
ECEN 4024 Capstone Design Project:
Text Recognition for an Automated Test System

Ben Jespersen

Student

Electrical and Computer

Engineering Department

Oklahoma State University

Stillwater, OK, USA

Matt Litchfield

Student

Electrical and Computer

Engineering Department

Oklahoma State University

Stillwater, OK, USA

Chengjie Lin

Student

Electrical and Computer

Engineering Department

Oklahoma State University

Stillwater, OK, USA

Abstract—Testing is a vital component of engineering design. Sometimes this can be a tedious task that

keeps engineers busy and delays designing of new features and systems. This is particularly true in the medical

industry, where regulations require devices to be tested extremely thoroughly to ensure they pose no threat to

human health. One such medical device is a tablet computer used to program an implanted nerve stimulator

developed by Cyberonics. Up until now, Cyberonics has tested this device by hand, requiring people to physically

tap the tablet screen and verify that it performs as expected. The company would like to be able to test it

automatically; however, certain constraints in the tablet’s software prevent this from being done through the

traditional method of inserting additional test features into the main software. To solve this problem, Tietronix

Software Inc. is currently in the process of developing an Automated Test System to test the tablet using a robotic

stylus and camera instead. This system will test the tablet in a completely non-intrusive way, without requiring

extra software on the tablet. It has great potential to streamline the engineering process by allowing engineers to

work on other tasks while testing is carried out automatically. As part of this effort, Tietronix recruited a

Capstone Design team at Oklahoma State University to develop a software module for the system. This module

uses image processing technology to recognize specific strings of text on the tablet screen. The goal was for a test

engineer to be able to input a specific text string by hand or from a file prepared in advance. The string

recognition module will then search for this text on the tablet screen. When a string is found, the software

module also taps the string on the tablet screen using the robotic stylus. This allows the test system to navigate

through an application on the tablet without requiring an engineer to be present. The module also logs the results

of each search to a file that can be referenced later. This allows an engineer to automatically run a sequence of

text searches to determine if the tablet is working properly and displaying the correct information. The engineer

need not be present at all; once the program is started, he can work on other things and check the output log file

at his convenience. This module was successfully prototyped, and the details of its design will be discussed in this

report.

Index Terms—Automated Test System (ATS); Capstone Design; Image Processing; Levenshtein; Optical

Character Recognition (OCR); Tesseract

2

Contents

I. Introduction ... 1
II. Project Description .. 1

A. Overview ... 1
B. Design Specifications... 1

III. Design Details .. 2
A. Work Breakdown ... 2
B. Image Enhancement ... 3
C. Optical Character Recognition (OCR) ... 5
D. Image Capture.. 6
E. ATS/OCR Interface .. 6
F. Similarity Calculation... 6
G. User Input .. 7
H. XY Plotter .. 8
I. Stylus Control.. 9
J. Log File Generation .. 10
K. Overall Logic ... 10

IV. Test Methods and Results... 8
V. Possibilities for Further Development ... 11
VI. Conclusion .. 12
VII. References ... 12
Appendix A: Report Authorship... 14
Appendix B: Progress Reports ... 15

1

I. INTRODUCTION

The purpose of this report is to describe in detail

a project undertaken by Ben Jespersen, Matt

Litchfield, and Chengjie Lin for the electrical and

computer engineering Capstone Design course at

Oklahoma State University (OSU). The overall

project goals and purpose will be described, followed

by details of the subsystems designed by each team

member. Methods of testing will also be discussed,

along with the results thereof. Finally, possible future

expansion of the project will be explored.

Graders for ECEN 4024 may wish to refer to

Appendix A while reading. This appendix lists which

sections of the report were authored by each member

of the team.

II. PROJECT DESCRIPTION

A. Overview

Unlike most of the projects undertaken for

Capstone Design, this one was sponsored by a

company outside OSU. Tietronix Software Inc. is

working on an Automated Test System (ATS) to test

a tablet developed by Cyberonics for use in the

medical field. This tablet is used by physicians to

read data from and reprogram electronic devices

implanted in patients. Due to the critical timing

constraints involved in communicating with the

implanted device, the programming tablet cannot be

tested using traditional automation methods involving

extra software running alongside the primary

application. The tablet must be tested externally, with

no additional software installed. Traditionally this has

been done by test engineers who operate the tablet

manually and record the results. However, Tietronix

is in the process of developing the ATS to do this job

automatically instead. The ATS consists of a robotic

XY Plotter with a stylus attached and a camera

mounted overhead. The tablet is placed under the

system, and the system is able to take pictures of the

tablet, process them, and tap certain locations on the

screen in response. This method of testing could

greatly improve the efficiency of development for the

medical tablet because it will allow engineers to work

on other tasks while the long, repetitive work of

testing is being performed.

As part of this effort, Tietronix contacted OSU to

recruit a Capstone Design team to add a software

feature to the ATS. This new feature is a text

recognition module, and it is the project detailed in

this report. The goal was for the module to take in a

string of text from a user or an input file, capture an

image of the tablet screen with the camera, and

process the image to determine if the input text

appears on the tablet screen. If the text does appear,

the ATS should tap the screen at the location of the

text. The system should also log the results of the

search to a file that a test engineer can read to analyze

the tablet’s performance.

This software module has great potential for

usefulness in the ATS. First, it can allow automated

testing of new text features when they are added to

the tablet. An example might be adding support for a

new language. One reason this would need to be

tested is to ensure that a word in the new language

does not become so long that it overlaps the edges of

a button on the tablet screen. Another use for the

module comes from the fact that the ATS taps the

screen at the location of the text. If the text being

searched for appears on a button, then this feature can

be used to navigate to different pages in the tablet

software or activate features of the tablet. This allows

the ATS to automatically navigate throughout the

software simply by having a test engineer specify a

sequence of text strings to tap. A tester would not

need to set up specific (x,y) coordinates to tap on the

screen in advance; he could simply prepare a file

containing a list of the text on each button he wants

pressed.

B. Design Specifications

The following design specifications were defined

early in the project. Many of these were given to the

team directly by Tietronix, though some of them

were defined by the team with the help of its mentor,

Dr. George Scheets. The specifications were selected

such that the work load would be appropriate for a

single-semester capstone project for three students.

1. The string recognition shall accept string

input from a language file or user input.

2. The string recognition shall locate a given

string within a region of interest based on

the string input. The region of interest may

be a subsection of the whole screen.

