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Abstract

We show a permutation pattern avoidance criteria for when the natural projec-
tion from a flag variety to the Grassmannian, restricted to a Schubert variety, is a
fiber bundle structure. We define the concept of split patterns and show that this
projection is a fiber bundle if and only if the corresponding permutation avoids the
split patterns 3|12 and 23|1. Continuing, we show that a Schubert variety has an
iterated fiber bundle structure of Schubert varieties in the Grassmannian if and only
if the corresponding permutation avoids the patterns 3412, 52341, and 635241. This
extends the findings of Lakshmibai-Sandhya, Ryan, and Wolper, who’s combined re-
sults show that a Schubert variety has such an iterated fiber bundle structure if it
is smooth i.e. the corresponding permutation avoids the patterns 3412 and 4231.
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1. Introduction

This thesis seeks to convey to an audience of readers with little to no experience
in combinatorics, algebraic geometry, or indeed any level of mathematical knowledge
beyond that which is expected of an undergraduate mathematics student in his or
her third or fourth year of studies, the results which were produced by Dr. Edward
Richmond and myself during the spring and summer of 2016. After a brief back-
ground, we will begin by defining and giving examples of various key terms which are
necessary for any meaningful understanding of our research.

1.1. Background. The study of Schubert varieties arose from the study of projec-
tive geometry in the 19th century. The study of Schubert calculus (of which Schubert
varieties are a part) was also advanced in part due to Hilbert’s 15th problem of his fa-
mous list of 23 problems published in 1900. More modern study of Schubert varieties
builds upon the studies of mathematicians such as Ehresmann, Chevalley, Bernstein,
Gelfand, Gelfand, and Demazure[BL00]. Often what is studied and considered signif-
icant are Schubert varieties’ smoothness and singularities about which there is much
active research today. One peculiarity about Schubert varieties is their intersection
between apparently disparate fields of mathematics, including geometry, combina-
torics, and representation theory. As we will do later, one can show a geometric
property for a Schubert variety based on its combinatorial characteristics.

The use of pattern avoidance as a means for describing the geometry of Schubert va-
rieties was pioneered by Lakshmibai and Sandhya who proved that a Schubert variety
Xw is smooth if and only if w avoids 3412 and 4231 [LS90]. Pattern avoidance has also
been used to describe many other properties of Schubert varieties such as when Schu-
bert varieties are Gorenstein, factorial, defined by inclusions, have small resolutions,
and are local complete intersections [BW03, Deo90, GR02, BMB07, WY06, UW13].
For a survey of these results, see [AB].

1.2. Flags, Grassmannians, and Fiber Bundles. We now begin by letting K be
an algebraically closed field and we define

F`(n) := {V• = (V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Kn) | dim(Vi) = i}
to be the complete flag variety on Kn. In other words, let F`(n) be the collection
of all complete flags in Kn which are themselves collections of nested subspaces of
Kn. A flag is considered complete if it contains an i-dimensional subspace for each
i = 1, · · · , n− 1. A flag that is not complete is called a partial flag and is “missing”
one or more i-dimensional vector spaces. A partial flag variety on Kn is defined
by any subset a := {a1 < · · · < ak} ⊆ {1, 2, · · · , n− 1}.

Example 1.1. The complete flag variety for n = 4 is

F`(4) := {V• = (V1 ⊂ V2 ⊂ V3 ⊂ K4) | dim(Vi) = i}.
Define a := {1 < 3} ⊆ {1, 2, 3}. The partial flag variety given by

F`({1, 3}, 4) := {V {1,3}• = (V1 ⊂ V3 ⊂ K4) | dim(Vi) = i}.

Now, for each r ∈ {1, . . . , n− 1}, the Grassmannian of r-dimensional subspaces
of Kn is defined by

Gr(r, n) := {V ⊂ Kn | dim(V ) = r}.
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For example,
Gr(2, 4) := {V ⊂ K4 | dim(V ) = 2}

(i.e. is the set of 2-dimensional subspaces in K4.) The reader may note as well that
Gr(2, 4) = F`({2}, 4).

Now, there is a natural projection map

(1) πr : F`(n) � Gr(r, n)

given by πr(V•) = Vr. One can see that this projection takes a collection of n − 1
subspaces and forgets about all except the one of a specified dimension. This function
is an example of a fiber bundle on F`(n).

To better understand the notion of a function being a fiber bundle, we must begin
with what it means to be a fiber.

Definition 1.2. Let π : A → B be a function and let b ∈ B. Then the fiber over b
is the set π−1(b) := {a ∈ A | π(a) = b}.

Definition 1.3. Let π : A → B be a function. We say that π is a fiber bundle
if for every b1, b2 ∈ B, the fibers over b1 and b2 are isomorphic and Zariski-locally
trivial.

