MEMORANDUM

Date:	March 9, 2017
То:	AIChE Competition Chairs
From:	Group #
Subject:	AIChE 2017 Student Design Competition Nylon 6 6 Grassroots Plant Design

As requested on February 7, 2017, a preliminary design for a Nylon 6 6 grassroots facility to produce nylon granules through an extrusion process has been completed.

The process of achieving 85 MM lb/yr of Nylon 6 6 granules is described in the following report. Through a continuous process, a net present value of \$12,916,000, and a discounted cash flow rate of return of 30.4% were determined. This project is recommended due to the economic evaluation of a ten year project life. Additional sizing and costing of equipment as well as a preliminary safety and hazard analysis are included in this report.

If any of the following information needs further explanation, please contact this design group.

AIChE Design Project: Grassroots Nylon 6 6 Plant

Group #____ March 9, 2017

Table of Contents

List of Tables	3
List of Figures	4
Abstract	5
Introduction	6
Process Flow Diagram and Material Balances	6
Process Description	9
Energy Balance and Utility Requirements	. 10
Equipment List and Unit Descriptions	. 13
Pumps	. 13
Heat Exchangers	. 13
Deionized Water System	. 15
Dry Storage System	. 15
Mixers	. 17
Nylon Salt Preparation Reactor	. 18
Evaporative Crystallizer System	. 18
Polymerization Reactor	. 20
Extruder	. 26
Casting Wheel	. 26
Chopper	. 26
Dryer	. 26
Nylon Granule Storage Hopper	. 27
Equipment Specification Sheet	. 28
Equipment Cost Summary	. 29
Fixed Capital Investment Summary	. 30
Safety, Health, and Environmental Considerations	. 32
Safety	. 32
Sustainability and Environmental Concerns	.36
Other Important Considerations	. 36
Control Strategy Description	. 36
Startup Including Additional Equipment	. 40
Location Considerations	. 40
Process Optimization	. 40
67% Turndown Case	. 40
Manufacturing Costs (Exclusive of Capital Requirements)	. 45
Economic Analysis	. 48
Sensitivity	. 48
Conclusions	51
Recommendations	. 51
Acknowledgements	. 51
Bibliography	. 52
Appendix	. 55

List of Tables

Table 1: Nylon 6,6 Plant Economic Analysis	5
Table 2: Stream Summary Table of Nylon 6 6 Process	7
Table 3: Utility Cost Summary	11
Table 4: Utility Requirement and Yearly Cost for 100% Capacity	12
Table 5: Pumps in Process	13
Table 6: Heat Exchangers in Process	15
Table 7: Deionized Water System	15
Table 8: Storage Tanks of HMDA and Adipic Acid	17
Table 9: HMDA and Adipic Acid Solution Mixers	17
Table 10: Nylon Salt Preparation Reactor	
Table 11: Crystallizer	19
Table 12: Polymerization Reactor	
Table 13: Nomenclature used in the CRE Algorithm	24
Table 14: Chemical Kinetics Results	25
Table 15: Desired Product (Nylon 6 6) Quality	25
Table 16: Polymerization CSTR Equipment Design Specification	25
Table 17: Mechanical Processing Equipment	
Table 18: Equipment Summary for Nylon 6 6 Manufacturing	
Table 19: Equipment Cost Summary	
Table 20: Parameters used for the Extruder Costing	
Table 21: Fixed Capital Investment Summary	
Table 22: Inherent Safety Table	
Table 23: Hazard and Operability Study	
Table 24: Hazard Analysis Table	
Table 25: Waste Water Treatment Cost	
Table 26: Control Strategy Variables	
Table 27: Equipment Changes based on Capacity	
Table 28: Utilities Requirement and Yearly Cost for 67% Capacity Case	
Table 29: Manufacturing Costs for 67% Capacity Case	
Table 30: 67% Capacity Case Cash Flow Diagram	
Table 31: Raw Material Costs	45
Table 32: Operating Labor Costs	
Table 33: Manufacturing Costs for 100% Capacity Case	
Table 34: Multivariable Sensitivity Analysis	
Table 35: Single Variable Sensitivity Analysis	
Table 36: Breakeven Values for Process Component	
Table 37: 100% Capacity Case Cash Flow Diagram	50

List of Figures

Figure 1: PFD of Nylon 6 6 Process	7
Figure 2: Block Flow Diagram of Nylon 6 6 Process	9
Figure 3: Control Strategy Process Flow Diagram	38
Figure 4: Tornado Chart for Single Variable Sensitivity Analysis	49

Abstract

A preliminary design of a Nylon 6 6 plant to produce granules by extrusion was conducted for Calvert City, Kentucky. This process involves a reaction between adipic acid and hexamethylene diamine (HMDA) through a continuous process. This type of process was chosen over a batch process to make the system inherently safer, reduce process time, and decrease operating costs [1]. Through the use of a continuous polymerization reactor, molten Nylon is produced and then processed by an extruder and additional mechanical processing equipment to dry the Nylon granules. The production of Nylon granules was chosen instead of Nylon filaments. This is due to the versatility of the Nylon granules to be further processed into different lengths and thicknesses based on the customers' specific needs.

The economic evaluation for the Nylon production process is summarized in *Table 1*.

Table 1: Nylon 6,6 Plant Economic Analysis								
Net Present Value	\$12,916,000							
Discounted Cash Flow Rate of Return	30.4%							
Undiscounted Payback Period	4.11 years							

The net present value of the project was calculated to be \$12,916,000 with a discounted cash flow rate of return (DCFROR) of 30.4%. The DCFROR is greater than the hurdle rate of 15% which makes this project economically attractive. The payback period is 4.11 years for a ten year project life.

This process has some safety concerns based on the polymerization reactor and components involved in the process, but these risks will be controlled. Cooling jackets, alarms, and other emergency procedures will be implemented to ensure the safety of everyone involved with the plant and the surrounding community.

Introduction

Nylon 6 6 is a strong and versatile polymer that has many uses throughout different industries. This makes it useful to study innovative and sustainable ways to produce it in bulk. Because Nylon 6 6 has such versatile applications, it can be produced as granules to be processed by other manufacturers or made into fibers for textile applications. The intent of this design project was to design a manufacturing facility for Nylon 6 6 in order to determine the profitability of producing 85 MMlbs/yr of Nylon while considering safety, sustainability, demand and process control.

The following report shows the analysis of a grassroots industrial facility that produces Nylon 6 6 granules in a continuous process. The granules are produced from adipic acid and HMDA in a polycondensation reaction. This is done through the use of mixers, a crystallizer, and a continuous stirred tank reactor. The molten Nylon is extruded and cut into granules for sale.

To fully understand the scope of this process, a safety concept was evaluated for all equipment and potential hazards. Inherent safety is incorporated into the design, and a hazard analysis along with a preliminary hazard and operability study were completed for the process. This also provided the means to assess environmental concerns and loss prevention throughout the design. A control strategy was evaluated for the entire process to assist with the safety and ensure that the design was feasible. An economic analysis was performed for the production of Nylon 6 6 granules at the full capacity of 85 MMlbs/yr as well as a turndown case at 67% by considering the net present value and discounted cash flow rate of return (DCFROR). By using all of these separate concepts, it was possible to evaluate a cohesive design of the Nylon manufacturing facility.

The time line of this project started with research of previous Nylon producing processes to determine the specific equipment necessary, reaction mechanism and kinetics for the polymerization of Nylon 6 6. Next, the reaction kinetics were used to create simulations of the process using Polymath. Mass and energy balances could then be solved, leading to equipment sizing and costing. Revisions to the process were considered for safety and optimization. The economic analysis was then completed.

Process Flow Diagram and Material Balances

The following page provides a process flow diagram for the Nylon 6 6 formation process. The streams are labeled and the stream summary table is provided on the same page to provide ease when identifying the pressure, temperature, total mass flow rate, and component mass flow rates of each of the streams.

E-100 Process Water HEX	T-100 Deionizer Tank 1	P-100 A/B Deionizer Pump	T-101 Deionizer Tank 2	E-101 DI Water HEX	TK-100 Bulk AA Storage	MP-101 AA Screw Conveyer	TK-101 AA Hopper	M-100 AA Solution Mixer	TK-102 Bulk HMDA Storage	MP-101 HMDA Screw Conveyer	TK-103 HMDA Hopper	M-101 HMDA Solution
R-100 Nylon Salt Reactor	P-101 A/B Nylon Salt Solution Pump	R-101 Nylon Salt Crystallizer Reactor	E-102 Crystallizer HEX	E-103 Crystallizer Condenser	P-102 A/B Nylon Salt Pump	R-102 Polymerization Reactor	E-104 Polymerization Condenser	H-100 Dowtherm Heater	P-103 A/B Nylon 6 6 Pump	MP-102 Nylon 6 6 Extruder	MP-103 Casting Wheel	E-105 Casting Wheel Condenser
MP-104 Cutter	MP-105 Dryer	TK-104 Nylon 6 6 Hopper										

Storage

hase iquid quid quid quid iquid iauid Vapor Liquid Vapoi Pressure (psia) 108.9 103.9 189.7 189.7 95 103.9 189.7 189.7 95 90 Temperature (°F) 100.4 377 377 100.4 100.4 100.4 122 377 377 52 Total Mass Flow Rate (lbm/hr) 104,466 104,466 5,943 5,943 104,466 104,466 104,466 104,466 2,652 2,652 Component Mass Flow Rate (Ibm/hr) -Adipic Acid -HMDA 0 -Water 104,466 104,466 5,943 5,943 104,466 104,466 104,466 104,466 2,652 2,652 -Aqueous Nylon Salt Solution - Nylon Salt - Carboxyl End Group - Nylon Salt - Amine End Group -Nylon 6 6 -Dowtherm 0

Stream Number

Stream Number	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
Phase	Sat. Vapor	Sat. Liquid	Sat. Vapor	Sat. Liquid	Liquid	Liquid	Liquid/ Precipitate	Vapor	Sat. Liquid	Liquid	Sat. Vapor	Sat. Liquid	Liquid	Liquid	Solid	Solid	Solid							
Pressure (psia)	182	182	614.7	614.7	100	100	252	250	250	100	100	152.7	152.7	250	1000	1000	100	14.7	14.7	100	95	14.7	14.7	9.7
Temperature (°F)	374	374	489	489	86	113	374	514.6	204.8	86	113	532.6	527	514.6	514.6	514.6	86	212	212	86	113	257	257	158
Total Mass Flow Rate (Ibm/hr)	103,579	103,579	16,641	16,641	3.67E+06	3.67E+06	13,813	1,700	1,700	60,325	60,325	34,049	34,049	11,302	11,302	11,302	1,003	2,091	2,091	7.51E+04	7.51E+04	10,214	10,214	10,214
Component Mass Flow Rate (Ibm/hr)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-Adipic Acid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-HMDA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-Water	103,579	103,579	16,641	16,641	3.67E+06	3.67E+06	887	1,700	1,700	60,325	60,325	0	0	0	0	0	1,003	1,003	1,003	7.51E+04	7.51E+04	0	0	0
-Aqueous Nylon Salt Solution	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	606	606	0	0	0	0	0
- Nylon Salt - Carboxyl End Group	0	0	0	0	0	0	7,200	0	0	0	0	0	0	606	606	606	0	482	482	0	0	0	0	0
- Nylon Salt - Amine End Group	0	0	0	0	0	0	5726	0	0	0	0	0	0	482	482	482	0	0	0	0	0	0	0	0
-Nylon 6 6	0	0	0	0	0	0	0	0	0	0	0	0	0	10,214	10,214	10,214	0	0	0	0	0	10,214	10,214	10,214
-Dowtherm	0	0	0	0	0	0	0	0	0	0	0	34,049	34,049	0	0	0	0	0	0	0	0	0	0	0

122

95.583

95,583

Table 2: Stream Summary

12	13	14		15	16	17	18	19	19 20		21	22		23	
Solic	l Solid	Liquio	d	Liquid	l Solid	Solid	Liquid	Liqui Preci	Liquid/ Liquid/ Precipitate Precipita		Liquid/ Precipitate	Liquio Precip	1/ pitate	Sat. ate Vapor	
14.7	14.7	90		90	14.7	14.7	90	90		196	191	189		182	
70	70	122		122	70	70	0 122 122 122 374		374	374		374			
7,20	0 7,200) 102,7	/83	8,883	5,726	5,726	14,609	9 117,3	392	117,392	117,392	13,81	3	103,	,579
	-			-	-	-	-			-	-	-		-	
7,20	0 7,200) 7,200)	-	0	0	0	0		0	0	0		0	
C	0	0		0	5,726	5,726 5,726		0		0	0			0	
C	0	95,58	33	8,883	0	0	8,883	0		0	0	887		103,579	
C	0	0		0	0	0	0	117,3	392	117,392	117,392	0		0	
D	0	0		0	0	0	0	0		0	0	7,200	J	0	
C	0	0		0	0	0	0	0		0	0	5726		0	
)	0	0		0	0	0	0	0	0		0	0		0	
C	0	0		0	0	0	0	0		0	0	0		0	
	34	35	36	6,	37	38	39	40	41	42	43 4	14	45	46	5
biu	Liquid	Liquid	Liq	quid L	iquid	Liquid	Liquid	Sat. Vapor	Sat. Liquid	Liquid	Liquid S	solid	Solid	Sc	olid
)	152.7	152.7	25	0 1	1000	1000	100	14.7	14.7	100	95 1	4.7	14.7	9.	.7
	532.6	527	51	4.6 5	514.6	514.6	86	212	212	86	113 2	257	257	15	58

The pressure was determined for each of the streams in Table 2 based on the assumption that there were no line losses in the system. This was due to the lack of information of the spatial layout of the plant during this preliminary design. A pressure drop of 5 psi was assumed across each condenser and heat exchanger [2]. However, the hydrostatic pressure was estimated based on the known height of the pieces of equipment. In addition, it is assumed the total mass flow rate of the material coming into each of the pieces of equipment is equal to the mass flow exiting the equipment, except for the material entering and exiting the polymerization reactor, R-102, which are streams 29, 30, and 36. In this piece of equipment, there is a generation term for the Nylon 6 6 reaction. Thus, the material balance is characterized by Equations 1 and is developed more specifically for this continuous process in Equation 2:

$$Input - Output + Generation = Accumulation$$
(1)

$$F_{In} - F_{Out} + rV = 0 \tag{2}$$

Where:

 F_{In} is equal to the molar flow rate of the component in F_{Out} is equal to the molar flow rate of the component coming out r is the reaction rate V is the volume of the fluid within the reactor

The V term is constant due to the assumption that the reactor is well-mixed and therefore has no spatial variation. This was done for each of the components of the polycondensation reaction (amine end group in Nylon salt solution, carboxyl end group in Nylon salt solution, Nylon 6 6, and water). There is no accumulation term because the process is assumed to be at steady state.

Process Description

The process discussed in this report converts the solid raw materials of adipic acid and HMDA to solid Nylon 6 6 granules. A simple block flow diagram is provided below to illustrate the main subsystems within this process.

Figure 2: Block Flow Diagram of Nylon 6 6 Process

To begin, the solid raw materials must both be stored onsite in bulk in order to keep the process running continuously. Next, these solids are formed into adipic acid and HMDA solutions by mixing them with deionized water. The solids are dispensed into the mixers by hoppers. The deionized water is crucial to eliminate the potential interaction of other ions with the adipic acid and HMDA ions later on in the formation of the Nylon salt. The amount of DI water is calculated to ensure that the solids are completely dissolved so that it can be assumed that the solutions are equimolar. These solutions are then added in equimolar amounts into the Nylon salt formation reactor. The Nylon salt solution formation is assumed to be instantaneous, thus the solution is simply mixed before moving to the crystallizer. In the crystallizer, the excess water within the Nylon salt solution is evaporated so that it is ready for the polycondensation reactor is used to heat the solution to a temperature that causes the carboxyl and amine end groups of the adipic acid and HMDA to form polymer chains. As this process is happening, the byproduct of water is created and evaporated. Finally, the molten Nylon created from this reactor is processed through several pieces of equipment, including an extruder, casting wheel, chopper, and dryer, to create the final product of the Nylon granules for storage [3].

Energy Balance and Utility Requirements

The first utility used in the production of Nylon 6 6 is the process water that is converted to DI water. The cost of this utility per year was calculated based on the total mass flow rate of water needed to dissolve the solid adipic acid and HMDA in the system. This flow rate and price was minimized by increasing the temperature of the water from 52°F to 122°F to make the raw materials more soluble in the water. Therefore, less water will be required to dissolve the same mass of solids at this temperature than for room temperature water. In addition to this, cooling water will be introduced to the molten Nylon 6 6 on the casting wheel to cool it from about 515°F to 257°F. The final use for cooling water within the system will be to condense the water vapor produced in both the crystallization process and the polymerization reaction as well as the water vapor flashed off of the casting wheel.

Steam will also be utilized in this system to heat the process streams when needed. The points at which this is required is before the deionizer system, E-100, as well as for the crystallizer, E-102. The crystallization process requires a larger heat duty than does the process water used in mixing with the raw materials, thus high pressure steam is used on the side of the crystallizer, E-102. However, to minimize costs, medium pressure steam was used for the process water heat exchangers, E-100 and E-101. On the other hand, steam was not selected to be used to heat the polymerization reactor, R-102. This is because high pressure steam is not able to provide the desired heat duty to produce the molten Nylon. Thus, Dowtherm was selected to be used to provide continuous heating to this reaction [2]. It was decided that this will be a safer and more economical choice because Dowtherm causes less fouling in the heat exchanger and is not required to be at as high of a pressure as saturated steam.

In addition, electricity will be used to provide power to several pieces of equipment. These include the pumps and the drives required to operate the mixers, agitated reactors, screw conveyers, extruder, casting wheel, chopper, and dryer [2].

The utility requirements for this process are such that a large quantity of water must be treated. This is because water will be used and evaporated out of the process stream. Thus, since this water will come into contact with adipic acid and HMDA, the water should not be reused in the process because it has the potential to make the equimolar ratio of these two ions skewed. Additionally, exposure should be limited to the environment [4,5]. Also, it was assumed that this Nylon 6 6 producing plant would recycle cooling water and condensed steam to where solids would build up within the lines and need to be blown down. Thus, it was estimated that this blow down percentage would be 6% [6]. This water containing solids that is removed from the system will be treated to remove the solids before being disposed. Tertiary treatment was selected [2].

It is important to note that all of the values for both mass flow and cost per year of the utilities are calculated based on a service factor of 0.95. Also, the process water cost was determined using a public service commission from the Kentucky government [7]. The cost for remaining utilities were found using [2]. These prices are summarized in Table 3 below. Along with this, a summary of the required capacity of the utilities used in the process is provided in Table 4 below.

Table 3: Utility Cost Summary								
Utilities Types	\$/Common Unit	\$						
Steam								
High P	\$/ 2,205 lbm	29.97						
Med. P	\$/ 2,205 lbm	29.59						
Cooling Water	\$ / 2,190,000 lbm	14.8						
Process water	\$/ 8.34 lbm	0.008						
Thermal System								
90% Efficient	\$/GJ	12.33						
Electrical	\$/ 1.343 hp*h	0.06						
Tertiary Waste Water Treatment	\$ / 2,190,000 lbm	56						

Types/Location Capacity	Cost
	COST
Steam from boilers Ibm/yr	\$/year
high pressure / E-102 1.38E+08	\$1,882,635
med pressure / E-100 and E-101 7.15E+07	\$960,107
Cooling tower water Ibm/yr	
condenser-crystallizer 2.72E+10	\$183,587
inside casting wheel 199728	\$1
outside casting wheel 3.83E+07	\$259
condenser-polymerization CSTR 5.02E+08	\$3,393
condenser-casting wheel 6.25E+08	\$4,227
Other Water Ibm/yr	
Process water / into Deionize tank 8.69E+08	\$834,024
Thermal system GJ/yr	
Dowtherm boiler / Polymerization CSTR 6.47E+03	\$79,733
Electrical hp.hr/yr	
pump / btw di water tanks 1.94E+04	\$869
pump / to the crystallizer 2.23E+05	\$9,976
pump / to polymerization CSTR 2.46E+04	\$1,100
pump / to extruder 2.01E+05	\$8,976
mixer / aq. HMDA tank 1.15E+04	\$515
mixer / aq. adipic acid tank 7.63E+04	\$3,409
agitation / aq. Nylon salt cstr 8.78E+04	\$3,924
agitation / polymerization CSTR 2.01E+05	\$8,982
drive / extruder 1.33E+05	\$5,950
drive / casting wheel 8.37E+05	\$37,408
drive / chopper 8.37E+05	\$37,408
drive / dryer 1.00E+06	\$44,882
drive / conveyer HMDA 1.45E+04	\$647
drive / conveyer Adipic acid 1.58E+04	\$707
TOTAL COST	\$4,139,141

Equipment List and Unit Descriptions

Pumps

There are a total of four pumps in the system, P-100, P-101, P-102, and P-103. The pressure of the streams entering and exiting the pumps were found by starting at a point where the pressure was known in the system, usually the design operating pressure of a connected piece of equipment before or after the pump of interest. All pumps in the process are centrifugal pumps, except for P-103, which is a reciprocating pump. P-103 is used in the process to pump the molten Nylon 6 6 product from the polymerization reactor to an extruder that operates at an extremely high pressure (1000 psia). Hence, P-103 was designed as a reciprocating pump in order to be able to handle such a large pressure increase. A summary of the pumps used in the system is provided in Table 5 below.

Table 5: Pumps in Process										
PFD Label	Description									
P-100 A/B	Centrifugal pump between deionizers									
P-101 A/B	Centrifugal pump between Nylon salt preparation reactor and									
	evaporator									
P-102 A/B	Centrifugal pump between crystallizer and polymerization reactor									
P-103 A/B	Reciprocating pump between polymerization reactor and extruder									

Heat Exchangers

Multiple heat exchangers were utilized in the process to either add heat to a process stream or to condense the steam that was produced by a process in the system. The key sizing parameter for a heat exchanger is the overall heat transfer area. The design equation to calculate the overall heat transfer area is shown in Equation 3 below [8].

$$A_o = \frac{q}{U_o \Delta T_{lm}} \tag{3}$$

Where:

 A_o is the overall heat transfer area q is the heat duty required

 U_o is the overall heat transfer coefficient

 ΔT_{lm} is the log mean temperature

The heat duty can be estimated from the known conditions for each process stream, where the flowrate is known, using Equation 4 below.

$$q = mC_p(T_{in} - T_{out})$$
(4)

Where:

m is the mass flowrate of the considered stream C_p is the specific heat capacity T_{in} is the inlet temperature of the stream of interest T_{out} is the outlet temperature of the stream of interest

Once this heat duty for the process stream is known, Equation 4 is then applied to the utility stream to calculate the mass flow rate of the desired utility.

Two heat exchangers in the process use medium pressure steam, including E-100 and E-101, to heat up process water prepared for the deionizer tower T-100 and the deionized water prepared for the mixing of adipic acid and HMDA solution. One heat exchanger, E-102, uses high pressure steam to add heat to the Nylon salt feed entering the crystallizer body. The saturated steam used in these three heat exchangers goes through a condensing process. Assuming the utility steam used is pure and the pressure drop is negligible, the condensation process can be estimated as an isothermal process. In order to account for phase change involved in the condensing process, latent heat of vaporization (h_{fg}') must be considered in the calculation of heat duty. Hence, the following equation must be utilized to calculate the required saturated steam utilities instead of Equation 4 above.

$$q = \dot{m} h_{fg}' \tag{5}$$

Three condensers were used (E-103, E-104 and E-105) to condense the water vapor produced by the process. Similar strategies of sizing a heat exchanger discussed above were applied for the sizing and costing of the condensers. A heuristic value of 150 Btu/hr.ft².°F was assumed for the overall heat transfer coefficient in all heat exchanger design since the process of condensing steam was involved in each heat exchangers [2].

The design operating pressure of each heat exchanger was the bubble point pressure at the considered steam temperature for the steam to be at its saturated condition. Only in the case where the condenser is used to cool the water vapor out the of the polymerization reactor, E-104, was the pressure of the reactor given priority. Hence, the operating pressure was calculated based on the design operating pressure of the reactor by assuming a 2 psi pressure drop in the return line from the reactor. A summary of the heat exchangers used in the system is provided in *Table 6* on the following page.

Table 6: Heat Exchangers in Process	
PFD Label	Description

E-100	Fixed Tube Heat Exchanger
E-101	Fixed Tube Heat Exchanger
E-102	Fixed Tube Heat Exchanger
E-103	Fixed Tube Heat Exchanger
E-104	Double Pipe Heat Exchanger
E-105	Diphenyl Heater

Deionized Water System

Deionized water was chosen for this system since it has lower operating costs than other water purification options. The deionized water system consists of two mixed-bed deionizers in series. The two deionizers both have a cation and anion resin. The resins consist of 40% hydrogen (cation) and 60% chloride (anion). Mixed-bed deionizers offer the desired pH and purity that is necessary for a polymer producing process. The pump between the two (P-100 A/B) mixed-bed deionizers is used to overcome the hydrostatic head between the first deionizer and the second deionizer. A pressure drop of 5 psi was assumed across each tower [2]. A mixed-bed deionizer was chosen in order to completely purify the water used for the solutions of HMDA and adipic acid that will be further processed into Nylon 6,6 [9]. The deionized water system equipment is listed in *Table 7* with the PFD Labels.

Table 7: Deionized Water System	
PFD Label	Description
T-100	Mixed Bed Deionizer with Chloride and Hydrogen Resin
T-101	Mixed Bed Deionizer with Chloride and Hydrogen Resin

Dry Storage System

It was determined that adipic acid and HMDA are crystalline solids at room temperature [10]. Also, since the reaction was chosen to run continuously, it is necessary to have bulk storage tanks within the plant to hold these raw materials, TK-100 and TK-102. It was determined that a maximum of six days, or close to one week, of solids needed to keep the process continuous would be stored in bulk on the plant. The storage was limited to six days in order to minimize the amount of HMDA needed to be stored under hygroscopic conditions [4]. This also helped to minimize the capital investment of the plant. Along with this, the six day time period of storage was justified as being large enough to keep the system running continuously for times when inclement weather or natural disasters are expected to delay delivery of raw materials to the plant. Shipments of both adipic acid and HMDA should be scheduled to be delivered every four days, leaving an amount of two days of raw material in the storage tanks before each delivery [2]. The specific diameter and length of these bulk storage tanks were determined by taking the volume needed for six days of solid storage and finding them such that L/D is close to 4. These storage tanks are vertical on concrete pads due to the capacity being greater than 10,000 gallons [2]. The storage tank for HMDA (ρ equal to 0.89 g/cm³) is larger than for adipic acid (ρ equal to 1.366 g/cm³) due to its lower density [5, 11]. Carbon steel was selected for TK-100 because adipic acid is compatible with carbon steel with only slight corrosion [12]. On the other hand, HMDA requires being stored in a tank with a phenolic lining due to its need for hygroscopic conditions [13]. Carbon steel was selected for this storage tank, TK-

102, as well due to this resin limiting the effect of HMDA on its environment. In addition, this tank requires storage under a nitrogen blanket to limit moisture from entering the storage tank and affecting the quality of the raw material [14]. The detailed calculations for sizing and costing these equipment, TK-100 and TK-102, can be found in Table A.5 and A.6 in the *Appendix* of this report.

Hoppers are the most common way to transport solids within a process to a mixer or reactor [15]. It was determined that two hoppers are necessary in the process of producing Nylon 6 6, TK 101 and TK-103, for controlling the mass of solid adipic acid and HMDA that will be added to two mixers with deionized water. Due to the typical hold-up time of hoppers being from one to three hours, a mid-range value of two hours was selected [15]. This hold-up time of two hours helps to further justify the need for the bulk storage tanks as opposed to single means of storage for each of the two solid raw materials. These hoppers were treated as vertical cylindrical storage tanks for the purposes of this preliminary design and were sized with an L/D factor equal to four. However, further detail needs to be taken to determine qualities of the hopper, such as the configuration and the outlet feeder, which will provide for a constant mass flow out of the hopper [15]. These parameters will also help to limit dead zones within the hopper where solid material does not flow. Another important way to limit dead zones within the hoppers is to keep the ambient temperature below the melting temperature of the solids. Adipic acid has a melting point of 304°F to 309°F, thus this is not a case for concern [5]. However, HMDA has a melting point of 108°F to 113°F [4]. The record high of the ambient temperature in Calvert City, KY is just below this melting temperature [16]. Thus, methods of cooling the hopper and bulk storage tank of HMDA should be investigated during detailed design to determine whether or not they are necessary. The detailed calculations for sizing and costing these equipment, TK-101 and TK-103, can be found in Tables A.9 and A.10 in the Appendix Section of this report.

In addition, screw conveyors were chosen to move the bulk solids into the system. These types of conveyors provide the power necessary to transport adipic acid and HMDA while also having the ability to be completely enclosed. This is an important factor when dealing with these chemicals which are toxic and corrosive. HMDA also needs to be protected from the atmosphere because it is hygroscopic. The specifications for design were determined from a design guide by Conveyor and Manufacturing Company. The capacity required corresponds to a screw diameter of six inches. In order to ensure that the screw conveyor will transport the materials at the rate expected, it is necessary to set the angle at or less than 15 degrees above the ground. The length of the conveyor is based on the maximum angle of 15 degrees, and estimating how high the material would need to be transported based on the height of the hopper. The drive power was sized based on the density and flow rate of the material as well as accounting for the angle of elevation. The detailed calculations for sizing and costing these equipment, MP-100 and MP-101, can be found in Tables A.7 and A.8 in the Appendix Section of this report. *Table 8* on the following page shows the list of equipment involved in this system.

Table 8: Storage Tanks of HMDA and Adipic Acid	
PFD Label	Description

ТК-100	Adipic Acid Dry Storage Tank
TK-101	Adipic Acid Hopper
ТК-102	HMDA Dry Storage Tank
ТК-103	HMDA Hopper
MP-100	Screw conveyor to deliver Adipic Acid to M-100
MP-101	Screw Conveyor to deliver HMDA to M-101

Mixers

The two mixers used in this system, M-100 and M-101, are utilized to dissolve the adipic acid and HMDA solids in the system before they are mixed in the Nylon salt formation reactor. The key parameter used in sizing these mixer type reactors was the solubility of the raw materials. Adipic acid has a solubility in water of about 23 g per liter of water at 77°F [5]. It is crucial in this process to drive the solubility of adipic acid in water further by increasing the temperature of the water because this results in a smaller amount of deionized water needed in the process. This also causes the equipment further on in the process to be smaller because less water is required to be removed in the Nylon salt crystallizer. Thus, the deionized water is heated to 50°C or 122°F, at which the solubility of adipic acid in water is about 82.7 g in 1 L of water [17]. However, the amount of adipic acid added in the mixer, M-100, is limited to 90% of this maximum solubility, or 74.4 grams per liter of water to ensure proper dissolving of the solid. HMDA, on the other hand, has a relatively high solubility compared to adipic acid, at 637 at 20°C or 68°F [18]. Thus, the mixer used for this solution, M-101, was sized to be much smaller than that for the adipic acid. Due to a lack of solubility data for HMDA at 122°F, it was assumed that at least 637 g of it would be fully soluble in water at this temperature, hence this is what was used in calculating the volume of the reactor. A typical residence time of 30 minutes was selected for sizing calculations of these two mixers [19]. The final parameter needed to size these mixers was the mass flow rate of solids required for the polymerization reaction. Once this was determined from the Polymath calculations (see Figure A.1 in Appendix), and along with the solubility ratio of the solids to deionized water and the density of these solids, the volume of fluid within the mixers was calculated. This volume was then doubled to allow for half of the mixer volume to be used for liquid holdup [2]. The diameter and length of these mixers were then calculated based on the assumption that the L/D factor should be equal to two [2]. Both of these mixers were costed based on the information in Analysis, Synthesis and Design of Chemical Processes for carbon steel construction [2]. The operating cost for these mixers was found from the electricity needed for the drives of the mixers at their given capacities. The detailed calculations for sizing and costing these equipment, M-100 and M-101, can be found in Tables A.11 and A.12 in the Appendix Section of this report.

Table 9: HMDA and Adipic Acid Solution Mixers	
PFD Label	Description
M-100 Deionized water and Adipic Acid Mixer	
M-101	Deionized water and HMDA Mixer

Nylon Salt Preparation Reactor

The Nylon salt solution producing reactor, R-100, was sized on the same principles as the adipic acid and HMDA mixers that feed to it. The total volumetric flow rate in is equal to the sum of the volumetric flow rates out of M-100 and M-101. It was assumed that the kinetics of this reaction could be simplified to instantaneous formation of the Nylon salt because the adipic acid and HMDA are already dissociated into the positive and negative ions before entering R-100. Thus, the reactor was treated as the mixers and a residence time of 30 minutes was assumed with a holdup time of 30 minutes as well. The required volume of the agitated reactor is outside of the costing correlations used from Analysis, Synthesis and Design of Chemical Processes. This is due to the large quantity of water required to dissolve the solid adipic acid in the prior mixer, M-100. A jacket is provided on this reactor in the case of needed cooling water to cool the mixing reaction [20]. The operating cost for this agitated reactor was found from the electricity needed for the drive at its given capacity. The detailed calculations for sizing and costing of this piece of equipment, R-100, can be found in Table A.13 in the Appendix Section of this report.

Table 10: Nylon Salt Preparation Reactor		
PFD Label	Description	
R-100	Reactor to produce Nylon Salt	

Evaporative Crystallizer System

The main objective for the utilization of a crystallizer in the system was to prepare Nylon salt from an equimolar aqueous solution of adipic acid and HMDA to proceed into the polymerization CSTR. The technique of crystallization for separation of the Nylon salt and water is more suitable for this project over other separation techniques due to a significant difference in melting point between water (0°C) and Nylon 6 6 salt (190°C) [21]. The crystallization was designed to be carried out on a continuous basis. Most process plants favor continuous equipment due to the fact that the operating conditions are adjustable, less operating labor force is required, and usually, the process is more economical in terms of overall energy use and product characteristics [22]. The type of crystallizer chosen was the forced-circulation crystallizer functioning as an evaporative crystallizer (also known as a forced-circulation evaporator). Besides the fact that forced-circulation evaporator is widely used in the industry and is normally a less expensive type of separation equipment available, other characteristics of this specific type of crystallizer were considered to better support the process of this project. These characteristics include its probability to handle a large rate of evaporation and solutions with high viscosity. It is also favorably used for when an intermediate is formed [23]. The aqueous Nylon salt solution that leaves the reactor R-100 can be considered an intermediate product of adipic acid and HMDA.

