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Abstract

Although epsilon-delta analysis has enjoyed great success in giving rigor
to modern mathematics, nonstandard analysis can be used to rigorously
reformulate modern arguments with infinite and infinitesimal arguments.
The internal set theory approach to nonstandard analysis is an axiomatic
approach that gives us a fresh point of view to look at mathematics.
Together, nonstandard analysis with the internal set theory approach
allows us to give novel proofs for classically difficult results.
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1 Introduction

1.1 History
The development of standard epsilon-delta analysis [1] is often regarded as
a step forward for mathematics. By doing away with the older infinitesimal
approach to analysis, analysis was given the rigor the infinitesimal approach
of Euler et al. lacked. However, the infinitesimal approach was remarkably
given rigor by Abraham Robinson in 1966.[6] This approach came to be
known as nonstandard analysis, or NSA.
In the decades that followed NSA’s introduction, a variety of different

NSA approaches were developed.[5] In this thesis, I explore and elucidate
the internal set theory (IST) approach first introduced by Edward Nelson [4]
by applying it to a variety of analysis topics.

1.2 Motivations
As classical analysis has been very successful in giving rigor to modern
mathematics, it is valid to ask why we should eschew classical analysis
for NSA. This question is a little misguided; instead of thinking about
nonstandard analysis as a replacement for classical analysis, one can think of
it as an extension of our analysis tool set. Still, we should want motivations
for including this tool.
One of the primary motivations for nonstandard analysis is that it

significantly simplifies a lot of classically difficult proofs. Even better, it
often simplifies the proofs by allowing us to give rigor to intuitive notions
of why some theorems are true. It’s not an accident that nonstandard
analysis helps give rigor to analysis proof intuition. Notions of infinite
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numbers and infinitesimals were used before the development of modern
analysis to give “proofs” for all of calculus. Using nonstandard analysis we
can give many of these arguments rigor.
Finally, one of the most important reasons to learn the IST flavor of

nonstandard analysis in particular is it represents a radically different
viewpoint for thinking about problems. By introducing IST to our toolbox
we are free to think about any mathematics problem from a new point of
view that may inspire new ideas.

1.3 Preface
In this thesis I give a general introduction to IST suitable for a reader
not familiar with any flavor of NSA; however, I will generally assume an
existing understanding of basic analysis topics. It is worth note that I
often borrowed ideas from and was heavily influenced by the discussion
in Robert’s Nonstandard Analysis.[5] Still, this thesis represents my own
approach to discussing and introducing IST.
My discussion in this thesis develops IST and analysis topics while

working entirely on R, although this was not strictly necessary. Instead of
restricting myself to R, I have generally made a concerted effort to give
definitions and proofs that are valid in any metric space or topological
space where this would make sense. In doing so, I hope to make it obvious
how the results may be extended.
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2 Internal Set Theory

2.1 Introduction to IST
The internal set theory, or IST, approach to NSA sets itself apart as an
axiomatic approach to NSA. Instead of relying on special constructions
to create “infinite” and “infinitesimal” numbers, IST modifies set theory
by adding three new axioms and the unary predicate standard that reveal
new numbers in sets we are already familiar with. The resulting set theory
is known as ZFC+IST, after the Zermelo–Fraenkel set theory axioms with
the axiom of choice.
In particular, IST adds the Idealization, Standardization, and Transfer

axioms. When modifying set theory with new axioms it is natural to
be hesitant or question its validity. In some sense, it is quite a radical
departure from the usual methods of proving theorems, but the axiomatic
approach provides a useful point of view that hides the machinery of other
NSA approaches. However, we must be certain when changing set theory
that we can rely on existing results; indeed, it has been shown [4] we can.
To this end we say ZFC+IST is a conservative extension of ZFC.

Theorem 1. If a mathematical statement is true without IST, it remains
true with IST.

This result is important conceptually when understanding IST. It will
remain true in spite of the new numbers IST reveals. Therefore, we can be
assured the axioms added by IST correctly deal with the new concepts in
a way that avoids contradictions. This is done in part by the introduction
of new terminology.

One of the most important concepts in IST is the notion of standardness.
IST introduces the unary predicate standard as a new term to describe
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sets. Just as every set can be described as either finite or infinite, every
set is either standard or nonstandard. Notably, each mathematical object
we deal with is represented by a set. Hence, functions and numbers are
all either standard or nonstandard. Figuring out if a given set is standard
or nonstandard is in general a difficult question, just as determining if a
given set is finite or infinite can be difficult. However, the IST axioms will
provide us a guideline for making this determination.

Here we used the terms finite and infinite to describe the size of sets. As
this can be confusing when conflated with the introduction of numbers one
might be excused to also deem infinite, we will never refer to the numbers
we introduce with such terms. Our terminology choices are in line with the
spirit of Theorem 1. For example, one can state without IST, classically,
that all elements of N are finite. It would be confusing to refer to a revealed
element of N as infinite while this remains true.

Another new phrase we will often use is classical. Since we are modifying
set theory itself for our method, we must be careful to accurately use the
terms that describe what we mean.

Definition 1 (Classical). A mathematical statement or formula is classical
if it is stated without the use of IST.

One should exercise caution when calling something classical to be certain
that it is completely free of IST. This means the statement cannot use
IST-exclusive terminology. An example of a common classical formula is
the ε definition of a convergent sequence {xn} → L given by

∃L ∈ R,∀ε > 0,∃N ∈ N,∀n ≥ N, |xn − L| < ε.

One can be certain that if a set is uniquely defined classically, that set is
standard. For example, N, R, and 3 are standard sets. We will prove this
later, but it is useful to state now.
Finally, note that we must be careful when defining sets using IST

terminology. The axiom of specification in ZF that allows us to form
subsets of a set satisfying a formula is valid only for classical formulas. For
example, we can show with IST there does not exist a set containing only
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the standard elements of N; forming this set with the axiom of specification
would be a contradiction. The takeaway is that nonclassical properties are
not necessarily set-forming. In practice, this won’t limit us as much as it
would seem since the Standardization axiom makes a good substitute.

2.2 The IST Axioms
A solid understanding of the IST axioms is vital for working with IST.
Although there are only three axioms, they reveal a rewarding NSA point
of view. We will list each axiom here before going through them in detail.
The following notation will be useful when discussing and using the

axioms of IST.

∀sx → for all standard x
∀fx → for all finite x
∀sfx→ for all standard, finite x

∃sx → exists a standard x
∃fx → exists a finite x
∃sfx→ exists a standard, finite x

Axiom 1 (Idealization). The following are equivalent for a classical for-
mula R(x, y):

(i) For every standard and finite F there exists an x such that R(x, y)
is true for all y ∈ F .

(ii) There exists an x such that R(x, y) is true for all standard y.

Axiom 2 (Standardization). If E is a standard set and P is a property of
E, then there exists a unique standard A ⊆ E denoted by s{x ∈ E : P (x)}
with the property that the standard elements of A are the standard elements
of E satisfying P .

Axiom 3 (Transfer). If F is a classical formula with fixed standard pa-
rameters a1, . . . , an, then F (x, a1, . . . , an) is true for all x if and only if it
is true for all standard x.
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2.2.1 Idealization Axiom
Axiom (Idealization). The following are equivalent for a classical formula
R(x, y):

(i) ∀sfF,∃x, ∀y ∈ F,R(x, y)

(ii) ∃x,∀sy,R(x, y)

The Idealization axiom explicitly provides for the existence of nonstan-
dard elements of familiar sets. To see this, we will use Idealization to show
there are nonstandard elements of N. As we mentioned before, uniquely
classically definable sets are all standard, so we can assume for now when
interpreting our results that the classically constructed elements of N (such
as 4 and 7) are standard; as we will see, this is a consequence of the Transfer
axiom.
Consider the classical formula R(x, y) given by

y ∈ N =⇒ (x ∈ N ∧ x > y).

This meets the condition of Idealization if

∀sfF,∃x,∀y ∈ F, y ∈ N =⇒ (x ∈ N ∧ x > y).

In other words, it meets the condition of Idealization if for every standard
and finite set we can find a x ∈ N larger than every member of that set in
N. If F ∩ N = ∅, R(x, y) is vacuously true; otherwise, since every finite
subset of N has a maximum, we can choose x = max(F ∩ N) + 1 to meet
the first Idealization condition.

Since we have met the first condition of Idealization, we know the second
condition must be true. Therefore,

∃x,∀sy, y ∈ N =⇒ (x ∈ N ∧ x > y).

