Betti Numbers of Edge Ideals of Cyclic Graphs

Martha Gipson
Department of Mathematics
College of Arts and Sciences
Oklahoma State University

Spring 2015

Contents
1 Introduction 2
2 Background Material 2
2.1 Cyclic Graphs 2
2.2 Edge Ideals 2
2.3 Free Resolutions 2
2.4 Betti Table 4
2.5 Computing the Number of Minimal First Syzygies 4
3 Linear First Syzygies 6
4 Quadratic First Syzygies 8
5 Conjectures 11
6 Appendix 13
7 Acknowledgements 20

1 Introduction

The goal of this paper is to analyze the Betti numbers of the edge ideals of cyclic graphs. We will prove the values of the Betti numbers corresponding to the minimal linear first syzygies and the minimal quadratic first syzygies. We will also conjecture formulas to determine the Betti table for the edge ideal of a cyclic graph on any number of vertices.

2 Background Material

In this section we will briefly cover the mathematical definitions, theorems, and concepts that are used throughout this research paper.

2.1 Cyclic Graphs

A graph with vertex set $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $\mathcal{E}=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$ is a cyclic graph C_{n}.

2.2 Edge Ideals

The edge ideal of a cyclic graph on n vertices is $I_{C_{n}}=\left(x_{i} x_{j} \mid v_{i} v_{j}\right.$ is an edge in $\left.C_{n}\right)$. To be specific, we can say that $I_{C_{n}}=\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right)$.

2.3 Free Resolutions

A free resolution is a way of encoding the complexity of an algebraic structure. We are particularly interested in the minimal free resolution of an ideal. To construct a minimal free resolution of S / I, where I is an ideal, we begin with a set of minimal generators for I. Assuming there are b_{1} minimal generators, we place the module $S^{b_{1}}$, the direct sum of b_{1} copies of S in step one, forming a sequence

$$
S^{b_{1}} \xrightarrow{d_{1}} S \xrightarrow{\pi} S / I \longrightarrow 0,
$$

where π is the usual projection map. The map d_{1} has a kernel that is a submodule of $R^{b_{1}}$; suppose that kernel has a minimal generating set of d_{2} elements. Then we can map $R^{b_{2}}$ onto this kernel, letting d_{2} be the map from $R^{b_{2}}$ to $R^{b_{1}}$ via the kernel of d_{1}. Repeating this process produces a minimal free resolution, which Hilbert's Syzygy Theorem guarantees has a finite number of steps:

$$
0 \longrightarrow S^{b_{r}} \xrightarrow{d_{r}} \cdots \xrightarrow{d_{3}} S^{b_{2}} \xrightarrow{d_{2}} S^{b_{1}} \xrightarrow{d_{1}} S \xrightarrow{\pi} S / I \longrightarrow 0
$$

We say that I has b_{2} minimal first syzygies, b_{3} minimal second syzygies, etc. Syzygies are just relations, S-linear combinations that sum to zero. A syzygy is called linear if it imposes a linear relation. For example, $b \cdot a^{2}+$ $(-a) \cdot a b=0$, and thus there is a linear syzygy on the monomials a^{2} and $a b$. The b_{i} in the minimal free resolution are called the Betti numbers of S / I. We have constructed the maps so that at each step, the kernel of d_{i} is equal to the image of d_{i+1}.

Example 2.1. Let $I=\left(a^{2}, a b, b^{3}\right)$. The minimal free resolution of S / I is:

$$
0 \longrightarrow S^{2}\left(\begin{array}{rr}
-b & 0 \\
a & -b^{2} \\
0 & a
\end{array}\right) S^{3}\left(\begin{array}{lll}
a^{2} & a b & b^{3}
\end{array}\right) S \xrightarrow{\pi} S / I \longrightarrow 0
$$

We can refine the information in Example 2.1 by computing the degrees of each of the syzygies. The notation $S(-d)$ indicates a shift in S by degree d. This shift is used so that the maps do not change the degrees of elements, and it also indicates the degrees of syzygies. The relation $b \cdot a^{2}+(-a) \cdot a b=0$ represents a syzygy of degree three since $a^{2} b$ has degree three. In Example 2.1, suppressing the maps, the minimal graded free resolution looks like this:

$$
0 \longrightarrow S(-3) \oplus S(-4) \longrightarrow S(-2)^{2} \oplus S(-3) \longrightarrow S \xrightarrow{\pi} S / I \longrightarrow 0
$$

One can read off the graded Betti numbers now: for example, $b_{1,2}=2$ because there are two minimal generators of degree two, and $b_{2,4}=1$ because there is a single minimal syzygy of degree four.

Finally, we can refine the information even further by considering the multigraded Betti numbers. The syzygy corresponding to the relation b. $a^{2}+(-a) \cdot a b=0$ has multidegree $a^{2} b$, and $b_{2, a^{2} b}=1$ for the resolution in Example 2.1.

