
Betti Numbers of Edge Ideals of Cyclic Graphs

Martha Gipson
Department of Mathematics
College of Arts and Sciences
Oklahoma State University

Spring 2015

Contents

1 Introduction 2

2 Background Material 2
2.1 Cyclic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Edge Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Free Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Betti Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Computing the Number of Minimal First Syzygies . . . . . . . 4

3 Linear First Syzygies 6

4 Quadratic First Syzygies 8

5 Conjectures 11

6 Appendix 13

7 Acknowledgements 20

1



1 Introduction

The goal of this paper is to analyze the Betti numbers of the edge ideals of
cyclic graphs. We will prove the values of the Betti numbers corresponding
to the minimal linear first syzygies and the minimal quadratic first syzygies.
We will also conjecture formulas to determine the Betti table for the edge
ideal of a cyclic graph on any number of vertices.

2 Background Material

In this section we will briefly cover the mathematical definitions, theorems,
and concepts that are used throughout this research paper.

2.1 Cyclic Graphs

A graph with vertex set V = {v1, . . . , vn} and edge set
E = {v1v2, v2v3, . . . , vn−1vn, vnv1} is a cyclic graph Cn.

2.2 Edge Ideals

The edge ideal of a cyclic graph on n vertices is
ICn = (xixj | vivj is an edge in Cn). To be specific, we can say that
ICn = (x1x2, x2x3, . . . , xn−1xn, xnx1).

2.3 Free Resolutions

A free resolution is a way of encoding the complexity of an algebraic struc-
ture. We are particularly interested in the minimal free resolution of an
ideal. To construct a minimal free resolution of S/I, where I is an ideal, we
begin with a set of minimal generators for I. Assuming there are b1 minimal
generators, we place the module Sb1 , the direct sum of b1 copies of S in step
one, forming a sequence

Sb1
d1−→ S

π−→ S/I −→ 0,
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where π is the usual projection map. The map d1 has a kernel that is a
submodule of Rb1 ; suppose that kernel has a minimal generating set of d2
elements. Then we can map Rb2 onto this kernel, letting d2 be the map
from Rb2 to Rb1 via the kernel of d1. Repeating this process produces a
minimal free resolution, which Hilbert’s Syzygy Theorem guarantees has a
finite number of steps:

0 −→ Sbr
dr−→ · · · d3−→ Sb2

d2−→ Sb1
d1−→ S

π−→ S/I −→ 0

We say that I has b2 minimal first syzygies, b3 minimal second syzygies,
etc. Syzygies are just relations, S-linear combinations that sum to zero. A
syzygy is called linear if it imposes a linear relation. For example, b · a2 +
(−a) · ab = 0, and thus there is a linear syzygy on the monomials a2 and ab.
The bi in the minimal free resolution are called the Betti numbers of S/I.
We have constructed the maps so that at each step, the kernel of di is equal
to the image of di+1.

Example 2.1. Let I = (a2, ab, b3). The minimal free resolution of S/I is:

0 −→ S2


−b 0
a −b2
0 a


−→ S3

(
a2 ab b3

)
−→ S

π−→ S/I −→ 0

We can refine the information in Example 2.1 by computing the degrees
of each of the syzygies. The notation S(−d) indicates a shift in S by degree
d. This shift is used so that the maps do not change the degrees of elements,
and it also indicates the degrees of syzygies. The relation b ·a2 +(−a) ·ab = 0
represents a syzygy of degree three since a2b has degree three. In Example 2.1,
suppressing the maps, the minimal graded free resolution looks like this:

0 −→ S(−3)⊕ S(−4) −→ S(−2)2 ⊕ S(−3) −→ S
π−→ S/I −→ 0

One can read off the graded Betti numbers now: for example, b1,2 = 2
because there are two minimal generators of degree two, and b2,4 = 1 because
there is a single minimal syzygy of degree four.

