

ECEN 4024 – Capstone Design

Oklahoma State University

5/5/2017

2017 MERCURY REMOTE

ROBOTICS COMPETITION

Team 4b – Final Report

Joseph Austin

Jonathan Ballew

Kamran Coulter

Kyle Edwards

The purpose of this document is to describe and justify the design of

team Catch-a-Ride’s Mercury Robotics Competition robot. The

primary goal of this project was to design a mobile robot that could

complete the 2017 Mercury Remote Robotics competition track and

all objectives with minimal fault. The robot was designed as a

capstone project for ECEN 4024. This document details the design

and implementation of the motion platform, manipulator arm and

effector, electronics hardware and power distribution, and the control

and sensor feedback hardware and software. This document

describes the extent to which the design met the project

specifications and offers a critique of any systems that failed to meet

specifications or could be improved.

 5/5/2017

Table of Contents
1 Introduction .. 1

1.1 Competition background ... 2

2 Competition Details – 2017 .. 2

2.1 Competition Track ... 2

2.2 Competition Network .. 3

2.3 Competition Rules and Scoring ... 4

2.4 Competition Results .. 5

3 Mechanical Design .. 6

3.1 Mechanical Systems Overview .. 6

3.2 Motion Platform ... 6

3.3 Manipulator Arm ... 8

3.4 Paint ... 10

4 Hardware Design .. 10

4.1 Electrical System Overview .. 10

4.2 Main Computer .. 11

4.3 Custom Designed Raspberry Pi HAT .. 12

4.3.1 Overview ... 12

4.3.2 PWM Generation Hardware ... 13

4.3.3 Level Shifting Sensor Hardware .. 13

4.3.4 Power Distribution on the HAT ... 13

4.3.5 PCB Layout ... 14

4.4 Power Systems ... 15

4.4.1 Reverse Voltage Protection .. 15

4.4.2 Low Voltage Cut-Off ... 15

4.4.3 Switching vs Linear .. 16

4.5 Motor and Wheel Selection .. 17

4.5.1 Robot Sprint Speed Calculations.. 17

4.5.2 Required Torque Calculations .. 17

4.5.3 Motor and Wheel Issues ... 18

4.6 Motor Control Hardware ... 19

4.7 Ultrasonic Sensor System ... 19

 5/5/2017

4.8 Video Feedback System ... 20

5 Software Design .. 21

5.1 Software Systems Overview .. 21

5.2 Operator Interface ... 21

5.3 Communication Software .. 24

5.4 Servo Interfacing Software .. 25

5.5 Motor Control Software ... 26

5.6 Camera Feedback Software ... 26

5.7 Ultrasonic Sensor Software ... 27

6 Specifications .. 27

6.1 Critical Specifications .. 27

6.2 Desirable Specifications .. 28

7 Works Cited .. 29

8 Appendix ... 30

8.1 Appendix I - Schematics .. 30

8.2 Appendix III – Bill of Materials .. 33

8.3 Appendix IV – Advisor Meeting Summary ... 35

8.4 Appendix II – Code .. 36

 5/5/2017

 5/5/2017

 1

2017 MERCURY REMOTE ROBOTICS

COMPETITION

Team 4b – Final Report

1 INTRODUCTION
Written By: Joseph Austin

The goal of this project was to design a mobile robot that was able to compete in the

2017 Mercury Remote Robotics Challenge and complete every objective of the course

with minimal fault. The robot was designed as a capstone design project for ECEN

4024. The robot needed to be able to navigate a dark tunnel, secure a lag bolt,

navigate a slalom and 30 degree inclined ramp, deposit the lag bolt, and complete a

timed sprint, all with minimal obstacle collision. The ability of the robot to complete

these objectives without obstacle collision determines the team’s score in the

competition.

Moreover, as a capstone design project, the design was expected to be unique and go

beyond minimal functionality to compete. The robot was expected to demonstrate

careful consideration of design constraints and construction techniques appropriate

for a team of graduating students in electrical engineering. The system needed to

fully integrate a motion platform, any sensing and imaging, and control hardware as

opposed to loosely-connected subsystems. Lastly, the operation of the robot needed to

be performed through an integrated user interface with careful attention to usability

and human factors.

The robot’s design is broken down into four primary subsystems:

● Motion platform and control hardware

● The manipulator and end effector

● Power distribution and regulation

● Communications and control software

This document first describes the background information and rules of the

competition. This document then details and justifies the mechanical design,

electronics hardware, power distribution systems, and control and communications

software implemented in the design of the robot.

 5/5/2017

 2

1.1 COMPETITION BACKGROUND
Written By: Kamran Coulter

The Mercury Remote Robotics Challenge is an international robotics competition

hosted at Oklahoma State University. This year’s competition was the 8th annual

competition, and teams assembled from the United States, Colombia, Brazil, and

Mexico. The competition was founded by faculty and students from Oklahoma State

University with the hope that students could learn complex robotic systems by

designing mobile robots capable of completing a wide range of objectives. The

operating distance and internet connectivity requirements of the challenge impose

many engineering challenges on the design of a competition robot. Minimizing

communication and control latency and implementing responsive mechanical

systems are of utmost importance during the design phase as teams attempt to build

a motion platform that can be controlled from a minimum distance of 50 miles via

the Internet. The competition attempts to simulate some of the challenges engineers

face when designing systems to explore other planets. [1]

2 COMPETITION DETAILS – 2017
Written By: Kamran Coulter

The Mercury Remote Robotics Challenge course changes each year, but each year

robots must be able to navigate a course and manipulate a payload in some fashion.

The following sections give background information on the 2017 competition

regarding the course, its objectives, and its scoring system.

2.1 COMPETITION TRACK
Written By: Kamran Coulter

The 2017 competition track is shown in Figure 1. The track features six distinct

challenges: the tunnel, payload securing, slalom, see-saw, payload depositing, and a

timed sprint. The score for each robot is calculated from how well the robot is able to

complete each challenge, which is described in the Competition Rules section to

follow. The track is constructed using three-inch-tall pieces of flexible foam board

taped 24 inches apart to a carpeted surface in the Noble Research Center (NRC) at

Oklahoma State University. The robots in this year’s competition start in front of

the tunnel, which is 18 inches wide by 12 inches tall. The tunnel imposes the

challenge of fitting the robot in a narrow enclosure and navigating it in a dark

environment. After the tunnel, a team’s robot must make a sharp right turn into the

payload pick-up zone, where a 3 inch lag bolt is placed in whichever orientation the

team desires. Once the bolt is secure, the robot needs to follow a smooth curved

section to the slalom consisting of two pylons separated by 18 inches. The robot must

navigate the slalom by following directional arrows taped to the ground.

 5/5/2017

 3

Following the slalom, a smooth curve brings the robot to the seesaw. The operator

has the choice to either to go over the 30 degree inclined seesaw or bypass it entirely.

The steeply inclined seesaw is constructed from smooth plywood, making it

challenging to both ascend and descend without dropping the payload. The robot

then needs to deposit the bolt in the payload drop-off zone: an 8-inch long face that

sits 6.2 inches off of the ground at a 45 degree angle. The face had three holes of

increasing diameter from 0.5 to 2 inches. Lastly, the robot completes the course by

driving a laser-timed sprint section to the finish. [1]

Figure 1: 2017 Mercury Competition Track

2.2 COMPETITION NETWORK
Written By: Joseph Austin

The competition rules specify that the operator must drive the robot over the

internet from a location of at least 50 miles away. Each team is allowed a maximum

of three communication ports, each of which is forwarded on the competition router.

Each team is also allowed one IP camera. On the day of the competition, the team

connects their robot to competition router, and the operator connects to the static IP

of the competition router over the internet.