2.4 Betti Table

In the previous section we found that the graded Betti numbers can be read off the minimal graded free resolution. The Betti table displays the graded Betti numbers. The graded Betti number $b_{i, i+j}$ is displayed in column i and row j where the rows and column are numbered starting from zero. For instance, in the minimal graded free resolution from Example 2.1, the corresponding Betti table is as follows:

	0	1	2
total:	1	3	2
$0:$	1	.	.
$1:$.	2	1
$2:$.	1	1

2.5 Computing the Number of Minimal First Syzygies

In [BCP], Bayer, Charalambous, and Popescu develop a useful combinatorial tool for computing multigraded Betti numbers of monomial ideals. We will use only a special case of [BCP, Theorem 2.2]. Let m be a monomial, and let I be a monomial ideal. Define $K_{m}(I)$ to be the simplicial complex, essentially a possibly higher-dimensional graph, formed in the following way. We consider the set of monomials:

$$
\left\{t: \frac{m}{t} \in I, t \text { squarefree monomial }\right\}
$$

Then we let $K_{m}(I)$ be the sets of variables corresponding to the elements of this set of monomials.

Example 2.2. Suppose $I=(a b, b c, c d, d a)$, and let $m=a b c d$. Then the set of monomials described above consists of the monomials $1, a, b, c, d$, $a b, a d, b c$, and $c d$. Thus $K_{m}(I)$ is a graph, the 4 -cycle with edges $\{a, b\}$, $\{b, c\},\{c, d\}$, and $\{d, a\}$ (coincidentally the same graph for which I is the edge ideal).

We will use the following result of Bayer, Charalambous, and Popescu.

Theorem 2.3. Let I be a monomial ideal, let K be a simplicial complex, and let $\tilde{H}_{0}(K)$ be the number of connected components of K minus one. The number of minimal first syzygies of S / I of degree d is equal to

$$
\sum_{\substack{\operatorname{deg} m=d \\ m \text { monomial }}} \tilde{H}_{0}\left(K_{m}(I)\right)
$$

3 Linear First Syzygies

In this section we will examine the minimal linear first syzygies of a cyclic graph C_{n}.

Theorem 3.1. The Betti number corresponding to the minimal linear first syzygies of a cyclic graph C_{n} is n.

Proof. Let i, j, k be distinct integers such that $1 \leq i, j, k \leq n$. We note that $\left\{x_{i}\right\} \in K_{x_{i}, x_{j}, x_{k}}\left(I_{C_{n}}\right)$ if $x_{j} x_{k} \in I_{C_{n}}$. Throughout this proof all indices are taken mod n .

Case 1: Suppose i, j, k are three consecutive integers. Without loss of generality we may assume $j=i+1$ and $k=i+2$. We first consider

$$
\frac{x_{i} x_{j} x_{k}}{x_{i}}=\frac{x_{i} x_{i+1} x_{i+2}}{x_{i}}=x_{i+1} x_{i+2}
$$

and we note that $x_{i+1} x_{i+2} \in I_{C_{n}}$. Next we consider

$$
\frac{x_{i} x_{j} x_{k}}{x_{j}}=\frac{x_{i} x_{i+1} x_{i+2}}{x_{i+1}}=x_{i} x_{i+2}
$$

and we note that $x_{i} x_{i+2} \notin I_{C_{n}}$ unless $n=3$. Lastly we consider

$$
\frac{x_{i} x_{j} x_{k}}{x_{k}}=\frac{x_{i} x_{i+1} x_{i+2}}{x_{i+2}}=x_{i} x_{i+1}
$$

and we note that $x_{i} x_{i+1} \in I_{C_{n}}$. From this we can see that $\left\{\emptyset, x_{i}, x_{i+2}\right\}=$ $K_{x_{i} x_{i+1} x_{i+2}}\left(I_{C_{n}}\right)=K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$. Thus $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$ has two connected components and contributes one to the Betti number.

Case 2: Suppose i, j, k are not three consecutive integers. Without loss of generality we may assume $i<j<k$. We note that

$$
\frac{x_{i} x_{j} x_{k}}{x_{i}}=x_{j} x_{k}, \frac{x_{i} x_{j} x_{k}}{x_{j}}=x_{i} x_{k}, \text { and } \frac{x_{i} x_{j} x_{k}}{x_{k}}=x_{i} x_{j} .
$$

Subcase 1: Assume that i and j are consecutive integers. Without loss of generality, we may assume $j=i+1$. Since i, j, k are not three consecutive integers, then $k \neq i+2$ and $k \not \equiv i-1(\bmod n)$. We see
that $x_{i} x_{j}=x_{i} x_{i+1}$ and $x_{i} x_{i+1} \in I_{C_{n}}$ so $x_{k} \in K_{x_{i} x_{i+1} x_{k}}\left(I_{C_{n}}\right)$. However $x_{i} x_{k}$ and $x_{j} x_{k}=x_{i+1} x_{k} \notin I_{C_{n}}$, so $x_{j}, x_{k} \notin K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$. Thus $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$ has only one connected component and therefore contributes zero to the Betti number.