By locally trivial, we mean to say that for any b ∈ B, there is a neighborhood, U ,
around b such that π−1(U) ' U×F where F is the fiber over b. We say Zariski-locally
trivial because we are working inside the Zariski topology. Since the type of topology
considered does not come up in our proofs, we will not go over the details of the
Zariski topology as they are beyond the scope of this paper.

Example 1.4. Let A be the surface of a cylinder of a fixed radius that extends to
infinity in both directions and B be a circle of the same radius. Then the projection
π : A � B seen below where the fiber over each point on the circle is a line on the
cylinder is a fiber bundle.

π : �

Let V ∈ Gr(r, n) be an r-dimensional subspace. In the previously introduced
projection, πr, the fiber over V is π−1r (V ), i.e. the set of elements in F`(n) that map
to V . This projection is a fiber bundle because for any V ∈ Gr(r, n), the fiber over
V is isomorphic to F`(r)× F`(n− r) and is locally trivial.

A main goal of this thesis is to show using pattern avoidance when the projection
πr, restricted to a Schubert variety of F`(n), remains a fiber bundle. Now, if we
fix a basis {e1, . . . , en} of Kn and let Ei := span〈e1, . . . , ei〉, then a permutation
w = w(1) · · ·w(n) ∈ Sn defines the Schubert variety

Xw := {V• ∈ F`(n) | dim(Ei ∩ Vj) ≥ rw[i, j]}
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where rw[i, j] := #{k ≤ j | w(k) ≤ i}. This is to say that the Schubert variety Xw is
equal to the set of flags in F`(n) that meet the intersection conditions mandated by
the rank of the upper-left sub-matrices of the permutation w.

Example 1.5. For example, take w = w(1)w(2)w(3)w(4) = 3241. Instead of ex-
pressing w as a matrix of 1’s and 0’s, throughout we will draw an array where the
1’s are dots and placed in accordance with the ordered pairs (w(i), i) and with (1, 1)
marking the upper-left corner, similar to that of the coordinates of a matrix.

w = 3241 =

Here, the upper-left 3 × 2 sub-matrix is marked by the red box. This outline shows
that rw[3, 2] = 2 which implies dim(E3 ∩ V2) ≥ 2. Since dim(V2) = 2, we have that
V2 ⊂ E3. This turns out to be the only meaningful intersection condition for the
Schubert variety X3241. Hence,

X3241 = {V• = (V1 ⊂ V2 ⊂ V3 ⊂ K4) | V2 ⊂ E3}.

We now give our first main theorem, a pattern avoidance criteria that determines
whether the projection πr, restricted to a Schubert variety, is a fiber bundle.

Theorem 1.6. Let r < n and w ∈ Sn. The projection πr restricted to Xw is a
Zariski-locally trivial fiber bundle if and only if w avoids the split patterns 3|12 and
23|1 with respect to r.

Precise definitions of permutations and classical and split pattern avoidance will
be covered in Section 2.1.

1.3. Iterated Fiber Bundle Structures. We will now introduce another natural
projection similar to the map πr : F`(n) � Gr(r, n). If b ⊆ a ⊆ [n − 1] are two
subsequences, then the natural projection

πa
b : F`(a, n) � F`(b, n)

given by πa
b(V a

• ) = V b
• is a fiber bundle where if V ∈ V b

• , then V ∈ V a
• . Note that

πa
b is a more general form of the projection πr and when a = [n − 1] and b = {r},
πa
b = πr : F`(n) � Gr(r, n).
Now, let σ = σ(1) · · · σ(n− 1) ∈ Sn. We may use σ to define a collection of nested

subsets

σ1 ⊂ σ2 ⊂ · · · ⊂ σn−2 ⊂ σn−1 = [n− 1] where σi := {σ(1), . . . , σ(i)}.
Each map πσiσi−1

is a fiber bundle and together forms an iterated fiber bundle
structure on the complete flag variety given by

(2) F`(n)
π
[n−1]
σn−2

� F`(σn−2, n)
π
σn−2
σn−3

� · · ·
π
σ3
σ2

� F`(σ2, n)
π
σ2
σ1

� F`(σ1, n) � pt

where the fibers over each map are isomorphic to Grassmannians.
Now, just like how we were interested in when the projection πr restricted to

a Schubert variety had a fiber bundle structure, we want to know the maps πσiσi−1

restricted to a Schubert variety also give an iterated fiber bundle structure.
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Definition 1.7. Let w ∈ Sn. We say Xw has a complete parabolic bundle
structure if there is a permutation σ ∈ Sn−1 such that the maps πσiσi−1

give an
iterated fiber bundle structure on the Schubert variety

(3) Xw = Xn−1
π
[n−1]
σn−2

� Xn−2
π
σn−2
σn−3

� · · ·
π
σ3
σ2

� X2

π
σ2
σ1

� X1 � pt

where Xi := π
[n−1]
σi (Xw) ⊆ F`(σi, n). In other words, each map

πσiσi−1
: Xi � Xi−1

is a Zariski-locally trivial fiber bundle.