3. The string recognition shall support the

English language and at least one other

language from the following list: Danish,

Dutch, French, German, Italian, Norwegian,

Spanish and Swedish.

4. The string recognition shall positively

identify the string by activating (lowering)

the stylus at the location of the string.

5. The string recognition shall be able to

produce a similarity value that represents

how likely the string was located expressed

as a percentage from 0 to 100%.

6. The string recognition shall be able to

translate the string coordinates on an image

to a physical (x,y) position on the XY

Plotter.

2

7. The string recognition shall navigate four

layers deep into the physician programming

software application.

8. The string recognition shall take less than 30

seconds to identify the string at runtime.

9. The string recognition shall be able to

function under typical indoor lighting

conditions with minimal glare on the tablet

screen.

10. The string recognition shall be able to

recognize strings with the following font

characteristics:

a. High-contrast (font color is significantly

different than background color).

b. Size between 12 point and 20 point.

c. Standard serif or sans-serif style (not

script, gothic, or other atypical font

styles).

11. The string recognition shall provide the

ability to log “pass/fail” results to a text file

to indicate if an expected string was

presented on a given static screen.

12. The string recognition shall be able to run on

one of the following operating systems:

Windows, Linux/GNU, or UNIX.

III. DESIGN DETAILS

A. Work Breakdown

For this project, none of the members had any

prior experience with image processing or stepper

motor control. Because of this, blocks were made

based on preliminary research and our requirements

list. It made sense to estimate the difficulty of each

task then group them together in blocks that are

closely related, such that the overall difficulty would

be about even.

The image enhancement and optical character

recognition blocks made sense to group together.

Because there was no prior experience with OCR,

enhancing an image to yield the best results from

Tesseract would require a lot of trial and error. It

would be very difficult to have two people try and

work on those blocks independently. Ben became in

charge of these two blocks.

The next grouping was the image acquisition,

user input, and OCR interface. These made sense to

group together because they all happen before the

image enhancement and OCR. In order to balance the

workload, the similarity calculation was added to this

group. This group was tasked to Matt.

The last grouping was the blocks needed to be

done after an image was processed. They mainly

make the plotter move to the correct location and

make the log file after the cycle is complete. Chenjie

worked on these blocks.

Figure 1: Functional Block Diagram

3

B. Image Enhancement

Before the text on the tablet can be recognized,

the image from the camera must be cleaned up and

prepared. This is the job of the Image Enhancement

subsystem. The subsystem consists of the following

functions:

 detectLetters

 eraseBackground

 getAvgBoxHeight

 isolateText

All of these functions utilize an open source

image processing suite called OpenCV. This package

was already in use by Tietronix in the existing ATS

software, so the team chose to continue using it for

compatibility. It is also an extremely popular

package, so there are many resources available for

learning to use it.

The first important function in the image

enhancement subsystem is detectLetters. This

function is a modified version of code provided by

user dhanushka at stackoverflow.com, and its

purpose is to determine regions of the image where

text appears. The function takes in an image and an

expected font size and returns a set of rectangles,

where each rectangle represents a region of the screen

which is likely to contain text. Each region is as small

as possible without cutting off portions of letters.

The core operation of the function detectLetters

is unchanged from its original version on

stackoverflow.com, but some changes were made to

fit the needs of this project. First, the function was

translated to Java from its original language, C.

Second, some constants were changed to better fit the

type of image being processed in this project. Third, a

feature was added to allow the function to search for

text differently based on the expected font size.

Finally, another feature was added to merge regions

produced by the function if they are close to one

another. This helps to filter out overlapping regions

and combine regions containing individual words

into single lines of text.

The function detectLetters works in the

following way: first, the image is converted to

grayscale. A new image is then constructed in which

each point represents the gradient of the original

image at that point. The result is that locations on the

original image which contain sudden changes from

dark pixels to light pixels (or vice-versa) show up as

light points on the new image, while all other points

show up as dark on the new image. A threshold is

then applied to the new image to convert it to pure

black and white instead of grayscale. The resulting

image is therefore black with white pixels arranged

along the outlines of objects from the original input

image. These outlines can represent text or other

objects that have sharp, contrasting edges.

Next, a morphological operation called “close” is

performed on the image. This converts all pixels

which are adjacent to white pixels to white, then

immediately converts all pixels adjacent to black

pixels to black. If the expected font size parameter is

large, then the close operation extends 11 pixels to

the sides instead of only affecting immediately

adjacent pixels. If the font size is small, the operation

extends only 7 pixels to the sides. The effect is that if

multiple small objects were arranged close to one

another horizontally in the original image, then the

objects will be merged into wide, horizontal,

predominantly white regions. This occurs most often

in regions of text, because the letters are small

objects arranged horizontally. Because the characters

in text are so close together, the close operation tends

to overlap white pixels between characters, resulting

in a single white region instead of multiple small

ones. It also tends to remove black pixels within lines

of text. Non-text objects, however, tend to have more

than 11 black pixels on either side of them. Since this

is beyond the range of the close operation, the white

in these objects is widened and then immediately

shrunk back to the original size, resulting in no net

change.

Next, the contours of all the white regions in the

closed image are calculated. The contours represent

the outlines of each white region. For each contour,

the bounding box is calculated, resulting in a

rectangular box around each white region. If the

pixels inside a box are 35% white or more, if the box

is at least eight pixels wide, and if the box is between

12 and 200 pixels high, then the box is saved as a

region of detected text. All boxes which do not fit

these criteria are discarded. This tends to filter out the

objects which were not expanded by the close

operation because there are insufficient white pixels

in these regions for them to be saved.

Finally, the boxes are checked to determine if

any of them are very close together. Any boxes

which are close to each other horizontally and which

have very similar heights in the image are likely to

represent text that appears on the same line. These

boxes are therefore merged into one so that each

single line is represented as a single box. After this,

all the boxes which remain are returned as the set of

detected text regions.

4

The next function to discuss is eraseBackground.

This function takes in an image and the set of

detected text regions as inputs. It sets all pixels in the

image to white if they are outside the regions of text.

Pixels inside the regions are left unchanged. The

resulting image is then returned. This erases all

background elements which are not contained within

the regions of text.

The third function is getAvgBoxHeight. This

function takes in the set of detected text regions and

calculates the average height of the regions. This

average height is then used outside the function to

determine what font size should be expected.

