
Final Report for Secure Camera

Capture System (April 2016)
Christian J. Coffield, Matthew W. Dekoning, Nathan H. Lea, and Kevin T. Seitz, Student, OSU

Abstract—This report provides an overview of the

Secure Camera Capture system produced by Team 6 in

Spring 2016’s Senior Design 2 class. The project

encompassed a three-part hardware and software

system, used to capture, securely store, and retrieve

photographs taken by an internet-equipped camera on a

sixty-second timer. In the report, the project is outlined

in both technical and nontechnical terms, the AES

encryption method used, the Raspberry Pi

microcontroller hardware, and the software used to tie

them together. Specifications (both hardware and

software) and how they were addressed are detailed, and

a guide is provided to reconstruct the project using

provided code. Finally, it provides the team’s perspective

on the final product and possible improvements that

could be made on the design.

I. INTRODUCTION

The Secure Camera Capture System (SC^2S) is

designed to provide an inexpensive, do-it-yourself

solution to home or office security, as well as basic

timer-triggered photography and storage. It uses a

three-stage system to take and encrypt, store, and

retrieve photographs captured every minute.

The first stage, comprised of a Raspberry Pi 2 and

an equipped camera, automatically takes photos every

minute, encrypts them using AES-256, the military

standard in security. It then sends them off to a remote

server to protect them from tampering or theft before

deleting them on the local storage.

The second stage, comprised of a second Raspberry

Pi 2 and a large USB external storage device, works as

a sort of file storage and organizer system. It takes in

pictures sent by the camera device, adds a layer of

encryption, and stores them on-disk for later retrieval.

The third and final stage consists of an application

programmed for Windows computers and an

extended Android app version. This application

allows for a user to access the photos on the server

remotely from any location, and organizes the photos

into a timestamped format for ease of access.

II. NONTECHNICAL DESCRIPTION

Most of the technology in this project is Raspberry

Pi-based. Raspberry Pi is a small, camera-like

computer that can be connected to a standard HDMI

monitor and operated using standard USB

keyboards/mice. This technology is quite prevalent in

the world of electrical engineering hobbyists-- many

keep at least one around for tinkering in their home.

Because Raspberry Pi is such a widespread

technology, it was selected as the primary platform for

development. Hopefully, other similarly-skilled

engineers that have similar needs can take the code,

ideas, and direction contained in this report and the

surrounding documentation to recreate and expand on

the concept.

Following is a nontechnical description of the three

major components in the project: the Camera device,

the Server used for photograph storage, and the Client

programs used to retrieve data.

A. Camera Device: Messrs. Coffield and Seitz

The Camera device uses a basic Raspberry Pi 2 and

the camera custom-designed to work with the Pi;

several starter kits for the microcomputer include the

camera, and its profile is about as small as can be,

making the whole system very compact. It’s contained

within a 3D-printed case, with the prototype being

roughly the size of two stacked cell phones in length,

width, and height. The case is flexible and easily wall-

mounted, with ports for ethernet connectivity and

power on the side and bottom. No special hardware is

required to use the device.

After the initial configuration, the Camera device is

very, very easy to use. Once plugged into both power

and ethernet, it automatically boots itself up and enters

the cycle of waiting one minute, taking a picture,

sending it over a very secure connection, and

repeating. Once the first setup has been done, it never

requires user input again; all the device needs to

capture photographs and send them to the server is

power and an ethernet connection.

One might ask how secure the connection is, since

the photographs are being taken and transmitted

automatically, without any review from the user. What

if they contain sensitive or private information, or

otherwise material that one wouldn’t want available to

the public? The type of security used to connect the

Camera device to the Server that stores its images is

very, very strong-- military-grade encryption is used,

to ensure that sensitive data will never fall into the

wrong hands. [2] For more information on the security

behind the system at hand, refer to the subsection

labeled Encryption Discussion. Additionally, the

photos taken are not retained on the device in the

traditional sense of storage; only one is kept at a time

and only briefly, and it is only kept in a temporary

space that is erased immediately upon a loss of power.

Because of the above reasons, the photographs taken

by the Camera device are delivered safely and securely

to their destination without fail. Once an image has

been captured, an encrypted connection has been made

with the server, and the image has been transmitted,

the Camera device’s involvement in the system is

completed for that iteration.

The device is enclosed in a custom-designed 3D

printed case that is easily wall mounted. It features

dimensions that comfortably fit a Raspberry Pi and

secure the camera into place, and allows access to the

power connection and the ethernet connection.

B. Server: Mr. Dekoning

The Server we have designed for this problem is

also built on a Raspberry Pi. It works on the same basic

principle as any other server that someone using the

internet to access a website does; it stores files, and

upon request, delivers them.

In terms of hardware, the Server system is no more

complicated than the Camera device. It consists

strictly of a Pi microcomputer and an externally

powered USB hard drive. USB hard drives are a

powerful, versatile tool for storage, and they’re

common and inexpensive enough for a project of this

scale. The only setup they require is to be plugged in.

The same kind of security as the Camera is used to

protect communication with the outside world. To

connect to the Camera, a connection as well-defended

as a military line is left waiting for a paired Camera

device to send a picture. When the picture is sent, it

names it with a timestamp, applies an additional layer

of encryption via an on-board AES key, and stores it

on the hard drive. Then its interaction with the Camera

ceases, and the connection closes. Finally, a new one

opens and waits for the Camera to make contact again.

On a separate track from the one communicating

with the Camera device, much like a separate tab in a

web browser, the Server opens a line that waits for a

Client application to connect. The Client, once it

connects, will declare whom has initiated the

connection to the server, using a login system. If the

Client sends the correct username and password, the

Server responds by sending it a list of what pictures

are stored on the hard drive, organized by timestamp,

as well as a session key that gives the Client

authenticity. The Client can then request them to be

sent, and if they provide a session key matching the

one given by the Server, the Server sends the

corresponding image. Then the Client can request

more images, or close the session. If the session ends,

the Server deletes the stored session key.

The real strength of the Server, though, is that it

does not need to be anywhere near the Camera or the

Client. The real way security is handled is by keeping

sensitive information far, far away from the access or

recording point. A potential hacker or thief cannot get

information from the server if they don’t know where

it is or can’t get to it. A server can be hidden in a safe

somewhere, or in another building, even another

country. This is the way real, major corporate and

government entities protect their information; along

with secure connections and potential encryptions, via

separation.