As before, there are some Schubert varieties that have complete parabolic bundle
structures and some that do not. The smallest example for which no σ induces
a complete parabolic bundle structure is X3421 (see Example 4.3). Ryan showed
that if K = C, then any smooth Schubert variety has a complete parabolic bundle
structure [Rya87]. Wolper later generalized this result for any algebraically closed
field [Wol89]. Combined with the Lakshmibai-Sandhya smoothness criteria, we get
the following theorem.

Theorem 1.8. ([Rya87, Wol89, LS90]) If w avoids patterns 3412 and 4231, then Xw

has a complete parabolic bundle structure.

However, the converse of this statement does not hold true. For example, the
permutation σ = 213 induces a complete parabolic bundle structure on X4231 (see
Example 4.2. By employing Theorem 1.6, we are able to produce a stronger pat-
tern avoidance characterization of Schubert varieties with complete parabolic bundle
structure.

Theorem 1.9. The permutation w avoids patterns 3412, 52341 and 635241 if and
only if the Schubert variety Xw has a complete parabolic bundle structure.

The key notion used to prove both Theorems 1.6 and 1.9 is that of a Billey-
Postnikov (BP) decomposition whose definition is given in Proposition 2.10.

2. Preliminaries

2.1. Permutations and Patterns. Permutations play a key role in defining Schu-
bert varieties. Indeed, each permutation indexes a unique Schubert variety. We will
look at permutations both for their role in indexing Schubert varieties as well as
their ability to tell us when the projection πr restricted to a Schubert variety has a
fiber bundle structure and when a Schubert variety has a complete parabolic bundle
structure (our results).

For two integers, m < n, define the interval [m,n] := {m,m+1, · · · , n}. For m = 1,
we write [n] := {1, 2, · · · , n}. We will regard elements w ∈ Sn as permutations
w : [n] → [n]. The symmetric group Sn has simple generators s1, · · · , sn−1 with
Coxeter relations

s2i = 1, sisi+1si = si+1sisi+1, and sisj = sjsi if |i− j| > 1

where si is the simple transposition of the elements (i, i+ 1).
Common ways we will be writing permutations is in one-line notation where for

w ∈ Sn, we write w = w(1)w(2) · · ·w(n). It is also common to express permutations
in terms of arrays, briefly described before (see Example 1.5) and depicted below.
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Example 2.1. Take w ∈ S4. Below is an example showing equivalent ways of ex-
pressing a permutation in one-line notation and in an array.

w = 3241 =

Definition 2.2. Let k < n, w ∈ Sn, and p ∈ Sk with w = w(1)w(2) · · ·w(n), and
p = p(1)p(2) · · · p(k). Then w is said to contain the pattern p if there exists a
subsequence, a = (a1 < · · · < ak) in w such that w(a1)w(a2) · · ·w(ak) has the same
relative order as p. If there is no such subsequence, then w avoids p.

Example 2.3.

w = 3241 contains 231 w = 4123 avoids 231

Definition 2.4. Let r, k < n, w ∈ Sn, and p ∈ Sk with w = w(1)w(2) · · ·w(n). Then
w is said to contain the split pattern p = p1|p2 = p(1) · · · p(j)|p(j + 1) · · · p(k)
with respect to r if there exists a subsequence, a = (a1 < · · · < ak) in w such that
w(a1)w(a2) · · ·w(ak) has the same relative order as p and aj ≤ r < aj + 1. If there
is no such subsequence, then w avoids p with respect to r.

Example 2.5. Let p = 23|1, a split pattern. 3241 contains the split pattern with
respect to r = 3, but avoids it with respect to r = 1, 2.

r = 1 r = 2 r = 3

Lemma 2.6. A permutation contains a pattern in the classical sense if and only if
it contains a split version of the same pattern with respect to at least one r < n.

This follows clearly from the definitions and is left as an exercise to the reader.
We will now go over some properties and notation of Sn as a Coxeter group. Let

S = {s1, · · · , sn−1}, the set of simple generators. For any w ∈ Sn, a word for w is an
expression of simple generators si1 · · · sik = w. Further, si1 · · · sik is a reduced word
if the word cannot be expressed in a fewer number of simple generators. It is known
that if w = si1 · · · sik and w = sj1 · · · sjk are two reduced words for some w ∈ Sn,
then if s ∈ {si1 , · · · , sik} then s ∈ {sj1 , · · · , sjk}. Therefore, for any w ∈ Sn, we may
define

S(w) := {s ∈ S | s is in the reduced word of w}
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to be the support of w. If the expression w = si1 · · · sik is reduced then we say
`(w) := k is the length of w. Now, for any w ∈ Sn, we define

DL(w) := {s ∈ S | `(sw) < `(w)}
DR(w) := {s ∈ S | `(ws) < `(w)}

to be the sets of left and right descents, respectively. In other words, the sets of left
and right descents are the sets of simple generators that, when composing them on
the left and right, respectively, decrease the length of the reduced word. Descents
earned their name because whenever w(i) > w(i+ 1), si ∈ DR(w).