The equipment design of the crystallizer starts with the feed of aqueous Nylon salt solution coming from the mixer. This feed first passes through a circulation pump and is heated in a heat exchanger before entering the crystallizer body. Evaporation of the water solvent occurs at the top surface of the salt slurry, while nucleation takes place near the bottom of the crystallizer body. The Nylon salt crystals then are removed from the bottom of the equipment while the water vapor goes through a condenser out the top of the crystallizer. The forced-circulation evaporator design procedure involved the sizing of crystallizer body, a heat exchanger to add heat to the incoming feed, and a condenser for the water evaporating and being removed out of the top of the crystallizer body. A summary of the equipment involved in the crystallizer is detailed below in *Table 11*.

Table 11: Crystallizer		
PFD Label	Description	
R-101	Evaporator Crystallizer	
E-102	Fixed-Tube Heat Exchanger	
E-103	Condenser	

The key design variable in sizing the crystallizer body is the maximum vapor velocity of the water solvent in the Nylon salt solution. The maximum vapor velocity was calculated using the following equation:

$$V_{max} = C_{\nu} \left(\frac{D_l - D_g}{D_g}\right)^{1/2}$$
(6)

Where:

Vmax is the maximum vapor velocity of the vapor leaving the liquid surface of the salt solution D_l is the liquid density of the solvent

D_g is the vapor density of the solvent

 C_{ν} is a constant depending on loading, pressure, and allowable entrainment.

A C_v value of 0.08 ft/s is found and recommended for vapor pressure [22]. Since the key capacity parameter for costing the forced-circulation evaporator is the cross-sectional area of the crystallizer body [2]. The required minimum design of cross-sectional area must be able to handle the vapor traffic across the top portion of the crystallizer. An estimated value of 9 ft was used as the starting point for the diameter for the crystallizer body. The value of diameter was varied and adjusted until the cross-sectional area satisfied the expectation of handling the water vapor load.

According to the heuristic of sizing a crystallizer, the operating condition is suggested to be about equal to the melting (freezing) temperature of the solute [23]. Melting temperature of Nylon salt is found from literature to be approximately at 374°F [24]. The overhead pressure of the crystallizer body can be estimated via the bubble point calculation of the water in the condenser (E-104). Since the evaporative crystallization can generally be done at a constant temperature condition, the water that evaporates out of the top of the crystallizer body and goes through the condenser is assumed to have the same temperature as the process occurring inside the crystallizer body, which is at 374°F. The bubble point pressure at 374°F was then determined for the water vapor in the condenser. Assuming a 2 psi pressure drop through the returning line, the pressure of the overhead crystallizer body was then calculated.

Polymerization Reactor

The role of a reaction vessel in this system is to carry out the polycondensation reaction of the hexamethylenediammonium (Nylon 6 6 salt) to produce Nylon 6 6. Hence, the polymerization reactor should be considered the most important piece of equipment and its design and costing was given priority within this project. Sizing the reactor for the polymerization of Nylon 6 6 depended on the type of reactor, space time, and chemical kinetics for the polymerization of Nylon 6 6. The design pressure and temperature required to create the most desirable reaction conditions were also accounted for. The objective of the reactor design was to meet the required product rate specification of 85 MMlbs per year of nylon 6 6 and to achieve a high-quality nylon 6 6 product (high number-average degree of polymerization and molecular weight). The design operating pressure and reaction temperature should be optimized within the scope of process safety and environment. *Table 12* summarizes the equipment required for the polymerization reactor system of the process. A detailed explanation of the design methodology follows.

Table 12: Polymerization Reactor		
PFD Label	Description	
R-102	Polymerization Reactor	
E-104	Double Pipe Heat Exchanger	
E-105	Fixed Tube Heat Exchanger	

A continuous-stirred-tank reactor (CSTR) was chosen in this project to carry out the polymerization process to produce molten Nylon 6 6. Some of the characteristics and advantages of a CSTR were considered to support the choice of it as a polymerization reactor including: [25], [1] and [26.]

- Economical and widely used for high-capacity plants while batch reactors are known particularly for low production capacities
- Well-mixed conditions can help prevent problems when the polymers produced become viscous, which would not be mitigated by a plug-flow-reactor (PFR)
- Mixing enhances the heat transfer characteristics and creates easier temperature control by helping to avoid hot spots
- The water solvent and water by-product in the polymerization reaction can be boiled to remove the heat of polymerization
- Constant copolymer composition can be achieved in a CSTR while a varied composition mixture might be produced by PFRs or batch reactors

Since the residence time distribution is wide for CSTRs, one well-known disadvantage when using this type of reactor is that a high conversion will be difficult to attain. However, in a step-growth polymerization, the conversion of monomer does not indicate much about the yield of the desired polymer. This is due to the fact that it is the functional reactive end-groups from each end of the monomers that react with each other. Thus, the reaction will still proceed even when all the monomers have been consumed because it is the end groups that are reactive [27].

A chemical reaction algorithm was developed in this project to study several variables in the system. These include space time, design temperature of the incoming feeds, heat transfer fluid used, reactor volume, the mass flow rate of the incoming feed, as well as the reaction temperature. The step-by-step algorithm model equations described below were solved using the computation software, Polymath. The kinetic parameters and rate law model were obtained based on Steppan's kinetic and equilibrium models for Nylon 6 6 polymerization [28].

Chemical Reaction Engineering Algorithm Model for Nylon 6 6 Polymerization in a CSTR

[28], [29] and [30]

1. Chemical Reactions Conventions:

$$a + c \leftrightarrows I + w \tag{7}$$

Where:

a is amine end-group (-NH2) c is carbonxyl end-group (-COOH) l is the amide linkage w is the water molecule

2. Design Specification and Initial Condition:

$$F_{l} = \frac{(85E6 \ lbm/year)}{(365 \ days/year) * (24 \ hours/day) * (service \ factor)}$$
(8)

Where:

 $\tau = 5 hours$ $T_o = 190 \,^{\circ}\text{C} = 374 \,^{\circ}\text{F}$ $T_a = 300 \,^{\circ}\text{C} = 572 \,^{\circ}\text{F}$

3. Mole Balance for CSTR:

$$V = \frac{F_{ao} - F_{a}}{-r_{a}}$$
(9)

$$V = \frac{F_{co} - F_{c}}{-r_{c}}$$
(10)

$$V = \frac{F_{lo} - F_{l}}{-r_{l}}$$
(11)

$$V = \frac{F_{wo} - F_{w}}{-r_{w}}$$
(12)

4. Rates Law:

$$r_W = C_T * \frac{k}{3600} * (x_a x_c - x_l x_w / K)$$
(13)

$$k = k_o * exp\left(\left(\frac{E}{R} * \left(\frac{1}{T_r} - \frac{1}{T}\right)\right)\right)$$
(14)

$$K = K_o * \exp\left(\Delta H_o * \frac{10^{-3}}{R} * \left(\frac{1}{T_r} - \frac{1}{T}\right)\right)$$
(15)

$$k_o = exp\left(2.55 - 0.45 \tanh(25(x_w - 0.55))\right) + 8.58 \tanh(50(x_w - 0.10)) - 1)(1 - 30.05x_c)$$
(16)

$$K_o = exp(1 - 0.47 * exp\left(-\frac{\sqrt{x_w}}{0.2}\right) * (8.45 - 4.2x_w))$$
(17)

$$\Delta H_o = 7650 \ tanh \left(6.5 * (x_w - 0.52) \right) + 6500 \ exp \left(-\frac{x_w}{0.065} \right) - 800 \tag{18}$$

$$T_r = 200 \,^{\circ}\text{C} = 392 \,^{\circ}\text{F}$$

 $E = 21.4 \frac{kcal}{mol}$
 $R = 0.001987 \, kcal/mol. K$

5. Stoichiometry:

$C_t = C_a + C_c + C_l + C_w$	(19)
$x_a = \frac{C_a}{C_t}$	(20)
$x_c = \frac{C_c}{C_t}$	(21)
$x_l = \frac{C_l}{C_t}$	(22)
$x_w = \frac{C_w}{C_t}$	(23)
$F_a = C_a * v_a$	(24)
$F_c = C_c * v_o$	(25)
$F_l = C_l * v_o$	(26)
$F_w = C_w * v_o$	(27)
$v_o = \frac{V}{\tau}$	(28)
-	

6. Energy Balance:

$$UA(T_a - T) - F_{ao}(Cp_a + Cp_c)(T - T_o) + V\Delta H_{rxn}r_w = 0$$
(29)

$$\Delta H_{rxn} = 4.184 \,\Delta H_o + (Cp_l + Cp_w - Cp_a - Cp_c)(T - T_r) \tag{30}$$

$$Cp_{a} = 68.14 \frac{J}{mol}.K$$

$$Cp_{c} = 275.37 \frac{J}{mol}.K$$

$$Cp_{l} = 377.92 \frac{J}{mol}.K$$

$$Cp_{w} = 75.4 \frac{J}{mol}.K$$

The Polymath coding and reports are provided in Figure A.1 in the Appendix section of this report. For the purposes of clarity, Table 12 has been provided on the following page to define the variables and their meaning within the CRE Algorithm.

Table 13: Nomenclature used in the CRE Algorithm			
Term	Definition	Unit	Source
Fio	Initial molar flowrate of species i	mol/s	
F _i	Molar flowrate of species i	mol/s	
C _{io}	Initial concentration of species i	mol/m ³	
C _i	Concentration of species i	mol/m ³	
C_t	Total concentration	mol/m ³	
r_i	Reaction rate for component i	mol/m ³ .s	
x _i	Mole fraction of component i	mol/mol	
T_o	Initial temperature	Kelvin	[31]
T_a	Medium fluid, Dowtherm, temperature	Kelvin	[2]
T_r	Referenced (ref.) temperature	Kelvin	[28]
Т	Reaction temperature	Kelvin	
k _o	Rate constant at ref. temperature	hr -1	[28]
Ko	Equilibrium constant at ref. temperature		[28]
k	Rate constant	hr -1	[28]
К	Equilibrium constant		[28]
Е	Activation energy	kcal/mol	[29]
R	Ideal gas constant	kcal/mol.K	
ΔH_o	Heat of reaction at ref. temperature	cal/mol	[28]
ΔH_{rxn}	Heat of reaction	J/mol	
τ	Residence time, or space time	second	[29]
V	Liquid volume in the reactor	m ³	
vo	Space time velocity	m³/s	
U	Overall heat transfer coefficient	W/m².K	[2]
Α	Reactor heat-exchange area	m ²	
Cp_i	Heat capacity	J/mol.K	

The polycondensation of nylon 6 6 salt can be carried out at high temperature (392°F -509°F) and high pressure (213-284 psi) [29] and [24] and [32] and [3]. Also, it was desired to maintain the reaction temperature below the degradation temperature of the reaction components. This is especially important for the adipic acid and Nylon 6 6, whose melting temperatures are approximately 554°F.

The reaction temperature was adjusted by varying the initial temperature of the incoming feeds (stoichiometric equivalent nylon salt slurries), and the initial temperature of the heat exchange fluid (Dowtherm flowing through the reactor's jacket). The Nylon salt feed that comes in to the polymerization reactor is prepared from the evaporative crystallizer, which is set to operate at the melting point temperature of Nylon 6 6 salt. Hence, melting point of Nylon 6 6 salt, which is at 374°F, should be an appropriate starting point to specify the feed temperature. Considering that monomers and polymers are poor conductors of heat [3] and also that the reaction is endothermic at water compositions greater than 52 mol % [28], heat has to be added to the reaction via a Dowtherm jacket. This is necessary to increase the rate of reaction to a greater value. It was desirable for the reaction temperature to be at the higher

end of the temperature range in order to increase the reaction rates, but not so high that the reaction components start to degrade. This degradation produces carbon dioxide (CO₂) [30], and should be monitored to avoid unsafe reaction conditions.

Considering that the condensation of Nylon salt proceeds only if the by-product water is removed, the operating pressure, was decided such that at the determined reaction temperature, water will vaporize and be removed from the reactor. The design pressure must be lower than or equal to the vapor pressure of water at the reaction temperature. The design operating pressure of 250 psi was decided due to the findings from a more recent source [24] for the process pressure of polymerization to produce Nylon 6 6, which satisfied the design expectations for operating pressure.

Table 14: Chemical Kinetic Results		
Flowrate and Reaction Rate of	Value	
each Components		
<i>F_{ao}</i> , mol/s	6.21	
F _{co} , mol/s	6.21	
F _{lo} , mol/s	0	
F _{wo} , mol/s	6.21	
F _a , mol/s	0.52	
F_c , mol/s	0.52	
F_l , mol/s	5.69	
F _w , mol/s	11.90	
r_a , mol/m ³ .s	0.22	
r_c , mol/m ³ .s	0.22	
r_l , mol/m ³ .s	-0.22	
r_w , mol/m ³ .s	-0.22	

Table 15: Desired Product (Nylon 6 6) Quality				
Quality	Value			
Instantaneous Yield	1			
Overall Yield	1.00			
Number-average degree of polymerization	11.87			
Number-average molecular weight (g/mol)	2687.02			

Table 16 : Polymerization CSTR Equipment Design Specification					
Sizing Parameter	Value	Justification			
Reactor volume, ft3	780				
Space time, hours	5	Reaction reaches equilibrium after 5 hours [29]			
Liquid Level, ft	8				
Diameter, ft	8	Heuristic for reactor: liquid level equals diameter [2]			
Height, ft	15.5	Assuming the height is double the liquid level			
Wall thickness, ft	1.5	Heuristic for reactor: less than ¼ of diameter [2]			
МОС	Stainless Steel	Due to the acid component (Adipic acid)			
Process Conditions	Value	Justification			
Temperature, °F	515	[Polymath]			
Operating pressure, psia	250	[28] and [29]			

Mechanical Processing

Extruder

After exiting the polymerization reactor, the molten Nylon passes through a reciprocating pump to increase the pressure significantly. The reciprocating pump is necessary in order to allow for such a large pressure change. Reciprocating pumps work well for medium capacities and clean liquids. The molten Nylon then enters a single-screw, rapid compression extruder. The extruder consists of three sections, feed, compression, and metering. Due to the high viscosity of Nylon 6, 6, the polymer should be compressed quickly in order to avoid plugging within the extruder. High pressures are used within the extruder to ensure that the molten Nylon is compressed for the casting wheel system [33]. The exiting Nylon from the extruder is still molten, but now it is in thinner strand to be cooled down and solidified during the next mechanical processing step. The extruder requires a drive in order to operate at these conditions [34].

Casting Wheel

The casting wheel spins the molten Nylon strands on a wheel in order to prepare sheets to be chopped. The Nylon is sprayed with cooling water that immediately vaporizes because of the high temperature of the material at the extruder outlet. The Nylon solidifies due to this cooling process. The steam is treated and recycled using a condenser in order to minimize operating costs. The casting wheel is kept near a constant pressure because of the condenser. It will be in a place of limited traffic to avoid anyone being exposed to the high temperatures [35]. The casting wheel is powered by a drive that allows the wheel to turn at a constant speed in order to properly form the Nylon sheets. The casting wheel drum is also cooled from the inside to avoid overheating of the wheel. The amount of cooling water necessary was based on conduction heat transfer. The drum is hollow, so process water can flow through in order to ensure that the equipment exhibits minimal temperature change and damage.

Chopper

The sheets of solidified Nylon pass through a chopper that cuts the Nylon sheets into granules that will be further processed and sold to the specified customer. The chopper is powered by a drive in order to reach the necessary constant cutting speed [36]. The pressure and temperature remain constant during this process since it is a quick procedure.

Dryer

A continuous vacuum drum dryer is used to completely dry the granules. This is an important step in order to ensure that there is a minimal amount of moisture in the granules. A significant moisture level will degrade the Nylon over time, so a lengthy drying time is necessary. The granules will be dried for ten hours, and then the temperature of the granules will be reduced before entering the storage container to avoid degradation. The granules are dried by using steam that passes through the jacket of the dryer. The dryer is also agitated in order to ensure consistent drying of all the granules. The dryer is powered by a drive. Dryers generally exhibit a pressure drop of 5 psi during this process [37].

Nylon Granule Storage Hopper

The dried granules are stored in a hopper to allow for quick delivery to trucks. The storage hopper was sized to hold four days' worth of pellets. The inventory is kept low in order to allow for quick turnover of the product. The hopper is made of carbon steel and is kept at a constant temperature of 158 °F to ensure the granules keep the optimum properties of Nylon. The hopper will be enclosed to ensure water moisture remains out of the granules.

Table 17: Mechanical Processing Equipment	
PFD Label	Description
P-103 A/B	Reciprocating pump between polymerization
	reactor and extruder
MP-102	Single-screw, rapid compression extruder
MP-103	Casting wheel
E-105	Condenser for steam condensate leaving the
	casting wheel
MP-104	Chopper
MP-105	Vacuum, Paddle Drum Dryer
ТК-104	Storage Hopper for Nylon granules

Equipment Specification Sheet

Table 18: Equipment	Summary for Nyl	on 6 6 Manufactu	ring				
Tanks/Towers	TK-100	TK-101	TK-102	TK-103	TK-104	T-100	T-101
Volume (ft3)	12164	344	14867	424	13784	177	177
Temperature (oF)	70	70	70	70	158	100.4	100.4
Pressure (psia)	14.7	14.7	14.7	14.7	9.7	100	100
Orientation	Vertical	vertical	vertical	vertical	vertical	vertical	vertical
Height/Length (ft)	60.5	17.5	65.5	15	65.5	9	9
Diameter (ft)	16	5	17	6	16.5	5	5
мос	CS	CS	CS	CS	CS	CS	CS
Mixers/Reactors	M-100	M-101	R-100	R-101	R-102		
Туре	reactive	reactive	iackt.ag.	FCP	iackt.ag.		
Volume (ft3)	1645	249	, 0 1901	1438	780		
Temperature (oF)	122	122	122	374	515		
Pressure (psia)	90	90	90	183.4	250		
Orientation	Vertical	vertical	vertical	vertical	vertical		
Height/Length (ft)	19	10.5	20	14	8		
Diameter (ft)	10.5	5.5	11	11	15.5		
мос	CS	CS	CS	SS	SS		
Heat Exchanaers	E-100	E-101	E-102	E-103	E-104	E-105	
	<u> </u>	C1	6 1 1 1	6 1	double	6 1.1	
туре	fixed tube	fixed tube	fixed tube	fixed tube	pipe	fixed tube	
Area (ft2)	337	170	373	2142	31	121	
Duty (BTU/hr)	5.06E+06	2.26E+06	1.21E+07	8.81E+07	1.63E+06	2.03E+06	
Tube Temp In/Out	377/377	377/377	122/374	86/113	86/113	<i>.</i>	
(oF)	,,	,,	, , , , ,	,	,	86/113	
Tube Pressure (psia)	189.7	189.7	196	100	100	100	
Tube Phase	condensing	condensing	liq./precip.	liquid	liquid	liquid	
Tube MOC	CS	CS	SS	SS	SS	SS	
Shell Temp In/Out	52/100.4	100.4/122	489/489	374/374	515/400	212/212	
(UF) Shell Pressure (nsia)	105	05	614 7	181 /	250	212/212 1/1 7	
Shell Phase	Liquid	liquid	condensing	condensing	condensing	condensing	
	CS	CS	CS	ss	SS	SC	
Pumps	P-100 (A/B)	$P_{-101}(A/B)$	P-102 (Δ/B)	P-103 (Δ/B)	Heaters	55	H-100
Type		centrifugal	centrifugal	reciprocating	Туре		dinhenvl
Capacity (gpm)	210 1	195 25	27 22	19.8	Dowtherm P	ressure (nsi)	152 7
Eluid Density	210.1	199.29	27.25	19.0	DowthermTe	emperature	152.7
Fidia Defisity					DowthermTemperature		
l (lbm/ft3)	62	74.96	63.24	71.17	(°F)		572
(lbm/ft3) Temperature (oF)	62 100	74.96 122	63.24 374	71.17 515	(°F) Duty (MJ/hr)		572 780
(lbm/ft3) Temperature (oF) Psuction (psi)	62 100 95	74.96 122 90	63.24 374 189	71.17 515 250	(°F) Duty (MJ/hr) MOC		572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi)	62 100 95 104	74.96 122 90 196	63.24 374 189 259	71.17 515 250 1002	(°F) Duty (MJ/hr) MOC		572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp)	62 100 95 104 2.1	74.96 122 90 196 23.7	63.24 374 189 259 2.74	71.17 515 250 1002 21.72	(°F) Duty (MJ/hr) MOC		572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive	62 100 95 104 2.1	74.96 122 90 196 23.7	63.24 374 189 259 2.74	71.17 515 250 1002 21.72	(°F) Duty (MJ/hr) MOC	,	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%)	62 100 95 104 2.1 90	74.96 122 90 196 23.7 90	63.24 374 189 259 2.74 90	71.17 515 250 1002 21.72 90	(°F) Duty (MJ/hr) MOC		572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC	62 100 95 104 2.1 90 SS	74.96 122 90 196 23.7 90 SS	63.24 374 189 259 2.74 90 SS	71.17 515 250 1002 21.72 90 SS	(°F) Duty (MJ/hr) MOC		572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC Mechanical	62 100 95 104 2.1 90 SS	74.96 122 90 196 23.7 90 SS	63.24 374 189 259 2.74 90 SS	71.17 515 250 1002 21.72 90 SS	(°F) Duty (MJ/hr) MOC		572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC Mechanical Processing	62 100 95 104 2.1 90 SS MP-100	74.96 122 90 196 23.7 90 SS MP-101	63.24 374 189 259 2.74 90 SS MP-102	71.17 515 250 1002 21.72 90 SS MP-103	(°F) Duty (MJ/hr) MOC MP-104	MP-105	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type	62 100 95 104 2.1 90 SS MP-100 Screw	74.96 122 90 196 23.7 90 SS MP-101 screw	63.24 374 189 259 2.74 90 SS MP-102 extruder	71.17 515 250 1002 21.72 90 SS MP-103 casting	(°F) Duty (MJ/hr) MOC MP-104	MP-105	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type	62 100 95 104 2.1 90 SS MP-100 Screw conveyor	74.96 122 90 196 23.7 90 SS MP-101 screw conveyor	63.24 374 189 259 2.74 90 SS MP-102 extruder	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel	(°F) Duty (MJ/hr) MOC MP-104 chopper	MP-105 dryer	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW)	62 100 95 104 2.1 90 SS MP-100 Screw conveyor 1.41	74.96 122 90 196 23.7 90 SS MP-101 screw conveyor 1.03	63.24 374 189 259 2.74 90 SS MP-102 extruder 12	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel 75	(°F) Duty (MJ/hr) MOC MP-104 chopper 75	MP-105 dryer 90	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW) Height/Length (ft)	62 100 95 104 2.1 90 SS MP-100 Screw conveyor 1.41 62	74.96 122 90 196 23.7 90 SS MP-101 screw conveyor 1.03 62	63.24 374 189 259 2.74 90 SS MP-102 extruder 12 20	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel 75 5	(°F) Duty (MJ/hr) MOC MP-104 chopper 75 3	MP-105 dryer 90 20	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW) Height/Length (ft) Diameter (ft)	62 100 95 104 2.1 90 SS MP-100 Screw conveyor 1.41 62 1/2	74.96 122 90 196 23.7 90 SS MP-101 Screw conveyor 1.03 62 1/2	63.24 374 189 259 2.74 90 SS MP-102 extruder 12 20 2/3	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel 75 5 16.5	(°F) Duty (MJ/hr) MOC MP-104 chopper 75 3 5	MP-105 dryer 90 20 7.5	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW) Height/Length (ft) Diameter (ft) MOC	62 100 95 104 2.1 90 SS MP-100 Screw conveyor 1.41 62 1/2 N/A	74.96 122 90 196 23.7 90 SS MP-101 Screw conveyor 1.03 62 1/2 N/A	63.24 374 189 259 2.74 90 SS MP-102 extruder 12 20 2/3 CS	71.17 515 250 1002 21.72 90 SS MP-103 Casting Wheel 75 5 16.5 SS clad	(°F) Duty (MJ/hr) MOC MP-104 chopper 75 3 5 N/A	MP-105 dryer 90 20 7.5 N/A	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW) Height/Length (ft) Diameter (ft) MOC <i>Key:</i>	62 100 95 104 2.1 90 SS MP-100 Screw conveyor 1.41 62 1/2 N/A	74.96 122 90 196 23.7 90 SS MP-101 Screw conveyor 1.03 62 1/2 N/A	63.24 374 189 259 2.74 90 SS MP-102 extruder 12 20 2/3 CS	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel 75 5 16.5 SS clad	(°F) Duty (MJ/hr) MOC MP-104 chopper 75 3 5 N/A	MP-105 dryer 90 20 7.5 N/A	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW) Height/Length (ft) Diameter (ft) MOC <i>Key:</i> liq.	62 100 95 104 2.1 90 SS MP-100 screw conveyor 1.41 62 1/2 N/A liquid	74.96 122 90 196 23.7 90 SS MP-101 Screw conveyor 1.03 62 1/2 N/A	63.24 374 189 259 2.74 90 SS MP-102 extruder 12 20 2/3 CS	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel 75 5 16.5 SS clad	(°F) Duty (MJ/hr) MOC MP-104 chopper 75 3 5 N/A	MP-105 dryer 90 20 7.5 N/A	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW) Height/Length (ft) Diameter (ft) MOC <i>Key:</i> liq. precip.	62 100 95 104 2.1 90 SS MP-100 Screw conveyor 1.41 62 1/2 N/A liquid precipatate	74.96 122 90 196 23.7 90 SS MP-101 Screw conveyor 1.03 62 1/2 N/A	63.24 374 189 259 2.74 90 SS MP-102 extruder 12 20 2/3 CS	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel 75 5 16.5 SS clad	(°F) Duty (MJ/hr) MOC MP-104 chopper 75 3 5 N/A	MP-105 dryer 90 20 7.5 N/A	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW) Height/Length (ft) Diameter (ft) MOC <i>Key:</i> liq. precip. FCP	62 100 95 104 2.1 90 SS MP-100 Screw conveyor 1.41 62 1/2 N/A liquid precipatate Forced circulat	74.96 122 90 196 23.7 90 SS MP-101 screw conveyor 1.03 62 1/2 N/A tion (pumped)	63.24 374 189 259 2.74 90 SS MP-102 extruder 12 20 2/3 CS	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel 75 5 16.5 SS clad	(°F) Duty (MJ/hr) MOC MP-104 chopper 75 3 5 N/A	MP-105 dryer 90 20 7.5 N/A	572 780 N/A
(Ibm/ft3) Temperature (oF) Psuction (psi) Pdischarge (psi) Shaft Power (hp) Efficiency of drive (%) MOC <i>Mechanical</i> <i>Processing</i> Type Drive (kW) Height/Length (ft) Diameter (ft) MOC <i>Key:</i> liq. precip. FCP Jackt.Ag.	62 100 95 104 2.1 90 SS MP-100 Screw conveyor 1.41 62 1/2 N/A liquid precipatate Forced circulat Jacketed agita	74.96 122 90 196 23.7 90 SS MP-101 screw conveyor 1.03 62 1/2 N/A ted	63.24 374 189 259 2.74 90 SS MP-102 extruder 12 20 2/3 CS	71.17 515 250 1002 21.72 90 SS MP-103 casting Wheel 75 5 16.5 SS clad	(°F) Duty (MJ/hr) MOC MP-104 chopper 75 3 5 N/A	MP-105 dryer 90 20 7.5 N/A	572 780 N/A

Equipment Cost Summary

Table 19: Equipment Cost Summary						
Equipment List	PFD Label	Туре	Price- Cbm (2016)	Source		
Adipic Acid Bulk Storage	TK-100	Vertical Process Vessel	\$ 1,545,086	[2]		
Adipic Acid Hopper	TK-101	Vertical Process Vessel	\$ 48,695	[2]		
HMDA Bulk Storage	TK-102	Vertical Process Vessel	\$ 1,961,037	[2]		
HMDA Hopper	TK-103	Vertical Process Vessel	\$ 59,721	[2]		
Nylon 6 6 Storage	TK-104	Vertical Process Vessel	\$ 2,288,822	[2]		
Deionizers	T-100 / T-101	Vertical Process Vessel	\$ 99,301	[2]		
Adipic Acid Mixer	M-100	Reactor- Mixer	\$ 1,573,277	[2]		
HMDA Mixer	M-101	Reactor- Mixer	\$ 674,610	[2]		
Nylon Salt Mixer	R-100	Reactor- Jacketed Agitated	\$ 577,356	[2]		
Evaporator/Crystallizer	R-101	Crystallizer with HEX	\$ 1,406,576	[2]		
Polymerization CSTR	R-102	Reactor- Jacketed Agitated	\$ 722,962	[2]		
Process Water HEX	E-100	Fixed Tube	\$ 78,949	[2]		
Deionized Water HEX	E-101	Fixed Tube	\$ 71,540	[2]		
HEX of Feed to Crystallizer	E-102	Fixed Tube	\$ 125,633	[2]		
Condenser for Steam out of Crystallizer	E-103	Fixed Tube	\$ 269,009	[2]		
Condenser of Steam out of	F-104	Double Pine	\$ 23.120	[2]		
Condenser of Steam out of	L-104	Double Tipe	<i>y</i> 23,120	[2]		
Casting Wheel	E-105	Fixed Tube	\$ 130,804			
Dowtherm Boiler	H-100	Diphenyl Heater	\$ 60,755	[2]		
Pump to Deionizer T-101	P-100 (A/B)	Centrifugal	\$ 19,375	[2]		
Pump to Crystallizer	P-101 (A/B)	Centrifugal	\$ 48,894	[2]		
Pump to Polymerization	P-102 (A/B)	Centrifugal	\$ 49,123	[2]		
Pump to Extruder	P-103 (A/B)	Reciprocating	\$ 271,743	[2]		
Screw Conveyor- AA	MP-100	Screw Conveyor	\$ 16,934	[2]		
Screw Conveyor- HMDA	MP-101	Screw Conveyor	\$ 16,890	[2]		
Extruder	MP-102	Extruder	\$ 61,131	[23]		
Casting Wheel	MP-103	Horizontal Process Vessel	\$ 406,115	[2]		
Cutter/Chopper	MP-104	Blender	\$ 241,987	[2]		
Dryer	MP-105	Dryer-Drum	\$ 155,087	[2]		
			\$ 13,004,532	Fixed Capital Cost		

Fixed Capital Investment Summary

The fixed capital investment begins by determining the cost of the individual pieces of equipment in the process. Most of the equipment was costed by the method in Turton. This begins by using the following equation:

$$log_{10}C_p^o = K_1 + K_2 log_{10}(A) + K_3 [log_{10}(A)]^2$$
(31)

Where:

 $C_p^o = purchased \ cost$ K_X = Constants specific to each equipment type A = Capacity of equipment

If the equipment type was not explicitly listed in the tables, then a comparable type of equipment was used to provide the K values. The equipment list includes a description of the actual function of the equipment as well as the equipment type used in the costing tables. Drives were costed and added to the pieces of equipment where necessary. Each pump cost includes the price of a spare pump. After the purchased cost is calculated, it can be adjusted to the bare module cost. This cost accounts for the pressure and material of construction.

The costing of the extruder for polymers was determined from a scale up procedure outlined in Rule of Thumb in Engineering Practice [23]. The free-on-board cost (FOB) for a smaller extruder was given, and this value was scaled up based on the power required for the drive (*Table A.23* in the *Appendix*). The parameters used to determine the bare module cost of the extruder are available in *Table 20* below. First, the FOB value for the extruder provided was scaled up to be used for a 12 kW drive as opposed to the 10 kW drive provided. Then, using equation # through #, the bare module cost can be calculated for a carbon steel extruder. The percentages in equation # and # for the FOB cost were estimations based on instrumentation, infrastructure, taxes, and insurance costs factored in to the bare module cost [23].

Table 20: Parameters used for Extruder Costing				
Costing Parameter	Description			
FOB	Free-on-board cost			
n	Scale up factor			
L+M*	Free-on-board, cost for carbon steel factor			
L+M cost	Accounts for instrumentation material and labor			
	costs			
PM	Physical Module Cost			
BM	Bare Module Cost			

The equations used for costing the extruder are listed below:

$$FOB_2 = FOB_{reference} \left(\frac{size_2}{size_{reference}}\right)^n \tag{32}$$

$$L + M Cost = FOB \times L + M^*$$
⁽³³⁾

$$PM = L + M \cos t + 0.2FOB \tag{34}$$

$$BM = PM + 0.1FOB \tag{35}$$

After all of the equipment costs were found the grassroots cost could be calculated. The grassroots cost was used to account for land and building development. It includes the total module cost which accounts for small alterations to existing plants.

$$C_{GR} = C_{TM} + 0.50 \sum_{i=1}^{n} C_{BM,i}^{o}$$
(36)

Where:

 $C_{TM} = total module cost$ $C_{BM,i}^{o} = bare module cost for base conditions$

The total module cost is the bare module cost, contingency costs and fees. The textbook recommends using 15% and 3% of the bare module cost to account for contingency costs and fees, respectively. Next, this value can be added to the auxiliary facilities costs to account for the grassroots cost. Auxiliary facilities costs are calculated by taking 50% of the bare module cost. This percentage can generally range anywhere from 20% to 100%, however, 50% was assumed to be a conservative estimate and was used in this project. The grassroots costs represent the fixed capital for the project. The results of performing these calculations are summarized in *Table 21*.

Table 21: Fixed Capital Investment Summary					
Grassroots Cost - Fixed Capital Investment	\$38,233,000				
Total Module Cost	\$15,345,000				
Contingency Costs	\$1,951,000				
Fees	\$390,000				
Working Capital	\$5,735,000				
Cost of Manufacturing without depreciation (COM)	\$153,600,000				

Safety, Health, and Environmental Considerations

Safety

Inherent safety was addressed in this preliminary design by analyzing potential hazards before the plant design was implemented (*Table 22*). A major parameter considered in the polymer production process was the reaction chemistry. To avoid potential runaway reactions, cooling jackets were implemented as well as emergency cooling water systems within the control strategy. Working conditions within the plant for operators were also addressed to ensure that all employees will be able to operate equipment in a safe manner. Unsafe working conditions can be corrected by providing personal protective equipment for workers, limiting traffic near the dangerous equipment, and educating visitors and employees on how to operate the equipment on a daily basis, as well as in an emergency situation. Therefore, by determining and implementing a plan before the design is even implemented, the plant will be inherently safer. A preliminary hazard and operability study was conducted in order to predict major potential hazards that could occur within the Nylon plant. The major concerns for this plant are runaway reactions, high temperatures, and high pressures within the equipment. These concerns will be addressed through the use of high pressure and temperature alarms and emergency situations as well.

A preliminary hazard analysis was conducted in order to analyze the components through the process and how this would have a major impact on people in the plant, the major pieces of equipment, and the surrounding community (*Table 24*). The main concerns were with how to store and handle the components to ensure dangerous situations are avoided. HMDA, adipic acid, and nitrogen are chemicals that must be handled with care. The proper personal protective gear must be used when handling the components to ensure no improper exposure to the chemicals occurs.

These hazard and safety analyses were all conducted for a preliminary design. Before implementing the Nylon production process, it is recommended that other experienced and knowledgeable engineers and employees be included in the safety analysis process.

