To: Whom it may concern
From: Design Report Group: Gavin Dolsky, Crandel Fenton, Jake Sessler, & Alec Thomits
Date: 9 March 2017
Subject: Grassroots Nylon 6, 6 Production Facility

This team was assigned with proposing a grassroots design for a Nylon 6,6 production facility in the Calvert City, Kentucky area. The chemicals hexamethylenediamine and adipic acid are continually processed through a tubular reactor and granulated into Nylon pellets for market. The accompanying report includes a design for full capacity of 85MM pounds per year of nylon production and reduced capacity at 67% of max capacity. Both a hazard analysis and a control strategy are included in the facility design as well as economic analyses, in order to determine the necessary capital investment and the amount of time until profits are realized.

Your consideration of the proposed design and the accompanying documents is greatly appreciated.

Thank You,

Gavin Dolsky, Crandel Fenton, Jake Sessler, & Alec Thomits

AIChE 2017 Student Design Competition Manufacturing Facility for Nylon 6,6

Gavin Dolsky, Crandel Fenton, Jake Sessler, & Alec Thomits

Table of Contents

Chapte	r	Page
I.	Abstract	4
II.	Introduction	4
III.	Process Flow Diagram and Material Balances	5
IV.	Process Description	6
V.	Energy Balance and Utility Requirements	7
VI.	Equipment List and Unit Descriptions	9
	i. Equipment List	9
	ii. Storage Tank	10
	iii. Vessels	11
	iv. Pumps	12
	v. Heat exchangers	13
	vi. Evaporators	15
	vii. Condensers	16
	viii. Reactors	16
	ix. Dryers	17
	x. Extruders/Granulators	17
VII.	Equipment Specification Sheets	18
VIII.	Equipment Cost Summary	20
IX.	Fixed Capital Investment Summary	21
Х.	Safety, Health, and Environmental Considerations	21

XI.	Other Important Considerations	23
	i. Environmental Safety	23
	ii. Startup	23
	iii. Piping & Instrumentation Diagram	24
	iv. Controllability and Instrumentation	25
	a. Heat Exchangers	25
	b. Raw Material Solution Tanks	25
	c. HMDA Primary Mixing Stream	25
	d. Primary Mixing	25
	e. Evaporator	26
	f. Tubular and Finishing Reactor	26
	g. Nylon Melt Split for Dryers	26
	h. Dryers	26
	i. Extruder and Granulator	26
	j. Hoppers	27
XII.	Manufacturing Costs	27
XIII.	Economic Analysis	30
XIV.	Conclusion and Recommendations	31
XV.	Acknowledgements	32
XVI.	Bibliography	32
XVII.	Appendix	33

Abstract

A preliminary grass roots design was performed for a continuous nylon 6,6 polymerization process. The objective of this project was to create a safe and sustainable process for the polymerization of nylon 6,6 that produced 85 MM lbs/yr using Adipic Acid and HMDA as the constituents. Upon completing the design and economic evaluation, it is recommended that management consider moving forward with this process.

The initial investment for creating a grass roots plant for producing nylon 6,6 was determined to be \$18,800,000. Upon completing the economic analysis, the net present value for the 100 percent production was determined to be \$70,120,000 while the 67 percent production is \$31,100,000. The payback period for the 100 percent production was found to be 2.25 years with a DCFROR of 69 percent.

Some key assumptions needed to be made while creating the economic analysis. With the economic evaluation, the assumption is made that all of the product made is sold and all raw material purchased is used. While another assumption is that all of the prices for raw material, utilities, and sales price remain the same throughout the entire life of the analysis. Although these will deviate, the NPV will still be much greater than zero while the DCFROR will stay above 15 percent. Therefore, it is recommended to begin moving forward with the creation of this plant and produce nylon 6,6 pellets.

Introduction

For this project, the objective was to design a grass-roots plant for the manufacturing of nylon 6,6. This plant is to produce 85 MM pounds of nylon 6,6 each year for however many years the project team sees fit. The main goal of the design is to maximize revenue and minimize cost while keeping safety standards and practices in mind.

The nylon 6,6 product is produced from the polymerization of adipic acid and hexamethylene diamine. These two reactants will be acquired from an outside source in their purest form to feed into the process. Since the price of plastics is increasing, both the feed and product materials should increase in demand and cost in the upcoming years, making this process a profitable and attractive venture.

Process Flow Diagram and Material Balances

A process flow diagram was constructed to provide a simple yet informative overview of the full process. This diagram, along with a list of the instrumentation is provided on the following page.

	Tubular Desiccant Desiccant Pelletizing Pelletizin	R-400	D-100	D-200	FG-100	FG-200
Tubular Decisional Decisional Dellation	Tubular Desiccant Desiccant Peleuzing Peleuzing	 Tubular	Declassed	Declassed	Delletizine	Dellatiala

100% a	nd 67%	Nylon 6,6 Production
	Date:	03-08-2017
Dolsky,	Fento	on, Sessler, Thomits

After the inlet and outlet streams were calculated to achieve the desired amount of product, the total flowrate on each end was calculated and compared to each other. This is shown in Table 1 below.

In		Οι	ıt
AA (H-100)	7394.02	Nylon	10213.891
HMDA (H-200)	5879.70	Water (V-100)	2708.49
Water	4304.30	Water (V-200)	4655.641
Sum	17578.02	Sum	17578.02

Table 1: Material Balance

Process Description

To begin the process, H-100 and H-200 are halfway filled with solid adipic acid (AA) and hexamethylenediamine (HMDA), respectively. This amount will last 24 hours, so the process requires that the hoppers be filled at the beginning of each day.

The process water from an offsite entity was assumed to enter E-100 at 86°F, which is a reasonable ambient temperature for process use. After low pressure steam exchanges heat with the process water, the stream exits at 59°C (138.2°F) as stream 2. This stream splits into streams 3 and 4 that feed into the two mixing vessels, T-100 and T-200, along with the feed of the solids from H-100 and H-200. These vessels have an hour-long residence time to ensure well-mixing and dissolution in the tank.

T-100 pumps AA solution to the mixing vessel T-300 in stream 7, while T-200 also pumps HMDA solution to T-300 in stream 11, where they will once again have a residence time of one hour. In a usual nylon 6,6 process, this salt solution is equimolar in AA and HMDA, but this is not the case for this project. According to US Patent 4,442,260, if the AA to HMDA ratio is 3:1 by weight, the salt solution can concentrate to ~93% solute by weight (Larsen, 1984). This saves costing on the process vessels, evaporator (V-100), and reactor by reducing the amount of flow into and out of each piece of equipment.

After T-300 is well mixed, the solution is pumped to an agitated film evaporator V-100 via P-300 in stream 13. The purpose of V-100 is to concentrate the solution, as mentioned earlier. A jacket with low-pressure steam is applied to keep the outlet temperature of the solution at a specified temperature of 2840F. This temperature is where the vaporization takes place while keeping the pressure at one atmosphere. The evaporated steam from this process has some HMDA present in the vapor, so stream 17 is ran through a condenser and sent to an off-site wastewater treatment facility.

Before being sent to the reactor, the concentrated solution undergoes two steps. First, it needs to reach a temperature of 374oF, and the only way to do this without vaporizing is to increase the pressure to 166.3 psia. This is achieved using centrifugal pump P-500, followed by the high-pressure steam heat exchanger E-300. Exiting from the heat exchanger at these specifications, the second step before reacting is adding the remaining HMDA to achieve an equimolar solution. P-400 and E-200 get the HMDA solution from T-200 to the specs required for the reaction process, and to the connector via stream 15. Once together, stream 20 enters the reactor at the desired temperature, pressure, and composition required for optimal production.

The original idea for the reactor design was a coiled-tube, expanding diameter, based on the design steps in Giudici (1999). After simulation and costing analysis, the best option was to have four spiral-tube reactors (R-100, R-200, R-300, and R-400) connected in series to achieve the desired amount of selectivity. The final reactor exits into the finishing reactor, V-200, which is essentially an agitated film evaporator used to separate the exiting steam from the nylon liquid. This exiting steam also has side products and unreacted reactants present, so it is condensed in C-200 and sent to wastewater treatment in stream 31.

The nylon 6,6 liquid is sent to two, parallel, desiccant rotary dryers (D-100 and D-200) to be dried for four hours at 180°F. The maximum size for the dryers held a little over half (5500 lb/hr) of the product stream, which is why the decision was made to have two parallel dryers. The dried nylon 6,6 is sent from D-100 and D-200 to the extruder/granulator EG-100 and EG-200 via stream 24 and 25, respectively. The extruders transfer the nylon to the granulators where the pellets are produced and packaged for consumption.

Energy Balance and Utility Requirements

In designing this process, specific temperatures were required as to abstain from degradation of the polymer into smaller constituents. These temperatures were maintained by using heat exchangers, reactors, and electric heaters throughout the process. Below is Table 2, detailing the Energy Balances done for the heating demands.

Energy Balance (BTU/hr)						
	mCp∆T	m∆H	Temperature (To, From) (°F)	Steam Temp (°F)		
E-100	284,083.83	284,083.83	(138, 72)	320		
E-200	688,399.32	688,399.32	(374, 138.2)	489.2		
E-300	583,221.44	583,221.44	(374, 284)	489.2		
C-100	2,418,682.94	2,418,682.94	284	(113, 86)		
C-200	2,418,682.94	2,418,682.94	482	(113, 86)		
V-100	297,392.37	297,392.37	(248, 138.2)	286		
R-100	619,229.21	619,229.21	(375.1, 446)	489.2		
R-200	157,209.11	157,209.11	(446, 464)	489.2		
R-300	78,604.55	78,604.55	(464, 473)	489.2		
R-400	78,604.55	78,604.55	(473, 482)	489.2		

Table 2: Energy Balance for Process Equipment

This table shows that energy is conserved within the process and gives the temperature ranges for the cold water and steam. To show how the demand is satisfied, another table was created. Table 3 shows how each energy demand was satisfied with steam or a cooling water stream.

	Demand	Satisfied
E 100	285,000 BTU/hr to heat stream 1 from 72	285,000 BTU/hr from low pressure steam
E-100	to 138°F	as it maintains 320°F
E-200	689,000 BTU/hr to heat stream 14 from	689,000 BTU/hr from high pressure
L-200	138.2 to 274°F	steam as it maintains 489.2°F
F-300	584,000 BTU/hr to heat stream 18 from	584,000 BTU/hr from high pressure
L-300	284 to 374°F	steam as it maintains 489.2°F
C-100	2,419,000 BTU/hr condense stream 17,	2,419,000 BTU/hr from cooling water as it
C-100	saturated steam, for water treatment	is cooled from 113 to 86°F
C-200	2,419,000 BTU/hr to condense stream 30,	2,419,000 BTU/hr from cooling water as it
C-200	saturated steam, for water treatment	is cooled from 113 to 86°F
V-100	298,000 BTU/hr to heat stream 13 from	298,000 BTU/hr from low pressure steam
V-100	138.2 to 248°F	as it maintains 286°F
R-100	620,000 BTU/hr to heat stream 20	620,000 BTU/hr from high pressure
N-100	process fluid from 375.1 to 446°F	steam as it maintains 489.2°F
R-200	158,000 BTU/hr to heat stream 20	158,000 BTU/hr from high pressure
N-200	process fluid from 446 to 464°F	steam as it maintains 489.2°F
R-300	79,000 BTU/hr to heat stream 20 process	79,000 BTU/hr from high pressure steam
K 500	fluid from 464 to 473°F	as it maintains 489.2°F
R-400	79,000 BTU/hr to heat stream 20 process	79,000 BTU/hr from high pressure steam
N-+00	fluid from 473 to 482°F	as it maintains 489.2°F

Table 3: Energy Requirements and Provision

For the utilities, another table was created to show the cost in each piece of equipment. This is related to the energy requirements as the utility cost increases as the energy requirements increase. The utility costs are shown in Table 4.

Utility Requirements with SF .95		
Equipment	Utility Cost	
E-100	\$33,286.28	
E-200	\$106,727.37	
E-300	\$90,420.91	
C-100	\$5,029,662.49	
C-200	\$5,029,662.49	
V-100	\$53,374.21	
R-100	\$88,731.91	
R-200	\$22,527.14	
R-300	\$11,263.57	
R-400	\$11,263.57	
P-100	\$76.45	
P-200	\$26.89	
P-300	\$103.10	
P-400	\$2,365.44	
P-500	\$880.49	
D-100	\$78,795.00	
D-200	\$78,795.00	
EG-100	\$103,753.81	
EG-200	\$103,753.81	

Table 4: Utility Requirements for Process & Auxiliary Equipment

Equipment List and Unit Descriptions

A complete list of the equipment used for this process is given below in Table 5. It shows the component name, corresponding to the PFD, and shows the type along with the material used.

List of Equipment						
Component	Туре	Material	Size	Units		
E-100	Double Pipe	CS-shell, SS-tube	0.673	m ²		
E-200	Double Pipe	CS-shell, SS-tube	1.643	m ²		
E-300	Double Pipe	CS-shell, SS-tube	1.889	m²		
C-100	Double Pipe	SS	6.632	m ²		
C-200	Double Pipe	SS	3.195	m²		
P-100A/B	Reciprocating	SS	0.2	hp		
P-200A/B	Reciprocating	SS	0.2	hp		
P-300A/B	Reciprocating	SS	0.5	hp		
P-400A/B	Centrifugal	SS	10	hp		
P-500A/B	Centrifugal	SS	5	hp		
V-100	Agitated Film	SS	1.858	m ²		
H-100	Vertical Drum	SS clad	118.4	m ³		
H-200	Vertical Drum	SS clad	152.4	m ³		
T-100	Vertical Mixer	SS clad	2.615	m ³		
Т-200	Vertical Mixer	SS clad	1.356	m ³		
T-300	Vertical Mixer	SS clad	3.183	m ³		
SV-100	Fixed Roof	SS	3482	m ³		
SV-200	Fixed Roof	SS	4482	m ³		
R-100	Spiral Tube	CS-shell, Cu-tube	31.42	m²		
R-200	Spiral Tube	CS-shell, Cu-tube	62.83	m²		
R-300	Spiral Tube	CS-shell, Cu-tube	94.25	m²		
R-400	Spiral Tube	CS-shell, Cu-tube	117.8	m ²		
V-200	Agitated Film	SS	1.680	m ²		
D-100	Dessicant, Rotary	SS	5500	lb/hr		
D-200	Dessicant, Rotary	SS	5500	lb/hr		
EG-100	Pelletizing	SS	5500	lb/hr		
EG-200	Pelletizing	SS	5500	lb/hr		

Table 5: Equipment List and Sizes

Storage Tanks

The storage tanks are large vessels that are built to hold thirty days of raw material. These tanks also have a length to diameter ratio of three when being sized. This heuristic was used and solved for when sizing them. The vertical tanks are relatively large and need to be vertical tanks that are supported on a concrete foundation. API Fixed Roofs were chosen because the storage tank cannot be open to the air. The equation to determine the storage capacity required for thirty days is shown below as Equation (1).

$$V = \frac{q}{\rho} * \frac{24hr}{day} * 30days \tag{1}$$

Where:

q = Flowrate (kg/hr) ρ = Density (kg/m³)

The material of construction for the storage tanks was stainless steel to withstand the corrosive nature of HMDA and Adipic Acid.

Vessels

There were five vessels designed for this process: two gravity feed hoppers to feed the solid particulates into the mixing vessel below each one, and the final mixing vessel to mix the salt solution. The designing process for each of them was very similar, with a couple of distinct differences between each type.

Each of the hoppers were designed to hold one day of volume to be slowly fed into the mixing vessels. The original idea was to have a 30-day storage vessel feed into a mixing vessel, but as the design process continued, it became evident that the storage vessel was going to be much too large to feed into the mixing vessel, much less be able to store a 30 day volume above ground-level. The new one-day hoppers were sized using a heuristic of double the volume of material needed, so there was plenty of space in the upper part of the vessel when loading. The volume calculation used Equation (2) as shown below.

$$V = 2 * \frac{24\dot{m}}{\rho} \tag{2}$$

- 2

Where: V = Volume (m³) \dot{m} = Mass flowrate of water (lb/hr) ρ = Density of solution (lb/m³)

The mass flowrate was multiplied by a constant of 24 to account for the 24 hours in a day, resulting in the volume being twice the amount of volume needed for one day of solid.

Another heuristic was used to calculate the length and diameter of each of the vessels, based on the volume. This heuristic stated that the length to diameter ratio (or L/D) for each vessel should be equal to 3. This problem was solved using the Microsoft Excel Solver function, setting the volume to the previously calculated value, then solving for the length and diameter with the restrictions of Equations (3) and (4):

Length = 3 * Diameter (3) ;
$$V = \frac{\pi D^2}{4} * L$$
 (4)

An example of the calculations used is shown below in Table 6. The rest of the calculations can be found in Appendix Table 15.

Solver for L/D=3	for H-200
L (m)	12.0417
D (m)	4.0139
V (m^3)	152.37

Table 6: Dimension Optimization for H-200

For the three mixing vessels, the same design strategy was used to calculate the volume, length, and diameter, with the only difference being that these vessels had a one-hour residence time. This decision was to give the solution enough time to mix to where the outlet of the vessel had a uniformly mixed solution. This also allowed the cost of the equipment to stay at a reasonable level, due to the mixing vessels being much more expensive than the process vessels. An example of the calculations for these vessels is shown below in Table 7.

Table 7: [Dimension	Optimization	for T-200
------------	-----------	--------------	-----------

Solver for L/D=3	8 for T-200
L (m)	2.495
D (m)	0.832
V (m^3)	1.356

Pumps

When designing the pumps needed for this process, two components were considered. The first and most important aspect is the pressure differential across the pump. For this process, each pressure on the inlet and outlet of each pump was known, so the pressure difference was the inlet pressure subtracted from the outlet pressure. Once that was determined, the head was calculated via the pressure difference divided by the specific gravity.

The second aspect that needed to be considered was the flowrate of material through the pump, also known as the capacity. The volumetric flowrate for each individual pump was calculated from mass flow rates and density values.

With the pressure differential and capacity values, as well as the assumed pump and motor efficiencies from Turton, the brake horsepower (BHP) and purchase horsepower (PHP) were calculated using Equations (5) and (6) shown below (Turton, 2012).

$$BHP = \frac{Q(gpm)*H(ft)*S.G.}{3960*\varepsilon_{pump}}$$
(5) ; $PHP = \frac{BHP}{\varepsilon_{motor}}$ (6)

Where: Q = Capacity (gpm) H = Head (ft.) S.G. = Specific Gravity ε_{pump} = Pump efficiency ε_{motor} = Motor efficiency

For example, the quantities used in the design of the concentrated salt pump are shown below in Table 8.

P-500		
Head (delta P is k	nown)	
P out (barg)	6.93	
ΔP (psi)	102	
Density (lb/ft3)	60.34	
SG	0.967	
Head (ft)	243.7	
Brake Horsepo	wer	
Capacity (bpd)	668	
Capacity (gpm)	19.486	
Head (ft)	243.7	
Efficiency of Pump	0.65	
Efficiency of Motor	0.88	
ВНР	1.78	
РНР	2.03	
Buying PHP	5	

Table	8:	Example	of	Pump	Calcu	lations
10010	<u> </u>	Example	<u> </u>	i anip	carca	10110110

The first three pumps (P-100, P-200, and P-300) have a very low pressure differential, hence the low cost of each. These pumps were designed to pump from a vessel at atmospheric pressure to another vessel at atmospheric pressure. Although they were not necessary if the static head is larger than the friction losses over a short length, the pumps were implemented as a safety measure to be sure that there is no backflow in the line. The other two pumps have a large enough pressure differential and capacity to use centrifugal pumps, which are more commonly used and cost efficient.