That is, there exists an x ∈ N strictly greater than every standard y ∈ N.
It follows this x is necessarily nonstandard.
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One might naively call this nonstandard number infinite; after all, it
meets the driving concept behind what we think an infinite number should
be. However, we are reserving the term infinite for what it is already used
for in sets; e.g., N is infinite. In fact, the nonstandard number we revealed
is finite; after all, every natural number is finite (see Theorem 1). Instead,
we will call this number unlimited.

Definition 2 (Unlimited). x ∈ R is unlimited ⇐⇒ ∀sy > 0, |x| > y.

Definition 3 (Limited). x ∈ R is limited ⇐⇒ x is not unlimited.

As our definition of unlimited suggests, we can easily use Idealization with
the appropriate formulas on R to reveal unlimited positive and negative
real numbers similarly to how we did for N.
Another type of number often used in NSA is infinitesimals. Positive

infinitesimals can be revealed in R with Idealization using E = {x ∈ R :
x > 0} and R(x, y) given by y ∈ E =⇒ (x ∈ E ∧ x < y). Negative
infinitesimals are revealed similarly.

Definition 4 (Infinitesimal). x ∈ R is infinitesimal ⇐⇒ ∀sε > 0, |x| < ε.

Note that with this definition, 0 is an infinitesimal. It is useful to define
a notation for the concept of two numbers differing by not more than an
infinitesimal.

Definition 5 (Infinitely Close). The following are equivalent:

(i) x is infinitely close to y

(ii) x ' y

(iii) ∀sε > 0, |x− y| < ε

We have defined a number as limited if it is bounded above by a stan-
dard number. Although we will often use that definition, the following
characterization of this property on R more readily generalizes.
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Definition 6 (Near Standard). x ∈ R is near standard ⇐⇒

∃sy ∈ R, x ' y.

As we will often be working with unlimited and limited numbers, the
following notation will be useful.

∀`x → for all limited x
∀ux → for all unlimited x
∀nsx→ for all near standard x

∃`x → exists a limited x
∃ux → exists an unlimited x
∃nsx→ exists a near standard x

We have shown there exist nonstandard elements in N and R, so it is
natural to wonder when sets contain nonstandard elements.

Theorem 2. Every infinite set contains nonstandard elements.

Proof. Consider Idealization with the infinite set E and formula R(x, y)
given by x ∈ E ∧ x 6= y. The Idealization condition is met if

∀sfF,∃x,∀y ∈ F, x ∈ E ∧ x 6= y.

To show such an x exists, note that if F is finite and E is infinite, E \ F
is nonempty so we can pick any element of this set for our x. Therefore,
Idealization provides us an x ∈ E such that x 6= y for all standard y.
In other words, E contains a nonstandard element. To show E contains
more than one nonstandard element, note that for a given nonstandard x,
E \ {x} is still infinite.

Theorem 2’s contrapositive provides the following suggestive corollary
we will extend in section 2.2.3.

Corollary 3. If every element of a set is standard, that set is finite.

As a final result of the Idealization axiom, we will show there exists
a finite set containing every standard set. This may at first seem quite
surprising in light of Russell’s paradox and the corresponding nonexistence
of a universal set, but this set is not itself a universal set and a careful
treatment of the axiom of specification prevents a contradiction.
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Theorem 4. There is a finite set containing every standard set.

Proof. Consider Idealization with the formula R(x, y) given by x is finite
and y ∈ x. We require that

∀sfF,∃x,∀y ∈ F, x is finite ∧ y ∈ x.

We may simply choose x = F in which case Idealization applies and
furnishes

∃x,∀sy, x is finite ∧ y ∈ x.

In other words, there exists a finite set x that contains every standard
set.

Although Theorem 4 is itself suggestive, the following corollary shows
how it will be used in practice.

Corollary 5. Every set has a finite subset containing all its standard
elements.

Proof. Denote a finite set containing all standard sets from Theorem 4 as
x. A finite subset of E containing all its standard elements is given by
x ∩ E.

As an example, Corollary 5 states there is a finite set that contains
every standard element of R. Although counterintuitive, Theorem 4 and
Corollary 5 suggest that in some sense we can think of the standard
elements as being the accessible elements of a set.

2.2.2 Standardization Axiom
Axiom (Standardization). If E is standard and P a property, then

∃sA ⊆ E,∀sx, x ∈ A ⇐⇒ x ∈ E ∧ P (x).

It’s important to note the property P does not need to be classical. Note
we dropped uniqueness of A from this statement of Standardization; we
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will show later uniqueness is a consequence of the Transfer axiom. We use
s{x ∈ E : P (x)} to denote the unique set that Standardization provides.

Since N is standard (we’ve merely stated this; it’s a consequence of the
Transfer axiom), we can use it with the Standardization axiom. Let E = N
and P (x) be x is standard. Standardization then provides us a unique
standard subset of N whose standard elements are the standard elements
of N. Since N is standard and the standard A we constructed is unique,
we can conclude A is in fact N itself.

2.2.3 Transfer Axiom
Axiom (Transfer). If F (x, a1, . . . , an) is a classical formula with fixed
standard parameters a1, . . . , an, then

∀x, F (x, a1, . . . , an) ⇐⇒ ∀sx, F (x, a1, . . . , an).

Note there are n parameters here. We should take care not to write
down a formula with an unlimited number of parameters, but we might
run out of pens before this becomes an issue.

We will use the following consequence of Transfer often enough that it’s
worth stating formally.

Corollary 6 (Dual Form of Transfer). If F (x, a1, . . . , an) is a classical
formula with fixed standard parameters a1, . . . , an, then

∃x, F (x, a1, . . . , an) ⇐⇒ ∃sx, F (x, a1, . . . , an).

Proof. Take the contrapositive of the Transfer axiom.

If there is a unique x satisfying such a formula, it is a consequence of
Corollary 6 that this x is standard. Therefore, every set uniquely defined
by a classical formula is standard.

Theorem 7. If a set is uniquely defined by a classical formula with standard
parameters, it is standard.
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Proof. If our set is defined uniquely by a classical formula with standard
parameters, it meets the conditions of Corollary 6 with the set itself as x.
Since our set exists and is unique, Corollary 6 tells us it’s standard.

From Theorem 7, we conclude that N is standard since it is uniquely
defined by a classical formula. Further, numbers like 5 and 28 are standard
by the same reasoning. In referencing Theorem 7, e.g. to prove x + y is
standard if x and y are standard, we will often simply cite Dual Transfer
instead.

Theorem 8. 0 is the only standard infinitesimal.

Proof. Consider the notion of an infinitesimal x in Definition 4 given by

∀sε > 0, |x| < ε.

If we fix x to a standard number, this is a classical formula of ε with fixed
standard parameters. In this case, Transfer applies and states

∀ε > 0, |x| < ε.

This is a classical statement, and the only such x is 0.

Theorem 9. If A and B are standard, A = B ⇐⇒ A and B have the
same standard elements.

Proof. Given A,B standard, consider the classical formula x ∈ A =⇒ x ∈
B. Then, Transfer applies to the statement

∀x, x ∈ A =⇒ x ∈ B.

This is exactly the statement A ⊆ B. Transfer tells us this is equivalent to

∀sx, x ∈ A =⇒ x ∈ B.

Since A = B exactly when A ⊆ B ∧B ⊆ A, we conclude A = B when

∀sx, x ∈ A ⇐⇒ x ∈ B.
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Corollary 10. The standard set provided by Standardization is unique.

Proof. Standardization provides a standard set A and defines its standard
elements. By Theorem 9, a standard set is uniquely defined by its standard
elements. Therefore, A is unique.

This brings us to a point we brushed aside earlier. Idealization concerns
statements about standard and finite sets. In using it with sets like N,
we assumed when interpreting our theorems that standard and finite sets
contained only standard elements and that those standard elements were
the usual numbers we are familiar with. In Theorem 7 we showed that
the uniquely classically definable sets of e.g. π and 9 were standard. This
proves the standard elements are the usual familiar elements as claimed,
but we haven’t yet justified that every standard and finite set contains only
these standard elements. Corollary 3 is certainly related when it states
that if every element of a set is standard, that set is finite; however, we
can do better.

Theorem 11. The following are equivalent:

(i) E is standard and finite

(ii) ∀x ∈ E, x is standard

Proof. We showed in the proof of Theorem 2 by Idealization that the
statement

∃x ∈ E, x is nonstandard

is equivalent to
∀sfF,∃x,∀y ∈ F, x ∈ E ∧ x 6= y.

