AICHE Process Design Group

Dylan Cannon, Rachel Davis, Raychel Kozik, David Meyer

FICHE
Organization Management
120 Wall Street
New York, NY 10005

Dear Organization Supervisor,
Enclosed is a completed preliminary design study of a grassroots facility to be built near Calvert City, Kentucky. This facility will produce 85 MM lbs/yr of Nylon 6,6 from adipic acid and HMDA. The process was designed for 100% as well as a 67% capacity turndown case. A number of simulations were designed, and an economic analysis was completed to determine the optimum process. A Hazard and Operability study (HAZOP) was completed in order to produce the safest design possible. The design group recommends proceeding with detailed design.

If you have any questions on these matters, please contact Rachel Davis at (479) 650-5134.
Sincerely,

Rachel Davis

Raychel Kozik

AICHE Student Design Competition

Manufacturing Facility for Nylon 6,6

9 March 2017

Group \qquad :

Dylan Cannon
Rachel Davis
Raychel Kozik
David Meyer

Table of Contents

Abstract 3
Introduction 4
Process Flow Diagram \& Material Balances 7
Process Description 10
Reactor Modeling 10
Batch Process Description 12
Alternative Processes 13
Energy Balance \& Utility Requirements 18
Heat Exchangers 18
Reactors 19
Pumps 20
Extruders 20
Equipment List \& Unit Descriptions 22
Pumps 23
Heat Exchangers 25
Reactors 28
Process Vessels. 32
Extruders 33
Equipment Specification Sheets 34
Capital Cost Summary 43
Safety, Health, and Environmental Considerations 46
Manufacturing Costs 61
Economic Analysis 64
Conclusions \& Recommendations 72
Acknowledgements 72
Bibliography 73
Appendix 75

Abstract

The purpose of this project was to develop a preliminary design of a grassroots plant for the production of nylon 6,6 near Calvert City, Kentucky. The yearly production rate of nylon 6,6 was specified at $85 \mathrm{MM} \mathrm{lbm} / \mathrm{yr}$. Nylon 6,6 is formed via a polycondensation reaction between adipic acid and hexamethylenediamine. Chains of nylon 6,6 lengthen via step-growth polymerization and the addition of new molecules to the end of each polymer chain.

The preliminary design for the grassroots process involves a pump, two heat exchangers, two reactors, a process vessel, an air cooler, and an extruder. The selected process involves a batch reactor in series with a CSTR in order to maximize polymerization and nylon 6,6 production. The design will produce nylon 6,6 chains with a degree of polymerization of 202. To produce the $85 \mathrm{MM} \mathrm{lbm} / \mathrm{yr}$ of nylon 6,6 , the design will require approximately 55.1 MM lbm of adipic acid, 43.9 MM lbm of HMDA, and 5.2 MM lbm of water each year for the reactants. The nylon 6,6 will be packaged and sold for $\$ 1.45$ per pound on average. Expected annual revenue for the grassroots plant is expected to be $\$ 123.3$ million in today's dollars. The design has a total capital investment of approximately $\$ 4.03$ million, including contingency, fees, and a grassroots factor. Manufacturing costs, including the costs for raw materials, are estimated to be $\$ 89.3$ million per year. Capital and manufacturing costs are estimated in today's dollars. The process was also designed for a 67% turndown case. This turndown case will cost $\$ 59.8$ million in manufacturing costs per year and has an expected annual revenue of $\$ 82.6$ million per year.

Economic evaluation over a ten-year period indicates that the design will have a net present value of $\$ 73.36$ million at a minimum rate of return of 15%. The expected DCFROR is 5.17%. Construction will begin in Quarter 4 of 2018, and startup is scheduled to take place on June 30, 2019. Upon evaluating the sensitivity, it was found that the sale price of nylon 6,6 has the largest effect on the economics of the design. The proposed design will require 8 plant operators in order to keep the unit running continuously and will cost $\$ 775,000$ in salary per year. Any safety risks have been accounted for, and a Hazard Operability study was completed.

The design team recommends proceeding with the detailed design phase for the grassroots facility. Equipment layout, including piping and elevation, will need to be completed in order to finalize the equipment sizing and designs. Several assumptions were made in the design process and in the estimation of costs. Therefore, a more thorough design and costing analysis should be completed in order to verify these assumptions during the detailed design.

Introduction

The purpose of this project is to develop the plans for a grassroots plant for the production of nylon 6,6 in Calvert City, Kentucky. Nylon 6,6 was first synthesized in 1935 by Dupont Company [1]. It was the first truly synthetic fiber to be developed for a broad range of applications, and was quickly followed by nylon 6 [2]. Nylon 6,6 has found a wide range of applications due to its strength, stiffness, and heat resistance. Other advantages include its chemical resistance to hydrocarbons, wear resistance, and lubricity. The main limitations of nylon 6,6 include high water absorption and poor resistance to corrosion by strong acids and bases [3]. However, its many strengths have made it a material of interest for a wide variety of industries, particularly the textile industry [4]. It has applications in automotive parts, tubing, and piping, but approximately 75% of the nylon 6,6 produced in the United States goes into the manufacturing of home or clothing textiles [5]. From its initial inception, nylon has played a large role in the clothing industry. First developed as an alternative for silk stockings, it soon found its place in every type of clothing, leaving a noticeable mark on the industry. Today, it can be found in a wide variety of everyday items and has permeated the textile industry. In 2014, combined production of nylon 6,6 and nylon 6 topped 7.2 million tons, and the market continues to grow [6]. This combined polyamide market is currently estimated at 25.14 billion USD, with projections to grow to 30.76 billion USD in the next five years [7]. This market growth, combined with the growing uses for nylon 6,6 products, yields a convincing argument for the need to invest in new production facilities.

Nylon 6,6 is synthesized via a polycondensation reaction between hexamethylenediamine (HMDA) and adipic acid (ADA). HMDA is a diamine composed of a six-carbon chain with amino groups at each end [8]. Adipic acid is an organic compound consisting of a six-carbon chain with carboxylic acid groups at each end [9]. Nylon 6,6 itself has a monomeric formula of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$, and lengthens via step-growth polymerization and the addition of new molecules to each end of the polymer chain [10]. The overall reaction is shown below in Figure 1.

Figure 1: Overall Reaction for Nylon 6,6 Production [11]

Initially, the two reactants combine to form a nylon 6,6 salt with stoichiometric equivalents. The nylon salt is then sent to a reactor where the process of step-growth polymerization begins. Then, aqueous nylon 6,6 is sent to a second reactor where water is removed. The removal of
water drives the reaction to completion and leads to further lengthening of the polymer chain. Increased levels of water removal yield higher molecular-weight nylon. This molten nylon is then ready for further processing into pellets or fibers. The resulting water side stream can be treated and released.

Production will take place at a grassroots plant in the Calvert City, Kentucky area. The Calvert City area is home to a multitude of chemical processing plants of various sizes, offering a community familiar to interacting with processing plants. In addition, the presence of many chemical plants and refineries creates a sense of scientific community among the businesses in the area. At this time, the production rate has been specified at $85 \mathrm{MM} \mathrm{lbm} / \mathrm{year}$. This system has been designed for a full production case, as well as a turndown case of 67% capacity.

For this project, a two-reactor scheme has been developed. The first of the two reactors is a batch reactor, and the second is a CSTR. A block-flow diagram of this process can be seen below in Figure 2.

Figure 2: Block-Flow-Diagram for Batch/CSTR Process

This particular scheme was chosen for its economic attractiveness and the ability to develop a simple and effective safety strategy for the process. Also considered were PFR/CSTR and CSTR/CSTR reactor schemes. However, both schemes were rejected for this project. The CSTR/CSTR scheme yielded a nylon 6,6 product below the appropriate molecular weight and degree of polymerization specifications needed for sale. The PFR/CSTR scheme yielded highquality nylon 6,6 , but was less economically attractive, especially for the turndown case. In addition, the Batch/CSTR process allowed for a simpler safety strategy. These economic and safety factors are described in more detail in subsequent sections of this report.

In developing the plans for this nylon 6,6 production plant, a variety of environmental and safety factors were considered. The raw materials from this process, HMDA and adipic acid, can cause irritation to the skin and eyes upon contact. In addition, inhalation of dust from these materials can cause irritation of respiratory tracts. Both HMDA and adipic acid are slightly flammable, but only at elevated temperatures. Steps to mitigate these hazards were taken in order to reduce
the risk of exposure. Nylon 6,6 itself can also irritate the eyes or lungs, but it is not considered to be a major skin irritant. Thermal decomposition of nylon can lead to toxic vapors. Therefore, processes were kept at temperatures below the decomposition temperature of nylon 6,6. The water byproduct stream of the process must be put through wastewater treatment systems before being released to the environment in order to prevent the release of any remaining raw materials or product. A HAZOP analysis revealed the importance of controlling the temperature of the process, as well as maintaining the integrity of the streams. This project report and accompanying appendix will elaborate on the chosen process, as well as the equipment needed to execute the process. In addition, this report will investigate the economic and safety factors considered when developing this system and deciding on the final process design.

Process Flow Diagram and Material Balances:

${ }^{\text {a }}$	${ }_{1420}^{1400}$	${ }_{14200}^{140}$	${ }_{14,}^{1400}$	${ }_{\substack{120.12 \\ 1200}}$	${ }_{\substack{4100 \\ 1175}}$	${ }_{\substack{\text { c124, } \\ 1378}}$	${ }_{\substack{\text { s182 } \\ 12124}}$	$\underbrace{}_{\substack{5182 \\ \text { 12124 }}}$	${ }_{83}^{5180}$	${ }_{\substack{5180 \\ 83}}$	${ }_{833}^{328}$	${ }_{1470}^{12000}$	${ }_{\substack{5180 \\ 833}}$	14.40
Vmar friam	SE-07	$158+26$	29F-07	298E-77	2.148-07	-128E-07	. 3 SEF-06	58.583			$332+0{ }^{\frac{1}{7}}$	-6080 0°	334E+68	Aber
Dain	cese 6	Stist	$\xrightarrow[\substack{10,87 \\ \text { gine }}]{ }$	${ }_{\text {che }}^{61283}$	S206	${ }_{2284}^{028}$	¢392	(3392)	${ }_{88}^{001}$		${ }_{2332}^{002}$	${ }^{61213}$		${ }_{6}^{6100}$
	42006	coick	$\underset{\substack{420 \\ 3120}}{\substack{\text { a }}}$	${ }_{\substack{\text { a }}}^{420.6}$,	${ }_{0}^{0 .}$	${ }^{12}$	${ }_{18}^{18}$	0	(10.4	${ }_{0}^{0.4}$	${ }_{0}^{0.4}$	04	0
Wex	6356	${ }_{\substack{3173 \\ 630}}$	(12136	边 3173		22600	${ }_{824}$	${ }_{123}{ }^{2} 5$	${ }_{858}$	500	${ }_{2348}^{24.1}$	24.8	500	

Process Description

Reactor Modeling:

For the purpose of this preliminary design, Aspen Plus was used to model the polymerization of nylon 6,6 in both reactors. A step-growth polymerization model was used in order to represent the addition of monomers to the polymer chain. This model includes 12 equations to account for the condensation reactions, as well as the addition of HMDA and ADA to the ends of the polymer chain. This model works by separating available HMDA and ADA into repeat units and end units. By separating these components, the model can differentiate between segments of the reactants available for polymerization. Figure 6, shown below, shows the components used in the reactor models, including their common names and structures.

Model Name	Common Name	Trivial Formula	Molecular Structure
H2O	Water	$\mathrm{H}_{2} \mathrm{O}$	H2O
HMDA	Hexamethylenediamine	$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}$	
ADA	Adipic Acid	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$	
HMDA-E	HMDA end	$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{2}$	
ADA-E	ADA end	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{3}$	
HMDA-R	HMDA repeat unit	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}$	
ADA-R	ADA repeat unit	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$	
NYLON66	Nylon 6,6	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$	

Figure 6: Components Used in Reactor Model [12]
These components are combined in the model in order to accurately depict the process taking place in the reactor. The 12 unique reactions combine to form the overall reaction described by

Figure 1 in the Introduction section. Four reactions account for condensation, four equations account for polymerization, and four reactions account for reverse condensation. These 12 reactions can be seen below in Figure 7.

Reaction Type	Reactants	\Rightarrow	Products
Condensation	HMDA + ADA	\Rightarrow	H2O + HMDA-E + ADA-E
Condensation	HMDA + ADA-E	\Rightarrow	H2O + HMDA-E + ADA-R
Condensation	HMDA-E + ADA	\Rightarrow	H2O + HMDA-R + ADA-E
Condensation	HMDA-E + ADA-E	HMA-R + ADA-R	
Polymerization	HMDA + ADA-E + HMDA-R	\Rightarrow	HMDA-E + HMDA-E + ADA-E
Polymerization	HMDA + ADA-R + HMDA-R	\Rightarrow	HMDA-E + HMDA-E + ADA-R
Polymerization	HMDA-E + HMDA-E + ADA-E	\Rightarrow	HMDA-R + ADA-E + HDMA
Polymerization	HMDA-E + HMDA-E + ADA-R	\Rightarrow	HMDA-R + ADA-R + HMDA
Rev-Condensation	H2O + ADA-E + HMDA-E	\Rightarrow	ADA + HMDA
Rev-Condensation	H2O + ADA-E + HMDA-R	\Rightarrow	ADA + HMDA-E
Rev-Condensation	H2O + ADA-R + HMDA-E	\Rightarrow	ADA-E + HMDA
Rev-Condensation	H2O + ADA-R + HMDA-R	\Rightarrow	ADA-E + HMDA-E

Figure 7: Model Reactions Used in Aspen Plus Simulation [12]

Forward reaction rate data was obtained using correlations described in Kumar, et. Al [13, 14] using data given by Ogata, et. al, 1961 [15, 16]. These correlations were deemed appropriate for this model because they accounted for the batch-style reactor used in the process. These correlations took into consideration the temperature of the reactor, as well as the presence of water in the feed stream. Because the process has a 99.92% conversion and is designed using conditions that result in effective removal of the majority of the water, the reaction is assumed to be irreversible. This assumption was made because the removal of water drives the reaction to the right far enough to neglect the reverse reaction. Rate constants for all considered cases are shown in Figure 8 below.

Reactor:	Rate Constant: $\left.\mathbf{f t t}^{\mathbf{3}} / \mathbf{l b m o l - h r}\right)$
R-101	25200
R-102	50.4

Figure 8: Rate Constant Data for All Cases

The rate of the reaction for Reactor R-101 is modeled by Equation [1] below.

$$
\begin{equation*}
r_{A}=k[A D A][H M D A] \exp \left(\frac{-2500}{R T}\right) \tag{1}
\end{equation*}
$$

Where $\mathrm{r}_{\mathrm{A}}=$ reaction rate, $\mathrm{lbmol} / \mathrm{ft}^{3}-\mathrm{hr}$.
$[\mathrm{ADA}]=$ concentration of adipic acid, $\mathrm{lbmol} / \mathrm{ft}^{3}$
[HMDA] = concentration of hexamethylenediamene, $\mathrm{lbmol} / \mathrm{ft}^{3}$
$\mathrm{R}=$ ideal gas constant, $\mathrm{J} / \mathrm{mol}-\mathrm{K}$
$T=$ reactor temperature, K
$\mathrm{k}=$ rate constant, $\mathrm{ft}^{3} / \mathrm{lbmol}-\mathrm{hr}$

The rate of the reaction for Reactor R-102 is modeled by Equation [2] below.

$$
\begin{equation*}
r_{A}=k\left[H_{2} O\right]^{2} \exp \left(\frac{-2500}{R T}\right) \tag{2}
\end{equation*}
$$

Where $\mathrm{r}_{\mathrm{A}}=$ reaction rate, $\mathrm{lbmol} / \mathrm{ft}^{3}-\mathrm{hr}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=$ concentration of water, $\mathrm{lbmol} / \mathrm{ft}^{3}$
$\mathrm{R}=$ ideal gas constant, $\mathrm{J} / \mathrm{mol}-\mathrm{K}$
$T=$ reactor temperature, K
$\mathrm{k}=$ rate constant, $\mathrm{ft}^{3} / \mathrm{lbmol}-\mathrm{hr}$

Batch Process Description:

Figure 3 on Page 7 displays a full PFD for the chosen batch reactor process. In addition, stream summary tables for both a full capacity case and a 67% capacity turndown case can be found in Figure 4 on Page 8 and Figure 5 on Page 9, respectively. The process begins with the mixing of ADA (Stream 1) and HMDA (Stream 2) at a mixing valve (VLV-101 A/B) to form a mixed reactant stream (Stream 3). This stream is approximately $13.8 \mathrm{wt} \%$ water, and is the location of the beginning of the reaction to form the nylon 6,6 salt. The mixed feed stream is pressurized via $\mathrm{P}-101 \mathrm{~A} / \mathrm{B}$ and heated to $410^{\circ} \mathrm{F}$ via a steam-powered heat exchanger (E-101 A/B). This heated and pressurized feed is delivered to $\mathrm{R}-101 \mathrm{~A} / \mathrm{B} / \mathrm{C} . \mathrm{R}-101 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ is a batch reactor heated with an electric jacket. In this reactor, the nylon salt/reactant mixture reacts further to form an aqueous nylon stream. This aqueous nylon mixture (Stream 7) is then sent to a holding tank (V$101 \mathrm{~A} / \mathrm{B}$) before entering a second reactor (R-102 A/B). A vent stream (Stream 6) allows for the removal of vapor from $\mathrm{R}-101 \mathrm{~A} / \mathrm{B} / \mathrm{C}$. In the second reactor ($\mathrm{R}-102 \mathrm{~A} / \mathrm{B}$), the aqueous nylon mixture (Stream 8) is further heated in order to remove as much water as possible. The removal of water vapor via the vent stream (Stream 9) pushes the reaction to the right, thus lengthening the polymer chain and increasing the quality of the product. The vent stream (Stream 9) is
combined with the vent stream from R-101 A/B/C (Stream 6) at VLV-102 A/B and cooled to $100^{\circ} \mathrm{F}$ via E-102 A/B. This cooled combined vent water stream (Stream 12) is then sent through wastewater treatment and released. Heat integration was considered, but it was found that Stream 12 does not contain enough energy to be used to heat the feed stream. The molten nylon 6,6 stream (Stream 10) is then sent to an extruder to be pelletized and cooled via E-103 A/B before packaging and shipping. Due to the potential dust production and tendency of nylon 6,6 to degrade when exposed to water and heat, this plant was designed to send the finished pellets directly to packaging and shipping rather than to a storage container or vessel.

The process will require $55.1 \mathrm{MM} \mathrm{lbm} / \mathrm{yr}$ of ADA, $43.9 \mathrm{MM} \mathrm{lbm} / \mathrm{yr}$ of HMDA, and 5.2 MM $\mathrm{lbm} / \mathrm{yr}$ of feed water in order to produce the required $85 \mathrm{MM} \mathrm{lbm} / \mathrm{yr}$ of nylon 6,6 . The degree of polymerization will be approximately 202. Further details on individual pieces of equipment and reasons for equipment choices are discussed in the subsequent Equipment Lists and Equipment Specifications sections.

Alternative Processes:

In addition to the chosen batch reactor process, an alternative reactor setup was also considered. This setup featured a plug-flow reactor as R-101 rather than a batch reactor, followed with a CSTR for R-102. A block-flow diagram for this process can be seen below in Figure 9.

Figure 9: Block-Flow Diagram of PFR/CSTR Process

A PFD for this process can be found in Figure 11 on Page 15. Stream Summary Tables for this alternative process can be found in Figure 12 on Page 16 for a full capacity case and Figure 13 on Page 17 for a 67% capacity turndown case. This process functions in a similar way to the original batch process, with the only difference being the replacement of the batch reactor with a plug-flow reactor. Though this process is a viable option, the batch process was found to be more economically attractive and an overall safer process than the PFR process. These points will be discussed further in this report in the Economic Analysis and Safety sections.

A third process was considered in initial research stages but was rejected early in the design process. This reactor scheme included two CSTRs in series to create the nylon 6,6 product.

Though this design could be economically attractive, it yields a much lower molecular weight product. This product is below the accepted degree of polymerization standards for nylon 6,6 and would not be of a high enough quality to sell for profit. A block-flow diagram of this process can be found below in Figure 10.

Figure 10: Block-Flow Diagram of CSTR/CSTR Process
The final Batch/CSTR process was chosen for its combination of economic attractiveness as determined by Net Present Value (NPV) incremental analysis and Discounted Cash Flow Rate of Return (DCFROR) comparison, as well as its ability to remain profitable under turndown conditions. In addition, this process has fewer inherent safety risks, and is thought to be the best choice for this plant. These points will be investigated in more detail throughout this report.

Energy Balance and Utility Requirements

Heat Exchangers:

As described in the previous section, this process design requires multiple heat exchangers in order to meet the necessary temperatures needed for reaction, wastewater treatment, and packaging. The first of these is Heater E-101, which is necessary to heat the nylon salt solution (Stream 4) to $410^{\circ} \mathrm{F}$. This temperature is below the temperature needed for the first reactor. It was found that if we heated the reactants too much prior to entering the reactor, we would have a reaction taking place in the piping. This would result in a blocked pipe and loss of conversion. Through a sensitivity analysis, we found that $410^{\circ} \mathrm{F}$ is the optimum temperature for Stream 4 prior to entering the reactor. This temperature maximizes conversion and minimizes energy costs.

High pressure steam is used as the heating agent because of its cost effectiveness. The heat requirement to heat Stream 4 from $141^{\circ} \mathrm{F}$ to $410^{\circ} \mathrm{F}$ is $2.34 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$. This value comes from the Aspen Plus simulation. High Pressure steam will provide the necessary heat duty needed to make this heat exchange work. The high pressure steam is condensing and thus does not undergo a temperature change. Using Equation [3], we are able to calculate the necessary steam flow rate to obtain the correct heat duty.

$$
\begin{equation*}
\dot{m}=\frac{Q}{\lambda} \tag{3}
\end{equation*}
$$

Where $\dot{\mathrm{m}}=$ steam flow rate, $\mathrm{lbmol} / \mathrm{hr}$
$\mathrm{Q}=$ heat duty, $\mathrm{Btu} / \mathrm{hr}$
$\lambda=$ latent heat of vaporization for high pressure steam (720 Btu/lbm at 600 psig [17])

From this equation, the steam flowrate has been calculated to be $3250 \mathrm{lbm} / \mathrm{hr}$.

Stream 11 is the combined water vent stream from both of the reactors. This stream is at a temperature of $363^{\circ} \mathrm{F}$ and is too high to allow for proper wastewater disposal. Thus, it will need to be cooled down. To meet these necessary requirements, the wastewater will be cooled down to $100^{\circ} \mathrm{F}$ [18]. This will take place in Cooler E-102. From the Aspen Plus simulation, Stream 11 will have to release $4.08 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$ of heat for the wastewater stream to be cooled from $363{ }^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$. Cooling water at $87^{\circ} \mathrm{F}$ will absorb the 4.08 MM Btu/hr of heat and will subsequently increase its temperature to $100^{\circ} \mathrm{F}$. The amount of cooling water required to transfer this heat duty can be calculated by Equation [4].

$$
\begin{equation*}
Q=\dot{m} C_{p} \Delta T \tag{4}
\end{equation*}
$$

Where: $\mathrm{Q}=$ heat duty, Btu/hr
$\dot{\mathrm{m}}=$ mass flow rate of cooling water, $\mathrm{lbm} / \mathrm{hr}$
$\mathrm{C}_{\mathrm{p}}=$ average heat capacity, $\mathrm{Btu} / \mathrm{lbm}-{ }^{\circ} \mathrm{F}$
$\Delta \mathrm{T}=$ change in cooling water temperature, ${ }^{\circ} \mathrm{F}$

Using an average temperature of $93.5^{\circ} \mathrm{F}$, the heat capacity of water is equal to $1.01 \mathrm{Btu} /\left(\mathrm{lb}{ }^{\circ} \mathrm{F}\right)$. From Equation [4], it was calculated that $310,739 \mathrm{lbm} / \mathrm{hr}$ of cooling water is needed.