Heat Exchangers

The heat exchangers in this process are used to heat up the process streams. This is required to maintain a specific temperature for nylon 6,6 to react and polymerize while also requiring the high temperature to mix its constituents. High pressure and low pressure steam at temperatures of 254°C and 160°C were used respectively to accomplish this. To achieve this

increase in temperature for the process, the amount of duty required needed to be calculated. It can be shown below in Equation (7).

$$Q = U_o A \Delta T_{lm} \tag{7}$$

To get the duty required, Q, for the process, use Equation (8) as follows. This is the process required to calculate the area for the heat exchanger to be able to cost it.

$$Q = \dot{m}_c c_p \Delta T \tag{8}$$

Where:

 \dot{m}_c = Mass flow rate of the cold process stream (lbm/hr) c_p = Specific heat of water (BTU/lbm °F) ΔT = Change in temperature for the process fluid (°F)

To obtain the ΔT_{lm} , Equation (9) must be used. It requires knowledge of the steam temperatures along with the inlet temperature of the cold process stream.

$$\Delta T_{lm} = \frac{(T_{in} - t_{out}) - (T_{out} - t_{in})}{LN \frac{(T_{in} - t_{out})}{(T_{out} - t_{in})}}$$
(9)

Where:

 T_{in} = The temperature in of the hot steam (°F) T_{out} = The temperature out of the hot steam (°F) t_{in} = The temperature in of the cold process fluid (°F) t_{out} = The temperature out of the cold process fluid (°F)

Once the log mean temperature difference has been calculated, U_o the overall heat transfer coefficient was calculated using sensible heat transfer values, diameters, and resistance values that are all constants for the material and fluid being used. This equation is as follows.

$$U_o = \left(\left(\frac{1}{h_i}\right) * \left(\frac{D_o}{D_i}\right) + R''_{fi} * \left(\frac{D_o}{D_i}\right) + R_W + R''_{fo} + \left(\frac{1}{h_o}\right) \right)^{-1}$$
(10)

Now that all the variables have been obtained, all that is left is solving for the area of the heat exchanger. The area was calculated using Equation (12). Solving for the area of the heat exchanger allows for the costing of it. The utilities were solved for and costed based on the mass flow rate of the steam. This equation is shown below in Equation (11).

$$\dot{m}_h = \frac{Q}{\Delta H_{vap}} \tag{11}$$

Within all of the heat exchangers, the shell contains the steam while the tubes contain the process fluid. This is due to corrosion and pressure differences. The shells are constructed using carbon steel while the tubes are made of stainless steel. These heat exchangers are also double pipe heat exchangers, due to the areas of each one being below 10 m².

Evaporators

The first evaporator in this process (V-100) is used to remove most of the water from the salt solution. Before entering the evaporator, the salt solution contains about 65% solute by mass (35% water by mass), and exits the evaporator at about 93% solute by mass (7% water by mass). To achieve this separation, the solution is brought to a temperature of 120°C (248°F) at atmospheric pressure. The amount of utility steam needed was calculated using Equation (12) as shown below.

$$Q = \dot{m}H_{vap} \tag{12}$$

Where: Q = Heat required (BTU/hr) \dot{m} = Mass flowrate of process steam (lbm/hr) H_{vap} = Heat of vaporization (BTU/lbm)

This equation specified the amount of water that needed to be vaporized from the product stream and the heat of vaporization of that stream, and used these values to obtain the heat needed by the condensing steam on shell side.

To calculate the required area for the evaporator, the log-mean temperature difference was calculated using Equation (9). This value was then used in combination with the heat required and overall heat transfer coefficient, which was calculated using Equation (10), to calculate the area, as shown below in Equation (13).

$$A = \frac{Q}{\Delta T_{lm} * U_O}$$
(13)

Where: A = Area (ft²) Q = Heat required (BTU/hr) ΔT_{lm} = Log-Mean temperature difference (°F) U₀ = Overall heat transfer coefficient (BTU/hr-ft²-°F)

After research and analysis on evaporator efficiencies and costing correlations at specific area values, the agitated film evaporator was chosen for this process.

The second evaporator (V-200) is used to separate the nylon product from the exiting steam in the reactor. It was suggested in the Giudici report that an agitated film separator is used, so the design of this process equipment was similar to that of V-100 (Giudici et al., 1999).

Unfortunately, for this design there was no steam jacket needed to evaporate the exiting steam, so the area was estimated using reasonable air cooling temperatures and condensing steam. This is not recommended, for the area was very unstable as the temperatures changed, so it is recommended in the future that another design process is used to size this agitated film separator.

Condensers

The purpose of the condensers in this process is to cool down the wastewater steam coming from separation equipment. The steam exiting from these evaporators has traces of HMDA, ammonia, and more, so once the steam has been condensed, the water is sent to an offsite wastewater treatment plant to remove impurities. The material of construction for the two condensers were chosen as a carbon steel shell and stainless steel tube. This decision was based on the tube side needing more reinforcement due to the corrosiveness of the HMDA passing through it, and the shell side temperatures and pressures being within the reasonable limits of carbon steel safety, with carbon steel being the most cost efficient choice.

The design of the condensers was similar to that of the heat exchangers, but the stream used to solve for the heat duty was being condensed, so Equation (12) was used.

The mass flowrate used was the amount of steam exiting from the evaporator. It was assumed that the heat of vaporization of this stream is very similar to that of pure water at the same temperature and pressure, since the stream consists of mostly water. These values were taken from Engineering Toolbox ("The Engineering ToolBox,").

Once the heat duty was obtained the amount of cooling water needed was calculated using a rearranged version of Equation (8), which can be found below as Equation (14).

$$\dot{m}_c = \frac{Q}{c_p \Delta T} \tag{14}$$

In the Turton costing correlations for offsite cooling water, found on pg.212, insists that when using cooling water, the maximum outlet temperature of the cooling water stream is 45°C (Turton, 2012). This restriction causes the amount of cooling water used to be a very large number, but since this was the best costing correlation for utilities available, the restrictions and prices listed were followed and the calculated flowrates were used.

Reactors

The heated salt solution is pumped into the first coiled tube reactor with an internal tube diameter of 0.4 m. Each subsequent reactor is connected to the end of the previous and begins a new internal tube diameter. After leaving the first reactor, the tube diameter increases to 0.08 m. The next reactor has a tube diameter of 0.12 m, and the final reactor has 0.15 m diameter tubes. In order to prevent the corrosion of the reactor tubes, copper was the selected

material due to its resistance to reaction with the raw materials. The outer shell of the reactors could be carbon steel since it is only exposed to steam. High pressure steam is used to provide a constant external temperature to the reactor tubes. The higher temperature helps to speed the reactions (Giudici et al., 1999). The internal temperature of the reactants was assumed to have a gradual increase as it passes through the four reactors. Through the polymerization reaction, water is produced and vaporized. Some of the unreacted hexamethylenediamine is also vaporized in the reactor, necessitating larger diameters to push the equilibrium reaction towards polymerization (Giudici et al., 1999). Each revolution of a coil was assumed to utilize 10 m of reactor distance, and the spacing between the coils is 1.25 times the diameter of the reactor tube. This was done to ensure the height of a reactor never exceeded 20 feet.

A more complete investigation into the thermodynamic properties of the Schiff base and stable end degradation products would improve the accuracy of the model. Inclusion of the effects of two-phase flow would also likely help further analysis. In addition, a working model of the reactor parameters would allow for a more complete economic analysis based on the necessary utility and feed component flow rates.

For simplicity in the reactor model, the gaseous pressure drop was assumed to be negligible compared to the pressure drop of the liquid. Later, it was decided to reduce the model further by assuming the material flows were only liquid. This was due to a lack of information regarding the vaporization constants. These assumptions were likely the cause of the failure of the reactor model. In addition, there was little data on the thermodynamic constants of the Schiff base and stable end created from the degradation of nylon 6,6. As a result, these two compounds were assumed to share the same heat capacity as nylon 6,6 and the same heat of formation as adipic acid ("Heats of formation and chemical compositions,") (Umesh Gaur, 1983) (NIST). A cross-link was assumed to share all thermodynamic data with nylon 6,6.

Dryer

The dryer was designed through rigorous research into nylon 6,6 use and drying times for different types. A vacuum batch dryer was originally considered but the flowrate requirement for the process was too high for current constraints of vacuum batch drying. A desiccant dryer with rotating honeycombs was chosen instead as only two would be required for this process instead of eleven that would be required for vacuum batch drying. The drying time, determined through research, was deemed to be four hours with a drying temperature of 180°F. This high amount of drying time is required because nylon 6,6 is a hygroscopic resin that readily attracts moisture. The moisture equilibrium desired for this process is .12%, which was deemed optimal for being sent into extrusion. No calculations were done as research was done for the entirety of the drying step (Sherman, 2005).

Extruders/Granulators

Similar to the drying apparatus, most of the design behind the extrusion came through research of other processes that used nylon 6,6. The optimal length of the extruder barrel was found to

be 24D (diameters) in length with a screw diameter of 10 inches. This should have a bimetallic structure in order to reduce wear while the screw is a double parallel screw also known as a nylon screw. With these sizes, two extruders are required to be able to handle the amount of product for this process. Through further research, the temperatures for each zone was also determined. These temperatures for each zone, adapter, and die are shown below in Table 9 (Whelan).

Table 9: Dryer	Temperature	Ranges
----------------	-------------	--------

Zone:	1	2	3	Adapter	Die
Range of Temp (°C)	265-290	275-285	280-290	280-290	270-290

The power was calculated for the extruder using Equation 15 as shown below.

$$P = \frac{\dot{m}c_p \Delta T + \dot{m} \Delta H_{fusion}}{3600}$$
(15)

Where:

P = Power (kWh) ΔT = (The melting temperature – temperature coming in) (°C) ΔH_{fusion} = Heat of fusion (kj/kg)

This equation determines the power required to heat nylon 6,6 to its molten state from the temperature that it is entering at within the feed. Another component of the extruder was finding the residence time within the barrel. Through research, the "residence time in the barrel should not exceed 2 to 3 minutes" where longer times can create degradation of the product along with the melt sticking to the barrel and screw (Whelan).Sizing and costing calculations were unable to be done due to lack of information through text. As a result, research replaced the calculations in order to determine the concerns dealing with the pelletizing extruder.

Equipment Specification Sheets

Below is Table 10, detailing the important specifications for each piece of process equipment.

Table 10: Equipment Specification Sheet

Equipment	
Vessels T-100 T-200 T-300	
Temperature (°F) 138.2 138.2 138.2	
Pressure (psia) 64.7 64.7 64.7	
Orientation Mixer Mixer Mixer	
Material SS clad SS clad SS clad	
Volume (ft ³) 105.94 105.94 70.63	
Diameter (ft) 3.54 3.54 3.12	
Reactors R-100 R-200 R-300 R-400	
Temperature (°F) 265 270 275 280	
Pressure (psia) 290 290 290 290	
Tube Tube Tube Tube	
Orientation Reactor Reactor Reactor Reactor	
CS-shell CS-shell CS-shell CS-shell	
Material Cu-Tube Cu-Tube Cu-Tube	
Tube Diameter (ft) 0.13 0.26 0.39 0.49	
Heat Exchangers E-100 E-200 E-300 C-100 C-200 V-100 V-200	
Turne Double Double Double Agitated Film Finish	ng
lype Pipe Pipe Pipe Condenser Condenser Evaporator Read	or
Area (ft ²) 7.24 17.68 20.34 71.39 34.39 20 18.0	3
Duty (Btu/hr) 284000 688000 583000 2419000 2419000 297000 11160	00
Shell Temp In/Out (°F) 320/320 489/489 489/489 86/113 86/113 286/286 482/4	00
Shell Pressure (psia) 87 609 609 64.7 64.7 87 609	
Shell Phase Vapor Vapor Vapor Liquid Liquid Vapor Vapo	r
Shell Material SS SS SS CS CS SS SS	
Tube Temp In/Out 72/138 138/374 284/374 284/284 482/482 138/248 87/12	20
Tube Pressure (psia) 90 166 166 166.3 166.3 65 64.	,
Tube Phase Liquid Liquid Liquid Cond. Cond. Liquid Cond	l.
Tube Material SS SS	
Pumps P-100A/B P-200A/B P-300A/B P-400A/B P-500A/B	
Type Recipricating Recipricating Recipricating Centrifugal Centrifugal	
Capacity (gpm) 17.3 6.1 23.3 30.7 19.5	
Head (ft) 21.9 25.6 22.7 466.9 243.7	
Pdischarge (psia) 24.4 24.4 24.4 186.2 114.1	
Shaft Power (hp) 0.2 0.2 0.5 10 5	
Material SS SS SS SS SS	
Dryers D-100 D-200	
Dessicant, Dessicant,	
Type Rotary Rotary	
Material SS SS	
Temperature (°F) 180 180	
Moisture Equil. (%) 0.12 0.12	
Capacity (lb/hr) 5500 5500	
Extruder Pelletizers EG-100 EG-200	
Type Pelletizing Pelletizing	
Screw Diameter (ft) 2.5 2.5	
Temperature Range (°F) 265-290 265-290	
Capacity (lb/hr) 5500 5500	
Hoppers H-100 H-200	
Type Vertical Drum Vertical Drum	
Volume (ft3) 4181 5382	

This process was designed for continuous nylon production and as such all of the equipment had to perform under continuous conditions. Due to the nature of the HMDA and adipic acid, the process equipment that came into contact with them had to be stainless steel in order to prevent corrosion, as indicated by the SS notation in the materials section of the equipment specification sheet. This held true until the raw materials were reacted to form the nylon salt and were processed through the tubular reactor, represented by R-100, R-200, R-300, and R-400. The condensers C-100 and C-200 operated with cooling water in the shell side and the heaters operated with steam in the shell side. Due to restraints on commercially available dryers two dryers were required, splitting the reactor flow rate in half. The same reasoning applied to the Extruder Pelletizers.

Equipment Cost Summary

Shown below is Table 11, which lists the purchase price of each piece of designed and auxiliary equipment used in the process.

Cost of Equipment				
Component	Purchase Price (USD)	Source		
E-100	\$2,691.84	Turton et al.		
E-200	\$3,501.33	Turton et al.		
E-300	\$3,670.80	Turton et al.		
C-100	\$8,634.04	Turton et al.		
C-200	\$7,395.89	Turton et al.		
P-100A/B	\$21,915.69	Turton et al.		
P-200A/B	\$20,897.21	Turton et al.		
P-300A/B	\$22,694.29	Turton et al.		
P-400A/B	\$21,781.18	Turton et al.		
P-500A/B	\$15,755.09	Turton et al.		
V-100	\$149,087.82	Turton et al.		
H-100	\$213,377.22	Turton et al.		
Н-200	\$281,906.88	Turton et al.		
T-100	\$127,218.30	Turton et al.		
T-200	\$89,583.35	Turton et al.		
T-300	\$141,562.59	Turton et al.		
SV-100	\$762,208.30	Turton et al.		
SV-200	\$896,472.84	Turton et al.		
R-100	\$79,532.40	Turton et al.		
R-200	\$145,113.30	Turton et al.		
R-300	\$216,219.05	Turton et al.		
R-400	\$273,296.73	Turton et al.		
V-200	\$146,962.89	Turton et al.		
D-100	\$90,000.00	Plastics Technology		
D-200	\$90,000.00	Plastics Technology		
EG-100	\$100,000.00	Alibaba		
EG-200	\$100,000.00	Alibaba		

Table 11: Equipment Costs

The purchase cost for most pieces of equipment was calculated using a correlation in Turton et al. (2012), the rest of which were found from online sources. An example of the costing technique for the Turton et al. prices can be found in Appendix Table 3.

Fixed Capital Investment Summary

Detailed above in the previous section, Table 11 is the purchase cost for each piece of equipment. The grass roots cost was calculated by first calculating the total module cost. The equation for the total module cost is shown below in Equation (16).

$$C_{TM} = 1.18 \sum_{i=1}^{n} C_{BM}$$
(16)

This equation is for the total module cost using the summation of the installed costs. The total module cost "refers to the cost of making small to moderate expansions... to an existing facility" while the grass roots cost is for a "completely new facility" (Turton, 2012, p 198). This equation was then put into the grass roots costing equation detailed below.

$$C_{GR} = C_{TM} + .5 \sum_{i=1}^{n} C_{BM}$$
(17)

All of the equipment costed was initially costed for the year 2001, but using the costing correlation CEPCI (Chemical Engineering Plant Cost Index), the costing was brought to the current year 2017. This was done assuming that the CEPCI for the year 2017 was still the same for the 2016 year. The ratio used is shown in Equation (18)

$$CEPCI = \frac{540.9}{397}$$
 (18)

Safety, Health, and Environmental Considerations

Safety, health, and environmental concerns were heavily considered while designing this process. To ensure that hazards were accounted for, a HAZOP analysis was done on each piece of equipment. This is shown in Tables 43 through 62 within the Appendix and details the deviation, the cause of the deviation, the consequence if that deviation were to occur and the proper action to take in order to correct the deviation. This hazard and operability study was conducted with the process design team contributing to each piece of process equipment as to possible hazards and corrections in order to determine and correct the most glaring concerns.

Concerning the safety of the designed process equipment, a 50 psi pressure component has been added when designing the equipment. This is a heuristic safety factor in order to protect from unforeseen pressure increases. Another important safety component to be added to the process is to insulate the steam lines. The insulation is required to protect workers from burns and maintain a safe working environment. While researching the pelletizing extruder, it was deemed necessary to place guards around the barrel, screw, die and granulator. The guard around the barrel protects the operator from burns as the barrel is operating around 550 °F. At these temperatures, the material is "like hot melt adhesives" and would cause severe burns (Whelan). The guard placed "between the base of the hopper and the screw" is to prevent fingers or any body part from getting caught. The die guard is to also protect from any body part getting caught while also preventing the operator from getting burned. The granulator should have a guard to prevent an operator from getting anything caught within as it can cause serious harm. This granulator is at the end of the extruder by the die and should be worked around cautiously.

The extruder is a large piece of equipment and requires many safeguards in order to be operated around safely. One such safeguard is a pressure measurement device located at the die and within the barrel. These are used to prevent high pressure situations and can give proper warning and action time to react to potentially catastrophic situations (Whelan).

Extrusion is also a messy process and there will be downtime in order to clean out the screw/barrel or clear the hopper. In any case, it is important to follow proper safety procedures while working around the equipment. The first step should always be to shut down the device, wait for it to stop operating and then unplug the power from the extruder. One such case is to never put hands within the device in order to clean anything out. Sharp equipment fills the extruding device and will cause harm to anyone not following proper procedure. The heat exchangers should be operated with caution as they are using steam that can cause burns if not handled properly. Insulation should be placed on all the steam lines for the heat exchangers, but if it is necessary to work on the steam lines the operator must follow standard operating procedure and shutdown the heat exchanger for the line to cool down or wear proper glove protection.

An important aspect of protecting the facility is an automatic sprinkler system installed in the plant. This not only protects the plant but also prevents the spread of fire and allows workers to escape safely. For the size of the plant with the material not being highly flammable, it is recommended to have approximately a sprinkler head for every 100 square feet of plant with each head discharging at 20 gallons per minute. This ensures that each head is properly covering the plant and ensures the safety of the workers. This sprinkler system would be an automatic sprinkler system where each head acts as a fire detection system. It is important to have an automatic sprinkler system in case workers are unable to reach an activation point for the system (Harry E. Hickey, 2008).

As a secondary action for fighting fires, firefighters would be trained as to what materials are being used at this plant as well as how to fight the fire if one were to break out.

Other Important Considerations

Environmental Safety

Environmental concerns were discussed as the adipic acid and hexamethylenediamine are harmful to the environment. Unreacted adipic acid and hexamethylenediamine are evaporated away from the main product along with other byproducts such as ammonia, carbon dioxide and water. This steam is then condensed within the condenser to be sent to an offsite treatment facility. This facility will ensure that this process abides by current health and safety standards while maintaining a healthy and safe environment.

