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Abstract 

 

This project is intended to support the Mechanical and Aerospace Engineering students 

working under Dr. Girish Chowdhary in the Distributed Autonomous Systems (DAS) Lab as 

they continue to develop an autonomous golf cart. The ECEN Capstone Design Team has been 

tasked with developing software to connect existing systems with a Velodyne LiDAR sensor and 

detecting obstacles in the surrounding environment in real time. This obstacle detection data will 

eventually be used by path planning software to improve autonomous driving capabilities of the 

golf cart system.  
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System Overview 

Russell Morrow 

 

 
  

The DAS (Distributed Autonomous Systems) Lab at Oklahoma State University is 

responsible for developing several self-piloting vehicles and co-robot learning tools, including 

several small aircraft, simulation equipment, and a self-driving golf cart. The golf cart will be the 

focus of this project. It is intended to be a fully autonomous vehicle utilizing input data from 

multiple sources, including GPS, accelerometer, and LiDAR sensor data. When the user inputs a 

destination, the golf cart should determine a clear path to the destination and drive there 

autonomously.  

The golf cart project is ongoing, involving the work of several different teams in both the 

MAE and ECE departments over the course of several years. At the beginning of the Spring 

2016 semester (when this team began work with the DAS golf cart), an onboard computer and 

the steering, braking, and power systems had all been implemented, but some other systems had 

yet to be fully developed. The purpose of this ECEN Capstone Design project is primarily to 

help implement the LiDAR sensor.  
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Our Part of the System 

Katie Hobble 

 

 The main goals of this project were to establish communications with the LiDAR sensor 

and to use that data to detect obstacles in the environment. Additional path-planning and vehicle 

control software, which are beyond the scope of this Capstone Design project, will need to be 

developed before the golf cart is ready to drive autonomously. The primary focus of this project 

was to improve the vision systems of the golf cart using the LiDAR sensor provided.  

 

Challenges Faced 

 

● Getting up to speed on existing systems. Before we could define the goal of this project, 

we had to learn about the subsystems of the golf cart that had already been implemented. 

Determining how our project would fit together with future software projects dictated 

many of our design choices, like the choice of programming language.  

● Multiple teams across different departments were simultaneously working on different 

components of one system. We were lucky enough to have several different people 

working on the golf cart this semester, so it took cooperation to coordinate simultaneous 

work on various sometimes related subsystems.  

● We were restricted to the hardware provided by DAS. Thankfully, they provided us with 

all the materials necessary to achieve our goal. The LiDAR sensor hardware and the 

onboard computer provided to us for this project will be discussed in greater detail in the 

next section.  

● We were limited to C++ and ROS to ensure compatibility with existing and future 

systems. Luckily, we had some experience with C++ programming across the team, but 

ROS was entirely new to all of us.  

● Much of our work this semester was devoted to optimizing the output frequency 

(processing speed) of our algorithm. Our DAS counterparts in the MAE department 

requested an updated two-dimensional map output once per second (1 Hz). Our algorithm 

is currently outputting an updated map once every 200 milliseconds (5 Hz), which 

matches the rotational frequency of the LiDAR sensor itself. 

● Determining an appropriate range of z values to include in the region of interest being 

scanned was an important consideration in reducing the amount of noise in the data due 

to dust and other small particles, reflections, and other noise in the incoming data stream. 
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Provided Hardware and Resources 

 

LiDAR Sensor 

David Harp 

 

 
 

The sensor being implemented for this project is a Velodyne HDL-64E LiDAR sensor. 

As seen in the images above [1], the front of the sensor shows the upper and lower banks of laser 

emitters and receivers. There are 64 sets of laser emitters and receivers altogether (32 in the 

upper bank and 32 in the lower bank). The laser receivers are split into two groups of 32 near the 

center of the sensor, and laser emitters are split into four groups of 16 to the sides of the receiver 

banks. Each laser fires with a 10 ns pulse width and a firing frequency of 34,375 Hz. The back 

panel shows that the sensor transmits data over a simple ethernet (CAT5) connection. It returns 

2.2 million data points per second, outputting 100 Mbps UDP Ethernet packets [1]. 