To qualify for first place, the robot must pass a loss-of-signal test. The robot must

demonstrate that when connection is lost with the client, the robot halts operation

and waits for the client to reconnect. The robot must have some type of external

feedback to indicate that the connection is lost (an LED, a buzzer, etc.), and the

robot must be able to reconnect and resume operation without any intervention by

the robot handler. The test is performed as follows:

1. The operator is asked to connect to the robot and begin driving it.

2. The competition router is unplugged and powered down. At this point, the

robot has three minutes to stop and indicate that connection is lost.

 5/5/2017

 4

The competition router is plugged back in and powered on. The operator has 5

minutes to demonstrate that they can reconnect to the robot and resume operation.

[1]

2.3 COMPETITION RULES AND SCORING
Written By: Kamran Coulter

The competition manual does not detail many design parameters, and the rules of

the competition are primarily related to safety during handling and operation of the

team’s robot. In general, a team’s robot must be able to maximize score while not

posing a threat to persons or property at the competition location. The only rules

specified in the competition documents are as follows:

1. The robot must fit into an 18x18x12 inch cube at the beginning of the run but

can expand beyond those dimensions once the run has begun.

2. All Lithium batteries must include proper charging systems as well as low

voltage cut-off circuits.

3. All robots must be operated from a minimum distance of 50 miles away from

the competition location.

4. Components that could cause damage to persons or property are not

permitted.

As stated previously, the goal of the competition is ultimately to maximize the

team's score in order to win the competition. The theoretical maximum score in the

competition is 261.25, which corresponds to a perfect run with a zero second sprint.

The following section describes the scoring procedures of the competition by stating

the scoring algorithm and describing all possible score penalties.

𝑺𝒄𝒐𝒓𝒆 = (𝑻 + 𝑷 + 𝑺 − 𝟏𝟓 ∗ 𝑺𝑷 + 𝑺𝑺 + 𝑫 − 𝑫𝑷) ∗ 𝑴 − 𝟓 ∗ 𝑾𝑪 − 𝟏𝟎 ∗ 𝑹𝑷 (1)

Table 1: Scoring Equation Variable Description [1]

Description Variable Scoring

Tunnel T Clean Run = 30; One Wall Touch = 15; Otherwise = 0

Pickup Bolt P Securing = 30; Otherwise = 0

Slalom S No Pylon Contacts = 50

Slalom Penalty SP SP = Pylon Contacts * -15

See Saw SS Crosses With Bolt = 40; Crosses Without Bolt = 20

Deposit D ½” Hole = 40; 1” Hole = 30; 2” Hole = 20; Missed = 0

Deposit Penalty DP Contact With Drop Off Zone = -5

Sprint Multiplier M M = 1.375 - 0.0075*Sprint Time

Wall Contact WC WC = Wall Contacts * -5

Reset Penalty RP RP = # of Resets * -10

 5/5/2017

 5

2.4 COMPETITION RESULTS
Written By: Kamran Coulter

The competition was held on Saturday April 22, 2017 in the NRC of Oklahoma State

University. The team’s robot was present at the competition, completed the loss-of-

signal test, and completed the course with a score of 180 points to finish third overall

of twenty competing robots. The score is reflective of a near perfect run with only

two deductions: 5 points for 1 wall contact and 40 points for bypassing the seesaw.

During testing, it was determined that the seesaw could potentially cause damage to

the robot due to traction issues while climbing the incline, so the team decided to

incur the point deduction instead of risking a no-score.

In addition, the robot was able to complete the sprint section with a competitive time

of 18 seconds. The two robots that outscored the team’s robot were both from

Columbia, each able to go over the seesaw. In addition to placing third in the

competition, the team also received the best video award for the robot demonstration

video. The team’s robot and awards are shown in Figure 2.

Figure 2: Competition Robot and Awards

 5/5/2017

 6

3 MECHANICAL DESIGN

3.1 MECHANICAL SYSTEMS OVERVIEW

Written By: Jonathan Ballew

The robot’s mechanical design is divided into two primary systems: the motion

platform and the manipulator arm. The motion platform serves as the mounting

point for the main drive motors, collision detection sensors, battery, and the primary

control and communication electronics. The motion platform is designed for high

stability and maneuverability at moderate speeds. It has a low ground clearance for

maintaining a low center-of-gravity, and it incorporates wire management for easy

motor access and access to the Raspberry Pi’s USB and Ethernet ports. The wheels

are a high friction rubber for high traction when traversing the seesaw obstacle.

The manipulator arm is responsible for collecting and depositing the bolt. It also

serves as the mounting point for the drive camera. The manipulator is designed for

minimum weight and maximum versatility. The end effector is a screw-driven

retractable high-strength magnet and bolt guide. The camera is positioned above the

end effector to provide the best view possible for bolt manipulation. The manipulator

is powered by 5 servos for 5 degrees of freedom: 4 rotational degrees (3 in the arm

elbows and 1 for rotation of the entire arm left and right) and 1 translational degree

(for the retraction of the magnet).

3.2 MOTION PLATFORM
Written By: Jonathan Ballew

Figure 3: Motion Platform Base Rendering

All motion platform components (excluding fastening and standoff hardware) are

custom modeled by Jonathan Ballew. The models are 3D printed in ABS plastic by

 5/5/2017

 7

Kamran Coulter on his personal printer. The design achieves high stability by the

reducing the height of the center of mass by placing the heaviest components -- the

high-capacity lithium-polymer battery and the arm assembly -- at the bottom of the

robot. The base is also designed with low a ground clearance to further lower the

center-of-gravity. The arm platform attaches to 8 50mm standoffs mounted at the

corners of the bot. These provide only enough clearance to connect all wires to the

Raspberry Pi HAT, further lowering center of mass. The final base dimensions are:

9.75"w x 10.75"l x 3.25"h.

High top speed and torque are accomplished with 4 Actobotics 970 RPM Econ Gear

motors. The four motors are fixed to the base and do not support any form of

suspension. Each pair of motors is wired in parallel on separate left and right

channels. This provides a slip-steering/tank-drive control system with steering

accomplished by running each side at different speeds and/or directions. Each of the

four corners of the robot house ultrasonic sensors mounted at 45 degrees outward

from the robot. These sensors provide real-time distance and obstacle detection to

the robot operator. Through testing, the ultrasonic sensors proved to be accurate

only in a small cone centered on perpendicular surfaces. The 45 degree angle

prioritizes accurate readings in the situations where the robot is turning towards an

obstacle as opposed to driving alongside it.

The Raspberry Pi 3, Cytron motor control board, custom Raspberry Pi HAT,

ultrasonic sensors, and battery are arranged to minimize unused space. The Pi is

oriented to expose the onboard USB and Ethernet ports for any necessary debugging

or future expansion of functionality. The motor wires run in troughs perpendicular

to the back of the motor to reduce the strain on the solder joints and reduce the

chance of breakage. Connecting wires run through holes to the bottom of the robot

where they are bound together and brought through to the wire block. This

simplifies connection to the motor board and provides simple disconnection and

debugging access.

The team’s robot attained 3rd place in the competition, but the robot could not

successfully complete the seesaw obstacle. Due to the lack of wheel suspension, the

design did not allow for maintaining uniform surface traction given variations in

ground surface height. When attempting to climb the seesaw, the lack of uniform

traction caused the wheels to be unevenly loaded, and the robot would spin out

towards the seesaw edge or slide back down to the bottom without ever achieving

enough traction to climb the incline. Prototype base designs did not exhibit this

behavior, but only when the manipulator arm was not attached. It was determined

that the added weight of the arm amplified the uneven loading and traction to

critical amounts.

The incorporation of wheel suspension in the design could promote more even

distribution of weight across all wheels on uneven terrain. This would ensure that

 5/5/2017

 8

no wheel is unevenly loaded, preventing the robot from torqueing to the left or right

when ascending the incline. This modification would likely require a complete

redesign of the motion platform, but no changes would need to be made to the

electrical and control systems.