This itself is equivalent to

∀sfF,∃x ∈ E, x 6∈ F.

Finally, this is equivalent to

∀sfF,E * F.
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We can take the contrapositive of the first and last item in the equivalence
to show the following lemma we will use to complete the theorem.

Lemma 12. ∀x ∈ E, x is standard ⇐⇒ ∃sfF,E ⊆ F .

Suppose E is standard and finite, then ⇐= of Lemma 12 with F = E
shows ∀x ∈ E, x is standard. This proves that (i) =⇒ (ii).
Suppose ∀x ∈ E, x is standard. Then, Lemma 12 states ∃sfF,E ⊆ F .

F standard =⇒ P(F ) standard by Dual Transfer and F finite =⇒
P(F ) finite classically. Since P(F ) is standard and finite, we know by (i)
=⇒ (ii) that every element of P(F ) is standard. Since E is an element
of P(F ), E is standard. Since E ⊆ F and F is finite, E is finite as well.
Therefore, we have (ii) =⇒ (i).

We have stated in Theorem 1 that anything true without IST is still
true with IST; however, we must occasionally take care in its application.
Consider the statement P (n) given by n is standard. Suppose n is standard,
then n + 1 is standard by Dual Transfer. Therefore, ∀n ∈ N, P (n) =⇒
P (n + 1) since the statement is true vacuously when n is not standard.
We know P (1) since 1 is standard, so a naive application of the induction
principle would lead us to conclude ∀n ∈ N, n is standard. Since we know
this to be false, we should examine what went wrong.
The induction principle follows from the fact that N is well-ordered.

That is, every nonempty subset of N has a least element. This is still true,
provided the subset of N exists. As we have mentioned before, nonclassical
formulas cannot be used with the axiom of specification. As a result,
we cannot use nonclassical properties with induction and anticipate our
findings will be well-defined or true in general. Therefore, we must restrict
our use of the induction principle to classical properties from this point
forward.

Although we must constrain ourselves when applying induction, we can
formulate a sort of nonstandard induction valid for any property, classical
or not.

Theorem 13 (Nonstandard Induction). If P (n) is a property such that
P (1) holds and ∀sn ∈ N, P (n) =⇒ P (n+ 1), then ∀sn ∈ N, P (n).
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Proof. Suppose P (1) holds and ∀sn ∈ N, P (n) =⇒ P (n + 1). Consider
the standard set A = s{n ∈ N : P (n)}. Our assumptions ensure that

∀sn ∈ N, n ∈ A =⇒ n+ 1 ∈ A.

Since A is standard, Transfer applies and furnishes

∀n ∈ N, n ∈ A =⇒ n+ 1 ∈ A.

Since our assumptions ensure 1 ∈ A and this is a classical formula, induction
applies and states ∀n ∈ N, n ∈ A. That is, A = N. Standardization ensures
the standard elements of A are exactly the standard elements satisfying
P (n), so we may conclude that ∀sn ∈ N, P (n).

2.3 Axiom of Choice
It is often interesting to note whether or not mathematics proofs invoke
the axiom of choice. In this paper we have used ZFC+IST and mentioned
that ZFC+IST is a conservative extension of ZFC. However, ZF+IST is not
a conservative extension of ZF. In fact, there are many things we can prove
with ZF+IST that are unprovable with ZF alone as they would normally
require the axiom of choice.

One of the most notable things provable in ZF+IST that is unprovable in
ZF is the boolean prime ideal theorem, or BPI. Taken as an axiom, ZF+BPI
is strictly weaker than ZFC while still being strong enough to prove many
important results usually said to rely on the axiom of choice. Although
many theorems can be proven equivalent to BPI, a notable example is the
ultrafilter lemma [2]; we will prove the ultrafilter lemma using ZF+IST.

Definition 7 (Filter). F ⊆P(X) is a filter on the set X if it meets the
following conditions:

(i) X ∈ F .

(ii) ∅ /∈ F .
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(iii) ∀(A,B) ∈ F ×P(X), A ⊆ B =⇒ B ∈ F .

(iv) ∀A,B ∈ F , A ∩B ∈ F .

Definition 8 (Ultrafilter). A filter U on X is an ultrafilter if it meets the
following additional condition:

(v) ∀A ⊆ X,A ∈ U ∨X \A ∈ U .

Lemma 14 (Ultrafilter Lemma). Every filter on a set X is a subset of an
ultrafilter on X.

Theorem 15. ZF+IST implies the ultrafilter lemma.

Proof. Assume ZF+IST. By Transfer, the ultrafilter lemma holds for every
filter on a set X if and only if it holds for every standard filter on a standard
set X. Therefore, let F be a standard filter on a standard set X.

Consider the classical formula R(x, y) such that the Idealization condition
is given by

∀sfF,∃x,∀y ∈ F, y ∈ F =⇒ (x ∈ X ∧ x ∈ y).

To meet this condition we need to show that for any standard and finite
F ⊆ F there is an x ∈ X contained in every element of F . Condition (iv)
of Definition 7 implies that since F is finite,

⋂
y∈F y ∈ F . Since ∅ /∈ F ,⋂

y∈F y 6= ∅. Therefore, there is an x ∈ X in every y ∈ F . Idealization
applies and states

∃x,∀sy, y ∈ F =⇒ (x ∈ X ∧ x ∈ y).

That is, there is an x ∈ X satisfying x ∈ y for every standard y ∈ F .
Taking this x, use Standardization to define

U = s{A ∈P(X) : x ∈ A}.

We prove U is an ultrafilter satisfying F ⊆ U . Consider the statement
∀sA ∈ F , A ∈ U . By Idealization, every standard A ∈ F satisfies x ∈ A.

15



Since this A is standard, it is also in U by the Standardization condition.
Therefore, our statement holds. Since the statement is a classical formula
of A with fixed standard parameters, Transfer applies and tells us ∀A ∈
F , A ∈ U . That is, F ⊆ U . Next we prove U is an ultrafilter by checking
it satisfies each condition of Definition 7 and Definition 8.
(i): Since X is standard and x ∈ X, X ∈ U by our Standardization

condition.
(ii): Since ∅ is standard, ∅ ∈ U if and only if it satisfies x ∈ ∅ by our

Standardization condition. Since this is false, ∅ /∈ U .
(iii): Consider the statement

∀(A,B) ∈ U ×P(X), A ⊆ B =⇒ B ∈ U .

This is a classical formula of (A,B) with fixed standard parameters, so
Transfer applies and tells us this is equivalent to

∀s(A,B) ∈ U ×P(X), A ⊆ B =⇒ B ∈ U .

Given a standard A,B with A ∈ U and A ⊆ B, we know that x ∈ A by the
Standardization condition that ensures the standard A in U are exactly the
standard elements of P(X) satisfying x ∈ A. Since x ∈ A, A ⊆ B ensures
x ∈ B. Since B is standard, B ∈ U by the Standardization condition.
(iv): Consider the statement

∀A,B ∈ U , A ∩B ∈ U .

This is a classical formula of A,B with fixed standard parameters, so
Transfer applies and tells us this is equivalent to

∀sA,B ∈ U , A ∩B ∈ U .

Suppose A,B ∈ U are standard. Since A and B are standard, x ∈ A and
x ∈ B by the Standardization condition. Therefore, x ∈ A ∩ B. Since
A and B are standard, A ∩ B is standard by Dual Transfer. Therefore,
A ∩B ∈ U by the Standardization condition.
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(v): Consider the statement

∀A ⊆ X,A ∈ U ∨X \A ∈ U .

This is a classical formula of A with fixed standard parameters, so Transfer
applies and tells us this is equivalent to

∀sA ⊆ X,A ∈ U ∨X \A ∈ U .

Suppose A ⊆ X is standard. If x ∈ A, then A ∈ U by the Standardization
condition and we are done. If x /∈ A, then x ∈ X \A. We know X \A is
standard by Dual Transfer, so X \A ∈ U by the Standardization condition.
Therefore, every standard filter on a standard set X is a subset of an

ultrafilter on X. By Transfer, this is equivalent to the ultrafilter lemma.