Example 2.7. Let w = 4213. There are two instances where w(i) > w(i + 1) and
this is for i = 1, 2. Hence, DR(w) = {s1, s3}. If we check the reduced word for w, we
find w = s3s2s1s2. Consider

w · s1 = (s3s2s1s2)s1

= (s3s1s2s1)s1 (since sisi+1si = si+1sisi+1)

= s3s1s2 (since s2i = 1.)

Also, w · s2 = (s3s2s1s2)s2

= s3s2s1 (since s2i = 1.)

Since s3 cannot be moved completely to the right, it is not a right descent. This
confirms that DR(w) = {s1, s2}.

This leads us to introduce what is called a parabolic decomposition. Let J ⊆ S
and W = Sn. Define WJ ⊆ W to be the subgroup generated by J and W J to be
the set of minimal length representatives of the cosets given by W/WJ . As such, for
any v ∈ W J and u ∈ WJ , DR(v) ∩ J = ∅ and S(u) ⊆ J . Then, for any w ∈ W ,
and J ⊂ W , there is a unique parabolic decomposition w = vu where v ∈ W J and
u ∈ WJ . For our projection πr : Xw � Gr(r, n), we will define J := S \ {sr}.

Lemma 2.8. Let w ∈ Sn and write

w = w1|w2 = w(1) · · ·w(r)|w(r + 1) · · ·w(n).

Let w = vu be the parabolic decomposition with respect to J = S \ {sr}. Then

(1) v = v1|v2 where v1 and v2 respectively consist of the entries of w1 and w2

arranged in increasing order.
(2) u = u1|u2 where u1 and u2 are respectively the unique permutations on [1, r]

and [r + 1, n] with relative orders of w1 and w2.

Example 2.9. Let w = 541|623. If w = vu is the parabolic decomposition with
respect to J = S \ {s3}, then v = 145|236 and u = 321|645.
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541|623

=

145|236

·

321|645

We can see in the arrays above that the array of u looks like that of w where all
the nodes on the left and right side, respectively, have been pushed as high and low
as they can. In many ways, the following proposition reflects a key starting point for
our research and introduces a combinatorial condition for when πr is a fiber bundle.

Proposition 2.10. ([RS, Theorem 3.3, Proposition 4.2]) Let w ∈ Sn, r < n, and
w = vu be the parabolic decomposition with respect to J = S(w) \ {sr}. Then the
following are equivalent.

(1) w = vu is a BP decomposition with respect to J .
(2) S(v) ∩ J ⊆ DL(u).
(3) The projection πr : Xw � XJ

v is a Zariski-locally trivial fiber bundle.

Example 2.11. Let w = 1423 = s3s2 ∈ S4 and pick r = 2. Then the parabolic
decomposition with respect to J = S(w) \ {s2} is

1423

=

1423

·

1234

Here, S(v)\{s2} = {s3} and DL(u) = ∅. Clearly {s3} 6⊂ ∅, so this is not a BP decom-
position. However, take the parabolic decomposition with respect to J = S(w)\{s3}.
Then,

1423

=

1243

·

1324

Here, S(v)\{s3} = ∅ and DL(u) = {s2}. Clearly ∅ ⊂ {s2}, so this is a BP decompo-
sition.

We also say that w has a complete BP decomposition if we can write

w = vk · · · v1
where for every i ∈ [k− 1], |S(vi · · · v1)| = i and vi(vi−1 · · · v1) is a BP decomposition
with respect to J = S \ {sri} where sri is the unique simple transposition in S(vi) \
S(vi−1 · · · v1).
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We now give the correlation between complete BP decompositions and complete
parabolic bundle structures on Schubert varieties.

Proposition 2.12. ([RS, Lemma 4.3, Corollary 3.7]) Let w ∈ Sn. w has a complete
BP decomposition if and only if Xw has a complete parabolic bundle structure.

Example 2.13. Consider w = 3241 ∈ S4. Then a complete BP decomposition given
by is w = v3v2v1 = (s1s2)(s1)(s3) and σ = 213 induces a complete parabolic bundle
structure on Xw. Depicted below are the arrays of the complete BP decomposition as
it is being solved.

w

=

v3

·

u3

w

=

v3

·

v2

·

u2 = v1

See Example 4.1 for more details.

3. Main Proofs

It is in this section that we will prove Theorems 1.6 and 1.9 as well as introduce
and prove a key proposition needed to prove Theorem 1.9. Before we do so, however,
we introduce and prove the following lemmas which play a key role in the proof of
Theorem 1.6.