C. Client Program/Android: Mr. Lea

Written in C# (for the Microsoft Windows

application) and Java (for the Android app), a program

is used as an interface to the Server. It’s designed to

easily and remotely navigate through the Server’s file

system, and functions very similarly on both of its

operating devices, mobile or otherwise. Referred to as

the Client, it provides four functions: log-in,

registration, navigation, and picture downloading.

Upon initial startup, the Client will request the IP

address of the Server it is meant to connect to. Then it

will request a username and password from the user,

and post these credentials to the Server. If they match

with the log-in credentials that the server keeps, the

Server responds with an affirmative, and then sends

back a session key, followed by a JSON (Javascript

Object Notation) file that represents the tree of images

currently stored on the Server. The log-in is required

every time the program is started, however, to increase

security.

The Client takes the JSON file and interprets it into

a tree, branching out into Year/Month/Day/Hour with

each leaf being an image taken at that minute. This is

all that the Client needs to request images from the

Server. The user can navigate the tree like they would

any standard file directory, entering the ‘folder’ for the

year they would like access to, then the month, day,

hour, and click on the minute they would like to

request the Server send it.

When the user clicks on a timestamp, the Client

posts the picture name to the Server in much the same

way it posted the log-in credentials, along with its

previously provided key. Assuming the key matches

what’s saved on the Server, it then sends the image

over an HTTPS connection, the same type used for

logging into bank accounts, government websites, and

other important web connections. The image is base64

encoded. The Client takes the image and displays it on-

screen; from there, there is an option to save it

permanently to the Client’s operating device.

Additionally, at any time, the user can click a button

to refresh the tree of images, adding anything new

added to the server; this is done by requesting an

updated JSON and rebuilding the tree. The user can

also re-configure the IP address that the Client

addresses as the Server from within the Client itself.

Once the IP address has been correctly configured

once it does not need to be done again; the Client saves

this configuration.

III. HARDWARE REQUIREMENTS

1.1 Shall be able to take and upload a picture every

minute

Our camera device uses a crontab on the raspberry

pi to execute the script that takes, encrypts, and sends

a photograph every minute. For more information on

crontabs, please check the references section [3].

1.2 Shall be able to take picture of at least 640x480px

Our camera can take pictures of up to 5 megapixels

(a resolution of 2592x1544px). In our chosen photo-

capture software, we can specify a target resolution to

be used for capture. We have chosen 1296x730px,

above the requirement of 640x480px.

1.3 Shall have a method of tamper protection that if

stolen, the system will not retain any data beyond the

most recent photo captured

Our device stores only one captured photo at a time.

It immediately removes photos upon encryption and

sending to storage, so there is no permanent memory

of them. In addition, all photos captured are only

stored in RAM; if power to the device is severed, there

will be no images stored in memory. The camera

device also lacks any form of key to access the

encrypted server, so a potential hacker could not break

into it to gain access to the server.

1.4 Shall be able to store a year’s worth of pictures on

the server

With the current scheme of one photo being saved

per minute, there is a space requirement of 525,600

photographs (minutes) in one year. At a filesize of 1.2

MB per picture, the server requires a total space of just

over 630 GB. This has been implemented in the form

of a USB hard drive, of size 1TB (1024 GB).

1.5 Shall store the picture securely off board from the

camera to protect from thieves

As stated in the point on tamper protection, our

camera device only stores one image at a time-- and

that image is stored very briefly. All long term storage

is handled by an off-site server, comprised of a second

device and hard disk.

IV. SOFTWARE REQUIREMENTS

2.1 Shall have a method for the user to retrieve the

pictures

We have implemented a Windows application in C# to

retrieve all captured photos in a smooth, metro-style

GUI. Additionally, an android application has been

developed for this application, and works on Android

devices (5.0 or later).

2.2 Shall be able to retrieve the pictures remotely

As stated above, there is a client application built for

Windows platforms that can be used with any standard

Windows OS, 7 or above. This can be placed onto any

Windows personal computer and used to access the

server from any location, i.e. remotely.

2.3 Shall use AES 128/256 as the standard for

encryption

The communication method of choice between the

camera device and the server uses AES256 encryption.

Specifically, it uses a Secure Sockets Layer (SSL)

library to establish a connection with the server using

a certificate saved on-board.

 2.4 Shall index each image with time and date stamp

for ease of management

As the images are received by the Server Pi, they

are saved to the hard drive with a collection of

randomly generated letters and numbers. Upon

request, they are served using date time properties

from when they were saved in the following format:

yyyymmddhhmmssr.jpg. The year, month, day, hour,

second corresponds to the starting letter, and the r is a

random lower case letter to prevent any collisions.

These pictures are then placed into a JSON formatted

index based on time of arrival for easy client

navigation. This index groups all images taken in the

same hour together, and has outer layers of year,

month, and day. Thus the images are presented to the

user grouped within the hour they were taken for easy

access.

2.5 The images shall be accessible from any standard

Windows computer (Windows 7 and up)

Using C#, an object oriented programming

language, a Windows application has been developed.

This application runs on all Microsoft computers from

Windows XP and up, using the .NET framework.

2.6 Shall securely store the key on board so that any

user will not be able to locate the key on the system

The remote server stores the key in a location on

board, but only available if one gains root access to the

system. From client side or a web browser it is

impossible to obtain this private key.

V. FEATURES AND SPECIFICATIONS

A. Camera Pi: Messrs. Coffield and Seitz

● Takes one picture every minute

● Stores picture in RAM

● Takes pictures at a resolution of 1296x730

● Crontab integration for minimal processing

power consumption

● Secure connection to server for transmitting

images using SSL and AES-256 encryption

● 3D-printed enclosure: 3.75”x1.5”x2.6”

B. Server Pi: Mr. Dekoning

● Stores over a year's worth of pictures on a one

terabyte hard drive

● Securely interact with the Camera Pi with an

AES 256 encrypted connection (openSSL

encrypted python thread)

● Securely interact with the Client Program

with an AES 256 encrypted connection

(nginx server using https)

● Provide safe login and registration methods

for the Client Program using SHA-256

hashing and salt methods

● Safely stores the session key in the

unreachable ‘/etc’ folder

● Can receive and serve pictures

simultaneously

● Instructions to setup a Raspberry Pi to run as

the server are on the website

● The Server dynamically names each picture

in this format:

YearMonthDayHourMinuteSeccondRandomCharjpg

(4) (2) (2) (2) (2) (2) (1)

● The Server dynamically creates a json index

of the pictures it receives.