By Theorem 15, we can conclude ZF+IST implies BPI. However, we
have left open the question of whether or not ZF+IST can be used to prove
something ZF+BPI cannot. Actually, it can’t; it has been shown ZF+IST
is a conservative extension of ZF+BPI.[2] That is, the things provable with
ZF+IST are exactly the things provable with ZF+BPI.
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3 Nonstandard Analysis

3.1 Introduction to NSA
The techniques and results of Internal Set Theory allow us to develop
analysis with new definitions resulting in a discussion of the topic we will
call nonstandard analysis, or NSA. In some cases, the standard analysis
proofs and techniques have direct NSA analogues. However, in other cases,
NSA proofs can provide a fresh approach to a classical problem.

3.1.1 Sequences
The usual definition for a convergent sequence {xn} → L is

∃L ∈ R,∀ε > 0,∃N ∈ N,∀n ≥ N, |xn − L| < ε.

We can give an equivalent definition of a convergent sequence using IST.
This definition makes rigorous the intuitive notion of a sequence being
infinitely close to its limit at unlimited n.

Theorem 16. The following are equivalent for a standard {xn}:

(i) lim
n→∞

xn = L

(ii) ∃sL ∈ R,∀un ∈ N, xn ' L

Proof. We will first show (i) =⇒ (ii). (i) means

∃L ∈ R,∀ε > 0, ∃N ∈ N,∀n ≥ N, |xn − L| < ε.
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Since our sequence {xn} is standard and converges to a unique number by
a classical formula, its limit L must be standard by Dual Transfer. Further,
if the formula is true ∀ε, we can choose only standard ε to show

∃sL ∈ R, ∀sε > 0,∃N ∈ N, [∀n ≥ N, |xn − L| < ε].

As all parameters of the bracketed formula of N are now standard, Dual
Transfer tells us ∃N as soon as ∃sN . Therefore, we may say

∃sL ∈ R,∀sε > 0,∃sN ∈ N,∀n ≥ N, |xn − L| < ε.

If N is standard, then n ≥ N is satisfied for all unlimited n. In this case,
we may write

∃sL ∈ R, ∀sε > 0, ∀un ∈ N, |xn − L| < ε.

Using Definition 5, we may rewrite this as

∃sL ∈ R,∀un ∈ N, xn ' L.

This is exactly (ii).
Next, we will show (ii) =⇒ (i). Assuming (ii) we have

∃sL ∈ R,∀un ∈ N, xn ' L.

Then, we know the following holds

∃sL ∈ R, ∀sε > 0, [∃N ∈ N, ∀n ≥ N, |xn − L| < ε].

To see this is true, note we can pick any unlimited N ∈ N and the
assumption that xn ' L in this case guarantees |xn − L| < ε since ε is
standard. The bracketed expression is a classical formula of ε with standard
parameters, so Transfer tells us this formula is true ∀sε > 0 as soon as it is
true ∀ε > 0. Therefore, we have

∃sL ∈ R,∀ε > 0,∃N ∈ N,∀n ≥ N, |xn − L| < ε.

Finally, there exists a standard L implies there exists an L, so we may
conclude

∃L ∈ R,∀ε > 0,∃N ∈ N,∀n ≥ N, |xn − L| < ε.

This is exactly (i).
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Therefore, Theorem 16 formalizes the intuitive notion of convergent
sequences being infinitely close to their limit at every unlimited term. The
process of finding the limit of a known convergent sequence is therefore
equivalent to finding the standard L the sequence is infinitely close to at
a given unlimited term. This is where the notion of a standard part of a
number comes in useful.

3.1.2 The Standard Part
A useful concept in NSA is the notion of a standard part of a number.
The standard part of a limited number is the unique standard number it
is infinitely close to. The existence and uniqueness of this number is an
important cornerstone of NSA that many of its proofs rely on.

Definition 9. If x ∈ R is limited, the standard part of x is denoted x∗ or
st(x) and defined as

st(x) = sup s{y ∈ R : y ≤ x}.

Theorem 17. If x ∈ R is limited, the standard part exists and is standard.

Proof. If I = s{y ∈ R : y ≤ x} is bounded above, then the supremum
exists. Further, since we know s{y ∈ R : y ≤ x} is standard and unique
(by Standardization) and the supremum is unique, then we know if the
supremum exists it must be standard by Dual Transfer. Therefore, we just
need to show I is bounded above.

Since x is limited, ∃sM ∈ R, |x| ≤M . If t ∈ I is standard, then we know

t ≤ x ≤ |x| ≤M.

Therefore, we know ∀st ∈ I, t ≤M . Since I and M are standard, Transfer
applies and we may conclude ∀t ∈ I, t ≤ M . Hence, I is bounded above
ensuring sup(I) = x∗ exists and is standard.

Theorem 18. If the standard part of x exists, then x ' x∗.
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Proof. Let I = s{y ∈ R : y ≤ x} so that x∗ = sup(I). Suppose for the sake
of contradiction there is a standard ε > 0 such that x− x∗ ≥ ε. Then,

x∗ < x∗ + ε ≤ x.

Since x∗ and ε are standard, x∗ + ε is standard by Dual Transfer. Further,
since x∗ + ε ≤ x, x∗ + ε ∈ I. However, this is contradiction because if
x∗ < x∗ + ε, then x∗ + ε ∈ I contradicts x∗ being an upper bound of I.

Similarly, suppose for the sake of contradiction there is a standard ε > 0
such that x∗ − x ≥ ε. Then,

x ≤ x∗ − ε < x∗.

Hence, ∀st ∈ I, t ≤ x ≤ x∗ − ε =⇒ ∀st ∈ I, t ≤ x∗ − ε. Transfer applies
and furnishes ∀t ∈ I, t ≤ x∗ − ε. Therefore x∗ − ε was an upper bound for
I, contradicting x∗ being the least upper bound.

Our assumptions must have been false so we conclude ∀sε > 0, |x−x∗| < ε.
That is, x ' x∗.

Lemma 19. The property of being infinitely close is transitive. That is,

x ' y ∧ x ' z =⇒ y ' z.

Proof. Suppose x ' y and x ' z. Hence, ∀sε > 0, |x − y| < ε and
∀sε > 0, |x− z| < ε. For a given standard ε > 0, ε/2 is standard by Dual
Transfer. Therefore by the triangle inequality,

|y − z| = |y − x+ x− z| ≤ |y − x|+ |x− z| < ε

2 + ε

2 = ε.

Since we could have picked any standard ε > 0, we conclude ∀sε >
0, |y − z| < ε. That is, y ' z.

Lemma 20. If x and y are standard, then x ' y =⇒ x = y.

Proof. Suppose x and y are standard and x ' y. This implies x − y is
infinitesimal. Since x− y is standard by Dual Transfer, we can conclude
x − y = 0 since Theorem 8 states 0 is the only standard infinitesimal.
Therefore, x = y.
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Theorem 21. If the standard part exists, it is unique.

Proof. Suppose there are two numbers y and z such that st(x) = y and
st(x) = z. By Theorem 18, x ' y and x ' z. Therefore, by Lemma 19,
y ' z. Since y and z are standard by Theorem 17, Lemma 20 states
y = z.

Lemma 22. If x is limited and x ' y, then y is limited.

Proof. If x is limited then ∃sM > 0, |x| ≤ M . Further, if x ' y, then
|y − x| < 1. Therefore,

|y| = |y − x+ x| ≤ |y − x|+ |x| < 1 +M.

Since M + 1 is standard by Dual Transfer, we conclude y is limited.

Lemma 23. If x, y, a, b ∈ R and x ' a ∧ y ' b, then:

(i) x+ y ' a+ b

(ii) If x and y are limited, xy ' ab.

Proof. First we prove (i). Given x, y, a, b ∈ R, suppose x ' a and y ' b.
Given a standard ε > 0 so that ε/2 is standard, we have by the triangle
inequality that

|(x+ y)− (a+ b)| = |x− a+ y − b| ≤ |x− a|+ |y − b| < ε

2 + ε

2 = ε.

Hence,
∀sε > 0, |(x+ y)− (a+ b)| < ε.

Therefore we conclude x+ y ' a+ b.
Next, we prove (ii).

|xy − ab| = |xy − (a+ x− x)b|
= |x(y − b) + (x− a)b|
≤ |x(y − b)|+ |(x− a)b|
= |x||y − b|+ |x− a||b|
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Since x is limited, it is bounded above by a standard A > 0. Since y
is limited and y ' b, b is limited by Lemma 22. Since b is limited, it is
bounded above by a standard B > 0. Given a standard ε > 0, we know
from Dual Transfer that ε/(A + B) is standard and is therefore strictly
greater than |x− a| and |y − b| since x ' a and y ' b. Hence,

|xy − ab| ≤ |x||y − b|+ |x− a||b|

< A
ε

A+B
+ ε

A+B
B

= ε

Therefore, we have
∀sε > 0, |xy − ab| < ε.