Finally, the last function to discuss is

isolateText. This is the primary function which is

called to execute the image enhancement subsystem.

It takes in a raw image captured from a camera and a

rectangular region of interest as inputs, and it returns

an enhanced image as its output.

The function begins by increasing the contrast of

the image and calling detectLetters with a large

expected font size. The heights of the resulting boxes

representing text regions are then averaged using

getAvgBoxHeight. If the average height is smaller

than a specific threshold, then detectLetters is called

again with a smaller expected font size to improve its

accuracy.

Next, the image is converted to grayscale and

everything outside the region of interest is erased (set

to white). This ensures that any text which appeared

outside the region of interest is not recognized. The

resolution of the image is then doubled. While this

does not increase the sharpness or focus of the image,

it does increase the pixel density, which improves the

accuracy of morphological operations which follow.

Once the resolution has been increased, a set of

sub-images is created, where each sub-image is the

portion of the full image inside one of the detected

text regions. Each region in the set has a

corresponding sub-image created. Note that these

sub-images still exist as part of the full image; in

other words, changing a sub-image also affects the

corresponding location in the full image.

For each sub-image, a basic threshold is applied

to convert the image from grayscale into plain black

and white. This is known as a binary image. If the

outline of the resulting sub-image is predominantly

black, then the region must have contained light text

on a dark background. The sub-image is then inverted

to change it to black text on a white background. If

instead the binary sub-image was predominantly

white to begin with, then the region was already dark

text on light background. Instead of inverting, the

threshold is re-done as an adaptive threshold. This

improves the clarity of the text by accounting for the

fact that different sub-images may have different

brightness and contrast. The adaptive threshold

automatically selects a threshold value to fit the

characteristics of each sub-image.

The next step is to erase the background outside

the text regions, which still appears as shades of gray.

This is done by calling eraseBackground, which was

described previously. At this point, the full image

consists only of black text on a plain white

background. However, because of inherent

inaccuracies in the thresholding process, there is still

noise in the image which must be filtered out for the

character recognition to work properly.

To filter out noise, the morphological operations

“close” and “open” are performed. The close

operation was described above; any pixel adjacent to

a white one is converted to white, then any pixel

adjacent to a black one is converted to black. The

result is that small black specks of a few pixels or

less are erased completely from white regions. This

filters out noise in the white background of the

image. The open operation is exactly the opposite;

the conversion to black is done first, then the

conversion to white. This has exactly the same effect

except that it removes small white specks from black

regions. This filters out noise which appears within

the black text.

At this point, the enhanced image is complete.

The raw input image has been converted to plain

black text on a white background. Both light text on

dark background and dark text on light background

have been converted to plain black text. Some non-

text objects may still appear in the image, but by this

point they are few enough that they will not impede

the character recognition. Noise has also been filtered

out to produce very clean, sharp text that can be

interpreted easily.

Figure 2 demonstrates the operation of the image

enhancement. The left half is a raw input image taken

directly from the ATS camera, while the right half is

the result of running the image enhancement. It can

be seen that the edges of the tablet, the table, and the

non-text elements on the tablet screen have been

filtered out, leaving only the text remaining.

5

Figure 2: Image Enhancement Example

C. Optical Character Recognition (OCR)

The OCR subsystem is responsible for

converting the enhanced image into a text file that

can be read by the program. It is also responsible for

determining the location of a specific string of text on

the image.

Converting an image into a text file is a very

complex task that has already been solved by large

engineering teams working for companies. For this

reason, an existing open-source program was selected

to perform this step. This program is called Tesseract,

and it is currently maintained by Google. It supports

a multitude of languages, including English and

Dutch, which were chosen as the two languages to be

supported by this project. Users of the Object

Recognition System described in this report will need

to install Tesseract on their systems. Once this is

done, the user still only needs to run the Object

Recognition System program, and this program will

handle using Tesseract correctly. The user never

needs to interact with Tesseract aside from the initial

installation.

The black and white image produced by the

enhancement subsystem is passed to Tesseract as an

input. Tesseract then produces two files made up of

plain text. The first is a basic .txt file which contains

all the text from the image. Tesseract breaks the text

up into separate lines in an attempt to give it the same

appearance and relative positioning as the text in the

original image. The second file is a custom .box file.

This file lists each individual character contained in

the .txt file. The coordinates of a rectangle appear

next to each character; this rectangle represents the

region where that character appears in the image.

Once the conversion performed by Tesseract is

complete, the resulting .txt file is passed to the

similarity calculation subsystem, which will be

described later. This subsystem returns the string of

text from the .txt file which is most similar to the

desired string. This occurs only if a string was found

which meets a minimum similarity threshold.

After this string has been returned to the OCR

subsystem, the .box file is searched for this specific

string by calling the function getLocationInImage. In

this function, the rectangles representing the locations

of the first character in the string and the last

character in the string are extracted from the file.

From these, a new rectangle is created which extends

from the upper left corner of the first character to the

lower right character of the last character. This results

in a rectangle that represents the location of the entire

string. Finally, the center point of this new rectangle

is calculated. This center point is considered to be the

6

location of the string in the image. This location is

then passed to the string position calculation

subsystem in order for it to be converted to a physical

position in the ATS work area.

Figure 3 shows the Tesseract conversion in action.

The left half of the image is an example of an image

that has already gone through the enhancement

process. The right half of the image is the

corresponding text file generated by Tesseract. It can

be seen that the text recognition by Tesseract is very

accurate once the image has been well enhanced.

Figure 3: Optical Character Recognition Example

D. Image Capture

Before any attempt can be made to recognize a

string, a picture must be taken with the provided

webcam. Because OpenCV is used for other parts of

the program, it made sense to continue using it. There

are already built in objects for instantiating a web

camera and capturing an image. One problem we did

face was focusing the camera. In order to have a clear

enough image to enhance, a better focus than what

was being provided by the built in autofocus of the

camera would have to be achieved. Logitech provides

a program that can give manual control of focusing

the camera. This program has to be run before ours,

but only on a redeployment of the system that might

have caused loss of focus.

E. ATS/OCR Interface

Tesseract, the program that is being used to

perform the OCR, is a command line utility. As such,

it needs a way to be called from the Java runtime

environment. Because all that is needed is a simple

command call with arguments, the Java Runtime

library can be used. First, an instance of the current

runtime must be created. Then the exec() command

with a string as its function argument can be called. If

Tesseract is not installed or the PATH environmental

variable does not include the directory where

Tesseract was installed, trying to run the program

will produce an error because the command could not

be found.