Startup

A few operations need to be considered while undergoing startup for this process. The pumps need to be kept off until the flow of the process fluid has reached it. This is to ensure that the pump does not cavitate. A second operation that was taken into consideration was the residence times in vessels. The controls for the outlet of the vessels need to be kept off until the residence time has been reached for the vessel. Once the residence time has been reached, the control for the outlet flow will be opened to the correct percentage. Startup for the reactors should follow normal process procedure for startup of reactors. Operators should watch the reactors carefully and be ready for any deviations while startup is occurring. The extruder requires many checks to ensure safe operation while under startup procedure. Before operation begins, the heating system should be turned on and heated up to the correct barrel temperatures. Once this temperature has been reached, it is recommended that the temperatures "equilibrate for about 20 minutes before the material is introduced" and while this is happening, check the hopper and granulator portions for blockages. Another concern during startup for the extruder is that decomposition can occur within the die and cause the material to be "spit" up, so it is recommended that the operator, during start up, keep a safe distance while working around the die (Whelan).

Piping & Instrumentation Diagram

A piping and instrumentation diagram was created to provide a detailed view of the process and the control equipment involved in maintaining said process. The control strategy for each piece of process equipment is explained in detail in the *Controllability and Instrumentation* section.

FC	Flow Rate Control
CT	Concentration Transmitter
CC	Concentration Control
TC	Temperature Control
π	Temperature Transmitter
PC	Pressure Control
DC	Density Control
MT	Moisture Control
SC	Speed Control
+	Multiple Input Control

Controllability and Instrumentation

Process controllability and instrumentation was considered for this process. It was deemed necessary to install instruments as described below.

Heat Exchangers

The heat exchangers on the process pipelines were double pipe heat exchangers. The only way to control the process stream resulting temperature exiting these exchangers is to control either the process stream flow rate or the flow rate of the heating or cooling medium, in this case steam and cooling water. A temperature indicator was placed on the exiting process stream and, depending on the difference from the temperature set point, sends a signal to the flow valve on the steam line to increase or decrease the valve clearance in order to keep the resulting process stream at the desired temperature.

Raw Material Solution Tanks

According to the process outlined in the patent that allowed for improved nylon production, as well as material balances, the concentrations of the raw material solutions prior to the reactor had to be kept at specific conditions. In order to control both the resulting concentrations and the production rate, a cascade control strategy was proposed. The feed rate of the raw materials, hexamethylenediamine and adipic acid, was controlled by simultaneously considering the exiting process stream concentration and the incoming water flow rate with a concentration sensor and flow sensor respectively. This allowed the production flow rates to remain at required throughputs while maintaining the required concentrations for better production according to the patent. The level of both tanks were controlled through a flow rate control valve, set by material balance values, located after the centrifugal pumps.

HMDA Primary Mixing Stream

In order to set the material flow rates needed for the prepolymerization reaction, a flow control valve and flow sensor were used on the initial process stream line going to the primary prepolymerization mixing vessel. By setting this stream to the flow specified in the material balance it set the flow rate of the remaining HMDA stream headed to the secondary mixing vessel.

Primary Mixing

The incoming flow rates for this mixing vessel were set by the previous units. The only control on this vessel is the exiting flow rate which is controlled by a flow rate control valve and sensor located after both the pump and the heat exchanger on the line.

Evaporator

The evaporator is required to remove the majority of the water from the nylon salt solution. Therefore the flow off the top of the evaporator must be controlled, but also a pressure control system must be implemented. To remain within both of these constraints a cascade control strategy was used to keep the vapor flow from the top of the evaporator high enough to remove the water from the reactor while providing a pressure relief to the evaporator. The pressure would override the flow control allowing for safe vapor relief to depressurize the vessel. The temperature of the evaporator must also be closely controlled to prevent polymerization from occurring. This is accomplished by a jacket with low pressure steam circulating through it. The temperature is kept steady by a temperature sensor within the evaporator liquid hold up. The sensor then controls the flow of steam through the jacket. Level within the evaporator is controlled by a flow sensor and flow control valve located after the subsequent pump and heat exchanger.

Tubular and Finishing Reactor

The controlled variable in the tubular reactor was the temperature. The temperature was needed to be kept fairly constant in order to precipitate the polymerization reaction. For this particular reactor steam was used as the heat medium. A temperature sensor controlled the inlet flow rate of steam into the reactor. The pressure through the reactor was controlled by the increasing diameter of the process pipe, and the pressure through the following finishing reactor was controlled by a pressure sensor and a bleed line that allowed for depressurization.

Nylon Melt Split to Dryers

To achieve equal split of the material flow between the two drying and further granulation streams, a ratio control strategy was used. By taking a flow rate reading prior to the splitting valve, the ratio of ½ of the reading was used to set the valve on one of the streams thus setting the flow rate for the remaining stream.

Dryers

In order to dry the product completely prior to extrusion and granulation, two variables had to be considered. Moisture content and temperature were vital variables that had to be controlled. The moisture content indicated at what point the stream was fully dry and the temperature had to be controlled to prevent product degradation. Cascade control was once again implemented here. This allowed for temperature to be kept below the critical value for degradation and set a time period for which the process stream was held for drying.

Extruder and Granulator

The extruder consists of multiple temperature zones that must be controlled. The extruder utilized electrical heaters and as such could not be controlled by steam flow rates. Instead using electrical temperature current controls located within the extruder was the control strategy. Five temperature zones on the extruder meant five temperature controllers. A pressure sensor was also required at the end of the extruder. This allowed for adjustment of the temperatures of the extrusion process. The granulator, connected at the end of the extrusion process, possessed only one variable to control in this process. The impeller speed needed to be controlled in order to have consistent pellet size. This was again an electrical control system located on the granulator.

Hoppers

The raw material hoppers are filled with raw materials in order to provide a controllable flow rate for the continuous process. The flow rate from the hoppers to the raw material mixers was controlled with a flow rate sensor and control valve. The material flow rate was set according to the mass balances over the process. The flow rates were measured upstream of the control valves. This allowed for the required production flow rates to be achieved.

Manufacturing Costs

On pg.207 of Turton et al. the total cost of manufacturing can be calculated using Equation (19) as shown below (Turton, 2012).

$$COM = 0.280FCI + 2.73C_{OL} + 1.23(C_{UT} + C_{WT} + C_{RM})$$
(19)

Where:

COM = Cost of Manufacturing FCI = Fixed Capital Investment C_{OL} = Cost of Operating Labor C_{UT} = Cost of Utilities C_{WT} = Cost of Water Treatment C_{RM} = Cost of Raw Materials

The fixed capital investment of this project is the sum of the equipment installed costs, in addition to the grassroots factors that were mentioned earlier. The values for these numbers can be found in Table 35 of the Appendix.

For the cost of operating labor, equations from pgs.208-209 in Turton et al.'s *Estimation of Manufacturing Costs* chapter were used. Equations (20) and (21) can be found below (Turton, 2012).

$$N_{OL} = \left(6.29 + 31.7P^2 + 0.23N_{np}\right)^{0.5} \qquad (20) \quad ; \qquad OL = 4.5N_{OL} \qquad (21)$$

Where:

N_{OL} = Number of operators per shift
 P = Number of processing steps involving handling particulate solids
 N_{np} = Number of processing steps involving non-particulate solids
 OL = Total Operating Labor (rounded up to nearest whole number)

This process has only two steps that include handling particulate solids, both of which are the transportation of the solid adipic acid and hexamethylenediamine from the 30-day storage tanks to the gravity feed hoppers above the solution mixers. The number of process steps without particulate solids is any piece of equipment that includes heating, cooling, mixing, or reacting. For this process, that number totaled up to 17. When these values were input into the equation, the number of operators per shift comes out to 11.7.

The total amount of operating labor for this process is the number of operators per shift multiplied by the amount people that need to be hired per operator at the plant. This number is assumed to be 4.5 employees per operator from the Turton estimation (Turton, 2012). Once the total amount of operating labor is obtained, it can be multiplied by the average salary per operator, which was assumed to be similar to the 2010 average of \$60,000, producing the total cost of the operating labor. These values can be found in Table 12 shown below.

Operating Labor	People
Number of Operators/Shift	11.70469991
Operating Labor	53
Cost/yr Operating Labor	\$3,157,740.00

TUDIE 12: Operating Labor and Salaries	Table	12:	Operating	Labor	and	Salaries
--	-------	-----	-----------	-------	-----	----------

To obtain the cost of utilities per year, the utility cost of each individual piece of equipment was added together in Table 4, as shown previously in the utilities section.

For the wastewater treatment, a price of \$56/1000m³ was used to calculate the total amount of cost per year (Turton, 2012, p 213). This is the price used for tertiary wastewater treatment which includes filtration, activated sludge, and chemical processing. This price was multiplied by the amount of wastewater accumulated in the process, as shown below in Table 13.

Table 13: Waste Water Costs

Waste Water Treatment	Evaporator	Reactors
lb / hr	2708.49	2506.53
kg / hr	1228.55	1136.94
m3 / hr	1.3267	1.2278
m3 / yr	11622.137	10755.509
\$/m3	56	56
\$ / yr	\$650,839.67	\$602,308.53
Cost/yr Waste Water	\$1,253,148.20	

The final and most impactful component of the total cost of manufacturing was the raw material cost. The prices for these materials have been quoted from INVISTA, a large company that produces nylon and nylon technologies. The total amount of raw material needed has been back-calculated from the specified production of nylon and the assumed selectivity of the reactors. These numbers have been calculated and tabulated in Table 14 as shown below.

Table 14: Raw Material Cost

Raw Materials	АА	HMDA	H2O
kg/hr	3353.869621	2666.985005	1952.396273
kg/yr	29379897.88	23362788.64	17102991.35
\$ / kg	1.5	2.5	0.000067
\$ / yr	44069846.82	58406971.61	1145.90042
Cost/yr Raw Material	\$102,477,964.33		

Once all of the components have been obtained, the total cost of manufacturing can be calculated using Equation (19). The equation is used to calculate the values shown below in Table 15.

Table 15: Summary of All Costs

Cost/yr Utilities	\$10,845,469.93
Cost/yr Raw Material	\$102,477,964.33
Cost/yr Waste Water	\$1,253,148.20
Fixed Capital Investment	\$18,737,644.17
Cost/yr Operating Labor	\$3,157,740.00
Cost of Manufacturing (COM)	\$154,796,366.99

The working capital for this project has been estimated at approximately zero. The design for this process is based on the assumption that there is no leftover raw material after each yearly period. All raw material purchased is used and all product made is sold.

Economic Analysis

The preliminary design of this process was based on the minimization of the cost and maximization of the revenue. The results of this design method is shown on a large scale over a ten-year production period, which was determined to be the optimal amount of time that nylon production would be profitable. An example of the ten-year economic analysis is shown below in Table 16.

End of Year	2017	2018	2019	2020	
	0	1	2	3	
Production (kg Nylon/year)	0.00	38,555,000.00	38,555,000.00	38,555,000.00	
x Sales Price (\$/kg Nylon)	4.74	4.74	4.74	4.74	
Sales Revenue = Net Revenue	0.00	182,905,696.93	182,905,696.93	182,905,696.93	
-Cost of Manufacturing	0.00	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	
MACRS Depreciation Scale at 10 years:	0.00	0.10	0.18	0.14	
-Depreciation of CM	0.00	(1,873,764.42)	(3,372,775.95)	(2,698,220.76)	
-Writeoff					
Taxable Income	0.00	26,235,565.52	24,736,553.99	25,411,109.18	
Tax @ 40%	0.00	(10,494,226.21)	(9,894,621.60)	(10,164,443.67)	
Net Income	0.00	15,741,339.31	14,841,932.39	15,246,665.51	
+Depreciation of CM	0.00	1,873,764.42	3,372,775.95	2,698,220.76	
+Writeoff					
Fixed Capital:					
-Grass Roots Cost (Total Installed)	(18,737,644.17)				
Cash Flow	(18,737,644.17)	17,615,103.73	18,214,708.34	17,944,886.27	
Discount Factor (P/F)	1.00	0.87	0.76	0.66	
Discounted Cash Flow	(18,737,644.17)	15,317,481.50	13,772,936.37	11,799,054.01	
NPV @ i*=	\$70,122,531.65	NPV > 0, so the project is economically attractive			
DCFROR =	69%	DFCROR > 15%, so project is economically attractive			

Table 16: Sample Economic Analysis

It was specified in the project statement that 85MM pounds of nylon 6,6 must be produced every year. When doing research, most equipment and prices used kilograms in the calculations, so the yearly production was converted to 38.6MM kg per year. After very thorough research, it was found that the price of nylon 6,6 pellets was \$3.19 per kg in 2001 ("SRF Ltd. vs Commissioner of Customs, Chennai Respondent," 2003). After adjusting for inflation, the price of nylon 6,6 pellets are assumed to be ~\$4.74 per kg in 2017.

The tax rate was assumed to be a flat 40% over all ten years of the project life, while also using the ten year MACRS depreciation scale to depreciate the total fixed capital investment. The minimum rate of return for this project was set at 15%, which dictated the discount factor and whether or not the DCFROR was economically attractive.

In addition to the net present value (NPV) being \$70 million, the payback period for this project running at 100% capacity was 2.25 years, and the breakeven sales price for nylon 6,6 was \$4.14 per kg. The leniency of the sales price in combination with the substantial NPV make this project economically attractive.

Although it is not expected, if nylon 6,6 demand is in decline, an economic analysis has been performed for a turndown capacity of 67%. An example of this analysis is shown below in Table 17.

End of Year	2017	2018	2019	2020	
	0	1	2	3	
Production (kg Nylon/year)	0.00	25,831,850.00	25,831,850.00	25,831,850.00	
x Sales Price (\$/kg Nylon)	4.74	4.74	4.74	4.74	
Sales Revenue = Net Revenue	0.00	122,546,816.94	122,546,816.94	122,546,816.94	
-Cost of Manufacturing	0.00	(107,395,594.62)	(107,395,594.62)	(107,395,594.62)	
MACRS Depreciation Scale at 10 years:	0.00	0.10	0.18	0.14	
-Depreciation of CM	0.00	(1,873,764.42)	(3,372,775.95)	(2,698,220.76)	
-Writeoff					
Taxable Income	0.00	13,277,457.91	11,778,446.38	12,453,001.57	
Tax @ 40%	0.00	(5,310,983.16)	(4,711,378.55)	(4,981,200.63)	
Net Income	0.00	7,966,474.75	7,067,067.83	7,471,800.94	
+Depreciation of CM	0.00	1,873,764.42	3,372,775.95	2,698,220.76	
+Writeoff					
Fixed Capital:					
-Grass Roots Cost (Total Installed)	(18,737,644.17)				
Cash Flow	(18,737,644.17)	9,840,239.16	10,439,843.78	10,170,021.70	
Discount Factor (P/F)	1.00	0.87	0.76	0.66	
Discounted Cash Flow	(18,737,644.17)	8,556,729.71	7,894,021.76	6,686,954.35	
NPV @ i*=	\$31,102,285.28	NPV > 0, so the project is economically attractive			
DCFROR =	33%	DFCROR > 15%, so project is economically attractive			

Table 17: Sample of 67% Economic Analysis

All of the calculations used in the 100% capacity were also used in this 67% analysis. One key assumption that was made was the price of nylon 6,6 staying constant in this time of decreased demand. Although this will not necessarily be true, it helps compare the NPV and DCFROR between the two capacities when utilities, raw materials, and production have decreased.

Note that even when the plant was run at 67% capacity, the DCFROR was 33% and the NPV is \$31 million, both of which are economically attractive for this minimum rate of return.

Conclusion and Recommendations

After creating a preliminary grass roots design for a continuous nylon 6,6 polymerization process, it was determined that this would be a profitable process that we recommend moving forward with. For a 100 percent production process producing 85 MM lbs/yr. of nylon 6,6, the economic analysis shows a net present value over a 10-year project life to be \$70,120,000 while the 67 percent production is \$31,100,000. These values were obtained with a sales price of \$4.74/kg of nylon using an inflated price from 2001. A breakeven analysis was also performed, determining the minimum sales price of nylon 6,6 pellets to be \$4.14 for the 100 percent process and \$4.34 for 67 percent. The payback period was also determined to be 2.25 years for the 100 percent production of nylon 6,6 with a DCFROR of 69 percent and for 67 percent

production a 33 percent DCFROR. Both production rates are economically viable and allows for the production of nylon 6,6 to be stifled when demand is low.

It is recommended that management move forward with the production of nylon 6,6 as it is an economically viable option with a positive NPV and a DCFROR greater than 15 percent. For costing of the equipment, costing correlations were used as estimations for the preliminary design so it is recommended to contact the sales representatives to get more accurate costing for the equipment. Another recommendation is to find a more accurate model for costing and sizing a finishing reactor. The closest model for costing that was available was for an evaporator which has many inherent flaws.

Acknowledgements

We would like to thank AIChE for providing the project memo as it laid a solid foundation upon which the design could be completed. We would also like to thank INVISTA for providing its raw material costs that allowed us to more accurately perform an economic evaluation.

Bibliography

The Engineering ToolBox. Retrieved from <u>www.engineeringtoolbox.com</u>

- Giudici, R., Nascimento, C. A. O., Tresmondi, A., Domingues, A., & Pellicciotta, R. (1999). Mathematical modeling of an industrial process of nylon-6,6 polymerization in a two-phase flow tubular reactor. *Chemical Engineering Science*, 54(15), 3243-3249. doi:<u>http://dx.doi.org/10.1016/S0009-2509(98)00371-6</u>
- Harry E. Hickey, P. D. (2008). *Water Supply Systems and Evaluation Methods* (Vol. I: Water Supply System Concepts).
- Heats of formation and chemical compositions. Retrieved from <u>https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html</u>
- Larsen, H. A. (1984). Preparation of salt solution useful for making nylon: Google Patents.
- NIST. National Institute of Standards and Technology. from U.S. Department of Commerce <u>www.nist.gov</u> Sherman, L. M. (2005). Resin Dryers: Which Type is Right for You? Retrieved from

http://www.ptonline.com/articles/resin-dryers-which-type-is-right-for-you

- SRF Ltd. vs Commissioner of Customs, Chennai Respondent (The Customs Excise & Service Tax Appellate Tribunal 2003).
- Turton, R. B., Richard C.; Whiting, Wallace B.; Shaeiwitz, Joseph A.; Bhattacharyya, Debangsu. (2012). *Analysis, synthesis, and design of chemical processes* (4th ed.). Upper Saddle River, NJ: Prentice Hall.
- Umesh Gaur, S.-f. L., Brent B. Wunderlich, Bernhard Wunderlich. (1983). Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VIII. Polyesters and Polyamides. *Journal* of Physical and Chemical Reference Data, 12(1), 25. doi:10.1063/1.555678
- Whelan, J. G. a. T. *The Dynisco Extrusion Processors Handbook* D. DeLaney (Ed.) Retrieved from www3.dynisco.com/content/27429_Legacy_Txt.pdf

Appendix

```
%%Design Project 2: Nylon 6,6 Process
%6 Mar 2017
%% Nomenclature
\ensuremath{\$} dydt is the vector of functions of the derivative of y with respect to t.
% soln is the solution matrix for the ODE problem.
% z is a vector containing the values the independent variable.
% z0 is the initial value of z.
% zf is the final value of z.
% y is a vector containing the values of the dependent variable.
% y0 is the initial value of y.
%%Function to solve system of ODEs
function Polymerization_Simulation_onephase
%%Setup
clear; % The function will cleanse.
z0=0; zf=250; % Integral limits (m)
y0=[0.0056698 0.005670 0 0.0099269 0 0 0 0 0 0.237528 463.15 1002000 10]≯First 9⊄
kmol/s, kg/s, K, next Pa, last m
%%Call ODE to solve the system of equations and store in soln
soln=ode45(@f,[z0,zf],y0);
%% Use model solution
z=linspace(z0,zf,100); % Generate the values of z using linspace
FA=deval(soln,z,l); % Retrieve value of v(l) from soln
FC=deval(soln,z,2); % Retrieve value of y(2) from soln
FL=deval(soln,z,3); % Retrieve value of y(3) from soln
FW=deval(soln,z,4); % Retrieve value of y(4) from soln
FSE=deval(soln,z,5);% Retrieve value of y(5) from soln
FSB=deval(soln, z, 6);% Retrieve value of y(6) from soln
FCO2=deval(soln,z,7);% Retrieve value of y(7) from soln
FX=deval(soln,z,8); % Retrieve value of v(8) from soln
FNH3=deval(soln,z,9);% Retrieve value of y(9) from soln
%% Plot the solutions
plot(z,FA,'k-','LineWidth',2); % Plot yl vs. z data
hold on
plot(z,FC,'g-.','LineWidth',2); %Plot y2 vs. z data
hold on
plot(z,FL,'b--','LineWidth',2); %Plot v3 vs. z data
hold on
plot(z,FW,'r-o','LineWidth',2); %Plot y4 vs. z data
hold on
plot(z,FX,'c--*','LineWidth',2);%Plot y8 vs. z data
hold off
%% Plot formatting options
xlabel('z (m)'); ylabel('Flowrate (kmol/s)');
legend('FA','FC','FL','FW','FX');
grid on; % Add grid to plot
title('Flowrates vs. Reactor Length);% Add title to plot
    %% User specified function for dydt for the dependent variables
    function dydz=f(z,y)
```

