it is an
infinite group which will allow us to tile the entire manifold with copies of the
fundamental domain.

Up until this point we have been using complex projective coordinates. This
was convenient when we were trying fix positions on the surface of the sphere.
Now, we beginning to look what the interior of the sphere looks like. As a result,
we need to map our projective coordinates to the Klein disk model.

Suppose we have a pair of complex numbers, (X,Y) = (x0 + ix1, y0 + iy1).

Let d = x20 + x21 + y20 + y21 . Then,
x = 2(x0(y0) + x1(y1))/d.
y = 2(y0(x1)− x0(y1))/d.
z = (x20 − y20 + x21 + y21)/d.

For instance, (1, 0) 7−→ (0, 0, 1) and (0, 1) 7−→ (0, 0,−1)

Having coordinates in three dimensional space will allow us draw edges and
faces within the sphere. Before we are ready for this, there is one last matter
to address. Even though our G will generate an infinite number of copies of the
fundamental domain, if we are generating a viewable model of the manifold, we
only need to build a finite number of copies that will be visible to the viewer.
Therefore, we only need to generate copies that will be within a predetermined
range, r, from the original.

Because it is hard to know ahead of time what the actual polyhedral shape
for the fundamental domain will be, it is convenient to simply average the
coordinates of all the vertices in the fundamental domain and call the resulting
position the ‘center.’ Now, we can compare the distances between the center
our original fundamental domain constructed in Section 4 and the center of a
copy generated by our group, G, acting on the original points and determine if
the that distance is less than r.

Within the Klein model of hyperbolic space, the distance between two points

p,q ∈ H3 is d(p, q) =
1

2
log

(
|aq||pb|
|ap||qb|

)
, where a. b are two points on the sphere

and are contained in the line passing through p, q, and aq, bq, ap, bp are Eu-
clidean distance between the each pair of points.

To find a and b we need to find the intersection between the sphere and the
line. Suppose p = (xp, yp, zp) and p = (xq, yq, zq). Let a = (xa, ya, za) and
b = (xb, yb, zb) be the intersection with our sphere, x2 +y2 +z2 = 1 and our line

JIMMY HARTFORD 14

parameterized as

x = xp + u(xq − xp)

y = yp + u(yq − yp)

z = zp + u(zq − zp)

Substituting these values into our equation for the sphere will give us the
quadratic au2 + bu+ c = 0 with

a = (xq − xp)2 + (yq − yp)2 + (zq − zp)2

b = 2 ((xq − xp)xp + (yq − yp)yp + (zq − zp)zp)

c = x2p + y2p + z2p − 1

Using the quadratic formula, we can solve for u; and there will of course be
two values for u. Plugging u into the line parameterization equations will give
(xa, ya, za) and (xb, yb, zb).[1]

Here we can easily find the distances aq, bq, ap, bp and plug them into our
Klein distance formula and compare the value to r. The specific value for r is a
bit harder to pin down. Factors for determining r include your computer’s mem-
ory, graphic card, and the structure of the manifold. If the manifold is overly
intricate, additional elements might become more distracting than informative.

6 Visualizing the Manifold

Now we are ready to draw images on the screen. The simplest thing to do is
simply feed a list of triangular faces and where they sit in R3. Doing so will
create an image similar to Figure 9. This image provides us with the overall
shape and structure of the fundamental domain. We can observe that the five
vertices we discovered in Section 4 are present, labelled in order. We can also
see that the shape of the fundamental domain consist of two tetrahedra glued
together, as we would expect.

While our point of view is still outside the model, we can take a quick peek
at how our fundamental domain looks in the Poincare Model (Figure 10). Note
how the edges all curve towards the surface of the sphere, i.e. infinity. Recall
that the vertices of our tetrahedra are all at infinity. And even though we
visualize them here as finite objects, they represent locations that we would not
be able to reach if we were inside the manifold.

We should recognize also that in the manifold, these faces don’t really exist.
In the actual manifold, these faces are simply windows or doorways that someone
inside the manifold might pass through.

If we want to remove the faces so that we only draw edges of the faces,
to allow us to view the inside of the fundamental domain, we need construct
objects in our model that will represent these edges.

There are a variety of ways to this. In fact, we are not limited to drawing the
edges. These edges are geodesics in hyperbolic space so they are relevant things

JIMMY HARTFORD 15

Figure 9: Faces of the Fundamental Domain of the Figure-Eight Knot Comple-
ment.

Figure 10: Edges of the Fundamental Domain in the Poincare Model.

to draw because they explictly show the structure of the space we are modeling.
However, with the location of the (here in our figure-eight knot complement,
five) vertices of the fundamental domain we could draw almost anything as long
as it fits inside the polyhedron.