F. Similarity Calculation

To determine how similar strings are, the

Levenshtein distance was calculated and subtracted

7

from the length of the two strings and then divided by

the length of the smaller of the two strings.

Levenshtein distance determines the number of

character insertions, deletions, or substitutions

required in order to make one string into another. The

reason that it was chosen was that it allows for

comparisons between different sized strings, and

there was not a need for transpositions because that is

not a common problem with Tesseract. It is a very

common computer science problem, and the actual

implementation will be left as an exercise to the

reader.

Once we have the text from the processed image

and the string we are looking for, we begin a

windowed slide looking for a match above our

threshold. For example, if the string we were looking

for was 4024 and the text from the image was ECEN

4024, a window of 4 would be used.

In the current implementation, the first iteration

that returns a similarity above the threshold will

return the windowed string. As a possible

improvement, a best fit search could be implemented

instead of a first fit method.

There are three methods in the

LevenshteinDistance class. All are implemented

statically. The first returns the Levenshtein distance

as an integer. This is the method where the

Levenstein algorithm is implemented. An iterative

version was chosen for its clarity. The next returns

the confidence value as a double. The final method is

the window slide that is explained above.

Iteration To Find Windowed String Levenshtein Distance Similarity

1 4024 ECEN 4 0%

2 4024 CEN 4 0%

3 4024 EN 4 4 0%

4 4024 N 40 4 0%

5 4024 402 2 50%

6 4024 4024 0 100%

Table 1: Levenshtein Distance

G. User Input

The goal of the user input block was to allow

both manual input and a test bench file. This was

accomplished by constructing a graphical user

interface (GUI). The GUI had input boxes for various

search functions along the bottom and a test bench

selector under the “File” tab. Among the search

functions were a lot of options such as language and

boundaries that allowed for more exhaustive testing.

The image is 1920 x 1080, so entering values

between those numbers bounds the search to the box

drawn by the two sets of coordinates.

The GUI also displayed three images. From left

to right: the raw captured image, the enhanced image

with the text identified and non-text stripped away,

and the original image with a red indicator dot

showing where the string was found. Creating a full

GUI was beyond our specs; however, it does a good

job of showing the overall process, as well as

creating an easy to use product.

The GUI was constructed from a base JFrame. In

the constructor the frame was configured as a

BorderLayout. JTextFields and JLabels were placed

in a JPanel and placed in the south area. Three

JLabels were constructed and placed in the middle

three regions. They were given the three different

images to show how the image was processed to the

user. In the north section, a JMenu was made for

starting the JFileChooser and calibration window.

In order for the images to be updated, a thread

was started that polled the image files at a set time.

The buttons also needed ActionListeners so that they

would know what to do when pressed. The frame

implemented the ActionListener interface and

assigned itself to be the ActionListener for all of its

objects. A case statement was used to determine what

to do on each button press. In the case of preforming

a test, a threaded call was made to the string finding

code. All of the threads were written as anonymous

inner classes because the calls were not very lengthy.

8

Figure 4: Graphical User Interface

H. XY Plotter

1) Introduction to XY Plotter

The XY plotter we use is provided by Tietronix,

the Makeblock XY-Plotter Robot Kit v2.0. It has the

following characteristics. XY Plotter Robot Kit is a

drawing robot that can move a pen or other

instrument to draw digital artwork on flat surface. It

can also be developed into a laser engraver by adding

the Laser Engraver Upgrade Pack.

 Frame: Anodized aluminum

 Physical Dimensions: 620mm x 620mm x

140mm

 Working area 310x390mm

 XY Accuracy 0.1mm

 Max Working Speed: 50mm/s

 Power: 100-240 V~50/60Hz AC/DC Power

adapter, 12V/3.0A

 Main Controller Board: Makeblock Orion

(Arduino Leonardo)

 Makeblock A4988 stepper motor driver

 Makeblock K-Power 9g Micro Servo

 Makeblock 42BYG Stepper Motor

 USB A-Male to B-Male Cable

Figure 5: XY Plotter Side View

Figure 6: XY Plotter Top View

2) Configuring the XY Plotter

We need to configure the XY plotter first to make

it prepared for this project. First, we plug in the

9

power and turn on the XY plotter. Second, connect

Arduino Leonardo to your laptop. After that, we need

to download Tietronix’s firmware codes for XY

plotter and open the codes with Arduino IDE.

Finally, we can upload the codes to Arduino

Leonardo. By doing this, the XY plotter is configured

for this project.

I. Stylus Control

To control the stylus, first of all, we need to

establish the serial communication between laptop

and Arduino Leonardo. To move the stylus, you will

need to send G code to Arduino Leonardo from your

laptop. The easiest way to do this is to use Arduino

IDE, but it is not really what we want because the

whole project is Java written. So we need to develop

the serial communication codes for Java working

environments so the Java codes can also send G code

to Arduino Leonardo. Luckily, the Tietronix’s

baseline codes provide this function and we need to

modify the codes for our projects.

The baseline codes is like the following:

private void setPenPosition(float Z) {

 if(isConnected){

 String cmd = "G01 Z" + Z;

while(!CM.sendCmd(cmd,SetPenPosCommand

Timeout));

 current_Z = Z;

 }

 else{

 System.out.println("XYPlotter: Not

Connected!");

 }

 }

Then we need to translate from coordinate on

image to physical coordinate to XY plotter so that

XY plotter can use the physical coordinate to go to

the correct point. To do that, first, we need to set the

tablet on a correct position, which we can make sure

by using the Calibration box in the camera view. We

need to put the tablet in a position that fit into the

Calibration box.

Then we move the stylus around to go to the four

corners of the tablets and record the physical

coordinate for the four corners, which will be as

following:

Figure 7: Upper Left Corner's Physical

Coordinates: (105,340)

Figure 8: Upper Right Corner's Physical

Coordinates: (290,340)

Figure 9: Lower Left Corner's Physical

Coordinates: (105,35)

Figure 10: Lower Right Corner's Physical

Coordinates: (290,35)

10

So we know the physical coordinates for

the tablet’s four corners. It will be rather easy to

translate the coordinates on the image into the

physical coordinates.