3/7/17 10:36 PM C:... \Polymerization Simulation onephase.m 1 of 4

Figure 1: Matlab simulation for one-phase reactor

```
y(1) = y1 and y(2) = y2, etc.
   FA=v(1);
   FC=y(2);
   FL=y(3);
   FW=y(4);
   FSE=y(5);
   FSB=y(6);
   FCO2=y(7);
   FX=y(8);
   FNH3=y(9);
   WG=y(10);
   T=y(11);
   PL=y(12);
   H=y(13);
   % Insert any algebraic equations here
   R=1.9872036*10^(-3); %kcal/(K*mol)
   dt=.04; %(m)
   V=pi*dt^2/4*z;
   WL=FA/116.205+FC/146.141+FL/224.304+FW/18.015+FSE/146.141+FSB/(146.141-44.00936
+FC02/44.0095+FX/224.304+FNH3/17.0305;
   rhoL=45.88; %kg/m^3 From ASPEN, assuming the density of the mixture does not
change.
   vL=WL/(rhoL*pi/4*dt^2); %m/s
   CA=FA/(WL/rhoL);
   CC=FC/(WL/rhoL);
   CL=FL/(WL/rhoL):
   CW=FW/(WL/rhoL);
   CSE=FSE/(WL/rhoL);
   CSB=FSB/(WL/rhoL);
   CCO2=FCO2/(WL/rhoL);
   CX=FX/(WL/rhoL);
   CNH3=FNH3/(WL/rhoL);
   Ct=(CA+CC+CL+CW+CSE+CSB+CX);
   xw=CW/Ct;
   xc=CC/Ct;
   xA=CA/Ct;
   xL=CL/Ct;
   xSE=CSE/Ct;
   xSB=CSB/Ct;
   xCO2=CCO2/Ct;
   xX=CX/Ct:
   xNH3=CNH3/Ct;
   kp0=exp(2.55-.45*tanh(25*(xw-.55))+8.58*(tanh(xw-.1)-1)+(1-30.05*xc) %Reaction
rate for polymerization
   DelHap=7650*tanh(6.5*(xw-.52))+6500*exp(-xw/.065)-800;%cal/mol
   K0=exp((1-.47*exp((-xw^.5)/.2))*(8.45-4.2*xw)); %Equilibrium Constant
   Kap=K0*exp(-DelHap/(R*1000)*(1/T-1/473));
   kp=kp0*exp(-21.4/R*(1/T-1/473));
   kdl=.06*exp(-30/R*(1/T-1/566));
   kd2=.005*exp(-30/R*(1/T-1/578));
   kd2c=.32*exp(-30/R*(1/T-1/578));
```

Figure 2: Matlab simulation continued 2/4

```
kd3=.35*exp(-10/R*(1/T-1/578));
    kd4=10*exp(-50/R*(1/T-1/578));
    Rp=Ct*kp*(xA*xc-(xL*xw)/Kap);
    Rd1=Ct*kd1*xc;
    Rd2=Ct*xL*(kd2+kd2c*xA);
    Rd3=Ct*kd3*xA*xSE^.1;
    Rd4=Ct*kd4*xA*xSB^.3;
    HfA=-205*10^6; %NIST (J/kmol) solid. Heats of formation for basic reactants tw
substitute as end groups, this is for solid HMDA
    HfC=-1021.32*10^6; %NIST (J/kmol) solid.
    HfL=231*4.184*224.304*1000;%(J/kmol) solid. engineering.purdue 🖌
edu/~propulsi/propulsion/comb/propellants.html
    HfW=-285.83*10^6; %J/kmol liquid.
    HfSE=-HfC; %J/kmol based on carboxylic end groups
    HfSB=-HfC; %J/kmol based on carboxylic end groups again. These don't exist outside of
this process apparently
    HfCO2=-393.52*10^6; %J/kmol gas.
    HfNH3=-45.9*10^6; %J/kmol gas.
    HfX=231*4.184*224.304/1005*10^6;%J/kmol Assuming the crosslink is going to have the
same Hf of normal linkage.
    Hp=((HfL+HfW)-(HfA+HfC));%J/kmol
    Hdl=((HfSE+HfW)-HfC);
    Hd2=((HfA+HfSE)-HfL);
    Hd3=((HfCO2+HfSB)-HfSE);
    Hd4=((HfX+2*HfNH3)-(HfSB+2*HfA));
    IV=.036*((2*10^6)/(CA+CC))^.85;
    muL=.026*IV^2.3;
    MW=18.0153;
                 %kg/kmol Molecular weight of water
    Umono=.1645/dt; %J/(m^2*s*K) ASPEN assuming it doesn't change from the entering
mixture
    Text=254+273.15; %K HPS
    CpLw=(-203.606+1523.29*T/1000-3196.413*(T/1000)^2+2474.455*(T/1000)^3+3.8553264
(T/1000)^2)*1000/MW; %J/(kg*K) NIST
    CpLa=(-306279.6+5800.38*T-18.81314*T^2+.02070235*T^3)/116.21;
    CpLc=(-7481880+49989.26*T-106.3641*T^2+.075455*T^3)/146.14;
    CpL1=(351.2+.04682*T)*1000/224.304;%(J/kgK)This is based on a Polymath Regression of
data found from NIST. Stable end and Schiff base will use linkage heat capacity due 💅
their structures basing on a link.
    CpL=FW*MW/WL*CpLw+FA*116.21/WL*CpLa+FC*146.14/WL*CpLc+((FL+FSE)*224.304+(FSB)*
(146.141-44.0095))/WL*CpL1; %An approximation to the heat capacity of a mixture.
    g=9.81; %m/s^2
    G=(CA*116.205+CC*146.141+CL*224.304+CW*MW+CSE*224.304+CSB*224.304+CX*224.304)*V*vL*
Most momentum should be liquid anyway.
    ReL=rhoL*vL*dt/muL;
    fanning1=0;
    if ReL<3000
                       %This is from Bergman et al.
        fanningl=64/ReL;
    elseif ReL>=3000&&ReL<=5*10^6 %Assuming reactor is made of smooth tubes.
        fanning1=(.79*log(ReL)-1.64)^(-2);
    end
```

Figure 3: Continuation of Matlab simulation 3/4
```
%System of ODEs
   dHdz=-1.25*dt/10; %Self-derived
   dWGdz=0;
   dFAdz=pi/4*dt^2*(-Rp+Rd2-2*Rd4);
   dFCdz=pi/4*dt^2*(-Rp-Rd1);
   dFLdz=pi/4*dt^2*(Rp-Rd2);
   dFWdz=pi/4*dt^2*(Rp+Rdl);
   dFSEdz=pi/4*dt^2*(Rd1+Rd2-Rd3);
   dFSBdz=pi/4*dt^2*(Rd3-Rd4);
   dFCO2dz=pi/4*dt^2*(Rd3);
   dFXdz=pi/4*dt^2*(Rd4);
   dFNH3dz=pi/4*dt^2*(2*Rd4);
   dTdz=(pi/4*dt^2*(-Hp*Rp-Hd1*Rd1-Hd2*Rd2-Hd3*Rd3-Hd4*Rd4)-Umono*pi*dt*(T-Text))
(WL*CpL);
   dPLdz=-2*fanningl/(rhoL*dt)*G^2-rhoL*g*dHdz;
       dydz(1)=dFAdz;
       dydz(2)=dFCdz;
       dydz(3)=dFLdz;
       dydz(4)=dFWdz;
       dydz(5)=dFSEdz;
       dydz(6)=dFSBdz;
       dydz(7) = dFCO2dz;
       dydz(8)=dFXdz;
       dydz(9)=dFNH3dz;
       dydz(10)=dWGdz;
       dydz(11)=dTdz;
       dydz(12)=dPLdz;
       dydz(13)=dHdz;
       dydz=dydz'; % Return dydt as column vector
   end
```

```
end
```

Figure 4: Final page of Matlab simulation

Table 1: Polymath regression for heat capacity of nylon 6,6 with T in Kelvin

POLYMATH Report Linear Regression	

Model: Cp = a0 + a1*T_K

Variable	Value	95% confidence
a0	351.1703	0.0679648
a1	0.4682129	0.000144

General

Regression including a free parameter Number of observations = 28

-				
			CTL	00
	ы		511	
-		-	~ ~	

R^2	0.9999994
R^2adj	0.9999994
Rmsd	0.0054519
Variance	0.0008963

Source data points and calculated data points

	T_K	Ср	Cp calc	Delta Cp
1	330	505.7	505.6805	0.0194581
2	340	510.4	510.3627	0.037329
3	350	515	515.0448	-0.0448002
4	360	519.7	519.7269	-0.0269294
5	370	524.4	524.4091	-0.0090586
6	380	529.1	529.0912	0.0088123
7	390	533.8	533.7733	0.0266831
8	400	538.5	538.4554	0.0445539
9	410	543.1	543.1376	-0.0375753
10	420	547.8	547.8197	-0.0197044
11	430	552.5	552.5018	-0.0018336
12	440	557.2	557.184	0.0160372
13	450	561.9	561.8661	0.033908
14	460	566.5	566.5482	-0.0482211
15	470	571.2	571.2304	-0.0303503
16	480	575.9	575.9125	-0.0124795
17	490	580.6	580.5946	0.0053914
18	500	585.3	585.2767	0.0232622
19	510	590	589.9589	0.041133
20	520	594.6	594.641	-0.0409962
21	530	599.3	599.3231	-0.0231253
22	540	604	604.0053	-0.0052545
23	550	608.7	608.6874	0.0126163
24	560	613.4	613.3695	0.0304871
25	570	618.1	618.0516	0.048358
26	580	622.7	622.7338	-0.0337712
27	590	627.4	627.4159	-0.0159004
28	600	632.1	632.098	0.0019704

	Equipment								
Vessels	T-100	T-200	T-300				1		1
Temperature (°F)	138.2	138.2	138.2						
Pressure (psia)	64.7	64.7	64.7						
Orientation	Mixer	Mixer	Mixer						
Material	SS clad	SS clad	SS clad						
Volume (ft ³)	105.94	105.94	70.63						
Diameter (ft)	3.54	3.54	3.12						
Reactors	R-100	R-200	R-300	R-400					
Temperature (°F)	265	270	275	280					
Pressure (psia)	290	290	290	290					
	Tube	Tube	Tube	Tube					
Orientation	Reactor	Reactor	Reactor	Reactor					
	CS-shell	CS-shell	CS-shell	CS-shell					
Material	Cu-Tube	Cu-Tube	Cu-Tube	Cu-Tube					
Tube Diameter (ft)	0.13	0.26	0.39	0.49					
Heat Exchangers	E-100	E-200	E-300	C-100	C-200	V-100	V-200		
_	Double	Double	Double			Agitated Film	Finishing		
Туре	Pipe	Pipe	Pipe	Condenser	Condenser	Evaporator	Reactor		
Area (ft ²)	7.24	17.68	20.34	71.39	34.39	20	18.08		
Duty (Btu/hr)	284000	688000	583000	2419000	2419000	297000	1116000		
Shell Temp In/Out (°F)	320/320	489/489	489/489	86/113	86/113	286/286	482/400		
Shell Pressure (psia)	87	609	609	64.7	64.7	87	609		
Shell Phase	Vapor	Vapor	Vapor	Liquid	Liquid	Vapor	Vapor		
Shell Material	SS	SS	SS	CS	CS	SS	SS		
Tube Temp In/Out	72/138	138/374	284/374	284/284	482/482	138/248	87/120		
Tube Pressure (psia)	90	166	166	166.3	166.3	65	64.7		
Tube Phase	Liquid	Liquid	Liquid	Cond.	Cond.	Liquid	Cond.		
Tube Material	SS	SS	SS	SS	SS	SS	SS		
Pumps	P-100A/B	P-200A/B	P-300A/B	P-400A/B	P-500A/B				
Type	Recipricating	Recipricating	Recipricating	Centrifugal	Centrifugal				
Capacity (gpm)	17.3	6.1	23.3	30.7	19.5				
Head (ft)	21.9	25.6	22.7	466.9	243.7				
Pdischarge (psia)	24.4	24.4	24.4	186.2	114.1				
Shaft Power (hp)	0.2	0.2	0.5	10	5				
Material	SS	SS	SS	SS	SS				
Drvers	D-100	D-200							
	Dessicant	Dessicant							
Type	Rotary	Rotary							
Material	SS	SS							
Temperature (°F)	180	180							
Moisture Equil. (%)	0.12	0.12							
Capacity (lb/hr)	5500	5500							
Extruder Pelletizers	FG-100	FG-200							
	Pelletizing	Pelletizing							
Screw Diameter (ft)	2.5	2.5							
Temperature Range (°F)	265-290	265-290							
Capacity (lb/hr)	5500	5500							
Hoppers	H-100	H-200							
Type	Vertical Drum	Vertical Drum							
Volume (ft3)	4181	5382							
	.101								1

Table 2: Equipment descriptions of operating conditions

Table 3: E-100 excel sheet including costing correlations and utility cost

	Table 7.7 pg 176 in design book for lang factor for plant cost possibly					
	Ch 7.3					
		E-100				
		Utilities Flow			Duty Calculatio	n
	Duty	btu/hr	284083.833		Q (BTU/hr)	284083.8
	ΔH	btu/lb	893		mh (lbm/hr)	318.123
	11+11:+	Flow Poto			Cpn (BTU/IDm F)	1.4
	lh/hr	318 1220033			Tout (F)	320
	lb/vr [SE included]	2649232 851			tin (F)	72
	kg/yr [SF included]	1201670.828			tout (F)	138
	SF Included	\$29.29/thousand pounds			mc (lbm/hr)	4304.301
	Cost/yr HEX	\$33,286.28			cpc (BTU/Ibm F)	1
	Log Mean Temp	erature Difference			Area Calculatio	n
	mh	318.1229933			Q (BTU/hr)	284083.8
	cph	1.4			Uo (BTU/hr *ft^2 F)	183.9563
	mc (lb/hr)	4304.30			Delta Tim (F)	213.3009
	Density Water (ID/ft3)	62.4			A (ft^2)	7.24001
		1			A (III^2)	0.072019
	P	0 266129032				
	P'	0.266129032				
# on one-pass shells	n	1				
	F	1				
	Delta Tlm	213.3008881				
	Heat Trans	fer Coefficient	260-700 typical value for	hot fluid steam and cold fluid	l water	
sensible heat transfer for water, lower	hi	1000				
value and steam higher value	ho	1200				
	Do	0.0625				
	Di P''fi	0.048000007				
assuming low-carb Steel 14 BWG	RW	0.002				
	R''fo	0.0005				
	Uo	183.9563209				
	Cc	osting				
	К1	3.3444				
pg. 955 used double pipe; area < 10m2	K2	0.2745				
	K3	-0.0472				
	A (ft^2)	7.240009571				
	A (m^2)	2 205722614				
	Cno	1975 707342				
	cpo	1575.707542				
	C1	0				
	C2	0				
	C3	0				
	P operating (psia)	40				
	P design (barg)	5.227443				
	log Fp -	0				
	Fp	1				
	Durch	aso Cost				
	ID#	1				
	Fm	1				
	Cp (2001)	\$1,975.71				
	Cp (2017)	\$2,691.84				
	Instal	lled Cost				
	Fm	1				
	B1	1.63				
	B2	1.66				
	CDM (2001)	\$6,500.08				
	CDM (2017)	\$8,856.15				
	Install	ation Cost				
	Installation Cost	\$6 164 21				

	Page 102 for Grassroots	cost				
	rage 155 for Grassroots	COST				
		F 200				
		E-200				
		Utilities Flow			Duty Calculatio	n
	Duty	btu/hr	688399.3151		Q (BTU/hr)	688399.3
	ΔH	btu/lb	730.2		mh (Ibm/hr)	942.7545
					cph (BTU/lbm F)	1.07
	Utility	Flow Rate			Tin (F)	489.2
	lb/hr	942.7544715			Tout (F)	489.2
	lb/yr [SF included]	7850976.413			tin (F)	138.2
	kg/yr [SF included]	3561140.093			tout (F)	374
	SF Included	\$29.97/thousand pounds			mc (lbm/hr)	4268.78
	Cost/vr HEX	\$106 727 37			cnc (BTU/lbm E)	0 6830
	COSCI YI TIEX	Ş100,727.37				0.0055
	Log Wean Temp	erature Difference			Area Calculatio	n
	mh	942.7544715			Q (BTU/hr)	688399.3
	cph	1.4			Uo (BTU/hr *ft^2 F)	183.9563
	mc (lb/hr)	4268.78			Delta Tlm (F)	211.6475
	Density Water (lb/ft3)	62.4			A (ft^2)	17.68123
	cpc (BTU/lb F)	0.6839			A (m^2)	1.642639
	R	0				
	Ρ	0.671794872				
	Ρ'	0.671794872				
# on one-pass shells	n	1				
a chief publishens	 F	1				
	Dolta Tim	211 6475200				
		211.0475299				
	Heat Trans	fer Coefficient	260-700 typical value f	or hot fluid steam and cold f	luid water	
sensible heat transfer for water, lower	hi	1000				
value and steam higher value	ho	1200				
	Do	0.0625				
	Di	0.048666667				
	R"fi	0.002				
assuming low-carb. Steel 14 BWG	RW	0.00025				
	R"fo	0.0005				
	llo	183 9563209				
		200.000200				
	C.	sting				
	K1	2 2444				
	K1 K2	5.5444				
pg. 955 used double pipe; area < 10m2	KZ	0.2745				
	K3	-0.0472				
	A (ft^2)	17.68123149				
	A (m^2)	1.642641746				
	log Cpo	3.401373662				
	Сро	2519.844042				
	C1	0.03881				
	C2	-0.11272				
	C3	0.08138				
	Poperating (nsia)	116 2				
	P design (harg)	10.5				
		0.000522500				
	rog rp	0.008532596	ļ			
	гр	1.019841302				
	Purch	ase Cost				
	ID#	1				
	Fm	1				
	Cp (2001)	\$2,569.84	l			
	Cp (2017)	\$3,501.33				
	Insta	lled Cost				
	Fm	1				
	B1	1.63				
	B2	1.66				
	Cbm (2001)	\$8 373 78				
	Chm (2017)	\$3,373.20 \$11 402 22				
	2011 (2017)	Ş11,400.55				
	Install	ation Cost				
	Install					
	Installation Cost	\$7,907.01				