Cooler E-103 is an electric air cooler that will be used to cool the nylon 6,6 product from $518^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$. To do this, the Aspen Plus simulation estimates that $2.26 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$ will be required, or 662 kW of electricity. The outlet temperature of $140^{\circ} \mathrm{F}$ was chosen as the temperature at which the air cooler would shut off. The design group chose $140^{\circ} \mathrm{F}$ based on heuristics found in Turton, et al [19]. The nylon 6,6 will continue to cool down unaided until it reaches ambient temperature. Using Equation [4], with the heat capacity of air being $0.25 \mathrm{Btu} /\left(\mathrm{lb}^{\circ} \mathrm{F}\right)$ and an estimated approach temperature of $40^{\circ} \mathrm{F}$, [19] it was calculated that the flowrate of air will be roughly $226 \mathrm{M} \mathrm{lbm} / \mathrm{hr}$.

Reactors:

The polycondensation reaction that generates nylon 6,6 is slightly endothermic and needs to be maintained at a constant temperature of $518^{\circ} \mathrm{F}$ to ensure maximum conversion. Therefore, both the batch and continuously stirred tank reactors will need to contain a heat jacket. For both reactors, the temperatures need to be maintained at temperatures in excess of the temperature of high pressure steam. Therefore, high pressure steam cannot be used to maintain the temperatures in these reactors. Electric heaters will work best for this process instead. The design team made the decision to use these high temperatures because they will result in conversions close to 100%. As a result, only trace amounts of ADA and HMDA are found in the product and vent streams. This allows the process to conserve mass and eliminate wastes.

The feed for Reactor R-101 (Stream 5) is at a temperature of $410^{\circ} \mathrm{F}$ and a pressure of 117.6 psia . When it enters Reactor R-101, it will need to be heated to and maintained at $518^{\circ} \mathrm{F}$ for the polycondensation reaction to occur. From the energy balance that takes place in Aspen Plus, 726 M Btu/hr of energy will need to be transferred to successfully heat Stream 5 to $518^{\circ} \mathrm{F}$ and maintain this temperature throughout the time the reaction is taking place in the reactor. As stated above, an electric heater will be used to provide the $726 \mathrm{M} \mathrm{Btu} / \mathrm{hr}$ of energy required. Thus, 213 kW of electricity will be needed.

Reactor R-102 will also require a reactor jacket to maintain a constant temperature of $518{ }^{\circ} \mathrm{F}$. This temperature is required in order to maximize conversion for the CSTR. From the energy
balance in Aspen Plus, $106 \mathrm{M} \mathrm{Btu} / \mathrm{hr}$ of energy, or 31 kW , is required to heat the reactor and will also be provided by an electric heater.

Pumps:

Only one pump is needed in this design to produce the optimum pressures for nylon 6,6 production. Pump P-101 is used to pressurize the mixed feed of ADA, HMDA, and water. Stream 3 enters Pump P-101 at a pressure of 14.7 psia , and is pumped to a pressure of 120 psia when it leaves the pump as Stream 4. This will require 5.6 kW of electricity.

Extruders:

The extrusion unit is responsible for forming nylon 6,6 pellets from the nylon 6,6 product stream. The product stream is at $518^{\circ} \mathrm{F}$, and exits at atmospheric pressure, where it will be subsequently cooled by Air Cooler E-103. The extruder will require 55 kW of electricity to produce the nylon 6,6 pellets. It is labeled X-101.

A summary of the utility requirements for the two heat exchangers can be found below in Figure $\mathbf{1 4}$, and a summary of the utility requirements for the reactors, pump, and extruder can be found below in Figure 15.

Heat Exchanger	Energy Requirements (Btu/hr)	Steam Flowrate (lbm/hr)	Cooling Water Flowrate (lbm/hr)	Electricity Requirements $(\mathbf{k W})$
E-101	$2,336,000$	3250	-	-
E-102	$4,080,000$	-	310739	-
E-103	$2,260,000$	-	-	662

Figure 14: Heat Exchanger Utility Requirement Summary

Process Unit	Energy Requirement (Btu/hr)	Electricity Requirement (kW)
R-101	726,000	213
R-102	106,000	31
P-101	-	3.6
X-101	-	55

Figure 15: Reactors, Pump, and Extruder Utility Requirement Summary

The design team was also tasked with designing the process equipment for a 67% turndown case. While equipment sizing will stay the same, energy and utility requirements will be affected. The same equations and calculations are used for the turndown case, and energy requirements and flow rates are decreased by 33%. Figures 16 and 17 summarize the 67% turndown utility requirements for heat exchangers and the reactors, pump, and extruder, respectively.

Heat Exchanger	Energy Requirements (Btu/hr)	Steam Flowrate (lbm/hr)	Cooling Water Flowrate (lbm/hr)	Electricity Requirements (kW)
E-101	$1,570,000$	2178	-	
E-102	$2,730,000$	-	208,195	
E-103	$1,510,000$			444

Figure 16: Heat Exchanger Turndown Utility Requirement Summary

Process Unit	Energy Requirement (Btu/hr)	Electricity Requirement (kW)
R-101	486,000	142
R-102	71,000	21
P-101	-	2.4
X-101	-	55

Figure 17: Reactors, Pump, and Extruder Turndown Utility Requirement Summary

Equipment List and Unit Descriptions:

Figure 18 is a summary equipment list for this process. Each of these units will be explained in detail in the upcoming subsections.

Unit Number	Unit Type	Brief Function	MOC	Size	Design Temperature	Design Pressure
P-101 A/B	Centrifugal Pump	Increase nylon salt feed pressure	CS	10 hp	$140^{\circ} \mathrm{F}$	170 psia
E-101 A/B	Heater	Feed Heater	$\mathrm{CS} / \mathrm{SS}$	$91.4 \mathrm{ft}^{2}$	$489^{\circ} \mathrm{F}$	170 psia
E-102 A/B	Cooler	Vent Cooler	$\mathrm{CS} / \mathrm{SS}$	$1074 \mathrm{ft}^{2}$	$374^{\circ} \mathrm{F}$	64.7 psia
E-103 A/B	Air Cooler	Product cooler	CS	162	$518^{\circ} \mathrm{F}$	64.7 psia
R-101 A/B/C	Batch Reactor	Convert Feed to Nylon Salt	CS	$437.1 \mathrm{ft}^{2}$	$518^{\circ} \mathrm{F}$	170 psia
R-102 A/B	CSTR	Convert Nylon Salt to Nylon 6,6	CS	$548.6 \mathrm{ft}^{3}$	$518^{\circ} \mathrm{F}$	58.3 psia
V-101 A/B	Process	Holding Tank for Nylon salt	CS	$64 \mathrm{ft}^{3}$	$518^{\circ} \mathrm{F}$	170 psia
X-101 A/B	Extruder	Produce Nylon 6,6 pellets	Nitrided			
Steel	$337.5 \mathrm{ft}^{2}$	$518^{\circ} \mathrm{F}$	170 psia			

Figure 18: Equipment List Summary

Pumps:

A summary of the pump is given by Figure 19 below.

Pump P-101			
$\Delta \mathrm{P}$	105.3	$\mathrm{Q}\left(\mathrm{ft}^{3} / \mathrm{hr}\right)$	3339
$\mathrm{P}_{\text {discharge }}$ (psia)	120	$\dot{\mathrm{~m}}(\mathrm{lbm} / \mathrm{hr})$	13,810
$\mathrm{P}_{\text {Suction }}(\mathrm{psia})$	14.7	$\eta_{\text {motor }}$	0.86
$\mathrm{P}_{\text {Design }}(\mathrm{psia})$	170	$\eta_{\text {Pump }}$	0.45
$\rho_{\text {Fluid }}\left(\mathrm{lbm} / \mathrm{ft}^{3}\right)$	61.84	Hydraulic Hp	3.42
$\rho_{\text {Water }}\left(\mathrm{lbm} / \mathrm{ft}^{3}\right)$	62.37	Brake Hp	7.51
Specific Gravity	0.992	Purchased Hp	8.73

Figure 19: Pump P-101 Summary Design Table

A sensitivity analysis was completed in Aspen Plus to determine the optimum pressure required for the process. Figure 20 shows that that the degree of polymerization maximizes around a design pressure of 155 psig . For this reason, we chose to use P-101 to increase the feed pressure to 155 psig , or 170 psia. The feed streams are entirely liquid, and therefore a pump was chosen over a compressor. The design team chose to use a centrifugal pump because of its versatility in flow capacity. The centrifugal pump allows for a greater range of flow rates than a positive displacement or reciprocating pump. This will allow us to be a lot more flexible in regards to any changes in flow rate required. Three options were considered for the centrifugal pump: a standard pump with axial flow, a turbine pump with mixed flow, and a propeller pump with axial flow. A standard centrifugal pump was chosen because it is the only centrifugal pump able to handle the 245 ft of pressure head required. The flow streams are also not abrasive or contain a high solid content [20].

Figure 20: Pressure Sensitivity analysis

The Aspen Plus simulation program was used to assist in pump design. Aspen calculated the pressure head, hydraulic horsepower, and brake horsepower based on the volumetric flowrate and pressure change in the pump. Aspen Plus estimated the pump efficiency of 0.45 based on the flow conditions and fluid in the process. Using the Aspen Plus estimated brake horsepower of 7.51, we were able to use Figure 21 to determine that the motor efficiency is approximately 0.86 . Dividing the brake horsepower by the motor efficiency results in a purchased horsepower of 8.73. Thus a 10 horsepower electric motor is required for pump P-101.

Figure 21: Centrifugal Pump Motor Efficiency [21]

The material of construction (MOC) for pump P-101 is carbon steel. Carbon steel is the least expensive and thus the most economic choice for material of construction. The Nylon salt feed stream is not corrosive to carbon steel, and carbon steel is capable of handling the pressures and temperatures that the pump will encounter. One spare pump will also be required and costed for in order to avoid a shutdown if there should be any maintenance requirements for the pump. The Pump Specification sheet is found on Page $\mathbf{3 5}$ of this report, and the costing summary for this piece of equipment can be found on Page 75.

Heat Exchangers:

Three different heat exchangers were used for this process. E-101 is used to heat the nylon salt feed stream, E-102 is used to cool the combined water vent stream at the end of the process, and E-103 is used to cool the nylon 6,6 product. Heat exchangers E-101 and E-102 are basic countercurrent flow shell and tube heat exchangers. The design team chose this model because of its ease of design and heat transfer capabilities [21].

The shell and tube configuration allows us to minimize the heat transfer area required, while the countercurrent configurations allows for maximum heat transfer. For both E-101 and E-102, Carbon steel was chosen as the MOC for the shell because it is inexpensive and we do not have to worry about any corrosion in the shell due the nylon salt solution. Stainless steel was chosen as the tube material because water and steam have been found to be quite corrosive on carbon steel heat exchanger tubes [22]. Stainless steel is much more resistant to fouling caused by water, and should last much longer in the field [22]. Cooler E-103 is an air cooler connected with the nylon 6,6 extruder. Carbon steel was chosen as its MOC because air is not corrosive to carbon steel, and carbon steel is the most cost effective. Figure 22 is a design summary table for Heater E-101.

Heater E-101			
Q (Btu/hr)	2,340,000	Feed m $(\mathrm{lbm} / \mathrm{hr})$	13,810
Feed $\mathrm{T}_{\text {in }}\left({ }^{\circ} \mathrm{F}\right)$	140	Steam m ${ }^{\text {(} \mathrm{lbm} / \mathrm{hr} \text {) }}$	3,250
Feed $\mathrm{T}_{\text {out }}\left({ }^{\circ} \mathrm{F}\right)$	410	Steam v (gpm)	300
Steam $\mathrm{T}_{\text {in }}\left({ }^{\circ} \mathrm{F}\right)$	489	$\mathrm{U}_{0}\left(\mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft}^{2}\right)$	130
Steam $\mathrm{T}_{\text {out }}\left({ }^{\circ} \mathrm{F}\right)$	489	F	1
$\Delta \mathrm{T}_{\mathrm{lm}}$	181.7	Number of shells	1
$\mathrm{P}_{\text {Design }}$ (psia)	170	A (ft^{2})	91.4

Figure 22: Heater E-101 Design Summary

The Aspen Plus simulation specifies that a heat duty of $2.34 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$ is required to heat the feed stream to the required temperature. This value was used in the preceding section to generate the mass flow rate of steam needed for the heat transfer. This value can be used with Equation [5] to estimate the size of the heater.

$$
\begin{equation*}
A=\frac{Q}{U_{0} F \Delta T_{l m}} \tag{5}
\end{equation*}
$$

Where: $\mathrm{A}=$ heat exchanger area, ft^{2}
$\mathrm{Q}=$ heat duty, Btu/hr
$\mathrm{U}_{0}=$ overall heat transfer coefficient, $\mathrm{Btu} / \mathrm{hr}^{\circ}{ }^{\circ} \mathrm{F}-\mathrm{ft}^{2}$
$\mathrm{F}=$ correction factor to account for the departure from true countercurrent flow $\Delta \mathrm{T}_{\mathrm{lm}}=\log$ mean temperature difference.

The overall heat transfer coefficient, U_{0}, has been estimated to be approximately $130\left(\mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}\right.$ ft^{2}). The design team made this decision based on heuristics given in Turton, et al [19]. Correction factor F is approximately 1.0 because the high pressure steam used for heat transfer is condensing inside the heat exchanger. The log mean temperature difference can be found using Equation [6].

$$
\begin{equation*}
\Delta T_{l m}=\frac{\left(\text { Steam } T_{\text {in }}-\text { Feed } T_{\text {in }}\right)-\left(\text { Steam } T_{o u t}-\text { Steam } T_{o u t}\right)}{\ln \left[\frac{\left(\text { Steam } T_{\text {in }}-\text { Feed } T_{\text {in }}\right)}{\left(\text { Steam } T_{\text {out }}-\text { Steam } T_{o u t}\right)}\right]} \tag{6}
\end{equation*}
$$

The values for each temperature are located in Figure 22. Heater E-101 needs to have an area of $91 \mathrm{ft}^{2}$. This value will be used to estimate the capital and manufacturing costs found on Page 75. To avoid any shutdowns due to heater malfunction, we are requiring that a spare heater be purchased for this process. The design specification sheet for E-101 is found on Page 36.

Figure 23 is a design summary table for Cooler E-102.

Cooler E-102			
Q (Btu/hr)	4,080,000	Feed m $(\mathrm{lbm} / \mathrm{hr})$	10,250
Feed $\mathrm{T}_{\text {in }}\left({ }^{\circ} \mathrm{F}\right)$	363	Water m ($\mathrm{lbm} / \mathrm{hr}$)	310,739
Feed $\mathrm{T}_{\text {out }}\left({ }^{\circ} \mathrm{F}\right)$	100	Water v (gpm)	688
Cooling Water $\mathrm{T}_{\text {in }}\left({ }^{\circ} \mathrm{F}\right)$	87	$\mathrm{U}_{0}\left(\mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft}^{2}\right)$	130
Cooling Water $\mathrm{T}_{\text {out }}\left({ }^{\circ} \mathrm{F}\right)$	100	F	0.84
$\Delta \mathrm{T}_{\mathrm{lm}}$	34.8	Number of shells	1
$\mathrm{P}_{\text {Design }}$ (psia)	64.7	A (ft^{2})	1074

Figure 23: E-102 Design Summary

According to data obtained from the Aspen Plus simulation, 4.08 MM Btu/hr need to be removed from the combined vent stream in order to properly cool the wastewater to a temperature where it can be properly treated and disposed of. This is done by heating up cooling water to near $100{ }^{\circ} \mathrm{F}$. Equation [5] can once again be used to estimate the heat transfer area required for E-102, where Equation [6] is once again used to determine the log mean temperature difference. The calculations used to determine the correction factor can be found in the appendix. However, it was found that the inlet and outlet temperatures of the cooling water and vent stream are great enough that the correction factor is approximately 1 . The required estimated area for heat transfer is $1074 \mathrm{ft}^{2}$ for $\mathrm{E}-102$. A spare cooler is required for design.

The design specification sheet for E-102 is found on Page 37, and a costing summary is found on Page 76.

Figure 24 is a design summary table for Air Cooler E-103.

Air Cooler E-103			
Q (Btu/hr)	$2,260,000$	Feed $\dot{\mathrm{m}}(\mathrm{lbm} / \mathrm{hr})$	3560
Feed $\mathrm{T}_{\text {in }}\left({ }^{\circ} \mathrm{F}\right)$	518	Air $\dot{\mathrm{m}}(\mathrm{lbm} / \mathrm{hr})$	226,000
Feed $\mathrm{T}_{\text {out }}\left({ }^{\circ} \mathrm{F}\right)$	140	Air v (gpm)	941
Cooling air $\mathrm{T}_{\text {in }}\left({ }^{\circ} \mathrm{F}\right)$	70	$\mathrm{U}_{0}\left(\mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}-\mathrm{ft}^{2}\right)$	90
Cooling air $\mathrm{T}_{\text {out }}\left({ }^{\circ} \mathrm{F}\right)$	110	F	1
$\Delta \mathrm{~T}_{\operatorname{lm}}$	155	$\mathrm{~A}\left(\mathrm{ft}^{2}\right)$	162
$\mathrm{P}_{\text {Design }}(\mathrm{psia})$	64.7		

Figure 24: E-103 Design Summary

The design team chose to use an air cooler because the nylon 6,6 will be in pellet form after exiting the extruder. E-103 relies on electricity to power the fan. According to the Aspen Plus simulation, $2.26 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$, or 662 kW of electricity, is required to cool the nylon 6,6 product stream. For this preliminary design, the design team estimated the ambient air temperature to $70^{\circ} \mathrm{F}$, with the understanding that this can change on a day to day basis unless the air cooler is located indoors. The air outlet temperature and overall heat transfer coefficient were chosen based on design heuristics found in Turton, et al [19]. These values are $140^{\circ} \mathrm{F}$ and $90 \mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}$ ft^{2}, respectively. The correction factor was estimated to be approximately 1 since air cooling is occurring in place of a conventional countercurrent heat exchanger. Equation [5] is once again
used to calculate the heat transfer area of the cooler, with Equation [6] used to calculate the log mean temperature difference.

The design specification sheet for E-103 is found on Page 38, and a costing summary is found on Page 76.

Reactors:

Reactors R-101 and R-102 are used to convert the ADA, HMDA, and water feed to nylon 6,6 . $\mathrm{R}-101$ is a batch reactor that converts the reactants to nylon salt at a temperature of $518{ }^{\circ} \mathrm{F}$ and a pressure of 121 psia. R-102 then converts the nylon salt solution to nylon 6,6 by reducing the pressure to 8.33 psia , while maintaining the temperature of $518^{\circ} \mathrm{F}$. Carbon steel was chosen as the MOC due to its inexpensiveness and the lack of highly corrosive chemicals in the process. The reasons for using a batch reactor followed by a CSTR were explained in the previous Process Description section. Figure 25 below is a design summary table for Reactor R-101.

Batch Reactor R-101			
$\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$	518	$\mathrm{~N}_{\mathrm{A} 0}(\mathrm{lbmol})$	45.4
$\mathrm{P}_{\text {Design }}(\mathrm{psia})$	17	$\mathrm{~N}_{\mathrm{A}}(\mathrm{lbmol})$	0.012
$\dot{\mathrm{~m}}_{\text {in }}(\mathrm{lbm} / \mathrm{hr})$	13,810	Conversion	0.9997
Vent $\dot{\mathrm{m}}_{\text {out }}(\mathrm{lbm} / \mathrm{hr})$	3,431	$\mathrm{Q}(\mathrm{Btu} / \mathrm{hr})$	726,000
Product $(\mathrm{lbm} / \mathrm{hr})$			
$\rho_{\text {out }}\left(\mathrm{lbm} / \mathrm{ft}^{3}\right)$	10,379	Electricity Requirement (kW)	213
(hr)	52.66	$\mathrm{~V}\left(\mathrm{ft}^{3}\right)$	437.1

Figure 25: R-101 Design Summary
Reactor R-101 is a batch reactor that will be used to convert the feed into aqueous nylon salt. Because the reaction is slightly endothermic, this reactor will require a heated jacket in order to maintain the temperature of $518^{\circ} \mathrm{F}$. Polymerization has been shown to increase with temperature up to the point of thermal degradation. The design group chose $518^{\circ} \mathrm{F}$ as the design temperature because it is the highest temperature observed in the literature that does not show signs of thermal degradation [23, 24]. Because this temperature is higher than that of high pressure steam, an electric heater will be needed to provide the heat. The design group chose to use a non-agitated heating jacket because we do not foresee any need for an agitated one. The energy
balance was developed in the Aspen Plus simulation, and $726 \mathrm{M} \mathrm{Btu} / \mathrm{hr}$ is needed to raise the feed to $518^{\circ} \mathrm{F}$, and be maintained throughout the reaction. This corresponds to an electricity requirement of 142 kW . Equation [7] is the batch reactor design equation, which is used to determine the volume of the reactor vessel needed for this reaction.

$$
\begin{equation*}
N_{A 0} \frac{d X}{d t}=-r_{A} V \tag{7}
\end{equation*}
$$

Where: $\mathrm{N}_{\mathrm{A} 0}=$ initial amount of adipic acid in the reactor, lbmol
$\mathrm{X}=$ conversion
$\mathrm{r}_{\mathrm{A}}=$ reaction rate, $\mathrm{lbmol} / \mathrm{ft}^{3}-\mathrm{hr}$
$\mathrm{V}=$ reactor volume, ft^{3}
The reactor volume was calculated by using the batch reactor sizing techniques found in Turton, et al. The total reactor volume is found by Equation [8].

$$
\begin{equation*}
V=\frac{\dot{m}}{\rho}\left(\frac{5}{3}\right) \tag{8}
\end{equation*}
$$

Where: $\dot{\mathrm{m}}=$ feed flow rate, $\mathrm{lbm} / \mathrm{hr}$,
$\rho=$ density, lbm/ft
The $5 / 3$ term is a multiplication value to account for the assumption that the reactor is 60% full while in operation. This value was found in Turton, et al. Using Equation [8] and the values for \dot{m} and ρ in Figure 25, the estimated required volume for the Reactor R-101 can be calculated to be $437.1 \mathrm{ft}^{3}$. Equation [9] can be used to determine the reaction conversion in the batch reactor.

$$
\begin{equation*}
X=1=\frac{N_{A}}{N_{A 0}} \tag{9}
\end{equation*}
$$

$\mathrm{N}_{\mathrm{A} 0}$, the initial number of moles of adipic acid, is equal to 45.37 lbmol . According to the Aspen Plus simulation, the final number of moles of adipic acid in the stream, N_{A}, is 0.0123 lbmol . Thus the reaction conversion for Reactor R-101 is 0.9997 .

