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The purpose of this document is to describe and justify the design of 

team Catch-a-Ride’s Mercury Robotics Competition robot. The 

primary goal of this project was to design a mobile robot that could 

complete the 2017 Mercury Remote Robotics competition track and 

all objectives with minimal fault. The robot was designed as a 

capstone project for ECEN 4024. This document details the design 

and implementation of the motion platform, manipulator arm and 

effector, electronics hardware and power distribution, and the control 

and sensor feedback hardware and software. This document 

describes the extent to which the design met the project 

specifications and offers a critique of any systems that failed to meet 

specifications or could be improved.  
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2017 MERCURY REMOTE ROBOTICS 

COMPETITION 

Team 4b – Final Report  

1 INTRODUCTION 
Written By: Joseph Austin 

The goal of this project was to design a mobile robot that was able to compete in the 

2017 Mercury Remote Robotics Challenge and complete every objective of the course 

with minimal fault. The robot was designed as a capstone design project for ECEN 

4024. The robot needed to be able to navigate a dark tunnel, secure a lag bolt, 

navigate a slalom and 30 degree inclined ramp, deposit the lag bolt, and complete a 

timed sprint, all with minimal obstacle collision. The ability of the robot to complete 

these objectives without obstacle collision determines the team’s score in the 

competition.  

Moreover, as a capstone design project, the design was expected to be unique and go 

beyond minimal functionality to compete. The robot was expected to demonstrate 

careful consideration of design constraints and construction techniques appropriate 

for a team of graduating students in electrical engineering. The system needed to 

fully integrate a motion platform, any sensing and imaging, and control hardware as 

opposed to loosely-connected subsystems. Lastly, the operation of the robot needed to 

be performed through an integrated user interface with careful attention to usability 

and human factors. 

The robot’s design is broken down into four primary subsystems: 

● Motion platform and control hardware 

● The manipulator and end effector 

● Power distribution and regulation 

● Communications and control software 

 

This document first describes the background information and rules of the 

competition. This document then details and justifies the mechanical design, 

electronics hardware, power distribution systems, and control and communications 

software implemented in the design of the robot. 

  



 5/5/2017 

 2  

1.1 COMPETITION BACKGROUND 
Written By: Kamran Coulter 

The Mercury Remote Robotics Challenge is an international robotics competition 

hosted at Oklahoma State University. This year’s competition was the 8th annual 

competition, and teams assembled from the United States, Colombia, Brazil, and 

Mexico. The competition was founded by faculty and students from Oklahoma State 

University with the hope that students could learn complex robotic systems by 

designing mobile robots capable of completing a wide range of objectives. The 

operating distance and internet connectivity requirements of the challenge impose 

many engineering challenges on the design of a competition robot. Minimizing 

communication and control latency and implementing responsive mechanical 

systems are of utmost importance during the design phase as teams attempt to build 

a motion platform that can be controlled from a minimum distance of 50 miles via 

the Internet. The competition attempts to simulate some of the challenges engineers 

face when designing systems to explore other planets. [1] 

2 COMPETITION DETAILS – 2017 
Written By: Kamran Coulter 

The Mercury Remote Robotics Challenge course changes each year, but each year 

robots must be able to navigate a course and manipulate a payload in some fashion. 

The following sections give background information on the 2017 competition 

regarding the course, its objectives, and its scoring system. 

2.1 COMPETITION TRACK 
Written By: Kamran Coulter 

The 2017 competition track is shown in Figure 1. The track features six distinct 

challenges: the tunnel, payload securing, slalom, see-saw, payload depositing, and a 

timed sprint. The score for each robot is calculated from how well the robot is able to 

complete each challenge, which is described in the Competition Rules section to 

follow. The track is constructed using three-inch-tall pieces of flexible foam board 

taped 24 inches apart to a carpeted surface in the Noble Research Center (NRC) at 

Oklahoma State University. The robots in this year’s competition start in front of 

the tunnel, which is 18 inches wide by 12 inches tall. The tunnel imposes the 

challenge of fitting the robot in a narrow enclosure and navigating it in a dark 

environment. After the tunnel, a team’s robot must make a sharp right turn into the 

payload pick-up zone, where a 3 inch lag bolt is placed in whichever orientation the 

team desires. Once the bolt is secure, the robot needs to follow a smooth curved 

section to the slalom consisting of two pylons separated by 18 inches. The robot must 

navigate the slalom by following directional arrows taped to the ground.  
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Following the slalom, a smooth curve brings the robot to the seesaw. The operator 

has the choice to either to go over the 30 degree inclined seesaw or bypass it entirely. 

The steeply inclined seesaw is constructed from smooth plywood, making it 

challenging to both ascend and descend without dropping the payload. The robot 

then needs to deposit the bolt in the payload drop-off zone: an 8-inch long face that 

sits 6.2 inches off of the ground at a 45 degree angle. The face had three holes of 

increasing diameter from 0.5 to 2 inches. Lastly, the robot completes the course by 

driving a laser-timed sprint section to the finish. [1] 

 

Figure 1: 2017 Mercury Competition Track 

2.2 COMPETITION NETWORK  
Written By: Joseph Austin 

The competition rules specify that the operator must drive the robot over the 

internet from a location of at least 50 miles away. Each team is allowed a maximum 

of three communication ports, each of which is forwarded on the competition router. 

Each team is also allowed one IP camera. On the day of the competition, the team 

connects their robot to competition router, and the operator connects to the static IP 

of the competition router over the internet. 

To qualify for first place, the robot must pass a loss-of-signal test. The robot must 

demonstrate that when connection is lost with the client, the robot halts operation 

and waits for the client to reconnect. The robot must have some type of external 

feedback to indicate that the connection is lost (an LED, a buzzer, etc.), and the 

robot must be able to reconnect and resume operation without any intervention by 

the robot handler. The test is performed as follows: 

1. The operator is asked to connect to the robot and begin driving it. 

2. The competition router is unplugged and powered down. At this point, the 

robot has three minutes to stop and indicate that connection is lost. 



 5/5/2017 

 4  

The competition router is plugged back in and powered on. The operator has 5 

minutes to demonstrate that they can reconnect to the robot and resume operation. 

[1] 

2.3 COMPETITION RULES AND SCORING 
Written By: Kamran Coulter 

The competition manual does not detail many design parameters, and the rules of 

the competition are primarily related to safety during handling and operation of the 

team’s robot. In general, a team’s robot must be able to maximize score while not 

posing a threat to persons or property at the competition location. The only rules 

specified in the competition documents are as follows:  

1. The robot must fit into an 18x18x12 inch cube at the beginning of the run but 

can expand beyond those dimensions once the run has begun.  

2. All Lithium batteries must include proper charging systems as well as low 

voltage cut-off circuits.  

3. All robots must be operated from a minimum distance of 50 miles away from 

the competition location.  

4. Components that could cause damage to persons or property are not 

permitted. 

 

As stated previously, the goal of the competition is ultimately to maximize the 

team's score in order to win the competition. The theoretical maximum score in the 

competition is 261.25, which corresponds to a perfect run with a zero second sprint. 

The following section describes the scoring procedures of the competition by stating 

the scoring algorithm and describing all possible score penalties.  