Subcase 2: Assume that j and k are consecutive integers. That is, $k=j+1$. Since i, j, k are not three consecutive integers, then $i \neq j-$ 1 and $i \not \equiv k+1(\bmod n)$. We see that $x_{j} x_{k}=x_{j} x_{j+1} \in I_{C_{n}}$. Therefore $x_{i} \in$ $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$. However, $x_{i} x_{j}, x_{i} x_{k} \notin I_{C_{n}}$, and therefore $x_{j}, x_{k} \notin K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$. Thus $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$ has only one connected component and therefore contributes zero to the Betti number.

Subcase 3: Assume that i and k are consecutive integers. Since we have specified that $i<j<k$, then i and k are consecutive integers if $k \not \equiv i-1$ $(\bmod n)$. That is, i and k are consecutive integers if $i=1$ and $k=n$. Since i, j, k are not three consecutive integers, then $j \neq i+1, k-1$. We see that $x_{i} x_{k} \in I_{C_{n}}$ so $x_{j} \in K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$. However, $x_{i} x_{j}, x_{j} x_{k} \notin I_{C_{n}}$ so $x_{i}, x_{k} \notin$ $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$. Thus $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$ has only one connected component and therefore contributes zero to the Betti number.

Subcase 4: No two of i, j, k are consecutive integers. That is, $j \neq i+1, k-$ 1 and $k \not \equiv i-1(\bmod n)$. Then $x_{i} x_{j}, x_{j} x_{k}, x_{i} x_{k} \notin I_{C_{n}}$ and so $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)=$ $\{\emptyset\}$. Thus $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$ has only one connected component and therefore contributes zero to the Betti number.

From these cases we see that $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$ contributes to the Betti number only if and only if i, j, k are three consecutive integers. As noted in Case 1, if i, j, k are three consecutive integers, then $K_{x_{i} x_{j} x_{k}}\left(I_{C_{n}}\right)$ has two connected components and therefore contributes one to the Betti number. For C_{n} we have simplicial complexes $K_{x_{1} x_{2} x_{3}}, \ldots, K_{x_{n} x_{1} x_{2}}$. There are n simplicial complexes, each of which contributes one to the Betti number. We conclude that the Betti number is n.

4 Quadratic First Syzygies

In this section we will examine the minimal quadratic first syzygies of a cyclic graph C_{n}.

Theorem 4.1. The Betti number corresponding to the minimal quadratic first syzygies of a cyclic graph C_{n} is $\frac{n(n-5)}{2}$ for $n \geq 6$.

Proof. Let i, j, k, ℓ be distinct integers such that $1 \leq i, j, k, \ell \leq n$. Define $m=x_{i} x_{j} x_{k} x_{\ell}$. We will denote the simplicial complex with maximal faces F_{1}, \ldots, F_{r} by $K_{m}\left(I_{C_{n}}\right)=\left\langle F_{1}, \ldots, F_{r}\right\rangle$. We recall that $x_{i} x_{j} \in$ $K_{m}\left(I_{C_{n}}\right)$ if and only if $\frac{m}{x_{i} x_{j}} \in I_{C_{n}}$. Throughout this proof all indices are taken $\bmod n$.

Case 1: Assume that none of i, j, k, ℓ are consecutive integers. There is no combination of two of $x_{i}, x_{j}, x_{k}, x_{\ell}$ by which we can divide m and result in an element of $I_{C_{n}}$. Thus $K_{m}\left(I_{C_{n}}\right)=\{\emptyset\}$. Since $K_{m}\left(I_{C_{n}}\right)$ has only one connected component it contributes zero to the Betti number.

Case 2: Assume that exactly two of i, j, k, ℓ are consecutive. Without loss of generality we may assume that i and j are consecutive integers and that $j=i+1$. We note that $k, \ell \neq i+2, i-1$ and moreover $\ell \neq k-1, k+1$. We first consider the pair $x_{k} x_{\ell}$. We see that $\frac{m}{x_{k} x_{\ell}}=x_{i} x_{i+1}$ and $x_{i} x_{i+1} \in$ $I_{C_{n}}$, so $x_{k} x_{\ell} \in K_{m}\left(I_{C_{n}}\right)$. No other combination M of two of x_{i}, x_{i+1}, x_{j}, x_{k} satisfies $\frac{m}{M} \in I_{C_{n}}$, so there are no other elements in $K_{m}\left(I_{C_{n}}\right)$. Since $K_{m}\left(I_{C_{n}}\right)=\left\langle x_{k} x_{\ell}\right\rangle$ has only one connected component it therefore contributes zero to the Betti number.