Through a sensitivity analysis, it was determined that the optimum residence time for the reaction is approximately 1 hour. Leaving the reactants in the reactor for this amount of time results in the highest possible conversion of nylon salt. Figure 26 is a graph of the molar concentrations vs time, showing that 1 hour is the optimum residence time for this reactor.

Figure 26: Molar Concentrations vs Time

Because the residence time is one hour, there will be at least one hour of dead time for the reactor. In order to maintain a smooth process, $\mathrm{R}-101$ represents two identical reactors in parallel. While R-101 A is producing nylon salt, R-101 B will be filling up with reactants, and vice versa. This will allow for another batch of nylon salt to be produced while R-101 A is experiencing dead time. Thus the process of producing nylon 6,6 will be sped up, and there will not be a buildup of feed or reactants upstream. The design specification sheet for R-101 is found on Page 39, and a costing summary is found on Page 75. Figure 27 is a design summary table for Reactor R-102.

R-102			
$\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$	518	$\mathrm{v}_{0}\left(\mathrm{ft}^{3} / \mathrm{hr}\right)$	192.5
$\mathrm{P}_{\text {Design }}(\mathrm{psia})$	58.33	$(\mathrm{~min})$	3
$\dot{\mathrm{~m}}_{\text {in }}(\mathrm{lb} / \mathrm{hr})$	10,379	Conversion	1
Vent $\dot{\mathrm{m}}_{\text {in }}(\mathrm{lb} / \mathrm{hr})$	129	$\mathrm{Q}(\mathrm{Btu} / \mathrm{hr})$	106,000
Product $\dot{\mathrm{m}}_{\text {in }}(\mathrm{lb} / \mathrm{hr})$	10,250	Electricity Requirement (kW)	31
$\mathrm{~F}_{\mathrm{A} 0}(\mathrm{lbmol} / \mathrm{hr})$	45.3	$\mathrm{~V}\left(\mathrm{ft}^{3}\right)$	548.6
$\rho\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$	52.66		

Figure 27: R-102 Design Summary

Reactor R-102 is a continuously stirred tank reactor (CSTR) that is used to convert the nylon salt stream from R-101 into nylon 6,6. The reactor does this by lowering the pressure to 8.33 psia and venting out what water remains in the process. The pressure was chosen as it was the ideal pressure found in the literature. This results in the nylon molecules attaching to each other and forming nylon 6,6 . Like R-101, R-102 will require a heated jacket to maintain a constant temperature of $518{ }^{\circ} \mathrm{F}$. The temperature on R-102 was selected for the same reasons as R-101. An electric heater and a not-agitating jacket were chosen for similar reasons as those for R-101. According to the Aspen Plus simulation, $71 \mathrm{M} \mathrm{Btu} / \mathrm{hr}$ are required to maintain the reactor temperature at a constant $518^{\circ} \mathrm{F}$, corresponding to an electricity requirement of 21 kW .

The CSTR design equation is shown in Equation 10 below.

$$
\begin{equation*}
V=\frac{F_{A 0} X}{-r_{A}} \tag{10}
\end{equation*}
$$

Where: $\mathrm{V}=$ volume, ft^{3},
$\mathrm{F}_{\mathrm{A} 0}=$ flowrate of nylon salt feed, $\mathrm{lbmol} / \mathrm{hr}$
$\mathrm{X}=$ conversion from nylon salt to nylon 6,6
$\mathrm{r}_{\mathrm{A}}=$ reaction rate, $\mathrm{lbmol} / \mathrm{ft}^{3}-\mathrm{hr}$

The conversion is assumed to be 1 because all of the nylon salt (excluding water) is being converted to nylon 6,6 . The reaction rate is explained fully in the Process Description section. The value for $\mathrm{F}_{\mathrm{A} 0}$ is found in Figure 27, and is equal to $45.3 \mathrm{lbmol} / \mathrm{hr}$.

The reactor volume was calculated by using Equation 11 below:

$$
\begin{equation*}
V=\tau v_{o} \tag{11}
\end{equation*}
$$

Where: $\tau=$ residence time (minutes)
$\mathrm{v}_{0}=$ initial volumetric flow rate ($192.5 \mathrm{ft}^{3} / \mathrm{hr}$)

The residence time for $\mathrm{R}-102$ was determined to be 0.05 hours, or 3 minutes. A sensitivity analysis for the degree of polymerization was completed to determine this value. Figure 28 shows the sensitivity analysis. The residence time chosen is not quite at the peak of the graph. This was done because the reactor volume drastically alters the capital costs of the reactor. The design group chose a residence time of 0.05 hours because this value results in the lowest capital cost while remaining a marginal difference in the optimum degree of polymerization.
From Equation 11, the volume of R-102 is $577.5 \mathrm{ft}^{3}$.

Figure 28: R-102 Residence Time Sensitivity Analysis
$\mathrm{R}-102$ will contain a spare reactor vessel in order to avoid complete shutdown due to any equipment malfunctions. The design specification sheet for R-102 is found on Page 40, and a costing summary is found on Page 75.

Process Vessels:

Figure 29 is a design summary for Process Vessel V-101.

V-101			
$\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$	518	$\mathrm{~V}_{0}\left(\mathrm{ft}^{3} / \mathrm{hr}\right)$	192.5
$\mathrm{P}_{\text {Design }}(\mathrm{psia})$	171	$\mathrm{~V}\left(\mathrm{ft}^{3}\right)$	64
$\dot{\mathrm{~m}}(\mathrm{lbm} / \mathrm{hr})$	10,379	$\mathrm{~L} / \mathrm{D}$	3
$\rho\left(\mathrm{lbm} / \mathrm{ft}^{3}\right)$	52.66	$\mathrm{~L}(\mathrm{ft})$	9
Holdup time (min)	10	$\mathrm{D}(\mathrm{ft})$	3
$\mathrm{~L} / \mathrm{D}$	3		

Figure 29: V-101 Design Summary

The design team made the decision to add a process vessel after Reactor R-101. Vessel V-101 will act as a holding tank for the nylon salt solution before it continues on in the process. Vessel V-101 will provide time to identify any issues with the nylon salt solution, and also provide a way to drain the process should the reaction taking place in R-101 fail for any reason, or produce
an impure product. Placing this vessel before R-102 will save the company utility costs associated with R-102 should the first reaction fail.

Following the design heuristics in Turton, et al [19], the ideal length to volume ratio is 3, the average holdup time should be approximately 10 minutes, and the vessel should be assumed to be 50% full at all times. Therefore, Equation 12 can be used to determine the vessel volume.

$$
\begin{equation*}
V=2 \dot{m} t_{\text {holdup }} \tag{12}
\end{equation*}
$$

Here, $\dot{\mathrm{m}}$ is the volumetric flow rate into $\mathrm{V}-101$, and is equal to $192.5 \mathrm{ft}^{3} / \mathrm{hr}$. Thus, the volume required for V-101 is equal to $64 \mathrm{ft}^{3}$. Assuming that V-101 is a horizontal cylinder and using an L / D of 3 , vessel length is calculated to be 9 ft and the vessel diameter to be 3 ft .

Vessel V-101 will be made of carbon steel due to its low cost. The design specification sheet for V-101 is found on Page 41, and a costing summary is found on Page 75.

Extruder:

An extruder, $\mathrm{X}-101$, is required near the end of the process to produce the nylon 6,6 pellets that will be sold. The design team investigated different extruders, and finally decided on the plastic extruder machine manufactured by Longshi (Dongguan) Machinery Plastic Company, Ltd located in Shenzhen, China [25]. This particular extrusion unit is made of nitrided steel and has dimensions of $11 \mathrm{ft} \times 5.9 \mathrm{ft} \times 5.2 \mathrm{ft}$. It is computerized and thus produces the nylon 6,6 pellets automatically. The model number is NR-II-46-001. Two extruder units will be purchased so that a spare will be present on site. The design specification sheet for $\mathrm{X}-101$ is found on Page 42, and a costing summary is found on Page 75.

Equipment Specification Sheets: Table of Contents

The following eight pages consist of equipment specification sheets for the process equipment used in this design. Figure $\mathbf{3 0}$ below is a table of contents for the equipment specification sheets.

Equipment Specification Sheet	Location
P-101	Pg. 35
E-101	Pg. 36
E-102	Pg. 37
E-103	Pg. 38
R-101	Pg. 39
R-102	Pg. 40
V-101	Pg. 41
X-101	Pg. 42

Figure 30: Equipment Specification Sheets Table of Contents

Heat Exchanger

Identification: Item
Item No.
No. required
Heat Exchanger
E-101
2

Date: 9 March 2017

By: DC, RD, RK, and DM

Function: Increase the temperature of the Adipic Acid, HMDA, and Water feed.						
Operation: Continuous						
Materials Handled:		Stream In	Stream Out	Steam in	Steam Out	
Quantity (lb/hr):		13,810	13,810	3,250	3,250	
Composition:						
Adipic Acid		0.480	0.480	0	0	
HMDA		0.382	0.382	0	0	
Water		0.138	0.138	1	1	
Temperature (${ }^{\circ} \mathrm{F}$):		141	410	489	489	
Operating Pressure (psia):		120	117.57	614.7	614.7	
Design Data:	Outlet Temperature: $410{ }^{\circ} \mathrm{F}$				MOC: CS Shell/SS Tubes	
	Outlet Pressure: 117.57 psia					
	Design Pressure: 170 psia					
	Vapor Fraction: 0					
	Heat duty: 2,340,000 Btu/hr					
	Area: $91.4 \mathrm{ft}^{2}$					
	Type: Shell and Tube					
	Configuration: Counter current					
Utilities: High Pressure Steam (600 psig) at $3250 \mathrm{lb} / \mathrm{hr}$						
Controls: Temperature control system. Flow valve located on steam line						
Comments:						

Heat Exchanger

Air Cooler					
Identification:	Item Item No. No. required	Air Cooler E-103 2			te: 9 March 2017 : DC, RD, RK, an
Function:	Cool the Nylon 6,6 pellets				
Operation: Continuous					
Materials Handled:		Stream In	Stream Out	Air Stream In	Air Stream Out
Quantity ($\mathrm{lb} / \mathrm{hr}$):		10,250	10,250	226,000	226,000
Composition:					
Adipic Acid		Trace	Trace	0	0
HMDA		Trace	Trace	0	0
Water		0.0007	0.0007	0	
Nylon 6,6		0.9993	0.9993	0	0
Air		0	0	1	1
Temperature (${ }^{\circ} \mathrm{F}$):		518	140	70	110
Operating Pressure (Psia):		8.33	14.7	14.7	14.7
Design Data: Heat Duty: -2,260,000 Btu/hr					
Design Pressure: 64.7 psia					
MOC: Carbon Steel					
Area: $162 \mathrm{ft}^{2}$					
Type: Electric Fan					
Utilities: Electricity at 662 kW					
Controls: None					
Comments:					

Product Receiver Vessel

Capital Cost Summary

The cost for each piece of equipment was estimated by using the module costing technique in Turton, et al [19]. In this approach, costs are first calculated for base conditions and then adjusted based on the equipment type, system pressure, and materials of construction in a specific design. Base conditions are assumed to be equipment made of carbon steel and operating at near-ambient pressures. The bare module cost for a given piece of equipment can be calculated by using Equation 13, shown below.

$$
\begin{equation*}
C_{B M}=C_{p}^{o}\left[B_{1}+B_{2} F_{p} F_{M}\right] \tag{13}
\end{equation*}
$$

Where: $\mathrm{C}_{\mathrm{BM}}=$ bare module equipment cost, $\$$
$\mathrm{C}_{\mathrm{p}}{ }^{\mathrm{o}}=$ purchased cost in base conditions, $\$$
$B_{1}=$ equipment type factor
$\mathrm{B}_{2}=$ equipment type factor
$\mathrm{F}_{\mathrm{p}}=$ pressure factor
$\mathrm{F}_{\mathrm{M}}=$ material of construction factor

For heat exchangers, F_{p} is calculated as shown below in Equation 14.

$$
\begin{equation*}
\log _{10} F_{p}=C_{1}+C_{2} \log _{10} P+C_{3}\left(\log _{10} P\right)^{2} \tag{14}
\end{equation*}
$$

Where: $\mathrm{C}_{\mathrm{i}}=$ pressure factor
$\mathrm{P}=$ pressure, barg

For process vessels, F_{p} can be calculated using Equation 15. Unless otherwise specified, CA is assumed to be 0.00315 m and $\mathrm{t}_{\text {min }}$ is assumed to be 0.0063 m .

$$
\begin{equation*}
F_{p}=\frac{\frac{(P+1) D}{(2)(944)(0.9)-1.2(P+1)}+C A}{t_{\min }} \tag{15}
\end{equation*}
$$

Where: $\mathrm{P}=$ pressure, barg
$\mathrm{D}=$ diameter, m
$\mathrm{CA}=$ corrosion allowance, m
$\mathrm{t}_{\text {min }}=$ minimum allowable vessel thickness, m

The costs calculated using the above equations can then be adjusted to account for inflation by using the Chemical Engineering Plant Cost Index (CEPCI) by using Equation 16.

$$
\begin{equation*}
C_{2}=C_{1}\left(\frac{I_{2}}{I_{1}}\right) \tag{16}
\end{equation*}
$$

Where: $\mathrm{C}_{\mathrm{i}}=$ purchased cost, $\$$
$\mathrm{I}_{\mathrm{i}}=$ cost index

The purchased costs and bare module costs for each piece of equipment for both the Batch/CSTR and PFR/CSTR options are shown in Figures 31 and 32, respectively.

Batch/CSTR Equipment Costs			PFR/CSTR Equipment Costs		
	$\mathrm{C}_{\mathrm{p}, 2016}$	$\mathrm{C}_{\text {BM,2016 }}$		$\mathbf{C}_{\mathrm{p}, 2016}$	$\mathrm{C}_{\text {BM,2016 }}$
P-101	\$ 6,200	\$ 16,000	P-101	\$ 6,200	\$ 16,000
E-101	\$ 38,000	\$ 96,000	E-101	\$ 38,000	\$ 96,000
R-101	\$ 66,000	\$ 265,000	R-101	\$ 75,000	\$ 290,000
V-101	\$ 8,800	\$ 23,500	V-101	\$ 8,800	\$ 23,000
R-102	\$ 76,500	\$ 306,000	R-102	\$ 77,000	\$ 310,000
E-102	\$ 54,000	\$ 138,000	E-102	\$ 50,000	\$ 130,000
E-103	\$ 32,500	\$ 106,000	E-103	\$ 35,000	\$ 115,000

Figure 31: Batch/CSTR Capital Costs
Figure 32: PFR/CSTR Capital Costs

Because there were no available costing correlations for an extruder, the group requested a quote for an industrial extruder and pelletizer. An average price of $\$ 26,500$ [25] was used for calculations in this project.

Once the bare module cost has been determined, the total module cost can be calculated. This cost accounts for making small changes to an existing facility by adding contingency costs and fees to the bare module cost. For this project, the grassroots cost was also calculated. The grassroots cost includes costs for site development and auxiliary buildings, which are assumed to
be 50% of the total bare module cost. The total module cost is calculated by using Equation 17, and the calculation for the grassroots cost is shown in Equation 18.

$$
\begin{gather*}
C_{T M}=\sum_{i=1}^{n} C_{T M, i}=1.18 \sum_{i=1}^{n} C_{B M, i} \tag{17}\\
C_{G R}=C_{T M}+0.50 \sum_{i=1}^{n} C_{B M, i}^{o} \tag{18}
\end{gather*}
$$

Working capital was approximated as 15% of the fixed capital costs, according to Turton et al [19]. The total capital investment can be calculated using Equation 19, shown below.

$$
\begin{equation*}
\text { Total Capital Investment }=\text { Fixed Capital }+ \text { Working Capital } \tag{19}
\end{equation*}
$$

Figure 33 shows a summary of all capital costs.

Capital Costs			
	Batch/CSTR		PFR/CSTR
Fixed Capital (Grassroots)	$\$$	$3,400,000$	$\$$
Working Capital	$\$$	$510,000,000$	
Total Capital Investment	$\$$	$4,025,000$	$\$$

Figure 33: Summary of Capital Costs

Safety, Health, and Environmental Considerations:

Throughout the development of this process plant, safety was kept at the forefront of all decisions. The first step to ensuring each step of the process was as safe as possible was an initial hazard analysis on the raw materials being used for this process. Figure 34 below displays an initial raw material hazard analysis.

Material Properties	Hazard
Health	Nylon 6,6
Adipic acid	Fine particulates may lead to eye or lung irritation upon exposure. In addition, thermal decomposition may lead to the release of toxic or irritating vapors.
HMDA	Skin and eye irritant; hazardous in case of ingestion and inhalation. Repeat exposure can cause organ damage.
Flammability	Substance is toxic to blood, kidneys, lungs, and liver. Very hazardous in case of skin contact, eye contact, and inhalation. Inhalation of dust can lead to irritation of gastrointestinal and respiratory tracts.
Adipic acid	Slightly flammable to flammable at high temperatures
HMDA	Slightly flammable to flammable at high temperatures

Figure 34: Hazard Identification Summary [26-28]

Both adipic acid and HMDA have been found to be slightly flammable at elevated temperatures. Therefore, research was done into the probability of the raw materials catching fire, as well as any release limits set by the EPA. This research led to the conclusion that so long as the raw materials were not exposed to excessively high temperatures or open flame, the probability of fire was very low. In order to further mitigate flammability risks, the raw materials used were diluted with water so as to reduce the potential for combustion. Figures 35 and 36 below display the results of this flammability analysis.

	OSHA (PSM)	EPA (RMP)		
Component	PEL (ppm)	Threshold Level (lbs)	Known Hazards	
Water	N/A	N/A	N/A	
Nylon 6,6	N/A	N/A	N/A	
Adipic acid	N/A	N/A	Flammable, Health Hazard	
HMDA	N/A	N/A	Flammable, Health Hazard	

Figure 35: Threshold Level Analysis

NFPA Ratings					
Component	Health	Flammability	Instability	Special	
Water	0	0	0	N/A	
Nylon 6,6	0	0	0	N/A	
Adipic acid	2	1	0	N/A	
HMDA	3	2	0	N/A	

Figure 36: NFPA and Flammability Analysis

In order to avoid the release of any raw materials or product to the environment, all vent streams were set through wastewater treatment before being released. This necessary step ensures that any water released from this plant will not pose a negative impact to the environment or the surrounding Calvert City area.

After investigating the hazards associated with the raw materials themselves, an investigation into process hazards was also performed. This analysis used the identified hazards and determined ways to mitigate these hazards using inherently safe principles of design. These actions were turned into designed components of this process. Figure 37 below displays the results of this inherent safety analysis.

Hazard	Inherent Safety Concept	Action
Nylon 6,6 Health Hazard	Minimization	Send newly-produced pellets directly to packaging to avoid development of irritating dust or degradation
ADA Health Hazard	Moderation	Raw material diluted with water to reduce irritation hazard
HMDA Health Hazard	Moderation	Raw material diluted with water to reduce irritation hazard
ADA Flammability Hazard	Moderation	Raw material diluted with water to reduce flammability
HMDA Flammability Hazard	Moderation	Raw material diluted with water to reduce flammability
High-Temperature Heating Fluid Thermal Hazard	Substitution	Use electric heaters in place of other dangerous heating fluids

Figure 37: Inherent Safety Analysis

Additional measures were put in place in order to enhance the safety of the process design. For instance, in choosing reactors for this process, the choice was made to use multiple reactors with lower volume as opposed to a larger single reactor. This aided in creating a more inherently safe design, as a lower volume of material would be reacting at once. In the event of an incident, less material will be released, thus causing less damage or harm to workers.

When designing heated jackets for the reactors themselves, the decision was made to use electric heaters as opposed to utilizing a high-heat capacity heating media. This allowed for high levels of heating without the danger that accompanies such a media, thus eliminating another potential hazard.

For the design of shell-and-tube heat exchangers E-101 and E-102, stainless steel was chosen as the material of construction in order to avoid corrosion and the potential combination of water/steam with process material. If the process materials were to come in contact with the high pressure steam of E-101, the feed would become contaminated, and could potentially lead to thermal degradation. This breach would cause a safety problem, as well as lead to poorquality nylon product.

All process equipment was designed for 50 psi above operating pressure so as to provide a safety cushion in the event of elevated temperatures or pressures inside the equipment. In addition, all vent streams were cooled to $100^{\circ} \mathrm{F}$ before being sent to wastewater treatment in order to avoid the release of high-energy heated water or steam. In the event of an accidental release of the vent stream, the lowered temperature will prevent potential burns or injury that could result from a high-energy heated water stream. In a similar manner, the freshly extruded nylon pellets at the end of the process are immediately cooled in order to ensure they are safe to handle.

A process vessel was added in between R-101 and R-102 in order to provide greater control over the process and to serve as a safety measure. This process could have been designed to have aqueous nylon flow directly from R-101 and R-102, but this choice could have posed problems in the event of any disruption to the process. The current design's inclusion of vessel V-101 allows operators to drain $\mathrm{R}-101$ and stop the process if any part of the process is malfunctioning. In the case of an incident, the addition of a holding tank in between reactors helps to reduce the consequences of a malfunction.

Safety also played a role in the ultimate decision of reactor scheme. As previously mentioned, PFR/CSTR and CSTR/CSTR reactor schemes were also investigated in addition to the final Batch/CSTR scheme. The design group ultimately decided on the Batch/CSTR scheme because of its simplicity and safety. Batch reactors are inherently simpler than plug-flow reactors, and thus the group decided that ensuring the safety of such a reactor would be easier. The Batch/CSTR scheme also yielded a more profitable process, but only marginally more so than
the PFR/CSTR scheme. Therefore, the added simplicity and safety of the Batch/CSTR process was the deciding factor in choosing a final design.

As previously mentioned, safety was considered in all steps of the process design of this process. In addition to the previously mentioned analyses and considerations, a HAZOP analysis was performed to investigate the future steps needed to ensure the safety and hazard mitigation of the process in future design steps. The results of this analysis can be found on the following pages.
Figure 37 below details the various parts of the HAZOP analysis and where to find them on subsequent pages.