𝑺𝒄𝒐𝒓𝒆 =  (𝑻 + 𝑷 + 𝑺 − 𝟏𝟓 ∗ 𝑺𝑷 + 𝑺𝑺 + 𝑫 − 𝑫𝑷) ∗ 𝑴 − 𝟓 ∗ 𝑾𝑪 − 𝟏𝟎 ∗ 𝑹𝑷 (1) 

 
Table 1: Scoring Equation Variable Description [1] 

Description Variable Scoring 

Tunnel T Clean Run = 30; One Wall Touch = 15; Otherwise = 0 

Pickup Bolt P Securing = 30; Otherwise = 0 

Slalom S No Pylon Contacts = 50 

Slalom Penalty SP SP = Pylon Contacts * -15  

See Saw SS Crosses With Bolt = 40; Crosses Without Bolt = 20 

Deposit D ½” Hole = 40; 1” Hole = 30; 2” Hole = 20; Missed = 0 

Deposit Penalty DP Contact With Drop Off Zone = -5 

Sprint Multiplier M M = 1.375 - 0.0075*Sprint Time 

Wall Contact WC WC = Wall Contacts * -5 

Reset Penalty RP RP = # of Resets * -10 
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2.4 COMPETITION RESULTS 
Written By: Kamran Coulter 

The competition was held on Saturday April 22, 2017 in the NRC of Oklahoma State 

University. The team’s robot was present at the competition, completed the loss-of-

signal test, and completed the course with a score of 180 points to finish third overall 

of twenty competing robots. The score is reflective of a near perfect run with only 

two deductions: 5 points for 1 wall contact and 40 points for bypassing the seesaw.  

During testing, it was determined that the seesaw could potentially cause damage to 

the robot due to traction issues while climbing the incline, so the team decided to 

incur the point deduction instead of risking a no-score.  

In addition, the robot was able to complete the sprint section with a competitive time 

of 18 seconds. The two robots that outscored the team’s robot were both from 

Columbia, each able to go over the seesaw. In addition to placing third in the 

competition, the team also received the best video award for the robot demonstration 

video. The team’s robot and awards are shown in Figure 2. 

 

Figure 2: Competition Robot and Awards  
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3 MECHANICAL DESIGN 

3.1 MECHANICAL SYSTEMS OVERVIEW 

Written By: Jonathan Ballew 

The robot’s mechanical design is divided into two primary systems: the motion 

platform and the manipulator arm. The motion platform serves as the mounting 

point for the main drive motors, collision detection sensors, battery, and the primary 

control and communication electronics. The motion platform is designed for high 

stability and maneuverability at moderate speeds. It has a low ground clearance for 

maintaining a low center-of-gravity, and it incorporates wire management for easy 

motor access and access to the Raspberry Pi’s USB and Ethernet ports. The wheels 

are a high friction rubber for high traction when traversing the seesaw obstacle.  

The manipulator arm is responsible for collecting and depositing the bolt. It also 

serves as the mounting point for the drive camera. The manipulator is designed for 

minimum weight and maximum versatility. The end effector is a screw-driven 

retractable high-strength magnet and bolt guide. The camera is positioned above the 

end effector to provide the best view possible for bolt manipulation. The manipulator 

is powered by 5 servos for 5 degrees of freedom: 4 rotational degrees (3 in the arm 

elbows and 1 for rotation of the entire arm left and right) and 1 translational degree 

(for the retraction of the magnet). 

3.2 MOTION PLATFORM 
Written By: Jonathan Ballew 

 

Figure 3: Motion Platform Base Rendering 

All motion platform components (excluding fastening and standoff hardware) are 

custom modeled by Jonathan Ballew. The models are 3D printed in ABS plastic by 
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Kamran Coulter on his personal printer. The design achieves high stability by the 

reducing the height of the center of mass by placing the heaviest components -- the 

high-capacity lithium-polymer battery and the arm assembly -- at the bottom of the 

robot. The base is also designed with low a ground clearance to further lower the 

center-of-gravity. The arm platform attaches to 8 50mm standoffs mounted at the 

corners of the bot. These provide only enough clearance to connect all wires to the 

Raspberry Pi HAT, further lowering center of mass. The final base dimensions are: 

9.75"w x 10.75"l x 3.25"h. 

High top speed and torque are accomplished with 4 Actobotics 970 RPM Econ Gear 

motors. The four motors are fixed to the base and do not support any form of 

suspension. Each pair of motors is wired in parallel on separate left and right 

channels. This provides a slip-steering/tank-drive control system with steering 

accomplished by running each side at different speeds and/or directions. Each of the 

four corners of the robot house ultrasonic sensors mounted at 45 degrees outward 

from the robot. These sensors provide real-time distance and obstacle detection to 

the robot operator. Through testing, the ultrasonic sensors proved to be accurate 

only in a small cone centered on perpendicular surfaces. The 45 degree angle 

prioritizes accurate readings in the situations where the robot is turning towards an 

obstacle as opposed to driving alongside it. 

The Raspberry Pi 3, Cytron motor control board, custom Raspberry Pi HAT, 

ultrasonic sensors, and battery are arranged to minimize unused space. The Pi is 

oriented to expose the onboard USB and Ethernet ports for any necessary debugging 

or future expansion of functionality. The motor wires run in troughs perpendicular 

to the back of the motor to reduce the strain on the solder joints and reduce the 

chance of breakage. Connecting wires run through holes to the bottom of the robot 

where they are bound together and brought through to the wire block. This 

simplifies connection to the motor board and provides simple disconnection and 

debugging access. 

The team’s robot attained 3rd place in the competition, but the robot could not 

successfully complete the seesaw obstacle. Due to the lack of wheel suspension, the 

design did not allow for maintaining uniform surface traction given variations in 

ground surface height. When attempting to climb the seesaw, the lack of uniform 

traction caused the wheels to be unevenly loaded, and the robot would spin out 

towards the seesaw edge or slide back down to the bottom without ever achieving 

enough traction to climb the incline. Prototype base designs did not exhibit this 

behavior, but only when the manipulator arm was not attached. It was determined 

that the added weight of the arm amplified the uneven loading and traction to 

critical amounts.  

The incorporation of wheel suspension in the design could promote more even 

distribution of weight across all wheels on uneven terrain. This would ensure that 
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no wheel is unevenly loaded, preventing the robot from torqueing to the left or right 

when ascending the incline. This modification would likely require a complete 

redesign of the motion platform, but no changes would need to be made to the 

electrical and control systems. 

Future designs could also include some form automatic traction control by using 

motors with built-in encoders. When a wheel slips, it spins faster than the other 

wheels on the robot. The feedback provided by wheel encoders could be used to 

determine when a wheel slips by periodically comparing the speeds of each motor to 

each other. Increasing or decreasing the power provided to each motor could 

compensate for the difference and more evenly distribute the load. However, 

employing this method would require that all motors be on four separate control 

channels instead of the two currently employed.  

The location and positioning of the Raspberry Pi also proved to be non-ideal. This 

design does not allow for access to the HDMI, audio, and USB power jacks that were 

used constantly for debugging and development. To make used of these ports, the 

bot had to be partially disassembled. The power switches and debug LEDs on the 

custom Raspberry Pi HAT are also not conveniently accessed, though they can still 

be accessed when the bot is fully assembled. The LED headlights also proved to be 

barely powerful enough to illuminate the tunnel. Possible improvements include 

more LEDs and/or fixing LEDs to the arm near the camera. Lastly, the battery could 

not be removed from the bot without first removing a wheel. Removing any of the 

wheels requires a specific tool, making it inconvenient to remove and charge the 

battery. 