The HDL-64E uses Class 1 lasers, which are deemed eye safe for humans. Each laser 

fires at a slightly different frequency, near the 905 nm wavelength, in the near-infrared spectrum. 

The lasers are fired with dynamic power selection to improve intensity data resolution at longer 

ranges, but overall power consumption is typically 60 Watts. It can operate on 12-32 VDC at 

operating temperatures between -10° and 65° C [1]. 
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The sensor has a vertical field of view of 26.8° with an angular resolution of 0.08°. It sees 

from 2° above azimuth (horizon) to 26.8° below azimuth with 64 equally spaced angular 

subdivisions . At its current position mounted on top of the golf cart, that means that the LiDAR 

sensor can’t see the ground within a 5 meter range. Additional short range LiDAR or ultrasonic 

sensors are recommended to improve vision within 5 meters. Despite its blind spots in very short 

range, the HDL-64E is rated at a 50 meter range for pavement and a 120 meter range for cars and 

foliage [1]. 

This is the same type of LiDAR sensor used in the Google self-driving car. In addition to 

the Google car, HDL-64E sensors are used in a variety of industries, including mining, digital 

mapping, and urban planning. However, automotive applications are the primary focus right 

now, with companies like Ford, Volvo, and TomTom all pursuing projects involving Velodyne 

LiDAR sensors [2]. 

 

 

Ubuntu PC 

Katie Hobble 

 
A computer running Ubuntu 14.04.3 LTS was provided by the DAS lab for this project. The 

provided computer is a custom built PC using an Intel i7-4790S CPU and 16GB of RAM. This platform 

offered exceptional data processing speed and memory flexibility. ROS requires a Linux operating 

system, so Ubuntu was chosen as a common operating system for all the software associated with the golf 

cart. Since C++ is compatible with ROS, C++ was selected as the common programming language for all 

golf cart systems. Python is also compatible with ROS, but since more Oklahoma State University 

students are familiar with C++, the DAS team decided to use C++ as the common language instead. 
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PCL (Point Cloud Library) 

Dante Xiang 

 

The Point Cloud Library is a standalone, large scale, open-source project for 2D/3D 

image and point cloud processing [3]. In our project, data received from the LiDAR sensor 

comes in as a “Point Cloud” data type. Each time a laser fires and its receiver gets a return, the 

sensor’s driver software uses the angle from azimuth (horizon), the angle of rotation, and the 

intensity of the laser to calculate the location of the datapoint as an x, y, z value. The LiDAR 

sensor’s current position is the system’s reference (origin) point. From the sensor’s current 

position as it is mounted to the golf cart, positive y is directly in front of the golf cart, positive x 

is 90 degrees to the right of the golf cart, and positive z is directly up.  

 

 
 

This point cloud image of the DAS Lab here at OSU gives an idea of how the LiDAR 

sees. On the left side of this image, a sliver of the hallway outside the room is visible through a 

narrow window in the door. The interior of the supply closet can also be seen in the opposite 

corner of the lab. In the back corner stands a standard 19” server rack. There are also desks, 

chairs, computers, and some other visible clutter around the room.  

A person can be seen waving near the center of the frame. Note his shadow on the wall 

behind him. The LiDAR uses light to see, and it can’t see through solid objects. The sensor 

simply doesn’t return any data for areas that are shadowed behind other objects in the 

environment.  
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It also can’t see anything closer than 5 meters unless the object is elevated high enough 

that it encounters a laser, which is why the person has no legs; he’s standing just inside minimum 

range. These blind spots are an important consideration when designing path-planning software 

that relies on LiDAR data.  