Equipment Label	Equipment Name	HAZOP Table Location
VLV 101 A/B	Feed Mixing Valve	Pg. 49
P-101 A/B	Feed Pump	Pg. 50
E-101 A/B	Feed Preheater	Pgs. $51-52$
R-101 A/B/C	Pressurized Jacketed Batch Reactor	Pg.53
V-101 A/B	Safety Storage Vessel	Pg. 54
R-102 A/B	Near-Vacuum Jacketed CSTR	Pg. 55
E-102 A/B	Vent Condenser	Pg. 56
VLV-102 A/B	Vent Stream Mixing Valve	Pg. 57
E-103 A/B	Air Cooler	Pg. 58
X-101 A/B	Nylon Pellet Extruder	Pg. 59

Figure 38: HAZOP Analysis Table of Contents
PROCESS UNIT: VLV-101 A/B, FEED MIXING VALVE, FIGURE 3

INTENTION: MIX RAW MATERIAL STREAMS 1 \& 2				
GUIDE WORD:	Deviation	Cause	Consequence	Action
NO	No Stream 1 flowrate	Blockage or lack of adipic acid	Build-up of HDMA in R-101; No reaction	Consider an interlock on ADA Flow
	No Stream 2 flowrate	Blockage or lack of HMDA	Build-up of ADA in R-101; No reaction	Consider an interlock on HMDA Flow
MORE OF	Stream 1 flowrate	Surge of ADA	Unstable operation	Alarm to notify of surge
	Stream 2 flowrate	Surge of HMDA	Unstable operation	Alarm to notify of surge
	Temperature	Sudden/unexpected reaction in Stream 3	Reduction in Stream 4 flowrate; twophase flow in pump	Consider interlock on flow
	Pressure	Downstream blockage	Tube failure	Pressure-relief system on tubes
LESS OF	Temperature	Ambient conditions	Reactants are not high enough temperature for reaction to occur	Control system to raise steam rate and therefor temperature
	Less flow in Stream 1 than in Stream 2	Blockage in Stream 1	Unbalanced reaction; lowered conversion.	Keep regular supply of ADA
	Less flow in Stream 2 than in Stream 1	Blockage in Stream 2	Unbalanced reaction; lowered conversion.	Keep regular supply of HMDA
AS WELL AS	Air in Stream 1	Pipe leak	Pump cavitation	Maintain supply of ADA
	Air in Stream 2	Pipe leak	Pump cavitation	Maintain supply of HMDA
REVERSE	Reversal of Stream 1	No probable cause		
	Reversal of Stream 2	No probable cause		
OTHER THAN	Impurities in Stream 1	Impurities in feed	None at this point of process	
	Impurities in Stream 2	Impurities in feed	None at this point of process	
	Stream 1 replaced by other acid	Wrong connection by sabotage	Loss of product possible	Redundant management controls on storage facilities. Level control downstream
	Stream 2 replaced by other acid	Wrong connection by sabotage	Loss of product possible	Redundant management controls on storage facilities. Level control downstream

PROCESS UNIT: P-101 A/B, FEED PUMP, FIGURE 3

INTENTION: INCREASE PRESSURE OF FEED STREAM		Consequence	Action	
GUIDE WORD:	Deviation	Cause	Blockage in line	No product, possibly cavitation

PROCESS UNIT: E-101 A/B, FEED PREHEATER, FIGURE 3

INTENTION: HEAT FEED STREAM TO $410{ }^{\circ} \mathrm{F}$				
GUIDE WORD:	Deviation	Cause	Consequence	Action
NO	Stream 4 flowrate	Line blockage	No further process	Clear line
	Steam flowrate	Line blockage	Cold process, low conversion	Temperature controller on Stream 5; clear line
MORE OF	Stream 4 flowrate	Excess materials; valve or pump malfunctions	Poor heat exchange; low conversion	Temperature controller; increase steam flowrat
	Stream flowrate	Temperature controller malfunction	Increased stream 5 temperature; degradation; overheating; overpressurization; explosion	Cut steam flowrate off; replace temperature controller
	Stream 4 temperature	Ambient conditions; Flowrate controller malfunction	Increased stream 5 temperature; degradation; overheating; overpressurization; explosion	Temperature controller; reduce steam flowrate
	Stream 4 pressure	Ambient conditions; Flowrate controller malfunction	Increased stream 5 temperature; degradation; overheating; overpressurization; explosion	Temperature controller; reduce steam flowrate; pressure relief valve
LESS OF	Stream 4 flowrate	Line blockage	Increase heat transfer; increased Stream 5 temperature; overheating; overpressurization; explosion	Control valve to reduce steam flowrate
	Steam flowrate	Temperature controller malfunction; line blockage	Less heat transfer; reduced conversion	Replace temperature controller to increase steam flowrate; clear blockage
	Stream 4 temperature	Ambient conditions; Flowrate controller malfunction	Less heat transfer; reduced conversion	Replace temperature controller to increase steam flowrate; clear blockage
	Stream 4 pressure	Ambient conditions; Flowrate controller malfunction	Less heat transfer; reduced conversion	Replace temperature controller to increase steam flowrate; clear blockage
AS WELL AS	Steam or water in line	Steam line leak	Incorrect heat transfer; increased temperature; possible degradation	Cut steam line; repair leak
PART OF	Low ADA in Stream 4	Blockage or lack of ADA	Build-up of HDMA in P-101; No reaction	Consider an interlock on ADA Flow
	Low HMDA in Stream 4	Blockage or lack of HMDA	Build-up of ADA in P-101; No reaction	Consider an interlock on HMDA Flow
REVERSE	Reversal of flow from Stream 4 into Stream 3	No probable cause		

PROCESS UNIT: R-101 A/B/C, PRESSURIZED JACKETED BATCH REACTOR, FIGURE 3

GUIDE WORD:	Deviation	Cause	Consequence	Action
NO	Stream 5 flowrate	Blockage	No reaction	Unblock
MORE OF	Stream 5 flowrate	Upstream instrument malfunction	Over-pressurization; decreased temperature	Pressure control to release vapor; increase hé duty across jacket
	Temperature	Ambient conditions; heat exchanger malfunction	Degradation, over-pressurization	Pressure controller to release vapor; temperature controller to decrease heat duty across jacket
	Pressure	Ambient conditions; heat exchanger malfunction	Degradation; over-pressurization	Pressure control to release vapor; temperature controller to decrease heat duty across jacket
LESS OF	Stream 5 flowrate	Upstream instrument malfunction	Under-pressurization; increased temperature	Decrease heat duty across jacket
	Temperature	Ambient conditions; heat exchanger malfunction	Increased heat exchange, increased reactor temperature; increased pressure	Pressure controller to release water vapor; increase heat duty across jacket
	Pressure	Ambient conditions; heat exchanger malfunction	Lowered temperature; lowered conversion	Temperature controller to increase heat duty across jacket
AS WELL AS	Steam or water in line	Steam line leak	Incorrect heat transfer; increased temperature; possible degradation	Cut steam line; repair leak
PART OF	Low ADA in Stream 5	Blockage or lack of ADA	Build-up of HDMA in P-101; no reaction	Consider an interlock on ADA Flow
	Low HMDA in Stream 5	Blockage or lack of HMDA	Build-up of ADA in P-101; no reaction	Consider an interlock on HMDA Flow
REVERSE	Reversal of flow from Stream 4 into Stream 3	No probable cause		
OTHER THAN	Impurities in Stream 5	Impurities in feed	None at this point of process	

PROCESS UNIT: V-101 A/B, SAFETY STORAGE VESSEL, FIGURE 3

INTENTION: HOLD NYLON SALT BEFORE BEING SENT TO R-102				
GUIDE WORD:	Deviation	Cause	Consequence	Action
NO	Stream 7	Upstream Blockage	No process	Unblock
MORE OF	Stream 7	Pump malfunction; increased pressure	Possible vessel overflow	Open level control valve on Stream 8
	Pressure	Pump malfunction; downstream blockage; level control malfunction	Possible vessel overflow	Shut VLV-102 to shutdown process; unblock downstream
	Temperature	Pump malfunction, increased pressure	Possible vessel overflow	Shut VLV-102 to shutdown process; unblock downstream
LESS OF	Stream 7	Upstream blockage; low pressure	Less product; downstream pressure upset	Level control
	Pressure	Upstream blockage; low pressure	Less product; downstream pressure upset	Level control
	Temperature	Upstream blockage; low pressure	Less product; downstream pressure upset	Level control
AS WELL AS	Steam or water in line	No probable cause		
PART OF	Low nylon in Stream 7	Low conversion in R-101	Less product	
REVERSE	Reversal of flow from Stream 8 into Stream 7	No probable cause		
OTHER THAN	Impurities in Stream 7	Impurities in feed	None at this point of process	

PROCESS UNIT: R-102 A/B, NEAR-VACUUM JACKETED CSTR, FIGURE 3

INTENTION: REMOVE WATER FROM NYLON SALT TO YIELD FINAL NYLON 6,6 PRODUCT				
GUIDE WORD:	Deviation	Cause	Consequence	Action
NO	Stream 8 flowrate	Blockage	No reaction	Unblock
	Steam flowrate	Blockage; temperature controller malfunction	Reduced temperature; lowered conversion	Replace temperature controller; increase steam flowrate
MORE OF	Stream 8 flowrate	Upstream instrument malfunction	Over-pressurization; decreased temperature	Pressure controller to release vapor; increase steam flowrate to jacket
	Stream 8 Temperature	Ambient conditions; heat exchanger malfunction	Degradation; over-pressurization	Pressure controller tor release vapor; Temperature controller to decrease heat input
	Stream 8 Pressure	Ambient conditions; heat exchanger malfunction	Degradation; over-pressurization	Pressure controller to release vapor; temperature controller to decrease heat input
LESS OF	Stream 8 flowrate	Upstream instrument malfunction	Under-pressurization; increased temperature	Decrease steam flowrate to jacket
	Temperature	Ambient conditions; heat exchanger malfunction	Increased heat exchange; increased reactor temperature; increased pressure	Pressure controller to release water vapor; increase steam flowrate
	Pressure	Ambient conditions; heat exchanger malfunction	Lower temperature; lowered conversion	Temperature controller to increase steam flowrate
AS WELL AS	Steam or water in line	Stream 9 leak	Incorrect heat transfer; increased temperature; possible degradation	Repair leak
PART OF	Low Nylon	No probable cause		
REVERSE	Reversal of flow from Stream 9 into Stream 8	No probable cause		
	Reversal of flow from Stream 8 into Stream 9	No probable cause		
OTHER THAN	Impurities in Stream 8	Impurities in feed	None at this point of process	

PROCESS UNIT: E-102 A/B, VENT CONDENSOR, FIGURE 3

INTENTION: COOL VENT STREAM TO $100{ }^{\circ} \mathrm{F}$				
GUIDE WORD:	Deviation	Cause	Consequence	Action
NO	Stream 11	Upstream valve shutoff	No heat transfer; waste of cooling water	Shut off cooling water
	Cooling Water	Temperature controller malfunction	No heat transfer	Replace temperature controller
MORE OF	Stream 11	Increase in upstream pressure and temperature	Insufficient heat transfer	Increase cooling water flowrate
	Cooling water	Increase in cooling water flowrate; valve malfunction; temperature controller malfunction	Too much heat transfer; waste of cooling water	Adjust valve to cooling water
	Stream 10 or cooling water temperature	Ambient conditions; increase in reactor temperature	Insufficient heat transfer	Increase cooling water flowrate
	Stream 11 pressure	Upstream valve malfunction	Increased temperature \& flowrate; insufficient heat transfer	Increase cooling water flowrate
	Cooling water pressure	Ambient conditions	Insufficient heat transfer	Increase cooling water flowrate
LESS OF	Stream 11	Upstream valve malfunction; upstream process issue	Too much heat transfer; waste of cooling water	Reduce cooling water flowrate
	Cooling water	Cooling water valve malfunction; temperature controller malfunction	Insufficient heat transfer	Increase cooling water flowrate
	Stream 11 temperature	Upstream process issue; ambient conditions	Too much heat transfer; waste of cooling water	Reduce cooling water flowrate
	Stream 11 pressure	Upstream valve or process malfunction	Lowered Stream 11 temperature; too much heat transfer; waste of cooling water	Reduce cooling water flow
	Cooling water pressure	Ambient conditions	Insufficient heat transfer	Increase cooling water flowrate
AS WELL AS	Nylon in line	No probable cause		
REVERSE	Reversal of flow from Stream 12 into Stream 11	No probable cause		

PROCESS UNIT: VLV-102 A/B, VENT STREAM MIXING VALVE, FIGURE 3

INTENTION: COMBINE VENT STREAMS 6 AND 9				
GUIDE WORD:	Deviation	Cause	Consequence	Action
NO	Stream 6 flowrate	Upstream shutdown	Reduced Stream 11 flowrate	No action
	Stream 9 flowrate	Upstream shutdown	Reduced Stream 11 flowrate	No action
MORE OF	Stream 6 flowrate	Surge of vent	Increased Stream 11 flowrate	Adjust valve
	Stream 9 flowrate	Surge of vent	Increased Stream 11 flowrate	Adjust valve
	Higher temperature	Increased reactor temperature	Raised pressures and flowrates in Streams 6, 9, \& 11	Adjust valve
	Higher pressure	Increased reactor pressure; downstream blockage	Raised temperatures and flowrates in Streams 6, 9, \& 11	Adjust valve
LESS OF	Stream 6 flowrate	Lowered conversion	Reduced Stream 11 flowrate	Adjust valve
	Stream 9 flowrate	Lowered conversion	Reduced Stream 11 flowrate	Adjust valve
	Lower temperature	Reactor heating failure	Reduced Stream 11 flowrate; lowered temperature	Adjust valve
	Lower pressure	Reactor heating failure	Reduced Stream 11 flowrate; lowered pressure	Adjust valve
AS WELL AS	Air in Stream 6	Pipe Leak	Two-phase mixture	No Action
	Air in Stream 9	Pipe Leak	Two-phase mixture	No Action
Reverse	Reversal of Stream 6	No probable cause		
	Reversal of Stream 9	No probable cause		
OTHER THAN	Impurities	No probable cause		

PROCESS UNIT: E-103 A/B, AIR COOLER, FIGURE 3
$\left.\begin{array}{l|lllll}\hline \text { INTENTION: COOL NYLON 6,6 PELLETS LEAVING X-101 } & & \text { Consequence } & \text { Action } \\ \text { GUIDE WORD: } & \text { Deviation } & \text { Cause } & \text { Upstream valve shutoff } & \text { No pellets } \\ \text { NO } & \text { Stream 13 flow } & \begin{array}{l}\text { Increased pellet temperature, non- } \\ \text { uniformity of pellets }\end{array} & \text { Open control valve on Stream } 10\end{array}\right]$
PROCESS UNIT: X-101 A/B, NYLON PELLET EXTRUDER, FIGURE 3

INTENTION: CREATE NYLON PELLETS FROM MOLTEN NYLON STREAM				
GUIDE WORD:	Deviation	Cause	Consequence	Action
NO	Stream 10 flow	Upstream valve cut-off	No production; idle extruder	Open control valve on Stream 10
MORE OF	Stream 10 flow	Increase in upstream pressure and temperature	Larger pellets; possible extruder malfunction	Close control valve on Stream 10
	Stream 10 temperature	$\mathrm{R}-102$ overheating; temperature controller malfunction ambient conditions;	Higher temperature pellets; possible thermal degradation	Replace temperature controller on R-102
	Stream 10 pressure	Upstream valve malfunction; ambient conditions	More dense pellets; possible extruder malfunction	Close control valve on Stream 10
LESS OF	Stream 10 flow	Decrease in upstream pressure and temperature	Smaller pellets; possible air bubbles	Open control valve on Stream 10
	Stream 10 temperature	R -102 underheating; temperature controller malfunction; ambient conditions	Lower temperature pellets; lower conversion	None
	Stream 10 pressure	Upstream valve malfunction; ambient conditions	Smaller pellets; possible air bubbles; slower production rate	None
AS WELL AS	Air in Stream 10	Leak in process line	Non-uniform pellets; air bubbles	Repair leak
REVERSE	Stream 10 reversed	No probable cause		

Manufacturing Costs

In order to more accurately assess which process was the most economically attractive, the manufacturing costs were estimated to account for any costs associated with day-to-day operation of the facility. Manufacturing costs for this project include operating labor cost, utilities, and water treatment.

To calculate the cost of operating labor, the number of non-particulate processing steps, N_{np}, must be determined.

$$
\begin{equation*}
N_{n p}=\sum \text { Equipment } \tag{20}
\end{equation*}
$$

The number of operators required per shift can then be calculated using Equation 21, shown below.

$$
\begin{equation*}
N_{O L}=\left(6.29+31.7 P^{2}+0.23 N_{n p}\right)^{0.5} \tag{21}
\end{equation*}
$$

Where: $\mathrm{N}_{\mathrm{OL}}=$ number of operators per shift
$\mathrm{P}=$ number of processing steps involving particulate solids
$\mathrm{N}_{\mathrm{np}}=$ nonparticulate processing steps
The total number of operators that will need to be hired to cover all shifts can be calculated by using Equation 22 and rounding up to the nearest integer.

$$
\begin{equation*}
N_{O L, t o t a l}=4.5\left(N_{O L}\right) \tag{22}
\end{equation*}
$$

The total operating labor cost can then be calculated by multiplying by salary. The average salary for chemical plant operators is approximately $\$ 59,580$ [19]. Figure 39 shows the results of all calculations related to the cost of operating labor.

Operating Labor Cost		
Pieces of Equipment	8	
Operators Required per Shift	2.85	
Total Operators Required	13	
Cost of Labor $(\$ / \mathrm{yr})$	$\$$	
CoL $(\$ / \mathrm{yr})$	$\$ 775,580$	

Figure 39: Operating Labor Costs

The cost for raw materials will be the same for both process options. The raw material cost was calculated using the prices shown in Figure 40.

Raw Material Costs				
	Unit Price (\$/lbm)	Annual Price (\$/yr)		
Adipic Acid	$\$$	0.68	$\$$	$37,00,000$
Hexamethylenediamine	$\$$	1.14	$\$$	$50,000,000$

Figure 40: Raw Material Costs

Utility costs include the costs for cooling water, steam, or electricity requirements. Once the appropriate values for these requirements have been calculated, they can be multiplied by the unit price in order to yield the utility cost for a given piece of equipment. Summaries of the utility costs for the Batch/CSTR and PFR/CSTR options are given in Figures 41 and 42. The process vessel, V -101, does not use utilities, which is shown by ' X ' in the figures.

Batch/CSTR Utility Costs		
P-101	$\$$	740
E-101	$\$$	128,000
R-101	$\$$	117,000
V-101		
R-102	$\$$	17,000
E-102	$\$$	900,000
X-101	$\$$	32,000
E-103	$\$$	385,000

Figure 41: Batch/CSTR Process Utility Costs

PFR/CSTR Utility Costs		
P-101	$\$$	745
E-101	$\$$	128,000
R-101	$\$$	$1,200,000$
V-101		
R-102	$\$$	17,000
E-102	$\$$	960,000
X-101	$\$$	32,000
E-103	$\$$	386,000

Figure 42: PFR/CSTR Process Utility Costs

This process includes a wastewater stream that must be treated before disposal. Similar to utility costs, the cost of this treatment is calculated by determining the amount of water to be treated and multiplying by the unit cost. Water treatment costs for the Batch/CSTR and PFR/CSTR options are shown in Figures 43 and 44.

Batch/CSTR Water Treatment Costs		
Water Removed $\left(\mathrm{ft}^{3}\right)$	485,000	
Water Treatment Cost $\left(\$ / 1000 \mathrm{ft}^{3}\right)$	$\$$	1.17
C WT $(\$ / \mathrm{yr})$	$\$$	567

Figure 43: Batch/CSTR Process Water Treatment Costs

PFR/CSTR Water Treatment Costs		
Water Removed $\left(\mathrm{ft}^{3}\right)$	480,000	
Water Treatment Cost $\left(\$ / 1000 \mathrm{ft}^{3}\right)$	$\$$	1.17
$\mathrm{C}_{\mathrm{WT}}(\$ / \mathrm{yr})$	$\$$	562

Figure 44: PFR/CSTR Process Water Treatment Cost

Economic Analysis

For this project, the hurdle rate was assumed to be 15%, and the effective tax rate was assumed to be 40% [19]. The project was evaluated over 10 years using a 10 years MACRS depreciation. To avoid incurring the entire fixed capital cost in the first year of the project life, the cost was split evenly between Year 1 (2018) and Year 2 (2019).

Important capital and manufacturing costs were discussed in previous sections for both the Batch/CSTR and PFR/CSTR processes. The costs for each process at both 100% and 67% capacity are shown in Figures 45-48.

Batch/CSTR Cost Summary $\mathbf{- 1 0 0 \%}$		
Total Capital Investment	$\$$	$4,025,000$
Operating Labor Cost	$\$$	775,000
Raw Materials	$\$$	$87,000,000$
Utility Cost	$\$$	$1,600,000$
Water Treatment	$\$$	570

Figure 45: Full Capacity Batch/CSTR Annual Cost Summary

Batch/CSTR Cost Summary -67\%		
Total Capital Investment	$\$$	$4,025,000$
Operating Labor Cost	$\$$	775,000
Raw Materials	$\$$	$58,000,000$
Utility Cost	$\$$	$1,100,000$
Water Treatment	$\$$	380

Figure 46: 67\% Capacity Batch/CSTR Annual Cost Summary

PFR/CSTR Cost Summary - 100\%		
Total Capital Investment	$\$$	$4,600,000$
Operating Labor Cost	$\$$	775,000
Raw Materials	$\$$	$87,000,000$
Utility Cost	$\$$	$2,600,000$
Wastewater Treatment	$\$$	570

Figure 47: Full Capacity PFR/CSTR Annual Cost Summary

PFR/CSTR Cost Summary -67\%		
Total Capital Investment	$\$$	$4,600,000$
Operating Labor Cost	$\$$	775,000
Raw Materials	$\$$	$58,000,000$
Utility Cost	$\$$	$1,700,000$
Wastewater Treatment	$\$$	380

Figure 48: 67\% Capacity PFR/CSTR Annual Cost Summary

The annual production cost, which includes expenses related to the manufacturing of nylon 6,6, was calculated on an annual basis by summing the the costs of operating labor, raw materials, utilities, and wastewater treatment. That total was then divided by the total amount of nylon 6,6 produced per year to give the unit production cost, in $\$ 1.05 / \mathrm{lbm}$. The annual and unit production costs are shown below in Figure 49.

Production Cost				
	Batch/CSTR		PFR/CSTR	
Operating Labor (\$/yr)	\$	775,000	\$	775,000
Raw Materials (\$/yr)	\$	87,000,000	\$	87,000,000
Utilities (\$/yr)	\$	1,600,000	\$	2,600,000
Wastewater Treatment (\$/yr)	\$	570	\$	560
Annual Production Cost (\$/yr)	\$	89,300,000	\$	90,400,000
Unit Production Cost (\$/lb $\mathbf{m}_{\mathbf{m}}$)	\$	1.05	\$	1.06

Figure 49: Production Cost Summary

The revenue was estimated using a production rate of $85,000,000 \mathrm{lbm} / \mathrm{yr}$ and $\$ 1.45 / \mathrm{lbm}$ for nylon 6,6 [29]. The annual revenue for the plant is estimated to be $\$ 123,250,000$.

An incremental NPV analysis was completed to compare the Batch/CSTR and PFR/CSTR options at each specified production capacity, 100% and 67%. The incremental analysis was done by subtracting $\mathrm{NPV}_{\text {PFR/CSTR }}$ from $\mathrm{NPV}_{\text {Batch/CSTR. }}$. The results of the incremental analysis indicate that the Batch/CSTR process is more economically attractive. Figure 50 displays the results of the incremental analysis at 100% capacity, and the results for 67% are shown in Figure 51.

Incremental Analysis - 100\%		
$\mathrm{NPV}_{\text {Batch/CSTR }}$	$\$$	$73,360,000$
$\mathrm{NPV}_{\text {PFR/CSTR }}$	$\$$	$70,660,000$
$\mathrm{NPV}_{\text {Batch-PFR }}$	$\$$	$\$ 2,700,000$

Figure 50: 100 \% Capacity Incremental Analysis

Incremental Analysis - 67\%		
NPV $_{\text {Batch/CSTR }}$	$\$$	$48,270,000$
NPV $_{\text {PFR/CSTR }}$	$\$$	$45,680,000$
NPV $_{\text {Batch-PFR }}$	$\$$	$2,590,000$

Figure 51: Turndown Incremental Analysis

The DCFROR for each case was also considered when comparing the two processes. The results of DCFROR calculations are summarized below in Figure 52.