Table 22: Inherent Safety Table					
	Inherent Safety				
Hazard	Concept	Action			
Nulon Salt Reaction is evothermic	Attenuation or	Use a cooling jacket on reactor (control valve fails open)			
Nyion sait Reaction is exothermic	Moderation	Further R&D to determine how exothermic the reaction is			
Polymerization Reaction is	Attonuction or	Have an emergency shutoff system of steam jacket if reactor gets too hot			
endothermic when water content	Attenuation of Moderation	control valve fails open to release cooling water			
is more than 52 mol% [28]	Woderation	Temperature sensor			
Cutting mill is your loud	Attenuation or	Provide appropriate hearing protection for all operators and visitors			
Cutting mill is very loud	Moderation	Limit traffic to cutting mill to only when necessary			
	Intensification or	Purchase a certain amount of HMDA for a specified time to not have the chemical			
LINADA is a taxis and hyprospania	minimization	around for a long period of time			
HMDA is a toxic and hygroscopic		Use nitrogen to preserve HMDA in storage container; keep moisture out			
component	Substitution	Corrosive to metal-Use phenolic resin to coat storage tanks to resist corrosion			
		Use stirred tanks to decrease inventory of product as opposed to batch reactors			
	Intensification or minimization	Needs to be treated to environmental standard in order to be disposed of in any body			
Waste water leaving evaporative		of water			
crystallizer		Nylon salt is dangerous to aquatic life, so water must be treated if small amount of			
		Nylon salt is in the condensate			
	Intensification or minimization	Needs to be stored in a well vented area			
Adipic Acid		dangerous to aquatic life; proper disposal will be carried out			
		can form combustible dust concentrations in air; keep in a well ventilated area			
High pressure steam jacket to	Substitution	Use a different material as ennesed to high pressure steam such as Dewtherm			
heat polymerization reaction	Substitution	Use a different material as opposed to high pressure steam such as Dowtherm			
High temperature steam leaving	Attenuation or	control temperature			
the casting wheel	Moderation	Condense and reuse steam			
High pressure leaving the	Attenuation or	Use a reciprocating nump to handle large prossure drop			
extruder	Moderation				

Table 23: Hazard and Operability Study					
Guide Word	Deviation	Causes	Consequences	Actions	
NO	No cooling	Cooling water fails to engage	Temperature will increase on R-100, E-103, E-104, MP-103, and E-105 due to the lack of heat removal cooling fluid	Have a high temperature alarm (TAH)	
NO	No pumping	Pump malfunctions	Potential runaway reaction in R-102 if P-102 A/B fails More pressure in R-102 if P-103 A/B fails Less pressure in MP-102 if P-103 A/B fails	Have a high pressure alarm (PAH)	
MORE	More steam	Control valve fails open	High temperature and pressure in E- 102 and R-101 could cause unsafe conditions	Have a high temperature alarm (TAH)	
MORE	More Heating	Temperature control fails	High temperature in H-100 lead to unsafe conditions and high temperature in R-102 could cause Nylon to degrade and release CO ₂ as an undesired side product	Have a high temperature alarm (TAH) Emergency cooling water system available	

Table 24: Hazard Analysis Table						
Process	Hazard	Potential Causes	Major Effects	Hazard Category	Preventative Measures Suggested	
Adipic Acid Tank	Combustible Dust Formation	Transfer of Adipic Acid to storage container	Could ignite and cause a fire	1D	Keep adipic acid in a closed container and keep the vessels in a well-ventilated area, use of closed conveyor equipment	
	Toxic when inhaled	Adipic Acid not stored or transferred properly	Toxic to visitors and employees if inhaled	2D	Keep permissible exposure limit of adipic acid under 5 mg/m^3 in the air	
	Can cause serious eye damage	Improper handling and storage	Loss of eye sight	2D	Use proper safety handling, and limit exposure by the storage and transportation equipment	
	Chemical is dangerous if inhaled	improper storage	Difficulty breathing, toxic to visitors/employees	2D	Full face respirators required when in area that has an open container of HMDA; Keep permissible exposure limit to 2.3 mg/m^3	
HMDA Tank	Dangerous to environment	Improper Disposal	Damages to wildlife and water supply	2D	Disposal: Offer surplus and non- recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber.	
	Hygroscopic Material could degrade if not kept at proper conditions	Exposure to water or oxygen	Poor production, loss of profit	4C	Store under inert gas	
	Further processing of solids can produce a combustible gas	Improper handling	Could ignite and cause a fire	2D	Provide appropriate ventilation where dust is formed, Firefighting Measures - Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide	
Nitrogen Tank	Dangerous if inhaled	improper storage of nitrogen	Can cause asphyxiation	3E	keep in properly rated storage vessels and in a well-ventilated area;	
Salt Formation Reactor	Exothermic Reaction occurs	Reactor could overheat and become over pressurized, explosion	Reactor becomes over pressurized or temperature increases too much	1E	Cooling jacket; fail open to allow for cooling water	
Crystallizer	High pressure system	High pressure is necessary to the process	Evaporator could become over pressurized and cause an unsafe work environment, explosion	1D	Use steam to cool down the crystallizer and operate at a pressure that is as safe as possible given the conditions, use equipment and materials that are rated for high pressure	
Polymeriza	Reaction has potential to be exothermic	Not a high enough mole % of water entering the reactor	Runaway Reaction could occur	2D	Emergency shut down system that allows cooling water to cool down the reactor	
Reactor	High temperature necessary for reaction to take place	Improper utility, improper reactor controls	Burns, unsafe pressures in reactor jacket, Nylon degrades and releases CO ₂	3C	Use a Dowtherm jacket to heat reactor instead of high pressure steam, temperature control system	
	Overheating of the screw	Operate at too high of a screw speed	Damage equipment and Nylon	4C	Operate extruder at a safe and constant speed	
Extruder	Process malfunction, pressure/product build up	Nylon stays in extruder too long	Potential plugging in the extruder	3D	Avoid plugging in the extruder by cleaning with steam after shutdown	
	Equipment produces excessive noise	Not properly contained	Can cause hearing damage to visitors and employees	4B	Hearing protection required and limit traffic near chopper	
Chopper	Potential for cut material to escape the equipment	Cutting speed is too high, improper containment	Personal injury	3D	Cover chopper, require protective safety shields when person in the area	
Casting Wheel	Steam from cooling water stream will be hot	water vaporizes when it touches the Nylon fibers	Burns	3D	Keep the casting wheel contained, use proper condenser, label hot streams	
Dryer	Reaches high temperatures	Temperature of dryer not controlled properly	Nylon could degrade and temperature could be dangerous to operators	3B	Provide a jacket on the dryer and a temperature control system to maintain a safe temperature level in the system	
Sustainability and Environmental Concerns

All wastewater used in the Nylon plant will be treated using the tertiary water treatment process [2]. Tertiary water treatment involves a filtration, activated sludge, and chemical processing procedure to ensure the water is not hazardous to the environment. The water produced by the process, cooling water, and condensed steam will all be treated in the same manner. The most involved wastewater treatment was chosen due to the excess HMDA and adipic acid that will be in the waste water treatment due to the polymerization reactor not achieving 100% conversion. The capacity of water produced by the process will be treated properly at a nearby water treatment plant in Calvert City, Kentucky. The total cost per year of treating the wastewater is \$2,705,000 (*Table 25* below for wastewater). This water will then be disposed in accordance with the Clean Water Act and Pollution Prevention Act.

Table 25: Wastewater Treatment Costs		
Wastewater treatment (Tertiary)	lbm/yr	Cost/yr
Water produced by the process	8.76E+08	\$ 22,000
C.W. Return and condensed steam	1.05E+11	\$ 2,682,000

Environmental considerations and sustainability had to be considered for this process. The raw materials adipic acid and HMDA are harmful if released to the environment. Special care was taken to control the storage and transportation of these chemicals. For the process, water will be treated and recycled when possible. Steam and cooling water will cycle through the heat exchangers and condensers. If blow down ratio is kept small by controlling process equipment, much of the water can be conserved.

While the scope of this project did not include deriving adipic acid and HMDA from other chemicals, this could be considered to add an element of sustainability to the process. Adipic acid is typically made from cyclohexanone in petroleum processing. However, several studies have shown that adipic acid can be made from biomaterials [38]. Adipic acid for production of Nylon 6 6 has to be of a very high quality and purity in order to produce a polymer that can be processed. This was originally a problem with bio-based adipic acid, but more work is being done to improve the process. This breakthrough could significantly impact the sustainability of Nylon 6 6 production.

Other Important Considerations

Control Strategy Description

The process is controlled using several common controls as listed in *Table 26*. There are two unusual control conventions used. One is on hoppers TK-101 and TK-103. The raw materials used in the production of Nylon 6 6, adipic acid and HMDA, are solids. A mass flow control is used to ensure the correct amount of each chemical is flowing into M-100 and M-101. This can be done by weight, solid level sensors, or controlled by a rotary valve or mass flow screw feeder. The best method will depend on the spatial organization of the plant and the specific flow paths of the hoppers chosen. The other unusual convention is for the pH control of the Nylon salt reactor, R-100. The Nylon salt has to form in a one-to-one ratio for

the Nylon polymer to form correctly. It has been studied that at a specific pH, the concentration of adipic acid and HMDA is one-to-one [39]. Measuring the pH is easier, more reliable, and more accurate than trying to control just the concentration of the aqueous mixtures coming into the reactor. Solubility data is available, but the pH is a more reliable control.

Control Variables and manipulated variables are listed in *Table 26*. Heat exchangers and condensers are controlled with a feedback loop where temperature of the process stream out needs to be set and flow rate of steam or cooling water is adjusted to keep the temperature at the set point. Nitrogen blankets in TK-102 and TK-103 are controlled with pressure. This systems ensures that the HMDA is safely stored and will not degrade due to its hygroscopic qualities. Level is controlled to M-100 and M-101 by a flow control valve. Level is controlled in R-100, R-101 and R-102 by control valves that adjust the flow rate out of reactor on the discharge side of the following pump. Pressure has to be controlled in R-101 because water has to be at certain conditions to evaporate and create a salt slurry that will flow to R-102. To reach a certain degree of polymerization, a certain amount of water has to leave the mixture. This requires specific high pressure and temperatures. If the temperature and pressure are too low, the Nylon salt will not polymerize. If the temperature gets too high, the polymer will start to degrade, forming CO2 and creating a build-up of pressure. If too much water is taken out, the reaction moves from being endothermic to exothermic and may overheat the reactor. Thus the temperature and pressure will be tightly regulated at the temperatures and pressures listed in the stream tables.

During start up, the polymerization reactor should be carefully monitored so that it does not exceed its practical stability limit. There is a pressure control, liquid level control and a heater on this reactor in order to ensure that this does not happen. A cooling system on this reactor should also be considered in the case that the reactor does start to overheat, and control is lost on the process. The mechanical processing equipment at the end has temperature controls to ensure that the Nylon is sufficiently dried and cooled for storage and transport.

The process is designed to be continuous, so each process vessel has the potential to affect what is happening in the next stage of the process. This is mitigated by the control strategy in several ways to prevent loss and ensure safe operations. M-100, M-101, and R-100 are sized to withstand extra hold up time. If something occurs in R-101 or R-102, or there is a malfunction in the extruder, no product is lost. If there are changes to the flow rate of deionized water, availability of raw materials or poor mixing in R-100, then R-101 and R-102 have enough controls to adjust the temperature and pressure in accordance with the new lower flowrates.

Figure 3: Control Strategy Process Flow Diagram

Table 26: Control Strategy Variables						
Equipment/System						
Controlled	Loop	PFD ID	Control Variable	Manipulated Variable		
		Nitrogen				
Nitrogen Blanket	PC-1	Blanket-1	Pressure in TK-102	Flow of Nitrogen		
		Nitrogen				
	PC-2	Blanket-2	Pressure in TK-103	Flow of Nitrogen		
Heat Exchangers	TC-1	E-100	Temperature of 2	Flow Rate of 3 (Steam)		
	TC-2	E-101	Temperature of 8	Flow Rate of 9		
	TC-3	E-102	Temperature of 21	Flow Rate of 25		
Condensers	TC-4	E-103	Temperature of 24	Flow Rate of 27 (Cooling Water)		
	TC-5	E-104	Temperature of 31	Flow Rate of 32		
	TC-7	E-105	Temperature of 41	Flow Rate of 42		
Heater	TC-6	H-100	Temperature of 35	Electricity/Utility		
Dryer	TC-8	MP-105	Temperature of 46	Electricity/Utility		
Hoppers/Mixers	MFC-1	TK-101	Flow Rate of 13	Mass Flow through line 13		
	MFC-2	TK-103	Flow Rate of 17	Mass Flow through line 17		
	LC-1	M-100	Liquid Level in mixer	Flow Rate of 11		
	LC-2	M-101	Liquid Level in mixer	Flow Rate of 15		
Nylon Salt Formation	pHC-1	R-100	pH in reactor	Flow Rate of 18		
			Liquid Level in			
	LC-3		reactor	Flow Rate of 20		
Crystallizer/Evaporator	PC-3	R-101	Pressure in reactor	Flow Rate of 24		
			Liquid Level in			
	LC-4		reactor	Flow Rate of 29		
Polymerization Reactor	PC-4	R-102	Pressure in reactor	Flow Rate of 31		
			Liquid Level in			
	LC-5		reactor	Flow Rate of 37		

Abbreviations:	LC	Level Control
		Mass Flow
	MFC	Control
		Pressure
	PC	Control
	рНС	pH Control
		Temperature
	тс	Control

Startup Including Additional Equipment

The startup for the continuous stirred tank reactor for the polymerization process is semi-batch. The behavior of the temperature of the reaction and how it reaches steady state is important to this process. Polymath was used to create a chemical reaction model to analyze the startup conditions of the CSTR, R-102, that creates the molten Nylon 6 6. The temperature for this start up process was modeled to determine if there would be an overshoot in temperature that would degrade the polymer on its approach to steady state operation. Based on the Polymath simulation, which can be found on Figure A.3 and A.4 in the Appendix section of this report, the temperature of the reaction approaches steady state after five hours.

Location Considerations

The plant will be located in Calvert City, Kentucky. The temperatures are moderate and range around 40 °F in cooler months and around 70 °F in the warmer seasons. Calvert City lies close to tornado alley, so extra safety precautions will be taken to ensure that there is an emergency procedure for visitors and employees if dangerous weather conditions were to occur. The average temperature of groundwater in this region is 52 °F [40], so this was the temperature used for the process water at the plant.

Process optimization

For the process of creating the Nylon salt for the reaction, the solubility of the adipic acid and HMDA in water is an important consideration. Adipic acid is significantly less soluble than HMDA, thus it requires a larger mixer to dissolve the solid in deionized water, as well as increases the size of the Nylon salt formation reactor. Therefore, in order to increase the solubility of the adipic acid in water, the temperature of this water was increased by addition of a heat exchanger, E-101.

Another important decision in optimization was selecting the jacket fluid used for the polymerization reactor, R-102. Temperature is a key parameter in ensuring that the reaction is driven to a high enough temperature that the monomers continue to react. However, if the temperature within the reactor becomes too high, this will cause degradation of the polymer. This is why Dowtherm was selected as the jacket fluid because it provides better heat transfer than high pressure saturated steam at a lower pressure [2].

67% Turndown Case

A turndown case when only 67% of the Nylon 6,6 mass flowrate was available was analyzed to see the effects of operating the plant. The turndown case is beneficial for when the plant experiences a drop in demand. In Table 27, the major parameter used for sizing each piece of equipment was recorded to see the difference in size or capacity when only 67% of the capacity is used. The extruder, casting wheel, and dryer were not affected by the change due to the operating time and power still being required regardless of capacity change. During the turndown case, the equipment will be operating at less optimum conditions throughout the system. The decreased capacity means that all storage tanks will be able to hold more raw material and Nylon granules. There appears to be no significant concerns for operating these pieces of equipment at a lower capacity. Further detailed design will need to be conducted to determine if the pumps will be able to handle a lower capacity. The process will just not be as efficient when it is not operated at full capacity. Utility costs will decrease due to the decrease in pump power and heat

exchanger steam or cooling water (*Table 28*). Due to a lower capacity, the amount of Nylon produced is not sufficient to produce an economically attractive net present value for a ten year project life. The net present value was negative \$6,299,000 (Table 30). A longer project life may yield a positive net present value, but within ten years, it is not recommended to run the facility consistently at 67% capacity. It would be better to operate at full capacity and store the Nylon granules for later use when demand increases.

Table 27: Equipment Changes Based on Capacity					
PFD Label	Major Parameter of Equipment	100% Capacity Case	67% Capacity Case		
E-100	Steam Mass Flowrate (lb/hr)	5943	3950		
T-100	Volume (ft^3)	177	131		
P-100 A/B	Power (hp)	2.34	1.7		
T-101	Volume (ft^3)	177	131		
E-101	Steam Mass Flowrate (lb/hr)	2652	1763		
TK-100	Days of Storage Available	6	9		
MP-100	Drive Power (hp)	1.9	1.6		
TK-101	Hold-up Time (hr)	2	3		
TK-102	Days of Storage Available	6	9		
MP-101	Drive Power (hp)	1.7	1.5		
TK-103	Hold-up Time (hr)	2	3		
M-100	Residence Time (hour)	0.5	0.75		
M-101	Residence Time (hour)	0.5	0.75		
R-100	Residence Time (hour)	0.5	0.75		
P-101 A/B	Power (hp)	27	19		
E-102	Steam Mass Flowrate (lb/hr)	16641	11061		
R-101	Water Vapor Flowrate (lb/hr)	103579	68847		
E-103	Cooling Water Mass Flowrate (lb/hr)	3.26E+06	2.70E+06		
P-102 A/B	Power (hp)	3.0	2.0		
R-102	Volume (ft^3)	718	481		
E-104	Cooling Water Mass Flowrate (lb/hr)	60325	41004		
H-100	Heat Duty (GJ/hr)	0.78	0.46		
E-105	Cooling Water Mass Flowrate (lb/hr)	7.51E+04	4.69E+04		
P-103 A/B	Power (hp)	24.1	16.2		
MP-102	Drive Power	No changes due to ope	erating conditions		
MP-103	Water Vapor Flowrate (lb/hr)	1003	645		
MP-104	Drive Power	No changes due to ope	erating conditions		
MP-105	Drive Power	No changes due to ope	erating conditions		
TK-104	Days of Storage Available	4	5.3		

Table 28: Utilities Requirement and Yearly Costs for 67% Ca					
Types/Location	Capacity	Cost			
Steam from boilers	lbm/yr	\$/year			
high pressure / E-102	9.21E+07	\$1,251,000			
med pressure / E-100 and E-101	4.75E+07	\$638,000			
Cooling tower water	lbm/yr				
condenser-crystallizer	1.81E+10	\$122,000			
inside casting wheel	208050	\$1			
outside casting wheel	5.37E+06	\$36			
condenser-polymerization CSTR	3.41E+08	\$2,300			
condenser-casting wheel	3.91E+08	\$2,640			
Other Water	lbm/vr				
Process water / into Deionize tank	5.78E+08	\$554,000			
Thermal system	GJ/yr				
Dowtherm boiler / Polymerization CSTR	3.84E+03	\$47,000			
Electrical	hp.hr/yr				
pump / btw di water tanks	1.41E+04	\$631			
pump / to the crystallizer	1.61E+05	\$7,210			
pump / to polymerization CSTR	1.64E+04	\$732			
pump / to extruder	1.35E+05	\$6,022			
mixer / aq. HMDA tank	7.66E+03	\$342			
mixer / aq. adipic acid tank	5.07E+04	\$2,266			
agitation / aq. Nylon salt cstr	5.84E+04	\$2,608			
agitation / polymerization cstr	1.35E+05	\$6,018			
drive / extruder	1.33E+05	\$5,950			
drive / casting wheel	8.37E+05	\$37,000			
drive / chopper	8.37E+05	\$37,000			
drive / dryer	1.00E+06	\$45,000			
drive / conveyer HMDA	1.25E+04	\$558			
drive / conveyer Adipic acid	1.33E+04	\$595			
TOTAL COST	TOTAL COST				

Table 29: Manufacturing Costs for 67% Capacity Case				
Cost Item	\$/year			
Direct Manufaturing Costs				
Raw Materials	\$63,017,000			
Waste Treatment	\$1,798,000			
Utilities	\$2,784,000			
Operating Labor	\$3,676,000			
Direct supervisory and clerical labor	\$662,000			
Maintenance and repairs	\$1,311,000			
Operating Supplies	\$197,000			
Laboratory Charges	\$551,300			
Total Direct Manufacturing Costs	\$73,994,000			
Fixed Manufacturing Costs				
Plant Overhead Costs	\$3,389,000			
Total Manufacturing Costs	\$3,389,000			
General Manufacturing Expenses				
Administration Costs	\$847,000			
Distribution and Selling Costs	\$5,827,000			
Total General Manufacturing Costs	\$6,674,000			
Total Costs	\$84,057,000			

	/										
Project Title:	Manufactu	iring Facilit	y for Nylon	6 6, Turnd	own case c	of 67% capa	city				
Corporate Financial Situation:	Expense										
Minimum Rate of Return, i*:	0.15										
	1 =										
Other relevant project info.:	\$1,000										
MACRS Depreciation Scale at 5 years:		0.2000	0.3200	0.1920	0.1152	0.1152	0.0576				
T										I	I
End of Year	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
	0	1	2	3	4	5	6	7	8	9	10
Production, "MM lb/year"		57	57	57	57	57	57	57	57	57	57
x Sales Price, \$/lbm Nylon 6,6	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53
Sales Revenue = Net Revenue											
(\$/yr)	-	87,134	87,134	87,134	87,134	87,134	87,134	87,134	87,134	87,134	87,134
-Manufacturing Cost		(84,057)	(84,057)	(84,057)	(84,057)	(84,057)	(84,057)	(84,057)	(84,057)	(84,057)	(84,057)
-Depreciation		(4,370)	(6,991)	(4,195)	(2,517)	(2,517)	(1,258)	0	0	0	0
-Writeoff											
-Working Capital											(3,277)
Taxable Income	0	(1,293)	(3,915)	(1,119)	559	559	1,818	3,076	3,076	3,076	(201)
-Tax @ 40%	0	517	1,566	447	(224)	(224)	(727)	(1,230)	(1,230)	(1,230)	80
Net Income	0	(776)	(2,349)	(671)	336	336	1,091	1,846	1,846	1,846	(121)
+Depreciation	-	4,370	6,991	4,195	2,517	2,517	1,258	-	-	-	-
+Writeoff	-	-	-	-	-	-	-	-	-	-	-
+Working Capital	-	-	-	-	-	-	-	-	-	-	3,277
-Grassroots Cost (FCI)	(21,848)										
Cash Flow	(21,848)	3,593	4,642	3,524	2,852	2,852	2,349	1,846	1,846	1,846	3,156
		0.0000	0.75.01	0 6575	0 5718	0 / 972	0 /13 23	0 2750	0 2260	0 20/2	0 2472
Discount Factor (P/F)	1.0000	0.8696	0.7561	0.0575	0.5718	0.4572	0.4525	0.3735	0.5209	0.2045	0.2472
Discount Factor (P/F) Discounted Cash Flow	1.0000 (21,848)	0.8696 3,125	3,510	2,317	1,631	1,418	1,016	694	603	525	780
Discount Factor (P/F) Discounted Cash Flow NPV @ i*=	1.0000 (21,848) (6,229)	0.8696 3,125 Economic	3,510 3,510	2,317 tractive sin	1,631 <i>ce NPV < 0</i>	1,418	1,016	694	603	525	780

Manufacturing Costs (Exclusive of Capital Requirements)

The analysis and evaluation of manufacturing costs for this project were conducted based on the manufacturing cost correlations available in the textbook *Analysis, Synthesis, and Design of Chemical Processes* [2]. Manufacturing costs are categorized into: direct manufacturing costs, fixed costs, and general expenses. Direct manufacturing costs for this process are outlined in *Table 31*. The raw materials costs were based on the provided quote from INVISTA for adipic acid and HMDA.

Table 31: Raw Material Costs				
Raw Material Information	Value			
HMDA supply rate, metric tonne/year	2.16E+04			
Adipic acid supply rate, metric tonne/year	2.72E+04			
HMDA purchase price, \$/metric tonne	\$2,500			
Adipic acid purchase price, \$/metric tonne	\$1,500			
Total Raw Material Cost, \$/year	\$94,808,000			

Operating labor costs account for employment costs required for plant operation. The number of operators was estimated based on the major equipment used in the process (excluding pumps and storage vessels). The most current hourly labor cost for May 2015 is shown in *Table 32* [41]. Through a scale up procedure of employment cost indexes, the June employment cost index was calculated. The data for the employment cost index was retrieved from the *Bureau of Labor Statistics-Employment Cost Index for Wages and Salaries* as well [41]. The employment cost index used in this project was from June 2016. Depending on when the start-up of the project will be implemented, an escalation in the employment cost index would need to be accounted for.

Table 32: Operating Labor Costs			
Operating Labor Information	Value		
Employment Cost Index (June, 2016)	127.1		
Employment Cost Index (Dec 2015)	123.8		
Operating labor (\$/year)	\$256,000		
Operating hours/year	8322		
Hourly labor cost (\$/hr) (May 2015)	\$30.73		
Operators	14		
Number of Operators per Shift	3.08		
Number of Major Process Equipment	14		
Number of Processing Steps, P	0		
Total Raw Material Cost, \$/year	\$94,808,000		

The cost analysis for waste water treatment is accounted for by using tertiary wastewater treatment. Other types of direct manufacturing costs that must be accounted for include: direct supervisory and clerical labor, maintenance and repairs, operating supplies and laboratory charges. These additional costs are estimated using correlations between the direct manufacturing costs, fixed costs, and general expenses. In addition, the costs related to patents and royalties were not considered in this evaluation since this process is well known and patents have expired.

The fixed manufacturing costs and the general manufacturing expenses were evaluated also utilizing the midpoint values of the correlation factors [2].

In fixed manufacturing costs, the cost regarding depreciation, local taxes, and insurance were not evaluated utilizing the midpoint value of multiplication factor. The local taxes rate was accounted in the effective tax rate that was used in the ten-year-project life cash flow diagram which approximately is 40% regarding the U.S. federal corporate tax rate and additional state corporate taxes [42]. The method of modified accelerated cost recovery system (MACRS) depreciation with a 5-year class life property was applied to implement the account for depreciation in the cash flow diagram. Due to this facility being an industrial environment, no research and development costs will be included in the general manufacturing expenses.

Table 33: Manufacturing Cost for 100% Capac	city Case
Cost Item	\$/year
Direct Manufaturing Costs	
Raw Materials	\$94,808,000
Waste Treatment	\$2,705,000
Utilities	\$4,132,000
Operating Labor	\$3,676,000
Direct supervisory and clerical labor	\$662,000
Maintenance and repairs	\$1,311,000
Operating Supplies	\$197,000
Laboratory Charges	\$551,000
Total Direct Manufacturing Costs	\$108,040,000
Fixed Manufacturing Costs	
Plant Overhead Costs	\$3,389,000
Total Manufacturing Costs	\$3,389,000
General Manufacturing Expenses	
Administration Costs	\$847,000
Distribution and Selling Costs	\$8,340,000
Total General Manufacturing Costs	\$9,186,609
	•
Total Costs	\$120,615,897

Economic Analysis

To evaluate the profitability of the project, the NPV, DCFROR and payback period were calculated on an expense basis. It was assumed that financial situation would be considered as an expense, because although the facility is grassroots, it was designed at the specification of a company. This new facility would be considered a branch of the parent company.

Depreciation was calculated using the Modified Accelerated Cost Recovery System (MACRS) using 5 year depreciation. This was chosen based on the criteria set out by the IRS [43] [44]. Research led to the assumption of a hurdle rate of 15 %. This rate can change based on increased investment risks, such as changes in the market, or new competitors [45]. Taxes were estimated at 40%. The washout assumption was used to estimate a constant profit margin. The net revenue is based on selling Nylon at \$ 1.53 / Ibm which was based off of a report from Independent Chemical Information Services [46]. The actual costs and will vary with economic trends, escalation and inflation, but sales costs can be changed to adjust for that.

The net present value of the process is \$ 12,916,000 with a DCFROR of 30.4%. The discounted payback period was then calculated to be 4.11 years. This means that after just over 4 years, the facility will have paid off the initial investment and will be making money based on the discounted cash flow. *Table 37* is the cash flow diagram used for the project. The economics suggest that it is beneficial to continue with the design of the facility for Nylon 6 6 granules.

Sensitivity

A single variable sensitivity analysis was performed on the DCFROR for manufacturing costs, annual profit, and fixed capital investment. These variables were estimated to be the most vulnerable to changes. The results are summarized in *Table 35* and the tornado chart in Figure 4. The change in each variable was estimated separately. A large amount of the manufacturing cost was the raw material cost, so raw material costs were looked at to find a reasonable amount of change in Manufacturing costs. Adjusting prices of raw materials by about ten cents per pound created a 10 % change in manufacturing costs. Ten cents was assumed to be a reasonable change due to the order of magnitude of the prices given by Invista, in addition to price trends found for raw materials [46]. Fixed capital investment was estimated with the grassroots equation [2]. The range given for the grassroots estimate was large enough to make 25% a reasonable variation. This value was used to adjust the grassroots change. The change in annual profit was based off of predictions and fluctuations found in price reports for Nylon 6 6 [46]. This translated to a change of 3%.

By analyzing the tornado chart for the three variables, it can be seen that manufacturing costs have the greatest effect on the DCFROR. Annual profit and capital investment have comparable best and worst DCFROR values. For the multivariable sensitivity analysis, the best and worst case scenarios were evaluated for all three variables at once (*Table 34*). The best case scenario is with manufacturing costs and fixed capital investment minimized, and annual profits maximized. This created a DCFROR of 97%. The worst case scenario with increased manufacturing costs and fixed capital investment and lowered annual profit does not produce an investment that makes money.

The breakeven costs were found for adipic acid, HMDA, and Nylon 6 6, and are summarized in *Table 36*. This means that there is a margin where the process is still profitable if the price of Nylon granules drops below the predicted value. This is mitigated by only a small rise in the price of HMDA and adipic acid.