3.3 MANIPULATOR ARM 
Written By: Jonathan Ballew 

All manipulator components (excluding fastening and electrical hardware) are 

custom designed and modeled by Jonathan Ballew. The models are 3D printed by 

Kamran Coulter in ABS plastic on his personal printer. The design focuses on low 

weight and high versatility. It minimizes weight using minimally sized structures 

and lower torque servos. To accommodate the lower power servos, all servo motors 

are mounted at the base with small linkage arms connecting them to joint they 

control. Placing the servos at the base as opposed to at the joints they control 

minimizes the load on each servo. All critical joints also use bearings to reduce 

friction and servo loading. The bottom platform has cutouts to reduce weight and 

allow access to the power switches on the Raspberry Pi HAT, and the base of the 

arm connects to the standoffs located on the motion platform. 
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The arm is powered by 5 servos total. 3 

Hitec HS-311 digital positional servos 

power the three main arm elbow joints, 

each providing 51 oz-in of torque. The 

base rotation is powered by a Parallax 

Continuous Rotation Digital Servo, which 

provides 38 oz-in of torque. The end 

effector screw mechanism is powered by a 

9g lightweight servo. The custom 

Raspberry Pi HAT drives all servos at the 

same PWM frequency and standard pulse 

timing (0.75ms - 2.25ms pulse width). 

Versatility is an important aspect of the 

arm's design. The arm is able to place the 

bolt in a variety of positions beyond the 

three outlined in the competition 

specifications, and can maneuver to many 

different angles to provide different 

viewpoints for the operator. The arm is divided into three individually controlled 

segments and a rotating base. The end effector includes the bolt collection assembly 

and the camera. The camera is mounted directly along the bolt to maximize the 

operator's ability to accurately position it while depositing the bolt in the drop off 

zone. Bolt collection is performed using a high-strength permanent magnet, able to 

extend and retract via a screw mechanism. The mechanical advantage of the screw 

allows the servo powering the bolt collection to be much smaller and lighter than 

other designs that translate a permanent magnet away from the effector to release 

the bolt. The high strength permanent magnets guarantee the bolt remains secure 

during operation regardless of the robot’s speed or orientation. 

The largest possible improvement for the arm would be incorporating higher power 

servos. Stronger servos would allow stronger construction and more accurate 

positioning. Stronger servos would also reduce the effect of servo vibration on the 

camera view, making driving easier for the operator. Incorporating higher-torque 

servos would also allow a redesign of the manipulator to have a greater range of 

motion.  

Another significant improvement to the manipulator would be the addition of a 

second camera to take the place of the current camera during driving. By adding a 

second camera on the base, the driver would have a more stable viewpoint with a 

full view of the wheelbase to prevent accidental collision.   

Figure 4: Manipulator Arm Rendering 
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3.4 PAINT 
Written By: Kyle Edwards 

To personalize the robot, the team painted all of the 3D printed components on the 

robot. Inspired by the Borderlands video game series, the team painted the robot to 

give it a damaged, rusted appearance. The paintwork was done with a red oxide 

primer and an orange acrylic on top of a grey primer. The bottom and top platforms 

were painted with the grey primer tinted to a darker tone, and the manipulator was 

painted with the original lighter grey in a spray booth. Following the application of 

primer, each part was lightly sprayed with the orange acrylic and splattered with 

the red oxide at certain points to give the robot dark, worn, and rusted 

characteristics. 

4 HARDWARE DESIGN 
Written By: Kamran Coulter 

The following section outlines all of the electrical hardware design related to the 

team’s robot. An overview will be presented alongside a system block diagram. The 

remained of the sections will describe in detail each subsystem and its overall 

function in the final robotic system. 

4.1 ELECTRICAL SYSTEM OVERVIEW 
Written By: Jonathan Ballew 

A high-level block diagram of the robot’s hardware and software systems is shown 

below in Figure 5. 

 

Figure 5: Functional Hardware and Software Block Diagram 
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The Raspberry Pi is supplemented with custom designed hardware attached on top 

(HAT) that connects and simplifies various electronics hardware and 

interconnections on the robot. In addition, the HAT serves as a power supply for all 

other subsystems in the design (excluding the motors, which draw power directly 

from the battery). All systems source power from a single 11.1V nominal lithium 

polymer battery, regulated to lower voltages for each separate subsystem via 

switching regulators. The robot has four brushed DC motors controlled by a 2-

channel commercial motor control board with a 10A per channel maximum output 

current. The manipulator arm has five servos which are connected directly to the 

HAT. Finally, the HAT interfaces the four ultrasonic sensors that are used for 

collision detection with the Raspberry Pi controller. 

4.2 MAIN COMPUTER 

Written By: Jonathan Ballew 

The Raspberry Pi 3 Model B serves as the only controller for the robot. The 

Raspberry Pi 3 is an inexpensive and high performance computer capable of 

handling all control and communications systems necessary for operating the robot. 

The Raspberry Pi 3 is loaded with the NOOBS installation of Raspbian Jessie, an 

arm derivative of Debian Linux. This allows for simple user access to all the 

hardware available on the Pi. In particular, NOOBS provides access to the high 

performance processor, wifi module, CSI camera port, and GPIO without the need to 

install for extra drivers or hardware. Additionally, the full Linux operating system 

gives access to hundreds of open-source software libraries and languages, expediting 

development tremendously.  

The only potential improvement available to the main controller system would be 

swapping out the Raspberry Pi 3 controller for a Raspberry Pi Zero, released shortly 

after the team began work on the project. While the Raspberry Pi Zero is 

significantly smaller than the Raspberry Pi 3 and can be purchased for as low as $5, 

using a Raspberry Pi Zero compared to a Raspberry Pi 3 reduces the computation 

resources available for possible future design improvements. 

Raspberry Pi 3 Model B Specifications [2] 

● 1.2 Ghz 64-bit quad-core ARMv8 

CPU 

● 802.11n Wireless LAN 

● Bluetooth 4.1 with BLE 

● 1 GB RAM 

● 4 USB 2.0 Ports 

● Ethernet Port 

 

● Audio/Composite Video Jack 

● 40 GPIO Pins 

● HDMI 

● CSI (Camera Serial Interface) 

● DSI (Display Serial Interface) 

● MicroSD Card Slot 

● Power Requirements: 5V @ up to 

2.5A, 200mA typ. 
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4.3 CUSTOM DESIGNED RASPBERRY PI HAT 
Written By: Kamran Coulter  

The following section describes in detail the design of the previously mentioned 

custom designed Raspberry PI HAT. The HAT was designed in accordance with the 

published Raspberry PI HAT standards. [3] For the board to be called a HAT, it 

must have an identification EEPROM for automatic hardware identification by the 

Raspberry Pi. However, the team decided not to develop the EEPROM functionality 

because this board will not be sold as a commercial product and is therefore 

unnecessary. The board contains the proper surface mount footprints for 

implementing EEPROM for device identification, so the board will still be referred to 

as a HAT for simplicity. 

4.3.1 OVERVIEW 

Written By: Kamran Coulter 

The main controller for the robot is the Raspberry Pi 3 controller. Although the 

Raspberry Pi is simple to use for a wide range of communication systems, it is not 

well suited for the PWM signaling applications required in mobile robotics due to the 

threading implications of the computer's full Linux operating system. The team 

decided to design a custom Raspberry Pi HAT to solve the PWM signaling issues. In 

addition to PWM signaling hardware, the HAT hosts various connectors, sensor 

level shifting circuitry, two switching power supplies, and power protection circuitry.   

Figure 6 shows a high-level signal diagram for the HAT.   

 

Figure 6: Raspberry Pi HAT Signal Diagram 
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4.3.2 PWM GENERATION HARDWARE 

Written By: Kamran Coulter, Jonathan Ballew 

The hat uses the PCA9685, a 16-channel 12-bit PWM LED driver IC,  to implement 

PWM signaling. The IC is optimized for RGBA backlighting applications, but the 12-

bit resolution and programmable frequency ranging from 24 Hz to 1526 Hz makes 

the IC ideal for the PWM applications of the team’s robot. The Raspberry Pi 

communicates with the IC via an I2C interface across the Raspberry Pi’s GPIO pins. 