In other words, xy ' ab.

Theorem 24. If x, y ∈ R are limited:

(i) x ≥ 0 =⇒ x∗ ≥ 0

(ii) (x+ y)∗ = x∗ + y∗

(iii) (x · y)∗ = x∗ · y∗

(iv) x ≥ y =⇒ x∗ ≥ y∗

Proof. We begin with (i). We will instead prove the contrapositive, x∗ <
0 =⇒ x < 0. Suppose x∗ < 0. By Theorem 18, ∀sε > 0, |x − x∗| < ε.
Since x∗ is standard by Theorem 17, −x∗ > 0 is standard by Dual Transfer.
Therefore,

x− x∗ ≤ |x− x∗| < −x∗.

Finally, x− x∗ < −x∗ =⇒ x < 0.
Next, we prove (ii). We know that x + y ' (x + y)∗ by Theorem 18.

Likewise, x ' x∗ and y ' y∗. Lemma 23 states x+ y ' x∗ + y∗. Therefore
we know from Lemma 19 that (x+y)∗ ' x∗+y∗. Since (x+y)∗ is standard
by Theorem 17 and x∗+y∗ is standard by Dual Transfer, (x+y)∗ = x∗+y∗
by Lemma 20.
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Now we prove (iii). We know that x · y ' (x · y)∗ by Theorem 18.
Likewise, x ' x∗ and y ' y∗. Since x and y are limited, Lemma 23 states
x · y ' x∗ · y∗. Therefore we know from Lemma 19 that (x · y)∗ ' x∗ · y∗.
Since (x · y)∗ is standard by Theorem 17 and x∗ · y∗ is standard by Dual
Transfer, (x · y)∗ = x∗ · y∗ by Lemma 20.

Finally, we prove (iv). Suppose x ≥ y. Then, x− y ≥ 0. Since x− y is
limited (Theorem 25), by (i) we have (x− y)∗ ≥ 0. By (ii), x∗+ (−y)∗ ≥ 0.
By (iii), x∗ − y∗ ≥ 0. Therefore, x∗ ≥ y∗.

As an immediate application of the standard part, we may observe
that instead of the nonstandard definition we gave for for a convergent
sequence, ∃sL ∈ R, ∀un ∈ N, xn ' L, we could have just as easily defined
∃L ∈ R,∀un ∈ N, st(xn) = L and had the proof proceed much the same.

3.1.3 Real Numbers
As we will often work with real numbers, it is useful to formalize rules for
our most common nonstandard manipulations.

Theorem 25. If ε, δ ∈ R are infinitesimal, `, k ∈ R are limited, u, v ∈ R
are unlimited, and x ∈ R, then the following hold:

(i) st(ε) = 0.

(ii) ε 6= 0 =⇒ 1/ε is unlimited.

(iii) 1/u is infinitesimal.

(iv) x 6' 0 =⇒ 1/x is limited.

(v) ε+ δ and ε · δ are infinitesimal.

(vi) `+ k and ` · k are limited.

(vii) u · v is unlimited and sgn(u) = sgn(v) =⇒ u+ v is unlimited.

(viii) u+ ` is unlimited.
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(ix) x 6' 0 =⇒ x · u is unlimited.

(x) ` · ε is infinitesimal.

Proof. (i): The definition of infinitesimal implies ε ' 0. Since st(ε) ' ε
by Theorem 18, Lemma 19 ensures st(ε) ' 0. Since the standard part is
standard by Theorem 17 and 0 is standard, Lemma 20 states st(ε) = 0.
(ii): Suppose ε 6= 0. Since ε is infinitesimal, we know ∀sy > 0, |ε| < y.

For a given y > 0, this implies |1/ε| > 1/y. Given a standard a > 0, pick
y = 1/a > 0 so that |1/ε| > a. We conclude that ∀sa > 0, |1/ε| > a. This
is exactly the statement 1/ε is unlimited.
(iii): Since u is unlimited, we know ∀sy > 0, |u| > y. For a given y > 0,

this implies |1/u| < 1/y. Given a standard a > 0, pick y = 1/a > 0 so
that |1/u| < a. We conclude that ∀sa > 0, |1/u| < a. This is exactly the
statement 1/u is infinitesimal.
(iv): Suppose x 6' 0. This is exactly the statement that x is not

infinitesimal. Therefore, ∃sy > 0, |x| ≥ y. Given a y, this implies |1/x| ≤
1/y. Since y is standard, 1/y > 0 is standard by Dual Transfer. Let
M = 1/y so that ∃sM > 0, |1/x| ≤M . This is exactly the statement 1/x
is limited.
(v): Since ε and δ are infinitesimal, ε ' 0 and δ ' 0. Since ε and δ are

limited, Lemma 23 states ε+ δ ' 0 + 0 and ε · δ ' 0 · 0. These are exactly
the statements that ε+ δ and ε · δ are infinitesimal.
(vi): Since ` and k are limited, ∃sa > 0, |`| ≤ a and ∃sy > 0, |k| ≤ y.

Therefore, |` + k| ≤ |`| + |k| ≤ a + y and |` · k| = |`| · |k| ≤ a · y. Since
a and y are standard, M = a + y and N = a · y are standard by Dual
Transfer. Therefore, ∃sM > 0, |`+ k| ≤M and ∃sN > 0, |` · k| ≤ N . These
are exactly the statements that `+ k and ` · k are limited.
(vii): Since u and v are unlimited, ∀sa > 0, |u| > a and ∀sy > 0, |v| > y.

Therefore given an a, y, |u · v| = |u| · |v| > a · y and, since sgn(u) = sgn(v),
|u + v| = |u| + |v| > a + y. Given standard M > 0, choose a and y
such that a = y =

√
M so that a · y = M is standard by Dual Transfer.

Therefore, we may conclude ∀sM > 0, |u ·v| > M . That is, u ·v is unlimited.
Given a standard N > 0, choose a and y such that a = y = M/2 so that
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a + y = M is standard by Dual Transfer. Therefore, we may conclude
∀sN > 0, |u+ v| > N . That is, u+ v is unlimited.
(viii): ` limited means ∃sM > 0, |`| ≤ M and u unlimited means
∀sy > 0, |u| > y. We have |u| = |u + ` − `| ≤ |u + `| + |`| ≤ |u + `| + M .
Hence, given a standard y > 0, |u + `| ≥ |u| −M > y −M . Given a
standard a > 0, choose y = a + M which is standard by Dual Transfer.
Then, |u + `| > a so that we may conclude ∀sa > 0, |u + `| > a. This is
exactly the statement that u+ ` is unlimited.
(ix): Suppose x 6' 0. This is exactly the statement that x is not

infinitesimal. Therefore, ∃sM > 0, |x| ≥ M . Since u is unlimited, ∀sy >
0, |u| > y. For a given y > 0, we have |x · u| = |x| · |u| > M · y. Given
a standard a > 0, choose y = a/M which is standard by Dual Transfer.
Then, we have |x ·u| > a so that we may conclude ∀sa > 0, |x ·u| > a. This
is exactly the statement that x · u is unlimited.
(x): ` limited means ∃sM > 0, |`| ≤ M and ε infinitesimal means
∀sy > 0, |ε| < y. For a given y > 0, we have |` · ε| = |`| · |ε| < M · y. Given
a standard x > 0, choose y = x/M which is standard by Dual Transfer.
Then, we have |` · ε| < x so that we may conclude ∀sx > 0, |` · ε| < x. This
is exactly the statement that ` · ε is infinitesimal.

Using these rules and our previously defined NSA tools, we can already
begin to give NSA proofs that formalize our intuition.

Example 1. The sequence defined by xn = 1/n converges to 0.

Proof. For any unlimited ν ∈ N, 1/ν is infinitesimal so that st(1/ν) = 0
by Theorem 25. Therefore, {xn} converges to 0.

3.2 Core Analysis Topics
3.2.1 Continuity
The modern definition of function continuity is one that taken many forms
and a number of different mathematicians to develop and has culminated
in the following definition for function continuity.
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Definition 10 (Continuity). If S ⊆ R and f : S → R is a function, then
we say f is continuous at c ∈ S if

∀ε > 0,∃δ > 0,∀x ∈ S, |x− c| < δ =⇒ |f(x)− f(c)| < ε.