The edges drawn in Figure 11 were drawn with the following method. For
any vertex on the tetrahedron, there will be three faces adjacent. Find the
centroid of each adjacent face. We, then, use these positions as a weight on our
vertex, moving it towards each centroid along the surface of each face away from
the true vertex. This will generate three new vertices for each true vertex. Then
we draw faces connecting the appropriate weighted vertices, running parallel to
the true edge. And then finally draw a triangular face to connect the three
weighted vertices generated by the same true vertex.

This gives us visiable edges like Figure 11 that are visiable as we rotate the
image.

JIMMY HARTFORD 16

Figure 11: Edges of the Fundamental Domain of the Figure-Eight Knot Com-
plement.

Figure 12: Weighted Vertices and Weighted Edges.

Now that we have had a chance to look at the fundamental domain, let us
look at how the image looks when we add the additional copies of the fundamen-
tal domain generated in Section 5. Figure 12 displays copies of the fundamental
domain in addition to the original one from Figure 11. With all the additional
edges drawn, it becomes difficult to see in a static picture. However, each edge
drawn in Figure 11 is a part of a tetrahedron which is in turn part of a copy
of our fundamental domain. This perspective may give the impression that our
manifold contains all of these polyhedrons. This is incorrect. Recall from Sec-
tion 2, that the torus we made still contained only that one rectangle. This
infinite nature of the torus came from the notion that we look (and move) be-
yond the edge of the rectangle and view what layed behind us on the other
side.

This is the case without figure-eight knot complement manifold images. Fig-
ures 9-12 show the external view of the manifold. We are three dimensional
beings. So we can view the plane from an external view and see how the torus
was made up of just that one rectangle. Our traveler, however, could not (with-
out assistance) see how the manifold is formed. The same is true for these
hyperbolic manifolds we have been working with throughout this paper.

If we were to enter the manifold and look around just as our traveler did on

JIMMY HARTFORD 17

Figure 13: Visualization of Figure-Eight Knot Complement.

the torus, we might see an image like Figure 13. Now, the the additional copies
of the fundamental domain are placed in the correct perspective. The smaller
shapes in the background represent objects in the distance, beyond the edge of
the fundamental domain.

Figure 14: Inside View of the Figure-Eight Knot Complement.

7 Next Steps

The images shown throughout Section 6 were generated using SnapPy’s Dirichlet
domain tool as discussed in the introduction. The original plan for this project
was to modify this tool for the purpose of displaying this interior view, as seen
in Figure 13. The goal was also create functions with this tool that would allow
someone simulate flying through the manifold so a person could truly explore
(and get a sense of) the inside of the hyperbolic manifolds that SnapPy works
with. Ultimately the plan is to continue working on this project to complete

JIMMY HARTFORD 18

this final goal and have a polished program that SnapPy’s developer could easily
implement as part of a future SnapPy release. In this final section, I will discuss
the final steps necessary to complete this goal.

First, the Dirichlet domain tool works on two levels. One is the user inter-
face; the other is the deeper program that works directly with the graphics card.
At the user interface level, I have successfully injected commands that simulate
some movement inside the manifold. However, this approach is extremely inef-
ficient. The result is a few second lag for each step in a given direction. So this
is an impractical approach.

The deeper level code appears to be a better solution, However at this time
tracing through its components well enough to override the native functions
has not been successful. This has led me to export the sets of vertex positions
created each time a move is executed as a OBJ files to a program called Blender
which has an animation function. By taking a shot of each each mesh frame
by frame, reasonable video can be generated. But this method provides no user
interaction.

The method for movement is based on [4]. The effect is similar to the warp
drive effect, where the view remains stationary and the universe move around
them.

First, we will decide on a velocity vector, v = (x, y, z), that will move the
fundamental domain past us by some distance using affine transformations.

Let M =

0 0 0 x
0 0 0 y
0 0 0 z
x y z 0

.

We let c1 = sinh(||v||2), and c2 = cosh(||v||2)− 1.
Now, we have a transformation, T = I4 + c1(M) + c2(M)2, where I4 is the

4x4 identity matrix. After ensuring T is orthogonal, we apply T to every vertex
position in the homogeneous coordinates for the Klein model in R4.

The final step in our moving visualization is to move beyond the edge of our
fundamental domain as our traveler did. This too will be a trick of the eye. Since
each fundamental domain is identical, we can calculate when we approaching
the edge of the fundamental domain and use the transforms from G in Section
5 to move us back to a place at the front of the fundamental domain allowing
us to recycle the edges we have already drawn and not generate anything new.
This piece is also a work in progress. The original matrices in G were created
for use in the projective plane and we need a proper isomorphism from PSL(2,
C) to SO(3,1) that we can use along side our affine transformations.

Finally, there is some optimization that is necessary in the creation of our
group action, G from Section 5.