The I2C interface first sets the operating frequency of 100 Hz across all channels on 

the device. The IC shares the overall PWM frequency across all channels, and it 

cannot be changed on a per-channel basis. Individual channels can then be set to a 

particular duty cycle by writing I2C values to the device in software. The 

corresponding PWM frequency and the 12 bit resolution allow the IC to function for 

both servo and motor PWM signaling. The final design utilizes eight channels of the 

device, where two channels are used for motor speed control, and 6 channels are 

used for servo angle/speed control.  [4]  

4.3.3 LEVEL SHIFTING SENSOR HARDWARE 

Written By: Kamran Coulter  

The hat also host a TXB0108, an 8-bit bidirectional voltage level translator, in order 

to facilitate communication between the Raspberry Pi and ultrasonic sensors.  The 

IC does automatic direction sensing and is configurable for different voltage levels.  

The device translates between the 5V rail towards the sensors and the 3.3V rail 

towards the Raspberry Pi. In addition, the device must be enabled via a GPIO signal 

connected to its output-enable pin, as it maintains a high impedance state at 

startup.  [5] 

4.3.4 POWER DISTRIBUTION ON THE HAT 

Written By: Kamran Coulter 

Additionally, the HAT hosts two 

switching power supplies 

designed around the TPS5454 

IC from Texas Instruments. A 

simplified application schematic 

is shown in Figure 7. A detailed 

schematic with selected 

component values can be found 

in the appendix. Each regulator 

has an adjustable output voltage 

and can supply 5A of current, 

which is far greater than the 

robot’s maximum power 
Figure 7: Simplified Application Schematic TPS5454  
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requirements. One regulator is configured to output 6V to the servos, and the other 

is configured to supply 5V to the other hardware including the Raspberry Pi. The 

HAT also implements a low voltage cutoff circuit via the EN pin of the device, which 

powers down the entire system if the battery voltage falls below 3.3V per cell. The 

supporting hardware surrounding the regulators was selected with assistance from 

Texas Instruments WEBENCH ™ Designer software. The software outputs were 

then verified against the provided equations in the data sheet.  [6] 

4.3.5 PCB LAYOUT 

Written By: Kamran Coulter 

The team designed the PCB with 4 layers total using NI Ultiboard/Multisim, and it 

was constructed by a commercial manufacturer. The team initially attempted to 

design the PCB using only two layers due to budget constraints, but it was clear that 

routing of power and ground signals would be impossible after all other signals had 

been routed.  The physical dimensions of the board are 65 x 56 mm, defined by the 

Raspberry Pi Hat Standards. [3] As such, the team was unable to expand the board’s 

physical footprint to make a two layer design possible. The final layout uses four 

layers, with internal layers containing unbroken power and ground planes. Images 

of the signal layer layouts are included below in Figure 8 and Figure 9.  

 

TOP BOTTOM 

 
Figure 8: Top Layer HAT Routing 

 
Figure 9: Bottom Layer HAT Routing 
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4.4 POWER SYSTEMS 
Written By: Kyle Edwards 

The power source for the entire design is a single Venom 11.1V lithium-polymer 

battery with a 4000 milliamp-hour capacity. The battery is divided between three 

main subsystems: the motor driver and two switching regulators. The motor driver 

provides the voltage potential to the left pair and right pair of motors, each pair in 

parallel. The two switching regulators output two different voltages: one at 6 volts 

and the other at 5 volts. The 6-volt regulator supplies power to the servos in the 

manipulator and end effector, while the 5-volt regulator supplies power to the 

Raspberry Pi and ultrasonic sensors. Power is routed through two forms of voltage 

protection before reaching the two regulators.  

4.4.1 REVERSE VOLTAGE PROTECTION 

Written By: Kyle Edwards 

The first means of voltage protection is a PMOS transistor to prevent against 

reverse voltage between the battery and the load. The reverse voltage protection 

uses a P-channel transistor acting as a diode in series with the battery and the load. 

When the battery is connected properly, the gate voltage is taken low and the 

channel of the transistor shorts to allow current through. The selected PMOS 

transistor has a drain to source voltage of -35V and a gate source voltage +25,-25, 

which is above the required 11.1 volts. It also only has a static drain-to-source on-

resistance of around 9.6 to 11.6 milliohms, resulting in only a slight drop in voltage. 

Using a PMOS transistor is one of a few common methods to create a reverse voltage 

protection circuit, with the others using a similar circuit with diodes and PNP 

transistors. While other methods to protect against reverse voltage exist, using a 

single PMOS transistor had the least significant voltage drop among the options 

explored. 

4.4.2 LOW VOLTAGE CUT-OFF 

Written By: Kyle Edwards 

The second means of voltage protection is a low-voltage cutoff circuit that 

disconnects the battery from the power supply and switches on an LED once the 

battery falls below 9.9 volts.  

The low voltage cut-off uses an adjustable under voltage lockout with TPS54540 

switching regulators. The regulator the chip turns on when the input voltage rises 

above 4.3 volts, and turns off when the input falls below 4 volts. For dealing with 

higher cut-off, the technical document for the regulator gives the method for finding 

the two external resistor values R1 and R2. The solved resistor values were 147 kilo 

ohms for R1 and 19.1 kilo ohms for R2 with the equation below: 
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Figure 10: Voltage Cutoff Equations [6] 

 
Figure 11: Voltage Cutoff Functional Circuit [6] 

𝑉𝑆𝑡𝑎𝑟𝑡 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒  

𝑉𝑆𝑡𝑜𝑝  =  𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑐𝑢𝑡 − 𝑜𝑓𝑓  

𝑉𝐸𝑁𝐴 =  𝐸𝑁 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

𝐼𝐻𝑦𝑠 = ℎ𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 3.4 𝜇𝐴  

𝐼1 =  𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑝𝑢𝑙𝑙 − 𝑢𝑝 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 1.2 𝜇𝐴 

4.4.3 SWITCHING VS LINEAR 

Written By: Kyle Edwards 

When choosing the regulators to use for the build we went with two switching 

regulators instead of linear. Linear chips are usually cheap and easy to use although 

are inefficient when dealing with high-powered devices. They take the difference 

between the input and output, and burn up the difference as wasted heat. Therefore, 

with the large difference, we have with the 11.1V input and 5V output on one of 

them with a load current of 1.26 amps for the pi and sensors would be wasting about 

7.6 watts of power as shown in the equation below: 

𝑃𝑜𝑤𝑒𝑟 𝑤𝑎𝑠𝑡𝑒𝑑 =  (𝑖𝑛𝑝𝑢𝑡 −  𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒) ∗ 𝑙𝑜𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

(11.1 −  5) ∗ 1.26 =  7.6 𝑤𝑎𝑡𝑡𝑠 

The switching regulators only take small amounts of energy from input and 

transferring them to the output by a switch and controller used to regulate the 

amount of energy transferred. So the amount of energy lost from this is smaller 

compared to linear that relies on the amount of the input voltage. They can be a 

more complex circuit to design but the payoff of the efficiency gain from the lower 

power losses is ideal with our system. [7] 
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4.5 MOTOR AND WHEEL SELECTION 
Written By: Kamran Coulter 

The motors and wheels for the robot needed to be selected and sized appropriately to 

ensure the robot would be able to complete all course obstacles. The two major 

obstacles related to the motor and wheel subsystem were the seesaw and the sprint 

sections. The robot needed to be able to produce the required torque to maintain a 

constant velocity up a 30-degree incline while also allowing for a competitive sprint 

time. In addition, the motor eventually selected needed to be a DC motor due to the 

robot being battery powered. Brushed DC gear motors were selected for their cost, 

simply control structure, and relative availability at the hobbyist level.  