 

 

ROS (Robot Operating System) 

Russell Morrow 

 

ROS is an open-source robotics platform with a variety of built-in functionality for 

applications in robotics. Several existing systems on the golf cart use the ROS platform, so this 

project required ROS as well to ensure compatibility with other software. There are many tools 

in ROS that are used in the system itself.  For this project ROS was used to collect raw data from 

the LiDAR sensor by subscribing to its data stream ROS is also used to publish the output of our 

system, making it available to other pieces of software [4]. 

 

 
  

This image shows the network topology of the ROS modules used for this project. The 

/velodyne_driver node is the LiDAR sensor itself. It uses the /cloud publisher to allow other 

software access to the data stream containing the information detected by the LiDAR sensor. The 

/Awesomes node contains the algorithm developed for this project, and it uses the /Object_Map 

publisher to make its output data available to other programs.   
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Specifications and Scope 

  

Note: These specifications were made assuming the LiDAR system is operating 

under ideal conditions (a flat surface with objects placed on ground) and 

providing valid data. 

 

1. Data Acquisition 

1.1. Algorithm shall receive data from the LiDAR in an xyz coordinate system 

format. 

 

2. Object Detection 

 2.1. Algorithm shall detect objects between 5 and 25 meters from the golf cart. 

2.2. Algorithm shall flag an object that is at least 5 cm above the ground plane. 

2.3. Algorithm shall provide a 2-D map of xy coordinates, each with a 

corresponding Boolean value to indicate if an obstacle presides at that 

coordinate. 

 

3. Data Transfer 

3.1. Algorithm shall provide output at least once per second. 

 

 

Block Diagram 
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Receiving LiDAR Data 

Russell Morrow 

 

To receive the data from the LiDAR sensor, our software “subscribes” to the 

/velodyne_driver node in our ROS network. The subscriber is a functionality built into ROS that 

allows a program or system to access the data stream of another device in the system. Likewise, 

the publisher is a part of ROS that is used to output a data stream so that other software can then 

use this output data in their system. Later, a publisher will be used to output the two-dimensional 

obstacle map created in Katie’s block. 

The /velodyne_driver node contains a publisher that publishes the xyz coordinates of the 

data points detected by the LiDAR sensor. By subscribing to this node’s publisher, we can see 

the raw data coming in from the sensor: 

 

  
 

The raw data arrives as a series of numbers corresponding to xyz coordinates. Each set of 

four numbers (enclosed in red rectangles above) represents a single x, y, or z coordinate detected 
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by a laser. The first set (128, 228, 149, 191) represents the x location of a data point. The second 

set (243, 50, 73, 192) represents the y coordinate of the same data point. The third set (253, 155, 

146, 190) represents the z coordinate of the same point. After that, the data stream continues with 

the x coordinate of the next data point. 

When taking in this data, we disregard any xyz value that is above the Golf Cart itself so 

when saving these points we take only the points that are outside of the cart and at the height of 

the Golf Cart or lower. The z coordinate range that is used for this algorithm is controlled by the 

minbound and maxbound variables. Adjusting those values will provide a greater or lesser region 

of interest for the obstacle detection algorithm, which may be useful for different applications of 

this golf cart. The current region of interest was chosen to reduce noise in the environment. Refer 

to the “Testing” section of this report for further details about the minbound and maxbound 

variables. 

After we save at least 200 packets, a full rotation has been made, so the LiDAR can 

create a snapshot of the entire space around the golf cart.  Once the algorithm has received a full 

360° view of the surroundings and recorded each data point in the region of interest, that data is 

sent to David’s block to parse through the data and sort each data point. 