Lemma 3.1. Let W = Sn, r < n, J = S \{sr}, and v = v1|v2 = v(1) · · · v(r)|v(r +
1) · · · v(n) ∈ W J . Then

S(v) = {sl · · · sm−1},
where l = v−1(r+ 1) is the smallest entry on the right and m = v−1(r) is the greatest
entry on the left of the division after v(r).

Proof. Since m is the greatest element on the left, any entry whose value is greater
than m is on the right and since each side is in increasing order, they must therefore
also be in the same positions as in the identity. Since no value greater than m must
be moved in order to achieve v, all simples, if any, of value greater than or equal to
m are not present in S(v).

Similarly, since l is the smallest element on the right, all elements whose value is
less than l must then be on the left in increasing order and therefore in the same
positions as in the identity. Since no value less than l must be moved in order to
achieve v, all simples, if any, of value less than l are not present in S(v).

We now must show that the simple reflections sl, · · · , sm−1 ∈ S(v). Since sl, · · · , sr
are needed simply to move l from the l-th position, as in the identity, to the (r+1)-th,
as in v, and sr, · · · , sm−1 are needed simply to move m from the m-th position, as
in the identity, to the r-th, as in v, we have that together, all sl, · · · , sm−1 ∈ S(v).
Thus S(v) = {sl, · · · , sm−1}, as required. �
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Example 3.2. Let v = 135|246 ∈ S6. In the array below, we can see that 5 is the
greatest entry on the left and that 2 is the least entry on the right. Since both 1 and 6
remain in positions 1 and 6, respectively, s1, s5 6∈ S(v). Now, moving 5 from the 5th
position to the 3rd would require simples s4 and s3, so s3, s4 ∈ S(v). Likewise, moving
2 from the 2nd position to the 4th would require simples s2 and s3, so s2, s3 ∈ S(v).
Thus, we find S(v) = {s2, s3, s4}, as in Lemma 3.1. Indeed, v = s2s4s3.

Lemma 3.3. Let u = u(1) · · ·u(n) ∈ Sn. Then

DL(u) = {sk | u−1(k + 1) < u−1(k)}.
In other words, sk is a left descent of u if and only if when moving from the node in
the k-th row to the node in the (k+ 1)-th row of the permutation matrix, we move to
the left.

Proof. This follows directly from the fact that DL(u) = DR(u−1).Computationally,
we can use the fact that if A is the permutation matrix for u, then A−1 = At.
Therefore, instead of rewriting A−1, we may switch to treating the columns as rows
and vice-versa. �

Example 3.4. Take the permutation used before, u = 436125 which corresponds to
the permutation array below. In the first array, we mark the right descents and in
the second array, we marks the left descents.

Hence, DR(u) = {s1, s3} and DL(u) = {s2, s3, s5}.

Before we begin the proof of Theorems 1.6 and 1.9, we will go over key termi-
nology in relation to our permutation arrays. Let A be the permutation array
of w = w(1) · · ·w(n). We say a region, R, of A is decreasing if for all nodes
(w(i), i), (w(j), j) in R, w(i) > w(j) whenever i < j. While visually counter-intuitive,
if a region of an array is decreasing, then its nodes are moving up as it progresses
from left to right and therefore may be marked with a northeast arrow. We also say
that R is empty if there are no nodes of the form (w(i), i) in its interior and mark
this with a shaded background (see Figures 2 and 3). Finally, we say a pair of nodes,
(w(i), i), (w(j), j), is increasing if i < j and w(i) < w(j).

Proof of Theorem 1.6. Fix r < n and let w ∈ Sn. Let w = vu be the parabolic
decomposition with respect to J = S \ {sr}. By Proposition 2.10, it suffices to prove
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that w avoids the split patterns 3|12 and 23|1 with respect to position r if and only
if S(v) ∩ J = S(v) \ {sr} ⊆ DL(u). Let

m := max{w(k) | k ≤ r} and l := min{w(k) | k > r}.

The nodes (m,w−1(m)) and (l, w−1(l)) partition the permutation array of w into
regions labeled A−H as in Figure 1. By definition of m and l, the regions D and E
must be empty. Moreover, Lemma 2.8 part (1) and Lemma 3.1 imply that

(4) S(v) = {sk | l ≤ k < m}.

Similarly, the permutation array of u partitions into regions A′ − H ′ as in Figure
1. By Lemma 2.8 part (2), the nodes in each region labeled A − H maintain the
same relative order of those in A′ − H ′ respectively. In particular, (r, w−1(m)) and
(r + 1, w−1(l)) are nodes in the permutation array of u. Furthermore, since regions
D and E are empty, the sizes of regions A and H are the same as the size of regions
A′ and H ′.

Now suppose w avoids the patterns 3|12 and 23|1 with respect to position r. Then
regions B,G must be empty and regions C,F must be decreasing in the permutation
array of w. Thus regions B′, G′ are empty and regions C ′, F ′ are decreasing in the
permutation array of u (See Figure 2). Now Lemma 3.3 and Equation (4) imply that
DL(u) contains S(v) \ {sr} and hence w = vu is a BP decomposition.