DCFROR		
	Batch/CSTR	PFR/CSTR
100%	5.17%	4.11%
67%	4.86%	2.69%

Figure 52: DCFROR Summary

Once the Batch/CSTR option was chosen, a sensitivity analysis was performed to evaluate the effect of various changes on the overall economics of the project. In this analysis, each factor was varied by $\pm 15 \%$. Of the variables considered, the sale price of nylon 6,6 had the largest economic impact, while utility and labor costs had very low impacts. Figure 53, below, displays the results of the sensitivity analysis on the Batch/CSTR process.

Figure 53: Sensitivity Analysis

Project Title: \quad 67\% Capacity Economic Evaluation - Batch/CSTR Standalone
15\%

Year	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
End of Year	0	1	2	3	4	5	6	7	8	9	10
Net Revenue	0	0	41,083,333	82,166,667	82,166,667	82,166,667	82,166,667	82,166,667	82,166,667	82,166,667	82,166,667
(-) Operating Cost			(30,100,925)	$(60,201,850)$	(60,201,850)	(60,201,850)	(60,201,850)	(60,201,850)	(60,201,850)	(60,201,850)	(60,201,850)
(-) Depreciation		$(117,840)$	$(392,054)$	$(381,803)$	$(305,442)$	$(244,401)$	$(195,497)$	$(164,034)$	$(154,371)$	$(154,489)$	$(115,955)$
(-) Loss Forward			$(117,840)$								
(-) Writeoff											$(38,652)$
Taxable Income	0	0	10,472,514	21,583,014	21,659,374	21,720,416	21,769,319	21,800,783	21,810,446	21,810,328	21,810,210
(-) Tax @ 40\%	0	0	$(4,189,006)$	$(8,633,206)$	(8,663,750)	$(8,688,166)$	$(8,707,728)$	(8,720,313)	(8,724,178)	$(8,724,131)$	(8,724,084)
Net Income	0	0	6,283,508	12,949,808	12,995,625	13,032,249	13,061,592	13,080,470	13,086,267	13,086,197	13,086,126
(+) Depreciation		0	392,054	381,803	305,442	244,401	195,497	164,034	154,371	154,489	115,955
(+) Loss Forward			117,840								
(+) Writeoff											38,652
(-) Fixed Capital		$(1,178,404)$	$(1,178,404)$								
Cash Flow	0	$(1,178,404)$	5,614,999	13,331,611	13,301,067	13,276,650	13,257,089	13,244,504	13,240,638	13,240,686	13,240,733
Discount Factor (P/Fi*, ${ }^{\text {a }}$)	1.0000	0.8696	0.7561	0.6575	0.5718	0.4972	0.4323	0.3759	0.3269	0.2843	0.2472
Discounted Cash Flow	0	$(1,024,699)$	4,245,746	8,765,751	7,604,928	6,600,842	5,731,405	4,979,099	4,328,388	3,763,829	3,272,907
NPV @ i* $=$	48,268,196	Economic Interpretation of calculated NPV conomic Interpretation of calculated DCFROF									
DCFROR =	4.858										

Project Title:
Corporate financial situatio
Internal rate of return, $i^{*}=$
00\% Capacity Economic Evaluation - PFR/CSTR

Project Title:
Corporate financial situation
Internal rate of return, $\mathrm{i}^{*}=$
Other relevant project info.
$\xrightarrow{0.15 \text { or }} 10$ Year MACRS Depreciation
15%

성잉			an	\|0.0.0.	N\|			$\begin{array}{\|c\|} \hline \underset{\sim}{\infty} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{array}$	$\left\|\begin{array}{c} \stackrel{0}{0} \\ \vdots \\ \dot{C} \end{array}\right\|$	(\%		(1)
${\underset{\sim}{\sim}}^{\circ}$	$\left\|\begin{array}{c} \hat{0} \\ \dot{0} \\ \dot{\omega} \\ \dot{N} \end{array}\right\|$		0		N							(
$\stackrel{N}{N}_{\substack{\infty}}^{\infty}$			Sos					$\left\|\begin{array}{c} n \\ \infty \\ \stackrel{\sim}{\infty} \\ \stackrel{\sim}{0} \end{array}\right\|$		$\left\|\begin{array}{c} n \\ \\ \underset{\sim}{\infty} \\ \underset{\sim}{n} \\ \hline \end{array}\right\|$		¢
$\underset{\sim}{\underset{\sim}{2}}$			Sc					$\left\lvert\, \begin{gathered} \infty \\ \tilde{n} \\ \stackrel{0}{2} \\ \stackrel{\sim}{2} \end{gathered}\right.$				¢
$\underset{\sim}{\sim}$			会				$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hat{n} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\omega} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{e}{m} \end{array}\right\|$		$\left\|\begin{array}{c} \hat{N} \\ \underset{N}{\hat{N}} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{array}\right\|$	等	(
${\underset{\sim}{n}}^{n}$			$\mathfrak{c c}$					$\begin{array}{\|c\|c\|} \substack{0 \\ \underset{\sim}{f} \\ \underset{\sim}{2}} \end{array}$			N	Noc
$\bar{\sim}^{-\pi}$			Bic					$\left\|\begin{array}{l} \vec{\alpha} \\ \underset{\sim}{\hat{N}} \\ \underset{i}{n} \end{array}\right\|$		$\left\|\right\|$	$\begin{aligned} & \infty \\ & \\ & \\ & 0 \end{aligned}$	

Project Title:	\% Capacit	nomic Ev	luation - PF	/CSTR
Corporate financial situation:	Standalone			
Internal rate of return, $\mathrm{i}^{*}=$	0.15		15\%	
Other relevant project info.	10 Year MACRS	eciation		
1=\$1				
Year	2017	2018	2019	2020
End of Year	0	1	2	
Net Revenue	0	0	41,083,333	82,166,667
(-) Operating Cost			$(30,432,848)$	$(60,865,696)$
(-) Depreciation		(204,452)	$(572,467)$	(662,426
(-) Loss Forward			$(204,452)$	
(-) Writeoff				
Taxable Income	0	0	9,873,566	20,638,545
(-) Tax @ 40\%	0	0	$(3,949,426)$	(8,255,418)
Net Income	0	0	5,924,140	12,383,127
(+) Depreciation		0	572,467	662,426
(+) Loss Forward			204,452	
(+) Writeoff				
(-)) Fixed Capital		$(2,044,524)$	(2,044,524)	
Cash Flow	0	$(2,044,524)$	4,656,535	13,045,553
Discount Factor (P/Fip,n)	1.0000	0.8696	0.7561	0.6575
Discounted Cash Flow	0	(1,777,847)	3,521,009	8,577,663
NPV @ ${ }^{*}$ =	45,681,664	ic Interpreta	ion of calculat	d NPV
DCFROR =	2.689	mic Interpreta	ion of calculat	d DCFROR

Conclusions and Recommendations

The preliminary design assembled in this report produces the necessary $85 \mathrm{MM} \mathrm{lbm} / \mathrm{yr}$ of nylon 6,6 , and does so while producing a high profit margin. An economic analysis over a 10 year time period was completed on Page 64 , and shows that the net present value for this design is $\$ 73,360,000$ and the DCFROR is 5.17%. This design presents a hazard operability study on Page 50 It is recommended that these analyses be completed in even more detail for the detailed design in order to maximize safety.

Total capital costs, including the grassroots factor, are $\$ 4.03$ million, and are summarized on Page 45. Total manufacturing costs, including raw materials, are $\$ 89.3$ million per year, and are given in more detail on Page 61. At the current estimated prices for nylon 6,6 , this process will produce approximately $\$ 123.3$ million in annual revenue in today's dollars. A summary list of equipment is given on Page 22.

This design made a number of assumptions that will need to be validated before proceeding. Most of these are involved in costing, and thus the design team recommends completing a more thorough costing analysis. Several assumptions and heuristics were used in the design of the process equipment. These range from area or volume calculations to how the equipment or reaction will behave. These heuristics will need to be validated, and the design team recommends a more thorough investigation into how the reaction and process equipment will behave under the specified conditions. In conclusion, the design team recommends that upper management proceed with a detailed design of the preliminary design provided in this report.

Acknowledgements

The design team would like to acknowledge and thank Mr. Roger Colburn, General Manager of Calvert City Water and Sewer, and Dr. Ben D. Herzog, Vice President of Innovation, Technology and Intellectual Property for Invista. Mr. Colburn was very helpful with providing industrial water rates to help ensure that the water utility costs were as accurate as possible. Dr. Herzog also provided raw material costs for ADA and HDMA.

Bibliography

1. Matthies, P. and W.F. Seydl, History and Development of Nylon 6, in High Performance Polymers: Their Origin and Development: Proceedings of the Symposium on the History of High Performance Polymers at the American Chemical Society Meeting held in New York, April 15-18, 1986, R.B. Seymour and G.S. Kirshenbaum, Editors. 1986, Springer Netherlands: Dordrecht. p. 39-53.
2. Wikipedia. Nylon. 2017 [cited 2017 February 17]; Available from: https://en.wikipedia.org/wiki/Nylon.
3. Company, R. Nylon 6/6 (PA) - Polyamide 6/6. 2016; Available from: https://www.rtpcompany.com/products/product-guide/nylon-66-pa-polyamide-66/.
4. Compounds, C. Nylon 6 and Nylon 66. 2006 [cited 2017 February 24].
5. Wolfe, A.J. Nylon: A Revolution in Textiles. Distillations, 2008.
6. Markit, I., Polyamide (Nylon) 6 and 66 Process Summary. 2015.
7. MarketsandMarkets Polyamide Market by Application (Engineering Plastics, Fiber), Type (PA 6, PA 66, \& Bio-based \& Specialty Polyamides), and Region (Asia-Pacific, North America, Europe, Middle East \& Africa, South America) - Global forecast to 2021. 2017.
8. Wikipedia. Hexamethylenediamine. 2017; Available from: https://en.wikipedia.org/wiki/Hexamethylenediamine.
9. Wikipedia. Adipic Acid 2017; Available from: https://en.wikipedia.org/wiki/Adipic acid.
10. Wikipedia, Nylon 66. 2017.
11. Solutions, M. Preparation of Nylon-66. 2010; Available from: http://nylon66membrane.com/Preparation-of-Nylon-66.html.
12. Kevin C. Seavey, Y.A.L., Step-Growth Polymerization Process Modeling and Product Design. 2008, Hoboken, NJ, USA: John Wiley \& Sons, Inc.
13. Anil Kumar, R.K.A., Santosh K. Gupta, Simulation of Reversible Nylon-66 Polymerization in Homogeneous Continuous-Flow Stirred Tank Reactors. Journal of Applied Polymer Science, 1982.
14. Anil Kumar, S.K., A. R. Raman, Santosh K. Gupta, Simulation of reversible nylon-6,6 polymerization. Polymer, 1981. 22(March): p. 387-390.
15. Ogata, N., Studies on Polycondensation Reactions of Nylon Salt II: The Rate of Polycondensation Reaction of Nylon 66 Salt in the Presence of Water. Macromolecular Chemistry and Physics, 1961. 43(1): p. 117-131.
16. Ogata, N., Studies on polycondensation reactions of nylon salt I.: The equilibrium in the system of polyhexamethylene adipamide and water. Macromolecular Chemistry and Physics, 1960. 42(1): p. 52-67.
17. ToolBox, T.E. Properties of Saturated Steam - Pressure in Bar. 2015; Available from: http://www.engineeringtoolbox.com/saturated-steam-properties-d 457.html.
18. Safety, O.S.U.E.H.a. Safety Instruction: Wastewater Disposal Guidelines. 2010; Available from:
http://oregonstate.edu/ehs/sites/default/files/pdf/si/wastewater disposal guidelines si084 .pdf.
19. Richard Turton, R.C.B., Wallace B. Whiting, Joseph A. Shaeiwitz, Debangsu

Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes. 4 ed. 2012, Upper Saddle River, NJ: Pearson Education, Inc.
20. Foust, A.S., Principles of Unit Operations. 2 ed. 1980, New York: Wiley.
21. Max S. Peters, K.D.T., Plant Design and Economics for Chemical Engineers. 4 ed. 1991, New York McGraw-Hill.
22. Rodriguez, P. Selection of Materials for Heat Exchangers. 1997.
23. L. H. Peebles, J., M. W. Huffman, Thermal Degradation of Nylon 66. Journal of Polymer Science, 1971. 9: p. 1807-1822.
24. M. A. Schaffer, E.K.M., K. B. McAuley, M. F. Cunningham, Thermal Nonoxidative Degradation of Nylon 6,6 Journal of Macromolecular Science, 2000. 40(4): p. 233-272.
25. Longshi (Dongguan Machinery Plastic Co., L. Plastic Extruder Machines, Extrusion Plastic Pellet Machine, Extruder. 2017; Available from: http://longshi-machinery.en.made-in-china.com/product/vyEnrPVuJQWX/China-Plastic-Extruder-Machines-Extrusion-Plastic-Pellet-Machine-Extruder.html.
26. Edinburg Plastics, I. Nylon-66 Thermoplastic Resin Material Safety Data Sheet. 2007; Available from:
https://www.google.com/url?hl=en\&q=http://www.plasticdesignmfg.com/pdf/Nylon MS DS.pdf\&source=gmail\&ust=1489106795691000\&usg=AFQjCNF3JDzGGGCjv EsyO RTL50H3KHWQ.
27. ScienceLab.com. Material Safety Data Sheet 1,6-hexanediamine. 2013; Available from: https://www.google.com/url?hl=en\&q=http://www.sciencelab.com/msds.php?msdsId\%3 D9924250\&source=gmail\&ust=1489106795691000\&usg=AFQjCNFU8onzhBpoMvigaS cmP XWcL-rUQ.
28. ScienceLab.com. Material Safety Data Sheet Adipic acid. 2005; Available from: https://www.google.com/url?hl=en\&q=https://www.sciencelab.com/msds.php?msdsId\%3 D9927423\&source=gmail\&ust=1489106795691000\&usg=AFQjCNE7exK5JPiPdMBy8z YXgHfEEnd1Eg.
29. Dang, T. US DuPont seeks 7\% increase on global nylon 6,6 prices. ICIS, 2014.

Appendix

Capital Cost Summary Tables:

$\begin{gathered} \hline \text { Batch/CSTR: P- } \\ 101 \\ \hline \end{gathered}$		
k_{1}		3.3892
k_{2}		0.0536
k_{3}		0.1538
C_{1}		X
C_{2}		X
C_{3}		X
F_{p}		1
F_{m}		1.55
B_{1}		1.89
B_{2}		1.35
$\mathrm{C}_{\mathrm{p}, 2016}$	\$	6,200
$\mathbf{C}_{\text {вм }}$ 2016	\$	16,000

Batch/CSTR: E-	
$\mathbf{1 0 1}$	
K_{1}	4.3247
k_{2}	-0.303
k_{3}	0.1634
C_{1}	0.03881
C_{2}	-0.11272
C_{3}	0.08183
$\mathrm{~F}_{\mathrm{p}}$	1.021
$\mathrm{~F}_{\mathrm{m}}$	1.8
$\mathrm{~B}_{1}$	1.63
$\mathrm{~B}_{2}$	1.63
$\mathrm{C}_{\mathbf{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathrm{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{3 8 , 0 0 0}$

Batch/CSTR: R- 101	
k_{1}	4.1052
k_{2}	0.532
k_{3}	-0.0005
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	X
F_{m}	X
B_{1}	X
B_{2}	X
$\mathrm{C}_{\mathrm{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$} \mathbf{6 6 , 0 0 0}$
$\mathrm{C}_{\text {BM, 2016 }}$	$\mathbf{\$ 2 6 5 , 0 0 0}$

Batch/CSTR: V- 101	
k_{1}	3.5565
k_{2}	0.3376
k_{3}	0.0905
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	1.308
$\mathrm{~F}_{\mathrm{m}}$	1
$\mathrm{~B}_{1}$	1.49
$\mathrm{~B}_{2}$	1.52
$\mathrm{C}_{\mathrm{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathrm{C}_{\mathbf{B M},}$	$\mathbf{8 , 8 0 0}$
$\mathbf{2 0 1 6}$	$\mathbf{\$ 2 3 , 5 0 0}$

Batch/CSTR: R- $\mathbf{1 0 2}$	
k_{1}	4.1052
$\mathrm{~K}_{2}$	0.532
k_{3}	-0.0005
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	X
F_{m}	X
B_{1}	X
B_{2}	X
$\mathrm{C}_{\mathbf{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$} \mathbf{7 6 , 5 0 0}$
$\mathrm{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{\$ 3 0 6 , 0 0 0}$

Batch/CSTR: E-102	
k_{1}	4.3247
k_{2}	-0.303
k_{3}	0.1634
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	1
$\mathrm{~F}_{\mathrm{m}}$	1.8
$\mathrm{~B}_{1}$	1.63
$\mathrm{~B}_{2}$	1.63
$\mathrm{C}_{\mathrm{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathbf{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{5 4 , 0 0 0}$

Batch/CSTR: E-103

k_{1}	4.0336
k_{2}	0.2341
$\mathrm{~K}_{3}$	0.0497
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	1
$\mathrm{~F}_{\mathrm{m}}$	1
$\mathrm{~B}_{1}$	1.63
$\mathrm{~B}_{2}$	1.63
$\mathbf{C}_{\mathrm{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathbf{3 2 , 5 0 0}$	
$\mathrm{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathbf{1 0 6 , 1 0 0}$	

PFR/CSTR: P-101	
k_{1}	3.3892
k_{2}	0.0536
k_{3}	0.1538
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	1
$\mathrm{~F}_{\mathrm{m}}$	1.55
$\mathrm{~B}_{1}$	1.89
$\mathrm{~B}_{2}$	1.35
$\mathbf{C}_{\mathbf{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathbf{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{6 , 2 0 0}$
	$\mathbf{1 6 , 0 0 0}$

PFR/CSTR: E-101	
k_{1}	4.3247
k_{2}	-0.303
k_{3}	0.1634
C_{1}	0.03881
C_{2}	-0.11272
C_{3}	0.08183
$\mathrm{~F}_{\mathrm{p}}$	1.021
$\mathrm{~F}_{\mathrm{m}}$	1.8
$\mathrm{~B}_{1}$	1.63
$\mathrm{~B}_{2}$	1.63
$\mathbf{C}_{\mathbf{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathbf{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{3 8 , 0 0 0}$

PFR/CSTR: R-101

k_{1}	4.1052
k_{2}	0.532
k_{3}	-0.0005
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	X
F_{m}	X
B_{1}	X
B_{2}	X
$\mathrm{C}_{\mathbf{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathrm{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{7 5 , 0 0 0}$

PFR/CSTR: 101	
k_{1}	3.5565
k_{2}	0.3376
k_{3}	0.0905
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	1.292
$\mathrm{~F}_{\mathrm{m}}$	1
$\mathrm{~B}_{1}$	1.49
$\mathrm{~B}_{2}$	1.52
$\mathrm{C}_{\mathbf{p}, 2016}$	$\mathbf{\$}$
$\mathrm{C}_{\mathbf{B M},}$	$\mathbf{8 , 7 0 0}$
$\mathbf{2 0 1 6}$	$\mathbf{\$}$

PFR/CSTR: R- $\mathbf{1 0 2}$	
k_{1}	4.1052
k_{2}	0.532
k_{3}	-0.0005
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	X
F_{m}	X
B_{1}	X
B_{2}	X
$\mathrm{C}_{\mathbf{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$} \mathbf{7 7 , 0 0 0}$
$\mathrm{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{\$ 3 1 0 , 0 0 0}$

PFR/CSTR: E-	
102	
k_{1}	4.3247
k_{2}	-0.303
k_{3}	0.1634
C_{1}	X
C_{2}	X
C_{3}	X
F_{p}	1
$\mathrm{~F}_{\mathrm{m}}$	1.8
$\mathrm{~B}_{1}$	1.63
$\mathrm{~B}_{2}$	1.63
$\mathrm{C}_{\mathbf{p}, \mathbf{2 0 1 6}}$	$\mathbf{\$}$
$\mathbf{C}_{\mathbf{B M}, \mathbf{2 0 1 6}}$	$\mathbf{5 0 , 0 0 0}$

$\begin{gathered} \hline \text { PFR/CSTR: E- } \\ 103 \end{gathered}$		
k_{1}		4.0336
k_{2}		0.2341
k_{3}		0.0497
C_{1}		X
C_{2}		X
C_{3}		X
F_{p}		1
F_{m}		1
B_{1}		1.63
B_{2}		1.63
$\mathrm{C}_{\mathrm{p}, 2016}$	\$	35,000
С $_{\text {вм, }}$ 2016	\$	115,000

Correction factor E-102.

$$
\begin{aligned}
& R=\frac{t 1-t 2}{T 2-T 1}=\frac{87-100}{100-363}=0.05 \\
& R=\frac{T 2-T 1}{t 1-T 1}=\frac{100-363}{87-363}=0.95
\end{aligned}
$$

From the graph below, acquired from http://checalc.com/solved/LMTD Chart.html, F is approximately 0.85 .