 

 

Sorting the Data 

David Harp 

  
In order to make comparisons more efficient in the next block, we first need to sort the 

raw data. By implementing our own comparison method, our algorithm sorts the incoming 

sensor data first by x coordinate, then by y coordinate. This comparison function will be used by 

Dante’s obstacle definition block to find points with the same x and y values. Refer to the 

relevant code below; comments are in blue: 

 

bool my_cmp(const point& a, const point& b) { 

      //This checks to see if both coordinates have same X coordinate 

   if(a.x-b.x<0.00001 && b.x-a.x<0.00001) 

       //If so, return y coordinate comparison 

       return a.y<b.y; 

   else 

       //If not, return x coordinate comparison 

       return a.x<b.x; 

}//my_cmp 
 

Using pointwise comparisons, data points that are near each other in the x direction 

(within 10 micrometers) are then compared by y value. Data points that are within 10 

micrometers of each other in the y direction are grouped together and sorted accordingly. This 
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sorting provides us a more efficient way to compare the z values of data points that are near each 

other in the x and y directions, which will be useful for the next step. 

 

 
LiDAR data before and after sorting 

 
 

Defining Obstacles 

Dante Xiang 

 

In the obstacle definition block we count how many different z values are there at the 

same xy point. After calling the sort function from the previous block, the algorithm compares 

data points with the same x and y coordinates, and counts how many z values are present at each 

location. If there are more than one datapoint at any x and y location with multiple z values 

(greater than the threshold height of 5 cm), the system flags those data points as obstacles. 

 

//Loop through vector to find objects 
      for(int i=0;i<pointCloud.size();i++) 
      { 
       //Count the number of Z's at a particular XY region 
       if (abs(p.x-pointCloud[i].x)<1 && abs(p.y-pointCloud[i].y)<1 
        && abs(p.z-pointCloud[i].z)>0)numZs++; 
       else numZs=0; 

 

   It makes sense in the real world that multiple laser returns from the same x and y 

location means the xy location we are looking at has a certain height that the car cannot drive 

over. The algorithm requires at least two different z values at the same xy point in order to filter 

out some of the noise caused by dust and other small particles in the environment.  
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An example of the obstacle definition algorithm counting z values 

 

 

Creating Obstacle Map   

Katie Hobble 

 

Once coordinates of objects are determined, the x and y coordinates of each point flagged 

as an obstacle is stored into a String Stream which will then be outputted after the entire Point 

Cloud is searched through and sorted. This String Stream object is stored into the ROS 

publisher’s message data object, which is then published to the golf cart’s ROS network. 

The system then outputs the current clock time, so we can monitor how frequently the 

system is outputting data. It then clears several values that will be used as counters in the next 

cycle, like the number of packets received and the number of z values at the current point. 

Finally, it clears the point cloud vector, which helps keep system memory available for the next 

cycle. 

An actual Point Cloud object was not chosen due to our output not having any z 

coordinates, but we have included the Point Cloud object in our output stream as a pass-through 

of the original input data, which is helpful for testing. However, our algorithm’s actual output 

publisher will use the String Stream object type. The String Stream object consists of signed 

floating point values, starting with the x coordinate, a comma, then the y coordinate, and finally a 

new line terminator. This structure readable by other ROS subscriber nodes, such as the 

visualization program RVIZ.  

This allows us to visualize both the raw sensor data and also the output data of our 

algorithm. The system provides a new output map every 200 milliseconds, meaning its output 

frequency is 5 Hz, the same frequency that the LiDAR sensor itself rotates at. This means that 
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the algorithm outputs a full map for each rotation of the sensor. There is not noticeable latency 

between raw data and algorithm output, but for high-speed applications, further attention to the 

latency introduced in the system may be required. 

 

 

Operating Procedure 

Russell Morrow 

 

To operate our program, simply run the file “DanteStart” in a terminal, or double-click 

the icon on the desktop. This runs a script that starts the obstacle detection algorithm. Once the 

software is running, other programs on the system will have access to the output data stream by 

subscribing to the /Object_Map publisher.  

Certain variables will be useful to know about for maintenance or for upgrading the 

system. The double variables minbound and maxbound set the minimum and maximum 

allowable z values in the region of interest to be scanned for obstacles. Increasing the maxbound 

parameter might be useful for testing LiDAR vision with unmanned aerial vehicles or other 

airborne obstacles. 