Case 3: Assume that there are exactly two pairs of two consecutive integers among i, j, k, ℓ. Without loss of generality we may assume that $k=i+1$ and $\ell=j+1$. We further restrict j so that $j \neq i+2, i-2$. Consider first the pair $x_{j} x_{j+1}$. We see that $\frac{m}{x_{j} x_{j+1}}=x_{i} x_{i+1}$ and $x_{i} x_{i+1} \in$ $I_{C_{n}}$, so $x_{j} x_{j+1} \in K_{m}\left(I_{C_{n}}\right)$. Now consider the pair $x_{i} x_{i+1}$. We see that $\frac{m}{x_{i} x_{i+1}}=x_{j} x_{j+1}$ and $x_{j} x_{j+1} \in I_{C_{n}}$, so $x_{i} x_{i+1} \in K_{m}\left(I_{C_{n}}\right)$. No other combination M of two of $x_{i}, x_{i+1}, x_{j}, x_{j+1}$ satisfies $\frac{m}{M} \in I_{C_{n}}$, so there are no other
elements in $K_{m}\left(I_{C_{n}}\right)$. Since $K_{m}\left(I_{C_{n}}\right)=\left\langle x_{i} x_{i+1}, x_{j} x_{j+1}\right\rangle$ has two connected components it therefore contributes one to the Betti number.

Case 4: Assume that there are exactly three consecutive integers among i, j, k, ℓ. Without loss of generality we may assume $k=i+1$ and $\ell=$ $i+2$. We restrict j so that $j \neq i+3, i-1$. Consider the pair $x_{i} x_{j}$. We see that $\frac{m}{x_{i} x_{j}}=x_{i+1} x_{i+2}$ and $x_{i+1} x_{i+2} \in I_{C_{n}}$, so $x_{i} x_{j} \in K_{m}\left(I_{C_{n}}\right)$. Next consider the pair $x_{i+2} x_{j}$. We see that $\frac{m}{x_{i+2} x_{j}}=x_{i} x_{i+1}$ and since $x_{i} x_{i+1} \in$ $I_{C_{n}}$ then $x_{i+2} x_{j} \in K_{m}\left(I_{C_{n}}\right)$. There is no other combination M of two of $x_{i}, x_{i+1}, x_{i+2}, x_{j}$ such that $\frac{m}{M} \in I_{C_{n}}$, so there are no other elements of $K_{m}\left(I_{C_{n}}\right)$. Since $K_{m}\left(I_{C_{n}}\right)=\left\langle x_{i} x_{j}, x_{i+2} x_{j}\right\rangle$ has only one connected component it therefore contributes zero to the Betti number.

Case 5: Assume that i, j, k, ℓ are four consecutive integers. Without loss of generality we may assume that $j=i+1, k=i+2$, and $\ell=i+3$. First consider the pair $x_{i} x_{i+1}$. We see that $\frac{m}{x_{i} x_{i+1}}=x_{i+2} x_{i+3}$, and since $x_{i+1} x_{i+2} \in$ $I_{C_{n}}$, then $x_{i} x_{i+1} \in K_{m}\left(I_{C_{n}}\right)$. Next consider the pair $x_{i} x_{i+3}$. We see that $\frac{m}{x_{i} x_{i+3}}=x_{i+1} x_{1+2}$, and since $x_{i+1} x_{1+2} \in I_{C_{n}}$, then $x_{i} x_{i+3} \in K_{m}\left(I_{C_{n}}\right)$. Lastly consider the pair $x_{i+2} x_{i+3}$. We see that $\frac{m}{x_{i+2} x_{i+3}}=x_{i} x_{i+1}$, and since $x_{i} x_{i+1} \in$ $I_{C_{n}}$, then $x_{i+2} x_{i+3} \in K_{m}\left(I_{C_{n}}\right)$. No other combinations M of x_{i}, x_{i+1}, x_{1+2}, x_{i+3} satisfy $\frac{m}{M} \in I_{C_{n}}$, so there are no other elements of $K_{m}\left(I_{C_{n}}\right)$. Since $K_{m}\left(I_{C_{n}}\right)=\left\langle x_{i} x_{i+1}, x_{i} x_{1+3}, x_{i+2} x_{1+3}\right\rangle$ has only one connected component it therefore contributes zero to the Betti number.