Future designs could also include some form automatic traction control by using

motors with built-in encoders. When a wheel slips, it spins faster than the other

wheels on the robot. The feedback provided by wheel encoders could be used to

determine when a wheel slips by periodically comparing the speeds of each motor to

each other. Increasing or decreasing the power provided to each motor could

compensate for the difference and more evenly distribute the load. However,

employing this method would require that all motors be on four separate control

channels instead of the two currently employed.

The location and positioning of the Raspberry Pi also proved to be non-ideal. This

design does not allow for access to the HDMI, audio, and USB power jacks that were

used constantly for debugging and development. To make used of these ports, the

bot had to be partially disassembled. The power switches and debug LEDs on the

custom Raspberry Pi HAT are also not conveniently accessed, though they can still

be accessed when the bot is fully assembled. The LED headlights also proved to be

barely powerful enough to illuminate the tunnel. Possible improvements include

more LEDs and/or fixing LEDs to the arm near the camera. Lastly, the battery could

not be removed from the bot without first removing a wheel. Removing any of the

wheels requires a specific tool, making it inconvenient to remove and charge the

battery.

3.3 MANIPULATOR ARM
Written By: Jonathan Ballew

All manipulator components (excluding fastening and electrical hardware) are

custom designed and modeled by Jonathan Ballew. The models are 3D printed by

Kamran Coulter in ABS plastic on his personal printer. The design focuses on low

weight and high versatility. It minimizes weight using minimally sized structures

and lower torque servos. To accommodate the lower power servos, all servo motors

are mounted at the base with small linkage arms connecting them to joint they

control. Placing the servos at the base as opposed to at the joints they control

minimizes the load on each servo. All critical joints also use bearings to reduce

friction and servo loading. The bottom platform has cutouts to reduce weight and

allow access to the power switches on the Raspberry Pi HAT, and the base of the

arm connects to the standoffs located on the motion platform.

 5/5/2017

 9

The arm is powered by 5 servos total. 3

Hitec HS-311 digital positional servos

power the three main arm elbow joints,

each providing 51 oz-in of torque. The

base rotation is powered by a Parallax

Continuous Rotation Digital Servo, which

provides 38 oz-in of torque. The end

effector screw mechanism is powered by a

9g lightweight servo. The custom

Raspberry Pi HAT drives all servos at the

same PWM frequency and standard pulse

timing (0.75ms - 2.25ms pulse width).

Versatility is an important aspect of the

arm's design. The arm is able to place the

bolt in a variety of positions beyond the

three outlined in the competition

specifications, and can maneuver to many

different angles to provide different

viewpoints for the operator. The arm is divided into three individually controlled

segments and a rotating base. The end effector includes the bolt collection assembly

and the camera. The camera is mounted directly along the bolt to maximize the

operator's ability to accurately position it while depositing the bolt in the drop off

zone. Bolt collection is performed using a high-strength permanent magnet, able to

extend and retract via a screw mechanism. The mechanical advantage of the screw

allows the servo powering the bolt collection to be much smaller and lighter than

other designs that translate a permanent magnet away from the effector to release

the bolt. The high strength permanent magnets guarantee the bolt remains secure

during operation regardless of the robot’s speed or orientation.

The largest possible improvement for the arm would be incorporating higher power

servos. Stronger servos would allow stronger construction and more accurate

positioning. Stronger servos would also reduce the effect of servo vibration on the

camera view, making driving easier for the operator. Incorporating higher-torque

servos would also allow a redesign of the manipulator to have a greater range of

motion.

Another significant improvement to the manipulator would be the addition of a

second camera to take the place of the current camera during driving. By adding a

second camera on the base, the driver would have a more stable viewpoint with a

full view of the wheelbase to prevent accidental collision.

Figure 4: Manipulator Arm Rendering

 5/5/2017

 10

3.4 PAINT
Written By: Kyle Edwards

To personalize the robot, the team painted all of the 3D printed components on the

robot. Inspired by the Borderlands video game series, the team painted the robot to

give it a damaged, rusted appearance. The paintwork was done with a red oxide

primer and an orange acrylic on top of a grey primer. The bottom and top platforms

were painted with the grey primer tinted to a darker tone, and the manipulator was

painted with the original lighter grey in a spray booth. Following the application of

primer, each part was lightly sprayed with the orange acrylic and splattered with

the red oxide at certain points to give the robot dark, worn, and rusted

characteristics.

4 HARDWARE DESIGN
Written By: Kamran Coulter

The following section outlines all of the electrical hardware design related to the

team’s robot. An overview will be presented alongside a system block diagram. The

remained of the sections will describe in detail each subsystem and its overall

function in the final robotic system.

4.1 ELECTRICAL SYSTEM OVERVIEW
Written By: Jonathan Ballew

A high-level block diagram of the robot’s hardware and software systems is shown

below in Figure 5.

Figure 5: Functional Hardware and Software Block Diagram

 5/5/2017

 11

The Raspberry Pi is supplemented with custom designed hardware attached on top

(HAT) that connects and simplifies various electronics hardware and

interconnections on the robot. In addition, the HAT serves as a power supply for all

other subsystems in the design (excluding the motors, which draw power directly

from the battery). All systems source power from a single 11.1V nominal lithium

polymer battery, regulated to lower voltages for each separate subsystem via

switching regulators. The robot has four brushed DC motors controlled by a 2-

channel commercial motor control board with a 10A per channel maximum output

current. The manipulator arm has five servos which are connected directly to the

HAT. Finally, the HAT interfaces the four ultrasonic sensors that are used for

collision detection with the Raspberry Pi controller.

4.2 MAIN COMPUTER

Written By: Jonathan Ballew

The Raspberry Pi 3 Model B serves as the only controller for the robot. The

Raspberry Pi 3 is an inexpensive and high performance computer capable of

handling all control and communications systems necessary for operating the robot.

The Raspberry Pi 3 is loaded with the NOOBS installation of Raspbian Jessie, an

arm derivative of Debian Linux. This allows for simple user access to all the

hardware available on the Pi. In particular, NOOBS provides access to the high

performance processor, wifi module, CSI camera port, and GPIO without the need to

install for extra drivers or hardware. Additionally, the full Linux operating system

gives access to hundreds of open-source software libraries and languages, expediting

development tremendously.

The only potential improvement available to the main controller system would be

swapping out the Raspberry Pi 3 controller for a Raspberry Pi Zero, released shortly

after the team began work on the project. While the Raspberry Pi Zero is

significantly smaller than the Raspberry Pi 3 and can be purchased for as low as $5,

using a Raspberry Pi Zero compared to a Raspberry Pi 3 reduces the computation

resources available for possible future design improvements.

Raspberry Pi 3 Model B Specifications [2]

● 1.2 Ghz 64-bit quad-core ARMv8

CPU

● 802.11n Wireless LAN

● Bluetooth 4.1 with BLE

● 1 GB RAM

● 4 USB 2.0 Ports

● Ethernet Port

● Audio/Composite Video Jack

● 40 GPIO Pins

● HDMI

● CSI (Camera Serial Interface)

● DSI (Display Serial Interface)

● MicroSD Card Slot

● Power Requirements: 5V @ up to

2.5A, 200mA typ.

 5/5/2017

 12

4.3 CUSTOM DESIGNED RASPBERRY PI HAT
Written By: Kamran Coulter

The following section describes in detail the design of the previously mentioned

custom designed Raspberry PI HAT. The HAT was designed in accordance with the

published Raspberry PI HAT standards. [3] For the board to be called a HAT, it

must have an identification EEPROM for automatic hardware identification by the

Raspberry Pi. However, the team decided not to develop the EEPROM functionality

because this board will not be sold as a commercial product and is therefore

unnecessary. The board contains the proper surface mount footprints for

implementing EEPROM for device identification, so the board will still be referred to

as a HAT for simplicity.