Table 34: Multivariable Sensitivity Analysis					
	Best	Expected	Worst		
Variable	\$ 108,399,000	\$ 120,616,000	\$ 130,898,000		
Manufacturing Costs	\$ 134,000	\$ 130,000	\$ 126,000		
Annual Profit	\$ 16,386,000	\$ 21,848,000	\$ 27,310,000		
Fixed Capital Investment	97.11%	30.43%	0%		

Table 35: Single Variable Sensitivity Analysis					
	Rate of Return, %				
Variable	Best Case	Worst Case	Range		
Manufacturing Costs	67.2%	-33.2%	100.5%		
Annual Profit	42.8%	16.5%	26.3%		
Fixed Capital Investment	43.3%	22.0%	21.2%		
Base Case DCFROR is 30.4%					

Table 36: Breakeven Values for Process Components		
Component	Unit, \$/lb	
Nylon	1.48	
HMDA	1.22	
Adipic Acid	0.75	

Figure 4: Tornado Chart for Single Variable Sensitivity Analysis

Corporate Financial Situation: Expense Minimum Rate of Return, i*: 0.15 1 = Other relevant project info.: $$1,000$ MACRS Depreciation Scale at 5 years: 0.2000 0.3200 0.1920 0.1152 0.1152 0.000 End of Year 2017 2018 2019 2021 2022 20 Production, "MM lb/year" 85 95 96 910 </th <th>52 0.0576 2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,616) 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - 7 1,258 - 7 1,258 - 1.258 - - - - - - - -</th> <th>4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0</th> <th>2026 9 85 1.53</th> <th>2027 10 85 1.53</th>	52 0.0576 2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,616) 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - 7 1,258 - 7 1,258 - 1.258 - - - - - - - -	4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0	2026 9 85 1.53	2027 10 85 1.53
Minimum Rate of Return, i*: 0.15 1 = Other relevant project info.: \$1,000 MACRS Depreciation Scale at 5 years: 0.2000 0.3200 0.1920 0.1152 0.1152 0.000 End of Year 2017 2018 2019 2020 2021 2022 20 Production, "MM lb/year" 85 10 10 10 10 10	52 0.0576 2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,616) 17) (1,258) 0 7 8,176 9,434 67) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - 7 1,258 - 7 1,258 - 1.258 - - - - -	4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0	2026 9 85 1.53	2027 10 85 1.53
1 = S1,000 0.3200 0.1920 0.1152 0.1152 0.000 MACRS Depreciation Scale at 5 years: 0.2000 0.3200 0.1920 0.1152 0.0152 0.000 End of Year 2017 2018 2019 2020 2021 2022 20 Production, "MM lb/year" 85 85 85 85 85 85 85 Sales Price, S/Ibm Nylon 6,6 1.53 1.53 1.53 1.53 1.53 1.53 1.53 Sales Revenue = Net Revenue - 130,050 140	52 0.0576 2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 050 130,050 130,0 050 130,050 130,0 050 130,050 130,0 050 130,050 130,0 050 130,050 130,0 050 130,050 130,0 050 130,050 130,0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - - - - - - - - - -	4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0	2026 9 85 1.53	2027 10 85 1.53
Other relevant project info.: \$1,000 0.3200 0.1920 0.1152 0.1152 0.0152 0.000 0.3200 0.1920 0.1152 0.0152 0.000 0.000 0.000 0.1152 0.1152 0.000 0.000 0.000 0.1152 0.1152 0.000 0.000 0.000 0.000 0.0112 0.0112 0.012 0.01152 0.0155 0.000 End of Year 2017 2018 2019 2020 2021 2022 20 0.0155	52 0.0576 2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,6 17) (1,258) 0 7 8,176 9,434 67) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - 7 1,258 - 7 1,258 - 1,258 - - - - - - - -	4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0	2026 9 85 1.53	2027 10 85 1.53
MACRS Depreciation Scale at 5 years: 0.2000 0.3200 0.1920 0.1152 0.152 0.000 End of Year 2017 2018 2019 2020 2021 2022 20 Production, "MM lb/year" 85 <th>52 0.0576 2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,6 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - 7 1,258 - 7 1,258 - 1,258 - - - - - - - - - - -</th> <th>4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0</th> <th>2026 9 85 1.53</th> <th>2027 10 85 1.53</th>	52 0.0576 2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,6 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - 7 1,258 - 7 1,258 - 1,258 - - - - - - - - - - -	4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0	2026 9 85 1.53	2027 10 85 1.53
2017 2018 2019 2020 2021 2022 20 Production, "MM lb/year" 85 1.53	2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,6 1.7) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 2 - - 2 - - 2 - - 2 - -	4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0	2026 9 85 1.53	2027 10 85 1.53
End of Year 2017 2018 2019 2020 2021 2022 20 Production, "MM lb/year" 1 2 3 4 5 6 Production, "MM lb/year" 1.53	2 2023 2024 6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,0 17) (1,258) 0 7 8,176 9,434 67) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - 7 1,258 - 7 1,258 -	4 2025 8 85 3 1.53 ,050 130,050 0,616) (120,616) 0	2026 9 85 1.53	2027 10 85 1.53
Indextrem 0 1 2 3 4 5 6 Production, "MM lb/year" 85 1.53	6 7 85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,0 1,258) 0 1 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 1,258 - 7 1,258 - 7 1,258 -	8 85 3 1.53 ,050 130,050 0,616) (120,616) 0	9 85 1.53	10 85 1.53
Production, "IMM lb/year" 85 85 85 85 85 85 85 85 85 x Sales Price, \$/lbm Nylon 6,6 1.53	85 85 1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,6 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - -	85 3 1.53 ,050 130,050 0,616) (120,616) 0	85	85
x Sales Price, \$/Ibm Nylon 6,6 1.53	1.53 1.53 050 130,050 130,0 ,616) (120,616) (120,0 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - 7 - - 1,258 - - - - - - - -	3 1.53 ,050 130,050 0,616) (120,616) 0	1.53	1.53
Sales Revenue = Net Revenue - 130,050 </td <td>050 130,050 130,0 ,616) (120,616) (120,0 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - -</td> <td>,050 130,050 0,616) (120,616) 0</td> <td></td> <td>1.00</td>	050 130,050 130,0 ,616) (120,616) (120,0 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - -	,050 130,050 0,616) (120,616) 0		1.00
(\$/yr) - 130,050 <t< td=""><td>050 130,050 130,0 ,616) (120,616) (120,0 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - -</td><td>,050 130,050 D,616) (120,616) 0</td><td></td><td></td></t<>	050 130,050 130,0 ,616) (120,616) (120,0 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - -	,050 130,050 D,616) (120,616) 0		
-Manufacturing Cost (120,616) (120,	,616) (120,616) (120,0 17) (1,258) 0 17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - -	0,616) (120,616) 0	130,050	130,050
-Depreciation (4,370) (6,991) (4,195) (2,517) (2,517) (1, -Writeoff I	17) (1,258) 0 7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - - - - -	0	(120,616)	(120,616)
-Writeoff Indext Indext <thindext< th=""> <thindex< th=""> <thindex< t<="" td=""><td>7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - - - - - - - -</td><td>1</td><td>0</td><td>0</td></thindex<></thindex<></thindext<>	7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - - - - - - - -	1	0	0
-Working Capital Image: Marcine Marcin	7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - -			
Taxable Income 0 5,065 2,443 5,239 6,917 6,917 8,1 -Tax @ 40% 0 (2,026) (977) (2,096) (2,767) (2,767) (3, Net Income 0 3,039 1,466 3,144 4,150 4,150 4,50 4,50 +Depreciation - 4,370 6,991 4,195 2,517 2,517 1,2 +Writeoff - </td <td>7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - - - - -</td> <td></td> <td></td> <td>(3,277)</td>	7 8,176 9,434 57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - - - - -			(3,277)
-Tax @ 40% 0 (2,026) (977) (2,096) (2,767) (2,767) (3, Net Income 0 3,039 1,466 3,144 4,150 4,150 4,95 +Depreciation - 4,370 6,991 4,195 2,517 2,517 1,2 +Writeoff - - - - - - - - +Working Capital - - - - - - - - - - -Grassroots Cost (FCI) (21,848) 7,408 8,457 7,338 6,667 6,667 6,1 Discount Factor (P/F) 1.0000 0.8696 0.7561 0.6575 0.5718 0.4972 0.4	57) (3,270) (3,774) 0 4,905 5,660 7 1,258 - - - - - - - - - - - - -	9,434	9,434	6,157
Net Income 0 3,039 1,466 3,144 4,150 4,150 4,95 +Depreciation - 4,370 6,991 4,195 2,517 2,517 1,2 +Writeoff - - - - - - - - - +Working Capital - <td< td=""><td>0 4,905 5,660 7 1,258 - </td><td>74) (3,774)</td><td>(3,774)</td><td>(2,463)</td></td<>	0 4,905 5,660 7 1,258 - 	74) (3,774)	(3,774)	(2,463)
+Depreciation - 4,370 6,991 4,195 2,517 2,517 1,2 +Writeoff	7 1,258 - - - - - - - - - -	5,660	5,660	3,694
+Writeoff - <	 	_	_	_
+Writeoff - <	 			
+Working Capital -		-	-	-
-Grassroots Cost (FCI) (21,848)<		-	-	3,277
Cash Flow(21,848)7,4088,4577,3386,6676,6676,1Discount Factor (P/F)1.00000.86960.75610.65750.57180.49720.4Discounted Cash Flow(21,848)6,4426,3954,8253,8123,3152,6				
Discount Factor (P/F) 1.0000 0.8696 0.7561 0.6575 0.5718 0.4972 0.4 Discounted Cash Flow (21,848) 6,442 6,395 4,825 3,812 3,315 2,6	7 6,164 5,660	50 5,660	5,660	6,971
Discounted Cash Flow (21,848) 6,442 6,395 4,825 3,812 3,315 2,6	72 0.4323 0.375	759 0.3269	0.2843	0.2472
	5 2,665 2,128	28 1,850	1,609	1,723
NPV @ i*= 12,916 Economically attractive since NPV > 0				
DCFROR = 30.4% Economically Attractive since DCFROR > i*				

Conclusions

The Nylon 6 6 granule production process yielded a net present value of \$12,916,000 and a DCFROR of 30.4%. Since the net present value is positive, and the DCFROR is greater than the hurdle rate, this is an economically attractive investment. The discounted payback period for this process will be 4.11 years when estimated with a ten year project life. This process produces 85 MM pounds per year of Nylon 6 6 granules through a continuous extrusion process. The production of this polymer requires a deionization water system to purify Calvert City process water. A bulk storage system will be implemented to contain the adipic acid and HMDA, which will then be mixed to form aqueous solutions. The mixture reacts to form Nylon salt which will then be processed by an evaporative crystallizer system. A polymerization reactor is crucial to the process to achieve the desired conversion and produce molten Nylon. The mechanical processing equipment extrudes the molten Nylon and is then cast, chopped, and dried to be prepared for customers. The Nylon 6 6 produced in this process is sold as granules. The Nylon 6 6 is kept as granules so that the company's customers may melt the granules again and be form them into fibers with varying lengths and diameters, depending on the use. The Nylon granules produced will be colorless, so dying can be implemented when further processing occurs.

Recommendations

It is recommended that this Nylon 6 6 granule facility be implemented due to the economically attractive net present value and DCFROR. The granules provide more versatility to potential customers needs when color, length, and diameter are a concern. In order to decrease raw material costs, it is recommended that the Nylon plant include an HMDA and adipic acid manufacturing addition. By producing these components on site, the required input could be better controlled and the materials would be significantly cheaper. Even though this requires additional equipment, it will still lead to a profitable outcome by eliminating the extra expense of delivery and going through different vendors. The current plant designed will be in a location that will allow for adequate space in the design layout to accommodate this future design. Further research and development regarding space time in the polymerization reactor should be implemented in order to ensure that the reactors and other high pressure and temperature systems will not result in any dangerous conditions. It is recommended that all employees and visitors be involved in the safety process to ensure that everyone is aware of the potential dangers in this plant.

Acknowledgements

We would like to thank all of our chemical engineering professors that have taught us about chemical process design, reaction engineering, and safety. We are thankful for the knowledge and advice that has allowed us to complete this project.

Bibliography

- [1] Rase, Howard F. Chemical Reactor Design for Process Plants. Vol. I. Wiley-Interscience, 1977.
- [2] Turton, Richard, et al. Analysis, Synthesis, and Design of Chemical Processes. Prentice Hall, 2012.
- [3] Rodriguez, Ferdinand. Principles of Polymer Systems. McGraw-Hill, 1970.
- [4] "HMDA Safety Data Sheet." Sigma-Aldrich, 2017.
- [5] "Adipic Acid Safety Data Sheet." Sigma-Aldrich, 2017.
- [6] Minimize Boiler Blowdown. 2012. https://energy.gov/sites/prod/files/2014/05/f16/steam9_blowdown.pdf>.
- [7] Public Service Commission. 2013. 2017. http://migration.kentucky.gov/Newsroom/psc/pscpr10-25-2013.htm>.
- [8] Wilbur, Leslie C. Handbook of Energy Systems Engineering. Wiley-Interscience, 1985.
- [9] "Service Dionization-Canada." MAR COR: A Cantel Medical Company. 2014.
- [10] Perry, Robert H. and Don W. Green. Perry's Chemical Engineers' Handbook. Seventh. McGraw-Hill, 1997.
- [11] Mark, Herman F., et al. *Encyclopedia of Polymer Science and Engineering*. Vol. 11. Wiley-Interscience, 1988.
- [12] Cole-Parmer Scientific Experts. n.d. 2017. < https://www.coleparmer.com/Chemical-Resistance>.
- [13] "Phenol Formaldehyde Resin Material Safety Data Sheet." Momentive, 2011.
- [14] Yanisko, Paul, et al. "Nitrogen: A Security Blanket for the Chemical Industry." *Chemical Engineering Progress* (2011).
- [15] Maynard, Eric. "Ten Steps to an Effective Bin Design." n.d.
- [17] Gaivoronskii, A. N. and V. A. Granzhan. "Solubility of Adipic Acid in Organic Solvents and Water." *Physicochemical Studies of Systems and Processes* (2004): 404-408.
- [18] "GPS Safety Summary: Hexamethylenediamine." Rhodiamine HMD, n.d.
- [19] Wales, Stanley M. Chemical Process Equipment. n.d.
- [20] Larsen, Howland A. and W. Parkersburg. Preparation of Salt Solution Useful for Making Nylon. United States: Patent 4,442,260. 14 March 1983.
- [21] Sieder, Warren D., J. D. Seader and Daniel R. Lewin. *Process Design Principles Synthesis, Analysis, and Evaluation*. John Wiley & Sons, Inc., 1999.

- [22] Myerson, Allan S. Handbook of Industrial Crystallization. Butterworth-Heinemann, 1993.
- [23] Woods, Donald R. Rules of Thumb in Engineering Practice. Wiley-Vch, 2007.
- [24] Brydson. Polyamides and Polyimides. n.d.
- [25] Gupta, Santosh K. and Ajit Kumar. Reaction Engineering of Step Growth Polymerization. n.d.
- [26] Nauman, E. Bruce. *Chemical Reactor Design, Optimization, and Scaleup*. New York: McGraw-Hill, 2002.
- [27] Folger, H. Scott. Essentials of Chemical Reaction Engineering. Prentice Hall, 2011.
- [28] Steppan, D. D., M. F. Doherty and M. F. Malone. "A Kinetic and Equilibrium Model for Nylon 6,6 Polymerization." *Journal of Applied Polymer Sciences* 33 (1987).
- [29] Ogata, Naoya. "Studies on Polycondensation Reactios of Nylon Salt. II." *Nylon Laboratory, Research Department* (1960): 117-131.
- [30] Giudici, Reinaldo, et al. "Mathematical modeling of an industrial process of nylon-6,6 polymerization in a two-phase flow tubular reactor." *Chemical Engineering Science 54* (1999): 3243-3249.
- [31] Fergusson, Stuart B., Ernest Keith Marchildon and Ahmet Turgut Mutel. Process for Making Nylon 6,6. United States: Patent 6,472,501. 1 June 2001.
- [32] Larsen, Howland A. and W. Parkersburg. Preparation of Salt Solution Useful for Making Nylon. United States: Patent 4,442,260. 14 March 1983.
- [33] Pacini, John and Douglas Joy. "Closed Loop Pressure Control for the Extrusion Process." n.d.
- [34] "Extruder Screw Design." Hanser Publishers, 2014. 509-652.
- [35] Stribeck, Norbert and Bernd Smarsly. *Progress in Colloid and Polymer Science*. Vol. 130. Springer, 2005.
- [36] "Size Reduction with Cutting Mills." *Reutsch Solutions in Milling & Sieving*. Haan, Germany, 2010.
- [37] Fox, Barry, Giovanni Bellini and Laura Pellegrini. "Drying." Elsevier, 2014. 283-305.
- [38] Vardon, Derek R., et al. "cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization." *Royal Society of Chemistry* (2016).
- [39] Carothers, Wallace Hume. Diamine-Dicarboxylic Acid Salts and Process of Preparing Same. United States: Patent 2,130,947. 1 July 1936.
- [40] Lake Barkley & Kentucky Lake Levels & Conditions. 8 March 2017. 2017. http://www.kentuckylake.com/lake-conditions.aspx>.
- [41] Bureau of Labor Statistics. 2017.
- [42] Stone, Chad. Reality Check on Corporate Taxes. 13 November 2015. 2017.

- [43] Publication 946 Additional Material. n.d. 2017. https://www.irs.gov/publications/p946/ar02.html.
- [44] Table of Class Lives and Recovery Periods. n.d. https://www.irs.gov/publications/p946/13081f34.html>.
- [45] Kenney, W. F. Energy Conservation in Process Industries. Academic Press, 2012.
- [46] Parapouli, Vasiliki. "Europe September nylon 6,6 rolls over, October talks get underway." INVISTA, 2016.
- [47] Ruzicka, Vlastimill and Eugene S. Domalski. "Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature Using Group Additivity." *Chemical Kinetics and Thermodynamics Division, National Institute of Standards and Technology* (1993): 619-657.
- [48] "Nylon 6/6 Safety Data Sheet." Sigma-Aldrich, 2017.
- [49] "Nitrogen Safety Data Sheet." Airgas, 2016.

AIChE Design Project Appendix

Group #____ March 9, 2017

List of Tables

Table A.1: Heat Exchanger E-100 Sizing and Costing	
Table A.2: Deionized Water System T-100 and T-101 Sizing and Costing	
Table A.3: Pump P-100 Sizing and Costing	
Table A.4 Heat Exchanger E-101 Sizing and Costing	61
Table A.5: Adipic Acid Bulk Storage TK-100 Sizing and Costing	
Table A.6: HMDA Bulk Storage TK-102 Sizing and Costing	
Table A.7: Screw Conveyor MP-100 Sizing and Costing	
Table A.8: Screw Conveyor MP-101 Sizing and Costing	
Table A.9: Adipic Acid Hopper TK-101 Sizing and Costing	
Table A.10: HMDA Hopper TK-103 Sizing and Costing	
Table A.11: Adipic Acid Mixer M-100 Sizing and Costing	
Table A.12: HMDA Mixer M-101 Sizing and Costing	
Table A.13: Nylon Salt Agitated Reactor R-100 Sizing and Costing	
Table A.14: Pump P-101 Sizing and Costing	71
Table A.15: Heat Exchanger E-102 Sizing and Costing	72
Table A.16: Condenser E-103 Sizing and Costing	73
Table A.17: Crystallizer R-101 Sizing and Costing	74
Table A.18: Pump P-102 Sizing and Costing	75
Table A.19: Polymerization Reactor R-102 Sizing and Costing	76
Table A.20: Condenser E-104 Sizing and Costing	
Table A.21: Dowtherm Boiler H-100 Sizing and Costing	79
Table A.22: Pump P-103 Sizing and Costing	80
Table A.23: Extruder MP-102 Sizing and Costing	
Table A.24: Condenser E-105 Sizing and Costing	83
Table A.25: Casting Wheel MP-103 Sizing and Costing	
Table A.26: Chopper MP-104 Sizing and Costing	85
Table A.27: Dryer MP-105 Sizing and Costing	
Table A.28: Nylon Granule Storage Hopper TK-104 Sizing and Costing	

List of Figures

Figure A.1: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR with Full
Capacity90
Figure A.2: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR with 67%
Capacity
Figure A.3: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR at Startup 96
Figure A.4: Polymath Plot of the Reaction Temperature vs Time for the Polymerization CSTR at Startup
Figure A.5: Polymath Plot of Components Concentration vs. Time for the Polymerization CSTR at Startup
Figure A.6: Safety Data Sheet for HMDA102
Figure A.7: Safety Data Sheet for Adipic Acid109
Figure A.8: Safety Data Sheet for Nylon 6 6 115
Figure A.9: Safety Data Sheet for Nitrogen121
Figure A.10: Safety Data Sheet for Phenolic Resin SDS131

Equipment Sizing and Costing Spreadsheet Attachments:

Table A.1: Heat Exchan	ger E-100 Sizing ar	nd Costing
Heated process water		

E-100: Heat Exchang	er (Fixed tube) (shell: stean	n and tube: Process water)	
Sizing:	ft^2	m^2	
Area	336.909	31.300)
Temperatures	<u>ີ</u>	(Heuristic from Furton for liquid to liquid)	
Tcool.in	11.11	52	
Tcool,out	38	100.4	
Temperature approach	153.67	308.6	5
Thot,in	191.67	377	(med. steam)
Thot,out	191.67	377	7
Log Mean Temperature	148.97	300.15	5
Correction Factor, F	1		
Р	0.15		
R	0.00		
P'	0.15		
Heat Duty (Btu/hr)	5.062+06	high proseuro stoom	
Steam mhot (bm/br)	5942 21	litility cost	
Process water mcold (lbm/br)	104466.00	(lessica and Laurent)	
Heat Capacity of Water(Btu/lbm**F)	101100.00	Engineering toolbox	
Purchased Equipment Costs			
Result	C° p	\$ 17,331	
Variables/Info	Equipment Type	HEX	
	Equipment Description	fixed tube	
(*unit)	Area, m2	32.0	(in the range)
(to check)	min	10	
	max	1000)
	К1	4.3247	,
	К2	-0.303	\$
	КЗ	0.1634	
Pressure Factors Result	En	1.02	•
The solid	En process vessels	1.01	-
Variables/Info	Equipment Type	HEX	
	Equipment Description	shell and tube	
psia	P med. at. Steam	189.70	1
psia	P process water in	105.00)
psia	Design pressure, P	155.00)
(*barg)	Design pressure, P	9.67	(in the range)
(to check)	min		5
	max	140	
	0	0.03881	
	(3	-0.11272	
	Diameter D	0.08183	•
	blameter, b		
Bare Module Cost			
Result	Case	\$ 57,499.39	
	Cost and and a state of the sta		
	Equipment Type	HEX	
	Equipment Description	shell and tube	
	MOC	CS	
			1
	Identificaiton number	1	
	Identificaiton number	1	L
	Identificaiton number F _M B1	1.63	
	Identificaiton number F _M B1 B2	1.62 1.63	5
	Identificaiton number F _M B1 B2	1.63	
Purchased Cost, Cp	Identificaiton number F _M B1 B2	\$ 24,193.93	
Purchased Cost, Cp Installed Cost, Cam	Identificaiton number F _M B1 B2	\$ 24,193.93 \$ 78.949	
Purchased Cost, Cp Installed Cost, C _{BM} Year 2001	Identificaiton number F _M B1 B2 C.I.	\$ 24,193.93 \$ 78,949 397	

Mixed Bed Deionizer	2 in series	
Temperature (°F)	100.4	5-7 psi pressure drop
Sizing		
Capacity (gpm)	211.4	to 220
Diameter (ft)	5	
Height (ft)	9	
Volume (ft^3)	122.71	
Volume (gal)	917.99	
% Anion Resin	60	Chloride resin
% Cation Resin	40	Hydrogen resin
Resin Volume (ft^3)	54	
Total Volume (ft^3)	176.71	
Costing	Vertical Process Vessel	
К1	3.4974	
К2	0.4485	
К3	0.1074	
Volume (m^3)	5.00	
logCp0	3.86	
СрО	\$7,304	
P (psig)	85.3	
P (barg)	5.9	
D (ft)	5.000	
D (m)	1.52	
Fp	1.5	
Purchase Cost:		
Identification Number	18	Carbon Steel
Fm	1	
Cp (2001)	\$10,839	
Ср (2017)	\$14,882	
Installed Cost:		
Fm	1	
B1	2.25	Table A.4
B2	1.82	
Cbm (2001)	\$36,161	
Cbm (2017)	\$49,650	One Deionizer
Total Cbm for both Mixed Bed Deionizers	\$99,301	
Installation Cost	\$34,768	

Table A.2: Deionized Water System T-100 and T-101 Sizing and Costing

Table A.3: Pump P-100 Sizing and Costing

Pump between DI water tanks		
P-100: F	Pump Sizing with an elvat	tion change
Sizing		
Inlet Flow Rate of DI water (lbm/hr)	104466.00	Obtained from Heated DI water HEX
DI water density (lbm/ft3)	61.99	Engineering toolbox
Inlet Flow Rate of DI water (gpm)	210.10	unit conversion
Inlet pressure of DI stream (psia)	95	Laurent and Jessica
DI Water Tank 2 pressure (psia)	100	
Height of di water tank 2 (ft)	9.00	Laurent and Jessica
ΔP hydrostatic (psi)	3.90	Laurent and Jessica
ΔP Necessary (psia)	8.90	$\Delta P_{pump} + \Delta P_{hydrostatic} + \Delta P_{losses}$
ε _{pump}	0.52	Interpolated From Turton Table 11.9
W _{pump} (hp)	2.10	Flow Rate*ΔP/ε _{pume}
Editiver	0.9	Estimation from Turton 11.5, midpoint
W	2.34	W/F
W	1.74	Unit convertion
purchased (**)	1.74	Unit Conversion
Costs:		
Purchased Equipment Costs		
Result	م	\$ 2 576 71
Variables/Infe	C p Fouriement Tures	2,570.71 Bump
variables/info	Equipment Type	Contrifugal
	Equipment Description	Centrirugai
(*unit)	Capacity: Shaft power (kW)	1.74
(to check)	min	1
	max	300
	K1	3.3892
	K2	0.0536
	K3	0.1538
Pressure Factors	-	
Result	Fp	0.98
Variables/Info	Equipment Type	Pump
	Equipment Description	Centrifugal
psia	Operating pressure	103.90
psia	Design pressure, P	153.90
(*barg)	Design pressure, P	9.60
(to check)	min	10
	max	100
	C1	-0.3935
	C2	0.00226
(*::mi+)	Diamotor D (m)	-0.00228
(*unit)	Diameter, D (m)	
Bare Module Cost		
Pacult	Court	\$ 14.111.06
result	CBM	5 14,111.00
	Equipment Type	Pump
	MOC	cc
	Identification number	33
	E	
	• M 01	2.7
	D1 01	1.89
	02	1.35
Purchased Cost, Cp		\$ 9,398.84
Installed Cost. Com		\$ 19.375
Installation Cost		\$ 9,976.31
Year 2001	C.I.	- 5,576.51
Desired year (2016)	C.I.	545.1
······		54512
Total cost including spars	¢ 29.750	
Total cost including spare pump	\$ 38,750	

Heated DI Water			
E-101: Heat Excha	nger (Fixed tube) (shell: ste	eam and tube: DI water)	
Sizing:	ft^2	m^2	
Area	169.880	15.782	
Uo (Btu/hr*ft^2**F)	50	(Heuristic from Turton for liquid to liquid)	
Temperatures	°C	*F	
Tcool,in	38.00	100.4	
Tool,out	50	122	
The tip	141.67	28/	/low p_cto
That out	191.67	377	(low p. ste
Log Mean Temperature	129.81	265.65	
Correction Factor, F	1		
Р	0.08		
R	0.00		
Ρ'	0.08		
Heat Duty (Btu/hr)	2.26E+06		
Latent Heat (Btu/lbm)	850.73	low pressure steam	
Steam mhot (lbm/hr)	2652.38	Utility cost	
Process water mcold (lbm/hr)	104466.00	(Jessica and Laurent)	
Heat Capacity of Water(Btu/Ibm**F)	1	Engineering toolbox	
Purchased Equipment Costs			
Result	c°,	\$ 15,731	
Variables/Info	Equipment Type	HEX	
	Equipment Description	fixed tube	
(*unit)	Area, m2	16.0	(in the ran
(to check)	min	10	
	max	1000	
	К1	4.3247	
	К2	-0.303	
	K3	0.1634	
Pressure Factors			
Result	Fp	1.01	
	Fp, process vessels		
Variables/Info	Equipment Type	HEX	
	Equipment Description	shell and tube	
	P med. P sat steam	189.70	
psia	P stream in	95.00	
psia	Design pressure, P	145.00	
(*barg)	Design pressure, P	8.98	
(to cneck)	min	5	
	max C1	140	
	C2	0.03881	
		-0.11272	
	Diameter, D	0.00105	
Bare Module Cost			
Result	C _{BM}	\$ 52,102.78	
	C _{BM, process vessel}		
	Equipment Type	HEX	
	Equipment Description	shell and tube	
	MOC	CS	
	Identificaiton number	1	
	F _M	1	
	B1	1.63	
	B2	1.66	
Purchased Cost, Cp		\$ 21,886.60	
Installed Cost. Cost		\$ 71.540	
Year 2001	C.I.	397	
Desired year (2016)	CL.	537	
Desired year (2010)	Seals.	545.1	

Table A.4: Heat Exchanger E-101 Sizing and Costing

Table A.5.: Adipic Acid E	Bulk Storaae TK-100	Sizina and Costina
i dibite i dibiti i ddipite i deidi B	and beer age the 200	onening and cooting

ADIPIC ACID - Bulk Storage	Screw Conveyer:	
	Solids flow Rate (lb/hr)	7,200
*Source is encyclopedia 11	Density (g/cm^3)	1.366
	Volumetric Flow Rate (ft^3/hr)	84.43
Can justify this by saying due to weather conditions etc.		
need to be able to operate continuously for a 6 days. Can		
let volume go done to 2 days worth and have a shipment		
every 4 days.	For 6 Days Worth of Material:	
	Mass (Ib)	1,036,795.68
	Volume (ft^3)	12,158
*Max heuristic for vertical is 520 m^3	Volume (m^3)	344.3
*Beyond 10 000 gallon means vertical tank on concrete		511.5
nads	Volume (gallons)	90 948
p000		50,510
	Vertical Process Vessel (BULK Solid Adipic Acid Storag	e)
*V= pi*D^3 if L/D equals 4	Volume Needed for 6 Days (ft^3)	12,158
*Found based on cylinder and L/D equal to 4. Rounded up		
to nearest ft.	D (ft)	16.0
*Must manually use solver to get this	L (ft)	60.5
*This is slightly different from volume needed based on		
rounding	Actual Volume (ft^3)	12,164
	Actual L/D	3.78
*This is in between 0.1 to 520 range in correlations	Actual Volume (m^3)	344
	Area of Base (in^2)	28,953
*Should validate that this is safe	PSI on Base (lb/in^2)	35.81
	К1	3.4974
	۲ <i>γ</i>	0.4485
	K3	0.1174
		5 327
	Cn0	\$ 212 156
		φ <u><u></u></u>
	P design (barg) (Atm +50psi)	3.45
	D (m)	4.88
	Fp	2.53
	Installed Cost:	
	Fm	1
	B1	1.49
	B2	1.52
	FBM	5.339
	Cbm (2001)	\$ 1,132,778
	Cbm (2016, using CEPCI of 545.1)	\$ 1,545,086

HMDA - BULK STORAGE	Screw Conveyer:	
	Solids flow Rate (lb/hr)	5,726
*SDS, relative density at 77F	Density (g/cm^3)	0.89
	Volumetric Flow Rate (ft^3/hr)	103.07
	For 6 Days Worth of Material:	
	Mass (lb)	824,610.24
	Volume (ft^3)	14,842
*Max heuristic for vertical is 520 m^3	Volume (m^3)	420.3
*Beyond 10,000 gallon means vertical tank on		
concrete pads	Volume (gallons)	111,023
	Vertical Process Vessel (BLUK Solid Adinic A	rid Storage)
*V= ni*D^3 if I/D equals 4	Volume Needed for 6 Days (ft^3)	14 842
*Found based on cylinder and L/D equal to 4		1,012
Rounded up to nearest ft.	D (ft)	17.0
*Must manually use solver to get this	2 (10)	65.5
*This is slightly different from volume needed		
based on rounding	Actual Volume (ft^3)	14.867
	Actual L/D	3.85
*This is in between 0.1 to 520 range in correlations	Actual Volume (m^3)	421
	Area of Base (in^2)	32,685
*Should validate that this is safe	PSI on Base (lb/in^2)	25.23
	К1	3.4974
	К2	0.4485
	КЗ	0.1074
	logCp0	5.414
	СрО	\$ 259,446
		2.45
	P design (barg) (Atm +50psi)	3.45
	D (m)	5.18
	гр	2.00
	Installed Cost:	
	Fm	1
	B1	1.49
	B2	1.52
	Chm (2001)	5.552 \$ 1,435,370
		\$ 1,433,370
*This price now includes the phenolic resin lining	Cbm (2016, using CEPCI of 545.1)	\$ 1,961,037
	Surface Area Inside tank (m^2)	367
	Thickness of Phenolic Resign Desired (m)	0.00045
	Volume of Phenolic Resin (m^3)	0.17
	Density of Phenolic Resin (g/cm^3)	1.30
	Mass of Phenolic Resin Needed (g)	214,796
	Price of Resin (\$/X)	15
	Price to Coat (\$)	\$ 3,222

Table A.6.: HMDA Bulk Storage TK-102 Sizing and Costing

Screw Conveyor	Adipic Acid	HMD	
Sizing:		Sizing:	
Density (g/cm3)	1.36	Density (kg/m3)	840.00
Density(lb/ft3)	84.86	Density(lb/ft3)	52.42
Capacity (ft3/hr)	56.78	Capacity (ft3/hr)	103.46
Height(ft)	16	Height(ft)	16.00
Length of conveyor (ft)	61.82	Length of conveyor (ft)	61.82
Volume (ft3)	12.14	Volume (ft3)	12.14
Area(ft2)	97.10	Area(ft2)	97.10
Costing:		Costing:	
К1	3.61	K1	3.61
К2	0.27	К2	0.27
К3	0.20	КЗ	0.20
Area (m2)	9.02	Area (m2)	9.02
Сро	10991.49	Сро	10991.49
Fbm	1.10	Fbm	1.10
Cbm(2001)	12090.64	Cbm(2001)	12090.64
Cbm(2016 545.1)	\$ 16,601.03	Cbm(2016 545.1)	\$ 16,601.03

Table A.7 and A.8: MP-100 and MP-101 Sizing and Costing

Drive:	AA	Drive:	HMD
Length	32.00	Length	32.00
RPM	12.08	RPM	22.01
Fd	18.00	Fd	18.00
Fb	2.00	Fb	2.00
Fm	0.50	Fm	0.50
Ff	1.00	Ff	1.00
Fp	1.00	Fp	1.00
efficiency	0.88	efficiency	0.88
Hpfriction	0.03	Hpfriction	0.05
HpMaterial	0.15	HpMaterial	0.17
Fo(from table)	3.00	Fo(from table)	3.00
НР	1.60	HP	1.74
KW	1.19	КW	1.30
Cost	AA	Cost	HMDA
K1	1.96	К1	1.96
К2	1.71	К2	1.71
КЗ	-0.23	КЗ	-0.23
Сро	121.86	Сро	140.07
FBM	1.50	FBM	1.50
Fp	1.00	Fp	1.00
СВМ	182.79	CBM	210.10
CBM (2016)	\$ 250.97	CBM (2016)	\$ 288.48

ADIPIC ACID - HOPPER	Add Uniform mass flow belt to hopper		
	A Price Antid Hamman		
	Adipic Acia Hopper		
	Vertical Process Vessel (Solid Adipic A	Acid Storage)	
*Desired Hold-Up Time based on Jessica's "Storage and			
Transport of Solids" Source . This is for half-full. We choose			
middle of range to be conservative (1 to 3 hours)	Hold-Up Time (hr)	2	
	Volume (ft^3)	337.7	
*Found based on cylinder and L/D equal to 4. Rounded up		5.0	
to nearest rt.	D (ft)	5.0	*
*Nust monually use solver to get this	1 (5.)	17 5	"saying L/D equal to 4, I believe this is given
*This is alightly different from volume needed based on	L (ft)	1/.5	suggestion on econ book from library (1 to 4)
* This is slightly different from volume needed based on	A sturbly (aluma (ft A2)	244	*Height and Diameter Would differ it doing conical
rounaing	Actual Volume (Tt*3)	2 50	nopper snape instead of cylinder
*This is in botween 0.1 to 520 range in correlations		5.50 0.72	
"INIS IS IN DETWEEN 0.1 to 520 range in correlations		2.13	
	K1	0.4974	
	K2	0.4465	
	кз	0.1074	
	logCp0	4.045	
	Ср0	\$ 11,103	
	P design (barg) (Atm +50psi)	3.45	
	D (m)	1.52	
	Fp	1.135	
	Installed Cost:		
	Fm	1	
	В1	1.49	
	В2	1.52	
	FBM	3.215	,
	Cbm (2001)	\$ 35,701	
	Cbm (2016, using CEPCI of 545.1)	\$ 48,695	
		<u>, · · · · · · · · · · · · · · · · · · ·</u>	