C. Windows Client Program: Mr. Lea

● Software Requirements:

○ Windows 7/8/10

● Hardware Requirements:

○ Memory:

■ 4GB

○ Hard Disk:

■ 2MB

○ Mouse, Keyboard

D. Android Application: Mr. Lea

 Android 5.0+

 No other dependencies

 Gallery application-compatible (Gallery,

Google Photos, etc.)

VI. DETAILED TECHNICAL DESCRIPTION

A. Camera Pi: Messrs. Coffield and Seitz

Raspberry Pi is a Linux-based device. As such, it

has a Linux-like operating system, Raspbian, with all

of the standard features one would expect of such a

device. One of the most important aspects of Linux

systems is the freedom with which they handle

scripting-- programming that occurs on the fly,

without prior compilation, and allows for easier

automation.

This project contains a bash script (.sh file), which,

when run, does all of the required work of the Camera

device in succession. This was because Raspbian

supports a feature known as ‘crontab’. Crontab is used

to schedule repetitive tasks to occur on a set timer. In

this device, a picture is to be taken every minute,

which is a very regular pattern. Behavior like that is

perfect for Crontab, which does not lock the device

into doing a single task like a simple while-loop

would. This means the Pi is still capable of taking

other actions, such as modifying the address of the

Server that images should be sent to . So, every

minute, the Pi automatically runs the script that

performs all of the tasks outlined in the flowchart in

Appendix A.

Every iteration, the script creates and mounts a

temporary directory, or folder. This folder is placed

into a folder that is mounted as a temporary filesystem

in RAM; if power to the device is lost, the contents of

the folder are gone forever. This makes it so that if a

thief were to steal the device, the important data (the

pictures of said thief) would be gone the moment the

camera is unplugged from the wall.

As soon as the directory is created, an image-

capture application called raspistill is run, using

parameters set by the script to set the resolution of the

image, as well as its orientation. This is where the

picture is actually taken-- and then stored in the

temporary filesystem from above, titled ‘toSend.jpg’.

The picture is complete and ready to be sent at this

stage.

The bash script then calls a secondary script, written

in Python. Designated ‘sendpicture.py’, this is where

the image is actually sent. Python is a scripting

language natively supported by the Raspberry Pi, and

is used for a very variety of tasks ranging from opening

websockets to performing diagnostic checks on a

system. The Python script has its own set of

operations, outlined in the above chart, but they can be

summed up as:

1) Create a secure, encrypted SSL socket (SSL

is discussed in the Encryption Discussion

section)

2) Connect to the Server’s IP address on a

specific port using the created socket

3) Verify that the SSL certificate on the current

device matches the certificate expected by

the server

4) Convert the image currently stored in RAM

into a string of bytes

5) Send that stream of bytes over the SSL socket

to the Server

6) Close the socket and exit the Python script

Once all of that is completed, the picture that was

captured is safely on the server and can be deleted

from the Pi. This is done by removing the directory

that the picture was contained on, and unmounting the

temporary file system, clearing its contents from

RAM.

With the picture captured, encrypted, and sent to the

server, the camera device’s work is finished. It

proceeds to wait for one minute before repeating the

process, and does this continually as long as it is

plugged in and has an internet connection. For

clarification on the order of and procedures performed

during connections between the Camera device and

Server, please see the graphic in Appendix D.

Additionally, a case was custom-built in Autodesk

Inventor, a Computer Aided Drafting and 3D

modeling software. The case is simple to print and

assemble. It’s rectangular with a space for the

Raspberry Pi, with the ethernet port and power port left

exposed. The lid has a spot to glue or tape the Pi

Camera into place, with the cord for the Camera

folding safely within.

B. Server Pi: Mr. Dekoning

The Raspberry Pi functioning as the server uses

multiple threads (program flow outlined in detail in

Appendix A) to communicate with both the Camera

device and the Client application. Because the

operating system used by Raspberry Pi devices is

Linux based, it included many of the features a

standard Linux computer would use; one of them is a

technique known as POSIX threading. This type of

threading allows for multiple processes to run

independently of one another and receive

computational servicing pseudo-simultaneously. With

this in mind, two threads are opened upon bootup: one

to communicate with the camera and receive images

(with no feedback, to retain a one-way link and

increase security) and one to handle requests from the

Client. For more information on POSIX threading,

check the references section [4].

The Camera device connects using a completely

secure AES256 Secure Sockets Layer (SSL)

connection. SSL is used to encrypt connections and

ensure security. A socket using SSL is opened in

Python, using the open-source library OpenSSL.

Images are received through this socket in JPG format

and stored away into the attached external hard drive.

A running index of what files are on the hard drive is

updated, to retain a level of organization for future

access. Then the socket is closed, and a new one is

opened, waiting for the Camera device to connect once

more and send another picture.

Once an image is received, it is immediately run

through another layer of encryption. Using a key

stored on the Server and only on the Server, all images

are put through a hard AES-256 encryption before

ever storing it on a hard drive.

Encrypted images are stored on the external hard

drive using jpeg format. They are placed in the images

directory on the 1 TB hard drive. Additionally, a

JavaScript Object Notation (JSON) file is used to

assign a tree-like hierarchy to the photos; this JSON

file interprets the file locations into real-world date

and time stamps. As such, virtual folders are created

that sort the images by year, then month, then day,

with each image therein sorted chronologically by the

minute. The JSON file is stored on the server to be

provided to the client upon request. This file,

index.json, is what’s used to create the illusion of a

year/month/day/hour/minute hierarchy.

The second thread opens up a server using Nginx

technology. Nginx is used to serve dynamic HTTPS

content (such as images) over the internet. It’s another

open source software, under a permissive-free license.

Nginx was chosen over other, similar software (like

Apache) because of how lightweight it is; because

computational costs must be kept low to run on an

inexpensive piece of hardware like a Raspberry Pi, it

was the ideal choice.