Definition 11 (Continuous Function). If S ⊆ R and f : S → R is a
function, then we say f is a continuous function if f is continuous at all
c ∈ S.

Definition 10 is not the definition Cauchy gave in his celebrated Cours
d’Analyse de l’École Royale Polytechnique.[1] Instead, he considered a
function to be continuous at a point when an infinitesimal change in the
domain around that point produced an infinitesimal change in the range.
In fact, we can give this definition rigor using NSA.

Definition 12 (S-Continuity). If S ⊆ R and f : S → R is a function, then
we say f is S-continuous at c ∈ S if

∀x ∈ S, x ' c =⇒ f(x) ' f(c).

S-continuity is not quite equivalent to continuity, but it encapsulates the
notion of continuity we care about in the following sense.

Theorem 26. If S ⊆ R is standard and f : S → R is a standard function,
then the following are equivalent for a standard c ∈ S:

(i) f is continuous at c.

(ii) f is S-continuous at c.

Proof. First, we prove (i) =⇒ (ii). Suppose f is continuous at c so that

∀ε > 0,∃δ > 0,∀x ∈ S, |x− c| < δ =⇒ |f(x)− f(c)| < ε.

The formula holds for all ε so we can take in particular a standard ε to find

∀sε > 0, ∃δ > 0, [∀x ∈ S, |x− c| < δ =⇒ |f(x)− f(c)| < ε].
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The bracketed expression is a classical formula of δ with standard parame-
ters, so we may apply Dual Transfer and find

∀sε > 0,∃sδ > 0,∀x ∈ S, |x− c| < δ =⇒ |f(x)− f(c)| < ε.

In the case that we had x ' c, the δ requirement is automatically satisfied
so that the expression may be rewritten as

∀sε > 0, ∀x ∈ S, x ' c =⇒ |f(x)− f(c)| < ε.

This may be written with the definition of infinitely close so that we may
conclude

∀x ∈ S, x ' c =⇒ f(x) ' f(c).

This shows (i) =⇒ (ii).
Next, we prove that (ii) =⇒ (i). Suppose ∀x ∈ S, x ' c =⇒ f(x) '

f(c). Then, we know that

∀sε > 0, [∃δ > 0, ∀x ∈ S, |x− c| < δ =⇒ |f(x)− f(c)| < ε].

This is true because we can take an infinitesimal δ to have the expression
hold automatically. The bracketed expression is a classical formula of ε
with standard parameters, so we may apply Transfer to show

∀ε > 0,∃δ > 0,∀x ∈ S, |x− c| < δ =⇒ |f(x)− f(c)| < ε.

This is exactly the definition of continuity, so (ii) =⇒ (i).

Although we defined continuous functions using the classical definition
of continuity, we can give an equally good definition with S-continuity.

Theorem 27. If S ⊆ R is standard and f : S → R is a standard function,
then the following are equivalent:

(i) f is a continuous function.

(ii) ∀sx ∈ S, f is S-continuous at x.
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Proof. Consider the sets {x ∈ S : f is continuous at x} and s{x ∈ S :
f is S-continuous at x}. Because f is S-continuous at standard x exactly
when it is continuous by Theorem 26, by Standardization these sets must
have the same standard elements. Further, since the sets are standard they
are equivalent by Theorem 9 as they have the same standard elements.
In the case that f is a continuous function, the sets are exactly S. In
this case, the standard elements of s{x ∈ S : f is S-continuous at x} are
equivalent to the standard elements of the first set exactly when ∀sx ∈ S,
f is S-continuous at x.

One of the nice properties of S-continuity is its definition is very easy to
manipulate; this allows simple proofs of many properties.

Theorem 28. Suppose A,B ⊆ R such that f : A→ R and g : B → R are
functions and S ⊆ A ∩B. If f and g are S-continuous at c ∈ S, then the
function h : S → R is S-continuous at c for each of the following definitions:

(i) h(x) = f(x) + g(x).

(ii) h(x) = f(x)− g(x).

(iii) If f(c) and g(c) are limited, h(x) = f(x)g(x).

(iv) If f(c) is limited, g(c) 6' 0, and ∀x ∈ S, g(x) 6= 0, h(x) = f(x)/g(x).

Proof. (i): Suppose we have an x ∈ S such that x ' c. Since f and g
are both S-continuous at c, f(x) ' f(c) and g(x) ' g(c). By Lemma 23,
f(x) + g(x) ' f(c) + g(c). Hence, h is S-continuous at c.

(ii): Suppose we have an x ∈ S such that x ' c. Since f and g are both
S-continuous at c, f(x) ' f(c) and g(x) ' g(c) =⇒ −g(x) ' −g(c). By
Lemma 23, f(x)− g(x) ' f(c)− g(c). Hence, h is S-continuous at c.

(iii): Suppose we have an x ∈ S such that x ' c. Since f and g are both
S-continuous at c, f(x) ' f(c) and g(x) ' g(c). Since f(c) and g(c) are
limited, by Lemma 23, f(x)g(x) ' f(c)g(c). Hence, h is S-continuous at c.
(iv): Suppose we have an x ∈ S such that x ' c. Since f and g are

both S-continuous at c, f(x) ' f(c) and g(x) ' g(c). Since g(c) 6' 0 =⇒
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1/g(c) is limited (by Theorem 25), we may use Lemma 23 to rewrite this
as g(x)/g(c) ' 1. We know that

|g(c)| = |g(c) + g(x)− g(x)| ≤ |g(x)− g(c)|+ |g(x)|.

Further, since g(c) 6' 0, ∃sy > 0, |g(c)| ≥ y. Take this y. Additionally,
g(x) ' g(c) =⇒ ∀sb > 0, |g(x)− g(c)| < b. In particular, we may choose
b = y/2. Then,

|g(x)| ≥ |g(c)| − |g(x)− g(c)|
≥ y − |g(x)− g(c)|
> y − y/2
= y/2

Since a = y/2 is standard by Dual Transfer, ∃sa > 0, |g(x)| ≥ a. That
is, g(x) 6' 0. In this case 1/g(x) is limited (by Theorem 25) and we
may use Lemma 23 to rewrite g(x)/g(c) ' 1 as 1/g(x) ' 1/g(c). Since
f(c) and 1/g(c) are limited, we can now use Lemma 23 to find that
f(x)/g(x) ' f(c)/g(c). Hence, h is S-continuous at c.

Another important concept is the notion of uniform continuity. Classi-
cally, we define uniform continuity as follows.

Definition 13 (Uniform Continuity). If S ⊆ R and f : S → R is a function,
then we say f is uniformly continuous if

∀ε > 0, ∃δ > 0,∀x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε.

Just like with continuity, we can define an NSA counterpart to uniform
continuity.

Definition 14 (S-Uniform Continuity). If S ⊆ R and f : S → R is a
function, then we say f is S-uniformly continuous if

∀x ∈ S, f is S-continuous at x.
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Likewise, we can show S-uniform continuity characterizes uniform conti-
nuity in the following sense.

Theorem 29. If S ⊆ R is standard and f : S → R is a standard function,
then the following are equivalent:

(i) f is uniformly continuous.

(ii) f is S-uniformly continuous.

Proof. First, we show (i) =⇒ (ii). Suppose (i) so that

∀ε > 0,∃δ > 0, [∀x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε].

The formula is true for all ε as it is true for all standard ε. In this case the
bracketed formula is a classical formula of δ with standard parameters so
Dual Transfer applies and shows that

∀sε > 0, ∃sδ > 0,∀x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε.

In the case that x ' y, the δ condition is automatically satisfied and we
may write

∀sε > 0, ∀x, y ∈ S, x ' y =⇒ |f(x)− f(y)| < ε.

Using the definition of infinitely close, this may be rewritten

∀x, y ∈ S, x ' y =⇒ f(x) ' f(y).

Hence, (i) =⇒ (ii).
Next we show that (ii) =⇒ (i). Suppose (ii). In this case we know that

∀sε > 0, [∃δ > 0, ∀x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε].

This is true because we can take an infinitesimal δ and the expression
will hold automatically by our assumption. The bracketed expression is a
classical formula of ε with standard parameters, so Transfer applies and
furnishes

∀ε > 0, ∃δ > 0,∀x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε.

Therefore, (ii) =⇒ (i).
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One of the advantages of the NSA approach to continuity is it can be
easier to understand than the classical definition.