4.3.1 OVERVIEW

Written By: Kamran Coulter

The main controller for the robot is the Raspberry Pi 3 controller. Although the

Raspberry Pi is simple to use for a wide range of communication systems, it is not

well suited for the PWM signaling applications required in mobile robotics due to the

threading implications of the computer's full Linux operating system. The team

decided to design a custom Raspberry Pi HAT to solve the PWM signaling issues. In

addition to PWM signaling hardware, the HAT hosts various connectors, sensor

level shifting circuitry, two switching power supplies, and power protection circuitry.

Figure 6 shows a high-level signal diagram for the HAT.

Figure 6: Raspberry Pi HAT Signal Diagram

 5/5/2017

 13

4.3.2 PWM GENERATION HARDWARE

Written By: Kamran Coulter, Jonathan Ballew

The hat uses the PCA9685, a 16-channel 12-bit PWM LED driver IC, to implement

PWM signaling. The IC is optimized for RGBA backlighting applications, but the 12-

bit resolution and programmable frequency ranging from 24 Hz to 1526 Hz makes

the IC ideal for the PWM applications of the team’s robot. The Raspberry Pi

communicates with the IC via an I2C interface across the Raspberry Pi’s GPIO pins.

The I2C interface first sets the operating frequency of 100 Hz across all channels on

the device. The IC shares the overall PWM frequency across all channels, and it

cannot be changed on a per-channel basis. Individual channels can then be set to a

particular duty cycle by writing I2C values to the device in software. The

corresponding PWM frequency and the 12 bit resolution allow the IC to function for

both servo and motor PWM signaling. The final design utilizes eight channels of the

device, where two channels are used for motor speed control, and 6 channels are

used for servo angle/speed control. [4]

4.3.3 LEVEL SHIFTING SENSOR HARDWARE

Written By: Kamran Coulter

The hat also host a TXB0108, an 8-bit bidirectional voltage level translator, in order

to facilitate communication between the Raspberry Pi and ultrasonic sensors. The

IC does automatic direction sensing and is configurable for different voltage levels.

The device translates between the 5V rail towards the sensors and the 3.3V rail

towards the Raspberry Pi. In addition, the device must be enabled via a GPIO signal

connected to its output-enable pin, as it maintains a high impedance state at

startup. [5]

4.3.4 POWER DISTRIBUTION ON THE HAT

Written By: Kamran Coulter

Additionally, the HAT hosts two

switching power supplies

designed around the TPS5454

IC from Texas Instruments. A

simplified application schematic

is shown in Figure 7. A detailed

schematic with selected

component values can be found

in the appendix. Each regulator

has an adjustable output voltage

and can supply 5A of current,

which is far greater than the

robot’s maximum power
Figure 7: Simplified Application Schematic TPS5454

 5/5/2017

 14

requirements. One regulator is configured to output 6V to the servos, and the other

is configured to supply 5V to the other hardware including the Raspberry Pi. The

HAT also implements a low voltage cutoff circuit via the EN pin of the device, which

powers down the entire system if the battery voltage falls below 3.3V per cell. The

supporting hardware surrounding the regulators was selected with assistance from

Texas Instruments WEBENCH ™ Designer software. The software outputs were

then verified against the provided equations in the data sheet. [6]

4.3.5 PCB LAYOUT

Written By: Kamran Coulter

The team designed the PCB with 4 layers total using NI Ultiboard/Multisim, and it

was constructed by a commercial manufacturer. The team initially attempted to

design the PCB using only two layers due to budget constraints, but it was clear that

routing of power and ground signals would be impossible after all other signals had

been routed. The physical dimensions of the board are 65 x 56 mm, defined by the

Raspberry Pi Hat Standards. [3] As such, the team was unable to expand the board’s

physical footprint to make a two layer design possible. The final layout uses four

layers, with internal layers containing unbroken power and ground planes. Images

of the signal layer layouts are included below in Figure 8 and Figure 9.

TOP BOTTOM

Figure 8: Top Layer HAT Routing

Figure 9: Bottom Layer HAT Routing

 5/5/2017

 15

4.4 POWER SYSTEMS
Written By: Kyle Edwards

The power source for the entire design is a single Venom 11.1V lithium-polymer

battery with a 4000 milliamp-hour capacity. The battery is divided between three

main subsystems: the motor driver and two switching regulators. The motor driver

provides the voltage potential to the left pair and right pair of motors, each pair in

parallel. The two switching regulators output two different voltages: one at 6 volts

and the other at 5 volts. The 6-volt regulator supplies power to the servos in the

manipulator and end effector, while the 5-volt regulator supplies power to the

Raspberry Pi and ultrasonic sensors. Power is routed through two forms of voltage

protection before reaching the two regulators.

4.4.1 REVERSE VOLTAGE PROTECTION

Written By: Kyle Edwards

The first means of voltage protection is a PMOS transistor to prevent against

reverse voltage between the battery and the load. The reverse voltage protection

uses a P-channel transistor acting as a diode in series with the battery and the load.

When the battery is connected properly, the gate voltage is taken low and the

channel of the transistor shorts to allow current through. The selected PMOS

transistor has a drain to source voltage of -35V and a gate source voltage +25,-25,

which is above the required 11.1 volts. It also only has a static drain-to-source on-

resistance of around 9.6 to 11.6 milliohms, resulting in only a slight drop in voltage.

Using a PMOS transistor is one of a few common methods to create a reverse voltage

protection circuit, with the others using a similar circuit with diodes and PNP

transistors. While other methods to protect against reverse voltage exist, using a

single PMOS transistor had the least significant voltage drop among the options

explored.

4.4.2 LOW VOLTAGE CUT-OFF

Written By: Kyle Edwards

The second means of voltage protection is a low-voltage cutoff circuit that

disconnects the battery from the power supply and switches on an LED once the

battery falls below 9.9 volts.

The low voltage cut-off uses an adjustable under voltage lockout with TPS54540

switching regulators. The regulator the chip turns on when the input voltage rises

above 4.3 volts, and turns off when the input falls below 4 volts. For dealing with

higher cut-off, the technical document for the regulator gives the method for finding

the two external resistor values R1 and R2. The solved resistor values were 147 kilo

ohms for R1 and 19.1 kilo ohms for R2 with the equation below:

 5/5/2017

 16

Figure 10: Voltage Cutoff Equations [6]

Figure 11: Voltage Cutoff Functional Circuit [6]

𝑉𝑆𝑡𝑎𝑟𝑡 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒

𝑉𝑆𝑡𝑜𝑝 = 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑐𝑢𝑡 − 𝑜𝑓𝑓

𝑉𝐸𝑁𝐴 = 𝐸𝑁 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐼𝐻𝑦𝑠 = ℎ𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 3.4 𝜇𝐴

𝐼1 = 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑝𝑢𝑙𝑙 − 𝑢𝑝 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑓 1.2 𝜇𝐴

4.4.3 SWITCHING VS LINEAR

Written By: Kyle Edwards

When choosing the regulators to use for the build we went with two switching

regulators instead of linear. Linear chips are usually cheap and easy to use although

are inefficient when dealing with high-powered devices. They take the difference

between the input and output, and burn up the difference as wasted heat. Therefore,

with the large difference, we have with the 11.1V input and 5V output on one of

them with a load current of 1.26 amps for the pi and sensors would be wasting about

7.6 watts of power as shown in the equation below:

𝑃𝑜𝑤𝑒𝑟 𝑤𝑎𝑠𝑡𝑒𝑑 = (𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒) ∗ 𝑙𝑜𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

(11.1 − 5) ∗ 1.26 = 7.6 𝑤𝑎𝑡𝑡𝑠

The switching regulators only take small amounts of energy from input and

transferring them to the output by a switch and controller used to regulate the

amount of energy transferred. So the amount of energy lost from this is smaller

compared to linear that relies on the amount of the input voltage. They can be a

more complex circuit to design but the payoff of the efficiency gain from the lower

power losses is ideal with our system. [7]

 5/5/2017

 17

4.5 MOTOR AND WHEEL SELECTION
Written By: Kamran Coulter

The motors and wheels for the robot needed to be selected and sized appropriately to

ensure the robot would be able to complete all course obstacles. The two major

obstacles related to the motor and wheel subsystem were the seesaw and the sprint

sections. The robot needed to be able to produce the required torque to maintain a

constant velocity up a 30-degree incline while also allowing for a competitive sprint

time. In addition, the motor eventually selected needed to be a DC motor due to the

robot being battery powered. Brushed DC gear motors were selected for their cost,

simply control structure, and relative availability at the hobbyist level.