Once the server is established with images and an

organizing JSON, it's prepared to accept requests and

communicate with the Client software. First, PHP files

are used to handle a login using a username and

password received as posts from the Client. Once the

connection is established and the login credentials

have been verified as correct, the server provides the

client application with both the current version of the

JSON index file so it can build its own version of the

hierarchy tree on its operating device and a session

key, randomly generated to provide authentication to

each connecting Client. From there, the server waits

for requests from the client for specific images in the

tree, and delivers them upon request—provided the

Client can show they have a session key matching one

permitted by the server.

C. Client Applications: Mr. Lea

The Client is programmed in C#, using Windows

Forms. Windows Forms are the newest and best GUI

library for use in the Windows environment, because

they are compatible on any Windows computer with

the .NET framework installed and are very stable.

For the internet transmissions, the Windows Client

uses WebClient, an in-built Windows API library that

implements many of the necessary functions required

to post to, and download data from, the server. This

library also takes care of the HTTPS connections, as

well as the encryption and decryption that is required

for the transmission.

To build an indexing, date-and-timestamped tree

from the JSON, a custom JSON parser was written. It

uses many different libraries, including regex

searching. The JSON tree builds a List of objects that

contain the information about each level of the tree.

There are objects that represent each level of the tree:

The Year Object contains a List of Month objects, the

Month object contains a List of Day objects, the Day

object contains a list of Hour objects, and the Hour

object contains a list of Image objects. The Image

object contains information about each image on the

server such as the date captured and the name of the

image.

This List of Lists is used to build a treeView

(expandable tree of clickable links, each link

displaying its contents upon click) for display on the

Windows Form. On each item that is an image, the

image name is assigned to a property on the tree node.

This property is used for the request of the pictures on

the click of the node. Once the node is clicked, it

fetches the image in question from the Server. This is

done by posting a command to the Server with an

image name to request.

Additionally, the Client has a config file that stores

the IP address of the Server it’s meant to connect to.

Upon the first boot, the Client will request the IP it’s

meant to connect to, and will store it into the config

file. This information will not be requested again

unless the user wants to reconfigure the Client by

clicking through the options menu on the toolbar.

The Client uses posts to give the Server the user’s

username and password in much the same way it posts

to request image, by passing it some data. This

username and password use a system of posts much

like the requests for images. It sends the following

string:

 "username=" + username + "&password=" +

password

If the username and password is correct the server

will send a zero followed by a session key and the

JSON index. When the Client receives the JSON

index, it will build a tree of the all the images on the

server. This tree is used then to build the TreeView

which allows the user to select and images. Once an

image is selected, the Client gets its name from the

JSON tree and then requests the image from the server

by posting the name to serve.php, as well as its session

key. Then the server sends back the corresponding,

base-64 encoded photo which the Client interprets and

displays to the screen. This process is repeated every

time a refresh occurs, which is done manually by the

user.

Additionally, an Android application has been

developed for the project that follows the same

principles as the Windows Client. Functionally, it

serves the same ends as the Windows client. However,

graphically, it has a very different feel, customized for

the small touchscreen of a mobile device. The tree is

navigated through a series of taps through another tree,

and once an hour has been selected, the app loads up a

series of thumbnails for each of the images.

These thumbnails are created and stored on the

server, and are served to the android client when it

selects an hour. This makes it much easier to determine

which images are important. Because data and

memory are much more precious on a mobile device

(compared to a Windows computer), it protects the

user from having to cycle through every image in the

hour sequentially to see which picture they should

click on to enhance.

Both the Windows and Android Clients support

saving downloaded images from the server to disc.

The Android Client also creates a special folder for

saved images and links it with the standard Android

Gallery app so the user can view the photos from the

Gallery like the rest of their pictures.

For a graphical explanation of the program flow for

the Client apps, see Appendix A for a collection of

flowcharts.

VII. RECONSTRUCTION (STEP BY STEP)

A. Camera Device: Messrs. Coffield and Seitz

1. Install the Pi Camera. To do this, press up

on the camera connector tab, insert the ribbon

cable (making sure that the leads are on the

correct side), and press down firmly on the

connector tab. For more detailed instructions,

check the Pi Camera’s instruction manual.

2. Connect the power, ethernet, and HDMI

cables, as well as a USB keyboard, so you can

begin programming the device. It will

automatically boot after being plugged in.

3. Enable the Pi Camera. To do this, type ‘sudo

raspberry-config’ into the command line, and

navigate through the GUI to enable the pi

camera. It will automatically reboot

afterwards.

4. Download the required files. To do this,

navigate to the home directory of the Pi by

entering ‘cd’, then type ‘git clone

https://github.com/SecureCameraCapture/Ca

mera.git’ into the command line.

5. Progress through the server setup until step

____.

6. Code in the IP address of your Server. To do

this, open up the file named ‘sendPicture.py’

under the directory /camera. Once the file is

open, navigate to line 16 (starting with ‘ip =

...’) and input the IP address written down

from the server setup.

7. If the default log-in user is not the factory

user (pi), modify the line in takePicture.sh

that calls sendpicture.py to include the proper

full path to sendpicture.py.

8. Setup the crontab. To do this, type ‘crontab -

e’ into the command line. If this is your first

time using crontab, you will get a message

asking which text editor you would like to

use-- nano is recommended. Next, navigate

to the bottom of the file and write a new line.

with the following ‘* * * * * <file path>’,

where <file path> is the full path to the shell

script, takePicture.sh, that was downloaded

in step 4. If the Pi is on default user settings

and the git clone was done properly (from the

home directory), <file path> would be

‘/home/pi/camera/takepicture.sh’. This will

configure the Pi to automatically run the

scripts to take a picture once every minute.

9. Locate the Secure Camera Case STL files.zip

file on the project website’s Final Design

page.

(http://nathanlea.com/SecureCameraCapture

/project.html). Download it and either send it

to be 3D printed at an external source, or print

it.

10. Once the case is complete, place the

Raspberry Pi inside of it such that the ethernet

and power ports align with the corresponding

slots in the case.

https://github.com/SecureCameraCapture/Camera.git
https://github.com/SecureCameraCapture/Camera.git
http://nathanlea.com/SecureCameraCapture/project.html
http://nathanlea.com/SecureCameraCapture/project.html

11. Attach the Pi Camera to the lid of the case by

slipping the lens through the corresponding

slot on the underside. Secure it with tape or

insulating glue.