For example, we get a coordinate on image

which is (x1,y1) and it is also known that the

image is 1920*1080 pixels and the physical

coordinate assumed to be (x2,y2). We know

that the (0.0) on the image correspond to

(105,35) on the XY plotter and (1080.1920)

corresponds to (290,340) on the XY plotter.

Then we calculate the relative pixels distance

between (x1,y1) and (0,0) and translate the

pixel distance into the physical distance and add

to the (105,35) physical coordinate. Then

formula is as follows:

Double x1=a.strLocation.x;

Double y1=a.strLocation.y;

double boundX=1080;

double boundY=1920;

Double x2=(x1/boundX)*185+105;

Double y2=0.0;

if(centery<300)

{

 y2=(1-y1/boundY)*305+35;

}else{

 y2=(1-y1/boundY)*305+35+10

}

Notice that if y2 is greater than 300, we

need to add 10 more because in the experience,

the higher point you move your stylus to, the

more error you will have. So in order to reduce

the error, it is needed to add 10 to the original

formula to have a offset and the issue is solved

to a great extent.

To make the stylus tap the screen for an

appropriate amount of time, we need to change

the ZDown parameter to a smaller number.

Original:

Modified:

And in the XYPlotter.java, remove the old

dependencies with Tietronix’s baseline classes and

add dependency with the classes of this project.

J. Log File Generation

To make it more user friendly, we decided to

generate the log files to keep track of things and

record the status.

The Log file generation is an easy part. We will

generate log file every time we process a cycle. The

contents of the log file will be as followings:

The contents of the log file are:

Time stamp: When this process begins

Success or failure: Is it a success or a failure

Target string: Strings we are looking for

Location of the string: The position of the

string on the image

Confidence value: Confidence of the

correctness of this process

Confidence threshold: Confidence we set as a

threshold to recognize the string.

The example of log file is as below, as can be

seen, it has all the elements to show useful

information about the status of the process.

Figure 11: Log File

K. Overall Logic

Finally, we need to clean up the project into

different function blocks and each of them contains

several classes. For the String Recognition block, it is

in charge of recognizing the desire string in the

processed image and output the location of the string.

It has the following classes: FindString.java,

LevenshteinDistance.java, RunCommand.java and

StringRecognizer.java

As for the Utilities block, it provides utilities to

the generate log file, move stylus, coordinate

transformation and so on. The Classes used for this

block are AbstractExternalDevice.java,

Attributes.java, CommwithArduino.java,

11

CommunicationManager.java, DeviceManager.java,

Serial.java, XYplotter.java and Util.java

For the GUI block, it serves as the GUI for

user to make it more user friendly. The Class list is

FileTreeView.java, JImagePanel.java and

SingleRootFileSystemView.java

Last but not least, we have Image preprocess

block. It helps to preprocess image for the string

recognition. It has the following classes:

ImageInput.java, OCRFrame.java,

CalibrationFrame.java and Enhance.java

Figure 12: Overall Logic Flowchart

IV. TEST METHODS AND RESULTS

Once the project was integrated and complete, it

was important to perform final tests to ensure it met

the specifications agreed upon. Some of the

specifications can be verified simply by observing the

program functioning, while some required slightly

more careful testing. While reading this section, the

reader may find it useful to periodically turn back to

Section II.B of this report to reference the project

specifications.

The GUI described previously contains a text

field where a user can enter text for the program to

search for. In addition, it also contains a menu in the

upper left corner labeled “File.” One of the options in

this menu is to load a file saved on the user’s

computer. This allows the user to open a file

containing a sequence of text strings that he or she

has prepared in advance. The program will then run

through these strings in order, searching for each one.

This satisfies specification 1, which requires the

program to accept user or file input.

Specification 2 requires the program to search

within a region of interest that may be defined by the

user. This was met by including entry fields on the

GUI to allow entry of a rectangular region of interest.

Because the GUI displays all text which was

recognized in each run, correct operation of the

region of interest was verified by observing that the

image of recognized text was blank everywhere

outside the region of interest.

Specification 10 requires the program to

recognize high-contrast font between 12 and 20 point

size. To test this, a sheet was printed with both black

text on white background and white text on black

background. Both colors were also printed in the

maximum and minimum required font sizes, resulting

in four test regions on the page. Text was

successfully recognized in all four regions when tests

were run, verifying these requirements.

The remaining specifications were tested using

an input file specifying a sequence of text strings to

search for automatically. Almost all of the text in this

sequence represents buttons, so the sequence

navigates through the tablet software as it executes.

The sequence begins on the tablet’s home page,

which contains four buttons. The sequence detects

the text on each button in turn, which navigates the

tablet to the corresponding page. When each page is

opened, the test sequence searches for “Exit” or

“Cancel” to move back to the home page in

preparation for searching for the next button. This

results in navigation through four different screens as

required by specification 7. The fourth screen of the

tablet software includes a language selection option.

Instead of cancelling out of this screen, the test

sequence searches for and taps the appropriate text to

change the language from English to Dutch. It then

backs out to the home screen, then returns to the

language selection to verify that recognition of Dutch

text is successful. The sequence then changes the

language back to English, backs out to the home

screen, and searches for a final non-button string of

text.

This test sequence runs successfully. The

program is able to navigate through all the desired

screens and options using only text recognition. A log

file was successfully generated during the test, and it

was analyzed after the run. It correctly displayed the

date and time of each text search, a pass/fail indicator

showing whether the text was found, an assurance

percentage of how likely it was that the correct text

was found, the location in the image where the text

was found, and the threshold assurance percentage

required for the recognition to count as a pass. The

test sequence was used multiple times for

demonstration at the end of the course, allowing the

program to run automatically while the team

discussed it with observers. This very successfully

demonstrated the goal of the project; the program ran

automatically without requiring intervention from the

team until the test sequence ended.

V. POSSIBILITIES FOR FURTHER DEVELOPMENT

As this project is merely one component of a

larger work in progress, it is important to identify

12

potential ways in which it can be improved and

expanded as it is added into the full system.

Throughout the design process, the team has

identified areas which can be improved or expanded

upon but which were not able to be addressed as part

of this project due to time constraints.

The first area of improvement relates to the

accuracy of the OCR subsystem. Tesseract has a

feature called training, which allows it to be

specifically tailored for certain fonts and text styles.