4.5.1 ROBOT SPRINT SPEED CALCULATIONS

Written By: Kamran Coulter

It was determined through evaluation of the scoring algorithm and feedback from

the team’s project mentor that the motor revolutions per minute (RPM) and

corresponding wheel size would provide an unloaded ground speed of 10 ft/second if

the robot were to be competitive in the sprint section. The underlying equation for

robot speed, assuming zero slippage, is as follows:

𝑺 = 𝟐𝝅 ∗ 𝑹 ∗ 𝑹𝑷𝑴 ∗
𝟏

𝟏𝟐 ∗ 𝟔𝟎
 (2)

S, Speed (ft/sec)

R, Wheel Radius (in)

RPM, Motor RPM (rev/min)

Starting with a wheel with a radius of 1 7/16”, it was found that a motor rated at

approximately 800 RPM would provide the desired speed.

4.5.2 REQUIRED TORQUE CALCULATIONS

Written By: Kamran Coulter

The required torque to adequately carry the robot over the seesaw required more

assumptions. A table of those assumptions is provided below in table 2. The torque

analysis used a standard power balance approach that assumed perfect physics in

terms of friction. A 65% gear efficiency was assumed to overcome any deficiencies in

friction or gear imperfections.
Table 2: Torque Calculation Assumptions

Assumption Value Assumed

Total Mass 7.5 (lbs.)

Number of Drive Motors 4

Acceleration 1 (ft/s2)

Gear Efficiency 65 (%)

Wheel Radius 1 7/16 (in)

Incline 30 degrees

 5/5/2017

 18

Figure 12: Wheel Cross Section [8]

m: {mass}

a: {acceleration}

T: {torque}

g: {gravitational constant}

R: {radius}

Figure 12 shows a two-dimensional cross section of a wheel accelerating up an

incline. The required torque can be calculated by performing a standard force

balance in the x direction as follows:

𝜮𝑭 = 𝒎𝒂 = 𝒇 − 𝒎𝒈𝒙 (3)
𝑴𝒂 = 𝑻/𝑹 − 𝒎𝒈 ∗ 𝒔𝒊𝒏(𝜽) (4)
𝑻 = 𝑹𝒎(𝒂 + 𝒈 ∗ 𝒔𝒊𝒏(𝜽)) (5)

Equation 5 will give the required torque of the entire robot at 100% efficiency. To

calculate the required torque per motor at 65% efficiency, a correction factor must be

applied as follows:

𝑻𝒎 = 𝑻 ∗
𝟎. 𝟔𝟓

𝟒

(6)

By using the above assumptions and equation 6 it can be found that at a 65% gear

efficiency each motor needs to be able to produce approximately 35 ozf-in of torque in

order to accelerate up a 30 degree incline.

4.5.3 MOTOR AND WHEEL ISSUES

Written By: Kamran Coulter

The actual motor selected for the design was the Actobotics 970 RPM Econ Gear

motor, which has a rated torque of approximately 53 ozf-in and a stall current of

3.8A. This motor exceeded both the torque and speed specifications set above, and

was selected due to its low cost and availability. It was assumed that since the motor

specifications greatly exceeded the required torque, the robot would have no issues

completing the seesaw. Unfortunately, the notion that the potential torque of the

motors is directly related to the friction between the wheels and the seesaw surface

was overlooked. It was found in testing that the wheel material did not provide

sufficient traction while on the smooth surface of the seesaw. Random slips in the

wheels would cause the robot to spin and become uncontrollable on the smooth

 5/5/2017

 19

surface. Future improvements in the design would incorporate different wheel

materials to facilitate better traction on smooth surfaces.

4.6 MOTOR CONTROL HARDWARE
Written By: Kamran Coulter

The motors are controlled with a

MDD10A solid-state motor driver

from Cytron Technologies pictured

in Figure 13. The board hosts a

standard solid-state H-Bridge

circuit for switching the motors

direction and speed. The interface

between the motors and the main

controller consists of two motor

direction GPIO signals and two

PWM speed control signals. A

commercial motor control board

was selected primarily due to

budgetary and time constraints.

Designing and manufacturing two

separate printed circuit boards (PCB) could not be accomplished within the team’s

budget and project timeline. The motor control board hosts the following features:

● Bi-directional control for 2 brushed DC motors

● Supports motor voltages from 5-25V

● 10A max current per channel

● NMOS H-Bridge for improved efficiency

● PWM frequency up to 20 KHz

● Locked-antiphase and sign-magnitude PWM operations supported

4.7 ULTRASONIC SENSOR SYSTEM

Written By: Jonathan Ballew

The robot’s collision detection system is comprised of four ultrasonic sonar sensors,

one at each corner of the robot. These sensors operate at 5V supplied from the same

voltage regulator on the Raspberry Pi HAT that supplies power to the Raspberry Pi.

A request for a distance read begins by sending a 10 us 5V pulse to the sensor’s

“TRIG” pin, triggering the transmitter to send a 40 kHz audio signal. At this time,

the “ECHO” pin raises to 5V and remains high until the receiver detects the

reflected audio signal. The Raspberry Pi measures the length of time that the ECHO

pin is high and returns that raw value in microseconds. This value can be converted

into measurement distance. Each sensor is read serially with a sensor being

triggered only after a value has been read by the previous or after the previous

Figure 13: Cytron MDD10A DC Motor Controller

 5/5/2017

 20

sensor times out. If the sensor does not detect a reflected signal after 30 ms, the

ECHO pin resets to 0V and another read can be attempted. The sensors are rated

with an accuracy of 0.3 cm and an average current draw of 15 mA.

The Raspberry Pi’s GPIO operates at 3.3 V, making the GPIO pins of the Raspberry

Pi not directly compatible with the 5V logic of the ultrasonic sensors. Connecting the

sensors to the Raspberry Pi required a logic level shifter with eight channels, two for

each sensor. The logic level shifter requires a negligible 10ns to switch between 3.3V

and 5V, having no noticeable impact on the sensor accuracy. [5]

4.8 VIDEO FEEDBACK SYSTEM

Written By: Jonathan Ballew

The team implemented a camera feedback system using the camera module v2 for

Raspberry Pi. This was chosen primarily for its native compatibility with the

Raspberry Pi and high resolution and framerate capabilities for its price. Its low

weight also allows for mounting on the end of the manipulator without much impact

on the reliability of the manipulator. The camera module connects to the Raspberry

Pi's dedicated camera-serial-interface (CSI) port with an 18" ribbon cable. The CSI

port handles all power and signals for the camera module. Camera image quality

was not considered to be of high importance as the operator only needed to be able to

traverse a well-defined track.

Camera Module V2 Specifications: [9]

● 8MP Sony IMX219 Image Sensor

● Common Supported Resolutions: 1080p30, 720p60, 480p90

● Raspberry Pi CSI Port compatibility

● Weight: 3.4 g

● Dimensions: 25mm x 23mm x 9mm

 5/5/2017

 21

5 SOFTWARE DESIGN

5.1 SOFTWARE SYSTEMS OVERVIEW

Written By: Joseph Austin

In order to interface between the operator’s control input, the Raspberry Pi

controller, and the robot’s hardware, the design needed a software system on both

the operator’s machine and the Raspberry Pi. The operator’s machine needed to

process input from a control peripheral and pass control data to the Raspberry Pi

over a socket. Moreover, the operator’s machine needed to receive feedback from the

robot during operation and display crucial information to the operator. The robot

needed software to receive control data over a socket, interpret the data, and exert

control over the robot’s servos, motors, and LED’s. The robot also needed to be able

to read sonar data and convert it into positional information. To meet these needs,

software design was broken down into the following key subsystems:

● The operator’s control and feedback interface

● Software to decode received control data

● Motor speed and direction control software

● Servo position/speed control software

● Software to read and convert positional data from four sonar sensors

● Software to stream video data to the operator’s machine

The following sections detail and justify the design and implementation of each of

these subsystems.