Finally, we can refine the information even further by considering the
multigraded Betti numbers. The syzygy corresponding to the relation b ·
a2 + (−a) · ab = 0 has multidegree a2b, and b2,a2b = 1 for the resolution in
Example 2.1.
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2.4 Betti Table

In the previous section we found that the graded Betti numbers can be read
off the minimal graded free resolution. The Betti table displays the graded
Betti numbers. The graded Betti number bi,i+j is displayed in column i
and row j where the rows and column are numbered starting from zero.
For instance, in the minimal graded free resolution from Example 2.1, the
corresponding Betti table is as follows:

0 1 2
total: 1 3 2

0: 1 . .
1: . 2 1
2: . 1 1

2.5 Computing the Number of Minimal First Syzygies

In [BCP], Bayer, Charalambous, and Popescu develop a useful combinatorial
tool for computing multigraded Betti numbers of monomial ideals. We will
use only a special case of [BCP, Theorem 2.2]. Letm be a monomial, and let I
be a monomial ideal. Define Km(I) to be the simplicial complex, essentially a
possibly higher-dimensional graph, formed in the following way. We consider
the set of monomials:{

t :
m

t
∈ I, t squarefree monomial

}
Then we let Km(I) be the sets of variables corresponding to the elements of
this set of monomials.

Example 2.2. Suppose I = (ab, bc, cd, da), and let m = abcd. Then the
set of monomials described above consists of the monomials 1, a, b, c, d,
ab, ad, bc, and cd. Thus Km(I) is a graph, the 4-cycle with edges {a, b},
{b, c}, {c, d}, and {d, a} (coincidentally the same graph for which I is the
edge ideal).

We will use the following result of Bayer, Charalambous, and Popescu.
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Theorem 2.3. Let I be a monomial ideal, let K be a simplicial complex,
and let H̃0(K) be the number of connected components of K minus one. The
number of minimal first syzygies of S/I of degree d is equal to∑

degm=d

m monomial

H̃0(Km(I)).
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3 Linear First Syzygies

In this section we will examine the minimal linear first syzygies of a cyclic
graph Cn.

Theorem 3.1. The Betti number corresponding to the minimal linear first
syzygies of a cyclic graph Cn is n.

Proof. Let i, j, k be distinct integers such that 1 ≤ i, j, k ≤ n. We note that
{xi} ∈ Kxi,xj ,xk(ICn) if xjxk ∈ ICn . Throughout this proof all indices are
taken mod n.

Case 1: Suppose i, j, k are three consecutive integers. Without loss of
generality we may assume j = i+ 1 and k = i+ 2. We first consider

xixjxk
xi

=
xixi+1xi+2

xi
= xi+1xi+2

and we note that xi+1xi+2 ∈ ICn . Next we consider

xixjxk
xj

=
xixi+1xi+2

xi+1

= xixi+2

and we note that xixi+2 6∈ ICn unless n = 3. Lastly we consider

xixjxk
xk

=
xixi+1xi+2

xi+2

= xixi+1

and we note that xixi+1 ∈ ICn . From this we can see that {∅, xi, xi+2} =
Kxixi+1xi+2

(ICn) = Kxixjxk(ICn). Thus Kxixjxk(ICn) has two connected com-
ponents and contributes one to the Betti number.

Case 2: Suppose i, j, k are not three consecutive integers. Without loss
of generality we may assume i < j < k. We note that

xixjxk
xi

= xjxk,
xixjxk
xj

= xixk, and
xixjxk
xk

= xixj.

Subcase 1: Assume that i and j are consecutive integers. Without
loss of generality, we may assume j = i + 1. Since i, j, k are not three
consecutive integers, then k 6= i + 2 and k 6≡ i − 1 (mod n). We see
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that xixj = xixi+1 and xixi+1 ∈ ICn so xk ∈ Kxixi+1xk(ICn). However
xixk and xjxk = xi+1xk 6∈ ICn , so xj, xk 6∈ Kxixjxk(ICn). Thus Kxixjxk(ICn)
has only one connected component and therefore contributes zero to the Betti
number.