4.5.1 ROBOT SPRINT SPEED CALCULATIONS 

Written By: Kamran Coulter 

It was determined through evaluation of the scoring algorithm and feedback from 

the team’s project mentor that the motor revolutions per minute (RPM) and 

corresponding wheel size would provide an unloaded ground speed of 10 ft/second if 

the robot were to be competitive in the sprint section. The underlying equation for 

robot speed, assuming zero slippage, is as follows:  

𝑺 =  𝟐𝝅 ∗ 𝑹 ∗ 𝑹𝑷𝑴 ∗
𝟏

𝟏𝟐 ∗ 𝟔𝟎
 (2) 

S, Speed (ft/sec) 

R, Wheel Radius (in) 

RPM, Motor RPM (rev/min)  

Starting with a wheel with a radius of 1 7/16”, it was found that a motor rated at 

approximately 800 RPM would provide the desired speed.  

4.5.2  REQUIRED TORQUE CALCULATIONS 

Written By: Kamran Coulter 

The required torque to adequately carry the robot over the seesaw required more 

assumptions. A table of those assumptions is provided below in table 2. The torque 

analysis used a standard power balance approach that assumed perfect physics in 

terms of friction. A 65% gear efficiency was assumed to overcome any deficiencies in 

friction or gear imperfections.  
Table 2: Torque Calculation Assumptions 

Assumption Value Assumed 

Total Mass 7.5 (lbs.) 

Number of Drive Motors 4 

Acceleration 1 (ft/s2) 

Gear Efficiency  65 (%) 

Wheel Radius 1 7/16 (in) 

Incline 30 degrees 
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Figure 12: Wheel Cross Section [8] 

 

 

 

m: {mass} 

a: {acceleration} 

T: {torque} 

g: {gravitational constant} 

R: {radius} 

 

Figure 12 shows a two-dimensional cross section of a wheel accelerating up an 

incline. The required torque can be calculated by performing a standard force 

balance in the x direction as follows:  

𝜮𝑭 =  𝒎𝒂 =  𝒇 −  𝒎𝒈𝒙 (3) 
𝑴𝒂 =  𝑻/𝑹 −  𝒎𝒈 ∗ 𝒔𝒊𝒏(𝜽) (4) 
𝑻 =  𝑹𝒎(𝒂 + 𝒈 ∗ 𝒔𝒊𝒏(𝜽)) (5) 

Equation 5 will give the required torque of the entire robot at 100% efficiency. To 

calculate the required torque per motor at 65% efficiency, a correction factor must be 

applied as follows:  

𝑻𝒎 =  𝑻 ∗
𝟎. 𝟔𝟓

𝟒
 

(6) 

By using the above assumptions and equation 6 it can be found that at a 65% gear 

efficiency each motor needs to be able to produce approximately 35 ozf-in of torque in 

order to accelerate up a 30 degree incline.  

4.5.3 MOTOR AND WHEEL ISSUES 

Written By: Kamran Coulter 

The actual motor selected for the design was the Actobotics 970 RPM Econ Gear 

motor, which has a rated torque of approximately 53 ozf-in and a stall current of 

3.8A. This motor exceeded both the torque and speed specifications set above, and 

was selected due to its low cost and availability. It was assumed that since the motor 

specifications greatly exceeded the required torque, the robot would have no issues 

completing the seesaw. Unfortunately, the notion that the potential torque of the 

motors is directly related to the friction between the wheels and the seesaw surface 

was overlooked. It was found in testing that the wheel material did not provide 

sufficient traction while on the smooth surface of the seesaw. Random slips in the 

wheels would cause the robot to spin and become uncontrollable on the smooth 
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surface. Future improvements in the design would incorporate different wheel 

materials to facilitate better traction on smooth surfaces. 

4.6 MOTOR CONTROL HARDWARE 
Written By: Kamran Coulter 

The motors are controlled with a 

MDD10A solid-state motor driver 

from Cytron Technologies pictured 

in Figure 13. The board hosts a 

standard solid-state H-Bridge 

circuit for switching the motors 

direction and speed. The interface 

between the motors and the main 

controller consists of two motor 

direction GPIO signals and two 

PWM speed control signals. A 

commercial motor control board 

was selected primarily due to 

budgetary and time constraints. 

Designing and manufacturing two 

separate printed circuit boards (PCB) could not be accomplished within the team’s 

budget and project timeline. The motor control board hosts the following features:  

● Bi-directional control for 2 brushed DC motors 

● Supports motor voltages from 5-25V 

● 10A max current per channel 

● NMOS H-Bridge for improved efficiency 

● PWM frequency up to 20 KHz 

● Locked-antiphase and sign-magnitude PWM operations supported 

 

4.7 ULTRASONIC SENSOR SYSTEM 

Written By: Jonathan Ballew 

The robot’s collision detection system is comprised of four ultrasonic sonar sensors, 

one at each corner of the robot. These sensors operate at 5V supplied from the same 

voltage regulator on the Raspberry Pi HAT that supplies power to the Raspberry Pi. 

A request for a distance read begins by sending a 10 us 5V pulse to the sensor’s 

“TRIG” pin, triggering the transmitter to send a 40 kHz audio signal. At this time, 

the “ECHO” pin raises to 5V and remains high until the receiver detects the 

reflected audio signal. The Raspberry Pi measures the length of time that the ECHO 

pin is high and returns that raw value in microseconds. This value can be converted 

into measurement distance. Each sensor is read serially with a sensor being 

triggered only after a value has been read by the previous or after the previous 

Figure 13: Cytron MDD10A DC Motor Controller 
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sensor times out. If the sensor does not detect a reflected signal after 30 ms, the 

ECHO pin resets to 0V and another read can be attempted. The sensors are rated 

with an accuracy of 0.3 cm and an average current draw of 15 mA. 

The Raspberry Pi’s GPIO operates at 3.3 V, making the GPIO pins of the Raspberry 

Pi not directly compatible with the 5V logic of the ultrasonic sensors. Connecting the 

sensors to the Raspberry Pi required a logic level shifter with eight channels, two for 

each sensor. The logic level shifter requires a negligible 10ns to switch between 3.3V 

and 5V, having no noticeable impact on the sensor accuracy.  [5] 

4.8 VIDEO FEEDBACK SYSTEM 

Written By: Jonathan Ballew 

The team implemented a camera feedback system using the camera module v2 for 

Raspberry Pi. This was chosen primarily for its native compatibility with the 

Raspberry Pi and high resolution and framerate capabilities for its price. Its low 

weight also allows for mounting on the end of the manipulator without much impact 

on the reliability of the manipulator. The camera module connects to the Raspberry 

Pi's dedicated camera-serial-interface (CSI) port with an 18" ribbon cable. The CSI 

port handles all power and signals for the camera module. Camera image quality 

was not considered to be of high importance as the operator only needed to be able to 

traverse a well-defined track. 