12. Fold cables for the Pi Camera into the case

and place the lid on top of it, clicking it into

place.

13. Place the device where pictures should be

taken. Face the camera outwards, plug it into

an ethernet line with internet access, and plug

it into power.

14. Pictures will be taken automatically every

minute, so this device’s setup is complete!

B. Server: Mr. Dekoning

1. Update and Configure the Raspberry Pi

A. Boot the Pi (flash the memory card

if needed)

B. Run sudo raspi-config and

complete the following

I. Change the default

password

II. Disable boot to desktop

III. Use Advanced ->

hostname to change the

hostname of the Pi - make

your own but remember it!

IV. Use Advanced -> Memory

Split to allocate only 16

MB of RAM for the GPU

- this improves

performance as it gives the

CPU more RAM!

V. Enable SSH - once this is

configured and you have

set up your server, you'll

want to disable this

C. Download updates to Raspbian by

running sudo apt-get update, sudo

apt-get updgrade, and sudo apt-get

dist-upgrade

2. Create a New User

A. Type and run the command groups

B. Use the list of groups, excluding

the group pi, to create a new user

with this command:

sudo useradd -m -G (list of groups

seperated by commas and no

spaces!) (new username)

C. Set the password of this user with

the command sudo passwd

(username you just added)

D. Logout of the Pi user using

the logout command and log back

in using the new username and

password you just created

E. Delete the user 'pi' now using the

command sudo deluser --remove-

all-files pi NOTE: there will be alot

of text when you run this, that is

fine!

3. Setup the Files

A. Create the directories for your

webserver to run from using this

command mkdir -r

/websites/secure/www

B. Go to the /websites/secure/www

directory and run this command to

get the scripts that make up the

server: git clone

https://github.com/SecureCameraS

ystem/Server

C. Run python generateKey.py and

follow the instructions to make the

https session key and certificate for

your server

D. Copy secure.key and secure.csr to

/etc

4. Setup and Configure the Server

A. Download and install the required

software packages with this

command

sudo apt-get install nginx php5-fpm

php5-curl php5-cli php5-mcrypt

php-apc

B. Setup the nginx web server

I. Edit the configuration file

using sudo nano

/etc/nginx/nginx.conf

II. In the first few lines,

change 'worker_processes'

from 4 to 2

III. Change port 80 to port

443

IV. Add this line directing the

server to

use secure.key and secure.

csr for an https connection

V. Enable the "server_tokens

off" line by

uncommenting it

VI. Scroll down to the Gzip

section and uncomment

these lines

a. gzip on;

b. gzip_disable

"msie6

c. gzip_min_length

1100;

d. gzip_vary on;

e. gzip_proxied

any;

f. gzip_buffers 16

8k;

g. gzip_comp_level

6;

h. gzip_http_versio

n 1.1;

i. gzip_types (leave

the list as it is,

just uncomment!)

VII. In the "http" block add

these four lines to kick

denial of service attacks

out

a. client_header_ti

meout 10;

b. client_body_time

out 10;

c. keep_alive_timeo

ut 10 10;

d. send_timeout 10;

VIII. Save and exit nano

(CTRL-X, Y) then open

another configuration file

with the commandsudo

nano

/etc/nginx/fastcgi_params

IX. In the second block of text

add this line

anywhere fastcgi_param

PATH_INFO

$fastcgi_path_info

X. Save that file and exit

C. Configure the PHP settings by

opening sudo nano

/etc/php5/fpm/pool.d/www.conf and

uncommenting the lines that

say listen.owner, or listen.group

D. Make the directories your website

will be stored in using these

commands:

sudo mkdir -p

/websites/secure/www, and sudo

mkdir -p /websites/secure/logs

(NOTE my website is called

'secure', if you want to change that

replace 'secure' with your site's

name from here on out!)

E. cd /websites/(your site

name)/www to add an "index.html"

file with some basic html of your

choosing for testing

F. Add an "index.php" file that

contains a basic php script for

testing

G. Change the ownership of (your

site's) folder with the

command sudo chown www-

data:www-data /websites/(your

site) - this allows web users access

to some resources (like those web

documents you just made to test

with)

H. Now configure nginx to serve your

file

I. To register your files with

the nginx server you must

create entries in the "sites-

enabled" and "sites-

available" nginx

directories, so cd

/etc/nginx/sites-available

II. Register your directories

with the "available" part

by running sudo cp default

secure

III. Link the available file to

the enabled file with this

command sudo ln -s

/etc/nginx/sites-

available/(sitename)

/etc/nginx/sites-

enabled/(sitename)

IV. Remove the default site

with this command sudo

rm /etc/nginx/sites-

enabled/default

I. Now fix the /etc/nginx/sites-

available/secure file

I. Open this file and scan the

document for lines that

look similar to these to

modify

II. root /websites/secure/www

III. index index.php index.html

index.htm

IV. server_name (your

site).local (your site).com

V. Add these lines

VI. error_log

/websites/secure/logs/erro

r.log error;

VII. access_log

/websites/secure/logs/acce

ss.log;

VIII. location ~[^/].php(/|$){

IX. fastcgi_split_path_info

6(.+?.php)(/.*)$;

X. if (!-f

$document_root$fastcgi_s

cript_name){

XI. return 404;

XII. }

XIII. fastcgi_pass

unix:/var/run/php5-

fpm.sock;

XIV. fastcgi_index index.php;

XV. include fastcgi_params;

XVI. }

J. Restart the nginx server with the

command sudo /etc/init.d/nginx

relod

K. Now visit

http://secure.local/index.html and

http://secure.local/index.php to test

the server!

L. Finish the startup script by going

back to /etc/init.d and adding these

lines to the file "startup" that you

previously made:

sudo mount /dev/md0 /websites,

and sudo /etc/init.d/nginx reload

M. Finalize those changes by running

the command update-rc.d

/etc/startup defaults

N. You have now setup your Secure

Server!

C. Windows Client Application: Mr. Lea

1. Download the program’s latest build from:

https://github.com/SecureCameraCapture/W

indowsClient/releases

2. Run the program,

Secure.Camera.Capture.Client.exe.

a. If a warning appears stating that the

program is not signed by any

certificate, press ‘OK’. The program

is safe, it just uses a method of

connecting to the server directly

requires a special permission, and

Windows will not be able to identify

a source for the program, so it

requests user permission to verify

it’s a safe action.