 DataOut.csv has been included in our code so that output will be available in a comma-separated 

values (.csv) format if needed. In its current state, our algorithm works with or without it, but it has been 

included in order to make integration with future path-planning software less costly in terms of 

development time. 

 

 

Testing 

Dante Xiang 

 

To test the frequency of the system’s output, we included a clock_t object that monitors 

the elapsed time between output cycles. The timer and a few other variables are reset after each 

time the system publishes its output, so we can monitor the output time of each cycle. The 

system is currently outputting data every 200 ms, well below the required frequency of 1 Hz. 

Increasing the region of interest by increasing the value of maxbound will likely increase 

processing time, which may affect output frequency and the effectiveness of path-planning 

software, so adjusting maxbound should be done in small increments, with thorough testing to 

ensure proper system timing. The current region of interest was chosen specifically to reduce 

noise in the output data, so be aware that changes to minbound may introduce additional error as 

well. 
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To test whether the system could reliably detect an object at the minimum specified 

elevation, a 5 cm tall box was rendered in RVIZ, the point cloud visualization tool built into 

ROS. As seen in this screenshot, the sensor clearly sees the top edge and the bottom edge of the 

box. The white data points show the sensor's raw data, while the colored data points represent the 

output of our obstacle detection algorithm. In the raw data, both the top edge and the bottom 

edge of the box are visible. However, in the obstacle detection output, only the top edge is being 

displayed. Similar tests were performed throughout the range of the system (5-25 meters) to 

confirm functionality. 

 

 

Error Discussion 

David Harp 

 

Because the Velodyne HDL-64E uses lasers firing at a fixed angle relative to the golf 

cart, data points farther away from the golf cart will tend to be fairly far apart, while data points 

at short and medium range (5-25 meters) tend to be fairly close together. That is to say, image 

resolution improves at close range and degrades at distance. That is why a maximum range of 25 

meters was selected for this project. It includes enough data to make useful decisions about the 

immediate environment at typical golf cart speeds.  

Top speed of the golf cart is 15 mph (6.7 meters per second), so it takes 0.746 seconds for 

the golf cart to travel the minimum LiDAR range of 5 meters. Since our algorithm provides 

output every 200 milliseconds, the system has 546 milliseconds to respond to an obstacle 

detected at the minimum range of 5 meters. As long as path-planning software can adjust course 

within that half-second window, the golf cart should be safe to use in an unlikely worst-case 

scenario.  

Typical golf cart operation will not be at top speed, nor should we expect to typically see 

obstacles that suddenly appear at close range. However, due to the large blind spot immediately 
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around the golf cart, safety concerns are still problematic. Implementing additional, smaller 

LiDAR sensors like the Velodyne HDL-32E or their smaller Puck model would considerably 

improve the safety of the golf cart.  

 

 
This image [2] demonstrates the decrease in resolution as range increases. 

Our testing has shown that within the specified operating range of 5-25 meters, the sensor 

can safely detect an obstacle 5 cm above the golf cart’s ground plane. Beyond that range, usable 

data can still be collected from the /velodyne_driver node, but after path-planning software has 

been integrated, additional testing will be required to determine a safe maximum operating range 

for LiDAR sensor data.  

The sensor is rated to 120 meters, so although it was not specifically tested for in this 

project, much of the data coming in from the sensor is in the 25-120 meter range. The HDL-64E 

is accurate to less than 2 cm according to the manufacturer’s datasheet [1], so for detection of 

large obstacles like cars, trees, and buildings, data in the 25-120 meter range is most likely safe 

to use for path planning. Until further testing is implemented to determine the safety of detecting 

small obstacles at long range, we recommend using data only from within the specified range of 

5-25 meters. 
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Future Improvements  
Katie Hobble 

 

Additional functionality can be implemented to improve overall golf cart vision. First, 

since the HDL-64E is mounted on top of the golf cart, there is a roughly 5 meter blind spot 

immediately around the cart. An additional LiDAR sensor dedicated to short range vision would 

substantially improve safety. Ultrasonic sensors could also be implemented for short range vision 

if the cost of a smaller LiDAR sensor is prohibitively high. 