MADA Hosper Index Vertical Process Vessel (HMDA Storage) Index "Togsind Hold-Up Time based on "Source .mis is for hard-factor to a source .mis is sole .mis a source .mis is a sole .mis a so	HMDA - HOPPER	Add Uniform mass flow belt to hopper		
HMDA hopper "Desired Hold-Up Time based on "Storage and transport of Solids" Source. This is for half-full. We choose middle of range to be conservative (to 3) Alles "Hourd based on opinder and UD equal to 4. Should round to nearest. Stor 2 (ft) 412.3 "Found based on opinder and UD equal to 4. Should round to nearest. Stor 2 (ft) 60 "Must manually use solver to get this based on rounding extra 1/D equal to 4. Should round to nearest. Stor 2 (ft) 10 "Must manually use solver to get this based on rounding extra 1/D equal to 4. Should round barret for solume needed based on rounding extra 1/D equal to 4.1 10 10 "This is slightly different from volume needed based on rounding extra 1/D equal to 4.1 10 10 11 "This is in between 0.1 to 520 range in correlation Actual Volume (ft*3) 424 11 11 11 (1 0.007 1.007 1.001 11				
"beside in "Storage and Transport of 6l idid- up Time based on "Storage and Transport of source. This is for half-rul. we		HMDA Hopper		
"Desired Hold-Up Time based on "Storage and to have be conservite (to 3) volume (h*3) 1 "Found based on cylinder and I/D equal to 4. Should roum (h*3) (h) 1 "Found based on cylinder and I/D equal to 4. Should roum (h*3) (h) 1 "Must manually use solver to get this is given suggettion on eon book store and the second roum (h) *sying I/D equal to 4, 1 "Hust manually use solver to get this is given suggettion on eon book store and the second roum (h) *sying I/D equal to 4, 1 "Hust manually use solver to get this is given suggettion on eon book store and the second roum (h) *sying I/D equal to 4, 1 "Hust manually use solver to get this is given suggettion on eon book store and the second roum (h) *sying I/D equal to 4, 1 "Hust manually use solver to get this is given suggettion on eon book store and the second roum (h) *sying I/D equal to 4, 1 "Hust is is lightly different from volume medded based on roum (h) *tual Volume (h*3) intel do intel 4 "This is in between 0.1 to 520 range in correlations Katual Volume (h*3) intel 4 intel 4 [Gp(pD 4.11/D 1.21/D intel 4 intel 4 [Gp(pD 4.11/D 1.21/D intel 4 intel 4 [Gp(pD 4.11/D 1.21/D intel 4 intel 4 intel 4		Vertical Process Vessel (HMDA Storage)		
Tossired Hold-Up Time based on "Storage and Transport of Solids"-Storae. This is for half-All. We will hold-Up Time (hr)				
Transport of Solid*' Source. This is for half-full. We Image to be conservative (1 to 3) Image to be conservative (1 to 3) *found based on cylinder and U/D equal to 4. should Image to be conservative (1 to 3) Image to be conservative (1 to 3) *found based on cylinder and U/D equal to 4. should Image to be conservative (1 to 3) Image to be conservative (1 to 4) *found based on cylinder and U/D equal to 4. should Image to be conservative (1 to 4) Image to be conservative (1 to 4) *found based on cylinder and U/D equal to 4 (1 to 5) Image to be conservative (1 to 4) Image to be conservative (1 to 4) *This is slightly different from volume needed Image to the conservative (1 to 5) Image to the conservative (1 to 5) *This is in between 0.1 to 520 range in correlations Actual Volume (ft ^A 3) Image to the conservative (1 to 5) *This is in between 0.1 to 520 range in correlations Actual Volume (ft ^A 3) Image to the conservative (1 to 5) *This is in between 0.1 to 520 range in correlations Actual Volume (ft ^A 3) Image to the conservative (1 to 5) *This is in between 0.1 to 520 range in correlations Actual Volume (ft ^A 3) Image to the conservative (1 to 5) *This is in between 0.1 to 520 range in correlations Actual Volume (ft ^A 3) Image to the conservative (1 to 5) *This is in between 0.1 to 520 rang	*Desired Hold-Up Time based on "Storage and			
choose middle of range to be conservative (1t 0 3) Image (1t 0) Image (1t 0) *Found based on cylinder and L/D equal to 4. Should round to nearest. Sft? D (ft) Image (1t 0) *saying L/D equal to 4. Image (1t 0) *Must manually use solver to get this L (ft) Image (1t 0) *saying L/D equal to 4. Image (1t 0) **Must manually use solver to get this L (ft) Image (1t 0) *saying L/D equal to 4. Image (1t 0) **Mist sightly different from volume need based on rounding Actual Volume (ft*3) 422 image (1t 0) **This is slightly different from volume need based on rounding Actual Volume (ft*3) 422 instead of cylinder *This is in between 0.1 to 520 range in correlations Actual Volume (ft*3) 422 instead of cylinder *This is in between 0.1 to 520 range in correlations Actual Volume (ft*3) 424 instead of cylinder *This is in between 0.1 to 520 range in correlations Actual Volume (ft*3) 424 instead of cylinder *Go 1 C 1 C 1 C 1 1 1 *Go 1 C 1 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Transport of Solids" Source . This is for half-full. We			
holds by Dirthe (hr) 2 Volume (H*3)	choose middle of range to be conservative (1 to 3			
Volume (4*3) 41.23 *Found based on cylinder and U/D equals to 4, 10 believer this is given round to nearest .5 ft? D (ft) 6.0 *Must manually use solver to get this to und to nearest .5 ft? L (ft)	hours)	Hold-Up Time (hr)	2	
*Found based on cylinder and L/b equal to 4. Should round to nearest. 5ft? D (ft) 6.0 *waying L/D equal to 4. I believe this is given suggestion on can book usgestion on can book usgestion on can book usgestion on can book waying L/D equal to 4. I believe this is given suggestion on can book waying L/D equal to 4. I believe this is given suggestion on can book waying L/D equal to 4. I believe this is given suggestion on can book waying L/D equal to 4. I believe this is given suggestion accor book waying L/D equal to 4. I believe this is given waying L/D equal to 4. I this is is between 0.1 to 520 range in correlator k2 and 0.000 k2 and		Volume (ft^3)	412.3	
round to nearest .5 ft? D (ft) 60 *Must manually use solver to get this *Must manually use solver to get this L (ft) 15 *This is slightly different from volume needed based on rounding Actual Volume (ft^3) 424 instead of cylinder Actual L/D 2.50 *This is in between 0.1 to 520 range in correlations Actual Volume (m*3) 1201 *This is in between 0.1 to 520 range in correlations Actual Volume (m*3) 1201 K1 0.1074 K2 0.0074 K2 0.0074 K3 0.0074 K3 0.0074 K3 0.0074 K3 0.0074 Cp0 0 \$ 12,786 Cp0 0 \$ 2,786 Cp0 0	*Found based on cylinder and L/D equal to 4. Should			
*Must manually use solver to get this *Must manually use solver to get this based on rounding based on rounding tatual Volume (ft^3) *This is ni between 0.1 to 520 range in correlations Actual Volume (ft^3) *this is n between 0.1 to 520 range in correlations Actual Volume (ft^3) *this is n between 0.1 to 520 range in correlations K1 Actual Volume (m^3) *this is n between 0.1 to 520 range in correlations K1 Actual Volume (m^3) *this is n between 0.1 to 520 range in correlations K1 Actual Volume (ft^3) *this is n between 0.1 to 520 range in correlations K1 Actual Volume (ft^3) *this is n between 0.1 to 520 range in correlations K1 Actual Volume (ft^3) *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations K2 *this is n between 0.1 to 520 range in correlations *this price now includes the phenolic resin link *this price now includes the phenolic Resin (m2) *this resin (Sh(g) *this resin (S	round to nearest .5 ft?	D (ft)	6.0	
*Must manually use solver to get this *Must manually use solver to get this based on rounding Actual Volume (ft^3) Actual Volume (ft 3) Actual Volume (ft 4) Actual Volume				
*Must manually use solver to get this L(ft) 13 *This is slightly different from volume needed based on rounding Actual Volume (ft^3) 424 *This is slightly different from volume needed based on rounding Actual Volume (ft^3) 2.50 *This is in between 0.1 to 520 range in correlations Actual Volume (m*3) 12.01 *This is in between 0.1 to 520 range in correlations Actual Volume (m*3) 12.01 *This is in between 0.1 to 520 range in correlations K1 3.4974 K2 0.04485 0.04485 CopO 5 1.726 K3 0.1074 0.01074 CopO \$ 1.83 CopO \$ 1.262 Must Actual Cost: 1.02 1.02 Instald Cost: 1.02 1.02 Fib price now includes the phenolic resin lining Cbm (201) \$ 3.458 *This price now includes the phenolic resin lining Cbm (201) \$ 3.458 *This price now includes the phenolic resin lining Cbm (201) \$ 3.458 *This price now includes the phenolic resin lining Cbm (201) \$ 3.458 *This price now i				*saying L/D equal to 4, I
*Must manually use solver to get this L (f)				believe this is given
"Must manually use solver to get this L(t) 115 from library (1to 4) "This is slightly different from volume needed based on rounding Actual Volume (t+3) 424 instead of cylinder "This is in between 0.1 to 520 range in correlations Actual V/D 2.50 "This is in between 0.1 to 520 range in correlations Actual Volume (m ^A 3) 1201 K1 3.4974 444 K2 0.4885 444 K3 0.1074 4485 K3 0.1074 4485 Cp0 \$ 12,786 440 Must manually use solver to get this L(b to the solver to th				suggestion on econ book
*This is slightly different from volume needed based on rounding Actual Volume (ft*3) 424 Actual Volume (ft*3) 424 *This is in between 0.1 to 520 range in correlations Actual Volume (m*3) 12.01 *This is in between 0.1 to 520 range in correlations Actual Volume (m*3) 12.01 K1 3.4974	*Must manually use solver to get this	L (ft)	15	from library (1 to 4)
*This is slightly different from volume needed based on rounding Actual Volume (ft*3) 424 Actual L/D				*Height and Diameter
"This is slightly different from volume needed Conical hopper shape based on rounding Actual Volume (ft^3) 424 "This is in between 0.1 to 520 range in correlations Actual Volume (m*3) 12.01 "This is in between 0.1 to 520 range in correlations Actual Volume (m*3) 12.01 K1 3.4974 K2 0.4485 Cp0 4.0107 IogCp0 4.0107 Cp0 5 0 12.08 P design (barg) (Atm +50psi) 3.45 0 (m) 1.83 1 1.262 <t< td=""><td></td><td></td><td></td><td>would differ if doing</td></t<>				would differ if doing
based on rounding Actual Volume (ft^3) 424 Instead of cylinder Actual L/D 2.50 *This is in between 0.1 to 520 range in correlations Actual Volume (m^3) 12.01 K1 3.4974 K2 K2 0.4485 0.4485 K3 0.1074 10.074 Instead of cylinder K3 0.1074 CpO \$ 12,786 10.074 P design (barg) (Atm +50psi) 3.45 10.074 D (m) 1.83 10.076 Fp 1.026 10.076 Installed Cost: 10.076 10.076 B1 1.49 1.49 B2 1.52 1.52 FM 3.409 1.52 Cbm (2001) \$ 43,582 1.52 *This price now includes the phenolic resin lining Cbm (2016 S45.1) \$ 59,721 *This price now includes the phenolic resin lining Cbm (2016 S45.1) \$ 59,721 *This price now includes the phenolic Resin Inside tank (m^2) 32 32 Cbm (2011) \$ 43,582 10.00045 10.00045 Volume of Phenolic Resin Desired (m) <t< td=""><td>*This is slightly different from volume needed</td><td></td><td></td><td>conical hopper shape</td></t<>	*This is slightly different from volume needed			conical hopper shape
Actual L/D2.50*This is in between 0.1 to 520 range in correlationsActual Volume (m^3)12.01K1	based on rounding	Actual Volume (ft^3)	424	instead of cylinder
Actual (JD 2.50 *This is in between 0.1 to 520 range in correlations K1 3.4974 K1 3.4974 K2 0.4485 K3 0.1074 logCp0 4.107 Cp0 \$ 12,786 P design (barg) (Atm +50psi) 3.45 D (m) 1.83 Fp 1.262 Mathematical Cost: 1 Fm 1.262 FM 1.262 FM 1.262 Cho (2001) \$ 43,582 Cho (2001) \$ 43,582 FBM 3.409 Chm (2001) \$ 43,582 FBM 3.409 Chm (2001) \$ 43,582 FBM 3.409 Chm (2001) \$ 43,582 Thickness of Phenolic Resin (m ³) 0.0142 Density of Phenolic Resin (m ³) 0.0142 Density of Phenolic Resin (m ³) 0.0142 Density of Phenolic Resin (m ⁴) 1.30 Mass of Phenolic Resin (m ⁴) 1.3440 Price of Resin (S/kg) 1.30 Mass of Phenolic Resin (m ⁴)			2.50	
*Inis is in between 0.1 to 5.00 range in correlations Actual volume (m^s) 1.201 K1 3.4974 K2 0.4485 K3 0.1074 k3 0.1074 logCp0 4.107 Cp0 \$ 12,786 P design (barg) (Atm +50psi) 3.45 D (m) 1.83 Fp 1.262 Installed Cost: 1 Installed Cost: 1 B1 1.49 B2 1.52 FBM 3.409 Cbm (2001) \$ 43,582 *This price now includes the phenolic resin lining Cbm (2001) \$ 43,582 Volume of Phenolic Resin (m^3) 0.0142 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin (mage) 13,840 Price to Cost (S) 275.61		Actual L/D	2.50	
K1 3,49/4 K2 0,4485 K3 0,1074 logCp0 4,107 Cp0 \$ P design (barg) (Atm +50psi) 3,45 D (m) 1.83 Fp 1.262 Installed Cost: 1.262 Fm 1.149 B1 1.49 B2 1.52 FBM 3.409 Cbm (201) \$ 43,582 Volume of Phenolic Resin (m^2) 32 Thickness of Phenolic Resin (m^3) 0.00142 Density of Phenolic Resin (m^3) 0.0142 Persity of Phenolic Resin (m^3) 1.30 Mass of Phenolic Resin Needed (g) 1.8440 Price to Cost (S) 1.52	* This is in between 0.1 to 520 range in correlations	Actual Volume (m^3)	12.01	
K2 0.04463 K3 0.1074 logCp0 4.107 Cp0 \$ 12,786 P design (barg) (Atm +50psi) 3.45 D (m) 1.83 Fp 1.262 Installed Cost: 1 Fm 1 B1 1.49 B2 1.52 FBM 3.409 Cbm (2001) \$ 43,582 Surface Area Inside tank (m*2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resign (m*3) 0.0142 Density of Phenolic Resin (m*3) 1.30 Mass of Phenolic Resin Needed (g) 138,440 Price to Cast (S) 276,61		K1	3.4974	
K3 0.1074 logCp0 4.107 Cp0 \$ 0.2,786 P 9 P 9 D (m) P 9 D (m) S 1.262 Fp 1.83 Fp 1.262 Installed Cost: 1 B1 1.44 B2 1.52 FBM 3.409 Cbm (2001) \$ 43,582 *This price now includes the phenolic resin lining Cbm (2011) \$ 43,582 *This price now includes the phenolic resin lining Cbm (2012) \$ 5,9,721 Volume of Phenolic Resin (m^2) 32 32 Thickness of Phenolic Resin (m^3) 0.00142 32 Density of Phenolic Resin (m^3) 0.0142 32 Density of Phenolic Resin (m^3) 0.0142 34,400 Price of Resin (S/kg) 135 34,400 Price of Resin (S/kg) 15 74,61		KZ	0.4485	
K3 0.1074 logCp0 4.107 Cp0 \$ 12,786 P design (barg) (Atm +50psi) 3.45 D (m) 1.83 Fp 1.262 Installed Cost: 1 Fm 1 B1 1.49 B2 1.52 FBM 3.409 Cbm (2001) \$ 43,582 Cbm (2001) \$ 59,721 Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resin Desired (m) 0.0045 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin (med (g) 18,440 Price to Cat (\$) 276,61				
NS 0.1074 logCp0 4.107 Cp0 \$ 12,786 P design (barg) (Atm +50psi) 3.45 D (m) 1.83 Fp 1.262 Installed Cost: 1 Fm 1 B1 1.49 B2 1.52 FBM 3.409 Cbm (2001) \$ 43,582 *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ 59,721 *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ 59,721 Thickness of Phenolic Resing Desired (m) 0.000045 0.00045 Volume of Phenolic Resin Meeded (g) 1.30 0.0142 Density of Phenolic Resin Meeded (g) 15 Price to Coat (\$) Price to Coat (\$) 276.61 15		¥2	0.1074	
Interpol 1.2,780 CpO \$ 12,780 P design (barg) (Atm +50psi) 3.45 D (m) 1.83 Fp 1.262 Installed Cost: 1.262 Fm 1 B1 1.49 B2 1.52 FBM 3.409 *This price now includes the phenolic resin lining Cbm (2001) \$ 43,582 Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resin Needed (g) 1.30 Mass of Phenolic Resin Needed (g) 18,440 Price to Coat (\$) 276.61		k3 log(n0	0.1074	
Image: Constraint of the second state of the second sta			4.107 \$ 12.786	
P design (barg) (Atm +50psi)3.45D (m)1.83Fp1.262Installed Cost:1Installed Cost:1Fm1.49B11.49B21.52FBM3.409Cbm (2001)\$ 43,582Cbm (2011)\$ 59,721Surface Area Inside tank (m^2)32Thickness of Phenolic Resign Desired (m)0.00045Volume of Phenolic Resin (m^3)0.0142Density of Phenolic Resin (m^3)1.30Mass of Phenolic Resin (model)1.30Price to Cost (5)276.61		Сро	Ş 12,780	
P design (barg) (Atm +50psi)3.45D (m)1.83Fp1.262Installed Cost:Installed Cost:Fm1B11.49B21.52FBM3.409Cbm (2001)\$ 43,582*This price now includes the phenolic resin liningCbm (2016, using CEPCI of 545.1)Surface Area Inside tank (m^2)32Thickness of Phenolic Resin (m^3)0.0142Density of Phenolic Resin (m^3)0.0142Density of Phenolic Resin Needed (g)18,440Price to Coat (\$)\$ 276.61				
D (m) 1.83 Fp 1.262 Installed Cost: 1 Fm 1 B1 1.49 B2 1.52 FBM 3.409 Cbm (2001) \$ \$ 9,721 *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin 1.30 Mass of Phenolic Resin 1.30 Price of Resin (\$/kg) 118,440 Price to Coat (\$) 276.61		P design (barg) (Atm +50psi)	3.45	
b (m) 1.33 Fp 1.262 Installed Cost: 1 Installed Cost: 1 Fm 1 B1 1.49 B2 1.52 FBM 3.409 Cbm (2001) \$ Cbm (2001) \$ Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin 1.30 Mass of Phenolic Resin 1.30 Price of Resin (\$/kg) 18,440 Price to Coat (\$) 276.61		D (m)	1.83	
Image: Product of the second secon		En	1 262	
Installed Cost:Installed Cost:Fm1B11.49B21.52FBM3.409Cbm (2001)\$ 43,582*This price now includes the phenolic resin liningCbm (2016, using CEPCI of 545.1)\$ 59,721*This price now includes the phenolic resin liningCbm (2016, using CEPCI of 545.1)\$ 0.00045*This price now includes the phenolic resin liningCbm (2016, using CEPCI of 545.1)\$ 0.00045*This price now includes the phenolic resin liningCbm (2016, using CEPCI of 545.1)\$ 0.00045*This price now includes the phenolic resin liningCbm (2016, using CEPCI of 545.1)\$ 0.00045*This price now includes the phenolic Resin (m^2)Cbm (2016, using CEPCI of 545.1)\$ 0.00045*Under of Phenolic Resin Desired (m)0.000450.00045Volume of Phenolic Resin (m3)0.01420.0142Density of Phenolic Resin (m3)0.01420.0142Density of Phenolic Resin Needed (g)18,4401.30Price of Resin (\$/kg)118,44015Price to Coat (\$)276.6115		· P	11202	
Fm 1 B1 1.49 B2 1.52 FBM 3.409 Cbm (2001) \$ Cbm (2001) \$ *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ \$ *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ \$ \$ *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ \$ \$ *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ \$ \$ *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ \$ \$ *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ \$ \$ *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ 0.00045 Volume of Phenolic Resin (m3) 0.0142 0.0142 0.0142 0.0142 0.0142 <td< td=""><td></td><td>Installed Cost</td><td></td><td></td></td<>		Installed Cost		
B1 1.49 B2 1.52 FBM 3.409 *This price now includes the phenolic resin lining Cbm (2001) \$ 43,582 *This price now includes the phenolic resin lining Cbm (2016, using CEPCl of 545.1) \$ 59,721 *This price now includes the phenolic resin lining Cbm (2016, using CEPCl of 545.1) \$ 59,721 *This price now includes the phenolic resin lining Cbm (2016, using CEPCl of 545.1) \$ 59,721 *This price now includes the phenolic resin lining Cbm (2016, using CEPCl of 545.1) \$ 59,721 *This price now includes the phenolic resin lining Cbm (2016, using CEPCl of 545.1) \$ 59,721 *This price now includes the phenolic resin lining Cbm (2016, using CEPCl of 545.1) \$ 59,721 *This price now includes the phenolic resin lining Cbm (2016, using CEPCl of 545.1) \$ 59,721 *This price now includes the phenolic Resin floating 32 32 *Thickness of Phenolic Resin Desired (m) 0.00045 0.0142 *Unime of Phenolic Resin 1.30 1.30 Mass of Phenolic Resin Needed (g) 18,440 1.34 Price of Resin (\$/kg) 15 1.30 Price to Coat (\$) 276.61 15		Em	1	
B2 1.52 FBM 3.409 *This price now includes the phenolic resin lining Cbm (2001) \$ 43,582 *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ 59,721 Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin 1.30 Mass of Phenolic Resin 1.30 Price of Resin (§/kg) 15 Price to Coat (\$) 276.61		B1	1 49	
FBM 3.409 Cbm (2001) \$ 43,582 *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ 59,721 Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin 1.30 Mass of Phenolic Resin Needed (g) 18,440 Price of Resin (\$/kg) 15 Price to Coat (\$) 276.61		B2	1 52	
Cbm (2001) \$ 43,582 *This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ 59,721 Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin 1.30 Mass of Phenolic Resin Needed (g) 18,440 Price of Resin (5/kg) 15 Price to Coat (\$) 276.61		FBM	3.409	
*This price now includes the phenolic resin lining Cbm (2016, using CEPCI of 545.1) \$ 59,721 Cbm (2016, using CEPCI of 545.1) \$ 59,721 Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin (m^3) 1.30 Mass of Phenolic Resin Needed (g) 18,440 Price of Resin (\$/kg) 15 Price to Coat (\$) 276.61		Cbm (2001)	\$ 43,582	
Surface Area Inside tank (m^2) 32 Thickness of Phenolic Resign Desired (m) 0.00045 Volume of Phenolic Resin (m^3) 0.0142 Density of Phenolic Resin 1.30 Mass of Phenolic Resin Needed (g) 18,440 Price of Resin (\$/kg) 15 Price to Coat (\$) 276.61	*This price now includes the phenolic resin lining	Cbm (2016, using CEPCI of 545.1)	\$ 59,721	
Surface Area Inside tank (m^2)32Thickness of Phenolic Resign Desired (m)0.00045Volume of Phenolic Resin (m^3)0.0142Density of Phenolic Resin1.30Mass of Phenolic Resin Needed (g)18,440Price of Resin (\$/kg)15Price to Coat (\$)276.61				
Thickness of Phenolic Resign Desired (m)0.00045Volume of Phenolic Resin (m^3)0.0142Density of Phenolic Resin1.30Mass of Phenolic Resin Needed (g)18,440Price of Resin (\$/kg)15Price to Coat (\$)276.61		Surface Area Inside tank (m^2)	32	
Volume of Phenolic Resin (m^3)0.0142Density of Phenolic Resin1.30Mass of Phenolic Resin Needed (g)18,440Price of Resin (\$/kg)15Price to Coat (\$)276.61		Thickness of Phenolic Resign Desired (m)	0.00045	
Density of Phenolic Resin1.30Mass of Phenolic Resin Needed (g)18,440Price of Resin (\$/kg)15Price to Coat (\$)276.61		Volume of Phenolic Resin (m^3)	0.0142	
Mass of Phenolic Resin Needed (g)18,440Price of Resin (\$/kg)15Price to Coat (\$)276.61		Density of Phenolic Resin	1.30	
Price of Resin (\$/kg) 15 Price to Coat (\$) 276.61		Mass of Phenolic Resin Needed (g)	18,440	
Price to Coat (\$) 276.61		Price of Resin (\$/kg)	15	
		Price to Coat (\$)	276.61	

Table A.10.: HMDA Hopper TK-103 Sizing and Costing

ADIPIC ACID - Dissolved Soluti	on	
Mixer: Preparing Adipic Acid in Solution		
Density (g/cm^3)	1.366	*Source: Encyclopedia 11
рН	2.7	
		*Source: Solubility use table 2: This is
		the low end of experimental data to be
Max Solubility at 50°C or 122°E (g/I)	82 7	conservative
	02.7	*Chose this 90% of maximum
		solubility. This was an estimate to
Solubility Allowing in Calculations (g/I)	74.43	make sure completely soluble.
MW of Adipic Acid (g/mol)	146.14	
		*30 minutes based on "Mixer Settler
Desired Residence Time (hr)	0.5	Time" Source
Known Flow Rate of Solid Out (lb/hr)	7,200	
Flow Rate of solid (g/hr)	3,265,849	
Flow Rate of Water Needed (L/hr)	43,878	
Volume of Water in Reactor (L)	21,939	
		*Saying here that liquid level is half of
		the height of the reactor.This will give
		a hold-up time equal to the residence
Volume of Mixer (including solids) (ft^3)	1,634	time.
D (ft)	10.5	
L (ft)	19	
Actual Volume (ft^3)	1,645	
Actual L/D	1.81	*****
Actual Volume (m^3)	46.59	*0.04 to 60 m^3
	4 7116	
	4.7110	
К2	0.4479	
КЗ	0.0004	
Volume (m^3)	46.59	0.04 to 60 m^3
logCp0	5.460	
СрО	\$ 288,361	
FBM (Reactor-Mixer Settler) - Table 4.7	4.0	
Cbm (2001)	\$ 1,153,446	
Cbm (2016, using CEPCI of 545.1)	\$ 1,573,277	
Utility Cost: Horsepower		
Volume of Fluid (1/2 of Volume calculated based on fluid) (f	817	
Volume of Fluid (gallons)	6,111	
HP	9.167	

Table A.11.: Adipic Acid Mixer M-100 Sizing and Costing

HMDA - DISSOLVED SOLUT	ION	
Mixer: Preparing HMDA in Solution		
Density (g/cm^3)	0.89	*SDS
рН	12.4	
		*This is the only known solubility data and is
		at 20C so we will say has to be more soluble at
		50C so it is safe to assume that this amount
Solubility Allowing in Calculations (g/L)	637	will fully dissolve.
MW of HMDA (g/mol)	116.2	
		*30 minutes based on "Mixer Settler Time"
Desired Residence Time (hr)	0.5	Source
Known Flow Rate of Solid Out (Ib/hr)	5,726	
Flow Rate of solid (g/hr)	2,597,476	
Flow Rate of Water Needed (L/hr)	4,078	
	· · · · · ·	*Saying here that liquid level is half of the
		height of the reactor. This will give a hold-up
Volume of Solution in Reactor (L)	2,039	time equal to the residence time.
Volume of Mixer (including solids) (ft^3)	247	
D (ft)	5.5	
		*Solver sets volume calculated by specified
		by L and D to equal volume needed based on
L (ft)	10.5	flow rate and residence time, by changing L.
Actual Volume (ft^3)	249	
Actual L/D	1.91	
Actual Volume (m^3)	7.06	*0.04 to 60 m^3
Reactor-Mixer/Settler for Adipic Acid (Design Textbo	ok)	
К1	4.7116	
К2	0.4479	
КЗ	0.0004	
Volume (m^3)	7.06	0.04 to 60 m^3
logCp0	5.092	
СрО	\$ 123,647	
FBM (Reactor-Mixer Settler) - Table 4.7	4.0	
Cbm (2001)	\$ 494,589	
Cbm (2016, using CEPCI of 545.1)	\$ 674,610	
Utility Cost: Horsepower		
Volume of Fluid (1/2 of Volume calculated based on 1	123.53	
Volume of Fluid (gallons)	924	
НР	1.386	

Table A.12.: HMDA Mixer M-101 Sizing and Costing

NYLON SALT PREPARATION		
Jacketed Agitated Reactor: Preparing Nylon Salt Solution		
Desired Residence Time (hr)	0.5	*Use same as residence time as for mixers.
Known Volumetric Flow Rate of Adipic Acid (ft^3/hr)	84.43	
Known Volumetric Flow Rate of HMDA (ft^3/hr)	103.07	
Flow Bate of Water Added (I /br)	47 956	
Flow Rate of Water Added (ft^3/hr)	1.693	
Total Volumetric Flow Rate in Reactor (ft^3/hr)	1,881	
Volume of Solution in Reactor (ft^3)	940.49	
Volume of Mixer (ft^3)	1,881	*Saying here that liquid level is half of the height of the reactor. This will give a hold-up time equal to the residence time.
D (ft)	11.0	
L (ft)	20	
Actual Volume (ft^3)	1,901	
Actual L/D	1.82	
Actual Volume (m^3) Reactor-Mixer/Settler for Adipic Acid (Design Textbook)	53.82	*0.1 to 35 m^3
к1 К2	4.1052	
КЗ	-0.0005	
Volume (m^3)	53.82	
logCp0	5.025	
Ср0	\$ 105,822	
FBM (Reactor) - Table 4.7	4.0	
Cbm (2001)	\$ 423,288	
Cbm (2016, using CEPCI of 545.1)	\$ 577,356	
Utility Cost: Horsepower		
Volume of Fluid (1/2 of Volume calculated based on fluid) (ft^3)	940.49	
Volume of Fluid (gallons)	7,035	
НР	10.553	

Table A.13.: Nylon Salt Agitated Reactor R-100 Sizing and Costing

Table A.14.: Pump P-101 Sizing and Costing

Utilities	Power php, hp	26.83
Inlet Conditions:	0.00	-
-	C	°F
Temperature,	50	122
Pressure (psia)	90	
Quality Conditions:		
Outlet Conditions:	9 7	og
Tomporatura	50	122
Pressure (psia)	198.00	122
ressere (psie)	250.00	
P-101: Pum	n Sizing with an elvativ	on change
Civing		Sirchange
Inlat Flow Pate of salt solution (Ibm/br)	117202.40	Obtained from salt CSTR
Salt density (lbm/ft3)	74.96	See Crystallizer body sizing
Inlet Flow Rate of salt solution (gpm)	195.25	unit conversion
Outlet pressure from salt CSTR (psia)	90.00	Obtained from Salt CSTR
ΔP HEX (psi)	5.00	
Crystallizer pressure (psia)	191.00	from crystallizer
ΔP Necessary (psia), +2 psi	108.00	ΔP _{pump} +ΔP _{hydrostatic} +ΔP _{losses}
Epumo	0.51	Interpolated From Turton Table 11.9
W _{pump} (hp)	24.15	Flow Rate*ΔP/ε _{oumo}
Edition	0.9	Estimation from Turton 11.5, midpoint
Wurstweet (hp)	26.83	Warner/Estima
Wanter (kW)	20.01	Unit conversion
inpurchased (Nov)	20.01	Child Conversion
Costs:		
Purchased Equipment Costs		
Parelt	م	ć 5,220,07
Result	C p	5 5,239.97 Dumo
variables/Into	Equipment Type	Pump
	Equipment Description	Centrifugai
(*unit)	Capacity: Shaft power (kW)	20.01
(to check)	min	1
	max	300
	K1	3.3892
	K2	0.0536
	K3	0.1538
Dracture Factors		
Result	Fn	1.20
Variables/Info	Equipment Type	Pump
ranabica, inc	Equipment Description	Centrifugal
psia	Operating pressure	196.00
psia	Design pressure, P	246.00
(*barg)	Design pressure, P	15.95
(to check)	min	10
	max	100
	C1	-0.3935
	C2	0.3957
74	C3	-0.00226
(*unit)	Diameter, D (m)	
Para Madula Cost		
bare Module Cost	c	
Kesuit	Caulo mont Toron	> 32,820.83
	Equipment Type	Centrifugal
	MOC	s
	Identificaiton number	20
	F	
	B1	1 90
	B2	1.35
Purchased Cost, C.		\$ 23,308.54
Installed Cost Course		\$ 45.065
Installation Cost		43,003
Year 2001	CL.	21,/56.03
Desired year (2016)	C.I.	545.1
F F F F F F F_		545.1
Total cost including some survey	ć 00.120	
Total cost including spare pump	\$ 90,129	

E-102: Heat Exchanger (Fixe	d tube) (shell: steam and tube: ny	lon salt)	
Sizing:	ft^2	m^2	
Area	372.350	34,592	
Uo (Btu/hr*ft^2**F)	150	(Heuristic from Turto	n for condensing steam)
Temperatures	°C	°F	
Tcool.in	50	122	
Tcool out	190	374	
Temperature approach	63.89		
That in	253.89	489	high pressure steam
Thot out	253.89	489	ingri pressere seconi
Log Mean Temperature	102.87	217.16	
Correction Factor, F	1		
p	0.69		
P	0.00	·	
p'	0.00		
Heast Durby (Btu /br)	1 215+07		
Latant Heat (Btu/lbm)	729 953	high proceuro stoom	
Steam mhot (Ihm/hr)	16641 2271	Litility cost	
Steam mnot (ibm/nr)	117202.40	Utility cost	
Heat Capacity of Nylon Salt (Ptu/Ibm**E)	11/392.49	From one-leaned's	
Heat Capacity of Nylon Sait (Btu/Ibin) - P)	0.41	From encylcopedia	
Purchased Equipment Costs			
Parente	مر	A	
Kesuit	C _p	\$ 17,637	
Variables/Info	Equipment Type	HEX	
	Equipment Description	Fixed tube	
(*unit)	Area, m2	35.0	(in the range)
(to check)	min	10	
	max	1000	
	К1	4.3247	
	К2	-0.303	
	КЗ	0.1634	
Pressure Factors			
Result	Fp	1.19	
	Fp. process vessels		
Variables/Info	Equipment Type	HEX	
101100103,1110	Equipment Description	shell and tube	
	P nylon salt in	198.00	
nsia	P steam in	614 70	
nsia	Design pressure P	664.70	
(*barg)	Design pressure, P	44.92	(in the rang)
(balg)	Design pressure, r	44.02	(in the rang)
(to energy)		140	
	max	0.02991	
	0	0.05881	
	C2	-0.112/2	
	Diameter D	0.00103	
	Diameter, D		
Bare Module Cost			
Result	Case	\$ 91.499.71	
	Course of the second se		
	-BM, process vessel	LIEV	
	Equipment Type	nEA shall and tuba	fealt is shall at one in total.
	Equipment Description	snell and tube	(said in shell, steam in tube)
	Identificaiton number	co sneir / SS tube	(uue to aciu component)
	reaction number	4	
	h _M	1.8	
	81	1.63	
	B2	1.66	
Durstwood Cost, Co		¢ ======	
Purchased Cost, Cp		\$ 51,904.45	
Installed Cost, C _{BM}		\$ 125,633	
Year 2001	C.I.	397	
Desired year (2016)	C.I.	545.1	