This is done by taking several sample images of the

text that will be recognized and telling Tesseract

exactly what all the text says. If this is done with

several different images, Tesseract learns how to

recognize that type of text more accurately. The team

considered doing this for the project, but there was

also another alternative for increasing accuracy:

improving the image enhancement subsystem. There

was not time in a single semester to do both, and the

decision was ultimately made to spend what time was

available on the image enhancement rather than

training Tesseract. However, the system can benefit

greatly from both, so training could provide a very

significant improvement.

The next area of improvement relates to

comparing the text found on the tablet to the text

being searched for. As previously mentioned, the

current implementation locates the first string on the

tablet which has a similarity percentage above the

threshold defined by the user. It is possible, however,

for more than one string on the screen to meet the

threshold. If the first string which meets the threshold

is not quite as similar to the desired string as the

second string which meets the threshold is, it may be

preferable to return the string which is more similar

rather than simply the first one found. This is a

relatively simple feature that could be added in the

future.

Finally, the accuracy of the XY plotter’s taps on

the tablet screen can be improved as well. The

current implementation uses a simple linear

transformation from the string’s coordinates on the

camera image to its physical coordinates in the XY

plotter’s area, and this transformation results in some

error along the y-axis. A more robust transformation

could be developed to ensure the stylus always taps

directly in the center of the located string.

VI. CONCLUSION

This project ended with great success. While

there is certainly room for expansion and

improvement, the team was able to fully demonstrate

proof of concept for using image processing and text

recognition technologies in a testing environment.

Because the end product is a standalone module that

will be integrated into the Tietronix ATS, there is a

wide range of ways it could be used, including

verification of text, simple automated navigation

through software screens, and more.

With any design project, it is important to ensure

that the end product delivered meets the expectations

and needs of the client for whom it was made. About

two weeks before the final course deadline, the team

was able to demonstrate the working design to Chris

DuPont, the Director of Product and Business

Development in the Life Science Division at

Tietronix, who had been the primary point of contact

with the team throughout the project. After the

demonstration, the team requested that Mr. DuPont

provide a brief statement describing his opinion of

what he had seen. The following quote is the

statement he gave:

In the medical device industry, the

overhead of design controls, testing, and

regulatory compliance can be daunting. The

challenge for this Senior Design Team was

to take a "real-life" problem of designing

and implementing a working prototype to

passively test a commercial FDA Class III

Physician Programmer using a robotic

system which would ultimately relieve the

human of the burdensome task of repetitive

testing. The Physician Programmer

interrogates and programs a human

implantable pulse generator used to treat

neurological disorders. This team, mentored

by Dr. Scheets, met the task head-on and

made steady progress each week. The team

never missed a goal and our weekly status

meetings always started on time - which I

much appreciated. I was most impressed as

I personally observed a demonstration of the

fully working prototype last week in

Engineering South. A BIG thanks goes out

to OSU, Dr. Scheets, and this Senior Design

Team - Ben Jespersen, Matt Litchfield,

Chengjie Lin - for a "Job Well Done!"

VII. REFERENCES

[1] A. Gohr, "Linux OCR Software Comparison",

Splitbrain.org, 2010. [Online]. Available:

http://www.splitbrain.org/blog/2010-06/15-

linux_ocr_software_comparison. [Accessed: 26-

Jan- 2016].

[2] A. Wilson, "Developers Look to Open Sources

for Vision Algorithms", Vision-systems.com,

2014. [Online]. Available: http://www.vision-

systems.com/articles/print/volume-19/issue-

3/features/developers-look-to-open-sources-for-

13

vision-algorithms.html. [Accessed: 25- Jan-

2016].

[3] C. Hodges, “Automated Test System (ATS) Use

Cases and Features,” Tietronix Software, Inc.,

Houston, TX, Tech. Rep. 1.0, May 2015.

[4] Cognitiveforms.com, "CuneiForm". [Online].

Available:

http://cognitiveforms.com/ru/products_and_servi

ces/cuneiform. [Accessed: 26- Jan- 2016].

[5] Embedded Vision Alliance, "SimpleCV: Is An

‘OpenCV For The Masses’ Necessary?", 2011.

[Online]. Available: http://www.embedded-

vision.com/news/2011/09/30/simplecv-opencv-

masses-necessary. [Accessed: 25- Jan- 2016].

[6] "Extracting text OpenCV", Stackoverflow.com,

2014. [Online]. Available:

http://stackoverflow.com/questions/23506105/ex

tracting-text-opencv. [Accessed: 29- Apr- 2016].

[7] Opencv.org, “OpenCV”. [Online]. Available:

http://opencv.org/. [Accessed: 24-Jan-2016].

[8] P. Harker et al., “Object Recognition For a

Robotic User Interface Automated Test System,”

Stillwater, OK, Tech. Rep. Dec. 2015.

[9] Researchgate.net, "Which is the best opencv or

matlab for image processing?". [Online].

Available:

https://www.researchgate.net/post/Which_is_the

_best_opencv_or_matlab_for_image_processing.

[Accessed: 25- Jan- 2016].

[10] S. Dhiman and A. Singh, "Tesseract Vs Gocr A

Comparative Study", International Journal of

Recent Technology and Engineering, vol. 2, no.

4, 2013.

[11] Simplecv.org, "SimpleCV". [Online]. Available:

http://simplecv.org/. [Accessed: 25- Jan- 2016].

14

APPENDIX A: REPORT AUTHORSHIP

The purpose of this appendix is to indicate which members of the team wrote each section of this report. This

was a requirement for the Capstone Design course to facilitate grading. Each team member is listed below, along

with the sections of the report he wrote.

Ben Jespersen:

 Abstract

 I: Introduction

 II.A: Project Description

 II.B: Design Specifications

 III.B: Image Enhancement

 III.C: Optical Character Recognition (OCR)

 IV: Test Methods and Results

 V: Possibilities for Further Development

 VI: Conclusion

 Appendix A: Report Authorship

 Appendix B: Progress Reports

Matt Litchfield:

 III.A: Work Breakdown

 III.D: Image Capture

 III.E: ATS/OCR Interface

 III.F: Similarity Calculation

 III.G: User Input

Chengjie Lin:

 III.H: XY Plotter

 III.I: Stylus Control

 III.J: Log File Generation

 III.K: Overall Logic

15

APPENDIX B: PROGRESS REPORTS

The following pages contain the progress reports given in meetings the team held with its mentor, Dr. Scheets,

and with representatives from Tietronix Software Inc. Early in the semester, these reports took the form of simple

meeting notes and were used only for the team’s benefit. Later, in response to a request from Tietronix, they were

changed to more of a progress report format, describing what was accomplished each week, what the goal for the

next week was, and what roadblocks were encountered each week. These reports were used to keep Tietronix up to

date on the team’s progress as well as to help the team stay organized and set goals. They are reproduced here in

their original format, ordered by date.