Example 2. The function f : R→ R defined by f(x) = x2 is a continuous
function, but not a uniformly continuous function.

Proof. Since f is standard, to show it is a continuous function we need to
show it is S-continuous at every standard x. We want to consider the y
such that y ' x. Since this means x− y is infinitesimal, every such y can
be represented as x+ ε where ε is an infinitesimal. Therefore, given x and
x+ ε, we need to show that f(x) ' f(x+ ε).

f(x) = x2

f(x+ ε) = (x+ ε)2

= x2 + 2xε+ ε2

If st
(
f(x)

)
= st

(
f(x + ε)

)
, we can conclude by Lemma 19 that f(x) '

f(x+ ε). Applying Theorem 25 for real numbers and Theorem 24 for the
standard part, we find for f(x)

st
(
f(x)

)
= st(x2) = x2.

For f(x+ ε), we have

st
(
f(x+ ε)

)
= st(x2 + 2xε+ ε2)
= st(x2) + st(2xε) + st(ε2)
= x2.

Therefore, f(x) ' f(x+ ε). Hence, f is a continuous function.
Since f is standard, we can show it’s not S-uniformly continuous to

show it’s not uniformly continuous. To do this we need to show ∃x, y ∈
R, x ' y 6=⇒ f(x) ' f(y). We can pick x = ν and y = ν + 1/ν
for some positive unlimited ν. We know that x ' y, but f(ν) = ν2 and
f(ν+1/ν) = ν2+2+1/ν2. Hence, |f(x)−f(y)| = 2+1/ν2 =⇒ f(x) 6' f(y).
Therefore, f is not uniformly continuous.
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Example 3. The function f : (0, 1) → R defined by f(x) = 1/x is not
uniformly continuous.

Proof. Since f is standard, we can show it’s not S-uniformly continuous to
show it’s not uniformly continuous. We need to show ∃x, y ∈ (0, 1), x '
y 6=⇒ f(x) ' f(y). We can pick x = 1/ν and y = 1/(ν + 1) for some
positive unlimited ν. As these are both infinitesimal by Theorem 25, x ' y.
f(1/ν) = ν and f(1/(ν + 1)) = ν + 1. However, |f(x) − f(y)| = 1 =⇒
f(x) 6' f(y). Therefore, f is not uniformly continuous.

These examples illustrate bringing rigorous intuition to distinguishing
between continuous and uniformly continuous functions. S-continuous
functions are required to meet the S-continuity condition infinitely close
to every standard element in its domain; on the other hand, S-uniformly
continuous functions are required to meet the S-continuity condition at
every element in its domain. This suggests that to distinguish continuity
and uniform continuity we should look at the elements of the domain not
infinitely close to a standard element in the domain. Indeed, in Example 2
we found a contradiction in unlimited elements of R and in Example 3 we
found a contradiction in positive infinitesimal elements of (0, 1).

3.2.2 Differentiability
It is worth noting how quickly our tools can be extended. Just as with
continuity, there is an NSA analog to the notion of a derivative.

Definition 15 (S-Differentiable). Let I ⊆ R be an interval and f : I → R
be a function with c ∈ I. We say f is S-differentiable at c if we have

∃sL ∈ R,∀x ∈ I, x ' c =⇒ f(x)− f(c)
x− c

' L.

Further, S-differentiability shares characteristics with differentiability in
sense that S-continuity shares characteristics with continuity.

Proposition 30. Let I be a standard interval and f : I → R be a standard
function with a standard c ∈ I. Then, the following are equivalent:
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(i) f is differentiable at c.

(ii) f is S-differentiable at c.

Although we will not dive into the topic of differentiability, we can
immediately see the parallels with continuity that allow the topic to be
attacked with NSA.

3.3 Selected Theorems and Topics
3.3.1 Topology
Basic topological properties can be restated with NSA similarly to how
continuity and differentiability can be stated. These versions are often
useful when proving things in the NSA framework.

Definition 16 (Open). E ⊆ R is open ⇐⇒

∀y ∈ E,∃ε > 0,∀x ∈ R, |x− y| < ε =⇒ x ∈ E.

Definition 17 (S-Open). E ⊆ R is S-open ⇐⇒

∀nsx ∈ R, x∗ ∈ E =⇒ x ∈ E.

Lemma 31. E is S-open ⇐⇒

∀sy ∈ E,∀x ∈ R, x ' y =⇒ x ∈ E

Proof. Suppose E is S-open so that ∀nsx ∈ R, x∗ ∈ E =⇒ x ∈ E.
The near standard x ∈ R with x∗ ∈ E are exactly the x ∈ R with a
standard y ' x satisfying y ∈ E so that the requirement may be rewritten
∀sy ∈ E,∀x ∈ R, x ' y =⇒ x ∈ E.

Theorem 32. Given a standard E ⊆ R, the following are equivalent:

(i) E is open.

(ii) E is S-open.
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Proof. We will use Lemma 31’s variation of S-open. We first show (i) =⇒
(ii). Suppose E is open, then we know

∀y ∈ E,∃ε > 0, [∀x ∈ R, |x− y| < ε =⇒ x ∈ E].

The formula is true for all y so it is true for all standard y. In this case,
as E is standard, the bracketed formula is a classical formula of ε with
standard parameters. Therefore, Dual Transfer applies and furnishes

∀sy ∈ E,∃sε > 0,∀x ∈ R, |x− y| < ε =⇒ x ∈ E.

In the case that x ' y, the ε condition is automatically satisfied and we
have

∀sy ∈ E,∀x ∈ R, x ' y =⇒ x ∈ E.

Hence, (i) =⇒ (ii).
Now we show that (ii) =⇒ (i). Suppose (ii). In this case we know

∀sy ∈ E, [∃ε > 0,∀x ∈ R, |x− y| < ε =⇒ x ∈ E].

This is true because we can pick any infinitesimal ε and our assumption
ensures the expression will hold. The bracketed expression is now a classical
formula of y with standard parameters, so Transfer applies and provides

∀y ∈ E,∃ε > 0, ∀x ∈ R, |x− y| < ε =⇒ x ∈ E.

Hence, (ii) =⇒ (i).

Definition 18 (Closed). E ⊆ R is closed ⇐⇒ Ec is open.

Definition 19 (S-Closed). E ⊆ R is S-closed ⇐⇒

∀nsx ∈ R, x ∈ E =⇒ x∗ ∈ E.

Theorem 33. Given a standard E ⊆ R, the following are equivalent:

(i) E is closed.
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(ii) E is S-closed.

Proof. E is closed exactly when Ec is open. Since E is standard, Ec is
standard by Dual Transfer. By Theorem 32, Ec is open exactly when it is
S-open. In this case,

∀nsx ∈ R, x∗ /∈ E =⇒ x /∈ E.

Taking the contrapositive, we find

∀nsx ∈ R, x ∈ E =⇒ x∗ ∈ E.

This is exactly the definition of S-closed.

Definition 20 (Compact). E is compact ⇐⇒ every open cover of E has
a finite subcover.

Definition 21 (S-Compact). E is S-compact ⇐⇒

∀x ∈ E, x ∈ E =⇒ x∗ ∈ E.

Theorem 34. Given a standard E ⊆ R, the following are equivalent:

(i) E is compact.

(ii) E is S-compact.

Proof. First we show (i) =⇒ (ii). Assume every open cover of E has a finite
subcover. Assume for the sake of contradiction ∃x ∈ E, x ∈ E ∧ x∗ /∈ E.
This implies that ∀sy ∈ E, y 6' x. Let

C = s{U ∈P(E) : U is open ∧ x /∈ U}.

Let U =
⋃
U∈C U ; this is standard by Dual Transfer. Either C is an open

cover for E or it’s not.
Suppose C is an open cover for E. Since C is standard, it has a standard

finite subcover CF by Dual Transfer. Since CF is standard and finite, it
contains only standard elements by Theorem 11. By Standardization, the
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standard elements of C are exactly the open U such that x /∈ U . Hence,
x ∈ E is not in any element of our finite subcover. This contradicts CF
being a finite subcover for C.

Suppose C is not an open cover for E. This means that E * U . Therefore,
E \ U is nonempty. Consider the statement ∃y ∈ E, y ∈ E \ U . Since
E and and U are standard, Dual Transfer applies to this statement and
states ∃sy ∈ E, y ∈ E \ U . If for every standard y ∈ E there is standard
open set containing y but not x, this open set must have been in C by
Standardization. Therefore we would have y ∈ U , a contradiction.