From these five cases we see that $K_{m}\left(I_{C_{n}}\right)$ contributes to the Betti number if and only if i, j, k, ℓ are exactly two pairs of two consecutive integers. In that case, $K_{m}\left(I_{C_{n}}\right)$ has two connected components and contributes one to the Betti number. We must determine how many different arrangements x_{i}, x_{i+1}, x_{j}, x_{j+1} there are for C_{n}. Recall that the graph C_{n} has n vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and n edges $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$. For each edge $v_{i} v_{i+1}$ we exclude the two vertices v_{i} and v_{i+1} as well as adjacent vertices v_{i-1} and v_{i+2}. In total we exclude four vertices, so we have remaining $n-4$ vertices and $n-5$ edges. Thus there are $n(n-5)$ arrangements of two pair of adjacent vertices that do not have a vertex in common. However since we have counted
each pair twice we must divide this number by 2 resulting in $\frac{n(n-5)}{2}$ distinct pairs of adjacent vertices that do not have a vertex in common. Therefore there are $\frac{n(n-5)}{2}$ distinct arrangements of $m=x_{i} x_{i+1} x_{j} x_{j+1}$, and thus $\frac{n(n-5)}{2}$ distinct $K_{m}\left(I_{C_{n}}\right)$, each of which contribute one to the Betti number. We conclude that the Betti number is $\frac{n(n-5)}{2}$.

5 Conjectures

In this section we will develop methods to determine the structure of the Betti table for the edge ideal of a cyclic graph C_{n}. We begin by writing n as either $3 q-1,3 q$, or $3 q+1$ for some $q \in \mathbb{N}$.

Conjecture 5.1. The Betti table for $S / I_{C_{n}}$ will have $q+1$ rows labeled 0 , 1 , $2, \ldots, q$.

In section 3 we proved that the entry in column 2 of row 1 is n, and in section 4 we proved that the entry in column 2 of row 2 is $\frac{n(n-5)}{2}$. Although we have no formal proofs, we now wish to make conjectures regarding the entries in all but the last row of the Betti table. Our conjectures are based on computational evidence from Macaulay 2 [GS].

Conjecture 5.2. Let p be an integer with $p<q$. Then row p will have $p+1$ entries. The first entry of row p will be in column p, and the last entry will be in column $2 p$. Moreover, for an integer $i=\{0,1,2, \ldots, p\}$ the entry in the $p+i$ column of row p is given by $\binom{p}{i} M(p)$ where

$$
M(p)=\frac{n(n-(2 p+1)) \cdot \ldots \cdot(n-(3 p-1))}{p!}
$$

Now that we have a conjecture for the entries in any row that is not the last row, we turn our attention to the last row of the Betti table, row q.

Conjecture 5.3. The structure of row q depends on whether n is written as $3 q-1$, $3 q$, or $3 q+1$.

Case 1: If $n=3 q-1$ then the entry in the $2 q-1$ column of row q is 1 and all other entries are empty.
Case 2: If $n=3 q$ then for an integer $i=0,1, \ldots, q-1$ the entry in the $q+i$ column is $3\binom{q}{i}$ and the entry in the $2 q$ column is 2.
Case 3: If $n=3 q+1$ then for an integer $i=0,1, \ldots, q$ the entry in the $q+i$ column is $n\binom{q}{i}$ and the entry in the $2 q+1$ column is 1 .

Conjecture 5.4. The regularity $\operatorname{reg}\left(S / I_{C_{n}}\right)=q$, and the regularity increases at $n=3 q+2$.

Conjecture 5.5. The projective dimension of $I_{C_{n}}$ depends on whether n is written as $3 q-1$, $3 q$ or $3 q+1$.

Case: If $n=3 q-1$ then the projective dimension is $2 q-1$.
Case 2: If $n=3 q$ then the projective dimension is $2 q$.
Case 3: If $n=3 q+1$ then the projective dimension is $2 q+1$.

To illustrate these examples we will examine $S / I_{C_{n}}$.
Example 5.6. To determine the Betti table for $S / I_{C_{10}}$ we begin by writing $10=3(3)+1$. Based on Conjecture 5.1, the Betti table for $S / I_{C_{n}}$ will have 4 rows, which we will label as row 0 , row 1 , row 2 , and row 3 . Row 0 will have a single entry: a 1 in column 0 . Row 1 will have two entries: a 10 in column 1 and, based on Theorem 3.1, a 10 in column 2. Conjecture 5.2 tells us that row 2 will have three entries, with the first entry in column 2 and the last entry in column 4. Based on Theorem 4.1, the entry in column 2 will be $\frac{10(10-5)}{2}=25$. We note that from Conjecture $5.2, M(2)=25$ as well. Then by Conjecture 5.2 the entry in column 3 is $\binom{2}{1} M(2)=\binom{2}{1} 25=50$, and the entry in column 4 is $\binom{2}{2} M(2)=\binom{2}{2} 25=25$. Lastly we will determine the entries of row 3. By Conjecture 5.4, the entries in columns 3, 4, 5, and 6 are, respectively, $10\binom{3}{0}=10,10\binom{3}{1}=30,10\binom{3}{2}=30$, and $10\binom{3}{3}=10$. Furthermore, the entry in column 7 is 1 . Thus the Betti table for $S / I_{C_{10}}$ is as follows:

	0	1	2	3	4	5	6	7
total:	1	10	35	60	55	30	10	1
$0:$	1
$1:$.	1	10
$2:$.	.	25	50	25	.	.	.
$3:$.	.	.	10	30	30	10	1

The Betti tables provided in the appendix will confirm that this is indeed the Betti table for $S / I_{C_{n}}$.