Mentor Meeting 1/21/16

Meeting Goals

 Obtain a detailed description of the project from Tietronix

 Determine specifications for the project. What does Tietronix want to have delivered by the end of the

semester?

 Check specifications with Dr. Scheets. Does he feel that they meet the requirements of the course?

 Determine a weekly meeting time.

Meeting Notes

Project Description:

Primary objective: text recognition.

Read a text file, read a string from it, find string in the tablet screen. 9 different languages need to be supported.

Need to verify whether a string exists on the screen.

We will be provided a working baseline. We can choose to use last semester's code or start from tietronix's baseline.

Last year's code will be available to us. Design team's code has some glitches, but tietronix's is mostly glitch-free

right now.

Specs will be provided hopefully by close of business Friday (tomorrow).

Step-by-step example: text file is opened. String is picked out. Text is “program patient”. Camera moves to center

of tablet and takes screenshot. Analyze screen, look for string. If not found, test case fails. If so, case passes.

Second example: same string. Plotter presses a button saying “interrogate patient.” Data is retrieved and displayed.

Select option to change output current. This activates program patient button. Identify string and pass or fail.

Goals Before Next Meeting

 Read last year's proposal and feature document.

 Find test system and start experimenting.

 Create proposal presentation.

 Meet Dr. Scheets between 10:30am – 3:30pm on Monday to show work completed over the weekend.

16

Mentor Meeting 1/25/16

Meeting Goals

 Show Dr. Scheets our draft of the proposal presentation; discuss potential changes.

 Discuss Tietronix’s specifications and potential changes with Dr. Scheets.

Meeting Notes

 Proposal presentation looks good overall

 Some of Tietronix’s specifications do not fit the nature of the class very well

o Remove Tietronix specs 9 and 10 due to difficulty of testing them

o Change Tietronix spec 11 to specify simply a general type of room lighting rather than a specific

percent variation.

 Some specs should be added to narrow our scope a little

o Add spec 11 detailing types of strings that should be recognizable

o Add spec 13 to detail supported operating system/s

 For clarification, add the phrase “at the location of the string” to spec 4.

Goals Before Next Meeting

 Send Dr. Scheets a copy of presentation for him to read on his own time

 Give proposal presentation

Mentor Meeting 2/4/16

Meeting Goals

 Report on current progress:

o Ran Makeblock’s firmware on ATS. Able to use it to move plotter around.

o Currently setting up OpenCV environment. Has proven difficult in Windows, so now using Linux.

 Ask about pulse generator interrogation. It hasn’t worked for us so far; wand battery is probably dead.

 Discuss Cyberonics app backlighting bug.

Meeting Notes

 Backlight bug should have been fixed in Cyberonics app version 11.0.4.3.

 If we cannot get the backlight setting to work in the app, there is an “Easter egg” to allow setting it outside

the app.

 Programming wand should have a fresh battery in it already.

 Power light on programming wand is burnt out.

 Data light on programming wand should blink if wand is operating.

 One of the pulse generators is known to have a dead battery.

Goals Before Next Meeting

 Email Cody to set up file transfer for ATS baseline

 Get Tietronix’s baseline running on the ATS

 Verify Cyberonics app software version is 11.0.4.3 and configuration is 2.0-OUS

17

Mentor Meeting 2/11/16

Meeting Goals

 Progress report for Tietronix and Cyberonics.

 Baseline is running successfully?

 Programming wand works now after replacing the battery. We have successfully communicated with the

two working pulse generators.

 Can now compile with OpenCV and have begun experimenting with image enhancement.

 Still cannot change backlight, despite verifying app version is 11.0.4.3 with configuration 2.0-OUS. Can

we be told how to get outside the app to change brightness that way?

Meeting Notes

 Baseline is not running successfully after all. It appears we misunderstood what exactly Tietronix wanted

us to get running.

 Tietronix baseline is the netbeans project from bitbucket.

 To change the backlight on the tablet, one must first exit out of the app.

o There are two invisible buttons on either side of the battery status bar on the User Preferences

page.

o To exit the app, press the buttons in this order: left 3 times, right 1 time, left 2 times, right 2 times,

left 1 time, right 3 times.

o If you make a mistake, you must leave the User Preferences page, then come back and try again.

Goals Before Next Meeting

 Get the Tietronix baseline running (netbeans project)

Progress Report 2/18/16

Accomplishments Since Last Report

 The team has successfully built and run the NetBeans project containing the Tietronix ATS baseline

software. We were able to use the baseline to communicate with the ATS plotter and create and run a

simple test case.

 We have made progress with OpenCV image enhancement. Text can currently be recognized from the

app’s home screen with approximately 81.7% accuracy. There are two main reasons which drive this

number down. The first is that some blocks of text are not recognized at all by the algorithm, so they are

completely deleted in the process of enhancing the image. This occurs before the Optical Character

Recognition (OCR) phase even begins. The second is that the algorithm currently only works well with

dark text on a light background, but the app’s home screen has a line of light text on a dark background. If

only the blocks of dark text which were successfully recognized by the algorithm which determines where

text appears are considered, then the accuracy is approximately 96.6%. The greatest improvement, then,

can be achieved by improving the way in which the algorithm determines the regions of the screen which

contain text and by adding support for light text on a dark background. Note that the accuracy numbers are

very rough estimates, calculated using the simple formula accuracy = (mistaken characters) / (total correct

characters).

18

App home screen test image.

Result of the algorithm which determines the regions of the screen to enhance

for the OCR phase.

19

Result of the OCR phase.

Goals for Next Report

 Examine the software baselines from both Tietronix and the Fall 2015 Capstone Design team to determine

which we would like to ultimately integrate our software into. This will affect which language we need to

use, so although it is not necessary to decide before our prototyping presentation, we would like to decide

as soon as possible to avoid redoing work later on.

 Continue to improve the accuracy of the image enhancement algorithm. The focus will be on improving

the way the algorithm determines which regions of the screen to enhance prior to the OCR phase.

Roadblocks

 There are no roadblocks that we are aware of at the moment.