A

B

D

C

E

F

H

G

m

l

r

A′

B′

D′

C ′
E ′

F ′

H ′

G′

m

l

r

r
r + 1

Figure 1. Permutation arrays of w and u partitioned by nodes at
(m,w−1(m)) and (l, w−1(l)).

Conversely, suppose S(v) \ {sr} ⊆ DL(u). In particular, Lemma 3.3 and Equation
(4) say that u−1(k+1) < u−1(k) for all k ∈ [l, r−1]t [r+1,m−1]. This implies that
regions B′, G′ are empty and regions C ′, F ′ are decreasing in the permutation array of
u. Hence regions B,G are empty and regions C,F are decreasing in the permutation
array of w. Thus w avoids both split patterns 3|12 and 23|1 with respect to position
r. This completes the proof.
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A

B

D

↗

E

↗

H

G

m

l

r

A′

B′

D′

↗ E ′

↗

H ′

G′

m

l

r

r
r + 1

Figure 2. Permutation arrays of w and u with w avoiding 3|12 and
23|1 with respect to position r or equivalently, S(v) \ {sr} ⊆ DL(u).

�

Before we prove Theorem 1.9, we need the following proposition.

Proposition 3.5. If w ∈ Sn avoids 3412, 52341 and 635241, then there exists r < n
such that w avoids 3|12 and 23|1 with respect to position r. Further, if S(w) 6= ∅,
then we can choose r such that sr ∈ S(w).

Proof. We prove the first part of the proposition by contradiction. Therefore, let
w ∈ Sn such that w avoids 3412, 52341 and 635241 and assume for contradiction that
w contains either the pattern 3|12 or 23|1 with respect to every position r < n. In
particular, w must contain 3|12 with respect to position 1. Let w(1)w(i)w(j) have
the same relative order as 312. In so doing, we partition w into regions A − K as
seen in Figure 3. Furthermore, we may choose w(i), w(j) so as to force regions E,F,
and J to be empty. Since w avoids 3412, region D must also be empty and regions C
and I must be decreasing. We will show by a series of cases which vary based on if
region I is empty or nonempty and if w contains 3|12 or 23|1 with respect to position
i that w must contain the pattern 3412, 52341, or 635241.

A

B

C

D

E

F

G

H

I

J

K

1 i j

w(1)

w(i)

w(j)

A

B

↗

D

E

F

G

H

↗

J

K

1 i j

w(1)

w(i)

w(j)

Figure 3. Permutation array of w containing 3|12 with respect to
position r = 1.
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Case 1: First, assume region I is nonempty and that w contains 3|12 with respect
to position i. Then, region G must have two increasing nodes. However, this implies
that w contains 52341 as seen in Figure 4, a contradiction.

i

Figure 4. Permutation array of w containing 3|12 with respect to
r = i and region I is nonempty.

Case 2: Now, assume that region I is nonempty, but that w contains the pattern
23|1 with respect to position i. There are three ways for this to take place, each
shown in Figure 5. Either there is a node in region A whose value is greater than
that of at least one node in region I, or there are two increasing nodes in region B
or B ∪ C. In the first two scenarios, w contains 52341 and in the latter, w contains
635241, a contradiction.

i i i

Figure 5. Permutation array of w containing 23|1 with respect to
r = i and region I is nonempty.

Case 3: Now, assume that region I is empty. It then is not possible for w to
contain 23|1 with respect to position i, so we assume that w contains 3|12 with
respect to position i. By so doing, we assume that there are two increasing nodes,
noted w(i′), w(j′) in region F ∪ G as shown in Figure 6. As before, we may now
partition region F ∪G into regions A′ −H ′ and choose w(i′), w(j′) such that regions
E ′, F ′, and H ′ are empty. Since w avoids 3412 and 52341, regions A′ and D′ must
also be empty and regions C ′ and I ′ must be decreasing.
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A
B

C

D

E
F

I

J

K

A′

B′

C ′

D′

E ′

F ′

G′

H ′

I ′

J ′

K ′

1 i i′ j′

w(1)

w(i′)

w(j′)

A
B

↗

D

E
F

I

J

K

A′

B′

↗

D′

E ′

F ′

G′

H ′

↗

J ′

K ′

1 i i′ j′

w(1)

w(i′)

w(j′)

Figure 6. Permutation array of w containing 3|12 with respect to
position r = i and region I is empty.

Subcase 3a: We now assume that w contains 3|12 with respect to position i′.
Since regions D,D′ are empty, and I ′ decreasing, we must have two increasing nodes
in region G′. However, this implies that w contains 52341, a contradiction (see Figure
7.

i′

Figure 7. Permutation array of w containing 3|12 with respect to
position r = i′.