Table A.15.: Heat Exchanger E-102 Sizing and Costing
E-103: Condenser (Fixed tube) (water vapor in shell, C.W. in	tube)	
Sizing:	ft^2	m^2	
Area	2141.807	198.980	
Uo (Btu/hr*ft^2**F)	150	(Heuristic for conden	ser)
Temperatures	°C	*F	
Tcool,in	30	86	(C.W. Heuristic from Turton, 30
Tcool,out	45	113	
Approach Temp.	160	320	
Thot.in	190	374	(Melting point of Nylon salt, see
Thot.out	190	374	(
Log Mean Temperature	274.28		
Correction Factor, F	1		
P	0.09		
R	0.00		
n pi	0.00		
P Hand Duty (Dty (by)	0.09		
Heat Duty (Btu/hr)	8.81E+07	(at 1005, Steam table	Adaman's
Latent Heat (Btu/Ibm)	850.73	(at 190C, Steam table	e, Moran)
Maximum amount of water can vaporize (lbm/hr)	116394.73		
Actual water vaporize mhot (lbm/hr)	103579	(calculated based on	crystallizer sizing and Vmax of va
C.W. flowrate (m3/hr)	3277.65	(For utilities cost)	
Density of C.W. (kg/m3)	995.72		
C.W. mcold (lbm/hr)	3.26E+06		
Heat Capacity of water (Btu/Ibm**F)	1	Properties spreadshe	et
Purchased Equipment Costs			
Result	C_	\$ 31.022.13	
Mariahla da fa	C p	5 51,022.15	
variables/Into	Equipment Type	HEX	
	Equipment Description	Fixed tube	
(*unit)	Area, m2	199.0	(in the range)
(to check)	min	10	
	max	1000	
	К1	4.3247	
	K2	-0.303	
	K3	0.1634	
	110	0.105.	
Pressure Factors			
Result	Fp	1.05	
	Fp, process vessels		
Variables/Info	Equipment Type	HEX	
	Equipment Description	Fixed tube	
psia	P C.W. assume	100	
C	T water vapor	190	
nsia	P condenser (water vanor P)	181 368	(Sat steam table Moran)
psia	Design pressure P	221.300	(Sat. steam table, morally
(Share)	Design pressure, P	14.04	(in the renge)
(*oarg)	Design pressure, P	14.34	(in the range)
(to check)	min	5	
	max	140	
	CI	0.03881	
	C2	-0.11272	
	C3	0.08183	
	Diameter, D		
Bare Module Cost			
Besult	Court	\$ 195.920.97	
hesuit	CBM	\$ 155,520.67	
	CBM, process vessel		
	Equipment Type	HEX	
	Equipment Description	shell and tube	(water vapor in shell, C.W. in tu
	MOC	SS	
	Identificaiton number	5	
	FM	2.7	
	81	1.63	
	82	1.03	
	62.	1.00	
Purchased Cost, Cp		\$ 120,228.36	
Installed Cost, C _{BM}		\$ 269,009	
Year 2001	C.I.	397	
Desired year (2016)	C.I.	545.1	

Table A.16.: Condenser E-103 Sizing and Costing

Table A.17.: Crystallizer R-101 Sizing a	and Costing
--	-------------

R-1	00: Crystallizer Body		
Sizing:			
Volume required	Volume required (m3)	20.90	(<"crystallizer volume", satisfied
	Voume required (ft3)	738.25	
	Nylon salt M.w. (lbm/lbmol)	262.35	
	Water M.w. (lbm/lbmol)	18.00	
	Production Rate (lbm/hr)	13813.49	
	Retention hour (hr)	3.38	(Heuristic for forced-circulation
	Nylon salt density (lbm/ft3)	74.96	(Source: http://allinno.com/m/
	Water density (lbm/ft3)	54.69	
	Concentration of solids (%)	50	
	Slurry density (lbm/ft3)	63.24	(Source: Slurry density calculation
Maximum vapor velocity	Vmax (m/s)	0.29	
	Vmax (ft/s)	0.94	
	constant C (ft/s)	0.08	(recommended for vapor heads
	Operating temperature (°C)	190	
	Operating temperature (?)	374	0.0014.44
	Liq. density of water (lbm/ft3)	54.69	0.0011414
A	vap. density of water (IDM/Tt3)	0.40	0.1565
Minimum Cross-sectional area	Cross-sectional area (m2)	0.95	(< evaporator area , satisfied)
Courte Illines Melvine	Tetel volume (m2)	10.27	(This value is not controlling)
Crystallizer volume	Diameter (m)	40.75	(Houristie)
	Liquid level (m)	3.4	(Heuristic)
	Cone volume (m2)	9 5 9	(Heuristic)
	Straight side (m2)	22.17	
	Diameter (ft)	10.50	
	Length (ft)	12.12	
	Cone volume (ft3)	307 77	
	Straight side (ft3)	1135 20	
	Total volume (ft3)	1437.92	
Evanorator area (m2) (for corting)	Area (m3)	8.04	
Evaporator area (m2) (for costing)	Area (ff2)	86.57	
	Alea (Itz)	00.52	
Costes			
Costs:			
Purchased Equipment Costs			
Result	C'p	\$ 262,671.50	
Variables/Info	Equipment Type	Evaporators	
	Equipment Description	Forced-circulation	pumped)
(*unit)	Capacity (m2)	9.00	(in the range)
(to check)	min	5	
(to check)	may	1000	
	11103	E 0229	
	×1	0.2475	
	K2	0.0703	
	63	0.0703	
D			
Pressure Factors	F	1.00	
Result	Fp	1.00	
na statut na dise dis	Fp, process vessels	0.50	
Variables/Info	Equipment Type	Evaporator	
-	Equipment Description	Forced-circulation (pumped)
°C	Operating temp.	190	(Operating temp. heuristic chee
psia	P condenser	181.37	(Antoine equation) (Need to be
psi	ΔP return line	2	
psi	ΔP hydrostatic	6.83	$\Delta P_{hydrostatic} = \rho_{Nylon salt}$
psia	P bot	190.20	0
psia	Design pressure, P	240.20	
(*barg)	Design pressure, P	15.55	
(to check)	min	C	
	max	C	if 10 < p (barg) < 150
	C1	C	0.1578
	C2	0.00	-0.2992
14 1-1	C3	0	0.1413
(*unit)	Diameter, D (m)		
Bare Module Cost			
Result	CBM	\$ 1,024,418.86	
	Equipment Type	2	
	Equipment Description	vertical	
	MOC	SS	
	Identificaiton number	26	
	F _{BM}	3.9	
Purchased Cost, Contractor		\$ 703,288.06	
Installed Cost. C		\$ 1406 576	
Installed Cost, CBM Evaporator		¥ 1,400,570	
Installation Cost	C1	> /03,288.06	
Perired year (2016)	C.I.	39/	
Desired year (2016)	C.I.	545.1	

Table A.18.: Pump P-102 Sizing and Costing

Utilities	Power php, hp	2.96
Inlet Conditions:	-	
	°C	°F
Temperature,	190	374
Pressure (psia)	191.00	
Outlet Conditions:		
outer conditions.	°C	9k
Temperature.	190	374
Pressure (psia)	259.00	
P-102: Pum	p Sizing with an elvatio	on change
Sizing		
Inlet Flow Rate of salt slurry (lbm/hr)	13813.49	Obtained from Crystalllizer
Salt slurry density (lbm/ft3)	63.24	See Crystallizer body sizing
Inlet Flow Rate of salt slurry (gpm)	27.23	unit conversion
Outlet pressure from crystalizer (psia)	191.00	Obtained from Crystalllizer
Reactor pressure (psia)	250.00	from polymerization reactor
Height of reactor (m)	4.69	From polymerization reactor
AP hydrostatic (nsi)	6,76	one conversion
ΔP Necessary (psia), +2 psi	67.76	ΔΡ
E	0.40	Interpolated From Turton Table 11.9
W(hp)	2.66	Flow Rate*AP/s
e	0.9	Estimation from Turton 11.5 mideoint
Cdriver	2.05	w /-
Wepurchased (np)	2.90	νν _{pump} /ε _{driver}
Wpurchased (KWV)	2.21	Unit conversion
Costs:		
Purchased Equipment Costs		
Porult	م	ć 2.665.22
Variables/Infe	C p Equipment Type	2,003.33 Dump
variables/into	Equipment Description	Centrifugal
	Equipment Description	2.21
(*unit)	Capacity: Shaft power (kW)	2.21
(to check)	min	1
	max	300
	K2	5.5892
	K3	0.1538
Pressure Factors		
Result	Fp	1.31
Variables/Info	Equipment Type	Pump
	Equipment Description	Centrifugal
psia	Operating pressure	256.76
psia	Design pressure, P	306.76
(*barg)	Design pressure, P	20.14
(to theck)	min	10
	C1	-0.3935
	C2	0.3957
	C3	-0.00226
(*unit)	Diameter, D (m)	
Bare Module Cost		
Result	CBM	\$ 17,804.73
	Equipment Type	Pump
	Equipment Description	Centrifugal
	Identification number	00
	E.	39
	rM p1	1 90
	B2	1.35
		2. <i>0</i> .7
Purchased Cost, Cp		\$ 12,985.23
Installed Cost. Com		\$ 24,447
Installation Cost		\$ 11.461.53
Year 2001	C.I.	397
Desired year (2016)	C.I.	545.1
Total cost including spare pump	\$ 48,894	

Table A.19.: Polymerization Reactor R-102 Sizing and Costing [47]

Polymerization Reactor (CSTR)									
		Mass Flowrate (Ibm/h	r)						
		Inlet		Generated		Outlet		Accumulation	
Component:	Nylon salt (1:1 molar ratio)	12926.43	Nylon 6 6	8183.35	Nylon 6 6	10213.88	Nylon 6 6	-2030.53	
	amine end-group	5726.46	amine end-group	-4201.60	amine end-group	482.32	amine end-group	1042.54	
Unit conversion from g to lbm	carbonxyl end-group	7199.97	carbonxyl end-group	-5282.73	carbonxyl end-group	606.43	carbonxyl end-group	1310.80	
453.59237	water	887.06	Water	650.85	Water	1699.81	Water	-161.90	IOGA
	To check M.B.	13813.49		-650.13		13002.44		160.91	0.00
Utility	Dowtherm A (Jacketed) (lbm/hr)	674.61				0.78553556			
-	Cooling water (m3/hr)	60.58				0.08373479			
	Cooling water (lbm/hr)	6.03E+04							
	Power (Agitation) (hp)	24.16	(Heuristic from Seider, 0.5-1.5	/1000gal, 3 times when he	at is to be transfered)				
	duty (thermal system) (GJ/hr)	0.78							
Feed Conditions:									
	°C	F							
Temperature,	190	374	(assume, and also depends on	what comes out of the eva	aporator)				
Pressure (psia)	252.00		(lower than vapor pressure)						
Operating conditions:									
	C	Ŧ							
Temperature, operating	268.13	514.63							
Pressure (psia), operating	250.00	(literature, brydson-plastic materials	(lower than the vapor pressur	e, but higher than the mini	mum pressure in literatu	ire range, Ogata	15-20 kg/cm2)		
Pressure (psia), vapor pressure	783.05								
Outlet conditions of Nylon 6,6									
	C	Ϋ́F							
Temperature	268.13	514.63							
Pressure (psia)	250.00	(literature, brydson-plastic materials							
Outlet conditions of Water vaporize									
	°C	°F							
Temperature	204.83	400.69	Phase: liquid						
Pressure (psia)	243.00								
Desired product (Nylon 6,6) quality									
Instantaneous Yield	1								
Overall Yield	1.00								
Number-average degree of polymerization	11.87	(source of equation used: Fogler-polym	erization examples, website)						
Number-average molecular weight (g/mol)	2687.02	(lower than the range due to p lower th	an 0.99, expected 12000-2000	0 for p > 0.99)					

	CSTR, Dowtherm Jacketed			
Sizing:				
CRE Algorithm (CSTR)	Rev.,single rxn	A+C≑L+W	(Heuristic also supports the c	hoice of CSTR since feed co
Components convention	a	amine end-group		
• • • • • • • • • • • • • • • • • • • •	c	carbonxyl end-group		
	1	nylon 6,6 (polymer)		
	w	water molecule		
Design specification				
Outlet Nylon 6,6 given	Fl (lbm/year)	8.50E+07		
	M.W of I (g/mol)	226.32		
	density of I (g/m3)	1140000		
	Fl (mol/s)	5.69	(assume a service factor of 0.9	5)
	ml (g/s)	1286.93		
Reactor size	reactor volume V (m3)	81.24		
	reactor volume V (ft3)	779.11		
	product polymer volume V (gal)	5367.95	(Used to calculate power inpu	t for OPERATING COST later
	product polymer volume V (m3)	20.32	(assume height is double liqui	d level, diameter equal liqui
	liquid level (m)	2.35		
	diameter (m)	2.35		
	neight (m)	4.09	(thickness less than 1/4*D. To	step A 2 1)
	liquid level (ft)	7.70	(chickness less than 1/4 ° D, Tu	A)
9	diamotor (ft)	7.70	(Round up to the hearest 1/2	1.9
15.5	height (ft)	15.40		
13.3	wall thickness (ft)	15.40		
Other (OPTIMIZATION VARIABLE)	snaretime (s)	18000	(use 5 hours, referenced from	Ogata, heuristic from Fogle
	fraction of a. p	0.92	(Might be able to use for optin	nization, see Polymerization
			(But be able to ase for optim	
Initial condition	To (K)	463		
(lbm/lbmol) (for amine end-group)	M.W. of HMDA	116.2		
(lbm/lbmol) (for carbonxyl end-group)	M.W. of Adipic acid	146.1		
	Fao (mol/s)	6.21	(Update from POLYMATH)	
	Fco (mol/s)	6.21	(stoichiometric equivalent)	
	Flo (mol/s)	0		
	Fwo (mol/s)	6.21		
	Cao (mol/m3)	5500.40		
	Cco (mol/m3)	5500.40		
	Clo (mol/m3)	0		
	Cwo (mol/m3)	5500.40	1	
	vo (m3/s)	1.13E-03	(assume density change is neg	ligible, might not be applied
Stoichiometry	(Results from Polymath Report)			
Concentration (mol/m3)	Ca	463.2833		
	CC CL	463.2833	5027.12	
	0	10540	5037.12	
	Ct Ct	16504 1276		
Molar flowrate (mol/s)	Fa	10504.1270		
inolar nowrace (mol/s)	Fc	0.52		
	FI	5.69	(check with FI above)	
	Fw	11.90	· · · · · · · · · · · · · · · · · · ·	
Mole fraction	xa	0.03		
	xc	0.03		
	xl	0.31		
	xw	0.64		
Relative Rate	ra (mol/m3.s)	-0.22		
	rc (mol/m3.s)	-0.22	2	
	rl (mol/m3.s)	0.22		
	rw (mol/m3.s)	0.22		
Rate Law (Steppan article)	forward ko (1/hr)	8.25		
	equilibrium Ko	304.26		
	deltaHo (cal/mol)	-4204.03		
	deltaHo (J/mol)	-17589.68		
	activ. energy (kcal/mol)	21.40	(Steppan)	
	gas constant (kcal/mol.K)	0.001987		
	Ref. Temp. Tr (K)	473.00	(200 degree C)	
	torward k (1/hr)	145.06		
	equilibrium K	173.25		
	rw (mol/m3.s)	0.22		

Table A.19.: Polymerization Reactor R-102 Sizing and Costing (continued)

Energy Balance				
Rxn	T (K) (Polymath)	541.125	POLYMATH	
	т°С	268.125	(expected 200-265C)	
	Cpa (J/mol.K)	68.14	Check "chemical properties fro	om perry" spreadsheet
	Cpc (J/mol.K)	275.37		
	Cpl (J/mol.K)	377.92		(range 200-220°C, Ogata)
	Cpw (J/mol.K)	75.4		
(J/mol)	deltaHrxn (J/mol)	-10108.87	(-deltaHrxn >0: exothermic)	
Medium fluid: Dowtherm	Ta supply (°C)	300		
	Ta supply (K)	573		
	ΔT approach (K)	10	(minimum temperature appro	ach of 10C , Turton heuristi
	Ta return (K)	551.125		
(J/g.K)	Cp dowtherm	2.3	(Engineering toolbox and Dow	therm a properties online s
Heat duty info	Q (J/s=W)	-6.28E+04	(Turton chapter 19, 3rd ed.)	Q = Fao * Deltar
	A (m2)	34.62		
	U (J/m2.s.K)	280	(Heuristic estimation, liquid to	liquid for dowtherm,Turto
	UA (J/s.K)	9694.81		
Utility cost of Dowtherm A	Dowtherm flowrate (gal/min)	85.00	(at normal operating condition	n, pp. 760 Turton 4th edition
	Dowtherm density (kg/m3)	800.00		
	Dowtherm flowrate (g/s)	4290.13	(at 300 degree C, Engineering	toolbox)
	Downtherm flowrate (lbm/hr)	34049.22795		
	Process heating duty (W)	2.16E+05		
Costs:				
Purchased Equipment Costs				
Result	С° _Р	\$ 131,634.44		
Variables/Info	Equipment Type	Reactors		
	Equipment Description	Jacketed agitated	53	
(*unit)	Capacity (m3)	81.24	(in the range)	
(to check)	min	0.1		
	max	35		
	К1	4.1052		
	K2	0.532		
	кз	-0.0005		
Installed Cost, C _{BM,reactor}		\$ 722,962	(not follow process vessel, usi	ng heuristic Fbm)
Year 2001	C.I.	397		
Desired year (2016)	CI.	545.1		

Table A.19.: Polymerization Reactor R-102 Sizing and Costing (continued)

E-104: Condenser (Double pipe) (water vapor in sh	ell, C.W. in tube)	
Sizing:	ft^2	m^2	
Area	30.592	2.842	
Uo (Btu/hr*ft^2**F)	150	(Heuristic for condenser, Turton)	
Temperatures	°C	*F	
Tcool,in	30	86	
Tcool,out	45	113	
Temperatures approach	10	50	(based on temperture differen
Thot, in (water vapor)	268.125	514.625	
T sat. Vap. At 250 psia	204.829	400.6922	
Thot.out	204.829	400.6922	
Log Mean Temperature		356.39	
Correction Factor, F	1.00		
Р	0.06		
B	4 22		
P'	0.06		
Heat Duty (Btu/br)	1 635+06		
Water vanorize mhot (lhm/hr)	1699.81		
Latent heat (Btu/Ibm)	1055.01	(at 250acia, 204 828C)	
CW flowsets (m2/bs)	620.03	(at 250psid, 204.625C)	
C.W. flowrate (m3/hr)	60.58	(For utilities cost)	
Density of C.W. (kg/m3)	995.72		
C.W. mcold (Ibm/hr)	60324.65	F	
Heat Capacity of water vapor (Btu/Ibm**F)	1.16	Engineering toolbox, at 250C	
Heat Capacity of C.W (Btu/Ibm**F)	1	Engineering toolbox, at 30C	
Purchased Equipment Costs			
Result	C.	\$ 2,914.91	
Variables/Info	Equipment Type	HEX	
Partables, mo	Equipment Description	Fixed tube	
(m	Legapment bescription	2.0	· · · ·
(°unit)	Area, m2	3.0	(out of range)
(to check)	min	1	
	max	10	
	К1	3.3444	
	K2	0.2745	
	K3	-0.0472	
Pressure Factors			
Result	Fp	0.96	
	Fp, process vessels		
Variables/Info	Equipment Type	HEX	
	Equipment Description	Double pipe	
с	T top	268.125	P condenser (P water vapor)
psia	P reactor	250.00	
psi	ΔP return line	2.00	
psia	Pcondenser	248.00	
psia	Design pressure, P	298.00	
(*barg)	Design pressure, P	19.53	(in the range)
(to check)	min	40	(
(max	100	
	C1	0.6072	
	C2	-0.912	
	G	0.312	
	Diameter, D	0.3327	
	Diameter, D		
Para Madula Cost			
bare Wodule Cost			
Result	Свм	\$ 16,838.40	
	CBM, process vessel		
	Equipment Type	HEX	
	Equipment Description	shell and tube	
	MOC	SS	
	Identificaiton number	5	
	Fre		
	• M P1	2.7	
	D1 D2	1.74	
	DZ	1.55	
Purchased Cost, Cp		\$ 10,423.17	
Installed Cost, C _{BM}		\$ 23,120	
Year 2001	C.I.	397	
Desired year (2016)	C.I.	545.1	

Table A.20.: Condenser E-104 Sizing and Costing

Dowt	herm Boiler for the reactor- Diph	enyl Heater		
Costing:	•			
Purchased Equipment Costs				
Result	c,	\$	18,508.26	
Variables/Info	Equipment Type	Heaters		
	Equipment Description	Diphenyl heater		
(*unit)	Duty, kW		215.8	(not in the range)
(to check)		min	650	
		max	10750	
	К1		2.2628	
	K2		0.8581	
	K3		0.0003	8
Pressure Factors				
Result	Fp		1.09	
	Fp, process vessels			
Variables/Info	Equipment Type	Heater		
	Equipment Description	Diphenyl heater		
psia	Р		152.70	(min.operating pressure at 40
psia	Design pressure, P		202.70)
(*barg)	Design pressure, P		12.96	(in the range)
(to check)		min	2	2
		max	200)
	C1		-0.01633	8
	C2		0.056875	5
	3		-0.00876	5
	Diameter, D			
Bare Module Cost				
Result	CBM	\$	44,248.28	
	Equipment Type	Heater		
	Equipment Description	Diphenyl-based oil		
	MOC	N/A		
	Identificaiton number		56	5
	F _{BM}		2.2	
Purchased Cost, Cp		\$	60,755.01	
Installed Cost, C _{BM}		\$	60,755	
Year 2001	C.I.		397	
Desired year (2016)	C.I.		545.1	-

Table A.21.: Dowtherm Boiler H-100 Sizing and Costing

Pumping Molten Nylon 66		
Utilities	Power php, hp	24.14
Inlet Conditions:	۰ <u>۰</u>	on
Temperature.	268.13	515
Pressure (psia)	250.00	515
Outlet Conditions:	۰ <u>۰</u>	on
Temperature	268.13	515
Pressure (psia)	1002.00	515
P-103: Pump	Sizing with an elvation	n change
Sizing		
Inlet Flow Rate of molten nylon 66 (lbm/hr)	11302.64	Obtained from Polymerization CSTR
Injet Flow Bate of salt slurry (gpm)	19.80	upit conversion
Outlet pressure from CSTR (psia)	250	Obtained from Crystalllizer
Extruder pressure (psia)	1000	Jessica group
ΔP Necessary (psia), +2 psi	752	$\Delta P_{pump} + \Delta P_{hydrostatic} + \Delta P_{losses}$
ε _{pump}	0.40	Interpolated From Turton Table 11.9
W _{pump} (hp)	21.72	Flow Rate*ΔP/ε _{pump}
ε _{driver}	0.9	Estimation from Turton 11.5, midpoint
W _{purchased} (hp)	24.14	W _{pump} /ε _{driver}
W _{purchased} (kW)	18.00	Unit conversion
Costs:		
Purchased Equipment Costs		
Result	c.	\$ 28,749.92
Variables/Info	Equipment Type	Pump
	Equipment Description	Reciprocating
(*unit)	Capacity: Shaft power (kW)	18.00
(to check)	min	0.1
	max	200
	К1	3.8696
	K2	0.3161
	K3	0.122
Pressure Factors		
Result	Fp	1.54
Variables/Info	Equipment Type	Pump
	Equipment Description	Reciprocating
psia	Operating pressure	1000.00
psia (*bare)	Design pressure, P	71 38
(to check)	min	10
	max	100
	C1	-0.245382
	C2	0.259016
(*unit)	Diameter, D (m)	-0.01565
(,		
Bare Module Cost		
Result	CBM	\$ 197,912.10
	Equipment Type	Pump
	Equipment Description	Reciprocating
	MOC Identification number	28
	EM	20
	B1	1.89
	B2	1.35
Purchased Cost, C _p		\$ 146,025.92
Installed Cost, C _{BM}		\$ 271,743
Installation Cost	<u></u>	\$ 125,716.85
Year 2001 Desired year (2016)	C.I.	397
peared Acti (TOTO)	See 1 a	545.1
Total cost including spare pump	\$ 543,486	
eeee mensamb spore pump		

Table A.23: Extruder MP-102 Sizing and Costing

Extruder		
Standard Extruder Equations		Comments (use Standard Extruder Equations)
Screw Diameter (m)	0.20	
Screw Diameter (ft)	0.67	
Screw Diameter (in)	8	From website with "handy outputs"
Total Length (m)	6.096	20-30D-Chose 25; page 307 also
Total Length (ft)	20.0	
Length of Feed Section (m)	1.6256	4-8D-chose 8
Length of Feed Section (ft)	5.33	
Length of metering section (m)	2.032	6-10D-chose 10
Length of metering section (ft)	6.66	
Number of Parallel Flights	1	
Flight Pitch	0.2032	helix angle 17.66 degrees
Flight Width (m)	0.02032	
Channel Depth in feed section (m)	0.03556	0.15-0.2D-chose 0.175
Channel Depth Ratio	3	2-4, chose 3
Compression Length (m)	0.406	Page 306-2.5:1 and 2D in "Extruder Equations" page 628
Compression Length (ft)	1.33	
L/D	30	Total Length/Diameter
RPM	100	From website with "handy outputs"
Output (lb/hr)	5200	From website with "handy outputs"
Costing:	é76 262 00	Example in Book-Page 433; extruders for polymers (excluding drive and motor); FOB varies by +/- 30%
FOB	\$76,262.88	\$70,000
	1	
L+M Cost	\$ 76,262.88	
Physical Module Cost, PM	\$ 91,515.46	Use L+M cost plus 15-25% of FOB-chose 20%
Bare Module Cost, BM	\$ 99,141.75	use PM plus 10-45% of L+M cost-chose 10%
CEPCI (1957-1959)	1000	
	545.1	
Cbm (2017)	\$ 54,042.17	
Drive Power (kW)	12.0	10
n . (a c		0.47
L/M		0.27
Alloy Cost Factors		
-c/s		1
-s/s		1.19
-monel		1.4
Variable Speed Drive Factor		1.5
L/D	30	

Drive				
Sizing:			Cbm (Drive and Motor)	\$7,089
Power (kW)	12		Cbm (Extruder)	\$54,042
Power (hp)	16		Total Extruder Cost	\$61,131
Costing:				
К1	1.956	Totally Enclosed, Electric		
К2	1.7142			
КЗ	-0.2282			
Shaft Power (kW)	12			
logCp0	3.54016			
СрО	3468.67			
Installed Cost:				
Identification Number	14			
Fbm	1.5			
B1	1.63			
B2	1.66			
Cbm (2001)	\$5,203			
Cbm (2016)	\$7,089			

Table A.23.: Extruder MP-102 Sizing and Costing (ctn)

Condenser during casting wheel		
Utilities		
	C.W. (lbm/hr)	7.51E+04
E-105: Condenser (Fixed	ed tube) (C.W. in tube,	steam in shell)
Sizing:	ft^2	m^2
Area	120.817	11.224
Uo (Btu/hr*ft^2**F)	150	(Heuristic for condenser)
Temperatures	°C	*F
Trool in	30	. 86
Trool out	45	113
Approach Tomp	70.00	11.
Thet is	100.00	150
That aut	100.00	212
Inot,out	100.00	212
Log Mean Temperature	111.96	
Correction Factor, F	1	
Р	0.21	
R	0.00	
P'	0.21	
Heat Duty (Btu/hr)	2.03E+06	
Latent Heat (Btu/lbm)	970.34	(at 100C, Steam table, Mo
water vaporize mhot (lbm/hr)	2091	Jessica
C.W. mcold (lbm/hr)	7.51F+04	
Heat Capacity of water (Btu/lbm**F)	1	Properties spreadsheet
ficar capacity of watch (orayionin 1)	1	Properties spreadsneet
Purchased Equipment Costs		
Result	C.	\$ 15,417.32
Variables/Info	Equipment Type	HEX
	Equipment Description	Fixed tube
24	Equipment Description	12.0
(*unit)	Area, m2	12.0
(to check)	min	10
	max	1000
	К1	4.3247
	К2	-0.303
	К3	0.1634
Pressure Factors		
Result	Fp	1.01
	Fp, process vessels	
Variables/Info	Equipment Type	HEX
	Equipment Description	Fixed tube
с	T water vapor	100.00
psia	P condenser (water vapor P)	14.778
nsia	P.C.W. (assumption)	100.000
nsia	Design pressure P	150.00
(%hava)	Design pressure, P	130.00
(Darg)	Design pressure, P	9.55
(to check)	min	
	max	140
	Cl	0.03881
	C2	-0.11272
	C3	0.08183
	Diameter, D	
Bare Module Cost		
Result	Gam	\$ 95.265.72
	-om	+ 55,203.72
	LBM, process vessel	
	Equipment Type	HEX
	Equipment Description	shell and tube
	MOC	SS
	Identificaiton number	5
	FM	2.7
	81	1.63
	82	1.03
	02	1.66
Purchased Cost, Cp		\$ 58,011.67
Installed Cost, C _{BM}		\$ 130,804
Year 2001	C.I.	397
a i i ianaal	C1	545 1

Casting Wheel						Drive	
Sizing:						Sizing:	
Diameter (ft)	16.4					Power (kW)	75
Diameter (m)	5	4 to 8 m; "Scatt	ering Methods and the Properties" article				100.6 hp
Height (m)	1.5	1.2-1.5m	Temperature in (°F)	530.6	514.6 full capacity	Costing:	
Height (ft)	4.92		Temperature Out (°F)	257	125 C	К1	1.956
Volume (m^3)	29.5		Pressure (psi)	14.7	7	К2	1.7142
Volume (ft^3)	1039.3		Heat Capcity of Nylon 6,6 (J/kg*K)	0.00167	7	К3	-0.2282
Pressure (psi)	14.7		Heat Capacity (Btu/lb*F)	0.3343844	1	Power (kW)	75
Circumference of the wheel (m)	31.42		Heat Duty of Nylon (Btu/hr)	626077	7	logCp0	4.367911966
Circumference (ft)	103.04	50-150	Mass Flowrate of Nylon 6,6 (lb/hr)	6843.3	11302 for full capacity	Cp0	23329.85103
Speed (m/min)	150		Mass Flowrate of Cooling water on outside of wheel (lb/hr)	645	value for 67% case		
Speed (rpm)	4.77		Heat Capacity of Water (Btu/lb*F)	0.997	7	Installed Cost:	
						Identification Number	14
			Mass Flowrate of cooling water inside the wheel (lb/hr)	25	j	Fbm	1.5
Costing:			Thermal Conductivity of Stainless Steel (Btu*in/hr*ft^2*°F)	132	2	B1	1.63
К1	3.5565		Wheel Temperature outside (°F)	530.6	514.6 full capacity	B2	1.66
К2	0.3776		Wheel Temperature inside (°F)	257	7	Cbm (2001)	\$34,995
К3	0.0905		Wall thickness of Casting Wheel (in)	e	5	Cbm (2017)	\$48,050
Volume (m^3)	29		Cooling Water Temperature (°F)	86	5		
logCp0	4.30656783		Cooling Water Pressure (psi)	100	need source	Casting Wheel (2017)	\$227,068
Cp0	20256.65959		Area of Drum (m^2)	19.63	3	Drive (2017)	\$48,050
			Area of Drum (ft^2)	1.82	2	Total Casting Machine Cost (2017)	\$275,117
C1	C		Steam Exit Temperature (F)	212	steam table at 14.7; chE thermo book		
C2	C		Heat of Vaporization (Btu/lb)	970.3	3		
C3	C						
P operating (psi)	14.70						
P Design (barg)	3.45						
Fp	2.5828						
Purchase Cost:							
Identification Number	1						
Fm	1.7	stainless steel	coating				
Cp (2001)	\$88,943						
Ср (2017)	\$122,122						
Installed Cost:							
Identification Number	14						
B1	1.49						
B2	1.52						
Cbm (2001)	\$165,375						
Cbm (2017)	\$227,068						
Installation Cost	\$104,946						

Table A.25.: Casting Wheel MP-103 Sizing and Costing

Table A.26.: Chopper MP-104 Sizing and Costing

Chopper:			Drive:		Total Cost of Chopper:	
Sizing:			Sizing:		Chopper (2017)	\$193,937
Rotor Speed (RPM)	3000	Retsch Example	Power (kW)	75	Drive (2017)	\$48,050
Mass Flowrate (lb/hr)	10214		Power (hp)	100.6	Total Chopper Cost (2017)	\$241,987
Chopping Time (seconds)	60					
Time (hours)	0.017		Costing:			
Mass (Ib)	170.2		K1	1.956		
Density (lb/ft^3)	71.1		K2	1.7142		
Volume (ft^3)	2.39		K3	-0.2282		
Width (m)	1.5		Power (kW)	75		
Width (ft)	4.92		logCp0	4.367911966		
Length (ft)	3	Assume 3 feet	Cp0	23329.85103		
Area (ft^2)	14.76					
Area(m^2)	1.37		Installed Cost:			
			Identification Number	14		
Costing:	blender kneader		Fbm	1.5		
К1	5.0141		B1	1.63		
К2	0.5867		B2	1.66		
КЗ	0.3224		Cbm (2001)	\$34,995		
Area (m^2)	1.37		Cbm (2017)	\$48,050		
logCp0	5.100757678					
СрО	126112.3672					
P operating (psi)	14.70					
P Design (barg)	3.45					
Fp	1.1248					
Installed Cost:						
Fbm	1.12					
Cbm (2001)	\$141,246					
Cbm (2017)	\$193,937					

Table A.27.: Dr	ver MP-105 S	Sizina and	Costina
100101027.1.01	,	nzing ana	costing

Dryer			Drive	
		should be jacketed and have a		
		temp sensor to control		
		temperature and therefore		
Туре:	Horizontal Paddle Vacuum	humidity		
Throughput available	< 30 – 1,000 lb./hr		Sizing:	
Sizing:		up to 30,000 lb/hr	Installed Power (kW)	90
Screw Diameter (mm)	2200			120.7 hp
Screw Diameter (ft)	7.22		Costing:	Drive with 90 kW
Length (mm)	6000		Power (kW)	90
Length (m)	6		Costing:	
Length (ft)	19.7		K1	1.956
Volume (ft^3)	22		К2	1.7142
Volume (ft^3)	776		КЗ	-0.2282
Area (m^2)	3.67		Power (kW)	90
Area (ft^2)	39.4		logCp0	4.434452154
Agitator Speed (RPM)	6		Cp0	27193
Pressure	14.7			
Temperature (°F)	180	Dryer temp source	Installed Cost:	
Pressure drop (psi)	5		Identification Number	14
			Fbm	1.5
			B1	1.63
Costing:	Drum Dryer		B2	1.66
К1	4.45742		Cbm (2001)	\$40,789
К2	0.2731		Cbm (2017)	\$56,005
КЗ	0.134			
Area (ft^2)	4		Dryer Cbm (2017)	\$99,082
logCp0	4.654188429		Drive Cbm (2017)	\$56,005
СрО	45101.23443		Total Dryer Cbm (2017)	\$155,087
Installed Cost:				
Fbm	1.6			
Cbm (2001)	\$72,162			
Cbm (2017)	\$99,082			

Nylon 6,6 Pellet Storage Ta	Nylon 6,6 Pellet Storage Tank (Hopper)			
Sizing:				
Mass Flowrate (lb/hr)	6843.3			
Time (hr)	96			
Mass (lb)	656956.8			
Density (g/cm^3)	1.14			
Density (lb/ft^3)	71.1			
Volume (ft^3)	9235			
Volume (m^3)	261			
Volume (m^3)	390.0			
Temperature (°F)	158			
Pressure (psi)	9.7			
Diameter (m)	4.99			
Diameter (ft)	16.4			
Height (m)	20.0			
Height (ft)	65.5			
L/D	4			
Volume (ft^3)	13787			
Volume (m^3)	390			
Costs:	Vertical Process Vessel			
К1	3.4974			
К2	0.4485			
К3	0.1074			
Volume (m^3)	390			
logCp0	5.380534813			
СрО	240178.8787			
P operating (psi)	9.70			
P Design (barg)	3.10			
Fp	2.4176			
Purchase Cost:				
Identification Number	18			
Fm	1			
Cp (2001)	\$580,660			
Ср (2017)	\$797,274			
Installed Cost				
Identification Number	14			
B1	2 25			
B2	1 87			
Chm (2001)	\$1.02 \$1.507.201			
Chm (2017)	¢2 102 027			
cont (2017)	şz,193,037			
Installation Cost	\$1,395,763			