Aspen Design File:
ADA CMBVENT FEED HDMA LIQ-NY66

E-ADA	MISSING	$8.7005-03$	0.0	MISSING		$8.7005-03$
R-ADA	MISSING	0.4932	0.0	MISSING	0.4932	
E-HDMA	MISSING	$1.2108-03$	0.0	MISSING	$1.2108-03$	
R-HDMA	MISSING	0.4969	0.0	MISSING	0.4969	
SFLOW						
E-ADA	MISSING	0.0	0.0	MISSING	0.7865	
R-ADA	MISSING	0.0	0.0	MISSING	44.5788	
E-HDMA	MISSING	0.0	0.0	MISSING	0.1094	
R-HDMA	MISSING	0.0	0.0	MISSING	44.9173	
EFRAC E-ADA	MISSING	0.8778	0.0	MISSING	0.8778	
E-HDMA	MISSING	0.1222	0.0	MISSING	0.1222	
ZMOM						
ZMOM	MISSING	0.0	0.0	MISSING	0.4479	
FMOM						
FMOM	MISSING	0.0	0.0	MISSING	90.3920	
DPN						
DPN	MISSING	201.7905	0.0	MISSING	201.7905	
MWN						
MWN	MISSING	$2.2864+04$	0.0	MISSING	$2.2864+04$	

NYLON-66 OLIG RAW-FEED UNHEAT-F VENT1

SUBSTREAM: MIXED

PHASE:	LIQUID	LIQUID	LIQUID	LIQUID	VAPOR	
COMPONENTS: LBMOL/HR						
NYLON-01	45.2540	45.3029	0.0	0.0	0.0	
ADA	$3.6460-03$	$1.2400-02$	45.3728	45.3728	$3.6124-03$	
HDMA	$9.3381-05$	$3.6955-03$	45.3761	45.3761	0.3491	
WATER	0.4196	6.8571	105.7903	105.7903	188.1712	
COMPONENTS: LB/HR						
NYLON-01	$1.0242+04$	$1.0253+04$	0.0	0.0	0.0	
ADA	0.5328	1.8121	6630.9138	6630.9138	0.5279	
HDMA	$1.0852-02$	0.4294	5272.9985	5272.9985	40.5629	
WATER	7.5597	123.5332	1905.8423	1905.8423	3389.9574	
TOTAL FLOW:						
LBMOL/HR	45.6774	52.1762	196.5392	196.5392	188.5239	
LB/HR	$1.0250+04$	$1.0379+04$	$1.3810+04$	$1.3810+04$	3431.0482	
CUFT/HR	167.9774	192.4994	223.2077	223.3439	$1.3436+04$	

STATE VARIABLES:

TEMP F	140.0000	518.1727	140.0000	141.2137	373.8252		
PRES PSIA	14.6959	121.2416	14.6959	120.0000	121.2416		
VFRAC	0.0	0.0	0.0	0.0	1.0000		
LFRAC	1.0000	1.0000	1.0000	1.0000	0.0		
SFRAC	0.0	0.0	0.0	0.0	0.0		

ENTHALPY:

$$
\text { BTU/LBMOL } \quad-1.5898+05-1.1168+05-1.7499+05-1.7493+05-1.0156+05
$$

$$
\text { BTU/LB } \quad-708.4648-561.4262-2490.4864-2489.5864-5580.5017
$$

BTU/HR $\quad-7.2617+06-5.8269+06-3.4393+07-3.4381+07-1.9147+07$

ENTROPY:

BTU/LBMOL-R $\quad-311.3551-220.0114-107.7578$-107.6528 -11.6068
$\begin{array}{llllll}\text { BTU/LB-R } & -1.3875 & -1.1061 & -1.5336 & -1.5321 & -0.6378\end{array}$
DENSITY:
$\begin{array}{lllllll}\text { LBMOL/CUFT } & 0.2719 & 0.2710 & 0.8805 & 0.8800 & 1.4031-02\end{array}$
$\begin{array}{lllllll}\text { LB/CUFT } & 61.0198 & 53.9154 & 61.8695 & 61.8318 & 0.2554\end{array}$
$\begin{array}{lllllll}\text { AVG MW } & 224.3987 & 198.9163 & 70.2646 & 70.2646 & 18.1995\end{array}$
COMPONENT ATTRIBUTES:
NYLON-01 SFRAC
E-ADA 8.7005-03 1.6323-02 MISSING MISSING MISSING R-ADA $0.4932 \quad 0.4855$ MISSING MISSING MISSING E-HDMA 1.2108-03 8.9450-03 MISSING MISSING MISSING R-HDMA 0.4969 0.4892 MISSING MISSING MISSING SFLOW E-ADA 0.7865 1.4753 MISSING MISSING MISSING R-ADA $44.5788 \quad 43.8814$ MISSING MISSING MISSING E-HDMA $0.1094 \quad 0.8085$ MISSING MISSING MISSING R-HDMA 44.9173 44.2148 MISSING MISSING MISSING

EFRAC

E-ADA $0.8778 \quad 0.6460$ MISSING MISSING MISSING E-HDMA $0.1222 \quad 0.3540$ MISSING MISSING MISSING ZMOM ZMOM 0.4479 1.1419 MISSING MISSING MISSING FMOM FMOM $90.3920 \quad 90.3800$ MISSING MISSING MISSING DPN
DPN 201.7905 79.1508 MISSING MISSING MISSING MWN MWN 2.2864+04 8979.0516 MISSING MISSING MISSING

VENT2 WASTEH20

STREAM ID VENT2 WASTEH20

FROM :	CSTR2	C1
TO :	B1	

SUBSTREAM: MIXED
PHASE: VAPOR LIQUID
COMPONENTS: LBMOL/HR

NYLON-01	0.0	0.0
ADA	$2.2176-04$	$3.8342-03$
HDMA	$1.5164-04$	0.3492
WATER	7.1434	195.3146

COMPONENTS: LB/HR

NYLON-01	0.0	0.0
ADA	$3.2409-02$	0.5603
HDMA	$1.7621-02$	40.5805
WATER	128.6906	3518.6479

TOTAL FLOW:
LBMOL/HR $\quad 7.1438 \quad 195.6677$

LB/HR $\quad 128.74063559 .7888$
CUFT/HR $8981.7960 \quad 58.2305$
STATE VARIABLES:

TEMP F	518.0000	100.0000
PRES PSIA	8.3326	
VFRAC	14.7000	
LFRAC	0.0000	0.0
SFRAC	0.0	1.0000
	0.0	0.0

ENTHALPY:
BTU/LBMOL -1.0034+05-1.2236+05
BTU/LB $\quad-5568.0063-6725.8552$
BTU/HR $\quad-7.1683+05-2.3943+07$
ENTROPY:
BTU/LBMOL-R -4.5678 -38.5142
BTU/LB-R $\quad-0.2535-2.1170$
DENSITY:
LBMOL/CUFT 7.9536-04 3.3602
LB/CUFT 1.4334-02 61.1328
AVG MW 18.021318 .1930
COMPONENT ATTRIBUTES:
NYLON-01 SFRAC
E-ADA 8.7005-03 8.7005-03
R-ADA $0.4932 \quad 0.4932$
E-HDMA 1.2108-03 1.2108-03
R-HDMA 0.49690 .4969
SFLOW
$\begin{array}{lll}\text { E-ADA } 0.0 & 0.0\end{array}$

```
        R-ADA 0.0 0.0
        E-HDMA 0.0 0.0
        R-HDMA 0.0 0.0
EFRAC
    E-ADA 0.8778 0.8778
    E-HDMA 0.1222 0.1222
ZMOM
    ZMOM 0.0 0.0
FMOM
    FMOM 0.0 0.0
DPN
    DPN 201.7905 201.7905
MWN
    MWN 2.2864+04 2.2864+04
ADA
STREAM ID ADA
FROM :
TO : MIXER
SUBSTREAM: MIXED
PHASE: LIQUID
COMPONENTS: LBMOL/HR
    NYLON-01 0.0
    ADA 45.3728
    HDMA 0.0
    WATER 52.9185
COMPONENTS: LB/HR
    NYLON-01 0.0
    ADA 6630.9138
    HDMA 0.0
    WATER 953.3408
TOTAL FLOW:
    LBMOL/HR 98.2912
    LB/HR 7584.2546
    CUFT/HR 108.5036
STATE VARIABLES:
    TEMP F 140.0000
    PRES PSIA 14.6959
VFRAC 0.0
LFRAC 1.0000
SFRAC 0.0
```

```
ENTHALPY:
```

```
BTU/LBMOL -2.5611+05
BTU/LB -3319.1718
BTU/HR -2.5173+07
ENTROPY:
BTU/LBMOL-R -100.7042
BTU/LB-R -1.3051
DENSITY:
LBMOL/CUFT 0.9059
LB/CUFT 69.8986
AVG MW 77.1610
COMPONENT ATTRIBUTES:
NYLON-01 SFRAC
    SFLOW
    EFRAC
    ZMOM
    FMOM
    DPN
    MWN
```

CMBVENT
STREAM ID CMBVENT
FROM : B1
TO : C1
SUBSTREAM: MIXED
PHASE: VAPOR
COMPONENTS: LBMOL/HR
NYLON-01 0.0
ADA 3.8342-03
HDMA 0.3492
WATER 195.3146
COMPONENTS: LB/HR
NYLON-01 0.0
ADA 0.5603
HDMA 40.5805
WATER 3518.6479
TOTAL FLOW:
LBMOL/HR $\quad 195.6677$
LB/HR 3559.7888
CUFT/HR 2.0678+05
STATE VARIABLES:

TEMP F	362.8154
PRES PSIA	8.3326
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0
ENTHALPY:	
BTU/LBMOL	$-1.0152+05$
BTU/LB	-5580.0498
BTU/HR	-1.9864+07
ENTROPY:	
BTU/LBMOL-R	-6.2827
BTU/LB-R	-0.3453
DENSITY:	
LBMOL/CUFT	9.4628-04
LB/CUFT	1.7216-02
AVG MW	18.1930
COMPONENT ATTRIBUTES:	
NYLON-01 SFRAC	
E-ADA	8.7005-03
R-ADA	0.4932
E-HDMA	1.2108-03
R-HDMA	0.4969
SFLOW	
E-ADA	0.0
R-ADA	0.0
E-HDMA	0.0
R-HDMA	0.0
EFRAC	
E-ADA	0.8778
E-HDMA	0.1222
ZMOM	
ZMOM	0.0
FMOM	
FMOM	0.0
DPN	
DPN	201.7905
MWN	
MWN	$2.2864+04$
FEED	

STREAM ID	FEED
FROM :	FEED-HEX

TO : BATCH
SUBSTREAM: MIXED
PHASE: LIQUID
COMPONENTS: LBMOL/HR
NYLON-01 0.0
ADA 45.3728
HDMA 45.3761
WATER 105.7903
COMPONENTS: LB/HR
NYLON-01 0.0
ADA 6630.9138
HDMA 5272.9985
WATER 1905.8423
TOTAL FLOW:
LBMOL/HR 196.5392
LB/HR 1.3810+04
CUFT/HR 262.2665
STATE VARIABLES:

TEMP	F	410.0000
PRES	PSIA	117.5676

VFRAC 0.0
LFRAC 1.0000
SFRAC 0.0
ENTHALPY:

BTU/LBMOL	$-1.6304+05$
BTU/LB	-2320.4177
BTU/HR	$-3.2044+07$

ENTROPY:
BTU/LBMOL-R -91.9409
BTU/LB-R -1.3085
DENSITY:
LBMOL/CUFT 0.7494
LB/CUFT 52.6554
AVG MW 70.2646
COMPONENT ATTRIBUTES:
NYLON-01 SFRAC
E-ADA 0.0
R-ADA 0.0
E-HDMA 0.0
R-HDMA 0.0
SFLOW
E-ADA 0.0
R-ADA 0.0

E-HDMA	0.0
R-HDMA	0.0
EFRAC	
E-ADA	0.0
E-HDMA	0.0
ZMOM	
ZMOM	0.0
FMOM	
FMOM	0.0
DPN	
DPN	0.0
MWN	
MWN	0.0
HDMA	

STREAM ID	HDMA
FROM :	----
TO :	MIXER
SUBSTREAM: MIXED	
PHASE:	LIQUID
COMPONENTS: LBMOL/HR	
NYLON-01	0.0
ADA	0.0
HDMA	45.3761
WATER	52.8719
COMPONENTS: LB/HR	
NYLON-01	0.0
ADA	0.0
HDMA	5272.9985
WATER	952.5015
TOTAL FLOW:	
LBMOL/HR	98.2480
LB/HR	6225.5000
CUFT/HR	114.7559
STATE VARIABLES:	
TEMP F	140.0000
PRES PSIA	14.6959
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	

```
    BTU/LBMOL -9.3840+04
    BTU/LB -1480.9353
    BTU/HR -9.2196+06
ENTROPY:
    BTU/LBMOL-R -116.0859
    BTU/LB-R -1.8320
DENSITY:
    LBMOL/CUFT 0.8561
    LB/CUFT 54.2499
AVG MW 63.3652
COMPONENT ATTRIBUTES:
NYLON-01 SFRAC
    SFLOW
    EFRAC
    ZMOM
    FMOM
    DPN
    MWN
```

LIQ-NY66
STREAM ID LIQ-NY66
FROM : CSTR2
TO : AIR-COOL
SUBSTREAM: MIXED
PHASE: LIQUID
COMPONENTS: LBMOL/HR
NYLON-01 45.2540
ADA 3.6460-03
HDMA 9.3381-05
WATER 0.4196
COMPONENTS: LB/HR
NYLON-01 1.0242+04
ADA 0.5328
HDMA 1.0852-02
WATER 7.5597
TOTAL FLOW:
LBMOL/HR 45.6774
LB/HR 1.0250+04
CUFT/HR 189.6096
STATE VARIABLES:
TEMP F 518.0000

PRES PSIA	8.3326
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
BTU/LBMOL	-1.0955+05
BTU/LB	-488.2080
BTU/HR	$-5.0041+06$
ENTROPY:	
BTU/LBMOL-R	-248.0096
BTU/LB-R	-1.1052
DENSITY:	
LBMOL/CUFT	0.2409
LB/CUFT	54.0582
AVG MW	224.3987
COMPONENT ATTRIBUTES:	
NYLON-01 SFRAC	
E-ADA	8.7005-03
R-ADA	0.4932
E-HDMA	1.2108-03
R-HDMA	0.4969
SFLOW	
E-ADA	0.7865
R-ADA	44.5788
E-HDMA	0.1094
R-HDMA	44.9173
EFRAC	
E-ADA	0.8778
E-HDMA	0.1222
ZMOM	
ZMOM	0.4479
FMOM	
FMOM	90.3920
DPN	
DPN	201.7905
MWN	
MWN	$2.2864+04$

NYLON-66

STREAM ID NYLON-66
FROM : AIR-COOL
TO :

SUBSTREAM: MIXED	
PHASE:	LIQUID
COMPONENTS: LBMOL/HR	
NYLON-01	45.2540
ADA	3.6460-03
HDMA	9.3381-05
WATER	0.4196
COMPONENTS: LB/HR	
NYLON-01	1.0242+04
ADA	0.5328
HDMA	1.0852-02
WATER	7.5597
TOTAL FLOW:	
LBMOL/HR	45.6774
LB/HR	1.0250+04
CUFT/HR	167.9774
STATE VARIABLES:	
TEMP F	140.0000
PRES PSIA	14.6959
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
BTU/LBMOL	-1.5898+05
BTU/LB	-708.4648
BTU/HR	-7.2617+06
ENTROPY:	
BTU/LBMOL-R	-311.3551
BTU/LB-R	-1.3875
DENSITY:	
LBMOL/CUFT	0.2719
LB/CUFT	61.0198
AVG MW	224.3987
COMPONENT ATTRIBUTES:	
NYLON-01 SFRAC	
E-ADA	8.7005-03
R-ADA	0.4932
E-HDMA	1.2108-03
R-HDMA	0.4969
SFLOW	
E-ADA	0.7865
R-ADA	44.5788
E-HDMA	0.1094

R-HDMA	44.9173
EFRAC	
E-ADA	0.8778
E-HDMA	0.1222
ZMOM	
ZMOM	0.4479
FMOM	
FMOM	90.3920
DPN	
DPN	201.7905
MWN	
MWN	$2.2864+04$
OLIG	

STREAM ID	OLIG
FROM	BATCH
TO :	CSTR2
SUBSTREAM: MIXED	
PHASE:	LIQUID
COMPONENTS: LBMOL/HR	
NYLON-01	45.3029
ADA	1.2400-02
HDMA	3.6955-03
WATER	6.8571
COMPONENTS: LB/HR	
NYLON-01	$1.0253+04$
ADA	1.8121
HDMA	0.4294
WATER	123.5332
TOTAL FLOW:	
LBMOL/HR	52.1762
LB/HR	1.0379+04
CUFT/HR	192.4994
STATE VARIABLES:	
TEMP F	518.1727
PRES PSIA	121.2416
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
BTU/LBMOL	-1.1168+05

BTU/LB	-561.4262
BTU/HR	$-5.8269+06$
ENTROPY:	
BTU/LBMOL-R	-220.0114
BTU/LB-R	-1.1061
DENSITY:	
LBMOL/CUFT	0.2710
LB/CUFT	53.9154
AVG MW	198.9163
COMPONENT ATTRIBUTES:	
NYLON-01 SFRAC	
E-ADA	1.6323-02
R-ADA	0.4855
E-HDMA	8.9450-03
R-HDMA	0.4892
SFLOW	
E-ADA	1.4753
R-ADA	43.8814
E-HDMA	0.8085
R-HDMA	44.2148
EFRAC	
E-ADA	0.6460
E-HDMA	0.3540
ZMOM	
ZMOM	1.1419
FMOM	
FMOM	90.3800
DPN	
DPN	79.1508
MWN	
MWN	8979.0516
RAW-FEED	
STREAM ID	RAW-FEED
FROM :	MIXER
TO :	FEED-PUM
SUBSTREAM: MIXED	
PHASE:	LIQUID
COMPONENTS: LBMOL/HR	
NYLON-01	0.0
ADA	45.3728

HDMA	45.3761
WATER	105.7903
COMPONENTS: LB/HR	
NYLON-01	0.0
ADA	6630.9138
HDMA	5272.9985
WATER	1905.8423
TOTAL FLOW:	
LBMOL/HR	196.5392
LB/HR	$1.3810+04$
CUFT/HR	223.2077
STATE VARIABLES:	
TEMP F	140.0000
PRES PSIA	14.6959
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
BTU/LBMOL	-1.7499+05
BTU/LB	-2490.4864
BTU/HR	-3.4393+07
ENTROPY:	
BTU/LBMOL-R	-107.7578
BTU/LB-R	-1.5336
DENSITY:	
LBMOL/CUFT	0.8805
LB/CUFT	61.8695
AVG MW	70.2646
COMPONENT ATTRIBUTES:	
NYLON-01 SFRAC	
SFLOW	
EFRAC	
ZMOM	
FMOM	
DPN	
MWN	

UNHEAT-F
STREAM ID UNHEAT-F
FROM: FEED-PUM

TO : FEED-HEX

SUBSTREAM: MIXED	
PHASE:	LIQUID
COMPONENTS: LBMOL/HR	
NYLON-01	0.0
ADA	45.3728
HDMA	45.3761
WATER	105.7903
COMPONENTS: LB/HR	
NYLON-01	0.0
ADA	6630.9138
HDMA	5272.9985
WATER	1905.8423
TOTAL FLOW:	
LBMOL/HR	196.5392
LB/HR	$1.3810+04$
CUFT/HR	223.3439
STATE VARIABLES:	
TEMP F	141.2137
PRES PSIA	120.0000
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
BTU/LBMOL	-1.7493+05
BTU/LB	-2489.5864
BTU/HR	-3.4381+07
ENTROPY:	
BTU/LBMOL-R	-107.6528
BTU/LB-R	-1.5321
DENSITY:	
LBMOL/CUFT	0.8800
LB/CUFT	61.8318
AVG MW	70.2646
COMPONENT ATTRIBUTES:	
NYLON-01 SFRAC	
SFLOW	
EFRAC	
ZMOM	
FMOM	
DPN	
MWN	

VENT1

STREAM ID	VENT1
FROM :	BATCH

TO : B1
SUBSTREAM: MIXED
PHASE: VAPOR

COMPONENTS: LBMOL/HR	
NYLON-01	0.0
ADA	$3.6124-03$
HDMA	0.3491
WATER	188.1712

COMPONENTS: LB/HR
NYLON-01 0.0

ADA 0.5279
HDMA 40.5629
WATER 3389.9574
TOTAL FLOW:
LBMOL/HR 188.5239
LB/HR 3431.0482
CUFT/HR 1.3436+04
STATE VARIABLES:

TEMP F	373.8252
PRES PSIA	121.2416
VFRAC	1.0000
LFRAC	0.0
SFRAC	0.0

ENTHALPY:

BTU/LBMOL	$-1.0156+05$
BTU/LB	-5580.5017
BTU/HR	$-1.9147+07$
ENTROPY:	
BTU/LBMOL-R	-11.6068
BTU/LB-R	-0.6378

DENSITY:
LBMOL/CUFT 1.4031-02
LB/CUFT 0.2554
AVG MW 18.1995
COMPONENT ATTRIBUTES:
NYLON-01 SFRAC
SFLOW
EFRAC
ZMOM
FMOM

DPN
MWN

VENT2

STREAM ID	VENT2
FROM :	CSTR2
TO :	B1

SUBSTREAM: MIXED
PHASE: VAPOR
COMPONENTS: LBMOL/HR
NYLON-01 0.0

ADA 2.2176-04
HDMA 1.5164-04
WATER 7.1434
COMPONENTS: LB/HR
NYLON-01 0.0
ADA 3.2409-02
HDMA 1.7621-02
WATER 128.6906
TOTAL FLOW:
LBMOL/HR $\quad 7.1438$
LB/HR 128.7406
CUFT/HR 8981.7960
STATE VARIABLES:
TEMP F 518.0000
PRES PSIA 8.3326
VFRAC 1.0000
LFRAC 0.0
SFRAC 0.0
ENTHALPY:
BTU/LBMOL -1.0034+05
BTU/LB -5568.0063
BTU/HR -7.1683+05
ENTROPY:
BTU/LBMOL-R -4.5678
BTU/LB-R $\quad-0.2535$
DENSITY:
LBMOL/CUFT 7.9536-04
LB/CUFT 1.4334-02
AVG MW 18.0213
COMPONENT ATTRIBUTES:

```
NYLON-01 SFRAC
    E-ADA 8.7005-03
    R-ADA 0.4932
    E-HDMA 1.2108-03
    R-HDMA 0.4969
    SFLOW
    E-ADA 0.0
    R-ADA 0.0
    E-HDMA 0.0
    R-HDMA 0.0
    EFRAC
    E-ADA 0.8778
    E-HDMA 0.1222
    ZMOM
    ZMOM 0.0
FMOM
    FMOM 0.0
DPN
    DPN 201.7905
MWN
    MWN 2.2864+04
```

WASTEH20

STREAM ID	WASTEH20
FROM :	C1
TO :	----

SUBSTREAM: MIXED
PHASE: LIQUID COMPONENTS: LBMOL/HR
NYLON-01 0.0
ADA 3.8342-03
HDMA 0.3492
WATER 195.3146
COMPONENTS: LB/HR
NYLON-01 0.0
ADA 0.5603
HDMA 40.5805
WATER 3518.6479
TOTAL FLOW:
LBMOL/HR 195.6677
LB/HR 3559.7888

CUFT/HR	58.2305
STATE VARIABLES:	
TEMP F	100.0000
PRES PSIA	14.7000
VFRAC	0.0
LFRAC	1.0000
SFRAC	0.0
ENTHALPY:	
BTU/LBMOL	-1.2236+05
BTU/LB	-6725.8552
BTU/HR	-2.3943+07
ENTROPY:	
BTU/LBMOL-R	-38.5142
BTU/LB-R	-2.1170
DENSITY:	
LBMOL/CUFT	3.3602
LB/CUFT	61.1328
AVG MW	18.1930
COMPONENT ATTRIBUTES:	
NYLON-01 SFRAC	
E-ADA	8.7005-03
R-ADA	0.4932
E-HDMA	1.2108-03
R-HDMA	0.4969
SFLOW	
E-ADA	0.0
R-ADA	0.0
E-HDMA	0.0
R-HDMA	0.0
EFRAC	
E-ADA	0.8778
E-HDMA	0.1222
ZMOM	
ZMOM	0.0
FMOM	
FMOM	0.0
DPN	
DPN	201.7905
MWN	
MWN	$2.2864+04$

INLET STREAM: LIQ-NY66
OUTLET STREAM: NYLON-66
PROPERTY OPTION SET: POLYNRTL POLYMER NRTL / REDLICH-KWONG
*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF.
TOTAL BALANCE
MOLE(LBMOL/HR) $45.6774 \quad 45.67740 .00000$

MASS(LB/HR) $10250.0 \quad 10250.0 \quad-0.177463 \mathrm{E}-15$
ENTHALPY(BTU/HR) -0.500411E+07 $-0.726173 \mathrm{E}+070.310893$
*** CO2 EQUIVALENT SUMMARY ***
FEED STREAMS CO2E 0.00000 LB/HR
PRODUCT STREAMS CO2E 0.00000 LB/HR
NET STREAMS CO2E PRODUCTION 0.00000 LB/HR
UTILITIES CO2E PRODUCTION 0.00000 LB/HR
TOTAL CO2E PRODUCTION 0.00000 LB/HR
*** INPUT DATA ***
ONE PHASE TP FLASH SPECIFIED PHASE IS LIQUID
SPECIFIED TEMPERATURE F 140.000
SPECIFIED PRESSURE
PSIA 14.6959
MAXIMUM NO. ITERATIONS CONVERGENCE TOLERANCE 30
0.000100000

${ }^{* * *}$ RESULTS ***		
OUTLET TEMPERATURE F	140.00	
OUTLET PRESSURE PSIA	14.696	
HEAT DUTY \quad BTU/HR	$-0.22576 E+07$	