Subcase 3b: Having shown w cannot contain 3|12 with respect to i′, we now
assume that w contains 23|1 with respect to i′. There are four possible ways for this
to happen. w must have two increasing nodes in either regions B′, B′∪C ′, C ∪B′, or
C ∪C ′. As shown in Figure 8, if the two increasing nodes are in region B′ or B′ ∪C ′
then w contains 52341 or 635241, respectively, a contradiction.

Finally, if w contains increasing nodes in regions C ∪ B′ or C ∪ C ′, then we have
the following three possibilities as shown in Figure 9.

Collectively, the three possibilities imply that w contains 3412, 52341, or 635241,
a contradiction. This completes the first part of the proof.

For the second part of the proof, we show that we can choose an r < n such that
w avoids 3|12 and 23|1 with respect to position r and sr ∈ S(w). We proceed by
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i′ i′

Figure 8. Permutation array of w containing 23|1 with respect to
position r = i′ using regions B′ and B′ ∪ C ′.

i′ i′ i′

Figure 9. Permutation array of w containing 23|1 with respect to
position r = i′ using regions C ∪B′ and C ∪ C ′.

induction on the size of the permutation, n. If n = 2, then the Proposition is true
for w = s1 and r = 1 and is vacuously true for w equal to the identity. Now, if
w ∈ Sn avoids 3412, 52341, and 635241, then there exists an r < n such that the
parabolic decomposition w = vu with respect to J = S \{sr} is a BP decomposition.
If sr ∈ S(w), then we are done. If not, then sr 6∈ S(w) which implies w = u. Write

w = w1|w2 = w(1) · · ·w(r)|w(r + 1) · · ·w(n).

Since w avoids 3412, 52341, and 635241, w1 and w2 must also avoid them as permu-
tations in Sr and Sn−r. Since either r or n − r is greater than 1, we may assume
without loss of generality that r > 1 and S(w1) 6= ∅. By induction, there exists an
r′ < r such that w1 avoids 3|12 and 23|1 with respect to r′ and sr′ ∈ S(w1). How-
ever, since w = u, w must also avoid 3|12 and 23|1 with respect to r′. Lastly, since
S(w1) ⊆ S(w), sr′ ∈ S(w). This completes the proof. �

Proof of Theorem 1.9. By Proposition 2.12, it suffices to show that w ∈ Sn avoids the
patterns 3412, 52341 and 635241 if and only if w has a complete BP decomposition.
First assume the w ∈ Sn avoids the patterns 3412, 52341 and 635241. We will show
w has a complete BP decomposition by induction on `(w). First note that if w = e,
then the theorem is vacuously true. If w 6= e, then by Theorem 1.6 and Proposition
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3.5, there exists r < n such that sr ∈ S(w) and the parabolic decomposition w = vu
with respect to J = S \ {sr} is a BP decomposition. Lemma 2.8 implies that u also
avoids the patterns 3412, 52341 and 635241. Since sr ∈ S(w) \ S(u), we have that
`(u) < `(w) and by induction, we are done.

Conversely, assume w has a complete BP decomposition. In particular, there exists
r < n such that the parabolic decomposition w = vu with respect to J = S \ {sr}
is a BP decomposition. Note that if sr /∈ S(w), then w = u. Without loss of
generality, we can assume sr ∈ S(w) and hence `(u) < `(w). By induction on `(w),
it suffices to show that if u avoids 3412, 52341 and 635241, then w avoids those same
patterns. Write w = w1|w2 and u = u1|u2 with respect to position r as in Lemma
2.8. Since u avoids 3412, 52341 and 635241, both w1 and w2 must also avoid these
patterns. Hence, if w contains one of 3412, 52341 or 635241, then it must contain
the pattern using entries in both w1 and w2. But then w must contain either 3|12
or 23|1 with respect to position r in which case Theorem 1.6 implies that w cannot
have a BP decomposition with respect to J which is a contradiction. This completes
the proof. �

4. Examples

We will now give some examples to help illustrate the implications of Theorems
1.6 and 1.9. For each, we write out the corresponding fiber bundle structures (or lack
thereof) and describe in greater detail, the complete parabolic bundle structures for
the examples that have them. In each of these examples, we fix a flag E• := E1 ⊂
E2 ⊂ E3 ⊂ K4 where dim(Ei) = i off of which the Schubert varieties in F`(4) are
defined.

Example 4.1. The Schubert variety indexed by w = 3241 is

X3241 = {V• = (V1 ⊂ V2 ⊂ V3 ⊂ K4) | V2 ⊂ E3}.