Camera Module V2 Specifications: [9] 

●     8MP Sony IMX219 Image Sensor 

●     Common Supported Resolutions: 1080p30, 720p60, 480p90 

●     Raspberry Pi CSI Port compatibility 

●     Weight: 3.4 g 

●     Dimensions: 25mm x 23mm x 9mm 
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5 SOFTWARE DESIGN 

5.1 SOFTWARE SYSTEMS OVERVIEW 

Written By: Joseph Austin 

In order to interface between the operator’s control input, the Raspberry Pi 

controller, and the robot’s hardware, the design needed a software system on both 

the operator’s machine and the Raspberry Pi. The operator’s machine needed to 

process input from a control peripheral and pass control data to the Raspberry Pi 

over a socket. Moreover, the operator’s machine needed to receive feedback from the 

robot during operation and display crucial information to the operator. The robot 

needed software to receive control data over a socket, interpret the data, and exert 

control over the robot’s servos, motors, and LED’s. The robot also needed to be able 

to read sonar data and convert it into positional information. To meet these needs, 

software design was broken down into the following key subsystems: 

● The operator’s control and feedback interface 

● Software to decode received control data 

● Motor speed and direction control software 

● Servo position/speed control software 

● Software to read and convert positional data from four sonar sensors 

● Software to stream video data to the operator’s machine 

 

The following sections detail and justify the design and implementation of each of 

these subsystems. 

5.2 OPERATOR INTERFACE  
Written By: Joseph Austin 

The control scheme was designed around operating the robot using a Microsoft Xbox 

360 controller as the control peripheral. The Xbox 360 controller provides a familiar 

and approachable control layout, and it is easy to incorporate into control software 

on the operator’s machine. Moreover, its range of both digital and analog control 

inputs would easily accommodate controlling the numerous hardware systems on 

the robot. The operator’s control interface is written in the Python language using 

the PyGame open-source library. The software is written using the PyGame library 

for its familiarity and ease of both reading data from a control peripheral and 

displaying a graphical-user-interface (GUI) to the operator with feedback data from 

the robot. 

Software on the operator’s machine polls input data from the Xbox 360 controller 

every 0.1 seconds. This time interval was selected empirically; reading slower than 

this interval lead to degraded control response from the robot, while reading faster 

than this interval showed no noticeable improvement in control response. The state 
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of every button, analog stick, and trigger is read simultaneously, and the values are 

saved to an object. The control interface compares the values saved to the object to 

values stored in the previous iteration of polling control input. If a value differs, a 

button has been pressed or released, or some stick or trigger has changed position. 

Once the program determines a state change of control input, it constructs a 

command string to send over a non-blocking socket to the robot. 

Each command is a 7-byte string, with the button, stick or trigger indicated in the 

first two bytes of the string and an analog value, if applicable, in the remaining 5 

bytes. This allows analog values to encode to integers ranging from -9999 to 9999, 

providing a wide range of control input values while simplifying the message 

decoding process on the Raspberry Pi’s software interface. Each string message was 

padded with spaces to 7 bytes to ensure every 7 bytes read by the Raspberry Pi was 

only one command. To prevent flooding the communication socket with commands 

and simplify the control scheme, the program sends only one of each type of button 

press, stick movement along the X-axis, stick movement along the Y-axis, and 

trigger press per input poll. The following are examples of command strings the 

operator’s machine would send to the Raspberry Pi: 

● “LX-5493” – indicates the Left Stick in the X direction was reading a value 

54.93% of completely to the left. 

● “A         “– indicates the A button was pressed down. 

●  “RY102” – indicates the Right Stick in the Y direction was reading a value of 

10.2% of completely up. 

 

The control scheme is divided into the three modes: motor mode, manipulator mode, 

and routine mode. Pressing the start button on the controller cycles between each of 

the three modes. This was done to allow each mode to have the full range of buttons 

on the Xbox 360 controller, if needed. Motor mode allows the operator control over 

the motors and headlights, as well as positioning the base of the arm and the tip of 

the arm to reposition the camera while driving. Manipulator mode allows control of 

each of the servos on the manipulator arm separately. Lastly, routine mode allows 

the operator to run pre-programmed routines for different portions of the course. 

These routines included folding the manipulator arm to fit in the tunnel, reaching 

the manipulator down to secure the bolt, raising the manipulator into a position to 

deliver the bolt, and moving the effector between fully retracted or fully extended. 

Pictured below in Figure 14 is the complete control layout. 
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Figure 14: Xbox Control Layout 

After sending each group of commands, the program will poll the socket buffer for 

any strings received from the robot. This is done to allow the operator’s machine to 

display feedback information from the Raspberry Pi to the operator. The interface 

prints string messages from the robot and renders sonar positional data to the 

screen in a GUI. Pictured below in Figure 15 is the GUI the operator sees during 

robot operation. 

 

Figure 15: Sensor Data GUI 
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The GUI displays the status of each of the four sonars, and it is only updated if a 

sonar’s state changes to prevent unnecessary processor load when rendering the 

frame. A warning symbol indicates a sonar is reading “too close” (less than 10 

centimeters), a check mark indicates the sonar is reading a value that is “ok” 

(between 10 and 100 centimeters), and a question mark indicates the sonar reading 

may be unreliable (greater than 100 centimeters). Moreover, any time the GUI 

draws a warning symbol to the screen, it plays a beep to warn the operator that the 

robot is dangerously close to collision. 

The largest fault of the operator’s interface is its complicated design. Because the 

robot needed to be able to perform a wide range of operations, the control scheme 

became increasingly more complicated as additional features were implemented. A 

better solution would design a more simplified control scheme using a controller 

with a greater number of inputs, such as a Steam controller. The modes of operation 

could be redesigned to require fewer types of button presses and stick values to 

function, or the three operational modes could be simplified to the extent of being 

removed entirely.  

Second, the GUI displayed to the operator is overly simplistic and its separation 

from the video stream did not prove to be an ideal means of relaying feedback from 

the robot to the operator. The ideal solution would be to integrate the feedback from 

the Raspberry Pi directly into the camera stream interface to remove the need for 

looking between multiple windows for operational data. 

5.3 COMMUNICATION SOFTWARE 

Written By: Joseph Austin 

Once the operator’s machine sends a command over the socket, the robot needed to 

be able to receive, decode and execute the command. Moreover, the Raspberry Pi 

needed to be able to send operational information, sonar data, and video data to the 

operator while they were manipulating the robot. Lastly, software on the robot’s end 

needed to be able to determine if the connection with the operator had been 

unexpectedly lost, and, if it had, and restart the socket. 

To accomplish this, the Raspberry Pi first opens a non-blocking socket, acting as a 

server. The socket is nonblocking to allow the Raspberry Pi to continuously read and 

transmit data from the sonars even if no command is received. If the socket were 

blocking, the program could only transmit sonar data as often as it receives 

commands or the socket times out. The socket will only block until a client connects. 

Afterward, it will time out immediately if the socket buffer is empty. 

The communication interface processes commands from the buffer one at a time. The 

program determines the type of control input from the first two bytes of the 7-byte 

command and will read the remaining 5 bytes as an analog integer value if 
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applicable. Analog values are used to control motor speed and direction, as well as 

servo positions and speeds. Following each poll of the socket buffer, the Raspberry Pi 

will poll each sonar sensor sequentially and determine which, if any, sonar states 

have changed (transitioned from reading values in one range to reading values in a 

different range). The Raspberry Pi will then construct a string with the number of 

the sensor that underwent a state change (0 being front-right, 1 being front-left, 2 

being back-right, and 3 being back-left) followed by either “c” for close, “o” for okay, 

or “f” for far. 