Lemma 35. If x 6' y for a standard y ∈ E, there is a standard open set
containing y but not x.

Suppose not, then every standard open set that contains y also contains
x. Given a standard ε > 0, {a ∈ E : |a− y| < ε} is a standard open set so
it contains x. Hence, ∀sε > 0, |x − y| < ε. This is exactly the statement
that x ' y. However, we assumed that x 6' y, so this is a contradiction.
Since by assumption ∀sy ∈ E, y 6' x, using Lemma 35 the case where

C is not an open cover for E is a contradiction. Therefore, we have a
contradiction in all cases and we conclude ∀x ∈ E, x ∈ E =⇒ x∗ ∈ E.
Hence, (i) =⇒ (ii).
Next we show that (ii) =⇒ (i). Assume E is S-compact and that

C = {Uα : α ∈ A} is a standard open cover for E so that E ⊆ U =
⋃
α∈A Uα.

Suppose x ∈ E. Since E is S-compact, this implies x∗ ∈ E. Therefore,
x∗ ∈ U . This means that

∃Uα ∈ C, x∗ ∈ Uα.

Since C is standard, this is a standard formula of Uα with standard
parameters; Dual Transfer applies and furnishes

∃sUα ∈ C, x∗ ∈ Uα.

Since this Uα is open and standard, it must also be S-open by Theorem 32.
Hence, x∗ ∈ Uα =⇒ x ∈ Uα. Therefore, any x ∈ E is contained in a
standard Uα. By Corollary 5, we can let CF ⊆ C be a finite subset of C
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containing all its standard elements. Since every x ∈ E is contained in
a standard element of C, CF is a finite subcover for E. Therefore, every
standard open cover of E has a finite subcover. Since this is a classical
formula of the open cover with standard parameters, Transfer applies to the
formula and tells us every open cover of E has a finite subcover. Therefore,
(ii) =⇒ (i).

With our NSA notions of topology some classical theorems become
immediately obvious.

Theorem 36. Given S ⊆ R such that f : S → R is a continuous function
and K ⊆ S is compact, the restriction f |K is uniformly continuous.

Proof. By Transfer, if the theorem is true for every standard f and K, the
theorem holds for all f and K. Therefore, assume f and K are standard.
Since the restriction of a continuous function is continuous (by a classical
result), we know f |K is continuous. Since it is standard, it is S-continuous
by Theorem 27. Hence,

∀sc ∈ K,∀x ∈ K,x ' c =⇒ f(x) ' f(c).

In particular, since K is compact and standard it is S-compact by Theo-
rem 34. Given an arbitrary y ∈ K, S-compactness gives y∗ ∈ K so that by
above we may write

∀x ∈ K,x ' y∗ =⇒ f(x) ' f(y∗).

Since f is S-continuous at the standard point y∗, y ' y∗ =⇒ f(y) ' f(y∗).
By the transitivity of infinite closeness (Lemma 19), we have

∀y ∈ K,∀x ∈ K,x ' y =⇒ f(x) ' f(y).

This is exactly the statement that f |K is S-uniformly continuous. Since
f |K is standard, f |K is uniformly continuous by Theorem 29.
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3.3.2 Extreme Value Theorem
The Extreme Value Theorem is a classically difficult problem that admits
a relatively straightforward proof with NSA. The NSA proof is particularly
attractive because it gives rigor to the intuitive notion of why it should be
true. Intuitively, we can think about the problem as dividing up a compact
interval and choosing the interval with the maximal function value. With
the help of IST, we can actually do this.

Theorem 37 (Extreme Value Theorem). Given S ⊆ R, let f : S → R be
a continuous function. For any compact K ⊆ S, f |K obtains a maximum
and minimum.

Proof. By Transfer, the theorem is true for all f and K as soon as it is
true for all standard f and K; we will prove this case. WLOG, we will
only prove f has a maximum.

By Corollary 5, we can let F ⊆ K be a finite subset of K containing all
its standard elements. Since F is finite, let a ∈ F be the point where f |F
has its maximum. Then,

∀x ∈ F, f(x) ≤ f(a).

Since F contains all the standard elements of K, we know

∀sx ∈ K, f(x) ≤ f(a).

Now we take the standard part of both sides; this preserves the inequality
by Theorem 24. Since f is standard, f(x) is standard when x is. We now
have

∀sx ∈ K, f(x) ≤ f(a)∗.
Since K is compact and standard, it is S-compact. Therefore, a ∈ K =⇒
a∗ ∈ K. Further, since f is standard and continuous, it is S-continuous.
Therefore, a ' a∗ =⇒ f(a) ' f(a∗). Since a∗ is standard, f(a∗) is
standard by Dual Transfer. Therefore, f(a∗) must have been the standard
part of f(a): f(a∗) = f(a)∗. Therefore,

∀sx ∈ K, f(x) ≤ f(a∗).
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This is a standard formula of x with standard parameters, so Transfer
applies and furnishes

∀x ∈ K, f(x) ≤ f(a∗).

Since a∗ ∈ K, this is exactly the statement that f |K obtains a maximum
at a∗.

3.3.3 Intermediate Value Theorem
The Intermediate Value Theorem has been proved many ways, but there is
a clever NSA proof that again making use of the fact that any set has a
finite subset containing its standard elements.

Theorem 38 (Intermediate Value Theorem). If f : [a, b] → R is a con-
tinuous function and u ∈ R satisfies f(a) < u < f(b) or f(b) < u < f(a),
then there is a c ∈ (a, b) such that f(c) = u.

Proof. By Transfer, the theorem is true for all f and u as soon as it is true
for all standard f and u defined on a standard [a, b]; we will prove this
case. WLOG, suppose f(a) < u < f(b).

By Corollary 5, there is a finite set F containing all the standard elements
of [a, b]. Let x = min{x′ ∈ F : u ≤ f(x′)}. This certainly exists because
the set was nonempty; b is standard so b ∈ F and u < f(b) by assumption.
Further, define y = max{y′ ∈ F : y′ < x}. This set is nonempty since
it contains a; x could not have been a since x satisfies u ≤ f(x) and
f(a) < u by assumption. Further, we know f(y) < u because f(y) ≥ u
would contradict x being the minimum element with this property.

Note x and y are limited since they are bounded above by the standard b;
their standard parts exist. Suppose for the sake of contradiction that x 6' y.
Therefore, x− y is not infinitesimal and we may define d = st(x− y) > 0.
Since y ' y∗, ∀sε > 0, |y − y∗| < ε. Because d/2 is standard (by Dual
Transfer), we can let ε = d/2 so that

y − y∗ ≤ |y − y∗| < d/2 =⇒ y < y∗ + d/2.
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Because x− y ' d, we know for all standard ε,

−x+ y + d ≤ |x− y − d| < ε

=⇒ y + d− ε < x.

Adding y∗ − y to both sides and using ∀sδ > 0, |y∗ − y| < δ we find,

y∗ + d− ε < x+ (y∗ − y)
≤ x+ δ

=⇒ y∗+d− ε− δ < x.

Since d/4 is standard (by Dual Transfer), we may let ε = δ = d/4 so that

y < y∗ + d/2 < x.

Since y∗ + d/2 is standard by Dual Transfer, y∗ + d/2 ∈ F . This is a
contradiction since y was chosen to be the largest y ∈ F satisfying y < x.
Therefore our assumption was false and we conclude x ' y.

Because x∗ ' x ' y, and x∗ is standard, we know f is S-continuous at
x∗. Therefore,

u ≤ f(x) ' f(x∗) ' f(y) < u.

Adding f(x∗)− f(x) (an infinitesimal) to u ≤ f(x), we get

u+ (f(x∗)− f(x)) ≤ f(x∗).

Noting that the standard part of f(x∗) is itself since it is standard (by Dual
Transfer), we can take the standard part of both sides and preserve the
inequality by Theorem 24. Therefore, u ≤ f(x∗). Similarly for f(y) < u
and adding f(x∗)− f(y) we get

f(x∗) < u+ (f(x∗)− f(y)).

Taking the standard part of each side we get f(x∗) ≤ u. Finally, we have

u ≤ f(x∗) ≤ u.

Hence, f(x∗) = u. Therefore, we may pick c = x∗.
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It’s worth note the majority of this proof was spent making the arguments
clear. The crux of the proof is simply that [a, b] has a finite subset F
containing its standard elements and defining x = min{x ∈ F : u ≤ f(x)}
lets us find our c = x∗ provided f was continuous.
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