Table A.28.: Nylon Granule Storage Hopper TK-104 Sizing and Costing

POLYMATH Attachments:

Polymath Coding of the Chemical Reaction Engineering Algorithm Modeling Using Polymath for Autoclave (Polymerization reactor) as a CSTR

#Components: a-amine end-group, c-carbonxyl end-group, l-amide linkage (nylon 6,6), w-water molecule

#DESIGN SPECIFICATION AND INITIAL CONDITION #MI =85E6 #MWI = 226.3 #densityl = 1140000 FI = 5.69#ml = 1286.93 tau = 18000Fogler: 10min-4hour for industrial CSTR $T_0 = 190 + 273$ Ta = 573C, Turton heuristic #T = 520 #Ts = 550 V = FI*226.3/1140000*tau $A = 2^{3.14}((2^{V/3.14})^{(1/3)})^{2}$ **U** = 280 vo = V/taup = 1-Ca/CaoMIGHT be able to use for optimization,

#Fao = Fa/(1-p) Fao = (0-FI)/(-rI)*(-ra)+Fa Fco = Fao Fwo = Fao 10 : salt/water

#Flo = 0 Cao = Fao/vo Cco = Fao/vo stoichiometric equivalence Cwo = Fwo/vo #lbm/year#g/mol, polymer data handbook#g/m3#mol/s, calculated, 0.95 service factor#g/s#in sec, Ogata 5 hours residence time,

#Ogata, range 200-220C #K, Dowtherm a, maximum 400 degree

#K

#m3
#m2, D=L, H=2L
#J/m2.s.K, Heuristic
#m3/s
fraction of functional group amine (a),

#use molar ratio from Ogata: range 0.5-

#mol/m3 #assuming Fao=Fco, due to

 $\label{eq:model} \begin{array}{l} \# \text{MOLE BALANCE (single reaction, single phase, reversible, CSTR)} \\ f(Ca) = vo^*Cao-vo^*Ca+ra^*V \\ Ca(0) = 0.000001 \\ f(Cc) = vo^*Cco-vo^*Cc+rc^*V \\ Cc(0) = 0.00001 \\ f(Cl) = -vo^*Cl+rl^*V \\ Cl(0) = 2000 \\ f(Cw) = vo^*Cwo-vo^*Cw+rw^*V \\ Cw(0) = 10000 \end{array}$

#RATE LAW (activate if reversible, homogeneous rxn)
rw = Ct*k/3600*(xa*xc-xl*xw/K)
#Steppan and Giudici, r in mol/m3.s

#rw is positive due to water being product

Polymath Coding of the Chemical Reaction Engineering Algorithm Modeling Using Polymath for Autoclave (Polymerization reactor) as a CSTR (continued)

```
\mathbf{k} = \mathbf{ko} * exp(\mathbf{E}/\mathbf{R}^*(1/\mathbf{Tr}-1/\mathbf{T}))
        #1/hr, Arrhenius equation at a convenient Temp. Tr=200C
K = Ko * exp(deltaHo*10^{-3})/R*(1/Tr-1/T))
                #literature used: Steppan
ko = exp(2.55-0.45*tanh(25*(xw-0.55)))+8.58*(tanh(50*(xw-0.10))-1)*(1-30.05*xc))
        #ko[=]1/hr; ko,Ko and detaHo models from Steppan
Ko = exp((1-0.47*exp(-xw^{(1/2)}/0.2))*(8.45-4.2*xw))
deltaHo = 7650*tanh(6.5*(xw-0.52))+6500*exp(-xw/0.065)-800
        #cal/mol, convert to J/mol: multiply 4.184
Tr = 473
        #in K, Steppan
E = 21.4
        #kcal/mol
R = 0.001987
        #kcal/mol.K
#RELATIVE RATE:
ra = -rw
                                #mol/m3.s
rc = -rw
rl = rw
#STOICHIOMETRY (assume liquid phase or aqueous, project statement-stoichionmetric equivalents)
                                #mol/m3
Ct = Ca+Cc+Cl+Cw
xa = Ca/Ct
xc = Cc/Ct
xI = CI/Ct
xw = Cw/Ct
Fa = Ca*vo
Fc = Cc^*vo
Fw = Cw^*vo
\#FI = CI^*vo
#ENERGY BALANCE (assume CSTR, with HEX:steam, or downtherm boiler)
f(T) =U*A*(Ta-T)-Fao*(Cpa+Cpc)*(T-To)+deltaH*ra*V
        # Energy balance, Fogler p.567
T(0) = 520
deltaH = deltaHo*4.184+(Cpl+Cpw-Cpa-Cpc)*(T-Tr)
        #J/mol
Cpa = 68.14
        #J/mol.K, calculated, literature, check "chemical property" Spreadsheet
Cpc = 275.37
Cpl = 377.92
Cpw = 75.4
#Q = FI^*CpI^*(T-To)
        #J/s=W
\#UA = Q/(((Ta-T)-(Ta-To))/ln((Ta-T)/(Ta-To)))
        #J/s.K
#deltaTIm = ((Ts-T)-(Ts-To))/ln((Ts-T)/(Ts-To))
```

POLYMATH Report Nonlinear Equations

Calculated values of NLE variables

$\left[\right]$	Variable	Value	f(x)	Initial Guess
1	Ca	462.8893	2.576E-14	1.0E-06
2	Cc	462.8893	2.665E-14	1.0E-05
3	CI	5037.561	-2.487E-14	2000.
4	Cw	1.054E+04	-2.398E-14	10000.
5	Т	541.1971	1.019E-09	520.

Variable	Value
A	34.63136
Cao	5500.45
Ссо	5500.45
Сра	68.14
Cpc	275.37
Cpl	377.92
Срм	75.4
Ct	1.65E+04
Cwo	5500.45
deltaH	2.487E+04
deltaHo	4153.798
E	21.4
Fa	0.5228404
Fao	6.21284
Fc	0.5228404
Fco	6.21284
FI	5.69
Fw	11.90284
	Variable A Cao Cco Cpa Cpc Cpl Cpw Ct Cpw Ct Cwo Ct Cwo Ct E Fa Cwo f Cwo Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch

20	к	531.0598
21	k	145.4477
22	ko	8.2531
23	Ко	304.2805
24	p	0.9158452
25	R	0.001987
26	ra	-0.2798645
27	rc	-0.2798645
28	rl	0.2798645
29	rw	0.2798645
30	Та	573.
31	tau	1.8E+04
32	То	463.
33	Tr	473.
34	U	280.
35	v	20.33127
36	vo	0.0011295
37	ха	0.0280516
38	хс	0.0280516
39	xl	0.3052817
40	xw	0.6386151

Figure A.1: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR with Full Capacity

Figure A.1: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR with 100% Capacity (continued)

Figure A.1: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR with 100% Capacity (continued)

POLYMATH Report

Nonlinear Equations

Calculated values of NLE variables

$\left[\right]$	Variable	Value	f(x)	Initial Guess
1	Ca	419.613	6.217E-15	1.0E-06
2	Cc	419.613	6.217E-15	1.0E-05
3	Cl	5037.561	-6.661E-15	2000.
4	Cw	1.049E+04	-7.105E-15	10000.
5	Т	550.0062	4.948E-10	520.

	Variable	Value
1	A	34.62
2	Cao	5457.174
3	Ссо	5457.174
4	Сра	68.14
5	Cpc	275.37
6	Cpl	377.92
7	Срм	75.4
8	Ct	1.637E+04
9	Cwo	5457.174
10	deltaH	2.613E+04
11	deltaHo	4222.984
12	E	21.4
13	Fa	0.317361
14	Fao	4.127361
15	Fc	0.317361
16	Fco	4.127361
17	FI	3.81
18	Fw	7.937361

20	К	565.2925
21	k	199.8074
22	ko	8.243247
23	Ко	301.3418
24	р	0.923108
25	R	0.001987
26	ra	-0.2798645
27	rc	-0.2798645
28	rl	0.2798645
29	rw	0.2798645
30	Та	573.
31	tau	1.8E+04
32	То	463.
33	Tr	473.
34	U	280.
35	v	13.61373
36	vo	0.0007563
37	xa	0.0256307
38	хс	0.0256307
39	xl	0.3077027
40	xw	0.641036

Figure A.2: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR with 67% Capacity

Polymath Coding of the Chemical Reaction Engineering Algorithm Modeling Using Polymath for Autoclave (Polymerization reactor) as a CSTR at STARTUP

#Components: a-amine end-group, c-carbonxyl end-group, l-amide linkage (nylon 6,6), w-water molecule

#DESIGN SPECIFICATION AND INITIAL CONDITION

#MI =85E6 #MWI = 226.3 #densityl = 1140000 FI = 5.69#ml = 1286.93 tau = 18000 Fogler: 10min-4hour for industrial CSTR $T_0 = 190 + 273$ Ta = 573C, Turton heuristic #T = 520 #Ts = 550 $V = FI^{226.3/1140000^{*}tau}$ $A = 2^{*}3.14^{*}((2^{*}V/3.14)^{(1/3)})^{2}$ **U** = 280 vo = V/tau p = 1-Ca/CaoMIGHT be able to use for optimization,

#Fao = Fa/(1-p) Fao = (0-FI)/(-rI)*(-ra)+Fa Fco = Fao Fwo = Fao 10 : salt/water

#Flo = 0 Cao = Fao/vo Cco = Fao/vo stoichiometric equivalence Cwo = Fwo/vo

 $\label{eq:model} \begin{array}{l} \# \text{MOLE BALANCE (single reaction, single phase, reversible, CSTR)} \\ f(Ca) = vo^*Cao-vo^*Ca+ra^*V \\ Ca(0) = 0.000001 \\ f(Cc) = vo^*Cco-vo^*Cc+rc^*V \\ Cc(0) = 0.00001 \\ f(Cl) = -vo^*Cl+rl^*V \\ Cl(0) = 2000 \\ f(Cw) = vo^*Cwo-vo^*Cw+rw^*V \\ Cw(0) = 10000 \end{array}$

#RATE LAW (activate if reversible, homogeneous rxn)
rw = Ct*k/3600*(xa*xc-xl*xw/K)
#Steppan and Giudici, r in mol/m3.s

#rw is positive due to water being product

k = ko **exp*(E/R*(1/Tr-1/T)) #1/hr, Arrhenius equation at a convenient Temp. Tr=200C

#lbm/year
#g/mol, polymer data handbook
#g/m3
#mol/s, calculated, 0.95 service factor
#g/s
#in sec, Ogata 5 hours residence time,

#Ogata, range 200-220C #K, Dowtherm a, maximum 400 degree

#K

#m3
#m2, D=L, H=2L
#J/m2.s.K, Heuristic
#m3/s
fraction of functional group amine (a),

#use molar ratio from Ogata: range 0.5-

#mol/m3 #assuming Fao=Fco, due to Polymath Coding of the Chemical Reaction Engineering Algorithm Modeling Using Polymath for Autoclave (Polymerization reactor) as a CSTR at STARTUP (continued)

```
K = Ko * exp(deltaHo*10^{-3})/R*(1/Tr-1/T))
               #literature used: Steppan
ko = exp(2.55-0.45*tanh(25*(xw-0.55)))+8.58*(tanh(50*(xw-0.10))-1)*(1-30.05*xc))
       #ko[=]1/hr; ko,Ko and detaHo models from Steppan
Ko = exp((1-0.47*exp(-xw^{(1/2)}/0.2))*(8.45-4.2*xw))
deltaHo = 7650*tanh(6.5*(xw-0.52))+6500*exp(-xw/0.065)-800
       #cal/mol, convert to J/mol: multiply 4.184
Tr = 473
       #in K, Steppan
E = 21.4
       #kcal/mol
R = 0.001987
       #kcal/mol.K
#RELATIVE RATE:
                               #mol/m3.s
ra = -rw
rc = -rw
rl = rw
#STOICHIOMETRY (assume liquid phase or aqueous, project statement-stoichionmetric equivalents)
Ct = Ca+Cc+Cl+Cw
                               #mol/m3
xa = Ca/Ct
xc = Cc/Ct
xI = CI/Ct
xw = Cw/Ct
Fa = Ca^*vo
Fc = Cc^*vo
Fw = Cw^*vo
\#FI = CI^*vo
#ENERGY BALANCE (assume CSTR, with HEX:steam, or downtherm boiler)
f(T) =U*A*(Ta-T)-Fao*(Cpa+Cpc)*(T-To)+deltaH*ra*V
       # Energy balance, Fogler p.567
T(0) = 520
deltaH = deltaHo*4.184+(Cpl+Cpw-Cpa-Cpc)*(T-Tr)
       #J/mol
Cpa = 68.14
        #J/mol.K, calculated, literature, check "chemical property" Spreadsheet
Cpc = 275.37
Cpl = 377.92
Cpw = 75.4
#Q = FI^*CpI^*(T-To)
       #J/s=W
\#UA = Q/(((Ta-T)-(Ta-To))/ln((Ta-T)/(Ta-To)))
       #J/s.K
#deltaTIm = ((Ts-T)-(Ts-To))/ln((Ts-T)/(Ts-To))
```

POLYMATH Report

Ordinary Differential Equations

Cai	culated v	alues of DEQ	Variables		
	Variable	Initial value	Minimal value	Maximal value	Final value
1	Α	26.4882	26.4882	26.4882	26.4882
2	Са	5457.174	401.2101	5457.174	401.2101
3	Cao	5457.174	5457.174	5457.174	5457.174
4	Cc	5457.174	401.2101	5457.174	401.2101
5	Ссо	5457.174	5457.174	5457.174	5457.174
6	CI	0.0001	0.0001	5055.964	5055.964
7	Сра	68.14	68.14	68.14	68.14
8	Срс	275.37	275.37	275.37	275.37
9	Cpl	377.92	377.92	377.92	377.92
10	Срм	75.4	75.4	75.4	75.4
11	Ct	1.637E+04	1.637E+04	1.637E+04	1.637E+04
12	Cw	5457.174	5457.174	1.051E+04	1.051E+04
13	Cwo	5457.174	5457.174	5457.174	5457.174
14	deltaH	-4.318E+04	-4.318E+04	2.681E+04	2.681E+04
15	deltaHo	-7169.699	-7169.699	4254.626	4254.626
16	E	21.4	21.4	21.4	21.4
17	Fa	4.123198	0.3031365	4.123198	0.3031365
18	Fao	4.123198	4.123198	4.123198	4.123198
19	Fc	4.123198	0.3031365	4.123198	0.3031365
20	Fco	4.123198	4.123198	4.123198	4.123198
21	FI	7.556E-08	7.556E-08	3.820062	3.820062
22	Fw	4.123198	4.123198	7.94326	7.94326
23	Fwo	4.123198	4.123198	4.123198	4.123198

Calculated values of DEQ variables

Figure A.3: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR at Startup

23	Fwo	4.123198	4.123198	4.123198	4.123198
24	k	0.0087353	0.0087353	238.3376	238.3376
25	K	1.282E+04	420.8026	1.282E+04	585.6417
26	Ко	958.3845	299.9865	958.3845	299.9865
27	ko	20.08518	8.239057	20.08518	8.239057
28	p	1.832E-08	1.832E-08	0.9264802	0.9264802
29	R	0.001987	0.001987	0.001987	0.001987
30	ra	-0.0044139	-3.401308	-0.0044139	-0.2839123
31	rc	-0.0044139	-3.401308	-0.0044139	-0.2839123
32	ri	0.0044139	0.0044139	3.401308	0.2839123
33	rw	0.0044139	0.0044139	3.401308	0.2839123
34	Т	353.	353.	555.0186	555.0186
35	t	0	0	1.8E+04	1.8E+04
36	Та	573.	573.	573.	573.
37	tau	1.8E+04	1.8E+04	1.8E+04	1.8E+04
38	То	463.	463.	463.	463.
39	Tr	473.	473.	473.	473.
40	U	280.	280.	280.	280.
41	v	13.6	13.6	13.6	13.6
42	vo	0.0007556	0.0007556	0.0007556	0.0007556
43	ха	0.3333333	0.0245066	0.3333333	0.0245066
44	xc	0.3333333	0.0245066	0.3333333	0.0245066
45	xi	6.108E-09	6.108E-09	0.3088268	0.3088268
46	xw	0.3333333	0.3333333	0.6421601	0.6421601

Differential equations

- 3 d(Cl)/d(t) = rl+(-Cl)*vo/V
- 4 d(Cw)/d(t) = rw + (Cwo-Cw)*vo/V
- 5 d(T)/d(t) = (ra*V*deltaH-U*A*(T-Ta))/(V*(Ca*Cpa+Cc*Cpc+Cl*Cpl+Cw*Cpw))

Figure A.3: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR at STARTUP (continued)

Explicit equations

1 V = 13.6 m3, Check "Ye Notebook" 2 tau = 18000 in sec, Ogata 5 hours residence time, Fogler: 10min-4hour for industrial CSTR 3 To = 190+273 Ogata, range 200-220C 4 Ta = 573 K, dependent on steam using, high pressure 5 vo = V/tau m3/s 6 E = 21.4 keal/mol 7 U = 280 8 A = 2*3.14*((2*V/3.14)^(1/3))^2 m2, D=L, H=2L 9 FI = CI*vo 10 Tr = 473in K, Steppan 11 Ct = Ca+Cc+Cl+Cw mol/m3 12 xa = Ca/Ct13 Fa = Ca*vo mol/s 14 R = 0.001987 kcal/mol.K 15 x = Cl/Ct16 xw = Cw/Ct17 xc = Cc/Ct18 Ko = exp((1-0.47*exp(-xw^(1/2)/0.2))*(8.45-4.2*xw)) 19 ko = exp(2.55-0.45*tanh(25*(xw-0.55)))+8.58*(tanh(50*(xw-0.10))-1)*(1-30.05*xc) ko(=)1/hr; ko,Ko and detaHo models from Steppan

Figure A.3: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR at Startup (continued)

19 ko = exp(2.55-0.45*tanh(25*(xw-0.55)))+8.58*(tanh(50*(xw-0.10))-1)*(1-30.05*xc)
ko[=]1/hr; ko,Ko and detaHo models from Steppan
20 deltaHo = 7650*tanh(6.5*(xw-0.52))+6500*exp(-xw/0.065)-800
cal/mol, convert to J/mol: multiply 4.184
21 K = Ko *exp(deltaHo*10^(-3)/R*(1/Tr-1/T))
literature used: Steppan
22 k = ko *exp(E/R*(1/Tr-1/T))
1/hr, Arrhenius equation at a convenient Temp. Tr=200C
23 rw = Ct*k/3600*(xa*xc-xl*xw/K)
Steppan and Giudiol, r in mol/m3.s
24 ra = -rw
mol/m3.s
25 rl = rw
26 Fao = (0-Fl)/(-rl)*(-ra)+Fa
27 Cao = Fao/vo
mol/m3
28 Fco = Fao
29 Fwo = Fao
30 rc = -rw
31 Cwo = Fwo/vo
32 p = 1-Ca/Cao
fraction of functional group amine (a), MIGHT be able to use for optimization,
33 Fc = Cc*vo
34 Fw = Cw*vo
35 Cco = Fao/vo
assuming Fao=Fco, due to stolchiometric equivalence
36 Cpw = 75.4
37 Cpa = 68.14
J/mol.K, calculated, literature, check "chemical property" Spreadsheet
38 Cpc = 275.37
39 Cpl = 377.92
40 deltaH = deltaHo*4.184+(Cpl+Cpw-Cpa-Cpc)*(T-Tr)
J/mol

Figure A.3: Polymath Report for the Chemical Reaction Kinetics of the Polymerization CSTR at Startup (continued)

Figure A.4: Polymath Plot of the Reaction Temperature vs. Time for the Polymerization CSTR at Startup

Figure A.5: Polymath Plot of the Components Concentration vs. Time for the Polymerization CSTR at Startup

SIGMA-ALDRICH

SAFETY DATA SHEET

Version 5.9 Revision Date 05/23/2018 Print Date 01/23/2017

1.195	CODUCT AND COMPANY IDE	And Star And Star				
	Sector Mile Com Annie Le					
1.1	Product name	Hexamethylenediamine				
	Product Number Brand Index-No.	H11896 Aldrich 612-104-00-9				
	CAS-No.	124-09-4				
1.2	Relevant identified uses of t	he substance or mixture and uses advised against				
	Identified uses	Laboratory chemicals, Synthesis of substances				
1.8	Details of the supplier of the	e safety data sheet				
	Company	Sigme-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA				
	Telephone Fax	+1 800-325-5832 +1 800-325-5052				
1.4	Emergency telephone numb	er				
	Emergency Phone #	+1-703-527-3887 (CHEMTREC)				
2. H/	ZARD 8 IDENTIFICATION					
2.1	Classification of the substa	nce or mixture				
	GH 8 Classification in accordance with 28 CFR 1910 (O 8HA HC 8) Acute toxicity, Oral (Category 4), H302 Acute toxicity, Dermal (Category 4), H312 Skin corrosion (Category 18), H314 Serious eye damage (Category 1), H318 Specific target organ toxicity - single exposure (Category 3), Respiratory system, H335 Acute countie toxicity - single exposure (Category 3), Respiratory system, H335					
	For the full text of the H-State	ments mentioned in this Section, see Section 16.				
2.2	GH8 Label elements, Includ	ing precautionary statements				
	Pictogram					
	Signal word	Danger				
	Hazard statament(s) H302 + H312 H314 H318 H335 H402	Harmful if swallowed or in contact with skin Causes severe skin burns and eye damage. Causes serious eye damage. May cause respiratory initiation. Harmful to aquatic life.				
	Precautionary statement(s) P260	Do not breathe dust or mist.				

Aldrich - H11596

Page 1 of 8

	P270 P271 P273 P280 P301 + P312 + P330 P301 + P300 + P331 P303 + P381 + P353 P304 + P340 + P310 P305 + P351 + P338 + P310 P363 P405 P501	Do not eat, drink or sm Use only outdoors or in Avoid release to the en Wear protective gloves protection. IF SWALLOWED: Call Rinse mouth. IF SWALLOWED: Rim IF ON SKIN (or hair): 7 Rinse skin with water? Rinse skin with water? IF INHALED: Remove breathing. Immediately IF IN EYES: Rinse call contact lenses, if press call a POISON CENTE Wash contaminated of Store in a well-ventiate Store locked up. Dispose of contents' of	toke when using this product. In a well-ventilated area. In a well-ventilated area. If protective clothing? eye protective a POISON CENTER/doctor if you se mouth. Do NOT induce vomitin faite off immediately all contamina shower. person to fresh air and keep com yoal a POISON CENTER/doctor. itiously with water for several mine ent and easy to do. Continue rinsi El/doctor. athing before reuse. ed place. Keep container tightly cl ontainer to an approved waste dis	on/ face u feel unwell. g. abed clothing. fortable for utes. Remove ng. Immediately cosed. aposal plant.				
2.8	Hazards not otherwise classi	fied (HNOC) or not cov	rered by GHS - none					
3. CC	OMPO 8ITION/INFORMATION O	N INGREDIENT 8						
8.1	Substances Synonyms :	1,6-Diaminohexane 1,6-Hexanediamine						
	Formula :	C ₆ H ₁₆ N ₂						
	Molecular weight :	116.20 g/mol						
	CAS-No. :	124-09-4						
	EG-NO. Index-No.	204-679-6 612-104-00-9						
	Hazardous components							
			Classification	Concentration				
	Component							
	Component Hexamethylenediamine		Arata Teor & Side Power 475	<= 100 St				
	Component Hexamethylenedlamine		Acute Tox: 4; Skin Corr. 1B; Eye Dam. 1; STOT SE 3; Aquatic Acute 3; H302 + H312, H314, H318, H335, H402	<= 100 %				
	Component Hexamethylenediamine For the full text of the H-Staten	nents mentioned in this \$	Acute Tox. 4; Skin Corr. 1B; Eye Dam. 1; STOT SE 3; Aquatic Acute 3; H302 + H312, H314, H318, H335, H402 Section, see Section 16.	<= 100 %				
4. FIF	Component Hexamethylenediamine For the full text of the H-Staten R&T AID MEASURE 3	nents mentioned in this 3	Acute Tox: 4; Skin Corr. 1B; Eye Dam. 1; STOT SE 3; Aquatic Acute 3; H302 + H312, H314, H318, H335, H402 Section, see Section 16.	<= 100 %				
4. FIF 4.1	Component Hexamethylenediamine For the full text of the H-Staten R8T AID MEASURE 3 Description of first aid measu	nents mentioned in this 3 urec	Acute Tox: 4; Skin Corr. 1B; Eye Dam. 1; STOT SE 3; Aquatic Acute 3; H302 + H312, H314, H318, H335, H402 Section, see Section 16.	<= 100 %				
4. FIF 4.1	Component Hexamethylenediamine For the full text of the H-Staten R8T AID MEASURE 8 Description of first aid measu General advice Consult a physician. Show this	nents mentioned in this 3 ures safety data sheet to the	Acute Tox. 4; Skin Corr. 1B; Eye Dam. 1; STOT SE 3; Aquatic Acute 3; H302 + H312, H314, H318, H335, H402 Section, see Section 16.	<= 100 %				
4. FIF 4.1	Component Hexamethylenediamine For the full text of the H-Staten R8T AID MEASURE 8 Description of first aid measu General advice Consult a physician. Show this if inhaled if breathed in, move person int	nents mentioned in this 3 urec safety data sheet to the o fresh air. If not broathin	Acute Tox: 4; Skin Corr. 1B; Eye Dam. 1; STOT SE 3; Aquatic Acute 3; H302 + H312, H314, H318, H335, H402 Section, see Section 16. doctor in attendance.Move out of ng, give artificial respiration. Cons	<= 100 %				
4. FIF 4.1	Component Hexamethylenediamine For the full text of the H-Staten R8T AID MEASURE 8 Desoription of first aid measu General advice Consult a physician. Show this if inhaled if breathed in, move person int in case of skin contact Take off contaminated clothing	nents mentioned in this 3 urec safety data sheet to the p fresh air. If not breathin and shoes immediately.	Acute Tox: 4; Skin Corr: 1B; Eye Dam. 1; STOT SE 3; Aquatic Acute 3; H302 + H312, H314, H318, H335, H402 Section, see Section 16. doctor in attendance.Move out of ng, give artificial respiration. Cons Wash off with spap and planty of	<= 100 %; dangerous area, uit a physician. water. Consult a physician.				
4. FIF 4.1	Component Hexamethylenediamine For the full text of the H-Staten R8T AID MEASURE 8 Desoription of first aid measu General advice Consult a physician. Show this if inhaled if breathed in, move person int in case of skin contact Take off contaminated clothing in case of eye contact Rinse thoroughly with plenty of transport to hospital.	nents mentioned in this 3 urec afety data sheet to the o fresh air. If not breathin and shoes immediately. Water for at least 15 min	Acute Tox: 4; Skin Corr: 1B; Eye Dam. 1; STOT SE 3; Aquatic Acute 3; H302 + H312, H314, H318, H335, H402 Section, see Section 16. doctor in attendance.Move out of ng, give artificial respiration. Cons Wash off with soap and planty of rules and consult a physician.Cor	ce 100 % dengerous area. uit a physician. water. Consult a physician. tinue rinsing eyes during				

	Component	CAS-No.	Value	Control	Basis			
	Hexamethylenediam ine	124-09-4	TWA	0.500000 ppm	USA. ACGIH Threshold Limit Values (TLV)			
		Remarks	Upper Res Skin irritat	spiratory Tract irritat	ion			
			TWA	1.000000 ppm	USA. Workplace Environmental Exposure Levels (WEEL)			
			PEL	0.5 ppm 2.3 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)			
2	Exposure controls							
	Appropriate enginee Handle in accordance workday.	with good in	8 dustrial hygie	ene and safety pract	ice. Wash hands before breaks and at the end of	র্গ		
	Personal protective	equipment						
	Eye/face prote Face shield and government sta	ction d safety glass indards such	es Use equip as NIOSH (L	oment for eye protectors) JS) or EN 166(EU).	tion tested and approved under appropriate			
	Skin protection Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.							
	Full contact Material: Nitrile rubber Minimum layer thickness: 0.4 mm Break through time: 480 min Material tested:Camatri® (KCL 730 / Aldrich Z677442, Size M)							
	Splash contact Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 60 min Material tested:Dermatrillo (KCL 740 / Aldrich Z677272, Size M)							
	data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374 If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.							
	Body Protection Complete suit protecting against chemicals. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.							
	Respiratory protection Where risk assessment shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).							
	Control of env Prevent further environment m	Ironmental e leakage or sp ust be avoide	x posure pillage if safe d.	to do so. Do not let	product enter drains. Discharge into the			
PH	YSICAL AND CHEMIC	AL PROPER	TIES					
I	Information on basic	c physical ar	nd chemical	properties				
irich	a) Appearance - H11896	Forr	n: solid		Page 4	of 8		

			Colour: colourless
	b)	Odour	No data available
	c)	Odour Threshold	No data available
	d)	pН	12.4 at 100 g/l at 25 °C (77 °F)
	e)	Melting point/freezing point	Melting point/range: 42 - 45 °C (108 - 113 °F) - lit.
	f)	Initial boiling point and boiling range	204 - 205 °C (399 - 401 °F)
	g)	Flash point	80 °C (176 °F) - closed cup
	h)	Evaporation rate	No data available
	i)	Flammability (solid, gas)	No data available
	j)	Upper/lower flammability or explosive limits	Upper explosion limit: 6.3 %(V) Lower explosion limit: 0.7 %(V)
	k)	Vapour pressure	No data available
	I)	Vapour density	4.01 - (Air = 1.0)
	m}	Relative density	0.89 g/cm3 at 25 °C (77 °F)
	n)	Water solubility	No data available
	a)	Partition coefficient: n- octanol/water	log Pow: 0.02
	p)	Auto-ignition temperature	No data available
	q)	Decomposition temperature	No data available
	r)	Viscosity	No data available
	s)	Explosive properties	No data available
	t)	Oxidizing properties	No data available
9.2	otr	er safety information	
		Relative vapour density	4.01 - (Air = 1.0)
10. S	TAB	LITY AND REACTIVITY	
10.1	Rea	activity	

10.1 No data available

10.2 Chemical stability

hygroscopic Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions No data available

10.4 Conditions to avoid No data available

10.5 Incompatible materials acids, Acid chlorides, Acid anhydrides, Strong oxidizing agents, Carbon dioxide (CO2)

10.6 Hazardous decomposition products Hazardous decomposition products formed under fire conditions. - Carbon oxides, Nitrogen oxides (NOx) Other decomposition products - No data available In the event of fire: see section 5

Aldrich - H11696

Page 5 of 8

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity

LD50 Oral - Rat - 750 mg/kg

LD50 Dermal - Rabbit - 1,110 mg/kg

No data available

Skin corrosion/irritation No data available

Serious eye damage/eye irritation No data available

Respiratory or skin sensitisation

No data available

Germ cell mutagenicity No data available

Carcinogenicity

- IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

No data available

No data available

Specific target organ toxicity - single exposure May cause respiratory irritation.

Specific target organ toxicity - repeated exposure

No data available Aspiration hazard

No data available

Additional Information RTECS: MO1180000

burning sensation, Cough, wheezing, laryngitis, Shortness of breath, spasm, inflammation and edema of the larynx, spasm, inflammation and edema of the bronchi, pneumonitis, pulmonary edema, Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin., To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Liver - Irregularities - Based on Human Evidence Liver - Irregularities - Based on Human Evidence

12. ECOLOGICAL INFORMATION

12.1 Toxicity

Toxicity to fish LC50 - Leuciscus idus (Golden orfe) - 62 mg/l - 96 h Toxicity to daphnia and EC50 - Daphnia magna (Water fiea) - 23.4 mg/l - 48 h other aquatic invertebrates

12.2 Persistence and degradability No data available

Aldrich - H11896

Page 6 of 8

12.3 Bioaccumulative potential

No data available

12.4 Mobility in soli No data available

12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

An environmental hazard cannot be excluded in the event of unprofessional handling or disposal. Harmful to aquatic life.

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

UN number: 2280 Class: 8 Packing group: III Proper shipping name: Hexamethylenediamine, solid Reportable Quantity (RQ):

Poison Inhalation Hazard: No

IMDG

UN number: 2280 Class: 8 Packing group: III Proper shipping name: HEXAMETHYLENEDIAMINE, SOLID

IATA

UN number: 2280 Class: 8 Packing group: III Proper shipping name: Hexamethylenediamine, solid

15. REGULATORY INFORMATION

SARA 302 Components

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

EMS-No: F-A, S-B

SARA 311/312 Hazarda

Acute Health Hazard, Chronic Health Hazard

Massachusetts Right To Know Components		
	CAS-No.	Revision Date
Hexamethylenediamine	124-09-4	1993-04-24
	CAS-No.	Revision Date
Hexamethylenediamine	124-09-4	1993-04-24
Pennsylvania Right To Know Components		
	CAS-No.	Revision Date
Hexamethylenediamine	124-09-4	1993-04-24

Aldrich - H11896

Page 7 of 8
Hexamethylenediamine	CAS-No. 124-09-4	Revision Date 1993-04-24
New Jersey Right To Know Components		
Hexamethylenediamine	CAS-No. 124-09-4	Revision Date 1993-04-24
Hexamethylenediamine	CAS-No. 124-09-4	Revision Date 1993-04-24

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Full text of H-Statements referred to under sections 2 and 3.

Acute Tox.	Acute toxicity
Aquatic Acute	Acute aquatic toxicity
Eye Dam.	Serious eye damage
H302	Harmful if swallowed.
H302 + H312	Harmful if swallowed or in contact with skin
H312	Harmful in contact with skin.
H314	Causes severe skin burns and eye damage.
H318	Causes serious eye damage.
H335	May cause respiratory irritation.
HMIS Rating Health bazard:	3

0

The second	
Chronic Health Hazard:	*
Flammability:	0
Physical Hazard	0
NFPA Rating	
Health hazard:	3
Fire Hazard:	2

Reactivity Hazard:

Further Information

Copyright 2016 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Preparation Information

Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 5.9

Revision Date: 05/23/2016

Print Date: 01/23/2017

Aldrich - H11896

Page 8 of 8

Figure A.6: Safety Data Sheet for HMDA [4]

SIGMA-ALDRICH

1. PRODUCT AND COMPANY IDENTIFICATION

SAFETY DATA SHEET Version 4.11 Revision Date 05/06/2016 Print Date 01/23/2017

1.1 Product Identifiers Product name Adipic acid : A26357 Product Number Brand Sigma : 607-144-00-9 Index-No. CAS-No. : 124-04-9 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Synthesis of substances 1.3 Details of the supplier of the safety data sheet Company Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA : +1 800-325-5832 Telephone +1 800-325-5052 Fax 1.4 Emergency telephone number Emergency Phone # : +1-703-527-3887 (CHEMTREC)

2. HAZARD \$ IDENTIFICATION

2.1 Classification of the substance or mixture

GH\$ Classification in accordance with 29 CFR 1910 (OSHA HCS)

Eye irritation (Category 2A), H319 Acute aquatic toxicity (Category 3), H402

For the full text of the H-Statements mentioned in this Section, see Section 16.