3. If this is the first time running the Client

application, it will request the Server’s IP

address. This was used previously in the

Camera setup, and was obtained in step ___

of the server setup. Enter the IP address and

click ‘OK’.

4. The Client will then ask to either log in or

create an account.

a. If you have an account already

created from previous use, use it to

log in.

b. If you do not have an account,

follow the on-screen prompts to

create one. They will request a

registration number (by default,

123456789101112131415 is the

registration number, but this can be

changed on the Server.)

5. Once logged in, the main screen is displayed.

It shows the tree of images pulled from the

Server, as well as a space to display the

currently selected image, a config button, a

refresh button, a download button, and two

arrows.

a. Clicking on a year in the tree will

expand it into months. Clicking a

month will expand that into days,

and so on, until hours are displayed.

https://github.com/SecureCameraCapture/WindowsClient/releases
https://github.com/SecureCameraCapture/WindowsClient/releases

From there, clicking a minute will

display the picture taken at that

minute.

b. If a picture is displayed, the

computer’s arrow keys or the arrows

at the bottom of the screen can be

used to navigate to the next or

previous image.

c. If a picture is displayed, the

download button at the bottom will

allow the user to save the image to

their hard drive in the same way as

any saved file would on a Windows

computer.

d. At any time, the config button can

be clicked, which allows for a

reconfiguration of the Server’s IP

address, to connect to a new Server

IP.

e. At any time, the refresh button can

be clicked, which flushes out the

current tree and retrieves a more up-

to-date one from the Server.

6. When finished with the Client application,

simply close it using the X in the top right

corner.

D. Android Client Application: Mr. Lea

1. Register for the open alpha for this device’s

app here:

https://play.google.com/apps/testing/com.sc

3.securecameracaptureclient

2. Download the application to your Android

phone (version 5.0 or higher). It can be found

at

https://play.google.com/store/apps/details?id

=com.sc3.securecameracaptureclient

3. Open the application, it will then ask to either

log in or create an account.

a. If you have an account already

created from previous use, use it to

log in.

b. If you do not have an account,

follow the on-screen prompts to

create one. They will request a

registration number (by default,

123456789101112131415 is the

registration number, but this can be

changed on the Server.)

4. If you have not set the IP of the server it will

request you do that now. Use the address

written down in step ___ of Server setup.

5. Navigate through the tree of timestamps by

tapping them. Tapping a year reveals its

contained months, and tapping a month

reveals its contained days, etcetera. Tapping

an hour will open that hour, where images are

stored by the minute. Thumbnails will appear

as they are downloaded from the Server.

6. Tap on the image you would like to open

fullscreen.

7. If you would like to download image, once

the image has been loaded, press and hold. It

will save to your Gallery for later sending and

viewing.

8. When finished, press ‘Back’ to step

backwards through the tree, until the app

exits.

VIII. ENCRYPTION DISCUSSION

A. What is AES?

AES, or Advanced Encryption Standard, is a

symmetric block-cipher encryption algorithm. It’s a

standard used by the United States government for

protecting sensitive data. The original version of it was

known as the Rijndael cipher, and was one of fifteen

cryptography algorithms put forth to be tested and

compared for efficiency, security, and ease of

implementation in 1999. Since 2002, it has been the

national government’s standard for security. So, the

question is, what is a symmetric block cipher?

A symmetric block cipher first takes a large piece of

information, and breaks it into chunks of equal size.

For example, we’ll say there exists a file that is exactly

1,280 bits in size. AES uses a block-size of 128 bits,

so that 1,280 total bits would be broken down into ten

segments (blocks) of 128 bits each. A block cipher

then uses a secret key (usually some randomly

generated string of bits) in an algorithm that modifies

each of the blocks. A simple example of an operation

like this would be the classic Caesar cipher. Consider

a 2-bit key equal to 3. In the Caesar cipher, each block

has the key added to its value. So, a block that has a

value of 47 would have the key of 3 added to it,

resulting in a value of 50.

Once the operation has been performed on all of the

blocks, it can be transmitted to its target destination. If

an external, malicious party intercepts it, the data is

https://play.google.com/apps/testing/com.sc3.securecameracaptureclient
https://play.google.com/apps/testing/com.sc3.securecameracaptureclient

meaningless. Suppose, for example, a message

originally read “HELLO WORLD”. By adding 3 to

each of the letters, it becomes “KHOOR ZRUOG”.

The meaning of the message is lost unless the recipient

has the key; if they have the key, they know to subtract

3 from each letter to return it to its original state. That’s

where the term ‘symmetric’ comes from; the key used

to transform the original data is used to retrieve it once

it reaches its end goal. The same key is used to both

encrypt, and decrypt.

The operation AES uses is, of course, a much more

complex process than an addition. The type of AES

used on the devices in this project is AES-256, which

is considered strong enough to protect files designated

as TOP SECRET by the US government. [5] AES-256

uses a key of 256 bits to perform its transformations

on the 128-bit blocks. It performs a process known as

‘hashing’ on each of the blocks, using the key to

transform their contents into something new. AES-

256, in particular, repeats the hashing process in a total

of fourteen cycles. It hashes the original contents, then

hashes the hashed version, and again, and again.

B. Why AES?

AES was chosen for this project simply because of

how strong it is. The implementation used here is a

variant known as AES-256; the number represents the

key length, in bits. So, the key could be any one of

2^256 possible options. An interesting study on the

security of AES-256 can be found in the references [6],

summarized here.

 On average, a potential hacker would have to try

half of those to brute-force the correct one, so the

average number of attempts would be 2^255. That’s

roughly 57 quattuorvigintillion trials-- or, in scientific

notation, 5.79*10^76. To bruteforce a passcode or

key, a typical hacker would use a high-end graphics

processing unit-- they just handle repetitive

computation faster than a standard CPU. A typical

high-end GPU can perform about 2 billion calculations

(which means 2 billion key attempts) in a single

second. So, suppose the hacker is actually a well-

funded hacker collective and can afford to chain

together a billion of these GPU’s to work together and

try to crack the code. That means 2 quintillion key

attempts per second. While that sounds really

impressive, it’s still just a drop in the bucket compared

to how many combinations there truly are.