5.2 OPERATOR INTERFACE
Written By: Joseph Austin

The control scheme was designed around operating the robot using a Microsoft Xbox

360 controller as the control peripheral. The Xbox 360 controller provides a familiar

and approachable control layout, and it is easy to incorporate into control software

on the operator’s machine. Moreover, its range of both digital and analog control

inputs would easily accommodate controlling the numerous hardware systems on

the robot. The operator’s control interface is written in the Python language using

the PyGame open-source library. The software is written using the PyGame library

for its familiarity and ease of both reading data from a control peripheral and

displaying a graphical-user-interface (GUI) to the operator with feedback data from

the robot.

Software on the operator’s machine polls input data from the Xbox 360 controller

every 0.1 seconds. This time interval was selected empirically; reading slower than

this interval lead to degraded control response from the robot, while reading faster

than this interval showed no noticeable improvement in control response. The state

 5/5/2017

 22

of every button, analog stick, and trigger is read simultaneously, and the values are

saved to an object. The control interface compares the values saved to the object to

values stored in the previous iteration of polling control input. If a value differs, a

button has been pressed or released, or some stick or trigger has changed position.

Once the program determines a state change of control input, it constructs a

command string to send over a non-blocking socket to the robot.

Each command is a 7-byte string, with the button, stick or trigger indicated in the

first two bytes of the string and an analog value, if applicable, in the remaining 5

bytes. This allows analog values to encode to integers ranging from -9999 to 9999,

providing a wide range of control input values while simplifying the message

decoding process on the Raspberry Pi’s software interface. Each string message was

padded with spaces to 7 bytes to ensure every 7 bytes read by the Raspberry Pi was

only one command. To prevent flooding the communication socket with commands

and simplify the control scheme, the program sends only one of each type of button

press, stick movement along the X-axis, stick movement along the Y-axis, and

trigger press per input poll. The following are examples of command strings the

operator’s machine would send to the Raspberry Pi:

● “LX-5493” – indicates the Left Stick in the X direction was reading a value

54.93% of completely to the left.

● “A “– indicates the A button was pressed down.

● “RY102” – indicates the Right Stick in the Y direction was reading a value of

10.2% of completely up.

The control scheme is divided into the three modes: motor mode, manipulator mode,

and routine mode. Pressing the start button on the controller cycles between each of

the three modes. This was done to allow each mode to have the full range of buttons

on the Xbox 360 controller, if needed. Motor mode allows the operator control over

the motors and headlights, as well as positioning the base of the arm and the tip of

the arm to reposition the camera while driving. Manipulator mode allows control of

each of the servos on the manipulator arm separately. Lastly, routine mode allows

the operator to run pre-programmed routines for different portions of the course.

These routines included folding the manipulator arm to fit in the tunnel, reaching

the manipulator down to secure the bolt, raising the manipulator into a position to

deliver the bolt, and moving the effector between fully retracted or fully extended.

Pictured below in Figure 14 is the complete control layout.

 5/5/2017

 23

Figure 14: Xbox Control Layout

After sending each group of commands, the program will poll the socket buffer for

any strings received from the robot. This is done to allow the operator’s machine to

display feedback information from the Raspberry Pi to the operator. The interface

prints string messages from the robot and renders sonar positional data to the

screen in a GUI. Pictured below in Figure 15 is the GUI the operator sees during

robot operation.

Figure 15: Sensor Data GUI

 5/5/2017

 24

The GUI displays the status of each of the four sonars, and it is only updated if a

sonar’s state changes to prevent unnecessary processor load when rendering the

frame. A warning symbol indicates a sonar is reading “too close” (less than 10

centimeters), a check mark indicates the sonar is reading a value that is “ok”

(between 10 and 100 centimeters), and a question mark indicates the sonar reading

may be unreliable (greater than 100 centimeters). Moreover, any time the GUI

draws a warning symbol to the screen, it plays a beep to warn the operator that the

robot is dangerously close to collision.

The largest fault of the operator’s interface is its complicated design. Because the

robot needed to be able to perform a wide range of operations, the control scheme

became increasingly more complicated as additional features were implemented. A

better solution would design a more simplified control scheme using a controller

with a greater number of inputs, such as a Steam controller. The modes of operation

could be redesigned to require fewer types of button presses and stick values to

function, or the three operational modes could be simplified to the extent of being

removed entirely.

Second, the GUI displayed to the operator is overly simplistic and its separation

from the video stream did not prove to be an ideal means of relaying feedback from

the robot to the operator. The ideal solution would be to integrate the feedback from

the Raspberry Pi directly into the camera stream interface to remove the need for

looking between multiple windows for operational data.

5.3 COMMUNICATION SOFTWARE

Written By: Joseph Austin

Once the operator’s machine sends a command over the socket, the robot needed to

be able to receive, decode and execute the command. Moreover, the Raspberry Pi

needed to be able to send operational information, sonar data, and video data to the

operator while they were manipulating the robot. Lastly, software on the robot’s end

needed to be able to determine if the connection with the operator had been

unexpectedly lost, and, if it had, and restart the socket.

To accomplish this, the Raspberry Pi first opens a non-blocking socket, acting as a

server. The socket is nonblocking to allow the Raspberry Pi to continuously read and

transmit data from the sonars even if no command is received. If the socket were

blocking, the program could only transmit sonar data as often as it receives

commands or the socket times out. The socket will only block until a client connects.

Afterward, it will time out immediately if the socket buffer is empty.

The communication interface processes commands from the buffer one at a time. The

program determines the type of control input from the first two bytes of the 7-byte

command and will read the remaining 5 bytes as an analog integer value if

 5/5/2017

 25

applicable. Analog values are used to control motor speed and direction, as well as

servo positions and speeds. Following each poll of the socket buffer, the Raspberry Pi

will poll each sonar sensor sequentially and determine which, if any, sonar states

have changed (transitioned from reading values in one range to reading values in a

different range). The Raspberry Pi will then construct a string with the number of

the sensor that underwent a state change (0 being front-right, 1 being front-left, 2

being back-right, and 3 being back-left) followed by either “c” for close, “o” for okay,

or “f” for far.

To determine if communication with the operator is errant or has unexpectedly

closed, the program keeps track of the time at which it received the most recent

command. For every one second a command is not received, the robot sends the

message “<3” to the operator’s machine, requesting a response. If the operator’s

machine is still connected, it will read this message in the buffer and immediately

send “<3” back to the Raspberry Pi to indicate that the operator is still connected. If

the robot goes two seconds without receiving any response from the operator, the

Raspberry Pi stops the motors and the servos powered off. If three seconds pass

without a response, loss-of-signal is declared. In the case of loss-of-signal, the robot

closes the socket connection and reboots the server, blocking until the client

reconnects.

5.4 SERVO INTERFACING SOFTWARE

Written By: Joseph Austin

Control of both the servos and motors is performed using the PWM signal driver on

the custom Raspberry Pi HAT. To interface with the PWM driver, the control

software on the Raspberry Pi writes I2C values to the PWM IC using the Pi’s GPIO

pins and the pigpio open-source library. The I2C value written indicates which

channel to write to and what PWM value to set the channel to. The PWM value

written determines either the speed of a motor or continuous-rotation servo or the

angle of a positional servo depending on the channel the value was written to.