It is easy to check that w avoids the split patterns 3|12 and 23|1 with respect to
positions r = 1, 2, but contains 23|1 with respect to r = 3. By Theorem 1.6 we have
that the projection maps π1 and π2 are fiber bundle maps on Xw while π3 is not. In
particular, we have fibers

π−11 (V1) = {(V2 ⊂ V3) | V1 ⊂ V2 ⊂ E3} ' X1342

π−12 (V2) = {(V1 ⊂ V3) | V1 ⊂ V2 ⊂ V3} ' F`(2)× F`(2)

π−13 (V3) = {(V1 ⊂ V2) | V2 ⊂ E3 ∩ V3} '

{
F`(2) if dim(V3 ∩ E3) = 2

F`(3) if V3 = E3.

Since w = 3241 avoids 3421, 52341, and 635241, Theorem 1.9 implies that Xw has
a complete parabolic bundle structure. Indeed, the permutations 231, 213 and 123
all induce complete parabolic bundle structures on Xw while permutations 312, 321
and 132 do not. For example, if σ = 231 then the corresponding complete BP
decomposition of w in accordance to Proposition 2.12 is w = (s1s2)(s3)(s1) and the
complete parabolic bundle structure on Xw is

Xw

π
{1,2,3}
{2,3}
� X2

π
{2,3}
{2}
� X1 � pt
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where X2 = {V {2,3}• | V2 ⊂ E3} and X1 = {V {2}• | V2 ⊂ E3}. The fibers of each of the

maps π
{1,2,3}
{2,3} and π

{2,3}
{2} are both isomorphic to F`(2) while X1, which is the entire

fiber since it is projected onto a single point, is isomorphic to Gr(2, 3).

Example 4.2. The Schubert variety indexed by w = 4231 is

X4231 = {V• = (V1 ⊂ V2 ⊂ V3 ⊂ K4) | dim(V2 ∩ E2) ≥ 1}.
In this case w contains 3|12 with respect to r = 1, contains 23|1 with respect r = 3
and avoids both split patterns with respect to r = 2. Hence π1, π3 are not fiber bundle
maps while π2 is a fiber bundle map on X4231. In particular,

π−11 (V1) = {(V2 ⊂ V3) | dim(V2 ∩ E2) ≥ 1} '

{
X1342 if dim(V1 ∩ E2) = 0

F`(3) if V1 ⊂ E2.

π−12 (V2) = {(V1 ⊂ V3) | V1 ⊂ V2 ⊂ V3} ' F`(2)× F`(2)

π−13 (V3) = {(V1 ⊂ V2) | dim(V2 ∩ E2) ≥ 1} '

{
X3124 if dim(V3 ∩ E2) = 1

F`(3) if E2 ⊂ V3.

Again, Theorem 1.9 implies that Xw has a complete parabolic bundle structure. For
example, if σ = 213, then the complete parabolic bundle structure on Xw is

Xw

π
{1,2,3}
{1,2}
� X2

π
{1,2}
{2}
� X1 � pt

where X2 = {V {1,2}• | dim(V2 ∩ E2) ≥ 1} and X1 = {V {2}• | dim(V2 ∩ E2) ≥ 1}. The

fibers of each of the maps π
{1,2,3}
{1,2} and π

{1,2}
{2} are both isomorphic to F`(2) while X1 is

isomorphic to X
{s1,s3}
2413 ⊂ Gr(2, 4). The corresponding complete BP decomposition of

w is w = (s1s3s2)(s1)(s3).

Example 4.3. The Schubert variety indexed by w = 3412 is

X3412 = {V• = (V1 ⊂ V2 ⊂ V3 ⊂ K4) | V1 ⊂ E3, E1 ⊂ V3}.
In this case w contains either 3|12 or 23|1 with respect to every r. Hence all projec-
tions πr are not fiber bundle maps on X3412. In particular,

π−11 (V1) = {(V2 ⊂ V3) | E1 ⊂ V3} '

{
X1342 if dim(V1 ∩ E1) = 0

F`(3) if V1 = E1.

π−12 (V2) '


X1234 if dim(V2 ∩ E3) = 1, dim(V2 ∩ E1) = 0

X1243 if E1 ⊂ V2, dim(V2 ∩ E3) = 1

X2134 if V2 ⊂ E3, dim(V2 ∩ E1) = 0

F`(2)× F`(2) if E1 ⊂ V2 ⊂ E3

π−13 (V3) = {(V1 ⊂ V2) | V1 ⊂ E3} '

{
X3124 if dim(V3 ∩ E3) = 2

F`(3) if V3 = E3.

Theorem 1.9 implies that X3412 has no complete parabolic bundle structure. It is easy

to check that π
{1,2,3}
{2,3} and π

{1,2,3}
{1,2} are not fiber bundle maps, however π

{1,2,3}
{1,3} is a fiber

bundle map with fiber isomorphic to F`(2). In an attempt to continue the iterated

fiber bundle, we see that neither of the projection maps π
{1,3}
{1} , π

{1,3}
{3} induce fiber
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bundle structures on π
{1,2,3}
{1,3} (X3412). Hence, we confirm that X3412 has no complete

parabolic bundle structure.
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