OSU Capstone Design ATS Project

Progress Report

February 25, 2016

Accomplishments Since Last Report

 The team has decided we will integrate our code into the Java baseline from Tietronix. Because we had to

start prototyping before this decision was reached, our prototypes are currently coded in C++. We will

therefore continue using C++ for the next week or two until our prototyping demonstration is complete,

then as part of the integration phase we will convert our code to Java for compatibility with the baseline.

 The image enhancement algorithm has been improved. The algorithm now produces much higher quality

isolated text images than it did last week. Because of this improvement, the camera resolution is much less

likely to be a problem than we were afraid it might be last week.

Goals for Next Week

 We will make a presentation for our prototype presentation. The presentation will be given on March 3.

Note that, because this presentation is scheduled for 3:30 to 6:30, we will not be able to hold our weekly

Skype meeting next week. We will resume the following week.

Roadblocks

 The tablet is not recognizing taps from the stylus currently mounted on the ATS plotter. We believe this can

20

be solved by replacing the stylus with a different one.

 We are still unable to change the brightness of the tablet. As a result, we have decided to remove the

specification concerning tablet brightness from our spec sheet.

OSU Capstone Design ATS Project

Progress Report

March 10, 2016

Accomplishments Since Last Report

 We gave a presentation in our Capstone Design course about where each team member stands currently on

our individual prototypes. This presentation will be included in the email along with this report. This marks

the end of the prototyping phase of the project and the beginning of the integration phase. We will be

combining our subsystems together into a final product over the next several weeks.

 We have decided not to order a higher resolution camera. After doing some testing, we believe we will be

able to meet all of our project specifications with the current camera.

Goals for Next Meeting

 We will not be holding a meeting next week (March 17) because this is during OSU’s spring break. We will

resume meeting in two weeks, on March 24.

 We will begin integrating our subsystems together between now and the next meeting. Because we will be

going separate ways over spring break and the integration phase requires close collaboration, we do not

intend to have two weeks’ worth of work done by the next meeting. We do, however, plan to have at least

some of the subsystems working together.

Roadblocks

 There are no roadblocks that we are aware of at the moment.

OSU Capstone Design ATS Project

Progress Report

March 24, 2016

Accomplishments Since Last Report

 We have begun making the necessary modifications to the code for our individual subsystems in

preparation for combining the subsystems together. This primarily consists of removing extra logic used to

allow the subsystems to function as stand-alone programs for prototype testing.

Goals for Next Meeting

 We plan to have Matt’s subsystems integrated with Ben’s subsystems. These systems include user input,

image acquisition, ATS/OCR interface, string similarity calculation, image enhancement, and optical

character recognition. These systems can fully function together without adding Chengjie’s systems, so this

is where we will begin. We intend to have them fully working together by the next meeting.

Roadblocks

 There are no roadblocks that we are aware of at the moment.

21

OSU Capstone Design ATS Project

Progress Report

March 31, 2016

Accomplishments Since Last Report

 We have integrated the following components of the program:

o Image Acquisition

o ATS/OCR Interface

o Image Enhancement

o Optical Character Recognition

o Similarity Calculation

These components can now be run together as a single stand-alone program. Please see the next page for an

example test case demonstrating the operation of the program as it exists now.

Goals for Next Meeting

 We will continue integrating this week. The components which still have yet to be integrated are:

o User Input

o String Position Calculation

o Log File Generation

o Stylus Control

o Overall Test Logic

We are not certain yet how many of these components we will be able to integrate by next week. Our goal

is to complete as many of them as possible.

Roadblocks

 There are no roadblocks that we are aware of at the moment.

22

Example Test Case

When the program as it stands now is run, the following sequence of steps is executed. This test case was run on the

“View Database” screen in the Cyberonics app as an example case.

1. Capture image from the webcam.

2. Enhance the image by isolating the text. This stage may still be improved if time permits, but it is functioning

well as it stands now.

23

3. Run Tesseract on the image to produce a plain text file. The following image shows the text output from

Tesseract. It is not 100% perfect, nor do we expect it to be completely flawless this semester. But it is

successfully recognizing the great majority of text.

4. Locate a string which satisfies the desired confidence value. For this test, we were searching for the string

“View Parameter History” with 85% confidence. The program was able to find this entire string (it can be seen

in line 17 of the image above).

5. Use Tesseract’s output file to determine where in the image the string was located and draw a circle on the

original image in the location where the stylus will eventually tap the image. The image below shows that the

program successfully found the string’s location.

24

OSU Capstone Design ATS Project

Progress Report

April 7, 2016

Accomplishments Since Last Report

 We have integrated the following components of the project:

o Overall Test Logic

o String Position Calculation

o Stylus Control

These components have been added to the integrated components we listed last week.

 We have successfully tested navigating through multiple screens with the string recognition module.

Goals for Next Meeting

 We will add the final components that have yet to be integrated:

o Log File Generation

o User Input

 We will be meeting with Chris in person next Thursday, April 14. We will demonstrate the project’s

operation here at OSU. Note that this means we will not need to have our usual Skype meeting next week.

Roadblocks

 We have come across an issue that really is not a roadblock for us, but it is something you should be aware

of. Occasionally the blue highlighting of a button can flicker continuously after the tablet is turned on.

Navigating to a different screen and coming back does not stop the button flickering. If this occurs, the

string recognition will have trouble recognizing the text on the flickering button. The flickering can,

however, be stopped by restarting the tablet. So this does not impede our ability to test using the tablet, but

it may cause future problems when someone tries to use the string recognition module for an automated test

and is not aware the flickering is occurring.

25

Example Test Case

When the program as it stands now is run, the following sequence of steps is executed. This test case was run on the

“View Database” screen in the Cyberonics app as an example case.

6. Capture image from the webcam.

7. Enhance the image by isolating the text. This stage may still be improved if time permits, but it is functioning

well as it stands now.

26

8. Run Tesseract on the image to produce a plain text file. The following image shows the text output from

Tesseract. It is not 100% perfect, nor do we expect it to be completely flawless this semester. But it is

successfully recognizing the great majority of text.

9. Locate a string which satisfies the desired confidence value. For this test, we were searching for the string

“View Parameter History” with 85% confidence. The program was able to find this entire string (it can be seen

in line 17 of the image above).

10. Use Tesseract’s output file to determine where in the image the string was located and draw a circle on the

original image in the location where the stylus will eventually tap the image. The image below shows that the

program successfully found the string’s location.