Subcase 2: Assume that j and k are consecutive integers. That is,
k = j + 1. Since i, j, k are not three consecutive integers, then i 6= j −
1 and i 6≡ k + 1 (mod n). We see that xjxk = xjxj+1 ∈ ICn . Therefore xi ∈
Kxixjxk(ICn). However, xixj, xixk 6∈ ICn , and therefore xj, xk 6∈ Kxixjxk(ICn).
Thus Kxixjxk(ICn) has only one connected component and therefore con-
tributes zero to the Betti number.

Subcase 3: Assume that i and k are consecutive integers. Since we have
specified that i < j < k, then i and k are consecutive integers if k 6≡ i − 1
(mod n). That is, i and k are consecutive integers if i = 1 and k = n.
Since i, j, k are not three consecutive integers, then j 6= i + 1, k − 1. We see
that xixk ∈ ICn so xj ∈ Kxixjxk(ICn). However, xixj, xjxk 6∈ ICn so xi, xk 6∈
Kxixjxk(ICn). Thus Kxixjxk(ICn) has only one connected component and
therefore contributes zero to the Betti number.

Subcase 4: No two of i, j, k are consecutive integers. That is, j 6= i+1, k−
1 and k 6≡ i− 1 (mod n). Then xixj, xjxk, xixk 6∈ ICn and so Kxixjxk(ICn) =
{∅}. Thus Kxixjxk(ICn) has only one connected component and therefore
contributes zero to the Betti number.

From these cases we see that Kxixjxk(ICn) contributes to the Betti number
only if and only if i, j, k are three consecutive integers. As noted in Case 1,
if i, j, k are three consecutive integers, then Kxixjxk(ICn) has two connected
components and therefore contributes one to the Betti number. For Cn we
have simplicial complexes Kx1x2x3 , ..., Kxnx1x2 . There are n simplicial com-
plexes, each of which contributes one to the Betti number. We conclude that
the Betti number is n.
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4 Quadratic First Syzygies

In this section we will examine the minimal quadratic first syzygies of a cyclic
graph Cn.

Theorem 4.1. The Betti number corresponding to the minimal quadratic

first syzygies of a cyclic graph Cn is
n(n− 5)

2
for n ≥ 6.

Proof. Let i, j, k, ` be distinct integers such that 1 ≤ i, j, k, ` ≤ n. De-
fine m = xixjxkx`. We will denote the simplicial complex with maxi-
mal faces F1, . . . , Fr by Km(ICn) = 〈F1, . . . , Fr〉. We recall that xixj ∈
Km(ICn) if and only if

m

xixj
∈ ICn . Throughout this proof all indices are

taken mod n.

Case 1: Assume that none of i, j, k, ` are consecutive integers. There is
no combination of two of xi, xj, xk, x` by which we can divide m and result
in an element of ICn . Thus Km(ICn) = {∅}. Since Km(ICn) has only one
connected component it contributes zero to the Betti number.

Case 2: Assume that exactly two of i, j, k, ` are consecutive. Without loss
of generality we may assume that i and j are consecutive integers and that
j = i + 1. We note that k, ` 6= i + 2, i − 1 and moreover ` 6= k − 1, k + 1.

We first consider the pair xkx`. We see that
m

xkx`
= xixi+1 and xixi+1 ∈

ICn , so xkx` ∈ Km(ICn). No other combination M of two of xi, xi+1, xj,

xk satisfies
m

M
∈ ICn , so there are no other elements in Km(ICn). Since

Km(ICn) = 〈xkx`〉 has only one connected component it therefore contributes
zero to the Betti number.

Case 3: Assume that there are exactly two pairs of two consecutive in-
tegers among i, j, k, `. Without loss of generality we may assume that
k = i + 1 and ` = j + 1. We further restrict j so that j 6= i + 2, i − 2.

Consider first the pair xjxj+1. We see that
m

xjxj+1

= xixi+1 and xixi+1 ∈

ICn , so xjxj+1 ∈ Km(ICn). Now consider the pair xixi+1. We see that
m

xixi+1

= xjxj+1 and xjxj+1 ∈ ICn , so xixi+1 ∈ Km(ICn). No other combina-

tion M of two of xi, xi+1, xj, xj+1 satisfies
m

M
∈ ICn , so there are no other
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elements in Km(ICn). Since Km(ICn) = 〈xixi+1, xjxj+1〉 has two connected
components it therefore contributes one to the Betti number.