To determine if communication with the operator is errant or has unexpectedly 

closed, the program keeps track of the time at which it received the most recent 

command. For every one second a command is not received, the robot sends the 

message “<3” to the operator’s machine, requesting a response. If the operator’s 

machine is still connected, it will read this message in the buffer and immediately 

send “<3” back to the Raspberry Pi to indicate that the operator is still connected. If 

the robot goes two seconds without receiving any response from the operator, the 

Raspberry Pi stops the motors and the servos powered off. If three seconds pass 

without a response, loss-of-signal is declared. In the case of loss-of-signal, the robot 

closes the socket connection and reboots the server, blocking until the client 

reconnects. 

5.4 SERVO INTERFACING SOFTWARE 

Written By: Joseph Austin 

Control of both the servos and motors is performed using the PWM signal driver on 

the custom Raspberry Pi HAT. To interface with the PWM driver, the control 

software on the Raspberry Pi writes I2C values to the PWM IC using the Pi’s GPIO 

pins and the pigpio open-source library. The I2C value written indicates which 

channel to write to and what PWM value to set the channel to. The PWM value 

written determines either the speed of a motor or continuous-rotation servo or the 

angle of a positional servo depending on the channel the value was written to. 

The positional servos accept a PWM value between X and Y that indicates an angle 

to rotate to. To control the servos, the control software first converts values from the 

left stick, right stick, and trigger commands into percentages. The percentages are 

then multiplied by a servo speed value, which the operator can change with the D-

Pad and ranges from 0 to 100. The servo speed integer indicates how much to add or 

subtract at a time from the current PWM value on any channel. The percentage 

times the servo speed is then added or subtracted from the corresponding PWM 

value on the channel of whichever servo the operator is controlling. The operator 

controls the continuous rotation servos with only digital inputs from the controller 

(the left and right bumpers for the base, and the D-Pad for the effector). In the case 

that the operator is driving the base or the effector servos, the program only writes 

either the maximum speed value in one direction or the stop value to the channel. 
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5.5 MOTOR CONTROL SOFTWARE 
Written By: Joseph Austin 

The motors accept a PWM value ranging from 0 to 4095, with 0 being stopped and 

4095 being max throttle. 4096 is a special integer that entirely powers off the 

channel. Two direction pins on the motor controller board are set or reset to change 

the direction of either pair of motors. 

The left stick in the X direction is used to steer the robot. The right and left triggers 

are used for throttle and reverse. However, because the robot’s motion platform uses 

slip steering, the implementation of this control scheme in software is somewhat 

complicated.  

First, the Raspberry Pi reads the value from the left stick (from -9999 to 9999) and 

converts it to a percentage out of 10,000. If the value is negative, the robot needs to 

turn left. The left motors would need to be driven slower than the right motors or 

backward. Likewise, if the value is positive, the robot needs to turn right, and the 

right motors are driven slower than the left or backward. The percentage value read 

from the left stick is multiplied by the current maximum steering value (which the 

operator can manipulate with the D-Pad and ranges from 0 to 4000). Then, the 

Raspberry Pi reads the value from either the left trigger or the right trigger (with -

9999 indicating left being fully pressed and 9999 indicating right being fully 

pressed) and converts this to a percentage out of 10,000 as well. This percentage is 

multiplied by the current maximum throttle value (which the operator can also 

manipulate with the D-Pad and ranges from 0 to 4000). The software then adds the 

throttle value to the steering value. If the value on the left motors is negative, the 

left motor direction pin for the left motors is driven low and the value is made 

positive before it is asserted. Likewise, if the value on the right motors is negative, 

the right motor direction pin is driven low and the value is made positive. Each 

value is then written to the corresponding PWM channel to drive each motor. The 

result is an intuitive system that accommodates both turning in place and turning 

while driving forward or backward. 

5.6 CAMERA FEEDBACK SOFTWARE 
Written By: Joseph Austin 

In order to display video data from the Raspberry Pi camera module to the operator, 

we made use of an open-source web-streaming interface known as the “Rpi-Cam-

Web-Interface.” This quickly and seamlessly allows incorporation video streaming 

into the design, as well as allow the operator to change the stream size and quality 

on the fly, as they needed. The software simply required initialization at boot via an 

auto-start script, and video data from the Raspberry Pi camera streams to a web 

interface over port 4620 automatically. The operator could then connect to the IP of 

the Raspberry Pi across port 4620 using any modern web browser and log in to the 
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password-protected interface. From there, the operator has access to the camera 

stream and video size and quality. 

5.7 ULTRASONIC SENSOR SOFTWARE 
Written By: Joseph Austin 

To allow the operator a greater positional awareness during operation, four sonar 

sensors continuously read distance data and report changes to the operator. Each 

sonar sensor sends an acoustic pulse once its trigger pin is driven high. The sonar’s 

echo pin is driven high until the sensor receives the acoustic pulse back, at which 

time the sonar drives its echo pin low. The Raspberry Pi measures the time it takes 

from driving the trigger pin high to reading a low voltage from the echo pin with a 

timeout of one second. The sonar interface converts this time reading into a 

centimeter distance by multiplying by the time reading by a conversion factor. If a 

sonar reads a state change (i.e. transitions from reading “close” to reading to reading 

“ok,” or “ok” to “far,” etc.), the program will construct a string with the number of the 

sonar followed by “c,” “o,” or “f,” and will send the string to the operator’s machine. 

6 SPECIFICATIONS 

6.1 CRITICAL SPECIFICATIONS 
Written By: Joseph Austin 

This section defines specifications critical to completing the Mercury Robotics 

Competition track and all competition objectives. 

The competition robot must: 

 Be mobile. 

 Be able to be controlled over the internet from a location of at least 50 miles 

away. 

 Be able to relay sensor read information back to the operator over the 

internet during the competition. 

 Be able to connect to an 802.11b/g/n Wi-Fi router with an ESSID that is not 

broadcast and has no security protocol. 

 Be able to navigate a dark tunnel. 

 Be able to complete the track in under 10 minutes. 

 Be able to secure a quarter-inch, steel lag bolt. 

 Be able to ascend a 30-degree see-saw incline and descend without dropping 

the lag bolt. 

 Be able to deposit the lag bolt in one of three drop-off points. 

 Have a width and length no greater than 18 inches by 18 inches, and have a 

height no greater than 12 inches. 

 Be able to detect loss of signal in under 5 seconds. 

 Be able to demonstrate a loss-of-signal routine and a reconnection routine in 

the event that internet connection is lost. The robot must not move during 
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the loss-of-signal event. The robot must demonstrate that the operator can 

control it once connection is restored. 

 Use no more than three ports total for internet communication. 

 Demonstrate safe and proper usage of lithium polymer batteries. 

 Be able to operate for at least 15 minutes continuously. 

 Be able to drive at a maximum speed of least at 7 ft/s 

 Must weigh less than 10 pounds. 

6.2 DESIRABLE SPECIFICATIONS 
Written By: Joseph Austin 

This section defines specifications that are desirable for the robot to meet. 

The competition robot should: 

 Be easy to control. 

 Keep latency between operator input and robot control over the internet 

less than 500ms. 

 Keep latency of the transmission of sensor data over the internet less than 

500ms. 

 Achieve a speed of at least 10 feet per second during the sprint section. 

 Prevent collision with the track wall and obstacles entirely. 

 Complete the track in less than 4 minutes to allow for an additional run if 

desired. 

 Be able to deposit the payload in the highest-scoring drop-off point. 