With the number of seconds that are in a year

(31556952), that makes for a grand total of

6.311*10^25 keys per year-- meaning a total of

9.173*10^50 years attempting to crack it just to get

through half of the possibilities the key could be. This

number is so immense, it needs a comparison for scale.

The entire universe has only been in existence for

roughly 14 billion years-- 1.4*10^10. It would take

roughly 6.55*10^40 times the life of the universe, on

average, to crack a single AES key.

On top of the time restriction, the study also details

a real life scenario and the power required to perform

these operations with a real supercomputer. In short, it

would require about a hundred and fifty gigantic

nuclear reactors running for the entire time (many,

many times the length of the universe!) to power a

computer to crack an average AES key.

In summary, AES is the method of choice for

encryption simply because of how secure it is. There’s

a reason the United States government entrusts their

most important and classified information to it, and

there’s a reason it became the international standard.

C. How is security implemented in the project?

The bulk of our encryption on the project is done in

transit. While pictures are being shifted from the

Camera device to the Server, they are at their most

vulnerable. A potential thief would have access to the

Camera, meaning they could in some way intercept the

transmission. So, it needs to be encrypted in its

transmission over the internet, to ensure the

connection between the Server and Camera are secure.

In this project, that is done through an open source

piece of software called OpenSSL. This software is

commonly used to secure connections between two

devices using a ‘certificate’-- a collection of important

data items such as a name, organization/affiliation, and

location to verify the identity of one device trying to

initiate a connection with another. Our Camera has a

certificate that matches one on the Server, and when

this is proven, a connection is formed.

On this connection, the Server only accepts images,

and does not do anything with them except store them

away. This prevents any malicious software from

executing, should an attacker somehow acquire the

certificate file found on the Camera device and attempt

to place malware on the server disguised as an image.

An AES key is generated for each session based on a

random number generator, and used by both the Server

and the Camera-- the Camera for encrypting, the

Server for decrypting.

Then, images are encrypted using that key, and sent

over the internet. If someone were to intercept the

image, they would receive nothing of value; for an

example of what an ecrypted image looks like, please

see Appendix D to find a comparison of an image with

its encrypted version, courtesy of Aaron Toponce [7].

Because images are only stored in the camera’s RAM

and are deleted immediately upon sending, they are

safe on the camera device-- and with OpenSSL’s

encryption backing them up, they’re safe from capture

up until they make it to the server.

The server is supremely secure in that it’s remote,

separated from the camera and client. It can (and

should) be placed somewhere far away from the

camera device-- in another building, at the very least,

and behind some form of physical security such as a

lock or even a safe. The key aspect of the server is that

it should not be in reach of a potential attacker, ever.

Additionally, an AES key is hard-coded into the

Server. Upon image reception, files are immediately

encrypted using that key, and stored onto the Server’s

hard drive as encrypted files. If the Client requests an

image, and is verified to be legitimate and secure, the

Server unencrypts the image to be sent.

Finally, the Server communicates with the Client.

The Server forms a link to the Client through HTTPS

(Hypertext Transfer Protocol Secure). HTTPS also

uses SSL, similarly to the previous connection. It uses

the same encryption method as before when sending

files, AES-256. It also has an additional layer of

security through RSA, which is used for key switching

and transmission. An example diagram can be found

in the appendix. This ensures that all communication

between all devices is very, very secure. AES is used

all the way through getting photographs from the

Camera device and to the Client application.

Session keys are implemented in the form of a

comma-separated text file, stored onboard the Server.

When a Client successfully connects and logs in, a

session key is generated for them. This session key is

a string of 30 alphanumeric characters that is randomly

generated and sent back to the Client after being

appended to the text file on-server, and the client stores

it. The Client must provide its session key whenever it

requests an image. If it does not, or the key does not

match any found in the on-server file, the request is

denied.

The Client, the last piece in the puzzle, uses HTTPS

to connect to the server. HTTPS uses TLS security

protocol using AES encryption. A security certificate

is downloaded from the Server and the program

validates that it is the correct certificate. The certificate

then tells the program to use the correct protocol and

encryption across the connection. In order to

accommodate the self-signed certificate, a custom

validation function was developed to allow the client

to accept the certificate as safe. The standard

WebClient library handles all the encryption and

handshaking required for a secure connection.

IX. CONCLUSION AND AFTERTHOUGHTS

Overall, the project was a success. All requirements

were met, and in fact, most were exceeded.

Photographs surpass the minimum resolution by a

significant margin, photographs are sent every minute,

and they are easily retrievable using a Windows client.

In fact, there are some features in the project that go

far above the requirements posed. On top of the

Windows client, an Android application was

developed to make the photographs accessible from

mobile. Both clients also have additional functionality

on top of their initial requirements. Both are capable

of not only retrieving and viewing images, but also

saving them to their device’s memory. The Android

application even has extra features like visible

thumbnails to make choosing an image even easier.

Complications arose throughout development, as

should be expected from a project of this size.

Originally, the Camera device was intended to have its

base on a Raspberry Pi Zero (an inexpensive, weaker

Pi) and USB web camera. However, after assembling

the device and running test code, the Zero failed to

process adequately; image capturing and processing

using a USB camera caused the device to frequently

crash, so a bump in power was necessary. We switched

to a Raspberry Pi 2, which is a common household

minicomputer, and ran a string of tests using both the

USB camera intended for use with the Zero and a Pi

Camera to determine if the camera was the issue.

While the USB camera did not crash the Pi 2, its output

was much lower resolution and occasionally produced

a solid black image. With further research, it was

discovered that many USB cameras are not fully

compatible with the Pi, because the Pi’s operating

system is, in essence, a lite version of Linux, and

therefore does not have full driver compatibility with

all USB devices. In the end, the best option was to use

the Pi Camera, which was specially designed to work

with the device.

In the early stages of project design, the intent was

to design the Server around RAID (redundant array of

independent disks). Originally, a string of nine USB

flash drives, each 16GB, were to function as the

storage bank for the Server. However, this software

RAID setup proved to be very unstable and commonly

corrupted flash drives and the data on them. We

decided to go with a much more reliable 1TB hard

drive that has been proven not to fail over long periods

of testing and time.