Table 4: E-200 excel costing sheet and utility cost

	T-1-1- 7 7 - 4701 - 1-1					
	Table 7.7 pg 176 in desi	gn book for lang factor for	plant cost possibly			
	Ch 7.3					
		E-400				
		Utilities Flow			Duty Calculatio	n
	Duty	htu/hr	E92221 442E			E92221 /
	ALL	btu/m	720.2		cc (DTO/III)	700 71 47
	ΔΠ	טועווט	730.2			/96./14/
					cph (BIU/Ibm F)	1.4
	Utility	Flow Rate			Tin (F)	489.2
	lb/hr	798.7146569			Tout (F)	489.2
	lb/vr [SF included]	6651456.049			tin (F)	284
	kg/yr [SE included]	3017047 252			tout (F)	374
	C Included	¢20.07/thousand nounds			ma (lbm /br)	10600 75
						10000.75
	Cost/yr HEX	\$90,420.91			cpc (BTU/Ibm F)	0.6113
	Log Mean Temp	erature Difference			Area Calculatio	n
	mh	798 7146569			O (BTU/hr)	583221 4
	anh	1.4			Up (DTU/br *f+A2 F)	102 0562
	cpn	1.4				183.9563
	mc (lb/hr)	10600.75	From Hysys		Delta Ilm (F)	155.894
	Density Water (lb/ft3)	62.4			A (ft^2)	20.33712
	cpc (BTU/lb F)	0.6113			A (m^2)	1.889379
	R	0				
	Р	0 438596/01				
	P'	0.430530491				
11	<u>'</u>	0.438590491				
# on one-pass shells	n	1				
	F	1				
	Delta Tlm	155.8939974				
	Linet Trees	for Coofficient	200 ZOO trusi and undure for a		1	
	Heat frans	rer coefficient	260-700 typical value for I	not fluid steam and cold fluid	i water	
sensible heat transfer for water, lower	hi	1000				
value and steam higher value	ho	1200				
	Do	0.0625				
	Di	0.048666667				
	R''fi	0.002				
and the law mark the all 14 DWC	D) 4/	0.002				
assuming low-carb. Steel 14 BWG	RW	0.00025				
	R''fo	0.0005				
	Uo	183.9563209				
	Co	osting				
	K1	2 2444				
	K1	3.3444				
pg. 955 used double pipe; area < 10m2	K2	0.2745				
	К3	-0.0472				
	A (ft^2)	20.3371164				
	A (m^2)	1.889381767				
		3 416645921				
	Cno	3640 033525				
	chn	2010.032535				
	C1	0.6072				
	C2	-0.921				
	C3	0.3327				
	Poperating (ncia)	116 3				
	D docign (barre)	10.0				
	P design (barg)	10.484513				
	log Fp	0.01378834				
	Fp	1.032258197				
	Purch	ase Cost				
	ID#	1				
	Em	<u>ا</u> م				
		1				
	Ср (2001)	\$2,694.23				
	Cp (2017)	\$3,670.80				
	Insta	lled Cost				
	Em	1			L	
	01	1				
	DT	1.63				
	B2	1.66				
	Cbm (2001)	\$8,587.01				
	Cbm (2017)	\$11,699.53				
	Install	ation Cost				
	Installation Cost					
	installation Cost	\$8,028.73				

Table 5: E-400 excel costing sheet and utility cost

Table 6: C-100 Condenser for steam from evaporator costing sheet and utility cost

	Table 7 7 ng 176 in desi	on book for lang factor for	nlant cost nossibly			
	Ch 7 2	gir book for lang factor for				
	CII 7.5	0.100				
		C-100				
		Utilities Flow			Duty Calculation	on
	Duty	btu/hr	2418682.937		Q (BTU/hr)	2418683
	ΔH	btu/lb	893		mh (lbm/hr)	2708.49
					cph (BTU/lbm F)	1.02
	Litility	Flow Rate			Tin (F)	28/
	Uh /h a				Taut (F)	204
		89380.83			Toul (F)	264
	ib/yr[SF included]	746002440.6			tin (F)	86
	kg/yr [SF included]	338380739			tout (F)	113
	SF Included	\$14.80 / 1000 m^3			mc (Ibm/hr)	89580.85
	Cost/yr HEX	\$5,029,662.49			cpc (BTU/Ibm F)	1
	Log Mean Temr	perature Difference			Area Calculatio	n
	mh	2708 401521				2/19692
		2708.491331				2410003
	cpn	1.02			00 (BTU/nr *ft^2F)	183.9563
	mc (lb/hr)	89580.85	From Hysys		Delta Tlm (F)	184.1703
	Density Water (lb/ft3)	62.4			A (ft^2)	71.39121
	cpc (BTU/lb F)	1			A (m^2)	6.632457
	R	0				
	Р	0.136363636				
	P'	0 136363636				
# on one-nass shells	n	0.150505050	1			
n on one-pass silens	г.	<u>ا</u>	1			
	F	1				
	Delta Tim	184.1702603				
	Heat Trans	fer Coefficient	260-700 typical value for he	ot fluid steam and cold flu	id water	
sensible heat transfer for water, lower	hi	1000				
value and steam higher value	ho	1200				
value and steam night value	Do	0.0625				
	Do	0.0625				
	Di	0.048666667				
	R"fi	0.002				
assuming low-carb. Steel 14 BWG	RW	0.00025				
	R"fo	0.0005				
	Uo	183.9563209				
	C.	acting	Double Dine HEX K values	Fixed Tube HEV K values		
		osting	Double Pipe HEX K values	FIXED TUDE HEX K Values		
	K1	4.3247	3.3444	4.3247		
pg. 955 used double pipe; area < 10m2	К2	-0.303	0.2745	-0.303		
	КЗ	0.1634	-0.0472	0.1634		
	A (ft^2)	71.39120688				
	A (m^2)	6.632466567				
	log Cpo	3.53808273				
	Сро	3452 094933				
		3432.034333				
	C1	0.00001	0.000	0.00001		
	C1	0.03881	0.6072	0.03881		-
	L2	-0.11272	-0.921	-0.11272		
	C3	0.08138	0.3327	0.08138		
	P operating (psia)	116.3				
	P design (barg)	10.484513				
	log Fp	0.008532596				
	Fp	1.019841302				
	Durch	hase Cost				
	ID #	A3C-C03L A				
	г <i>р</i> #	4				
		1.8				
	Cp (2001)	\$6,337.06				
	Cp (2017)	\$8,634.04				ļ
	Insta	lled Cost				
	Fm	1.8				
	B1	1 63	1			
	B2	1.05				
	Chm (2001)	1.00 ¢2/ 102 66				
	Cbill (2001)	\$24,193.66				
	CDM (2017)	\$32,963.10				
	Install	ation Cost				
	Installation Cost	\$24,329,06				
		1 1 2 2 2				

Table 7: C-200 Condenser for steam from reactor	r costing sheet and utility cost
---	----------------------------------

	T-11-77-4761-4-1					
	Table 7.7 pg 176 in desi	gn book for lang factor for	plant cost possibly			
	Ch 7.3					
		C-200				
		Utilities Flow			Duty Calculati	on
	Duty	btu/hr	2418682,937		O (BTU/hr)	2418683
	ΔH	htu/lb	893		mh (lhm/hr)	2708 49
	2.1	5(0)15	000		cob (BTU/lbm E)	1.02
	L Hellieu	Flow Poto				1.02
	Othity				THT (F)	402
	lb/hr	89580.85			Tout (F)	482
	lb/yr [SF included]	746002440.6			tin (F)	86
	kg/yr [SF included]	338380739			tout (F)	113
	SF Included	\$14.80 / 1000 m^3			mc (lbm/hr)	89580.85
	Cost/yr HEX	\$5,029,662.49			cpc (BTU/lbm F)	1
	Log Moon Tomp	oratura Difforance			Area Calculati	
	Log wear remp					2440602
	mn	2708.491531			Q (BTU/nr)	2418683
	cph	1.02			Uo (BTU/hr *ft^2 F)	183.9563
	mc (lb/hr)	89580.85	From Hysys		Delta Tlm (F)	382.3411
	Density Water (Ib/ft3)	62.4			A (ft^2)	34.3885
	cpc (BTU/lb F)	1			A (m^2)	3.194795
	R	0				
	Р	0 068181818				
	P'	0.000101010 0 060101010				
# on one pass shalls	n	0.000101010				-
# on one-pass snens	0 5	1				
	F	1				
	Delta Tlm	382.3411237				
	Heat Trans	fer Coefficient	260-700 typical value for	hot fluid steam and cold fluid	d water	
sensible heat transfer for water lower	hi	1000				
value and steam higher value	ho	1200				
value and steam nighter value	no Di	1200				
	Do	0.0625				
	Di	0.048666667				
	R"fi	0.002				
assuming low-carb. Steel 14 BWG	RW	0.00025				
	R''fo	0.0005				
	Uo	183,9563209				
	<u></u>					
		osting	Double Pipe HEX values	Fixed Tube HEX values		
	K1	4.3247	3.3444	4.3247		
pg. 955 used double pipe; area < 10m2	К2	-0.303	0.2745	-0.303		
	КЗ	0.1634	-0.0472	0.1634		
	A (ft^2)	34.38849849				
	A (m^2)	3.194799142				
	log Cno	3 470859089				
	Cno	2957 052867				
		2337.032807	J			
	C1	0.0000	0.0000	0.00001		
		0.03881	0.6072	0.03881		
	C2	-0.11272	-0.921	-0.11272		
	G	0.08138	0.3327	0.08138		
	P operating (psia)	116.3				
	P design (barg)	10.484513				
	log Fp	0.008532596				
	Fp	1.019841302				
	Purch	lase Cost				
	ID#	AUC 0001				
	Гm	4			L	
		1.8				
	Cp (2001)	\$5,428.30				_
	Ср (2017)	\$7,395.89				
	Insta	lled Cost				
	Fm	1.8				
	B1	1 62				
	B2	1.05				
	Chm (2001)	1.00				
	CDITI (2001)	\$20,724.21				
	Cbm (2017)	\$28,236.08				
	Install	ation Cost				
	Installation Cost	\$20,840.19				

Table 8: P-100 Costing sheet and utility costTable 9: P-200 Costing sheet and utility cost

Pump 1: AAsoln	P-100
Head (delta P is k	nown)
P out (barg)	0.67
ΔP (psi)	10
Density (lb/ft3)	65.73
SG	1.053
Head (ft)	21.9
Brake Horsepo	wer
Capacity (bpd)	591.6
Capacity (gpm)	17.257
Head (ft)	21.9
Efficiency of Pump	0.65
Efficiency of Motor	0.88
внр	0.15
РНР	0.18
Buying PHP	0.2
Feed Pump 1 (Recip	rocating)
К1	3.8696
К2	0.3161
К3	0.122
Power (hp)	0.18
Power (kW)	0.13123495
logCp0	3.68571152
СрО	\$4,850
C1	-0.3935
C2	0.3957
C3	-0.00226
P (barg)	0.67
P Design (barg)	4.11
logFp	-0.15
Fp	0.71
Purchase Cost:	
Identification Number	28
Fm	2.35
Cp (2001)	\$8,043
Cp (2016)	\$10,958
Cp (2016) 1+spare	\$21,916
Installed Cost:	
Fm	2 35
B1	1.89
B2	1 35
 Cbm (2001)	\$20.023
Cbm (2016)	\$27.281
Cbm (2016) 1+spare	\$54.563
	,,
Installation Cost	\$32,647
Electricity for Pump 1	\$76.45

Pump 2: HMDAsoln	P-200
Head (delta P is l	known)
P out (barg)	0.67
ΔP (psi)	10
Density (lb/ft3)	56.28
SG	0.902
Head (ft)	25.6
Brake Horsepo	ower
Capacity (bpd)	208.1
Capacity (gpm)	6.070
Head (ft)	25.6
Efficiency of Pump	0.65
Efficiency of Motor	0.88
ВНР	0.05
РНР	0.06
Buying PHP	0.2
Feed Pump 2 (Recip	procating)
K1	3.8696
K2	0.3161
K3	0.122
Power (hp)	0.06
Power (kW)	0.04616294
logCp0	3.66504482
СрО	Ş4,624
C1	-0 3935
C2	0.3955
<u>C2</u>	-0.00226
P (harg)	0.67
P Design (harg)	4 11
logEn	-0.15
Fp	0.13
•	
Purchase Cost:	
Identification Number	28
Fm	2.35
Cp (2001)	\$7,669
Ср (2016)	\$10,449
Cp (2016) 1+spare	\$20,897
	2.25
	2.35
B1	1.89
D2 Chan (2001)	1.35
Cbm (2001)	\$19,093
Cbm (2016)	\$26,013
Com (2016) 1+spare	\$52,027
Installation Cost	\$21 120
instanation Cost	ος1,120
Electricity for Pump 2	\$26.89

Page 44 of 76

Table 10: P-300 Costing sheet and utility costTable 11: P-400 Costing sheet and utility cost

Pump 3: SALTsoln	P-300
Head (delta P is k	(nown)
P out (barg)	0.67
ΔP (psi)	10
Density (lb/ft3)	63.42
SG	1.016
Head (ft)	22.7
Brake Horsepo	ower
Capacity (bpd)	797.8
Capacity (gpm)	23.272
Head (ft)	22.7
Efficiency of Pump	0.65
Efficiency of Motor	0.88
BHP	0.21
РНР	0.24
Buying PHP	0.5
Feed Pump 3 (Recip	procating)
К1	3.8696
К2	0.3161
К3	0.122
Power (hp)	0.24
Power (kW)	0.176976405
logCp0	3.700873066
СрО	\$5,022
C1	-0.3935
C2	0.3957
C3	-0.00226
P (barg)	0.67
P Design (barg)	4.11
logFp -	-0.15
Fp	0.71
Purchase Cost:	
Identification Number	28
Fm Gr. (2001)	2.35
Cp (2001)	\$8,328
Cp (2016)	\$11,347
Cp (2010) 1+Spare	\$22,094
Installed Cest	
Installed Cost.	2.25
	2.55
20	1.05
Chm (2001)	1.35 \$20 725
Chm (2001)	\$20,735 \$28 751
Chm (2016) 1+cpare	\$20,231
com (2010) 1+spare	100,000
Installation Cost	¢33 807
installation Cost	100,007
Electricity for Pump 3	\$103 10
	÷100.10

Pump 4: HMDA 2	P-400
Head (delta P is k	nown)
P out (barg)	11.82
ΔP (psi)	174
Density (lb/ft3)	53.72
SG	0.861
Head (ft)	466.9
Brake Horsepo	wer
Capacity (bpd)	1052
Capacity (gpm)	30.687
Head (ft)	466.9
Efficiency of Pump	0.65
Efficiency of Motor	0.88
BHP	4.79
PHP	5.45
Buying PHP	10
Food Pump 4/Com	trifugal)
reed Pump 4 (Cen	2 2802
K2	5.369Z 0.0526
K3	0.0550
Power (hn)	5 45
Power (kW)	4 060563678
logCpO	3.478784258
CpO	\$3,012
_ ·	. ,
C1	-0.3935
C2	0.3957
С3	-0.00226
P (barg)	11.82
P Design (barg)	15.27
logFp	0.07
Fp	1.18
Purchase Cost:	
Identification Number	39
Fm Cm (2001)	2.25 ¢7.002
Cp (2001)	\$7,993
Cp (2016)	\$10,891
Cp (2016) 1+spare	\$21,781
Installed Cost:	
Fm	2.25
B1	1.89
B2	1.35
Cbm (2001)	\$16,483
Cbm (2016)	\$22,457
Cbm (2016) 1+spare	\$44,914
Installation Cost	\$23,133
Electricity for Pump 4	\$2,365.44

P-500	
Head (delta P is k	nown)
P out (barg)	6.93
ΔP (psi)	102
Density (lb/ft3)	60.34
SG	0.967
Head (ft)	243.7
Brake Horsepo	wer
Capacity (bpd)	668
Capacity (gpm)	19.486
Head (ft)	243.7
Efficiency of Pump	0.65
Efficiency of Motor	0.88
внр	1.78
РНР	2.03
Buying PHP	2.05 5
Boying I III	J
Feed Pump 4 (Cent	rifugal)
K1	3.3892
К2	0.0536
К3	0.1538
Power (hn)	2 03
Power (kW)	1 511464571
	3 403765574
	\$2 524
	şz,334
C1	-0.3935
C2	0.3957
C3	-0.00226
P (barg)	6.93
P Design (barg)	10.37
logFp	0.01
Fn	1.01
· P	1.01
Purchase Cost:	
Identification Number	39
Fm	2.25
Cp (2001)	\$5.782
Cp (2016)	\$7,878
Cp (2016) 1+spare	\$15.755
Installed Cost:	
Fm	2.25
B1	1.89
B2	1.35
Cbm (2001)	\$12,594
Cbm (2016)	\$17,159
Cbm (2016) 1+spare	\$34,319
Installation Cost	\$18,563
Electricity for Pump 4	\$880.49

TUDIC 12.1 JOU COSting Sheet and atinty cost
--

	Table 7.7 pg 176 in derign book f	or lang factor for plant cort porri	bly				
	Ch 7.3						
		E-300			D 1 0 1		
	Dutu	Other Flag	202202.2204		Duty Galeu	ation 207202.27	
	AH	beurnr beudlb	271372.3101		w(bronn)	510 10692	
		evene			coh (BTUVIkm F)	107	
	Utility	Flou Bate			Tin(F)	286	
	lk/hr	510,106981	3		Text(F)	286	
	lbtvr[SFinsluded]	4248017.90	8		tin (F)	138.2	
	katyr[SFincludød]	1926866.93	9		tout(F)	248	
	SFIncluded	\$27.70/thourand poundr			mc(lbm/hr)	2708.4915	
	Cart/yr Evap	\$53,374.2	1		epe(BTU/IbmF)	1	
	Log Moan Tompo	raturo Difforonco			Aroa Calcu	lation	
	mh	510,106981	3		Q(BTU/hr)	297392.37	
	cph	1.3	2 220 - 1.11, 300-1.35		Up (BTU/kr *ft^2 F	183.95632	
	mc(lb/hr)	2708.4	9		Dolta Tim (F)	80.837896	
	Donrity Water (Ib/ft3)	62.	4		A(R^2)	19,998624	
	ope (BTU/IbF)		1		Å(m^2)	1.8579321	1
	R		0				
	P	0.74289580	5				
	P'	0.74289580	5				
t on one-parsshells	n		1				
	F		1				
	DoltaTim	80.8378959	1				
		A 2011 -	NA 700. 1 1 1 4 1 4 1 4 1 4	1.11/1.11			
	Heat Franzi L:	er Geefficient 100	260-700 typical value for Not Fluidst	oam and cold fluid wator			
sensible neat transfer for Dater, 100er value	- ni	100	0				
anastoam nigher value	D-	0.0621	E				
	0:	0.002	2				
	DI DI	0.04000000	2				
arruminal augeach. Sheel 14 RWG	RW	12000 0	5				
aruming ind-care. Steel 14 bird	P"f=	0.0002	5				
	11-	102 056 220	•				
	08	105.950520	2				
	Carting	Forced Circulation (Pumper	Falling film	Agitated film (scraped wal	l ShartTubo	Long Tube	
	К1	5.023:	8 3.9119	5	5.2366	4.642	
pq. 955 urod Aqitatod Film	K2	0.347	5 0.8627	0.149	-0.6572	0.3698	
	ю	0.070	-0.0088	-0.0134	0.35	0.0025	
	A(R^2)	19.9986235	8 19.99862358	19.99862358	19.99862358	19.998624	
	A(m^2)	1.85793472	4 1.857934724	1.857934724	1.857934724	1.8579347	
	log Cpo	5.12237621	4.14335565	5.03911568	5.085125272	4.7416684	
	Cpa	132548.925	7 13910.91349	109424.7796	121653.6858	55165.607	<u> </u>
	01		U				
	02						
	Ran castina		2				
	P operating	19.	5				
	r design	3.46421	>				
	logrp C-		-				
	rp		<u>.</u>				
	Purch	aro Cart					
	ID \$		1				
	Fm		1				
	Cp (2001)	\$109,424.7	8				
	Cp (2017)	\$149,087.8	2				
	Instal	lad Cart	cs	Cu	SS	Ni	Ti
	f bm	3.4	2.9	3.63	3.9	9.66	14.
	C6m (2001)	\$426,756.6	4				
	C6m (2017)	\$581,442.4	<u> </u>				
	1 U	alian Oran					
	Installation Cost	#422.254.41	2	[
	jinreallation Cort	\$432,354.6	4		1		