6 Appendix

Included in this section are the Betti tables for $S / I_{C_{3}}$ through $S / I_{C_{30}}$.
Betti table for $S / I_{C_{3}}$:

```
        0 1 2
total: 1 3 2
    0: 1 . .
    1: . 3 2
```

Betti table for $S / I_{C_{4}}$:

```
    0 2 3
total: 1 4 4 1
    0: 1 . . .
    1: . 4 4 1
```

Betti table for $S / I_{C_{5}}$:

```
        0 2 3
total: 1 5 5 1
    0: 1 . . .
    1: . 5 5 .
    2: . . . 1
```

Betti table for $S / I_{C_{6}}$:

```
        0 2 34
total: 1 6 9 6 2
    0: 1 . . . .
    1: . 6 6 . .
    2: . . 3 6 2
```

Betti table for $S / I_{C_{7}}$:

```
        0}12% 3 4 5
total: 1 7 14 14 7 1
    0: 1 . . . . .
    1: . 7 7 . . .
    2: . . }7147
```

Betti table for $S / I_{C_{8}}$:

```
        0}1
total: 1 8 20 24 12 1
    0: 1 . . . . .
    1: . 8 8 . . .
    2: . . }12\mathrm{ 3: . . . . . 12 . 
```

Betti table for $S / I_{C_{9}}$:

```
        0}1
total: 1 927 39 27 9 2
    0: 1 . . . . . .
    1: . 9 9 . . . .
    2: . . 18 36 18 . .
    3: . . . 3 992
```

Betti table for $S / I_{C_{10}}$:

	0	1	2	3	4	5	6	7
total:	1	10	35	60	55	30	10	1
$0:$	1
$1:$.	10	10
$2:$.	.	25	50	25	.	.	.
$3:$.	.	.	10	30	30	10	1

Betti table for $S / I_{C_{11}}$:

	0	1	2	3	4	5	6	7
total:	1	11	44	88	99	66	22	1
$0:$	1
$1:$.	11	11
$2:$.	.	33	66	33	.	.	.
$3:$.	.	.	22	66	66	22	.
$4:$	1

Betti table for $S / I_{C_{12}}$:

```
    0
total: 1 12 54 124 165 132 58 12 2
    0: 1 . . . . . . . .
    1: . }1212 . . . . . .
    2: . . 42 84 42 . . . .
    3: . . . 40 120 120 40 . .
    4: . . . . }3121812 
```

Betti table for $S / I_{C_{13}}$:

```
llllllllllll
total: 1 13 65 169 260 247 143 52 13 1
    0: 1 . . . . . . . . .
    1: . 13 13 . . . . . . .
    2: . . }52104 52 . . . . .
    3: . . . 65 195 195 65 . . .
    4: . . . . 13 52 78 52 13 1
```

Betti table for $S / I_{C_{14}}$:

```
total: 1 14 77 224 392 434 308 140}355
    0: 1 . . . . . . . . .
    1: . 14 14
    2: . . }63126 63 . . . . . .
    3: . . . 98 294 294 98 . . .
    4: . . . . }35140210 140 35 .
    5: . . . . . . . . . 1
```

Betti table for $S / I_{C_{15}}$:

	0	1	2	3	4	5	6	7	8	9	10
total :	1	15	90	290	570	723	605	330	105	15	2
$0:$	1
$1:$.	15	15
$2:$.	.	75	150	75
$3:$.	.	.	140	420	420	140
$4:$	75	300	450	300	75	.	.
$5:$	3	15	30	30	15	2

Betti table for $S / I_{C_{16}}$:

```
0
```



```
    1: . }161
    2: . . 88 176 88
    3: . . . 192 576 576 192
```


Betti table for $S / I_{C_{17}}$:

```
lllllllllllllllll}\begin{array}{llllllll}{0}&{1}&{2}&{3}&{4}&{5}&{6}&{7}
total: 1 17 119 459 1105 1768 1938 1462 748 255 51 1
    0: 1
    1: . 17 17
    2: . . 102 204 102
    3: . . . 255 765 765 255 . . . . . .
    4: . . . . . . . . 
    6: . . . . . . . . . . . 1
```

Betti table for $S / I_{C_{18}}$:

	0	1	2	3	4	5	6	7	8	9	10	11	12
total:	1	18	135	564	1485	2628	3231	2790	1683	690	171	18	2
$0:$	1
$1:$.	18	18
$2:$.	.	117	234	117
$3:$.	.	.	330	990	990	330
$4:$	378	1512	2268	1512	378
$5:$	126	630	1260	1260	630	126	.	.
$6:$	3	18	45	60	45	18	2