BLOCK: B1 MODEL: MIXER
INLET STREAMS: VENT1 VENT2
OUTLET STREAM: CMBVENT
PROPERTY OPTION SET: POLYNRTL POLYMER NRTL / REDLICH-KWONG

MASS AND ENERGY		BALANCE ***	
IN	OUT	RELATIVE DIFF.	
TOTAL BALANCE			
MOLE(LBMOL/HR)	195.668	195.668	0.00000
MASS(LB/HR)	3559.79	3559.79	$0.127746 \mathrm{E}-15$

```
    ENTHALPY(BTU/HR ) -0.198638E+08 -0.198638E+08 0.187542E-15
    *** CO2 EQUIVALENT SUMMARY ***
    FEED STREAMS CO2E 0.00000 LB/HR
PRODUCT STREAMS CO2E 0.00000 LB/HR
NET STREAMS CO2E PRODUCTION 0.00000 LB/HR
UTILITIES CO2E PRODUCTION 0.00000 LB/HR
TOTAL CO2E PRODUCTION 0.00000 LB/HR
*** INPUT DATA ***
TWO PHASE FLASH
MAXIMUM NO. ITERATIONS 30
CONVERGENCE TOLERANCE 0.000100000
OUTLET PRESSURE: MINIMUM OF INLET STREAM PRESSURES
```

BLOCK: BATCH MODEL: RBATCH
INLET STREAM: FEED
OUTLET STREAMS: OLIG VENT1
PROPERTY OPTION SET: POLYNRTL POLYMER NRTL / REDLICH-KWONG
*** MASS AND ENERGY BALANCE ***
IN OUT GENERATION RELATIVE DIFF.
TOTAL BALANCE
MOLE(LBMOL/HR) $196.539 \quad 240.700 \quad 44.1609 \quad-0.236159 \mathrm{E}-15$
MASS(LB/HR) 13809.813809 .7 0.999999E-06
ENTHALPY(BTU/HR) -0.320444E+08-0.249738E+08 -0.220649
*** CO2 EQUIVALENT SUMMARY ***
FEED STREAMS CO2E 0.00000 LB/HR
PRODUCT STREAMS CO2E 0.00000 LB/HR
NET STREAMS CO2E PRODUCTION 0.00000 LB/HR
UTILITIES CO2E PRODUCTION 0.00000 LB/HR
TOTAL CO2E PRODUCTION 0.00000 LB/HR
*** INPUT DATA ***
REACTOR TYPE: CONSTANT TEMPERATURE
2 PHASE: RXN IN LIQUID PHASE
DO FLASH CALCULATIONS AT EACH TIME STEP
REACTOR DOWNTIME HR 0.10000E-05
FEED-TIME HR 1.0000
SET POINT TEMPERATURE F 518.00

INTEGRATION TOLERANCE
 INTEGRATION METHOD CORRECTOR METHOD VENT ALGORITHM

GAIN TERM FOR CONTROLLER INT-TIME TERM FOR CONTROLLER DER-TIME TERM FOR CONTROLLER

0.10000E-03
 GEAR NEWTON
 OLD

$$
\begin{aligned}
& 2500.0 \\
& 0.10000 \mathrm{E}+36 \\
& 0.0000
\end{aligned}
$$

STOP CRITERIA

```
CRITERION 1: REACTOR TIME
    REACHES 1.0000 HR FROM-BELOW
MAXIMUM TIME HR 5.0000
    *** RESULTS ***
STOP CRITERION SATISFIED 1
REACTION TIME HR 1.0000
REACTOR HEAT LOAD PER CYCLE BTU 0.72636E+06
AVERAGE HEAT DUTY OVER CYCLE BTU/HR 0.72635E+06
REACTOR MINIMUM TEMPERATURE F 351.61
REACTOR MAXIMUM TEMPERATURE F 518.17
```

***** RESULTS PROFILES *****
** OVERALL REACTOR CONTENTS **

TIME	PRESSURE	TEMPERATURE	INST. DUTY	
HR	PSIA	F	BTU/HR	

0.0000	121.24	395.34	$0.35882 \mathrm{E}+10$
$0.16667 \mathrm{E}-01$	121.24	518.13	$-0.29338 \mathrm{E}+07$
$0.33333 \mathrm{E}-01$	121.24	518.15	$-0.35438 \mathrm{E}+07$
$0.50000 \mathrm{E}-01$	121.24	518.17	$-0.37924 \mathrm{E}+07$
$0.66667 \mathrm{E}-01$	121.24	518.17	$-0.38302 \mathrm{E}+07$
$0.83333 \mathrm{E}-01$	121.24	518.17	$-0.38367 \mathrm{E}+07$
0.10000	121.24	518.17	$-0.38490 \mathrm{E}+07$

0.11667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.13333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.15000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.16667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.18333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.20000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.21667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.23333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.25000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.26667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.28333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.30000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.31667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.33333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.35000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.36667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.38333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.40000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.41667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.43333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.45000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.46667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.48333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.50000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.51667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.53333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.55000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.56667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.58333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.60000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.61667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.63333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.65000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.66667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.68333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.70000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.71667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.73333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.75000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.76667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.78333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.80000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.81667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.83333	121.24	518.17	$-0.38521 \mathrm{E}+07$

0.85000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.86667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.88333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.90000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.91667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.93333	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.95000	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.96667	121.24	518.17	$-0.38521 \mathrm{E}+07$
0.98333	121.24	518.17	$-0.38521 \mathrm{E}+07$
1.0000	121.24	518.17	$-0.38521 \mathrm{E}+07$
1.0000	121.24	518.17	$-0.38521 \mathrm{E}+07$

TIME	REACTION MASS
HR	LB
0.0000	13609.
$0.16667 \mathrm{E}-01$	10379.
$0.33333 \mathrm{E}-01$	10379.
$0.50000 \mathrm{E}-01$	10379.
$0.66667 \mathrm{E}-01$	10379.
$0.83333 \mathrm{E}-01$	10379.
0.10000	10379.
0.11667	10379.
0.13333	10379.
0.15000	10379.
0.16667	10379.
0.18333	10379.
0.20000	10379.
0.21667	10379.
0.23333	10379.
0.25000	10379.
0.26667	10379.
0.28333	10379.
0.30000	10379.
0.31667	10379.
0.33333	10379.
0.35000	10379.
0.36667	10379.
0.38333	10379.
0.40000	10379.
0.41667	10379.
0.43333	10379.
0.45000	10379.

0.46667	10379.
0.48333	10379.
0.50000	10379.
0.51667	10379.
0.53333	10379.
0.55000	10379.
0.56667	10379.
0.58333	10379.
0.60000	10379.
0.61667	10379.
0.63333	10379.
0.65000	10379.
0.66667	10379.
0.68333	10379.
0.70000	10379.
0.71667	10379.
0.73333	10379.
0.75000	10379.
0.76667	10379.
0.78333	10379.
0.80000	10379.
0.81667	10379.
0.83333	10379.
0.85000	10379.
0.86667	10379.
0.88333	10379.
0.90000	10379.
0.91667	10379.
0.93333	10379.
0.95000	10379.
0.96667	10379.
0.98333	10379.
1.0000	10379.
1.0000	10379.

RESULTS PROFILES *****

RESULTS BY SUBSTREAMS **

SUBSTREAM: MIXED

TIME	PRESSURE	TEMPERATURE	RATURE VAPORFRAC
HR P	PSIA		
0.0000	121.24	395.34	0.48697E-09
$0.16667 \mathrm{E}-01$	121.24	518.13	0.10429E-05
0.33333E-01	121.24	518.15	0.0000
$0.50000 \mathrm{E}-01$	121.24	518.17	0.0000
$0.66667 \mathrm{E}-01$	121.24	518.17	0.0000
$0.83333 \mathrm{E}-01$	121.24	518.17	0.0000
0.10000	121.24	518.17	0.0000
0.11667	121.24	518.17	0.0000
0.13333	121.24	518.17	0.0000
0.15000	121.24	518.17	0.0000
0.16667	121.24	518.17	0.0000
0.18333	121.24	518.17	0.0000
0.20000	121.24	518.17	0.0000
0.21667	121.24	518.17	0.0000
0.23333	121.24	518.17	0.0000
0.25000	121.24	518.17	0.0000
0.26667	121.24	518.17	0.0000
0.28333	121.24	518.17	0.0000
0.30000	121.24	518.17	0.0000
0.31667	121.24	518.17	0.0000
0.33333	121.24	518.17	0.0000
0.35000	121.24	518.17	0.0000
0.36667	121.24	518.17	0.0000
0.38333	121.24	518.17	0.0000
0.40000	121.24	518.17	0.0000
0.41667	121.24	518.17	0.0000
0.43333	121.24	518.17	0.0000
0.45000	121.24	518.17	0.0000
0.46667	121.24	518.17	0.0000
0.48333	121.24	518.17	0.0000
0.50000	121.24	518.17	0.0000
0.51667	121.24	518.17	0.0000
0.53333	121.24	518.17	0.0000
0.55000	121.24	518.17	0.0000
0.56667	121.24	518.17	0.0000
0.58333	121.24	518.17	0.0000
0.60000	121.24	518.17	0.0000
0.61667	121.24	518.17	0.0000
0.63333	121.24	518.17	0.0000
0.65000	121.24	518.17	0.0000

0.66667	121.24	518.17	0.0000
0.68333	121.24	518.17	0.0000
0.70000	121.24	518.17	0.0000
0.71667	121.24	518.17	0.0000
0.73333	121.24	518.17	0.0000
0.75000	121.24	518.17	0.0000
0.76667	121.24	518.17	0.0000
0.78333	121.24	518.17	0.0000
0.80000	121.24	518.17	0.0000
0.81667	121.24	518.17	0.0000
0.83333	121.24	518.17	0.0000
0.85000	121.24	518.17	0.0000
0.86667	121.24	518.17	0.0000
0.88333	121.24	518.17	0.0000
0.90000	121.24	518.17	0.0000
0.91667	121.24	518.17	0.0000
0.93333	121.24	518.17	0.0000
0.95000	121.24	518.17	0.0000
0.96667	121.24	518.17	0.0000
0.98333	121.24	518.17	0.0000
1.0000	121.24	518.17	0.0000
1.0000	121.24	518.17	0.0000

** COMPONENT ATTRIBUTE PROFILES **

SUBSTREAM: MIXED

TIME	NYLON-01	NYLON-01		NYLON-01		NYLON-01
HR	SFRAC	SFRAC	SFRAC	SFRAC		
	E-ADA	R-ADA	E-HDMA	R-HDMA		

0.20000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.21667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.23333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.25000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.26667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.28333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.30000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.31667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.33333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.35000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.36667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.38333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.40000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.41667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.43333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.45000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.46667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.48333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.50000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.51667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.53333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.55000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.56667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.58333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.60000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.61667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.63333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.65000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.66667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.68333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.70000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.71667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.73333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.75000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.76667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.78333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.80000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.81667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.83333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.85000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.86667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.88333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.90000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.91667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921

0.93333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.95000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.96667	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
0.98333	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
1.0000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921
1.0000	$0.16323 \mathrm{E}-01$	0.48552	$0.89450 \mathrm{E}-02$	0.48921

** COMPONENT ATTRIBUTE PROFILES **

SUBSTREAM: MIXED

TIME	NYLON-01		NYLON-01	
HYLON-01	NYLON-01			
HR	SFLOW	SFLOW	SFLOW	SFLOW
	E-ADA	R-ADA	E-HDMA	R-HDMA

0.0000	0.0000	0.0000	0.0000	0.0000
$0.16667 \mathrm{E}-01$	0.66927	19.904	0.36680	20.055
$0.33333 \mathrm{E}-01$	0.66919	19.904	0.36671	20.056
$0.50000 \mathrm{E}-01$	0.66918	19.904	0.36671	20.056
$0.66667 \mathrm{E}-01$	0.66918	19.904	0.36671	20.056
$0.83333 \mathrm{E}-01$	0.66918	19.904	0.36671	20.056
0.10000	0.66918	19.904	0.36671	20.056
0.11667	0.66918	19.904	0.36671	20.056
0.13333	0.66918	19.904	0.36671	20.056
0.15000	0.66918	19.904	0.36671	20.056
0.16667	0.66918	19.904	0.36671	20.056
0.18333	0.66918	19.904	0.36671	20.056
0.20000	0.66918	19.904	0.36671	20.056
0.21667	0.66918	19.904	0.36671	20.056
0.23333	0.66918	19.904	0.36671	20.056
0.25000	0.66918	19.904	0.36671	20.056
0.26667	0.66918	19.904	0.36671	20.056
0.28333	0.66918	19.904	0.36671	20.056
0.30000	0.66918	19.904	0.36671	20.056
0.31667	0.66918	19.904	0.36671	20.056
0.33333	0.66918	19.904	0.36671	20.056
0.35000	0.66918	19.904	0.36671	20.056
0.36667	0.66918	19.904	0.36671	20.056
0.38333	0.66918	19.904	0.36671	20.056
0.40000	0.66918	19.904	0.36671	20.056
0.41667	0.66918	19.904	0.36671	20.056
0.43333	0.66918	19.904	0.36671	20.056
0.45000	0.66918	19.904	0.36671	20.056

0.46667	0.66918	19.904	0.36671	20.056
0.48333	0.66918	19.904	0.36671	20.056
0.50000	0.66918	19.904	0.36671	20.056
0.51667	0.66918	19.904	0.36671	20.056
0.53333	0.66918	19.904	0.36671	20.056
0.55000	0.66918	19.904	0.36671	20.056
0.56667	0.66918	19.904	0.36671	20.056
0.58333	0.66918	19.904	0.36671	20.056
0.60000	0.66918	19.904	0.36671	20.056
0.61667	0.66918	19.904	0.36671	20.056
0.63333	0.66918	19.904	0.36671	20.056
0.65000	0.66918	19.904	0.36671	20.056
0.66667	0.66918	19.904	0.36671	20.056
0.68333	0.66918	19.904	0.36671	20.056
0.70000	0.66918	19.904	0.36671	20.056
0.71667	0.66918	19.904	0.36671	20.056
0.73333	0.66918	19.904	0.36671	20.056
0.75000	0.66918	19.904	0.36671	20.056
0.76667	0.66918	19.904	0.36671	20.056
0.78333	0.66918	19.904	0.36671	20.056
0.80000	0.66918	19.904	0.36671	20.056
0.81667	0.66918	19.904	0.36671	20.056
0.83333	0.66918	19.904	0.36671	20.056
0.85000	0.66918	19.904	0.36671	20.056
0.86667	0.66918	19.904	0.36671	20.056
0.88333	0.66918	19.904	0.36671	20.056
0.90000	0.66918	19.904	0.36671	20.056
0.91667	0.66918	19.904	0.36671	20.056
0.93333	0.66918	19.904	0.36671	20.056
0.95000	0.66918	19.904	0.36671	20.056
0.96667	0.66918	19.904	0.36671	20.056
0.98333	0.66918	19.904	0.36671	20.056
1.0000	0.66918	19.904	0.36671	20.056
1.0000	0.66918	19.904	0.36671	20.056

** COMPONENT ATTRIBUTE PROFILES **

SUBSTREAM: MIXED

TIME NYLON-01 NYLON-01 NYLON-01 NYLON-01
HR EFRAC EFRAC ZMOM FMOM
E-ADA E-HDMA ZMOM FMOM

0.0000	0.0000	0.0000	0.0000	0.0000
0.16667 E-01	0.64597	0.35403	0.51804	40.996
$0.33333 \mathrm{E}-01$	0.64600	0.35400	0.51795	40.996
$0.50000 \mathrm{E}-01$	0.64600	0.35400	0.51795	40.996
$0.66667 \mathrm{E}-01$	0.64600	0.35400	0.51794	40.996
$0.83333 \mathrm{E}-01$	0.64600	0.35400	0.51794	40.996
0.10000	0.64600	0.35400	0.51794	40.996
0.11667	0.64600	0.35400	0.51794	40.996
0.13333	0.64600	0.35400	0.51794	40.996
0.15000	0.64600	0.35400	0.51794	40.996
0.16667	0.64600	0.35400	0.51794	40.996
0.18333	0.64600	0.35400	0.51794	40.996
0.20000	0.64600	0.35400	0.51794	40.996
0.21667	0.64600	0.35400	0.51794	40.996
0.23333	0.64600	0.35400	0.51794	40.996
0.25000	0.64600	0.35400	0.51794	40.996
0.26667	0.64600	0.35400	0.51794	40.996
0.28333	0.64600	0.35400	0.51794	40.996
0.30000	0.64600	0.35400	0.51794	40.996
0.31667	0.64600	0.35400	0.51794	40.996
0.33333	0.64600	0.35400	0.51794	40.996
0.35000	0.64600	0.35400	0.51794	40.996
0.36667	0.64600	0.35400	0.51794	40.996
0.38333	0.64600	0.35400	0.51794	40.996
0.40000	0.64600	0.35400	0.51794	40.996
0.41667	0.64600	0.35400	0.51794	40.996
0.43333	0.64600	0.35400	0.51794	40.996
0.45000	0.64600	0.35400	0.51794	40.996
0.46667	0.64600	0.35400	0.51794	40.996
0.48333	0.64600	0.35400	0.51794	40.996
0.50000	0.64600	0.35400	0.51794	40.996
0.51667	0.64600	0.35400	0.51794	40.996
0.53333	0.64600	0.35400	0.51794	40.996
0.55000	0.64600	0.35400	0.51794	40.996
0.56667	0.64600	0.35400	0.51794	40.996
0.58333	0.64600	0.35400	0.51794	40.996
0.60000	0.64600	0.35400	0.51794	40.996
0.61667	0.64600	0.35400	0.51794	40.996
0.63333	0.64600	0.35400	0.51794	40.996
0.65000	0.64600	0.35400	0.51794	40.996
0.66667	0.64600	0.35400	0.51794	40.996
0.68333	0.64600	0.35400	0.51794	40.996
0.70000	0.64600	0.35400	0.51794	40.996
0.71667	0.64600	0.35400	0.51794	40.996

0.73333	0.64600	0.35400	0.51794	40.996
0.75000	0.64600	0.35400	0.51794	40.996
0.76667	0.64600	0.35400	0.51794	40.996
0.78333	0.64600	0.35400	0.51794	40.996
0.80000	0.64600	0.35400	0.51794	40.996
0.81667	0.64600	0.35400	0.51794	40.996
0.83333	0.64600	0.35400	0.51794	40.996
0.85000	0.64600	0.35400	0.51794	40.996
0.86667	0.64600	0.35400	0.51794	40.996
0.88333	0.64600	0.35400	0.51794	40.996
0.90000	0.64600	0.35400	0.51794	40.996
0.91667	0.64600	0.35400	0.51794	40.996
0.93333	0.64600	0.35400	0.51794	40.996
0.95000	0.64600	0.35400	0.51794	40.996
0.96667	0.64600	0.35400	0.51794	40.996
0.98333	0.64600	0.35400	0.51794	40.996
1.0000	0.64600	0.35400	0.51794	40.996
1.0000	0.64600	0.35400	0.51794	40.996

** COMPONENT ATTRIBUTE PROFILES **

SUBSTREAM: MIXED

TIME HR	NYLON-01	
DPN		

0.26667	79.151	8979.1
0.28333	79.151	8979.1
0.30000	79.151	8979.1
0.31667	79.151	8979.1
0.33333	79.151	8979.1
0.35000	79.151	8979.1
0.36667	79.151	8979.1
0.38333	79.151	8979.1
0.40000	79.151	8979.1
0.41667	79.151	8979.1
0.43333	79.151	8979.1
0.45000	79.151	8979.1
0.46667	79.151	8979.1
0.48333	79.151	8979.1
0.50000	79.151	8979.1
0.51667	79.151	8979.1
0.53333	79.151	8979.1
0.55000	79.151	8979.1
0.56667	79.151	8979.1
0.58333	79.151	8979.1
0.60000	79.151	8979.1
0.61667	79.151	8979.1
0.63333	79.151	8979.1
0.65000	79.151	8979.1
0.66667	79.151	8979.1
0.68333	79.151	8979.1
0.70000	79.151	8979.1
0.71667	79.151	8979.1
0.73333	79.151	8979.1
0.75000	79.151	8979.1
0.76667	79.151	8979.1
0.78333	79.151	8979.1
0.80000	79.151	8979.1
0.81667	79.151	8979.1
0.83333	79.151	8979.1
0.85000	79.151	8979.1
0.86667	79.151	8979.1
0.88333	79.151	8979.1
0.90000	79.151	8979.1
0.91667	79.151	8979.1
0.93333	79.151	8979.1
0.95000	79.151	8979.1
0.96667	79.151	8979.1
0.98333	79.151	8979.1

1.0000	79.151	8979.1
1.0000	79.151	8979.1

** COMPONENT MASS AMOUNTS **

SUBSTREAM: MIXED

TIME	NYLON-01		ADA	HDMA	WATER
HR	LB	LB	LB	LB	
0.0000	0.0000	6630.4	5234.6	1743.5	
$0.16667 E-01$	10253.	1.8127	0.42967	123.58	
$0.33333 E-01$	10253.	1.8122	0.42946	123.54	
0.50000 E-01	10253.	1.8122	0.42945	123.53	
$0.66667 E-01$	10253.	1.8121	0.42945	123.53	
$0.83333 E-01$	10253.	1.8121	0.42945	123.53	
0.10000	10253.	1.8121	0.42945	123.53	
0.11667	10253.	1.8121	0.42945	123.53	
0.13333	10253.	1.8121	0.42945	123.53	
0.15000	10253.	1.8121	0.42945	123.53	
0.16667	10253.	1.8121	0.42945	123.53	
0.18333	10253.	1.8121	0.42945	123.53	
0.20000	10253.	1.8121	0.42945	123.53	
0.21667	10253.	1.8121	0.42945	123.53	
0.23333	10253.	1.8121	0.42945	123.53	
0.25000	10253.	1.8121	0.42945	123.53	
0.26667	10253.	1.8121	0.42945	123.53	
0.28333	10253.	1.8121	0.42945	123.53	
0.30000	10253.	1.8121	0.42945	123.53	
0.31667	10253.	1.8121	0.42945	123.53	
0.33333	10253.	1.8121	0.42945	123.53	
0.35000	10253.	1.8121	0.42945	123.53	
0.36667	10253.	1.8121	0.42945	123.53	
0.38333	10253.	1.8121	0.42945	123.53	
0.40000	10253.	1.8121	0.42945	123.53	
0.41667	10253.	1.8121	0.42945	123.53	
0.43333	10253.	1.8121	0.42945	123.53	
0.45000	10253.	1.8121	0.42945	123.53	
0.46667	10253.	1.8121	0.42945	123.53	
0.48333	10253.	1.8121	0.42945	123.53	
0.50000	10253.	1.8121	0.42945	123.53	
0.51667	10253.	1.8121	0.42945	123.53	