 With more time and capital, the team has a variety

of additional features they would like to add to the

project. The most significant one would be a motion

sensor that records a snapshot immediately upon

detecting movement. With that, plenty of expansions

would be possible—for instance, an alarm that triggers

on motion detection and sends the picture to the

device’s owner. Wireless compatibility using WiFi

would be another desirable feature, reducing the

number of wires connected to the Camera device. A

web application served from the Server to access the

images using any standard browser and the login

details created in setup would also be a useful addition.

Signed certificates would also increase security if this

device were to go to market, but those require a

domain name and organization, which we deemed

outside the scope of the current project.

Appendix A: Block Diagram and

Program Flowcharts

Block Diagram

Camera Device

Server: Overview

Server: Camera Thread

Server: Login

Server: Serving Images

Client Application: General Operations

Client Application: Retrieving Images and Refreshing

Appendix B: Code Repository

Camera Device: takePicture.sh

#!/bin/bash

#mount a folder into RAM to store the picture

mkdir -p /home/pi/SecureCameraServer/webcam

sudo mount -t tmpfs tmpfs /home/pi/SecureCameraServer/webcam

#take the picture

raspistill -n -md 5 -o /home/pi/SecureCameraServer/webcam/toSend.jpg

#call sript to send

/usr/bin/python /home/pi/SecureCameraServer/sendpicture.py

#remove the picture from RAM

sudo umount /home/pi/SecureCameraServer/webcam

rm -r /home/pi/SecureCameraServer/webcam

echo "script complete"

#sleep 10

#done

Camera Device: sendpicture.py

import socket, ssl, pprint, sys, picamera

from time import sleep

def get_bytes_from_file(filename):

 return (open(filename, "rb")).read()

if __name__ == '__main__':

 # camera=picamera.PiCamera()

 # camera.start_preview()

 # sleep(5)

 # camera.capture("/home/pi/SecureCameraServer/webcam/toSend.jpg")

 # camera.stop_preview()

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 ip = '139.78.71.59'

 port = 10023

 #req cert from server

 ssl_sock = ssl.wrap_socket(s,

ca_certs="/home/pi/SecureCameraServer/server.crt",

cert_reqs=ssl.CERT_REQUIRED)

 ssl_sock.connect((ip, port))

 print repr(ssl_sock.getpeername())

 print ssl_sock.cipher()

 print pprint.pformat(ssl_sock.getpeercert())

 #simple http request-- use httplib in actual

 #ssl_sock.write(get_bytes_from_file(str(sys.argv)))

ssl_sock.write(get_bytes_from_file("/home/pi/SecureCameraServer/webcam/toSend

.jpg"))

 #read a data chunk, not necessarily all returned by server

 #data = ssl_sock.read()

 #note that closing the SSLSocket will also close underlying socket

 ssl_sock.close()

 exit()

Server and Client Applications:

[For all Server and Client-related code, please see the open GitHub repository for this project at

https://github.com/SecureCameraCapture . For the sake of brevity, it has been excluded from this report.

https://github.com/SecureCameraCapture

Appendix C: Photographs and

Screenshots of Final Designs

Camera Device: Photographs

Camera Device: Case 3D Model

Camera Device: Case Drawing

Server: Photograph

Client Application: Windows Screenshots

[The Windows Client’s log-in and ‘create account’ screens.]

[A screenshot of the client, showing an image downloaded from the server. In this image, the camera was left

pointing upwards, so the ceiling is on display.]

[On initial setup, or when the user chooses to reconfigure the device, this screen is displayed to set the Server’s IP

address.]

[When the user clicks the download button at the bottom of an image, a standard Windows save box will appear to

save the image wherever the user pleases. By default, the image is named by its timestamp: hour_minute-

month_day_year.jpg.]

Client Application: Android Screenshots

[Screenshots on navigating the tree of images on the android app.]

[Screenshots showing the thumbnails displayed when an hour is selected, an image is clicked and loaded, and the

resulting full-size image.]

Appendix D: Background Information

Connection Diagrams

[A diagram outlining the back-and-forth communications between the Camera and Server.]

[A diagram of the interaction between the Server and Client application.]

[A diagram of the encryption that occurs on all of the devices in the system. From left to right: Camera device, Server,

Client application.]

[An example of what an image looks like pre- and post-encryption.]

Mathematics for AES time-to-break calculations

Example of RSA used in SSL, credit to alohalb [8]

REFERENCES

[1] “Raspberry Pi - Teach, Learn, and Make with Raspberry Pi,” Raspberry Pi Home Comments. [Online].

Available at: https://www.raspberrypi.org/. [Accessed: 09-Apr-2016].

[2] “DASHLANE EXPLAINS: Military Grade Encryption - Dashlane Blog,” Buffer Dashlane Blog, 2015.

[Online]. Available at: http://blog.dashlane.com/dashlane-explains-military-grade-encryption/. [Accessed:

09-Apr-2016].

[3] “Scheduling tasks with Cron,” - Raspberry Pi Documentation. [Online]. Available at:

https://www.raspberrypi.org/documentation/linux/usage/cron.md. [Accessed: 09-Apr-2016].

[4] D. K. Singh, “Multi-Threading & POSIX Thread APIs,” Multi-Threading & POSIX Thread APIs. [Online].

Available at: http://dipak123.info/htmlslideshow/multithread.html. [Accessed: 09-Apr-2016].

[5] “CNSS Policy No. 15, Fact Sheet No. 1 ,” Fact Sheet, Jun-2003. [Online]. Available at:

http://csrc.nist.gov/groups/st/toolkit/documents/aes/cnss15fs.pdf. [Accessed: 09-Apr-2016].

[6] “Time and energy required to brute-force a AES-256 encryption key. ,” reddit, 2014. [Online]. Available at:

https://www.reddit.com/r/theydidthemath/comments/1x50xl/time_and_energy_required_to_bruteforce_a_aes

256/. [Accessed: 09-Apr-2016].

[7] A. Toponce, “ECB vs CBC Encryption,” pthree, 17-Feb-2012. [Online]. Available at:

https://pthree.org/2012/02/17/ecb-vs-cbc-encryption/. [Accessed: 09-Apr-2016].

[8] “Image,” Aloha Load Balancer. [Online]. Available at:

https://alohalb.files.wordpress.com/2011/09/ssl_handcheck2.png?w=640&h=763. [Accessed: 09-Apr-2016].