JIMMY HARTFORD 19

A Python Procedure to Build the Fundamental
Domain

The following segment of code was used inside Python to construct the funda-
mental domain of a given manifold generated by SnapPy following the process
descibed in Section 4 by passing the develop fd function the triangulation and
tetrahedron shapes from our manifold.

def develop_fd(trianglugation, tet_shpes):

strt_indx = 0

vert_glug = triangulation

num_tet = len(vert_glug)

tet_to_do = [] # tets we need to explore

face_type = [] # ’e’ or ’i’

#identifies whether the face is on the inside or

#outside of FundamentalDomain.

vert_indx = [] # Global indicies for vertices in FundamentalDomain

we initialize these variables

for i in range(num_tet):

tet_to_do.append(i)

face_type.append([’-’,’-’,’-’,’-’])

if i!=0: #do one fewer of these

vert_indx.append([’-’,’-’,’-’,’-’])

vert_indx.insert(strt_indx, [0,1,2,3])

vert_psns = [[1,0],[0,1],[1,1],[tet_shpes[strt_indx],1]]

this will walk through the fundamental domain and find all tetrahedrons

explore_tet(strt_indx, vert_glug, tet_to_do,

face_type, vert_indx, vert_psns, tet_shpes)

return face_type, vert_indx, vert_psns

recursively builds fundamental domain

def explore_tet(crrnt_tet, vert_glug, tet_to_do,

face_type, vert_indx, vert_psns, tet_shpes):

vert_dict = {0:(3,2,1), 1:(2,3,0), 2:(1,0,3), 3:(0,1,2)}

tet_to_do.remove(crrnt_tet)

for crrnt_fce in range(4):

if face_type[crrnt_tet][crrnt_fce] == ’-’:

then we haven’t look through this face

this is what is through this face

JIMMY HARTFORD 20

#crrnt_fce and nghbr_fce are using local indicies

nghbr_tet = vert_glug[crrnt_tet][0][crrnt_fce]

nghbr_fce = vert_glug[crrnt_tet][1][crrnt_fce][crrnt_fce]

if nghbr_tet in tet_to_do:

#then this is the first time we have traversed to this tet

face_type[crrnt_tet][crrnt_fce] = ’i’ #interior face

face_type[nghbr_tet][nghbr_fce] = ’i’ #interior face

glued_tet = vert_glug[crrnt_tet][1][crrnt_fce]

for vert in range(4):

if vert != crrnt_fce: #match on vertices that are glued

vert_indx[nghbr_tet][glued_tet[vert]]

= vert_indx[crrnt_tet][vert]

This will be a newly identified vertex

new_vertx = glued_tet[crrnt_fce]

This will be new_vertx’s global index in vert_indx

new_index = len(vert_psns)

vert_indx[nghbr_tet][new_vertx] = new_index

We need to identify base vertices so we can locate the

position of the new vertex. find_new_position will find

it then we append it to vert_psns

vert_zero = vert_indx[nghbr_tet][vert_dict[new_vertx][0]]

vert__one = vert_indx[nghbr_tet][vert_dict[new_vertx][1]]

vert__two = vert_indx[nghbr_tet][vert_dict[new_vertx][2]]

new__posn = find_new_position(

vert_psns[vert_zero],

vert_psns[vert__one],

vert_psns[vert__two],

tet_shpes[nghbr_tet])

vert_psns.append(new__posn)

now, we explore nghbr_tet

explore_tet(strt_indx, vert_glug, tet_to_do,

face_type, vert_indx, vert_psns, tet_shpes)

else:

we have already been here, and we now that these are

exterior faces

face_type[crrnt_tet][crrnt_fce] = ’e’

face_type[nghbr_tet][nghbr_fce] = ’e’

JIMMY HARTFORD 21

References

[1] Paul Bourke. Intersection of a line and a sphere (or circle).
Available at http://portal.ku.edu.tr/~cbasdogan/Courses/Robotics/

projects/IntersectionLineSphere.pdf, 1992.

[2] Marc Culler, Nathan M. Dunfield, and Jeffrey R. Weeks. SnapPy, a computer
program for studying the topology of 3-manifolds. Available at http://

snappy.computop.org (11/01/2015).

[3] Stavros Garoufalidis, Matthias Groerner, and Christian K. Zickert. Gluing
equations for PGL(n, C) - representations of 3-manifolds. 2015.

[4] Vi Hart and Henry Segerman. Available at https://github.com/vihart/

webVR-playing-with/tree/master/js.

[5] Feng Luo, Stephan Tillmann, and Tian Yang. Thurstons’s spinning construc-
tion and solutions to the hyperbolic gluing equations for closed hyperbolic
3-manifolds. Procedings of the American Mathematical Society, 141(1), 2012.

[6] Jessica Purcell. Hyperbolic knot theory. Available at math.byu.edu/

~jpurcell/papers/hyp-knot-theory.pdf.

[7] Henry Segerman. Triangulating the figure 8 knot complement.