Table 13: E-300 Agitated film evaporator costing and utility sheet

			1.52	1.82															
		B2	1.49	2.25	1=4		1.189989248	1.250619419	0.693615828	0.655550071	0.706726424	A (Mixer)	\$219,702.08	\$373,493.54	\$681,076.45	\$790,927.50	1,559,884.78	:1,032,599.79	:2,065,199.57
		ax B1	628	520	6 fbm	ameter (m) Fp	3.689676104	4.013892304	1.035349026	0.831794673	1.105457147	3M (Vertical) CBN	\$17,740.08	\$22,203.23	\$31,129.55	\$34,317.52	\$56,633.31 \$	\$41,331.06 \$	\$71,297.98 \$
		Min	0.1	0.3	0.04	ressure (barg) Di	1	Ţ.	F	1	1	CBM (Horizontal CE	\$13,660.84	\$17,623.35	\$25,548.37	\$28,378.74	\$48,191.29	\$34,605.54	\$61,210.97
		Capacity, Units	/olume, m3	/olume, m3	/olume, m3	Cp0 Mixer (2001) F			79187.2363	58999.18945	86481.21311	Cp (Mixer)	\$54,925.52	\$93,373.38	\$170,269.11	\$197,731.87	\$389,971.20	\$258, 149.95	\$516,299.89
		3	0:0905	0.1074	0.0004	p0(Vertical) 2001 0	77415.8033	97320.67624	5050.726933	3619.071036	5624.421783	p (Vertical)	\$3,503.26	\$5,955.55	\$10,860.12	\$12,611.75	\$24,873.18	\$16,465.34	\$32,930.68
		×	0.3776	0.4485	0.4479	00(Horizontal) 2001 C			5369.202559	4055.312082	5878.326009	o (Horizontal) C	\$3,724.16	\$6,331.08	\$11,544.91	\$13,406.99	\$26,441.56	\$17,503.57	\$35,007.14
		K1 K2	3.5565	3.4974	4.7116	Volume (m^3) Cr	118.3517066	152.3731849	2.614998678	1.355999534	3.183001712	Em	1	1.7	3.1	3.6	7.1	4.7	9.4
5-5 common	Process Vessels	Types	Horizontal	Vertical	Mixer	Name	H-100	H-200	T-100	T-200	T-300	Material	S	SS clad	SS	Ni alloy clad	Ni alloy	Ti clad	F
L/D=3 optimum but 2							g no HMDA dissolves												
1							60 min of flow also assuming	1 barg for vaccuum design											

optimization
direction/type
: Process vessel (
Table 14:

CEPCI						
2001	2016					
397	540.9					
Solver for L/D=3	for T-200	So	lver for L/	′D=3 for T-100	Solver for	L/D=3 for T-300
L (m)	2.495	L (m)		3.106047077	L (m)	3.316371442
D (m)	0.832	D (m)	1.035349026	D (m)	1.105457147
V (m^3)	1.356	V (m	^3)	2.614998678	V (m^3)	3.183001712
Solver for L/D=3	for H-200	So	lver for L/	D=3 for H-100		
L (m)	12.0417	L (m)		11.06902831		
D (m)	4.0139	D (m)	3.689676104		
V (m^3)	152.37	V (m	^3)	118.3520723		

Table 15: Optimization of process vessel dimensions

	Costing									
Name	Type	Volume (m3)	Pressure (barg)	Material	Diameter (m)	Cp (2001)	Cp (2017)	CBM (2001)	CBM (2017)	Install Cost (2017)
H-100	Vertical	118.3517066		1 SS clad	3.690	\$156,610.76	\$213,377.22	\$459,217.13	\$625,668.88	\$412,291.66
H-200	Vertical	152.3731849		1 SS clad	4.014	\$206,908.92	\$281,906.88	\$595,545.75	\$811,412.33	\$529,505.45
T-100	Horizontal	2.615		1 SS clad	1.035	\$6,331.08	\$8,625.90	\$17,623.35	\$24,011.26	\$15,385.37
	Vertical	2.615		1 SS clad	1.035	\$5,955.55	\$8,114.25	\$22,203.23	\$30,251.21	\$22,136.96
	Mixer	2.615		1 SS clad	1.035	\$93,373.38	\$127,218.30	\$316,748.95	\$431,560.46	\$304,342.17
T-200	Horizontal	1.356		1 SS clad	0.832	\$4,519.38	\$6,157.52	\$12,911.88	\$17,592.02	\$11,434.51
	Vertical	1.356		1 SS clad	0.832	\$4,033.22	\$5,495.14	\$15,483.37	\$21,095.60	\$15,600.47
	Mixer	1.356		1 SS clad	0.832	\$65,750.77	\$89,583.35	\$235,996.76	\$321,538.15	\$231,954.80
T-300	Horizontal	3.183		1 SS clad	1.105	\$7,062.43	\$9,622.33	\$19,493.59	\$26,559.41	\$16,937.07
	Vertical	3.183		1 SS clad	1.105	\$6,757.38	\$9,206.71	\$24,953.37	\$33,998.19	\$24,791.47
	Mixer	3.183		1 SS clad	1.105	\$103,901.55	\$141,562.59	\$345,924.85	\$471,311.72	\$329,749.13

Ð
õ
숙
σ
ē
t d
Ð
<u> </u>
Š
ŝ
Ψ.
g
≝
2
.≽
Ę
듕
°≣
는
. <u>ao</u>
Т
4
æ
1
Ļ
Ð
Š
a,
ž
S
S
ŭ
õ
ā
$\overline{\mathbf{n}}$
ĕ
Ř
ĕ
ā
Š
⊆
О
σ
e)
as
ã
ы
Ē
5
Ξ.
Δ
;;;
16
0
je.
aldr

		~	B2	1.82	1.82
		r process vessel			
		Bs fo	B1	2.25	2.25
			C	0	0
			C2	0	0
			CI	0	0
			Capacity, Units	Volume, m3	Volume, m3
			K3	0.1445	0.1749
			K2	-0.3973	-0.7585
			K1	4.8509	5.9567
common	Storage Tanks		Types	API Fixed Roof	API Floating Roof
L/D=3 optimum but 2.5-5				Vertical Tank on	concrete foundation

Table 17: Constants for storage vessel costing

Table 18: Determination of storage vessel dimensions

Reactants	Density (kg/m3)	Flowrate (kg/h)	30 day storage (m3)	30 day storage (gal)
HMDA	840	5229.45	4482.385714	1184120.799
AA	1360	6576.3	3481.570588	919733.4654

Table 19: Solver optimization of tank dimensions

1 tan	k	1	L tank
Solver for L/D=	3 for SV-200	Solver for L	/D=3 for SV-100
L (m)	37.17240133	L (m)	35.3091407
D (m)	12.39080044	D (m)	11.76971357
V (m^3)	4482.3857	V (m^3)	3841.570587

Costing									
Type	Volume (m3)	Pressure (barg)	Material	Diameter (m)	Cp (2001)	Cp (2017)	CBM (2001)	CBM (2017)	Install Cost (2017)
Fixed Roof	3481.5706	0	SS	11.76971357	\$559,431.87	\$762,208.30	\$1,424,205.26	\$1,940,434.82	\$1,178,226.51
Fixed Roof	4482.3857	0	SS	12.39080044	\$657,976.93	\$896,472.84	\$1,675,081.90	\$2,282,246.35	\$1,385,773.51

Table 20: Storage vessel costing

	Utilities Flow		Duty Calcul	ation		R-100)
Duty	btu/hr	619229.2059	Q (BTU/hr)	619229.2059		К1	3.9912
ΔH	btu/lb	730.2	mh (lbm/hr)	848.0268501	⊢	К2	0.0668
			cph (BTU/Ibm F)	1.4		КЗ	0.243
Utility	Flow Rate		Tin (F)	489.2		D (m)	0.04
lb/hr	848.0268501		Tout (F)	489.2		L (m)	250
lb/yr [SF included]	7062113.2		tin (F)	375.1		A (m^2)	31.41592654
kg/yr [SF included]	3203318.05		tout (F)	446		log Cpo	4.635883843
SF Included	\$29.29/thousand pounds		mc (lbm/hr)	12720.42		Сро	43239.81654
Cost/yr HEX	\$88,731.91		cpc (BTU/lbm F)	0.6866			
						C1	0.03881
						C2	-0.11272
Log Mean Temp	erature Difference		Area Calcul	ation		C3	0.08138
mh	848.0268501		Q (BTU/hr)	619229.2059		P operating (psia)	290.2
cph	1.4		Uo (BTU/hr *ft^2 F)	183.9563209		P design (barg)	22.466223
mc (lb/hr)	12720.42	From Hysys	Delta Tlm (F)	72.99985833		log Fp	0
Density Water (lb/ft3)	62.4		A (ft^2)	338.1583645		Fp	1
cpc (BTU/lb F)	0.6866		A (m^2)	31.41592654	<-SOLVER THIS		
R	0					Purchase	Cost
Р	0.62138475					ID#	2
Ρ'	0.62138475					Fm	1.35
n	1					Cp (2001)	\$58,373.75
F	1					Cp (2017)	\$79,532.40
Delta Tlm	72.99985833						
						Installed	Cost
						Fm	1.35
Heat Transfer Coefficient		260-700 typical value fo	or hot fluid steam and col	d fluid water		B1	1.74
hi	1000					B2	1.55
ho	1200					Cbm (2001)	\$197,384.36
Do	0.0625					Cbm (2017)	\$268,929.97
Di	0.048666667						
R"fi	0.002					Installation	n Cost
RW	0.00025					Installation Cost	\$189,397.57
R"fo	0.0005						
Uo	183.9563209						

Table 21: First reactor segment R-100 costing and utility sheet

	Utilities Flow		Duty Calcul	ation		R-200)
Duty	btu/hr	157209.1073	Q (BTU/hr)	157209.1073		К1	3.9912
ΔH	btu/lb	730.2	mh (lbm/hr)	215.2959563	4 -1	К2	0.0668
			cph (BTU/Ibm F)	1.4		КЗ	0.243
Utility	Flow Rate		Tin (F)	489.2		D (m)	0.08
lb/hr	215.2959563		Tout (F)	489.2		L (m)	250
lb/yr [SF included]	1792920.135		tin (F)	446		A (m^2)	62.83185307
kg/yr [SF included]	813254.23		tout (F)	464		log Cpo	4.897046969
SF Included	\$29.29/thousand pounds		mc (lbm/hr)	12720.42		Сро	78894.54377
Cost/yr HEX	\$22,527.14		cpc (BTU/lbm F)	0.6866			
						C1	0.03881
						C2	-0.11272
Log Mean Temp	erature Difference		Area Calcul	ation		C3	0.08138
mh	215.2959563		Q (BTU/hr)	157209.1073		P operating (psia)	290.2
cph	1.4		Uo (BTU/hr *ft^2 F)	183.9563209		P design (barg)	22.466223
mc (lb/hr)	12720.42	From Hysys	Delta Tlm (F)	33.39539306		log Fp	0
Density Water (lb/ft3)	62.4		A (ft^2)	676.316729		Fp	1
cpc (BTU/lb F)	0.6866		A (m^2)	62.83185307	<solver td="" this<=""><td></td><td></td></solver>		
R	0					Purchase	Cost
Р	0.416666667					ID#	2
Ρ'	0.416666667					Fm	1.35
n	1					Cp (2001)	\$106,507.63
F	1					Cp (2017)	\$145,113.30
Delta Tlm	33.39539306						
						Installed	Cost
						Fm	1.35
Heat Transfer Coefficient		260-700 typical value for hot fluid steam and cold fluid water			B1	1.74	
hi	1000					B2	1.55
ho	1200					Cbm (2001)	\$360,143.73
Do	0.0625					Cbm (2017)	\$490,684.49
Di	0.048666667						
R"fi	0.002					Installation	n Cost
RW	0.00025					Installation Cost	\$345,571.20
R"fo	0.0005						
Uo	183.9563209						

Table 22: R-200 Second reactor segment cost and utility sheet

	Utilities Flow		Duty Calcul	ation		R-300)
Duty	btu/hr	78604.55365	Q (BTU/hr)	78604.55365		К1	3.9912
ΔH	btu/lb	730.2	mh (lbm/hr)	107.6479781	4 7	К2	0.0668
			cph (BTU/lbm F)	1.4		КЗ	0.243
Utility	Flow Rate		Tin (F)	489.2		D (m)	0.12
lb/hr	107.6479781		Tout (F)	489.2		L (m)	250
lb/yr [SF included]	896460.0676		tin (F)	464		A (m^2)	94.24777961
kg/yr [SF included]	406627.115		tout (F)	473		log Cpo	5.070233707
SF Included	\$29.29/thousand pounds		mc (lbm/hr)	12720.42		Сро	117552.9973
Cost/yr HEX	\$11,263.57		cpc (BTU/lbm F)	0.6866			
						C1	0.03881
						C2	-0.11272
Log Mean Temp	perature Difference		Area Calcul	ation		C3	0.08138
mh	107.6479781		Q (BTU/hr)	78604.55365		P operating (psia)	290.2
cph	1.4	220 = 1.11, 300=1.35	Uo (BTU/hr *ft^2 F)	183.9563209		P design (barg)	22.466223
mc (lb/hr)	12720.42	From Hysys	Delta Tlm (F)	20.36969861		log Fp	0
Density Water (lb/ft3)	62.4		A (ft^2)	1014.475093		Fp	1
cpc (BTU/lb F)	0.6866		A (m^2)	94.24777961	< []] -SOLVER THIS		
R	0					Purchase	Cost
Р	0.357142857					ID#	2
Ρ'	0.357142857					Fm	1.35
n	1					Cp (2001)	\$158,696.55
F	1					Ср (2017)	\$216,219.05
Delta Tlm	20.36969861						
						Installed	Cost
						Fm	1.35
Heat Transfer Coefficient		260-700 typical value for hot fluid steam and cold fluid water				B1	1.74
hi	1000					B2	1.55
ho	1200					Cbm (2001)	\$536,614.74
Do	0.0625					Cbm (2017)	\$731,120.69
Di	0.048666667						
R"fi	0.002					Installation	n Cost
RW	0.00025					Installation Cost	\$514,901.64
R"fo	0.0005						
Uo	183.9563209						

Table 23: R-300 Third reactor segment cost and utility sheet

	Utilities Flow		Duty Calcul	ation		R-400	
Duty	btu/hr	78604.55365	Q (BTU/hr)	78604.55365		K1	3.9912
ΔH	btu/lb	730.2	mh (Ibm/hr)	107.6479781	•	K2	0.0668
			cph (BTU/lbm F)	1.4		КЗ	0.243
Utility	Flow Rate		Tin (F)	489.2		D (m)	0.15
lb/hr	107.6479781		Tout (F)	489.2		L (m)	250
lb/yr [SF included]	896460.0676		tin (F)	473		A (m^2)	117.8097245
kg/yr [SF included]	406627.115		tout (F)	482		log Cpo	5.17197419
SF Included	\$29.29/thousand pounds		mc (lbm/hr)	12720.42		Сро	148584.7336
Cost/yr HEX	\$11,263.57		cpc (BTU/Ibm F)	0.6866			
						C1	0.03881
						C2	-0.11272
Log Mean Temp	erature Difference		Area Calcul	ation		C3	0.08138
mh	107.6479781		Q (BTU/hr)	78604.55365		P operating (psia)	290.2
cph	1.4	220 = 1.11, 300=1.35	Uo (BTU/hr *ft^2 F)	183.9563209		P design (barg)	22.466223
mc (lb/hr)	12720.42	From Hysys	Delta Tlm (F)	11.09836558		log Fp	0
Density Water (Ib/ft3)	62.4		A (ft^2)	1268.093867		Fp	1
cpc (BTU/lb F)	0.6866		A (m^2)	117.8097245	< []] -SOLVER THIS		
R	0					Purchase	Cost
Р	0.555555556					ID#	2
Ρ'	0.555555556					Fm	1.35
n	1					Cp (2001)	\$200,589.39
F	1					Ср (2017)	\$273,296.73
Delta Tlm	11.09836558						
						Installed	Cost
						Fm	1.35
Heat Transfer Coefficient		260-700 typical value for hot fluid steam and cold fluid water				B1	1.74
hi	1000					B2	1.55
ho	1200					Cbm (2001)	\$678,270.74
Do	0.0625					Cbm (2017)	\$924,122.52
Di	0.048666667						
R"fi	0.002					Installation	n Cost
RW	0.00025					Installation Cost	\$650,825.79
R"fo	0.0005						
Uo	183.9563209						

Table 24: R-400 Fourth reactor segment cost and utility sheet

	Table 7 7 476 (a.d (a.d 1 1. 6 1.						
	Table 1. rpg Troin derign book for is	ang ractor for plant cort porsit	Ny .				
	Ch 7.3						
		Utilities Flow			Duty Calcu	lation	
	Duty	btułhr	1116089.513		Q (BTU/hr)	1116089.5	
	ΔH	btullb	583		mh (lbm/hr)	12720.42	:
					cph(BTU/IbmF)	1.07	
	Utility Flau	a Rato			Tin (F)	482	:
	lb/hr	0			Tout (F)	400	
	lbtvr[SFincluded]	0			tin(F)	87	
	katvr [SF included]	0			tout (F)	120	
	SElectuded	\$27.70#knurandenunde			me (lhmilte)	0.00	
	Contribute Funds	¢0.00			and (BTH/Ikm F)		
	Call () (200p				cpc(bronbint)		-
		B122					
	Lagriean temperat	ure Dirrerence			Hrea Galeu	4444 000 F	
	me .	((BIOM)	1116089.5	-
	cph	1.2	220 - 1.11, 300-1.35		Uo(BTU/hr*R*ZF	183.95632	
	mh(lb/hr)	12720.42			Dolta Tim (F)	335.56196	·
	Donrity Wator (Ib/ft3)	62.4			A(R^2)	18.080548	
	cpc(BTU/IbF)	1	4		A(m^2)	1.6797371	
	R	2.484848485					
	P	0.083544304					
	P'	0.083544304					
\$ on one-parsshells	n	1					
	F	0.996009685					
	DoltaTim	335.5619626					
	Heat Transfer C	aefficient	260-700 typical value for hot fluidst	eam and cold fluid water			
sensible heat transfer for water, lower value	hi	1000					
and stoam higher value	ha	1200					
	Da	0.0625					
	0:	0.040666665					
	DI DI	0.04000000					
	B N	0.002					
arruming low-carb. Stool 14 BWG	RW	0.00025					
	K"to	0.0005					
	Ua	183.9563209					
	Carting	Forced Circulation (Pumped	Fallingfilm	Agitated film (reraped wall	Shart Tubo	Long Tube	
	К1	5.0238	3.9119	5	5.2366	4.642	
pq. 955 urod Aqitatod Film	K2	0.3475	0.8627	0.149	-0.6572	0.3698	:
	КЗ	0.0703	-0.0088	-0.0134	0.35	0.0025	i
	A(R^2)	18.08054789	18.08054789	18.08054789	18.08054789	18.080548	:
	A(m^2)	1.679739489	1.679739489	1.679739489	1.679739489	1.6797395	i
	lag Cpa	5,105638167	4.105769756	5.032881213	5.106327877	4.7254213	:
	Cpa	127537.5784	12757.62277	107865.1653	127740.2839	53139.97	•
	01	0					
	C2	0	For 10 <p<150 barg.="" cx-0<="" p<10="" td=""><td></td><td></td><td></td><td></td></p<150>				
	03	0	1				
	Paperating	14.7					
	P darian	3.484273					
	InaFe	1					
	Fp						
	Purchase	Cart	1				
	Fm.						
	Co (2001)	#407 04E 47					
	0- (2017)	\$101,055.11					
	00 (2011)	\$146,462.89					
			4.0				
	Installed	UBL/R	05		35	P11	11
	rbm	3.9	2.9	3.63	3.9	9.66	14.5
	Cbm (2001)	\$420,674.14					
	Cbm (2017)	\$573,155.28					
	Installation	n Cart					
	Installation Cast	\$426,192.39					