  Three-dimensional pattern recognition software can be implemented with existing PCL 

libraries, or new pattern recognition software can be developed, possibly as a project for graduate 

students in the ECEN department. Some object recognition is already available as open-source 

software, including several correspondence grouping algorithms, which rely on model templates 

to identify geometry in the environment. The branching patterns of trees have been modelled 

mathematically in the octree class and others [5].  

Other algorithms use eigenvector and eigenvalue calculations to determine certain 

properties of a cluster of data points, matching them to basic geometric shapes [5]. Other open-

source options may be available, and this is an area of active research, so new options should 

become available over time to improve robotic vision for light vehicle applications like the golf 

cart.  

Improved pattern recognition is likely the best improvement to existing systems that can 

be implemented for a robust path-planning software to function effectively in recognizing and 

responding to the most common obstacles around campus: cars, pedestrians, cyclists, and trees. 

If a novel pattern recognition implementation is proposed rather than implementing existing 

pattern recognition software, it is recommended to pursue an interdisciplinary project with the 

Mathematics and Computer Science departments.  

 Another improvement for golf cart vision is more precise sensor calibration. Several 

different calibration tables are available from the manufacturer’s manual [6] along with some 

open-source calibration tables that may or may not be better suited to the golf cart. Finding or 

developing a more precise calibration table optimally suited to this specific application could 

improve resolution and accuracy of LiDAR data noticeably. Additional academic research in the 

field of high-precision LiDAR calibration techniques can be found in the work of C. Glennie [7], 

[8], who suggests several techniques for increasing LiDAR accuracy for both static and high 

speed applications, and G. Atanacio-Jimenez, et al [9], who suggest a different approach using 

pattern planes like the floor and walls to calibrate the sensor. 
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Appendix A: Source Code 

 

/************************************************************** 

Oklahoma State University - Electrical and Computer Engineering 

This code is used on the Automated Golf Cart in the DAS Lab 

 

Authors: David Harp, Katie Hobble, Russell Morrow, Dante Xiang 

Spring 2016 

 

This code subscribes to the Velodyne LiDAR publisher node, takes 

in the PointCloud, sorts it, and checks to see if there are any  

objects detected in the PointCloud. It then publishes the x and 

y signed floating point values 

**************************************************************/ 

 

#include "ros/ros.h" 

#include "std_msgs/String.h" 

#include <stdlib.h> 

#include <sstream> 

#include <iostream> 

#include <fstream> 

#include <stdio.h> 

#include <pcl/point_cloud.h> 

#include <pcl_ros/point_cloud.h> 

#include <pcl/point_types.h> 

#include <pcl_conversions/pcl_conversions.h> 

#include <sensor_msgs/PointCloud.h> 

#include <string.h> 

#include <cstring> 

#include <time.h> 

#include <string> 

#include <vector> 

 

typedef pcl::PointCloud<pcl::PointXYZ> PointCloud5; 

using namespace std; 

 

//Define Global Variables 

//Used for proving output time - Create object that keeps track of the current time 

clock_t t; 

//Used to initially filter noise from incoming PointCloud from sensor. Serves as bounds for  
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//Region of interest along the Z axis 

double minbound=-9,maxbound=0.1; 

//Used as the incoming PointCloud object 

pcl::PointCloud<pcl::PointXYZ> cloud2; 

//Used as the outputting PointCloud for RVIZ support 

pcl::PointCloud<pcl::PointXYZ> Output; 

//Used to keep track of number of packets coming in 

int num_pacs = 0; 

//Our own struct that defines what a point is. Has XYZ floating points 

struct point 

{ 

    float x,y,z; 

}p; 

//Vector used to keep track of objects detected 

vector<point> pointCloud; 

 

/**************************************** 

chatterCallBack 

inputs: PointCloud2 msg 

 

THIS IS OUR SUBSCRIBER NODE 

 

This function is called when PointCloud data is received from the driver of the Velodyne sensor. 