0.53333	10253.	1.8121	0.42945	123.53
0.55000	10253.	1.8121	0.42945	123.53
0.56667	10253.	1.8121	0.42945	123.53
0.58333	10253.	1.8121	0.42945	123.53
0.60000	10253.	1.8121	0.42945	123.53
0.61667	10253.	1.8121	0.42945	123.53
0.63333	10253.	1.8121	0.42945	123.53
0.65000	10253.	1.8121	0.42945	123.53
0.66667	10253.	1.8121	0.42945	123.53
0.68333	10253.	1.8121	0.42945	123.53
0.70000	10253.	1.8121	0.42945	123.53
0.71667	10253.	1.8121	0.42945	123.53
0.73333	10253.	1.8121	0.42945	123.53
0.75000	10253.	1.8121	0.42945	123.53
0.76667	10253.	1.8121	0.42945	123.53
0.78333	10253.	1.8121	0.42945	123.53
0.80000	10253.	1.8121	0.42945	123.53
0.81667	10253.	1.8121	0.42945	123.53
0.83333	10253.	1.8121	0.42945	123.53
0.85000	10253.	1.8121	0.42945	123.53
0.86667	10253.	1.8121	0.42945	123.53
0.88333	10253.	1.8121	0.42945	123.53
0.90000	10253.	1.8121	0.42945	123.53
0.91667	10253.	1.8121	0.42945	123.53
0.93333	10253.	1.8121	0.42945	123.53
0.95000	10253.	1.8121	0.42945	123.53
0.96667	10253.	1.8121	0.42945	123.53
0.98333	10253.	1.8121	0.42945	123.53
1.0000	10253.	1.8121	0.42945	123.53
1.0000	10253.	1.8121	0.42945	123.53

** RESULTS BY SUBSTREAMS **

** COMPONENT MOLE FRACTIONS **

COMPONENT MOLE FRACTIONS

SUBSTREAM: MIXED
TIME NYLON-01 ADA HDMA WATER HR

0.0000	0.0000	0.24237	0.24064	0.51700	
$0.16667 \mathrm{E}-01$	0.86823	$0.23771 \mathrm{E}-03$	$0.70862 \mathrm{E}-04$	0.13146	
$0.33333 \mathrm{E}-01$	0.86827	$0.23765 \mathrm{E}-03$	$0.70829 \mathrm{E}-04$	0.13142	
$0.50000 \mathrm{E}-01$	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
$0.66667 \mathrm{E}-01$	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
$0.83333 \mathrm{E}-01$	0.86827	$0.23765 \mathrm{E}-03$		$0.70828 \mathrm{E}-04$	0.13142
0.10000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.11667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.13333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.15000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.16667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.18333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.20000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.21667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.23333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.25000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.26667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.28333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.30000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.31667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.33333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.35000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.36667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.38333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.40000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.41667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.43333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.45000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.46667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.48333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.50000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.51667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.53333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.55000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.56667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.58333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.60000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.61667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.63333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.65000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.66667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.68333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0.70000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142	
0					
0					

0.71667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.73333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.75000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.76667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.78333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.80000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.81667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.83333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.85000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.86667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.88333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.90000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.91667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.93333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.95000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.96667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.98333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
1.0000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
1.0000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142

** RESULTS BY SUBSTREAMS **

** LIQUID PHASE MOLE FRACTIONS **
COMPONENT MOLE FRACTIONS

SUBSTREAM: MIXED LIQUID

| TIME | NYLON-01 | ADA | HDMA | WATER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| HR | | | | |
| | | | | |
| 0.0000 | 0.0000 | 0.24237 | 0.24064 | 0.51700 |
| $0.16667 \mathrm{E}-01$ | 0.86823 | $0.23771 \mathrm{E}-03$ | $0.70862 \mathrm{E}-04$ | 0.13146 |
| $0.33333 \mathrm{E}-01$ | 0.86827 | $0.23765 \mathrm{E}-03$ | $0.70829 \mathrm{E}-04$ | 0.13142 |
| $0.50000 \mathrm{E}-01$ | 0.86827 | $0.23765 \mathrm{E}-03$ | $0.70828 \mathrm{E}-04$ | 0.13142 |
| $0.66667 \mathrm{E}-01$ | 0.86827 | $0.23765 \mathrm{E}-03$ | $0.70828 \mathrm{E}-04$ | 0.13142 |
| $0.83333 \mathrm{E}-01$ | 0.86827 | $0.23765 \mathrm{E}-03$ | $0.70828 \mathrm{E}-04$ | 0.13142 |
| 0.10000 | 0.86827 | $0.23765 \mathrm{E}-03$ | $0.70828 \mathrm{E}-04$ | 0.13142 |
| 0.11667 | 0.86827 | $0.23765 \mathrm{E}-03$ | $0.70828 \mathrm{E}-04$ | 0.13142 |
| 0.13333 | 0.86827 | $0.23765 \mathrm{E}-03$ | $0.70828 \mathrm{E}-04$ | 0.13142 |
| 0.15000 | 0.86827 | $0.23765 \mathrm{E}-03$ | $0.70828 \mathrm{E}-04$ | 0.13142 |

0.16667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.18333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.20000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.21667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.23333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.25000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.26667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.28333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.30000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.31667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.33333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.35000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.36667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.38333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.40000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.41667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.43333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.45000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.46667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.48333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.50000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.51667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.53333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.55000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.56667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.58333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.60000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.61667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.63333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.65000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.66667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.68333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.70000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.71667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.73333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.75000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.76667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.78333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.80000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.81667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.83333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.85000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.86667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.88333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142

0.90000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.91667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.93333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.95000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.96667	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
0.98333	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
1.0000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142
1.0000	0.86827	$0.23765 \mathrm{E}-03$	$0.70828 \mathrm{E}-04$	0.13142

** RESULTS BY SUBSTREAMS **
** VAPOR PHASE MOLE FRACTIONS **
COMPONENT MOLE FRACTIONS

SUBSTREAM: MIXED VAPOR

0.35000
0.36667
0.38333
0.40000
0.41667
0.43333
0.45000
0.46667
0.48333
0.50000
0.51667
0.53333
0.55000
0.56667
0.58333
0.60000
0.61667
0.63333
0.65000
0.66667
0.68333
0.70000
0.71667
0.73333
0.75000
0.76667
0.78333
0.80000
0.81667
0.83333
0.85000
0.86667
0.88333
0.90000
0.91667
0.93333
0.95000
0.96667
0.98333
1.0000
1.0000

** VENT ACCUMULATOR PROFILES **

TIME	PRESSURE	TEMPERATURE		VAPOR FRAC
HR	PSIA F			
0.0000	121.24	395.34	1.0000	
$0.16667 \mathrm{E}-01$	121.24	373.82	1.0000	
$0.33333 \mathrm{E}-01$	121.24	373.83	1.0000	
$0.50000 \mathrm{E}-01$	121.24	373.83	1.0000	
$0.66667 \mathrm{E}-01$	121.24	373.83	1.0000	
$0.83333 \mathrm{E}-01$	121.24	373.83	1.0000	
0.10000	121.24	373.83	1.0000	
0.11667	121.24	373.83	1.0000	
0.13333	121.24	373.83	1.0000	
0.15000	121.24	373.83	1.0000	
0.16667	121.24	373.83	1.0000	
0.18333	121.24	373.83	1.0000	
0.20000	121.24	373.83	1.0000	
0.21667	121.24	373.83	1.0000	
0.23333	121.24	373.83	1.0000	
0.25000	121.24	373.83	1.0000	
0.26667	121.24	373.83	1.0000	
0.28333	121.24	373.83	1.0000	
0.30000	121.24	373.83	1.0000	
0.31667	121.24	373.83	1.0000	
0.33333	121.24	373.83	1.0000	
0.35000	121.24	373.83	1.0000	
0.36667	121.24	373.83	1.0000	
0.38333	121.24	373.83	1.0000	
0.40000	121.24	373.83	1.0000	
0.41667	121.24	373.83	1.0000	
0.43333	121.24	373.83	1.0000	
0.45000	121.24	373.83	1.0000	
0.46667	121.24	373.83	1.0000	
0.48333	121.24	373.83	1.0000	
0.50000	121.24	373.83	1.0000	
0.51667	121.24	373.83	1.0000	
0.53333	121.24	373.83	1.0000	
0.55000	121.24	373.83	1.0000	
0.56667	121.24	373.83	1.0000	
0.58333	121.24	373.83	1.0000	
0.60000	121.24	373.83	1.0000	

0.61667	121.24	373.83	1.0000
0.63333	121.24	373.83	1.0000
0.65000	121.24	373.83	1.0000
0.66667	121.24	373.83	1.0000
0.68333	121.24	373.83	1.0000
0.70000	121.24	373.83	1.0000
0.71667	121.24	373.83	1.0000
0.73333	121.24	373.83	1.0000
0.75000	121.24	373.83	1.0000
0.76667	121.24	373.83	1.0000
0.78333	121.24	373.83	1.0000
0.80000	121.24	373.83	1.0000
0.81667	121.24	373.83	1.0000
0.83333	121.24	373.83	1.0000
0.85000	121.24	373.83	1.0000
0.86667	121.24	373.83	1.0000
0.88333	121.24	373.83	1.0000
0.90000	121.24	373.83	1.0000
0.91667	121.24	373.83	1.0000
0.93333	121.24	373.83	1.0000
0.95000	121.24	373.83	1.0000
0.96667	121.24	373.83	1.0000
0.98333	121.24	373.83	1.0000
1.0000	121.24	373.83	1.0000
1.0000	121.24	373.83	1.0000

VENT ACCUMULATOR TOTAL MASS PROFILE

TIME	TOTAL MASS
HR	LB
0.0000	201.21
$0.16667 E-01$	3431.0
$0.33333 E-01$	3431.0
$0.50000 \mathrm{E}-01$	3431.1
$0.66667 \mathrm{E}-01$	3431.1
$0.83333 E-01$	3431.1
0.10000	3431.1
0.11667	3431.1
0.13333	3431.1
0.15000	3431.1
0.16667	3431.1
0.18333	3431.1

0.20000	3431.1
0.21667	3431.1
0.23333	3431.1
0.25000	3431.1
0.26667	3431.1
0.28333	3431.1
0.30000	3431.1
0.31667	3431.1
0.33333	3431.1
0.35000	3431.1
0.36667	3431.1
0.38333	3431.1
0.40000	3431.1
0.41667	3431.1
0.43333	3431.1
0.45000	3431.1
0.46667	3431.1
0.48333	3431.1
0.50000	3431.1
0.51667	3431.1
0.53333	3431.1
0.55000	3431.1
0.56667	3431.1
0.58333	3431.1
0.60000	3431.1
0.61667	3431.1
0.63333	3431.1
0.65000	3431.1
0.66667	3431.1
0.68333	3431.1
0.70000	3431.1
0.71667	3431.1
0.73333	3431.1
0.75000	3431.1
0.76667	3431.1
0.78333	3431.1
0.80000	3431.1
0.81667	3431.1
0.83333	3431.1
0.85000	3431.1
0.86667	3431.1
0.88333	3431.1
0.90000	3431.1
0.91667	3431.1

0.93333	3431.1
0.95000	3431.1
0.96667	3431.1
0.98333	3431.1
1.0000	3431.1
1.0000	3431.1

VENT ACCUMULATOR MOLE FRACTION PROFILE TIME ADA HDMA WATER
HR

| 0.0000 | $0.36292 \mathrm{E}-03$ | $0.35327 \mathrm{E}-01$ | 0.96431 |
| :--- | :--- | :--- | :--- | :--- |
| $0.16667 \mathrm{E}-01$ | $0.19162 \mathrm{E}-04$ | $0.18516 \mathrm{E}-02$ | 0.99813 |
| $0.33333 \mathrm{E}-01$ | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| $0.50000 \mathrm{E}-01$ | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| $0.66667 \mathrm{E}-01$ | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| $0.83333 \mathrm{E}-01$ | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.10000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.11667 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.13333 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.15000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.16667 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.18333 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.20000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.21667 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.23333 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.25000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.26667 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.28333 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.30000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.31667 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.33333 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.35000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.36667 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.38333 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.40000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.41667 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.43333 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.45000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.46667 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.48333 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |
| 0.50000 | $0.19162 \mathrm{E}-04$ | $0.18515 \mathrm{E}-02$ | 0.99813 |

0.51667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.53333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.55000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.56667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.58333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.60000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.61667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.63333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.65000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.66667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.68333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.70000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.71667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.73333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.75000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.76667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.78333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.80000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.81667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.83333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.85000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.86667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.88333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.90000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.91667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.93333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.95000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.96667	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
0.98333	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
1.0000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813
1.0000	$0.19162 \mathrm{E}-04$	$0.18515 \mathrm{E}-02$	0.99813

** VENT STREAM PROFILES **

| TIME | PRESSURE | | TEMPERATURE | |
| :--- | :---: | :---: | :---: | :---: | FLOWRATE

$0.66667 \mathrm{E}-01$	121.24	518.17	0.0000
$0.83333 \mathrm{E}-01$	121.24	518.17	0.0000
0.10000	121.24	518.17	0.0000
0.11667	121.24	518.17	0.0000
0.13333	121.24	518.17	0.0000
0.15000	121.24	518.17	0.0000
0.16667	121.24	518.17	0.0000
0.18333	121.24	518.17	0.0000
0.20000	121.24	518.17	0.0000
0.21667	121.24	518.17	0.0000
0.23333	121.24	518.17	0.0000
0.25000	121.24	518.17	0.0000
0.26667	121.24	518.17	0.0000
0.28333	121.24	518.17	0.0000
0.30000	121.24	518.17	0.0000
0.31667	121.24	518.17	0.0000
0.33333	121.24	518.17	0.0000
0.35000	121.24	518.17	0.0000
0.36667	121.24	518.17	0.0000
0.38333	121.24	518.17	0.0000
0.40000	121.24	518.17	0.0000
0.41667	121.24	518.17	0.0000
0.43333	121.24	518.17	0.0000
0.45000	121.24	518.17	0.0000
0.46667	121.24	518.17	0.0000
0.48333	121.24	518.17	0.0000
0.50000	121.24	518.17	0.0000
0.51667	121.24	518.17	0.0000
0.53333	121.24	518.17	0.0000
0.55000	121.24	518.17	0.0000
0.56667	121.24	518.17	0.0000
0.58333	121.24	518.17	0.0000
0.60000	121.24	518.17	0.0000
0.61667	121.24	518.17	0.0000
0.63333	121.24	518.17	0.0000
0.65000	121.24	518.17	0.0000
0.66667	121.24	518.17	0.0000
0.68333	121.24	518.17	0.0000
0.70000	121.24	518.17	0.0000
0.71667	121.24	518.17	0.0000
0.73333	121.24	518.17	0.0000
0.75000	121.24	518.17	0.0000
0.76667	121.24	518.17	0.0000
0.78333	121.24	518.17	0.0000

0.80000	121.24	518.17	0.0000
0.81667	121.24	518.17	0.0000
0.83333	121.24	518.17	0.0000
0.85000	121.24	518.17	0.0000
0.86667	121.24	518.17	0.0000
0.88333	121.24	518.17	0.0000
0.90000	121.24	518.17	0.0000
0.91667	121.24	518.17	0.0000
0.93333	121.24	518.17	0.0000
0.95000	121.24	518.17	0.0000
0.96667	121.24	518.17	0.0000
0.98333	121.24	518.17	0.0000
1.0000	121.24	518.17	0.0000
1.0000	121.24	518.17	0.0000

** VENT MOLE FRACTION PROFILE **

$\begin{aligned} & \text { TIME } \\ & \text { HR } \end{aligned}$	NYLON-01	ADA HDM	MA WATER	ATER
0.0000	$0.0000 \quad 0.3$	36292E-03 0.	0.96431	
$0.16667 \mathrm{E}-01$	$1 \quad 0.99599 \mathrm{E}-82$	- $0.72215 \mathrm{E}-05$	0.56083E-04	0.99994
0.33333E-01	1 0.99658E-82	0.72241E-05	0.56082E-04	0.99994
0.50000E-01	1 0.99678E-82	0.72250E-05	0.56080E-04	0.99994
0.66667E-01	1 0.99678E-82	0.72251E-05	0.56079E-04	0.99994
0.83333E-01	1 0.99680E-82	0.72252E-05	0.56080E-04	0.99994
0.10000	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.11667	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.13333	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.15000	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.16667	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.18333	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.20000	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.21667	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.23333	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.25000	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.26667	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.28333	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.30000	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.31667	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.33333	0.99682E-82	0.72252E-05	0.56080E-04	0.99994
0.35000	0.99682E-82	0.72252E-05	0.56080E-04	0.99994

0.36667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.38333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.40000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.41667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.43333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.45000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.46667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.48333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.50000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.51667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.53333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.55000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.56667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.58333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.60000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.61667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.63333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.65000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.66667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.68333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.70000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.71667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.73333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.75000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.76667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.78333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.80000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.81667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.83333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.85000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.86667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.88333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.90000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.91667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.93333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.95000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.96667	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.98333	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
1.0000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
1.0000	$0.99682 \mathrm{E}-82$	$0.72252 \mathrm{E}-05$	$0.56080 \mathrm{E}-04$	0.99994
0.0				

BLOCK: C1 MODEL: HEATER

INLET STREAM: CMBVENT
OUTLET STREAM: WASTEH20
PROPERTY OPTION SET: POLYNRTL POLYMER NRTL / REDLICH-KWONG
*** MASS AND ENERGY BALANCE ***
IN OUT RELATIVE DIFF.
TOTAL BALANCE

MOLE(LBMOL/HR)	195.668	195.668	0.00000
MASS(LB/HR)	3559.79	3559.79	0.00000

ENTHALPY(BTU/HR) -0.198638E+08 $-0.239426 \mathrm{E}+08 \quad 0.170358$
*** CO2 EQUIVALENT SUMMARY ***
FEED STREAMS CO2E 0.00000 LB/HR
PRODUCT STREAMS CO2E 0.00000 LB/HR
NET STREAMS CO2E PRODUCTION 0.00000 LB/HR
UTILITIES CO2E PRODUCTION 0.00000 LB/HR
TOTAL CO2E PRODUCTION 0.00000 LB/HR
*** INPUT DATA ***
TWO PHASE TP FLASH
SPECIFIED TEMPERATURE F 100.0000
SPECIFIED PRESSURE
PSIA
14.7000

30 CONVERGENCE TOLERANCE
0.000100000

$* *$ RESULTS ***		
OUTLET TEMPERATURE F	100.00	
OUTLET PRESSURE PSIA	14.700	
HEAT DUTY BTU/HR	$-0.40788 \mathrm{E}+07$	
OUTLET VAPOR FRACTION	0.0000	

V-L PHASE EQUILIBRIUM :

COMP	$\mathrm{F}(\mathrm{I})$	$\mathrm{X}(\mathrm{I})$	$\mathrm{Y}(\mathrm{I})$	$\mathrm{K}(\mathrm{I})$	
ADA	$0.19595 \mathrm{E}-04$	$0.19595 \mathrm{E}-04$	$0.25195 \mathrm{E}-11$	$0.83963 \mathrm{E}-08$	
HDMA	$0.17847 \mathrm{E}-02$	$0.17847 \mathrm{E}-02$	$0.40152 \mathrm{E}-04$	$0.14692 \mathrm{E}-02$	
WATER	0.99820	0.99820	0.99996	$0.65418 \mathrm{E}-01$	

BLOCK: CSTR2 MODEL: RCSTR

INLET STREAM: OLIG
OUTLET STREAMS: LIQ-NY66 VENT2
PROPERTY OPTION SET: POLYNRTL POLYMER NRTL / REDLICH-KWONG
*** MASS AND ENERGY BALANCE ***
IN OUT GENERATION RELATIVE DIFF.
TOTAL BALANCE
MOLE(LBMOL/HR) $52.1762 \quad 52.8212 \quad 0.645011 \quad 0.134518 \mathrm{E}$-15
MASS(LB/HR) 10378.7 $10378.7 \quad 0.175262 \mathrm{E}-15$
ENTHALPY(BTU/HR) -0.582687E+07-0.572094E+07 -0.181800E-01
*** CO2 EQUIVALENT SUMMARY ***
FEED STREAMS CO2E 0.00000 LB/HR
PRODUCT STREAMS CO2E 0.00000 LB/HR
NET STREAMS CO2E PRODUCTION 0.00000 LB/HR
UTILITIES CO2E PRODUCTION 0.00000 LB/HR
TOTAL CO2E PRODUCTION 0.00000 LB/HR
*** INPUT DATA ***
REACTOR TYPE: TEMP SPEC TWO PHASE REACTOR

RESIDENCE TIME	HR		$0.50000 \mathrm{E}-01$
REACTOR TEMPERATURE	F	518.00	
REACTOR PRESSURE	PSIA	8.3326	

*** RESULTS ***

REACTOR HEAT DUTY	BTU/HR	$0.10593 E+06$
REACTOR VOLUME	CUFT	458.57
VAPOR PHASE VOLUME FRACTION	0.97933	
VAPOR PHASE VOLUME	CUFT	449.09
LIQUID PHASE VOLUME	CUFT	9.4805

BLOCK: FEED-HEX MODEL: HEATER

INLET STREAM: UNHEAT-F
OUTLET STREAM: FEED
PROPERTY OPTION SET: POLYNRTL POLYMER NRTL / REDLICH-KWONG
*** MASS AND ENERGY BALANCE ***
IN OUT RELATIVE DIFF.
TOTAL BALANCE

MOLE(LBMOL/HR)	196.539	196.539	0.00000	
MASS(LB/HR)	13809.8	13809.8	0.00000	
ENTHALPY(BTU/HR)	$-0.343806 E+08$	$-0.320444 E+08$	$-0.679505 E-01$	

*** CO2 EQUIVALENT SUMMARY ***
FEED STREAMS CO2E 0.00000 LB/HR
PRODUCT STREAMS CO2E 0.00000 LB/HR
NET STREAMS CO2E PRODUCTION 0.00000 LB/HR
UTILITIES CO2E PRODUCTION 523.626 LB/HR
TOTAL CO2E PRODUCTION 523.626 LB/HR
*** INPUT DATA ***
ONE PHASE TP FLASH SPECIFIED PHASE IS LIQUID
SPECIFIED TEMPERATURE F 410.000
SPECIFIED PRESSURE
PSIA 117.568
MAXIMUM NO. ITERATIONS
CONVERGENCE TOLERANCE
30
0.000100000

RESULTS		
R**		
OUTLET TEMPERATURE F	410.00	
OUTLET PRESSURE PSIA	117.57	
HEAT DUTY \quad BTU/HR	$0.23362 E+07$	

*** ASSOCIATED UTILITIES ***

UTILITY ID FOR ELECTRICITY	$\mathrm{U}-1$
RATE OF CONSUMPTION	684.6661 KW

COST 53.0616 \$/HR
CO2 EQUIVALENT EMISSIONS 523.6261 LB/HR
BLOCK: FEED-PUM MODEL: PUMP
INLET STREAM: \quad RAW-FEED
OUTLET STREAM: \quad UNHEAT-F
PROPERTY OPTION SET: POLYNRTL POLYMER NRTL / REDLICH-KWONG
*** MASS AND ENERGY BALANCE ***
IN OUT RELATIVE DIFF.
TOTAL BALANCE
$\begin{array}{llll}\text { MOLE (LBMOL/HR) } & 196.539 & 196.539 & 0.00000\end{array}$
MASS(LB/HR) 13809.813809 .80 .00000
ENTHALPY(BTU/HR) $-0.343930 \mathrm{E}+08-0.343806 \mathrm{E}+08-0.361391 \mathrm{E}-03$

PRODUCT STREAMS CO2E	0.00000	LB/HR
NET STREAMS CO2E PRODUCTI	ION 0.0000	0 LB/HR
UTILITIES CO2E PRODUCTION	0.00000	LB/HR
TOTAL CO2E PRODUCTION	0.00000	LB/HR
*** INPUT DATA ***		
TWO PHASE FLASH		
MAXIMUM NO. ITERATIONS		30
CONVERGENCE TOLERANCE		0.000100000
OUTLET PRESSURE PSIA		14.6959