The positional servos accept a PWM value between X and Y that indicates an angle

to rotate to. To control the servos, the control software first converts values from the

left stick, right stick, and trigger commands into percentages. The percentages are

then multiplied by a servo speed value, which the operator can change with the D-

Pad and ranges from 0 to 100. The servo speed integer indicates how much to add or

subtract at a time from the current PWM value on any channel. The percentage

times the servo speed is then added or subtracted from the corresponding PWM

value on the channel of whichever servo the operator is controlling. The operator

controls the continuous rotation servos with only digital inputs from the controller

(the left and right bumpers for the base, and the D-Pad for the effector). In the case

that the operator is driving the base or the effector servos, the program only writes

either the maximum speed value in one direction or the stop value to the channel.

 5/5/2017

 26

5.5 MOTOR CONTROL SOFTWARE
Written By: Joseph Austin

The motors accept a PWM value ranging from 0 to 4095, with 0 being stopped and

4095 being max throttle. 4096 is a special integer that entirely powers off the

channel. Two direction pins on the motor controller board are set or reset to change

the direction of either pair of motors.

The left stick in the X direction is used to steer the robot. The right and left triggers

are used for throttle and reverse. However, because the robot’s motion platform uses

slip steering, the implementation of this control scheme in software is somewhat

complicated.

First, the Raspberry Pi reads the value from the left stick (from -9999 to 9999) and

converts it to a percentage out of 10,000. If the value is negative, the robot needs to

turn left. The left motors would need to be driven slower than the right motors or

backward. Likewise, if the value is positive, the robot needs to turn right, and the

right motors are driven slower than the left or backward. The percentage value read

from the left stick is multiplied by the current maximum steering value (which the

operator can manipulate with the D-Pad and ranges from 0 to 4000). Then, the

Raspberry Pi reads the value from either the left trigger or the right trigger (with -

9999 indicating left being fully pressed and 9999 indicating right being fully

pressed) and converts this to a percentage out of 10,000 as well. This percentage is

multiplied by the current maximum throttle value (which the operator can also

manipulate with the D-Pad and ranges from 0 to 4000). The software then adds the

throttle value to the steering value. If the value on the left motors is negative, the

left motor direction pin for the left motors is driven low and the value is made

positive before it is asserted. Likewise, if the value on the right motors is negative,

the right motor direction pin is driven low and the value is made positive. Each

value is then written to the corresponding PWM channel to drive each motor. The

result is an intuitive system that accommodates both turning in place and turning

while driving forward or backward.

5.6 CAMERA FEEDBACK SOFTWARE
Written By: Joseph Austin

In order to display video data from the Raspberry Pi camera module to the operator,

we made use of an open-source web-streaming interface known as the “Rpi-Cam-

Web-Interface.” This quickly and seamlessly allows incorporation video streaming

into the design, as well as allow the operator to change the stream size and quality

on the fly, as they needed. The software simply required initialization at boot via an

auto-start script, and video data from the Raspberry Pi camera streams to a web

interface over port 4620 automatically. The operator could then connect to the IP of

the Raspberry Pi across port 4620 using any modern web browser and log in to the

 5/5/2017

 27

password-protected interface. From there, the operator has access to the camera

stream and video size and quality.

5.7 ULTRASONIC SENSOR SOFTWARE
Written By: Joseph Austin

To allow the operator a greater positional awareness during operation, four sonar

sensors continuously read distance data and report changes to the operator. Each

sonar sensor sends an acoustic pulse once its trigger pin is driven high. The sonar’s

echo pin is driven high until the sensor receives the acoustic pulse back, at which

time the sonar drives its echo pin low. The Raspberry Pi measures the time it takes

from driving the trigger pin high to reading a low voltage from the echo pin with a

timeout of one second. The sonar interface converts this time reading into a

centimeter distance by multiplying by the time reading by a conversion factor. If a

sonar reads a state change (i.e. transitions from reading “close” to reading to reading

“ok,” or “ok” to “far,” etc.), the program will construct a string with the number of the

sonar followed by “c,” “o,” or “f,” and will send the string to the operator’s machine.

6 SPECIFICATIONS

6.1 CRITICAL SPECIFICATIONS
Written By: Joseph Austin

This section defines specifications critical to completing the Mercury Robotics

Competition track and all competition objectives.

The competition robot must:

 Be mobile.

 Be able to be controlled over the internet from a location of at least 50 miles

away.

 Be able to relay sensor read information back to the operator over the

internet during the competition.

 Be able to connect to an 802.11b/g/n Wi-Fi router with an ESSID that is not

broadcast and has no security protocol.

 Be able to navigate a dark tunnel.

 Be able to complete the track in under 10 minutes.

 Be able to secure a quarter-inch, steel lag bolt.

 Be able to ascend a 30-degree see-saw incline and descend without dropping

the lag bolt.

 Be able to deposit the lag bolt in one of three drop-off points.

 Have a width and length no greater than 18 inches by 18 inches, and have a

height no greater than 12 inches.

 Be able to detect loss of signal in under 5 seconds.

 Be able to demonstrate a loss-of-signal routine and a reconnection routine in

the event that internet connection is lost. The robot must not move during

 5/5/2017

 28

the loss-of-signal event. The robot must demonstrate that the operator can

control it once connection is restored.

 Use no more than three ports total for internet communication.

 Demonstrate safe and proper usage of lithium polymer batteries.

 Be able to operate for at least 15 minutes continuously.

 Be able to drive at a maximum speed of least at 7 ft/s

 Must weigh less than 10 pounds.

6.2 DESIRABLE SPECIFICATIONS
Written By: Joseph Austin

This section defines specifications that are desirable for the robot to meet.

The competition robot should:

 Be easy to control.

 Keep latency between operator input and robot control over the internet

less than 500ms.

 Keep latency of the transmission of sensor data over the internet less than

500ms.

 Achieve a speed of at least 10 feet per second during the sprint section.

 Prevent collision with the track wall and obstacles entirely.

 Complete the track in less than 4 minutes to allow for an additional run if

desired.

 Be able to deposit the payload in the highest-scoring drop-off point.

 Have a maximum nominal communication latency no greater than 1000ms.

 5/5/2017

 29

7 WORKS CITED

[1] Mercury Robotics, 21 August 2016. [Online]. Available: mercury.okstate.edu.

[Accessed 1 January 2017].

[2] C. Bensen, "Drive Motor Sizing Tutorial," Robot Shop, 1 Feburary 2012.

[Online]. Available: http://www.robotshop.com/blog/en/drive-motor-sizing-

tutorial-3661. [Accessed 1 January 2017].

[3] Cytron Technologies, "User Manual," 1 December 2013. [Online]. Available:

http://www.robotshop.com/media/files/pdf/user-manual-mdd10a.pdf. [Accessed

1 January 2017].

[4] Raspberry Pi, "raspberrypi/hats," Raspberry Pi, 3 March 2016. [Online].

Available: https://github.com/raspberrypi/hats. [Accessed 1 January 2017].

[5] Demension Engineering, "A beginners guide to switching regulators,"

Demension Engineering, [Online]. Available:

https://www.dimensionengineering.com/info/switching-regulators. [Accessed 1

January 2017].

[6] Raspberry Pi, "Raspberry Pi 3 Model B," Raspberry Pi, [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. [Accessed 1

January 2017].

[7] Raspberry Pi, "Camera Module," Raspberry Pi, [Online]. Available:

https://www.raspberrypi.org/documentation/hardware/camera/. [Accessed 1

January 2017].

[8] NXP, "PCA9685," NXP, 2015.

[9] Texas Intruments, "TXB0108," Texas Intruments, 2014.

[10] Texas Intruments, "TPS54540," Texas Instruments, 2017.

[11] On Semiconductor, "FDD6637," On Semiconductor, 2015.