It saves that data in a global variable (double) called "p" which we will use later to parse 

the data. This code is provided partially by the Velodyne Driver node 

******************************************/ 

void chatterCallback(const sensor_msgs::PointCloud2 msg) { 

 //This is the datatype that is coming in to our subscriber 

 pcl::PCLPointCloud2 pcl_pc; 

 //These two PCL functions convert the pcl_pc input into usable PointCloud 

 pcl_conversions::toPCL(msg,pcl_pc); 

 pcl::fromPCLPointCloud2(pcl_pc, cloud2); 

  

 //Loops through all points in the incoming PointCloud and initially filters any noise in the 

Z coordinates 

 for(int inc=0; inc<cloud2.points.size();inc++) { 

  //Checks to see if current Z coordinate is in appropriate bounds 

  if(cloud2[inc].z>minbound && cloud2[inc].z<maxbound) { 

   //This comparison removes the noise that surrounds the golf cart (ring of 

points around cart) 

    if(abs(cloud2[inc].x)>1.5||abs(cloud2[inc].y)>1.5) { 
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     //Save current coordinate to our own PointCloud object to not 

slow down subscriber 

     p.x=cloud2[inc].x; 

     p.y=cloud2[inc].y; 

     p.z=cloud2[inc].z; 

     //This pushes the coordinate back into the vector 

     pointCloud.push_back(p); 

    }//end if 

  }//end if 

    }//end for 

  

 //The following line adds 1 to the value of a variable called num_pacs. 

 //num_pacs counts how many packets have been received and processed from the sensor. 

    num_pacs++; 

}//end chatterCallBack 

 

//The next section of code is the comparison function for sorting the data received in the last 

section. 

 

/***************************************** 

my_cmp 

inputs: point a, point b 

outputs: TRUE or FALSE 

 

Used as custom sort comparison for sorting  

XYZ coordinates. Sorts by X coordinate then Y coordinate 

******************************************/ 

bool my_cmp(const point& a, const point& b) { 

 //This checks to see if both coordinates have same X coordinate 

    if(a.x-b.x<0.00001 && b.x-a.x<0.00001) 

  //If so, return y coordinate comparison 

     return a.y<b.y; 

    else 

  //If not, return x coordinate comparison 

     return a.x<b.x; 

}//my_cmp 

 

 

/********************************** 

main 
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inputs: int argc, char argv 

 

The main loop of our program. 

Sets up publisher and subscriber nodes, sorts incoming PointCloud, 

Declares obstacles, and publishes object coordinates 

***********************************/ 

int main(int argc, char **argv) { 

  

 //This sets the clock variable to the current time in order to keep track of output speed 

 clock_t t3 = clock(); 

  

 /* ===SET UP ALL ROS NODES=== */ 

  

 //Initializes our node. This is a ROS protocol 

 ros::init(argc, argv, "Awesomes"); 

 //Alert the user the node has been initiated 

    cout <<  " Awesomes is setup ;)"<<endl; 

 //This grabs a node handle of our node. This is a ROS protocol 

 ros::NodeHandle n; 

 //This sets up our subscriber node. This is a ROS protocol 

 ros::Subscriber sub = n.subscribe("cloud", 1, chatterCallback); 

 //This sets up the string XY map we will be outputting. This is a ROS protocol 

 ros::Publisher chatter_pub = n.advertise<std_msgs::String>("Object_Map", 1); 

 //This sets up the PointCloud we also output. This is a ROS protocol 

 ros::Publisher  output_pub = n.advertise<PointCloud5> ("RVIZMap",1); 

  

 /* == SORT AND FILTER POINT CLOUD DATA == */ 

 