Betti table for $S / I_{C_{19}}$:

```
    0
total: 1 19 152 684 1957 3800 5187 5054 3515 1710 551 114 19 1
    0: 1
    1: . 19 19
    2: . . 133 266 133
    3: . . . 418 1254 1254 418 . . . . . . .
    4: . . . . 570 2280 3420 2280 570 . . . . .
    5: . . . . . 266 1330 2660 2660 1330 266 . . . .
```


Betti table for $S / I_{C_{20}}$:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
total $:$	1	20	170	820	2535	5364	8060	8760	6915	3920	1554	420	70	1
$0:$	1
$1:$.	20	20
$2:$.	.	150	300	150
$3:$.	.	.	520	1560	1560	520
$4:$	825	3300	4950	3300	825
$5:$	504	2520	5040	5040	2520	504	.	.	.
$6:$	70	420	1050	1400	1050	420	70	.
$7:$	1

Betti table for $S / I_{C_{21}}$:

Betti table for $S / I_{C_{22}}$:

```
            0}1
total: 1 22 209 1144 4070 10054 17930 23606 23177 16962 9152 3542 924 154 22 1
    0: 1 . .
    1: . 22 22
    2: . . 187 374 187
    3: . . . . . 
    5: . . . . . 1452 7260 14520 14520 7260 1452
```


Betti table for $S / I_{C_{23}}$:

$\quad 0$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
total:	1	23	230	1334	5060	13409	25829	37030	39997	32637	19987	9016	2898	644	92	1
$0:$	1
$1:$.	23	23
$2:$.	.	207	414	207
$3:$.	.	.	920	2760	2760	920
$4:$	2093	8372	12558	8372	2093
$5:$	2277	11385	22770	22770	11385	2277
$6:$	966	5796	14490	19320	14490	5796	966	.	.	.
$7:$	92	644	1932	3220	3220	1932	644	92	.
$8:$	1

Betti table for $S / I_{C_{24}}$:

```
            0}1
```



```
    0: 1
    1: . 24 24
    2: . . 228 456 228
    3: . . . 1088 3264 3264 1088
    4: . . . . 2730 10920 16380 10920 2730
    5: . . . . . 3432 17160 34320 34320 17160 3432
    6: . . . . . . 1848 11088 27720 36960 27720 11088 1848
    7: . . . . . . . . . . . . 
```

Betti table for $S / I_{C_{25}}$:
$\begin{array}{rrrrrrrrrrrrrrrrrr} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ \text { total: } & 1 & 25 & 275 & 1775 & 7575 & 22830 & 50600 & 84600 & 108325 & 106975 & 81455 & 47450 & 20800 & 6650 & 1450 & 200 & 25 \\ 1\end{array}$
$\begin{array}{llll}0: & 1 & . \\ \text { 1: } & . & 25 & 25\end{array}$
$\begin{array}{rrrrr}\text { 1: . } & 25 & 25 & . & . \\ \text { 2: . } & . & 250 & 500 & 250\end{array}$
$\begin{array}{lll}1275 & 3825 & 3825 \\ 1275\end{array}$
. $3500140002100014000 \quad 3500$
$\begin{array}{rllllllllllll}\text { 5: . } & . & . & . & . & 5005 & 25025 & 50050 & 50050 & 25025 & 5005 & . & . \\ \text { 6: . } & . & . & . & . & . & 3300 & 19800 & 49500 & 66000 & 49500 & 19800 & 3300\end{array}$
$\begin{array}{rllllllllllllllll}\text { 5: . } & . & . & . & . & 5005 & 25025 & 50050 & 50050 & 25025 & 5005 & . & . & . & \\ \text { 6: . } & . & . & . & . & . & 3300 & 19800 & 49500 & 66000 & 49500 & 19800 & 3300\end{array}$

Betti table for $S / I_{C_{26}}$:
$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ total: 126299202891392922469069123838171184184002154089100074498031856449929361171 0: 1
. $26 \quad 26$
$\begin{array}{lll}273 & 546 & 273\end{array}$
$\begin{array}{llll}1482 & 4446 & 4446 & 1482\end{array}$ $\begin{array}{lllll}4420 & 17680 & 26520 & 17680 & 4420\end{array}$
$\begin{array}{lllllll}7098 & 35490 & 70980 & 70980 & 35490 & 7098\end{array}$
$\begin{array}{lllllll}5577 & 33462 & 83655 & 111540 & 83655 & 33462 & 5577\end{array}$
$\begin{array}{llllllll}1716 & 12012 & 36036 & 60060 & 60060 & 36036 & 12012 & 1716\end{array}$
$\begin{array}{llllllllllll}\cdot \cdot & \cdot & 117 & 936 & 3276 & 6552 & 8190 & 6552 & 3276 & 936 & 117\end{array}$