 5/5/2017

 30

8 APPENDIX

8.1 APPENDIX I - SCHEMATICS

Written By: Kamran Coulter

 5/5/2017

 31

 5/5/2017

 32

 5/5/2017

 33

8.2 APPENDIX III – BILL OF MATERIALS
Written By: Kamran Coulter, Jonathan Ballew

Description Qty Unit Price

MOSFET P-Ch ENH FET -20V 52mOhm -5.0V 2 $0.38

Bipolar Transistors - BJT MATCHED PNP SM SIGNAL TRANS 2 $0.43

Translation - Voltage Levels 8-Bit Bi-directional V-Level Translator 2 $1.53

Standard LEDs - SMD Super Green, 565nm 2.2V, 15mcd 3 $0.17

Standard LEDs - SMD Hyper Red, 645nm 15mcd, 20mA 3 $0.27

LED Display Drivers I2C Bus LED Controller 28-Pin 2 $2.24

MOSFET 35V PCH PowerTrench MOSFET 2 $0.90

Thick Film Resistors - SMD 1/8watt 75Kohms 1% 100ppm 10 $0.049

Switching Voltage Regulators 42V,5A,SD DC-DC Converter 3 $4.17

Thick Film Resistors - SMD 1/8watt 71.5Kohms 1% 100ppm 10 $0.049

Thick Film Resistors - SMD 1/8watt 60.4Kohms 1% 100ppm 10 $0.049

Thick Film Resistors - SMD 1/8watt 11Kohms 1% 100ppm 10 $0.049

Thick Film Resistors - SMD 1/8watt 11.5Kohms 1% 100ppm 10 $0.049

Thick Film Resistors - SMD 1/8watt 8.87Kohms 1% 100ppm 10 $0.049

Fixed Inductors XAL4020 High Current 2.2 uH 20 % 5.5 A 3 $1.80

Schottky Diodes & Rectifiers SCHOTTKY DIODE 5A, 40V (Green) 3 $0.68

Multilayer Ceramic Capacitors MLCC - SMD/SMT 47uF 16Volts 10% 3 $1.27

Multilayer Ceramic Capacitors MLCC - SMD/SMT 4.7uF 25Volts 20% 10 $0.064

Multilayer Ceramic Capacitors MLCC - SMD/SMT 0805 0.1uF 16volts X7R 10% 10 $0.051

Multilayer Ceramic Capacitors MLCC - SMD/SMT 2.7nF 50V X7R 10% 10 $0.037

Multilayer Ceramic Capacitors MLCC - SMD/SMT 39pF 50V NPO 5% 10 $0.048

Thick Film Resistors - SMD 1/8watt 147Kohms 1% 100ppm 10 $0.049

Slide Switches SPDT On-On 3 $0.39

Aluminum Electrolytic Capacitors - SMD 470uF 16 Volts 0.2 2 $0.68

Headers & Wire Housings 5 CKT. 2.5MM ASSY VERTICAL 250V 3A 3 $0.68

Headers & Wire Housings 2.5 TO BOARD HOUSING 10 $0.181

Headers & Wire Housings 2.50MM 4P VERT HDR FRCTN POS LOCK 10 $0.472

Headers & Wire Housings 5 CKT 2.5MM HSNG 3 $0.28

Headers & Wire Housings MiniLock 2.5mm Hdr Vrt 3Ckt Fric&PosLck 10 $0.385

Headers & Wire Housings 2.50MM HSG 01X03P POS LOCK 10 $0.143

Headers & Wire Housings MN-LK TERM 22-28G F Cut Strip of 100 100 $0.055

Thick Film Resistors - SMD 1/8watt 3.9Kohms 1% 10 $0.049

Thick Film Resistors - SMD 1/8watt 47Kohms 1% 100ppm 10 $0.049

Thick Film Resistors - SMD 1/8watt 220ohms 1% 100ppm 20 $0.049

Thick Film Resistors - SMD 1/8watt ZEROohm Jumper 20 $0.042

Thick Film Resistors - SMD 1/8watt 4.7Kohms 1% 10 $0.048

 5/5/2017

 34

Description Qty Unit Price

Multilayer Ceramic Capacitors MLCC - SMD/SMT 0805 10uF 6.3volts X5R 10% 10 $0.083

Thick Film Resistors - SMD 1/8watt 10Kohms 1% 100ppm 30 $0.049

MOSFET MOSFET N-CHANNEL SOT-523 10 $0.198

Fixed Terminal Blocks 2P SIDE ENTRY 2.54mm 3 $0.52

Thick Film Resistors - SMD 1/8watt 470ohms 1% 100ppm 10 $0.049

Thick Film Resistors - SMD 1/8watt 19.1Kohms 1% 10 $0.049

Raspberry Pi 3 Model B 1 $43.75

Raspberry Pi Camera Module V2 1 $29.89

18” Ribbon Cable 1 $6.91

HC-SR04 Ultrasonic Sensors (4 Pack) 1 $9.79

Hitec HS-311 Servo 3 $11.95

Parallax Continuous Rotation Servo 1 $12.09

Unbranded 9g Servo 1 $4.95

32 GB Micro SD Card 1 $9.99

10A Dual Channel DC Motor Driver 1 $23.49

Neodymium Magnets 18mmD x 3mm (3 Pack) 1 $5.49

BaneBots Wheel 8 $3.00

BaneBots Hex Wheel Hub 4 $4.50

Venom 20C 3S 4000mAh 11.1V LiPo Battery 1 $41.99

970 RPM Econ Gearmotor 4 $14.99

5mm x 11mm x5mm Ball Bearings (8 Pack) 1 $7.99

Nylon Screw and Nut Set (2 Pack) 1 $2.95

5mm x 4’ Wooden Dowel 1 $0.75

1.75mm ABS 3D Printing Filament 2 $19.89

*M3 6mm Pan Head Screw 60pcs 1 $6.59

*M3 50mm Brass Standoff Male to Female 30 1 $11.69

*M2.5 Brass Standoff Kit 120pcs 1 $11.99

*Machine Screw Kit 2 $3.49

*Steel Washer Kit 1 $3.49

*Wire Screw Terminal Block (5 Pack) 1 $10.99

*5mm Round White LEDs (100pcs) 1 $3.08
*Starred materials were purchased in large quantities despite the robot only requiring a small number

of each. As such their listed prices do not accurately describe the value of the materials used on the

robot itself.

 5/5/2017

 35

8.3 APPENDIX IV – ADVISOR MEETING SUMMARY

DATE SUMMARY

1/19/17 Initial meeting, Meeting times established, Joint meetings agreed

upon, General subsystems discussed, Housekeeping task given.

1/26/17 Member roles defined, Initial design discussed, part order procedures

established, Told to have design finalized by week 4.

2/09/17 Proposal presentation and specifications discussed, Parts ordered

began to arrive, Motors needed to be tested ASAP.

2/16/17 Arm believed to be behind schedule, Servos ordered for arm, Design to

be finalized by next week.

2/23/17 Definitive task list from each member requested, Concern over

manipulator arm degrees of freedom, PCBs to be ordered within 10

days

3/02/17 Concern over progress on BOT, Specification document requested,

Discussion on teams perception of progress.

3/09/17 PCBs ordered, Commercial prototype demo

3/16/17 Fully functional proto demo including sensors, ramp tested, Arm

Redesign being finalized.

3/23/17 PCBs arrived and assembled, functional testing through next week,

final integration within one week, Bogotá not happening.

3/30/17 Dr. Latino Gone

4/06/17 Dr. Latino Gone

4/13/17 Final competition preparation, little to update, need for more practice

4/20/17 Competition week, no meeting required

4/27/17 No meeting required

5/04/17 No meeting required

 5/5/2017

 36

8.4 APPENDIX II – CODE

 5/5/2017

 37

 5/5/2017

 38

 5/5/2017

 39

 5/5/2017

 40

 5/5/2017

 41

 5/5/2017

 42

 5/5/2017

 43

 5/5/2017

 44

 5/5/2017

 45

 5/5/2017

 46

 5/5/2017

 47

 5/5/2017

 48

 5/5/2017

 49

 5/5/2017

 50

 5/5/2017

 51

 5/5/2017

 52