 //Used to keep track of number of Z's at a particular XY region 

    int numZs=0; 

 //Once again set the current time 

    t3=clock(); 

 

 /* == ROS PUBLISHER NODE == */ 

  

 //Set up the ROS Publisher output string and StringStream. This is ROS Protocol 

    std_msgs::StringPtr str(new std_msgs::String); 

    std_msgs::String msg; 

    stringstream ss; 

    string output=""; 
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 //The following section of nested loops compares x,y, and z values for similar  

 //points, and filters out the points that don't satisfy the criteria for  

 //classification as "obstacles" 

 //It also avoids redundant data by eliminating some duplicate values. 

  

 //Loop while ROS node is active 

    while(ros::ok()) 

    { 

  //Initialize a new PointCloud. We output this as well as a regular StringStream 

  PointCloud5::Ptr msg2 (new PointCloud5); 

  //Initialize the PointCloud and output values 

  msg2->header.frame_id = "map"; 

  msg2->height = 1; 

  msg2->width = 0; 

  output=""; 

  //ROS Protocol to get packets 

  ros::spinOnce(); 

  //If number of packets is above 200, we have a full map 

  if(num_pacs>=200) 

  { 

   //Sort the point cloud vector using David's function 

   sort(pointCloud.begin(), pointCloud.end(),my_cmp); 

   //Loop through vector to find objects 

   for(int i=0;i<pointCloud.size();i++) 

   { 

    //Count the number of Z's at a particular XY region  

    if (abs(p.x-pointCloud[i].x)<1 && abs(p.y-pointCloud[i].y)<1 

     && abs(p.z-pointCloud[i].z)>0)numZs++; 

    else numZs=0; 

    //end if 

      

    //Check to ensure final point parsed is a part of the region of 

interest  

    if(p.x!=pointCloud[i].x || p.y!=pointCloud[i].y || 

p.z!=pointCloud[i].z) 

    { 

     //Region has been parsed, look at number of Z coordinates 

found 

     if(numZs>0) 

     {     
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      //Region has more than one Z coordinate, it's an 

obstacle! 

       

      //FOR OUTPUT PURPOSES 

       

      //Add the X and Y coordinates to the string stream 

      ss<<pointCloud[i].x<<","<<pointCloud[i].y<<endl; 

      //Add the XYZ coordinates to the PointCloud we 

output (RVIZ) 

      msg2-

>points.push_back(pcl::PointXYZ(p.x,p.y,p.z)); 

      msg2-

>points.push_back(pcl::PointXYZ(pointCloud[i].x,pointCloud[i].y,pointCloud[i].z)); 

      //Increase the message width 

      msg2->width+=2; 

      //Reset the number of Z's to 0 for the next region 

      numZs=0; 

     }//end if 

    }//end if 

      

    //Set the next points to look at for the point vector 

    p.x=pointCloud[i].x; 

    p.y=pointCloud[i].y; 

    p.z=pointCloud[i].z; 

   }//end for 

     

   /* === OUTPUT THE DATA === */ 

    

   //Set the ROS Publisher message data to be the string stream  

   msg.data = ss.str(); 

    

   //Publish the string stream data 

   chatter_pub.publish(msg); 

   //Publish the object point cloud 

   output_pub.publish(msg2); 

    

   //Reset the output values to be used by the next round of publishing data 

   ss.str(string()); 

   ss.clear(); 

   //Output the current clock to keep track of how fast algorithm outputs 

   cout<<clock()-t3<<" "<<endl<<CLOCKS_PER_SEC<<endl<<endl; 
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   t3=clock(); 

   //Reset number of packets and Z's received for next round of publishing 

data 

   num_pacs=0; 

   numZs=0; 

   //Clear the PointCloud vector(or else it fills up and becomes too slow) 

   pointCloud.clear(); 

   }//end if 

    }//end while 

  

 //End of Main 

 return 0; 

}//end main 
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Appendix B: Wiring Diagram 

 

 
 