Table 25: V-200 Final evaporator cost and sizing

Table 26: D-100 and D-200 Cost and Utility Shee	et
---	----

D-100 and D-200	180 F	
4 hrs dry time	Cost	
2 desiccant dryer w/ rotating honeycomb	\$180,000.00	
Moisture equil: .12%		
Utilities		
Poweruse	6.18	kw/100lb
Flowrate	51.0694545	100lb/hr
Total Cost/hr	18.9365537	\$/hr
Total Cost/yr	\$157,590.00	Cost/yr

Table 27: EG-100 and EG-200 Cost, utilities and properties

							Power Calcul	ation
							m (kg/h)	2316.494344
Extruder barrels at	tleast 24D i	n length					cp (kj/kgC)	2.15
Pressure transduc	er at end o	f barrel to	monitor m	elt pressu	re		Delta T (°C)	197.8
Screw Diameter 2.	5						Hfusion (kj/kg)	188.28
Type: std							Power (kWh)	394.801418
							Power (hp)	536.9299285
Temps (degree C)	Rear	Center	Front					
Zone:	1	2	3	Adapter	Die		Power Cost/yr	\$207,507.63
Range of Temp	265-290	275-285	280-290	280-290	270-290		Cost per extruder	\$100,000.00
							Number of Extruders	2
Residence time to	not excee	d 5 mins in	barrel for	280C			Total Cost	\$200,000.00

Table 28: Energy Balance

Energy Balance (BTU/hr)				
	mCp∆T	m∆H	Temperature (To, From) (°F)	Steam Temp (°F)
E-100	284,083.83	284,083.83	(138, 72)	320
E-200	688,399.32	688,399.32	(374, 138.2)	489.2
E-300	583,221.44	583,221.44	(374, 284)	489.2
C-100	2,418,682.94	2,418,682.94	284	(113, 86)
C-200	2,418,682.94	2,418,682.94	482	(113, 86)
V-100	297,392.37	297,392.37	(248, 138.2)	286
R-100	619,229.21	619,229.21	(375.1, 446)	489.2
R-200	157,209.11	157,209.11	(446, 464)	489.2
R-300	78,604.55	78,604.55	(464, 473)	489.2
R-400	78,604.55	78,604.55	(473, 482)	489.2

	Demand	Satisfied
E-100	285,000 BTU/hr to heat stream 1 from 72	285,000 BTU/hr from low pressure steam
E-100	to 138°F	as it maintains 320°F
E 200	689,000 BTU/hr to heat stream 14 from	689,000 BTU/hr from high pressure
E-200	138.2 to 274°F	steam as it maintains 489.2°F
E-300	584,000 BTU/hr to heat stream 18 from	584,000 BTU/hr from high pressure
L-300	284 to 374°F	steam as it maintains 489.2°F
C-100	2,419,000 BTU/hr condense stream 17,	2,419,000 BTU/hr from cooling water as it
C-100	saturated steam, for water treatment	is cooled from 113 to 86°F
C-200	2,419,000 BTU/hr to condense stream 30,	2,419,000 BTU/hr from cooling water as it
C-200	saturated steam, for water treatment	is cooled from 113 to 86°F
V-100	298,000 BTU/hr to heat stream 13 from	298,000 BTU/hr from low pressure steam
V-100	138.2 to 248°F	as it maintains 286°F
P_100	620,000 BTU/hr to heat stream 20	620,000 BTU/hr from high pressure
N-100	process fluid from 375.1 to 446°F	steam as it maintains 489.2°F
P-200	158,000 BTU/hr to heat stream 20	158,000 BTU/hr from high pressure
R-200	process fluid from 446 to 464°F	steam as it maintains 489.2°F
P-300	79,000 BTU/hr to heat stream 20 process	79,000 BTU/hr from high pressure steam
N-300	fluid from 464 to 473°F	as it maintains 489.2°F
R-400	79,000 BTU/hr to heat stream 20 process	79,000 BTU/hr from high pressure steam
11-400	fluid from 473 to 482°F	as it maintains 489.2°F

Table 29: Energy balance demand/provision

Utility Requirements with SF .95			
Equipment	Utility Cost		
E-100	\$33,286.28		
E-200	\$106,727.37		
E-300	\$90,420.91		
C-100	\$5,029,662.49		
C-200	\$5,029,662.49		
V-100	\$53,374.21		
R-100	\$88,731.91		
R-200	\$22,527.14		
R-300	\$11,263.57		
R-400	\$11,263.57		
P-100	\$76.45		
P-200	\$26.89		
P-300	\$103.10		
P-400	\$2,365.44		
P-500	\$880.49		
D-100	\$78,795.00		
D-200	\$78,795.00		
EG-100	\$103,753.81		
EG-200	\$103,753.81		

Table 30: Utility requirements summary

Table 31: Grassroots cost from original unit costs

Equipment	E-100	E-200	E-300	C-100	C-200
CBM	\$8,856.15	\$11,408.33	\$11,699.53	\$32,963.10	\$28,236.08
	P-100 A/B	P-200 A/B	P-300 A/B	P-400 A/B	P-500 A/B
	\$54,562.57	\$52,026.92	\$56,501.03	\$18,563.48	\$44,914.26
	H-100	H-200	T-100	T-200	T-300
	\$625,668.88	\$811,412.33	\$431,560.46	\$321,538.15	\$471,311.72
	R-100	R-200	R-300	R-400	V-200
	\$268,929.97	\$490,684.49	\$731,120.69	\$924,122.52	\$573,155.28
	V-100	EG-100 and EG-200	D-100 and D-200	SV-200	SV-100
	\$581,442.49	\$200,000.00	\$180,000.00	\$2,282,246.35	\$1,940,434.82
СТМ	\$ 13,160,964.35				
CGR	\$ 18,737,644.17				

Raw Materials	AA		HMDA	H2O
kg / hr		3353.869621	2666.985005	1952.396273
kg / yr		29379897.88	23362788.64	17102991.35
\$ / kg		1.5	2.5	0.000067
\$/yr		44069846.82	58406971.61	1145.90042

Table 32: Raw material costs for 100% capacity

Table 33: Waste water treatment cost from evaporator and finisher -100% capacity

Waste Water Treatment	Evaporator	Reactors
lb / hr	2708.49	2506.53
kg / hr	1228.55	1136.94
m3 / hr	1.3267	1.2278
m3/yr	11622.137	10755.509
\$/m3	56	56
\$ / yr	\$650,839.67	\$602,308.53

Table 34: Operating labor numbers -100% capacity

Operating Labor	People
Number of Operators/Shift	11.70469991
Operating Labor	53

Table 35: Total costs for economic analysis -100% capacity

Cost/yr Utilities	\$10,845,469.93
Cost/yr Raw Material	\$102,477,964.33
Cost/yr Waste Water	\$1,253,148.20
Fixed Capital Investment	\$18,737,644.17
Cost/yr Operating Labor	\$3,157,740.00
Cost of Manufacturing (COM)	\$154,796,366.99

Table 36: Raw material costs for 67% capacity

Raw Materials	AA	HN	1DA	H2O
kg / hr	2247.	092646	1786.879953	1308.105503
kg / yr	19684	531.58	15653068.39	11459004.2
\$ / kg		1.5	2.5	0.000067
\$ / yr	29526	797.37	39132670.98	767.7532816

Waste Water Treatment	Evaporator	Reactor(s)
lb / hr	1814.69	1679.373451
kg / hr	823.13	761.75
m3 / hr	0.888907733	0.822624581
m3/yr	7786.83174	7206.191331
\$/m3	56	56
\$ / yr	436062.5774	403546.7146

Table 37: Waste water treatment costs for 67% capacity

Table 38: Operating labor for 67% capacity

Operating Labor	People
Number of Operators/Shift	11.67518736
Operating Labor	53

Table 39: Total costs for economic analysis -67% capacity

Cost/yr Utilities	6539523.753
Cost/yr Raw Material	68660236.1
Cost/yr Waste Water	839609.292
Fixed Capital Investment	18737644.17
Cost/yr Operating Labor	3157740
Cost of Manufacturing (COM)	107395594.6

Project Title:	Nylon 66 Design Project										
Corporate Financial Situation:	Expense										
Minimum Rate of Return, i*:	0.15										
Other relevant project info.:	1 = \$1										
End of Year	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
	0	1	2	8	4	5	9	7	80	6	10
Production (kg Nylon/year)	0.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00
x Sales Price (\$/kg Nylon)	4.744020	4.744020	4.744020	4.744020	4.744020	4.744020	4.744020	4.744020	4.744020	4.744020	4.744020
Sales Revenue = Net Revenue	00.00	182,905,696.93	182,905,696.93	182,905,696.93	182,905,696.93	182,905,696.93	182,905,696.93	182,905,696.93	182,905,696.93	182,905,696.93	182,905,696.93
-Cost of Manufacturing	0.00	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)
MACRS Depreciation Scale at 10 years:	0.00	0.10	0.18	0.14	0.12	60:0	0.07	0.07	0.07	0.07	0.07
-Depreciation of CM	0.00	(1,873,764.42)	(3,372,775.95)	(2,698,220.76)	(2,158,576.61)	(1,727,610.79)	(1,380,964.38)	(1,227,315.69)	(1,227,315.69)	(1,229,189.46)	(1,227,315.69)
-Writeoff											(614,594.73)
Taxable Income	0.00	26,235,565.52	24,736,553.99	25,411,109.18	25,950,753.33	26,381,719.15	26,728,365.56	26,882,014.25	26,882,014.25	26,880,140.48	26,882,014.25
Tax @ 40%	0.00	(10,494,226.21)	(9,894,621.60)	(10,164,443.67)	(10,380,301.33)	(10,552,687.66)	(10,691,346.23)	(10,752,805.70)	(10,752,805.70)	(10,752,056.19)	(10,752,805.70)
Net Income	0.00	15,741,339.31	14,841,932.39	15,246,665.51	15,570,452.00	15,829,031.49	16,037,019.34	16,129,208.55	16,129,208.55	16,128,084.29	16,129,208.55
+De preciation of CM	00.00	1,873,764.42	3,372,775.95	2,698,220.76	2,158,576.61	1,727,610.79	1,380,964.38	1,227,315.69	1,227,315.69	1,229,189.46	1,227,315.69
+Writeoff											614,594.73
Fixed Capital:											
-Grass Roots Cost (Total Installed)	(18,737,644.17)										
Cash Flow	(18,737,644.17)	17,615,103.73	18,214,708.34	17,944,886.27	17,729,028.61	17,556,642.28	17,417,983.71	17,356,524.24	17,356,524.24	17,357,273.75	17,971,118.97
Discount Factor (P/F)	1.00	0.87	0.76	0.66	0.57	0.50	0.43	0.38	0.33	0.28	0.25
Discounted Cash Flow	(18,737,644.17)	15,317,481.50	13,772,936.37	11,799,054.01	10,136,629.65	8,728,754.09	7,530,275.02	6,524,960.35	5,673,878.56	4,934,020.50	4,442,185.76
NPV @ i*=	\$70,122,531.65	NPV > 0, so the	project is economi	cally attractive							
DCFROR =	69%	DFCROR > 15%, s	o project is econon	nically attractive							
Payback Period (years)	2.248324872										

Table 40: Economic Analysis for 100% capacity

Project Title:	Nylon 66 Design Project										
Corporate Financial Situation:	Expense										
Minimum Rate of Return, i*:	0.15										
Other relevant project info.:	1 = \$1										
End of Year	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
	0	1	2	3	4	5	9	7	8	6	10
Production (kg Nylon/year)	0.00	38,555,000.00	38, 555,000.00	38, 555,000.00	38, 555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00	38,555,000.00
x Sales Price (\$/kg Nylon)	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.14	4.14
Sales Revenue = Net Revenue	0.00	159,618,908.54	159,618,908.54	159,618,908.54	159,618,908.54	159,618,908.54	159,618,908.54	159,618,908.54	159,618,908.54	159,618,908.54	159,618,908.54
-Cost of Manufacturing	0:00	(154,796,366.99)	(154, 796, 366. 99)	(154, 796, 366. 99)	(154, 796, 366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)	(154,796,366.99)
MACRS Depreciation Scale at 10 years:	0.00	0.10	0.18	0.14	0.12	0.09	0.07	0.07	0.07	0.07	0.07
-Depreciation of CM	0.00	(1,873,764.42)	(3, 372, 775. 95)	(2,698,220.76)	(2, 158,576.61)	(1,727,610.79)	(1,380,964.38)	(1,227,315.69)	(1,227,315.69)	(1,229,189.46)	(1,227,315.69)
-Writeoff											(614,594.73)
Taxable Income	0.00	2,948,777.14	1,449,765.60	2, 124, 320. 79	2,663,964.94	3,094,930.76	3,441,577.18	3,595,225.86	3,595,225.86	3,593,352.10	3,595,225.86
Tax @ 40%	0.00	(1,179,510.85)	(579,906.24)	(849,728.32)	(1,065,585.98)	(1,237,972.30)	(1,376,630.87)	(1,438,090.34)	(1,438,090.34)	(1,437,340.84)	(1,438,090.34)
Net Income	0.00	1,769,266.28	869,859.36	1, 274, 592. 48	1,598,378.97	1,856,958.46	2,064,946.31	2,157,135.52	2,157,135.52	2,156,011.26	2,157,135.52
+Depreciation of CM	0.00	1,873,764.42	3, 372, 775. 95	2,698,220.76	2, 158,576.61	1,727,610.79	1,380,964.38	1,227,315.69	1,227,315.69	1,229,189.46	1,227,315.69
+Writeoff											614,594.73
Fixed Capital:											
-Grass Roots Cost (Total Installed)	(18,737,644.17)										
Cash Flow	(18,737,644.17)	3,643,030.70	4, 242, 635. 31	3,972,813.24	3, 756,955.57	3,584,569.25	3,445,910.68	3,384,451.21	3,384,451.21	3,385,200.71	3,999,045.94
Discount Factor (P/F)	1.00	0.87	0.76	0.66	0.57	0.50	0.43	0.38	0.33	0.28	0.25
Discounted Cash Flow	(18,737,644.17)	3,167,852.78	3, 208,041.82	2,612,189.19	2, 148, 051.54	1,782,164.44	1,489,762.28	1,272,340.57	1,106,383.10	962, 285.32	988, 502.99
NPV @ i*=	-\$70.12										
DCFROR =	%0										

Table 41: Breakeven analysis of 100% capacity

Project Title:	Nylon 66 Design Project										
Corporate Financial Situation:	Expense										
Minimum Rate of Return, i*:	0.15										
Other relevant project info.:	1 = \$1										
End of Year	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
	0	1	2	£	4	5	9	7	8	6	10
Production (kg Nylon/year)	00:00	25,831,850.00	25,831,850.00	25,831,850.00	25,831,850.00	25,831,850.00	25,831,850.00	25,831,850.00	25,831,850.00	25,831,850.00	25,831,850.00
x Sales Price (\$/kg Nylon)	4.74	4.74	4.74	4.74	4.74	4.74	4.74	4.74	4.74	4.74	4.74
Sales Revenue = Net Revenue	0.00	122,546,816.94	122,546,816.94	122, 546, 816.94	122,546,816.94	122, 546, 816. 94	122,546,816.94	122,546,816.94	122, 546, 816.94	122,546,816.94	122,546,816.94
-Cost of Manufacturing	00:00	(107,395,594.62)	(107,395,594.62)	(107, 395, 594.62)	(107,395,594.62)	(107, 395, 594.62)	(107,395,594.62)	(107,395,594.62)	(107,395,594.62)	(107,395,594.62)	(107, 395, 594.62)
MACRS Depreciation Scale at 10 years:	0.00	0.10	0.18	0.14	0.12	0.09	0.07	0.07	0.07	0.07	0.07
-Depreciation of CM	00:00	(1,873,764.42)	(3,372,775.95)	(2,698,220.76)	(2,158,576.61)	(1,727,610.79)	(1,380,964.38)	(1,227,315.69)	(1,227,315.69)	(1,229,189.46)	(1,227,315.69)
-Writeoff											(614,594.73)
Taxable Income	0.00	13,277,457.91	11,778,446.38	12,453,001.57	12,992,645.72	13,423,611.53	13,770,257.95	13,923,906.63	13, 923, 906.63	13,922,032.87	13,923,906.63
Tax @ 40%	0.00	(5,310,983.16)	(4,711,378.55)	(4, 981, 200.63)	(5,197,058.29)	(5, 369, 444. 61)	(5,508,103.18)	(5,569,562.65)	(5,569,562.65)	(5,568,813.15)	(5,569,562.65)
Net Income	00:00	7,966,474.75	7,067,067.83	7,471,800.94	7,795,587.43	8,054,166.92	8,262,154.77	8,354,343.98	8,354,343.98	8,353,219.72	8, 354, 343. 98
+Depreciation of CM	00:00	1,873,764.42	3,372,775.95	2,698,220.76	2,158,576.61	1,727,610.79	1,380,964.38	1,227,315.69	1,227,315.69	1,229,189.46	1,227,315.69
+Writeoff											614,594.73
Fixed Capital:											
-Grass Roots Cost (Total Installed)	(18,737,644.17)										
Cash Flow	(18,737,644.17)	9,840,239.16	10,439,843.78	10, 170, 021. 70	9,954,164.04	9, 781, 777. 71	9,643,119.15	9,581,659.67	9,581,659.67	9,582,409.18	10, 196, 254.40
Discount Factor (P/F)	1.00	0.87	0.76	0.66	0.57	0.50	0.43	0.38	0.33	0.28	0.25
Discounted Cash Flow	(18,737,644.17)	8,556,729.71	7,894,021.76	6,686,954.35	5,691,325.60	4,863,272.31	4,168,986.52	3,602,100.77	3, 132, 261.54	2,723,918.75	2,520,358.15
NPV @ i*=	\$31,102,285.28	NPV > 0, so the	project is economi	cally attractive							
DCFROR =	33%	DFCROR > 15%, so	o project is econon	nically attractive							

Table 42: Economic analysis for 67% capacity

	List of Equipme	nt		
Component	Туре	Material	Size	Units
E-100	Double Pipe	CS-shell, SS-tube	0.673	m²
E-200	Double Pipe	CS-shell, SS-tube	1.643	m²
E-300	Double Pipe	CS-shell, SS-tube	1.889	m²
C-100	Double Pipe	CS-shell, SS-tube	6.632	m²
C-200	Double Pipe	CS-shell, SS-tube	3.195	m²
P-100A/B	Reciprocating	SS	0.2	hp
P-200A/B	Reciprocating	SS	0.2	hp
P-300A/B	Reciprocating	SS	0.5	hp
P-400A/B	Centrifugal	SS	10	hp
P-500A/B	Centrifugal	SS	5	hp
V-100	Agitated Film	SS	1.858	m²
H-100	Vertical Drum	SS clad	118.4	m³
H-200	Vertical Drum	SS clad	152.4	m³
T-100	Vertical Mixer	SS clad	2.615	m³
Т-200	Vertical Mixer	SS clad	1.356	m³
Т-300	Vertical Mixer	SS clad	3.183	m³
SV-100	Fixed Roof	SS	3482	m³
SV-200	Fixed Roof	SS	4482	m³
R-100	Spiral Tube	CS-shell, Cu-tube	31.42	m²
R-200	Spiral Tube	CS-shell, Cu-tube	62.83	m²
R-300	Spiral Tube	CS-shell, Cu-tube	94.25	m²
R-400	Spiral Tube	CS-shell, Cu-tube	117.8	m²
V-200	Agitated Film	SS	1.680	m²
D-100	Dessicant, Rotary	SS	5500	lb/hr
D-200	Dessicant, Rotary	SS	5500	lb/hr
EG-100	Pelletizing	SS	5500	lb/hr
EG-200	Pelletizing	SS	5500	lb/hr