 Have a maximum nominal communication latency no greater than 1000ms. 
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8 APPENDIX 

8.1 APPENDIX I - SCHEMATICS 

Written By: Kamran Coulter 
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8.2 APPENDIX III – BILL OF MATERIALS 
Written By: Kamran Coulter, Jonathan Ballew 

Description Qty Unit Price 

MOSFET P-Ch ENH FET -20V 52mOhm -5.0V 2 $0.38 

Bipolar Transistors - BJT MATCHED PNP SM SIGNAL TRANS 2 $0.43 

Translation - Voltage Levels 8-Bit Bi-directional V-Level Translator 2 $1.53 

Standard LEDs - SMD Super Green, 565nm 2.2V, 15mcd 3 $0.17 

Standard LEDs - SMD Hyper Red, 645nm 15mcd, 20mA 3 $0.27 

LED Display Drivers I2C Bus LED Controller 28-Pin 2 $2.24 

MOSFET 35V PCH PowerTrench MOSFET 2 $0.90 

Thick Film Resistors - SMD 1/8watt 75Kohms 1% 100ppm 10 $0.049 

Switching Voltage Regulators 42V,5A,SD DC-DC Converter 3 $4.17 

Thick Film Resistors - SMD 1/8watt 71.5Kohms 1% 100ppm 10 $0.049 

Thick Film Resistors - SMD 1/8watt 60.4Kohms 1% 100ppm 10 $0.049 

Thick Film Resistors - SMD 1/8watt 11Kohms 1% 100ppm 10 $0.049 

Thick Film Resistors - SMD 1/8watt 11.5Kohms 1% 100ppm 10 $0.049 

Thick Film Resistors - SMD 1/8watt 8.87Kohms 1% 100ppm 10 $0.049 

Fixed Inductors XAL4020 High Current 2.2 uH 20 % 5.5 A 3 $1.80 

Schottky Diodes & Rectifiers SCHOTTKY DIODE 5A, 40V (Green) 3 $0.68 

Multilayer Ceramic Capacitors MLCC - SMD/SMT 47uF 16Volts 10% 3 $1.27 

Multilayer Ceramic Capacitors MLCC - SMD/SMT 4.7uF 25Volts 20% 10 $0.064 

Multilayer Ceramic Capacitors MLCC - SMD/SMT 0805 0.1uF 16volts X7R 10%  10 $0.051 

Multilayer Ceramic Capacitors MLCC - SMD/SMT 2.7nF 50V X7R 10% 10 $0.037 

Multilayer Ceramic Capacitors MLCC - SMD/SMT 39pF 50V NPO 5% 10 $0.048 

Thick Film Resistors - SMD 1/8watt 147Kohms 1% 100ppm 10 $0.049 

Slide Switches SPDT On-On 3 $0.39 

Aluminum Electrolytic Capacitors - SMD 470uF 16 Volts 0.2 2 $0.68 

Headers & Wire Housings 5 CKT. 2.5MM ASSY VERTICAL 250V 3A 3 $0.68 

Headers & Wire Housings 2.5 TO BOARD HOUSING 10 $0.181 

Headers & Wire Housings 2.50MM 4P VERT HDR FRCTN POS LOCK 10 $0.472 

Headers & Wire Housings 5 CKT 2.5MM HSNG 3 $0.28 

Headers & Wire Housings MiniLock 2.5mm Hdr Vrt 3Ckt Fric&PosLck 10 $0.385 

Headers & Wire Housings 2.50MM HSG 01X03P POS LOCK 10 $0.143 

Headers & Wire Housings MN-LK TERM 22-28G F Cut Strip of 100 100 $0.055 

Thick Film Resistors - SMD 1/8watt 3.9Kohms 1% 10 $0.049 

Thick Film Resistors - SMD 1/8watt 47Kohms 1% 100ppm 10 $0.049 

Thick Film Resistors - SMD 1/8watt 220ohms 1% 100ppm 20 $0.049 

Thick Film Resistors - SMD 1/8watt ZEROohm Jumper 20 $0.042 

Thick Film Resistors - SMD 1/8watt 4.7Kohms 1% 10 $0.048 
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Description Qty Unit Price 

Multilayer Ceramic Capacitors MLCC - SMD/SMT 0805 10uF 6.3volts X5R 10%  10 $0.083 

Thick Film Resistors - SMD 1/8watt 10Kohms 1% 100ppm 30 $0.049 

MOSFET MOSFET N-CHANNEL SOT-523 10 $0.198 

Fixed Terminal Blocks 2P SIDE ENTRY 2.54mm 3 $0.52 

Thick Film Resistors - SMD 1/8watt 470ohms 1% 100ppm 10 $0.049 

Thick Film Resistors - SMD 1/8watt 19.1Kohms 1% 10 $0.049 

Raspberry Pi 3 Model B 1  $43.75  

Raspberry Pi Camera Module V2 1  $29.89  

18” Ribbon Cable 1  $6.91  

HC-SR04 Ultrasonic Sensors (4 Pack) 1  $9.79  

Hitec HS-311 Servo 3  $11.95  

Parallax Continuous Rotation Servo 1  $12.09  

Unbranded 9g Servo 1  $4.95  

32 GB Micro SD Card 1  $9.99  

10A Dual Channel DC Motor Driver 1  $23.49  

Neodymium Magnets 18mmD x 3mm (3 Pack) 1  $5.49  

BaneBots Wheel 8  $3.00  

BaneBots Hex Wheel Hub 4  $4.50  

Venom 20C 3S 4000mAh 11.1V LiPo Battery 1  $41.99  

970 RPM Econ Gearmotor 4  $14.99  

5mm x 11mm x5mm Ball Bearings (8 Pack) 1  $7.99  

Nylon Screw and Nut Set (2 Pack) 1  $2.95  

5mm x 4’ Wooden Dowel 1  $0.75  

1.75mm ABS 3D Printing Filament 2  $19.89  

*M3 6mm Pan Head Screw 60pcs 1  $6.59  

*M3 50mm Brass Standoff Male to Female 30 1  $11.69  

*M2.5 Brass Standoff Kit 120pcs 1  $11.99  

*Machine Screw Kit 2  $3.49  

*Steel Washer Kit 1  $3.49  

*Wire Screw Terminal Block (5 Pack) 1 $10.99 

*5mm Round White LEDs (100pcs) 1  $3.08  
*Starred materials were purchased in large quantities despite the robot only requiring a small number 

of each. As such their listed prices do not accurately describe the value of the materials used on the 

robot itself.
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8.3 APPENDIX IV – ADVISOR MEETING SUMMARY 

DATE SUMMARY 

1/19/17 Initial meeting, Meeting times established, Joint meetings agreed 

upon, General subsystems discussed, Housekeeping task given.  

1/26/17 Member roles defined, Initial design discussed, part order procedures 

established, Told to have design finalized by week 4. 

2/09/17 Proposal presentation and specifications discussed, Parts ordered 

began to arrive, Motors needed to be tested ASAP. 

2/16/17 Arm believed to be behind schedule, Servos ordered for arm, Design to 

be finalized by next week. 

2/23/17 Definitive task list from each member requested, Concern over 

manipulator arm degrees of freedom, PCBs to be ordered within 10 

days 

3/02/17 Concern over progress on BOT, Specification document requested, 

Discussion on teams perception of progress.  

3/09/17 PCBs ordered, Commercial prototype demo 

3/16/17 Fully functional proto demo including sensors, ramp tested, Arm 

Redesign being finalized. 

3/23/17 PCBs arrived and assembled, functional testing through next week, 

final integration within one week, Bogotá not happening.  

3/30/17 Dr. Latino Gone 

4/06/17 Dr. Latino Gone 

4/13/17 Final competition preparation, little to update, need for more practice 

4/20/17 Competition week, no meeting required 

4/27/17 No meeting required 

5/04/17 No meeting required 
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8.4 APPENDIX II – CODE 
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