Betti table for $S / I_{C_{27}}$:

 0: 1
1: . 2727
2: . . $297594 \quad 297$
$\begin{array}{rlrrrrrrr}\text { 3: . } & . & . & 1710 & 5130 & 5130 & 1710 & . & \text {. } \\ \text { 4: } & . & . & . & 5508 & 22032 & 33048 & 22032 & 5508\end{array}$
$\begin{array}{rlllrrrrrrr}4: & . & . & . & 5508 & 22032 & 33048 & 22032 & 5508 & . & . \\ \text { 5: . } & . & . & . & . & 9828 & 49140 & 98280 & 98280 & 49140 & 9828\end{array}$
$\begin{array}{rllllllllllll}\text { 5: . } & . & . & . & . & 9828 & 49140 & 98280 & 98280 & 49140 & 9828 & & . \\ \text { 6: } & . & . & . & . & . & 9009 & 54054 & 135135 & 180180 & 135135 & 54054 & 9009\end{array}$

Betti table for $S / I_{C_{28}}$:

 0: 1

```
rrrrr
    . 1960
                6783}2713240698 27132 6783
            13328 66640}133280133280 66640 13328%
                14014 84084 210210}280280 210210 84084 14014
            6864}448048 144144 240240 240240 144144 48048 6864
```

 \(\begin{array}{rrrrrrrrr} \\ 1155 & 9240 & 32340 & 64680 & 80850 & 64680 & 32340 & 9240 & 1155 \\ . & 28 & 252 & 1008 & 2352 & 3528 & 3528 & 2352 & 1008\end{array}\)
 | 28 | 252 | 1008 | 2352 | 3528 | 3528 | 2352 | 1008 | 252 | 28 | i |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Betti table for $S / I_{C_{29}}$:
$\begin{array}{lllllllllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$

0: 1 .
2: . . $348 \quad 696 \quad 348$

696	348	.
2233	6699	6699

$\begin{array}{lllll}8265 & 33060 & 49590 & 33060 & 8265\end{array}$
$\begin{array}{lllllll}17748 & 88740 & 177480 & 177480 & 88740 & 17748\end{array}$
$\begin{array}{llllll}21112 & 126672 & 316680 & 422240 & 316680 & 126672 \\ 21112\end{array}$
$\begin{array}{lrrrrrrr}12441 & 87087 & 261261 & 435435 & 435435 & 261261 & 87087 & 12441\end{array}$
$\begin{array}{llllllllll}2871 & 22968 & 80388 & 160776 & 200970 & 160776 & 80388 & 22968 & 2871\end{array}$
$\begin{array}{lllllllllllll}145 & 1305 & 5220 & 12180 & 18270 & 18270 & 12180 & 5220 & 1305 & 145\end{array}$

Betti table for $S / I_{C_{30}}$:

total:	1	30	405	3280	17940	70746	209600	479550	863220	1237560	1423239	1316580	978175	580170	271560	98436	26865	5310	685	30	2
0 :	1
1:	3	30	30	-	-	-	-	-	.	.	-	-	-	.	.	-	-				.
2 :	.	.	375	750	375	.	.	-	-	.	.	-	-	-	.	.	-				.
3 :	.	.	.	2530	7590	7590	2530	-	-	.	.					.
4:	9975	39900	59850	39900	9975	-
5:	.	-	.	-		23256	116280	232560	232560	116280	23256	.	-	-	.	.	-				.
6:	.	.	.	-	.	.	30940	185640	464100	618800	464100	185640	30940
7:		21450	150150	450450	750750	750750	450450	150150	21450	.	.	-		.	.
$8:$	-	-	-	.	6435	51480	180180	360360	450450	360360	180180	51480	6435	.	.	-	-
9:	.	.			.					550	4950	19800	46200	69300	69300	46200	19800	4950	550	.	.
10:	-	.	.	.	-	-	-	-	-	.	3	30	135	360	630	756	630	360	135	30	2

7 Acknowledgements

I would to thank Dr. Christopher Francisco for serving as my thesis director. Creating this Honors thesis has been a thouroughly rewarding and enjoyable experience, due greatly to Dr. Francisco's invaluable support. Without his guidance and encouragment this research would not have been possible.

I would like to thank Dr. Jay Schweig for serving as my second reader. I'm deeply grateful that he lent his expertise to my research.

Lastly, I would like to thank all the faculty from the Department of Mathematics from whom I've had the privilege of taking classes. Through them I have built my understanding of mathematics and strengthened my love of this discipline.

References

[BCP] D. Bayer, H. Charalambous, and S. Popescu, Extremal Betti numbers and applications to monomial ideals. J. Algebra 221 (1999), no. 2, 497-512.
[GS] D. R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/.