Case 4: Assume that there are exactly three consecutive integers among
i, j, k, `. Without loss of generality we may assume k = i + 1 and ` =
i + 2. We restrict j so that j 6= i + 3, i − 1. Consider the pair xixj. We

see that
m

xixj
= xi+1xi+2 and xi+1xi+2 ∈ ICn , so xixj ∈ Km(ICn). Next

consider the pair xi+2xj. We see that
m

xi+2xj
= xixi+1 and since xixi+1 ∈

ICn then xi+2xj ∈ Km(ICn). There is no other combination M of two of

xi, xi+1, xi+2, xj such that
m

M
∈ ICn , so there are no other elements of

Km(ICn). Since Km(ICn) = 〈xixj, xi+2xj〉 has only one connected component
it therefore contributes zero to the Betti number.

Case 5: Assume that i, j, k, ` are four consecutive integers. Without loss
of generality we may assume that j = i + 1, k = i + 2, and ` = i + 3. First

consider the pair xixi+1. We see that
m

xixi+1

= xi+2xi+3, and since xi+1xi+2 ∈

ICn , then xixi+1 ∈ Km(ICn). Next consider the pair xixi+3. We see that
m

xixi+3

= xi+1x1+2, and since xi+1x1+2 ∈ ICn , then xixi+3 ∈ Km(ICn). Lastly

consider the pair xi+2xi+3. We see that
m

xi+2xi+3

= xixi+1, and since xixi+1 ∈

ICn , then xi+2xi+3 ∈ Km(ICn). No other combinations M of xi, xi+1, x1+2,

xi+3 satisfy
m

M
∈ ICn , so there are no other elements of Km(ICn). Since

Km(ICn) = 〈xixi+1, xix1+3, xi+2x1+3〉 has only one connected component it
therefore contributes zero to the Betti number.

From these five cases we see that Km(ICn) contributes to the Betti number
if and only if i, j, k, ` are exactly two pairs of two consecutive integers. In
that case, Km(ICn) has two connected components and contributes one to
the Betti number. We must determine how many different arrangements xi,
xi+1, xj, xj+1 there are for Cn. Recall that the graph Cn has n vertices
{v1, v2, ..., vn} and n edges {v1v2, v2v3, ..., vn−1vn, vnv1}. For each edge vivi+1

we exclude the two vertices vi and vi+1 as well as adjacent vertices vi−1 and
vi+2. In total we exclude four vertices, so we have remaining n − 4 vertices
and n−5 edges. Thus there are n(n−5) arrangements of two pair of adjacent
vertices that do not have a vertex in common. However since we have counted
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each pair twice we must divide this number by 2 resulting in
n(n− 5)

2
distinct

pairs of adjacent vertices that do not have a vertex in common. Therefore

there are
n(n− 5)

2
distinct arrangements of m = xixi+1xjxj+1, and thus

n(n− 5)

2
distinct Km(ICn), each of which contribute one to the Betti number.

We conclude that the Betti number is
n(n− 5)

2
.
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5 Conjectures

In this section we will develop methods to determine the structure of the
Betti table for the edge ideal of a cyclic graph Cn. We begin by writing n as
either 3q − 1, 3q, or 3q + 1 for some q ∈ N.

Conjecture 5.1. The Betti table for S/ICn will have q+ 1 rows labeled 0, 1,
2, ... , q.

In section 3 we proved that the entry in column 2 of row 1 is n, and in

section 4 we proved that the entry in column 2 of row 2 is
n(n− 5)

2
. Although

we have no formal proofs, we now wish to make conjectures regarding the
entries in all but the last row of the Betti table. Our conjectures are based
on computational evidence from Macaulay 2 [GS].