Table 43: Equipment list summary

Cost	of Equipment	
Component	Purchase Price (USD)	Source
E-100	\$2,691.84	Turton et al.
E-200	\$3,501.33	Turton et al.
E-300	\$3,670.80	Turton et al.
C-100	\$8,634.04	Turton et al.
C-200	\$7,395.89	Turton et al.
P-100A/B	\$21,915.69	Turton et al.
P-200A/B	\$20,897.21	Turton et al.
P-300A/B	\$22,694.29	Turton et al.
P-400A/B	\$21,781.18	Turton et al.
P-500A/B	\$15,755.09	Turton et al.
V-100	\$149,087.82	Turton et al.
H-100	\$213,377.22	Turton et al.
H-200	\$281,906.88	Turton et al.
T-100	\$127,218.30	Turton et al.
T-200	\$89,583.35	Turton et al.
T-300	\$141,562.59	Turton et al.
SV-100	\$762,208.30	Turton et al.
SV-200	\$896,472.84	Turton et al.
R-100	\$79,532.40	Turton et al.
R-200	\$145,113.30	Turton et al.
R-300	\$216,219.05	Turton et al.
R-400	\$273,296.73	Turton et al.
V-200	\$146,962.89	Turton et al.
D-100	\$90,000.00	Plastics Technology
D-200	\$90,000.00	Plastics Technology
EG-100	\$100,000.00	Alibaba
EG-200	\$100,000.00	Alibaba

Table 44: Equipment cost summary

Table 45: Preliminary	HAZOP for P-100
-----------------------	-----------------

Process U	Init: P-100			
Intention: To pump	from T-100 to T-300			
	÷	HAZOP for the Pump that Fee	ds AAsoln to Salt tank	
Guide Word	Deviation	Cause	Consequence	Action
No	No flow	Blockage in line	Cavitation and Composition of T- 300 becomes incorrect	Shutdown operation, check line
\downarrow	No Power	Power Failure	Reverse flow	Turn on generators or stop process until power regained
\downarrow	No Backup Pump	Forgot to Install	If pump goes down shuts down process until new one put in	Put the new pump in parrallel to the original
More of	More flow	Momentary increase in water supply	Possible Cavitation	Change valve controls to adjust
Less of	Less Flow	Momentary decrease in water supply	Less flow to next process	Change valve controls to adjust
Reverse	Reverse Flow	Pump stops working	AAsoln for mixing will begin to flow back towards purification	Switch over to backup pump
Other than	Impurities in Stream 6	Water purification deviation	Fouling	Correct water purification deviation

Table 46: Preliminary HAZOP for P-200

Process U	nit: P-200			
Intention: To pump	from T-200 to T-300			
		HAZOP for the Pump that Feed	s HMDAsoln to salt tank	
Guide Word	Deviation	Cause	Consequence	Action
No	No flow	Blockage in line	Cavitation and Composition of T- 300 becomes incorrect	Shutdown operation, check line
\downarrow	No Power	Power Failure	Reverse flow	Turn on generators or stop process until power regained
\downarrow	No Backup Pump	Forgot to Install	If pump goes down shuts down process until new one put in	Put the new pump in parrallel to the original
More of	More flow	Momentary increase in water supply	Possible Cavitation	Change valve controls to adjust
Less of	Less Flow	Momentary decrease in water supply	Less flow to next process	Change valve controls to adjust
Reverse	Reverse Flow	Pump stops working	HMDAsoln for mixing will begin to flow back towards	Switch over to backup pump
Other than	Impurities in Stream 9	Water purification deviation	Fouling	Correct water purification deviation

	Process Unit: P-300			
Intentio	n: To pump from T-300 to V-100)		
		HAZOP for the Pump that Feed Sa	alt solution to evaporator	
Guide Word	Deviation	Cause	Consequence	Action
No	No flow	Blockage in line	V-100 has no cool stream and starts heating up	Shutdown steam line to V-100 until fixed
\downarrow	No Power	Power Failure	Reverse flow	Turn on generators or stop process until power regained
\downarrow	No Backup Pump	Forgot to Install	If pump goes down shuts down process until new one put in	Put the new pump in parrallel to the original
More of	More flow	Momentary increase in water supply	Possible Cavitation	Change valve controls to adjust
Less of	Less Flow	Momentary decrease in water supply	Less flow to next process	Change valve controls to adjust
Reverse	Reverse Flow	Pump stops working	Steam flows into T-300, pump runs dry	Switch to spare pump
Other than	Impurities in Stream 12	Water purification deviation	Poor Concentration, evaporation affected	Correct water purification deviation

Table 47: Preliminary HAZOP for P-300

Table 48: Preliminary HAZOP for P-400

	Process Unit: P-400			
Intentior	n: To pump from T-200 to R-100			
		HAZOP for the Pump that Feed	s HMDAsoln to Reactor	
Guide Word	Deviation	Cause	Consequence	Action
No	No flow	Blockage in line	Not enough HMDA in salt to react properly	Shutdown until blockage is fixed
\checkmark	No Power	Power Failure	Reverse flow	Turn on generators or stop process until power regained
\downarrow	No Backup Pump	Forgot to Install	If pump goes down shuts down process until new one put in	Put the new pump in parrallel to the original
More of	More flow	Momentary increase in water supply	Possible Cavitation	Change valve controls to adjust
Less of	Less Flow	Momentary decrease in water supply	Less flow to next process	Change valve controls to adjust
Reverse	Reverse Flow	Pump stops working	Concentrated salt flows into T- 300, concentrations ruined	Switch to spare pump
Other than	Impurities in Stream 10	Water purification deviation	Poor Concentration, reaction affected	Correct water purification deviation

Table 49: Preliminary HAZOP for P-500

	Process Unit: P-500			
Intentior	: To pump from V-100 to R-100			
	HA	ZOP for the Pump that Feeds C	oncentrated Salt to Reactor	
Guide Word	Deviation	Cause	Consequence	Action
No	No flow	Blockage in line	No AA in reactor at all, no reaction takes place	Shutdown until blockage is fixed
\downarrow	No Power	Power Failure	Reverse flow	Turn on generators or stop process until power regained
\downarrow	No Backup Pump	Forgot to Install	If pump goes down shuts down process until new one put in	Put the new pump in parrallel to the original
More of	More flow	Momentary increase in water supply	Possible Cavitation	Change valve controls to adjust
Less of	Less Flow	Momentary decrease in water supply	Less flow to next process	Change valve controls to adjust
Reverse	Reverse Flow	Pump stops working	Concentrated HMDA flows into V-100, Evaporator flows busted	Switch to spare pump
Other than	Impurities in Stream 16	Water purification deviation	Poor Concentration, reaction affected	Correct water purification deviation

Table 50: Preliminary HAZOP for T-100

	Process Unit: T-100									
Intention: To mix	AA and water to correct conce	ntration								
			HAZOP for the AA/	water Mixer						
Guide Word	Deviation		Cause	Сог	nsequend	e		Ac	tion	
No	No mixing	Mixe	r stopped mixing	Mote	or is brok	en		Replac	e motor	
\downarrow	No AA flow	Blo	ockage in pipe	Process of without	can not co out reacta	ontinue ants	Check AA	control va bloo	alve for failı ckage	ure and or
More of	Concentration of AA	Proce	ss Control Upset	Concentrat for t	ion of AA the proce	too high ss	Increase	flow of wa check AA c	ater to the r control valve	mixer and e
\checkmark	Concentration of Water	Proce	ss Control Upset	Concentra high fo	ation of w or the pro	ater too ocess	Increas	Increase flow of AA to the mixer and check controller		
\checkmark	More residence time	Proce	ess control valve deviation	Build up	of reacta backflow	nts and	Ch	eck proces	s control va	lve
Less of	Less mixing	Mixer de	viates from normal hp	Incomp	olete mixi eactants	ing of	Check n	notor and i	replace if n	ecessary
\checkmark	Less Residence time	Proce	ess control valve deviation	Process fl	low contr failure	ol valve	Check v	alve and r	eplace if ne	ecessary
	Process Unit: T-200									
---------------------	--------------------------------	------------------------------------	--	--	--	--	--			
Intention: To mix H	IMDA and water to correct conc	entration								
		HAZOP for the HMDA	/water Mixer							
Guide Word	Deviation	Cause	Consequence	Action						
No	No mixing	Mixer stopped mixing	Motor broke	Replace motor						
\downarrow	No HMDA flow	Blockage in pipe	Process can not continue without reactants	Check HMDA control valve for failure and or blockage						
More of	Concentration of HMDA	Process Control Upset	Concentration of HMDA too high for the process	Increase flow of water to the mixer and check HMDA control valve						
\downarrow	Concentration of Water	Process Control Upset	Concentration of water too high for the process	Increase flow of HMDA to the mixer and check control valve						
\downarrow	More residence time	Process control valve deviation	Build up of reactants and backflow	Check process control valve						
Less of	Less mixing	Mixer deviates from normal hp	Incomplete mixing of reactants	Check motor and replace if necessary						
\downarrow	Less Residence time	Process control valve deviation	Process flow control valve failure	Check valve and replace if necessary						

Table 51: Preliminary HAZOP for T-200

Table 52: Preliminary HAZOP for T-300

	Process Unit: T-300						
Inte	ntion: To mix Salt solution						
		HAZOP for the react	ants Mixer				
Guide Word	Deviation	Cause	Consequence	Action			
No	No mixing	Mixer stopped mixing	Motor broke	Replace motor			
More of	Concentration of HMDA	Process Control Upset	Concentration of HMDA too high for the process	Increase flow of water to the mixer and check HMDA control valve			
\downarrow	Concentration of AA	Process Control Upset	Concentration of AA too high for the process	Increase flow of water to the mixer and check AA control valve			
\downarrow	Concentration of Water	Process Control Upset	Concentration of water too high for the process	Increase flow of HMDA to the mixer and check water control valve			
\downarrow	More residence time	Process control valve deviation	Build up of reactants and backflow	Check process control valve			
Less of	Less mixing	Mixer deviates from normal hp	Incomplete mixing of reactants	Check motor and replace if necessary			
\downarrow	Less Residence time	Process control valve deviation	Process flow control valve failure	Check valve and replace if necessary			

Table 53: Preliminary HAZOP for V-100

	Process Unit: V-100					
Intention: To	remove water from the salt solu	tion				
		HAZOP for the removal of w	vater from reactants			
Guide Word	Deviation	Cause	Consequence	Action		
No	No Heat being applied	Steam Valve failed	No separation	Check Steam Valve		
More of	More Product in the top stream	Too much heat	Lose product	Decrease steam flowrate		
\checkmark	More Water in the Product	Not enough heat	Reaction can not take place	Increase steam flowrate		
Less of	Less steam	Steam Valve fail to open properly	Too much water in the salt	Check Steam Valve & replace		

Table 54: Preliminary HAZOP for V-200

	Process Unit: V-200									
Intention: To re	move water from the product s	ream								
		HAZOP fo	or the removal of	water from	nylon					
Guide Word	Deviation	Cause		Consequence			Action			
No	No Steam exiting top	Steam line blocked		Increased pressure in V-200			Check Steam Valve			
More of	More Steam Exiting	Too much heat		Degra	Degradation of product		Decrease Heat in Reactor			or
\downarrow	More Water in the Product	Not enough heat		Impure product			Increase steam flowrate in reactor			reactor
Less of	Less steam exiting top	Not enough heat		Impure product			Increase steam flowrate in reactor			reactor

Table 55: Preliminary HAZOP for R-100 – 400

Proce	ss Unit: R-100, 200, 300, 400						
Intent	ion: To polymerize nylon 6,6						
		HAZOP for the polymeriz	zation of nylon 6,6				
Guide Word	Deviation	Cause	Consequence	Action			
No	No reaction taking place	No heat being applied	No polymerization occurs	Check steam valve to ensure steam being applied, replace if necessary			
\downarrow	No steam flow	Temperature controller malfunction	Polymerization will not occur	Check steam valve and temperature controls			
\downarrow	No process flow	Blockage in pipes	Stops process	Scheduled maintenance			
More of	Corrosion	Constant use	Loss of product and safety hazard	Stop process and replace/repair as necessary			
As Well as	Reactor product in shell	Corrosion	Loss of product and safety hazard	Shut down process and replace			

Table 56: Preliminary HAZOP for EG-100,200

	Process Unit: EG-100, EG-	-200				
Intention: To r	mold and shape the material into	constant cross section area				
		HAZOP for the molding and sh	naping of the product			
Guide Word	Deviation	Cause	Consequence	Action		
No	No power	Motor failure	Screw does not turn	Replace Motor		
\downarrow	No turning of the screw	Screw is blocked with material	Screw is blocked with material No product being produced			
\downarrow	No temperature gradient in zones	Electrical heater failure	Polymer fails to finish reactions	Check temperature controls and replace heater if necessary		
More of	More heat in zones	Thermocouple failure	Material adheres to screw	Check thermocouple not loos/replace thermocouple if needed		
\downarrow	More pressure within barrel	Pressure monitor failure	Break screw and other components	Reduce pressure inside barrel and check controls		
\downarrow	Higher temperature in barrel	Flat Temperature profile through zones	Material adheres to screw	Reduce output of heater to reduce temperature		
Less of	Less product being produced	Flat Temperature profile through zones	Loss of profit	Raise the die exit temperature		
\downarrow	Less temperature in die	Thermocouple malfunction	Excessive pressure in barrel and surging output	Raise the temperature in the die to correct		
As Well as	High die pressure fluctuations	Flat Temperature profile through zones	Affects the quality of the product	Raise the feed zone temperature		
Other than	Other than correct RPM of screw	Drive system power surges	Surging output	Check drive system to handle the electrical inputs		

P	rocess Unit: D-100, D-200									
Intention: To	remove all liquid from the prod	uct								
		F	AZOP for the remo	/al of all liquid						
Guide Word	Deviation		Cause	Conseque	Consequence		Action			
No	No process heater	Loss of power		Nylon does	not dry	Check he	Check heater/replace heater if needed			
\checkmark	No cooling coil	Loss of power		Efficiency of dr	Efficiency of dryer drops		oling coil c nec [,]	connection, essary	replace if	
\checkmark	Pellet screen blocked	Constant use		Lose effici	Lose efficiency		Clean with compress air/ maintenance every 2 months			
More of	More drying	Resin moisture levels not being monitored properly		Nylon become	es brittle	Install moisture measuring device				
\checkmark	Temperature too high	Set-p	oint malfunction	Nylon become	es brittle	Over-ten	Over-temperature alarm and shu enacts, check set-point		shutdown nt	
Less of	Temperature too low	Set-p	oint malfunction	Nylon is too s	aturated	Increase	output of check s	process he set-point	aters and	
As Well as	Leaks in Hopper Gaskets and Seals	Co	ontinuous use	Lose heat and e	efficiency	Check for leaks and replace if necessary			necessary	
Part of	Filter clogged	Constant use		Lose effici	Lose efficiency		Alarm light shows to clean/replace filters			
\downarrow	Plasticizer drain clogged	(Constant use	Blockage and b materia	ackup of	Require	d mainten	ance every	2 weeks	

Table 57: Preliminary HAZOP for D-100,200

Table 58: Preliminary HAZOP for E-100

Process L	Jnit: E-100											
Intention: To hea	t water for mixing											
				HAZOP fo	or the heating of	of mixing w	ater					
Guide Word	Deviation			Cause	2		Consequ	ence		A	ction	
No	No Steam flo	w	Failure o	Failure of inlet steam flow valve Pr to open		Process water temperature not raised accordingly			Install temperature indicators			
More of	More pressure on tu	ube side	Process fluid valve failure			Tube will burst			High pressure alarm system needs to be installed			needs to be
\downarrow	More steam flo	ow	Failure of inlet steam flow valve O to close properly		Output process fluid temperature too high		Install temperature indicators			cators		
Less of	Less steam flo	w		Pipe leakage		Process fluid temperature too high		Install a Flow Meter		r		
\downarrow	Less steam flo	w		Pipe bloc	kage	Process	fluid tem remain coi	perature will nstant	Install temperature indicator			icator
Reverse	Reverse process flu	id flow	Failure of process fluid inlet valve			Product concentration off-set			Install check valve			
Other than	Contamination of the fluid	e process	Contamination in steam			Outlet	temperat	ure too high		Proper N	Naintenanc	e

Process	Unit: E-200						
Intention: To hea	at HMDA for reacting						
		HAZOP for the heating	of HMDAsoln				
Guide Word	Deviation	Cause	Consequence	Action			
No	No Steam flow	Failure of inlet steam flow valve to open	Process water temperature not raised accordingly	Install temperature indicators			
More of	More pressure on tube side	Process fluid valve failure	Tube will burst	High pressure alarm system needs to b installed			
\downarrow	More steam flow	Failure of inlet steam flow valve to close properly	Output process fluid temperature too high	Install temperature indicators			
Less of	Less steam flow	Pipe leakage	Process fluid temperature too high	Install a Flow Meter			
\downarrow	Less steam flow	Pipe blockage	Process fluid temperature will remain constant	Install temperature indicator			
Reverse	Reverse process fluid flow	Failure of process fluid inlet valve	Product concentration off-set	Install check valve			
Other than	Contamination of the process fluid	Contamination in steam	Outlet temperature too high	Proper Maintenance			

Table 59: Preliminary HAZOP for E-200

Table 60: Preliminary HAZOP for E-300

Process Unit: E-300						
Intention: To heat C	Concentrated Salt for reacting					
		HAZOP for the heating of Conce	entrated Salt			
Guide Word	Deviation	Cause	Consequence	Action		
No	No Steam flow	Failure of inlet steam flow valve to open	Process water temperature not raised accordingly	Install temperature indicators		
More of	More pressure on tube side	Process fluid valve failure	Tube will burst	High pressure alarm system needs to b installed		
\downarrow	More steam flow	Failure of inlet steam flow valve to close properly	Output process fluid temperature too high	Install temperature indicators		
Less of	Less steam flow	Pipe leakage	Process fluid temperature too high	Install a Flow Meter		
\downarrow	Less steam flow	Pipe blockage	Process fluid temperature will remain constant	Install temperature indicator		
Reverse	Reverse process fluid flow	Failure of process fluid inlet valve	Product concentration off-set	Install check valve		
Other than	Contamination of the process fluid	Contamination in steam	Outlet temperature too high	Proper Maintenance		

Table 61: Preliminary HAZOP for C-100,200

Proces	s Unit: C-100,200						
Intention: To conde	ense V-100,200 steam for ww						
	HA	AZOP for the condesation of eva	porator steam				
Guide Word	Deviation	Cause	Consequence	Action			
No	No Cooling water flow	Failure of inlet water flow valve to open	Process steam temperature not condensed accordingly	Install temperature indicators			
More of	More pressure on tube side	Process fluid valve failure	Tube will burst	High pressure alarm system needs to b installed			
\downarrow	More cooling water flow	Failure of inlet water flow valve to close properly	Cost of water utility increase	Install flowmeter			
Less of	Less cooling water flow	Pipe leakage	Process fluid will not condense	Install a Flow Meter			
\downarrow	Less cooling water flow	Pipe blockage	Process fluid will not condense	Install a Flow Meter			
Reverse	Reverse process fluid flow	Pressure drop in evaporator	Steam enters evap	Maintain Evap temperature/pressure			
Other than	Contamination of the process fluid	Contamination in steam	Outlet not condensed enough	n Proper Maintenance			

Proces	s Unit: Storage Vessel 1 and 2										
Intention: To store AA and HMDA for process use											
	HAZOP for the storage of raw material										
Guide Word	Deviation	Cause		C	Consequence		Action				
More of	More raw material than it can	Lovel controls malfunction		Backflow		Stop filling storage tank and let it be					
NOTE OF	hold	Leverto		runction	Backnow		used in the process				
Less of	Less raw material than	Storm/missommunication		nication	Loss of operating time		Doguest row material for storage			orago	
LESS OF	needed	Stormyr	mscommu	meation	Loss of operatin		perating time		251 1010 1110		orage
As Well as	Corrosion	Materia	Material corroded through		Loss of row material		orial	Repair leak while wearing proper safe			per safety
As Well as	Corrosion	siding		Loss of Taw Inaternal		equipment					

Table 62: Preliminary HAZOP for Storage Vessel 1 and 2