Conjecture 5.2. Let p be an integer with p < q. Then row p will have p+ 1
entries. The first entry of row p will be in column p, and the last entry will
be in column 2p. Moreover, for an integer i = {0, 1, 2, ..., p} the entry in the
p+ i column of row p is given by

(
p
i

)
M(p) where

M(p) =
n(n− (2p+ 1)) · . . . · (n− (3p− 1))

p!

Now that we have a conjecture for the entries in any row that is not the
last row, we turn our attention to the last row of the Betti table, row q.

Conjecture 5.3. The structure of row q depends on whether n is written as
3q − 1, 3q, or 3q + 1.

Case 1: If n = 3q − 1 then the entry in the 2q − 1 column of row q is 1
and all other entries are empty.
Case 2: If n = 3q then for an integer i = 0, 1, ..., q − 1 the entry in the
q + i column is 3

(
q
i

)
and the entry in the 2q column is 2.

Case 3: If n = 3q + 1 then for an integer i = 0, 1, ..., q the entry in the
q + i column is n

(
q
i

)
and the entry in the 2q + 1 column is 1.

Conjecture 5.4. The regularity reg(S/ICn) = q, and the regularity increases
at n = 3q + 2.
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Conjecture 5.5. The projective dimension of ICn depends on whether n is
written as 3q − 1, 3q or 3q + 1.

Case: If n = 3q − 1 then the projective dimension is 2q − 1.
Case 2: If n = 3q then the projective dimension is 2q.
Case 3: If n = 3q + 1 then the projective dimension is 2q + 1.

To illustrate these examples we will examine S/ICn .

Example 5.6. To determine the Betti table for S/IC10 we begin by writing
10 = 3(3) + 1. Based on Conjecture 5.1, the Betti table for S/ICn will have
4 rows, which we will label as row 0, row 1, row 2, and row 3. Row 0 will
have a single entry: a 1 in column 0. Row 1 will have two entries: a 10 in
column 1 and, based on Theorem 3.1, a 10 in column 2. Conjecture 5.2 tells
us that row 2 will have three entries, with the first entry in column 2 and the
last entry in column 4. Based on Theorem 4.1, the entry in column 2 will

be
10(10− 5)

2
= 25. We note that from Conjecture 5.2, M(2) = 25 as well.

Then by Conjecture 5.2 the entry in column 3 is
(
2
1

)
M(2) =

(
2
1

)
25 = 50, and

the entry in column 4 is
(
2
2

)
M(2) =

(
2
2

)
25 = 25. Lastly we will determine the

entries of row 3. By Conjecture 5.4, the entries in columns 3, 4, 5, and 6 are,
respectively, 10

(
3
0

)
= 10, 10

(
3
1

)
= 30, 10

(
3
2

)
= 30, and 10

(
3
3

)
= 10. Further-

more, the entry in column 7 is 1. Thus the Betti table for S/IC10 is as follows:

0 1 2 3 4 5 6 7
total: 1 10 35 60 55 30 10 1

0: 1 . . . . . . .
1: . 1 10 . . . . .
2: . . 25 50 25 . . .
3: . . . 10 30 30 10 1

The Betti tables provided in the appendix will confirm that this is indeed
the Betti table for S/ICn .
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6 Appendix

Included in this section are the Betti tables for S/IC3 through S/IC30 .

Betti table for S/IC3 :

Betti table for S/IC4 :

Betti table for S/IC5 :

Betti table for S/IC6 :

Betti table for S/IC7 :
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Betti table for S/IC8 :

Betti table for S/IC9 :

Betti table for S/IC10 :

Betti table for S/IC11 :
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Betti table for S/IC12 :

Betti table for S/IC13 :

Betti table for S/IC14 :

Betti table for S/IC15 :
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Betti table for S/IC16 :

Betti table for S/IC17 :

Betti table for S/IC18 :
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Betti table for S/IC19 :

Betti table for S/IC20 :

Betti table for S/IC21 :

Betti table for S/IC22 :
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Betti table for S/IC23 :

Betti table for S/IC24 :

Betti table for S/IC25 :

Betti table for S/IC26 :
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Betti table for S/IC27 :

Betti table for S/IC28 :

Betti table for S/IC29 :

Betti table for S/IC30 :
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