 $\mathbf{\Lambda}$

2.2 GHS Label elements, including precautionary statements

Pictogram

	$\mathbf{\nabla}$
Signal word	Warning
Hazard statement(s) H319 H402	Causes serious eye irritation. Harmful to aquatic life.
Precautionary statement(s) P264 P273 P280 P305 + P351 + P338	Wash skin thoroughly after handling. Avoid release to the environment. Wear eye protection/ face protection. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P337 + P313 P501	If eye irritation persists: Get medical advice/ attention. Dispose of contents/ container to an approved waste disposal plant.

Sigma - A26357

Page 1 of 8

Figure A.7: Safety Data Sheet for Adipic Acid [5]

Hazards not otherwise classified (HNOC) or not covered by GHS Combustible dust

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Synonyms	:	Hexanedioic acid ADI-PURE® high purity adipic acid ADI-PURE® LGA adipic acid
Formula	;	C6H10O4
Molecular weight		146.14 g/mol
CAS-No.		124-04-9
EC-No.		204-673-3
Index-No.	:	607-144-00-9

Hazardous components

Component	Classification	Concentration
Adipic acid		
	Eye Irrit. 2A; Aquatic Acute 3;	<= 100 %
	H319, H402	
For the full test of the 14 Statements mentioned in this S	H319, H402	

For the full text of the H-Statements mentioned in this Section, see Section 16

4. FIRST AID MEASURES

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

if inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

in case of skin contact

Wash off with soap and plenty of water. Consult a physician.

in case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

if swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most Important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any Immediate medical attention and special treatment needed No data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

5.2 Special hazards arising from the substance or mixture No data available

5.3 Advice for firefighters Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further Information

No data available

Sigma - A26357

Page 2 of 8

Figure A.7: Safety Data Sheet for Adipic Acid [5]

6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid dust formation. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Avoid breathing dust. For personal protection see section 8.

6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

6.3 Methods and materials for containment and cleaning up

Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed containers for disposal.

6.4 Reference to other sections

For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Further processing of solid materials may result in the formation of combustible dusts. The potential for combustible dust formation should be taken into consideration before additional processing occurs. Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Provide appropriate exhaust ventilation at places where dust is formed. For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place.

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

8. EXPOSURE CONTROL S/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	Value	Control parameters	Basis
Adipic acid	124-04-9	TWA	5.000000 mg/m3	USA. ACGIH Threshold Limit Values (TLV)
	Remarks	Upper Re ANS impa	spiratory Tract irrits irment	ation
		TWA	5 mg/m3	USA. ACGIH Threshold Limit Values (TLV)
		Upper Re ANS impa	spiratory Tract irrita ilrment	ation
		PEL	5 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection

Safety glasses with side-shields conforming to EN166 Use equipment for eve protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Sigma - A26357

Page 3 of 8

Figure A.7: Safety Data Sheet for Adipic Acid [5]

	m)	Relative density	No data available	
	n)	Water solubility	23 g/l at 25 °C (77 °F) - soluble	
	o)	Partition coefficient: n- octanol/water	log Pow: 0.093 at 25 °C (77 °F)	
	p)	Auto-ignition temperature	> 400 °C (> 752 °F)	
	q)	Decomposition temperature	No data available	
	r)	Viscosity	No data available	
	s)	Explosive properties	Not explosive	
	t)	Oxidizing properties	No data available	
9.2	otr	er safety information		
		Bulk density	0.7 g/l	
		Solubility in other solvents	Methanol - soluble Ethanol - soluble Acetone - soluble Benzene - slightly soluble	
		Dissociation constant	4.43 at 20 °C (68 °F)	
10. S	TAB	LITY AND REACTIVITY		
10.1	Rea No	activity data available		
10.2	Ch/ Sta	emical stability ble under recommended	storage conditions.	
10.3	Possibility of hazardous reactions No data available			
10.4	Co No	Conditions to avoid No data available		
10.5	Inc Stre	Incompatible materials Strong oxidizing agents		
10.6	Has Has Oth In t	zardous decomposition pr er decomposition product he event of fire: see section	products oducts formed under fire conditions Carbon oxides ts - No data available on 5	
11. IV 44.4	Info	ormation on foxicologic	al affanta	
	Act	ute toxicity		
	LDS (OE	50 Oral - Rat - male and f CD Test Guideline 401)	emale - 5,560 mg/kg	
	LCI (OE	0 Inhalation - Rat - male a SCD Test Guideline 403)	ind female - 4 h - > 7.7 mg/l	
	LD	0 Dermal - Rabbit - male a	and female - 7,940 mg/kg	
	No	data available		
	Ski No	n corrosion/irritation data available		
Sigma	- A26	357		Page 5 of 8

Figure A.7: Safety Data Sheet for Adipic acid [5]

Serious	eye	damage/eye	irritation
Regnirat	forv	or skin sons	lfigation

Maximisation Test - Guinea pig

Result: Does not cause skin sensitisation.

Germ cell mutagenicity

Hamster fibroblast Result: negative

Rat - male Result: negative

Carcinogenicity

IARC:	No component of this product present at levels greater than or equal to 0.1% is identified as
	probable, possible or confirmed human carcinogen by IARC.

NTP:	No component of this product present at levels greater than or equal to 0.1% is identified as a
	known or anticipated carcinogen by NTP.

OSHA:	No component of this product present at levels greater than or equal to 0.1% is identified as a
	carcinogen or potential carcinogen by OSHA.

Reproductive toxicity No data available

No data available

Specific target organ toxicity - single exposure No data available

Specific target organ toxicity - repeated exposure No data available

Aspiration hazard

No data available

Additional information RTECS: AU8400000

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

12. ECOLOGICAL INFORMATION

12.1 Toxicity

	-		
	Toxicity to fish	static test LC0 - Brachydanio rerio (zebrafish) - >= 1,000 mg/l - 96 h	
	Toxicity to daphnia and other aquatic invertebrates	Immobilization LC50 - Daphnia magna (Water flea) - 46 mg/l - 48 h (OECD Test Guideline 202)	
	Toxicity to algae	static test EC50 - Pseudokirchneriella subcapitata (algae) - 59 mg/l - 72 h (OECD Test Guideline 201)	
	Toxicity to bacteria	Respiration inhibition EC50 - Sludge Treatment - 7,910 mg/l - 3 h (OECD Test Guideline 209)	
12.2	Persistence and degrada Biodegradability	ability aerobic - Exposure time 30 d Result: 83 % - Readily biodegradable (OECD Test Guideline 301D)	
12.3	Bloaccumulative potenti No data available	lai	
Sigma -	A26357		Page 6 of 8

Figure A.7: Safety Data Sheet for Adipic acid [5]

Full text of H-Statements referred to under sections 2 and 3.

Aquatic Acute	Acute aquatic toxicity
Eye Irrit.	Eye irritation
H319	Causes serious eye irritation.
H402	Harmful to aquatic life.
HMIS Rating	
Health hazard:	2
Chronic Health Hazz	ard:
Flammability:	1
Physical Hazard	0
NFPA Rating	
Health hazard:	2
Fire Hazard:	1
Reactivity Hazard:	0

Further Information

Copyright 2016 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the guide. The introduction in this document is based on the present state of our networking and is applicable to the product with regard to appropriate safety precations. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

Sigma - A26357

Page 7 of 8

essional waste

Figure A.7: Safety Data Sheet for Adipic Acid [5]

Nylon 6 6

210			aldrich.com		
		SAFELY DATA S	HEEI		
		Revision Date	05/30/2014		
1.05	ODUCT AND COMPANY	ENTIFICATION	0112012011		
1. PR	Deedwet Ideet/Deed	ENTIFICATION			
1.1	Product Identifiers Product name	Nylon 6/6			
	Product Number Brand	: 429171 : Aldrich			
	CAS-No.	: 32131-17-2			
1.2	Relevant identified use	f the substance or mixture and uses advised against			
	Identified uses	: Laboratory chemicals, Manufacture of substances			
1.3	Details of the supplier	he safety data sheet			
	Company	: Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA			
	Telephone Fax	: +1 800-325-5832 : +1 800-325-5052			
1.4	Emergency telephone number				
	Emergency Phone #	: +1-703-527-3887 (CHEMTREC)			
2. HA	ZARDS IDENTIFICATION				
2.1	Classification of the su	tance or mixture			
	Not a hazardous substar	or mixture.			
2.2	GHS Label elements, Ir	iding precautionary statements			
	Not a hazardous substar	or mixture.			
2.3	Hazards not otherwise	salfled (HNOC) or not covered by GHS - none			
3. CC	OMPOSITION/INFORMAT	I ON INGREDIENT S			
3.1	Substances Synonyms	: Poly(N,N'-hexamethyleneadipinediamide Poly(hexamethylene adipamide)			
	Formula Molecular Weight CAS-No.	: C ₁₂ H ₂₆ N ₂ O ₄ : 262.35 g/mol : 32131-17-2			
	No ingredients are haza No components need to	is according to OSHA criteria. disclosed according to the applicable regulations.			
4. FI	R \$T AID MEA SURE S				
4.1	Description of first aid	asures			
	If Inhaled If breathed in, move per-	into fresh air. If not breathing, give artificial respiration.			
	,				

In case of skin contact Wash off with soap and plenty of water.

In case of eye contact Flush eyes with water as a precaution.

if swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water.

- 4.2 Most important symptoms and effects, both acute and delayed
 - The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11
- 4.3 Indication of any immediate medical attention and special treatment needed no data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

- 5.2 Special hazards arising from the substance or mixture Carbon oxides, nitrogen oxides (NOx)
- 5.3 Advice for firefighters Wear self contained breathing apparatus for fire fighting if necessary.
- 5.4 Further Information no data available

6. ACCIDENTAL RELEASE MEASURES

- 6.1 Personal precautions, protective equipment and emergency procedures Avoid dust formation. Avoid breathing vapours, mist or gas. For personal protection see section 8.
- 6.2 Environmental precautions Do not let product enter drains.
- 6.3 Methods and materials for containment and cleaning up Sweep up and shovel. Keep in suitable, closed containers for disposal.
- 6.4 Reference to other sections

For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Provide appropriate exhaust ventilation at places where dust is formed.Normal measures for preventive fire protection. For precautions see section 2.2.

- 7.2 Conditions for safe storage, including any incompatibilities Keep container tightly closed in a dry and well-ventilated place.
- 7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

8. EXPOSURE CONTROL S/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

Contains no substances with occupational exposure limit values.

8.2 Exposure controls

Appropriate engineering controls General industrial hygiene practice.

General musshal nygle

Aldrich - 429171

Page 2 of 6

Personal protective equipment

Eye/face protection

Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Body Protection

Choose body protection in relation to its type, to the concentration and amount of dangerous substances, and to the specific work-place., The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Respiratory protection is not required. Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN 143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Do not let product enter drains.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

a)	Appearance	Form: pellets Colour: white
b)	Odour	no data available
C)	Odour Threshold	no data available
d)	pН	no data available
e)	Melting point/freezing point	Melting point/range: 250 - 260 °C (482 - 500 °F) - lit.
f)	Initial boiling point and boiling range	no data available
g)	Flash point	no data available
h)	Evapouration rate	no data available
i}-	Flammability (solid, gas)	no data available
Ð	Upper/lower flammability or explosive limits	no data available
k)	Vapour pressure	no data available
I) -	Vapour density	no data available
m)	Relative density	1.14 g/mL at 25 °C (77 °F)
n)	Water solubility	no data available
o)	Partition coefficient: n- octanol/water	no data available
p)	Auto-ignition temperature	no data available
d)	Decomposition temperature	no data available
r)	Viscosity	no data available
s)	Explosive properties	no data available

Aldrich - 429171

Page 3 of 6

	t) Oxidiz	ing properties no data available	
9.2	Other safe no data av	allable	
10. ST	TABILITY A	ND REACTIVITY	
10.1	Reactivity no data av	ailable	
10.2	Chemical Stable und	stability ler recommended storage conditions.	
10.3	Possibility no data av	y of hazardous reactions ailable	
10.4	Condition no data av	s to avoid ailable	
10.5	Incompati Strong oxi	bie materials dizing agents, Strong bases	
10.6	Hazardou Other deco In the ever	s decomposition products emposition products - no data available at of fire: see section 5	
11. T(DXICOLOG	ICAL INFORMATION	
11.1	informatio	on on toxicological effects	
	Acute tox no data av	icity ailable	
	Inhalation:	no data available	
	Dermal: no	o data available	
	no data av	ailable	
	Skin corre no data av	ailable	
	Serious e no data av	ye damage/eye irritation ailable	
	Respirato no data av	ry or skin sensitisation ailable	
	Germ cell no data av	mutagenicity allable	
	Carcinoge	enicity	
	IARC:	No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.	
	ACGIH:	No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.	
	NTP:	No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.	
	OSHA:	No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.	
	Reproduc no data av	tive toxicity allable	
	no data av	ailable	
	Specific t	arget organ toxicity - single exposure	
Aldrich	no data av	ailable	Banp 4 of 6
- MARINA			Caller 4 DI D

Specific target organ toxicity - repeated exposure no data available

Aspiration hazard

no data available

Additional Information RTECS: Not available

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

12. ECOLOGICAL INFORMATION

12.1 Toxicity

no data available

12.2 Persistence and degradability no data available

- 12.3 Bloaccumulative potential no data available
- 12.4 Mobility in soli
- no data available 12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

no data available

13. DI SPO SAL CON SIDERATION S

13.1 Waste treatment methods

Product

Offer surplus and non-recyclable solutions to a licensed disposal company.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

Not dangerous goods

IMDG

Not dangerous goods

IATA

Not dangerous goods

15. REGULATORY INFORMATION

SARA 302 Components

SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

No SARA Hazards

Massachusetts Right To Know Components No components are subject to the Massachusetts Right to Know Act.

Aldrich - 429171

Page 5 of 6

	Deb/ALAF however of his form	-	CAS-No.	Revision Date
	Poly(N,N'-hexamethylene	adipinediamide	32131-17-2	
	New Jersey Right To Kn	ow Components	CAS-No.	Revision Date
	Poly(N,N'-hexamethylene	adipinediamide	32131-17-2	
	California Prop. 65 Com This product does not con reproductive harm.	ponents tain any chemicals known to State	of California to cause	cancer, birth defects, or any o
. 01	THER INFORMATION			
	HMIS Rating Health hazard: Chronic Health Hazard: Flammability: Physical Hazard	0		
	NFPA Rating Health hazard: Fire Hazard: Reactivity Hazard:	0 0 0		
	Copyright 2014 Sigma-Aid The above information is t product. Sigma-Aidrich Co or from contact with the at slip for additional terms an Preparation Information Sigma-Aidrich Corporation Product Safety – America 1-800-521-8956	Inter too. LLC. Locates granted to n believed to be correct but does not his document is based on the pres ropriate safety precautions. It does roporation and its Affiliates shall no cove product. See www.sigma-aldr id conditions of sale.	nake unimited paper of purport to be all inclus ent state of our knowle s not represent any gua t be held liable for any rich.com and/or the rev	opes for internal Use only, ive and shall be used only as dige and is applicable to the arantee of the properties of th damage resulting from hand erse side of invoice or packin
	Version: 4.2	Revision Date: 06/30/20	14 Print Date:	01/23/2017

Figure A.8: Safety Data Sheet for Nylon 6 6 [48]

Nitrogen

SAFETY DATA SHEET

Nitrogen

Section 1. Identif	ication
GHS product identifier	: Nitrogen
Chemical name	: nitrogen
Other means of Identification	: nitrogen (dot); nitrogen gas; Nitrogen NF, Nitrogen FG
Product use	: Synthetic/Analytical chemistry.
Synonym SDS #	: nitrogen (dot); nitrogen gas; Nitrogen NF, Nitrogen FG : 001040
Supplier's details	: Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253
24-hour telephone	: 1-866-734-3438
Section 2. Hazard	Is identification
OSHA/HCS status	 This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the substance or mixture	: GASES UNDER PRESSURE - Compressed gas
GHS label elementa	
Hazard pictograme	
Signal word	: Warning
Hazard statements	 Contains gas under pressure: may explode if heated. May displace oxygen and cause rapid suffocation.
Precautionary statements	
General	Read and follow all Safety Data Sheets (SDS'S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction.
Prevention	: Not applicable.
Response	: Not applicable.
Storage	 Protect from sunlight when ambient temperature exceeds 52°C/125°F. Store in a well- ventilated place.
Disposal	: Not applicable.
Hazards not otherwise classified	In addition to any other important health or physical hazards, this product may displace oxygen and cause rapid suffocation.
Only of Japan Date of Audition	- 5/25/2015 Defe of crewious (space - ; 5/2/2015 Version - 0.02 4/40
Second of the second of restants	

Nitrogen

Section 3. Composition/information on ingredients

Substance/mixture	: Substance
Chemical name	: nitrogen
Other means of Identification	: nitrogen (dot); nitrogen gas; Nitrogen NF, Nitrogen FG

CAS number/other identifiers

CAS number	7727-37-9		
Product code	: 001040		
Ingredient name		%	CAS number
Nitrogen		100	7727-37-9

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

Section 4. First aid measures

Description of necessary fi	rst ald measures
Eye contact	 Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Get medical attention if irritation occurs.
Inhalation	Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention if adverse health effects persist or are severe. If unconscious, place in recovery position and get medical attention immediately. Maintain an open alway. Loosen tight clothing such as a collar, the, belt or walstband. In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours.
Skin contact	 Flush contaminated skin with pienty of water. Remove contaminated clothing and shoes. Get medical attention if symptoms occur. Wash clothing before reuse. Clean shoes thoroughly before reuse.
Ingestion	: As this product is a gas, refer to the inhalation section.
Most important symptoms/ Potential acute health effe	effects, acute and delayed icts

Date of issue/Date of revision	: 5/25/2015	Date of previous issue	: 5/7/2015	Version ±0.02	
	The expos	ed person may need to b	e kept under medica	a surveillance for 48 hours.	
Notes to physician	: In case of I	nhalation of decompositi	on products in a fire,	symptoms may be delayer	d.
indication of immediate m	edical attention a	and special treatment n	eeded. If necessar	¥	
Ingestion	: No specific	data.			
Skin contact	: No specific	; data.			
Inhalation	: No specific	; data.			
Eye contact	: No specific	data.			
Over-exposure signs/syr	nptoma				
Ingestion	: As this pro	duct is a gas, refer to the	inhalation section.		
Froetbite	Try to warn	n up the frozen tissues ar	nd seek medical atte	antion.	
skin contact	: Contact wit	n rapidiy expanding gas	may cause burns or	trostone.	
Inhalation	: No known	significant effects or critic	al hazards.		
Eye contact	: Contact wit	th rapidly expanding gas	may cause burns or	frostbite.	

Figure A.9: Safety Data Sheet for Nitrogen [49]

2/10

20	ω.	-	-	-	-	
~	÷	•	P	•		

Section 4. First aid measures

Specific treatments	: No specific treatment.
Protection of first-alders	No action shall be taken Involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

See toxicological information (Section 11)

•	
Section 5. Fire-fig	hting measures
Extinguishing media Suitable extinguishing media	: Use an extinguishing agent suitable for the surrounding fire.
Unaultable extinguishing media	: None known.
Specific hazards arising from the chemical	Contains gas under pressure. In a fire or if heated, a pressure increase will occur and the container may burst or explode.
Hazardous thermal decomposition products	 Decomposition products may include the following materials: nitrogen oxides
Special protective actions for fire-fighters	Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. Contact supplier immediately for specialist advice. Move containers from fire area if this can be done without risk. Use water spray to keep fire-exposed containers cool.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.
Section 6. Accider	ntal release measures
Personal precautions, protect	tive equipment and emergency procedures
For non-emergency personnel	No action shall be taken Involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Avoid breathing gas. Provide adequate ventilation. Wear appropriate respiration when ventilation is inadequate. Put on appropriate personal protective equipment.
For emergency responders	If specialised clothing is required to deal with the splilage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For non- emergency personnel".
Environmental precautions	Ensure emergency procedures to deal with accidental gas releases are in place to avoid contamination of the environment. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
Methods and materials for co	ontainment and cleaning up
Small spill	: Immediately contact emergency personnel. Stop leak if without risk.
Large spill	: Immediately contact emergency personnel. Stop leak if without risk. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.
Section 7. Handlin	g and storage

Precautions for safe handling	
Protective measures	Put on appropriate personal protective equipment (see Section 8). Contains gas under pressure. Avoid contact with eyes, skin and clothing. Avoid breathing gas. Empty containers retain product residue and can be hazardous. Do not puncture or incherate container. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement.

Date of Izaue/Date of revision	: 5/25/2015	Date of previous (save	: 8/7/2015	Version : 0.02	2/10
--------------------------------	-------------	------------------------	------------	----------------	------

Nörogen					
Section 7. Handlin	ng and st	orage			
Advice on general occupational hygiene	: Eating, dri handled, a drinking a entering e measures	atting, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated cothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.			
Conditions for safe storage including any incompatibilities	: Store in a Store awa Incompati ready for i and firmly should no	ccordance with local regu y from direct sunlight in a ble materials (see Sectio sec. Cylinders should be secured to prevent failin t exceed 52 °C (125 °F).	lations. Store in a se a dry, cool and well-ve n 10). Keep containe stored upright, with v g or being knocked or	egregated and approved area. entilated area, away from r tightly closed and sealed until alve protection cap in place, ver. Cylinder temperatures	
Section 8. Expose	ure contr	ols/personal p	otection		
Control parameters					
Occupational exposure lin	<u>ilte</u>				
Ingredient name			Exposure limi	ta	
Nitrogen			Oxygen Deplet	ion (Asphyxiant)	
Appropriate engineering controls Environmental exposure controls	 Good gen contamina Emissions they comp cases, fur will be see 	eral ventilation should be ants. If from ventilation or work by with the requirements the scrubbers, filters or er	sufficient to control v process equipment s of environmental prot igneering modificatio	vorker exposure to alrborne hould be checked to ensure tection legislation. In some ins to the process equipment	
individual protection measu	rea	cooliny to reduce enhan	nie to acceptable lew	50.	
Hyglene measures	: Wash han eating, sm Appropria Wash con showers a	ids, forearms and face th toking and using the lava te techniques should be in taminated clothing before re close to the workstatic	oroughly after handlir tory and at the end of used to remove poten e reusing. Ensure that or location.	ng chemical products, before the working period. Itally contaminated clothing. at eyewash stations and safety	
Eyerface protection	: Safety eye assessme gases or o the asses shields.	ewear complying with an int indicates this is neces dusts. If contact is possit sment indicates a higher	approved standard st sary to avoid exposur vie, the following prote degree of protection:	nould be used when a risk re to liquid splashes, mists, action should be worn, unless safety glasses with side-	
Skin protection					
Hand protection	: Chemical- worn at al necessary during use noted that glove mar protection	resistant, impervious glo i times when handling ch . Considering the param e that the gloves are still i the time to breakthrough utfacturers. In the case of time of the gloves canno	ves complying with an entical products if a ri- retaining their protection for any glove matert of mixtures, consisting t be accurately estim	n approved standard should be isk assessment indicates this is a glove manufacturer, check ve properties. It should be al may be different for different g of several substances, the ated.	
Body protection	: Personal performed handling t	protective equipment for and the risks involved a his product.	the body should be se nd should be approve	elected based on the task being ed by a specialist before	
Other skin protection	: Appropriate based on specialist	te footwear and any addi the task being performed before handling this prod	ional skin protection i and the risks involve uct.	measures should be selected and should be approved by a	
Respiratory protection	: Use a pro standard I based on working lin	perly fitted, air-purifying o f a risk assessment indic known or anticipated exp mits of the selected respi	r air-fed respirator co ates this is necessary osure levels, the haz rator.	mplying with an approved . Respirator selection must be ards of the product and the safe	
Date of issue/Date of revision	: 5/25/2015	Date of previous (asue	: 5/7/2015	Version : 0.02 4/9	

		_	_	_	_
e.	w	2)	٥		σ.

Section 9. Physical and chemical properties

Appearance	
Physical state	: Gas. [Compressed gas.]
Color	: Coloriess.
Molecular weight	: 28.02 g/mole
Molecular formula	: N2
Boiling/condensation point	: -196*C (-320.8*F)
Melting/freezing point	: -210.01°C (-346°F)
Critical temperature	: -146.95°C (-232.5°F)
Odor	: Odorless.
Odor threshold	: Not available.
pH	Not available.
Flash point	: [Product does not sustain combustion.]
Burning time	: Not applicable.
Burning rate	: Not applicable.
Evaporation rate	: Not available.
Flammability (solid, gas)	: Not available.
Lower and upper explosive (flammable) limits	: Not available.
Vapor pressure	: Not available.
Vapor density	0.967 (Air = 1) Liquid Density@8P: 50.46 lb/ft3 (808.3 kg/m3)
Specific Volume (ft 3/lb)	: 13.8889
Gas Density (Ib/ft *)	: 0.072
Relative density	: Not applicable.
Solubility	Not available.
Solubility in water	: Not available.
Partition coefficient: n- octanol/water	: 0.67
Auto-Ignition temperature	: Not available.
Decomposition temperature	: Not available.
SADT	Not available.
Viacoalty	Not applicable.
Section 10 Stabil	ity and reactivity
Section 10. Stubi	. No specific test data selected in specificity suppliable for this product or its inconductor
Reactivity	. No specific test data related to reactivity available for this product of its ingredients.
Chemical stability	: The product is stable.
Possibility of hazardous reactions	: Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	: No specific data.
incompatible materials	: No specific data.
Hazardous decomposition products	: Under normal conditions of storage and use, hazardous decomposition products should not be produced.
Hazardous polymerization	: Under normal conditions of storage and use, hazardous polymerization will not occur.
Date of Izzue/Date of revision	: 5/25/2015 Date of previous lasure : 5/7/2015 Version : 0.02 5/10

Nörgen					
Section 10. Stabil	ity and re	activity			
Irritation/Corrosion Not available.					
Sensitization Not available.					
Mutagenicity Not available.					
Carcinogenicity Not available.					
Reproductive toxicity Not available.					
Teratogenicity Not available.					
Specific target organ toxic Not available.	ity (single expo	osure)			
Specific target organ toxic Not available.	ity (repeated ex	(posure)			
Aspiration hazard Not available.					
Information on the likely routes of exposure	: Not availab	ile.			
Potential acute health effect	8				
Eye contact	Contact with	th rapidly expanding gas	may cause burns or	frostbite.	
Innaiation Rida contract	No known	significant effects or crit	cal nazaros.	Annalis in	
Ingestion	: As this pro	duct is a gas, refer to the	e inhalation section.	Trosibile.	
Symptoms related to the phy	valcal, chemic	al and toxicological ch	aracteristics		
Eye contact	: No specific	; data.			
Inhalation	: No specific	; data.			
Skin contact	: No specific	; data.			
Ingestion	: No specific	; data.			
Delayed and immediate effe	cts and also ct	ronic effects from sho	rt and long term ex	posure	
Short term exposure Potential Immediate effects	: Not availab	ile.			
Potential delayed effects	: Not availat	ile.			
Long term exposure					
Potential immediate effects	: Not availab	ole.			
Potential delayed effects	: Not availab	ile.			
Potential chronic health eff Not available.	lecta				
General	: No known	significant effects or criti	cal hazards.		
Carcinogenicity	: No known	significant effects or criti	cal hazards.		
		Data at any from the set	. 8/7/2016	Marshan 10.07	

Norgen

Section 11. Toxicological information

Mutagenicity	: No known significant effects or critical hazards.
Teratogenicity	: No known significant effects or critical hazards.
Developmental effects	: No known significant effects or critical hazards.
Fertility effects	: No known significant effects or critical hazards.

Numerical measures of foxicity Acute toxicity estimates

Not available.

Not available.						
Persistence and d						
Persistence and d						
	egradability					
Not available.						
Bloaccumulative r	otential					
Product/ingredier	nt name 🛛 Log	P	BCF	P	otential	
Nitrogen	0.6	7	-	lo	W	
	1					
Mobility In soll	-	lot available				
coefficient (Kec)		ot available.				
Office advance offic	ala - I	is known significant of	Reals of orthogo bases	-		
Other adverse ene		vo known significant er	nects or critical hazard	15.		
Section 13.	Disposal	consideration	ns			
	r r t t t t t t t t t t t t t t t t t t	ontainers or lines of this equirements of enviror egional local authority la a licensed waste dis the sewer unless fully o Empty Airgas-owned pr hould be recycled. Inc int feasible. This mate ontainers or liners may ontainer.	is and any by-product nmental protection any requirements. Dispos sposal contractor. We sompliant with the requiressure vessels shoul cheration or landfil sh artal and its container i y retain some product	s should at all time d waste disposal le e of surplus and n iste should not be inements of all au d be returned to Al ould only be consi must be disposed o residues. Do not	is comply with the egislation and any on-recyclable produ disposed of untreats thorities with juriadic igas. Waste packa dered when recyclin of in a safe way. En puncture or incinera	icts ed to dion. ging ig is npty ite
Section 14.	Transpor	t information				
	DOT	TDG	Mexico	IMDG	IATA	
UN number	UN1066	UN1066	UN1066	UN1066	UN1066	
UN proper shipping name	NITROGEN, COMPRESSED	NITROGEN, COMPRESSED	NITROGEN, COMPRESSED	NITROGEN, COMPRESSED	NITROGEN, COMPRESSED	
Transport	22	2.2	2.2	2.2	2.2	
nazaru ciasa(ee)	\$	\	\	\	-	

JULLIUI 14.	Transport i	nformation				
Packing group	- Tansport		-	-		
Environment	No	No	No	No	No	
Additional	Lamited quantity	Product classified as	-	-	Passeng	er and Cargo
nformation	Yea. <u>Packaging instruction</u> Passenger aircraft Duanity limitation: 75 kg Cango aircraft	per the iclosuring sections of the Thransportation of Dangerous Goods Regulations: 2.13-2.17 (Class 2). Exploserve Lamit end, Landeet Chamits Indian			Ascratti Imitation <u>Cerco A</u> Quantity kg	Juantity : 75 kg <u>instalt Only</u> Imitation: 150
	kg	C.125 Descencer Cerrying Road or Hell Index 75				
Refer to CFR 49	(or authority havin	g jurisdiction) to de	termine the informa	tion required	for shipment	of the
pecial precautio Transport in buik	according : Not	aport within User's ght and secure. Ensu it of an accident or sp available.	promises: always tr re that persons trans pillage.	ansport in clos porting the pro	ed containers oduct know wha	unartare at to do in th
o Annex II of MAI '3/78 and the IBC	RPOL Code					
Section 15.	Regulatory	information				
J.S. Federal regu	iatione : TSC Unit	A 8(a) CDR Exempt ad States Inventory	/Partial exemption: (TSCA 8b): This ma	This material aterial is listed	is listed or exer or exempted.	npted.
Clean Air Act Se (b) Hazardous A Pollutants (HAP)	ection 112 : Not Ir 3)	listed				
Clean Air Act Se Class I Substand	ction 602 : Not	listed				
Clean Air Act Se Class II Substan	ction 602 : Not ces	listed				
DEA List I Chem (Precursor Chem	icale : Not nicale)	listed				
DEA List II Chen (Essential Chem	nicale : Not Icale)	listed				
SARA 302/304	formation on ingre	dients				
Composition/In	ro found					
Composition/In No products we	ie iouno.					
Composition/in No products we SARA 304 RQ SARA 311/312	: Not	applicable.				
Composition/In No products we SARA 304 RQ SARA 311/312 Classification	: Not	applicable. den release of pressu	re			
Composition/In No products we SARA 304 RQ SARA 311/312 Classification Composition/In	: Not : Sud	applicable. den release of pressu <u>dients</u>	re			
Composition/In No products we SARA 304 RQ SARA 311/312 Classification Composition/In Name	: Not : Sud formation on Ingre	applicable. den release of pressu <u>dienta</u> 6 Fir ha	re zard release of pressure	Reactive	Immediate (acute) health hazard	Delayed (chronic) health hazard

Nörgen	
Section 15. Reg	ulatory information
State regulations	
Massachusetta	: This material is listed.
New York	: This material is not listed.
New Jersey	: This material is listed.
Pennsylvania	: This material is listed.
International regulations	
International lists	
National Inventory	
Australia	This material is listed or exempted.
Canada	: This material is listed or exempted.
China	This material is listed or exempted.
Europe	This material is listed or exempted.
Japan	: Not determined.
Malayela	: Not determined.
New Zealand	This material is listed or exempted.
Philippines	 This material is listed or exempted.
Republic of Korea	This material is listed or exempted.
Talwan	: This material is listed or exempted.
Canada	
WHMIS (Canada)	Class A: Compressed gas.
	CEPA TOXIC SUBSIBILIES: This material is not listed. Canadian ARET: This material is not listed
	Canadian NPRI: This material is not listed.
	Alberta Designated Substances: This material is not listed.
	Ontario Designated Substances: This material is not listed. Quebec Designated Substances: This material is not listed
0	
Section 16. Oth	er information
Canada Label requirem	anta : Class A: Compressed gas.
Hazardous Material Infor	mation System (U.S.A.)
Health	0

Flammability 0 Physical hazards 3 Caution: HMI S© ratings are based on a 0-4 rating so

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks. Although HMIS® ratings are not required on SDSs under 25 CFR 1910. 1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered mark of the National Paint & Coatings Association (NPCA). HMIS® materials may be purchased exclusively from J. J. Keller (800) 327-6868.

The customer is responsible for determining the PPE code for this material.

Reprinted with permission from NFPA 704-2001, identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

Date of izzue/Date of revision : 5/25/2015 Date of previous izzue : 5/7/2015 W	eralon	:0.0Z S	290
--	--------	---------	-----

140	1 ma		-
		ν.	8.7

Section 16. Other information

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 45 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

Procedure used to derive the classification

Clas	atfica	ation	Justification
Press. Gas Comp. Gas, H2	80		Expert Judgment
History			
Date of printing	- 1	5/26/2016	
Date of Issue/Date of revision	- 1	5/26/2016	
Date of previous issue	- 2	8/7/2015	
Version	1	0.02	
Key to abbreviations	:	ATE - Acute Toxicity Estim BCF - Bioconcentration Fa GHS - Globally Harmonize IATA - International Air Tra IBC - International Martti LogPow - loganthm of the (MARPOL 73/78 - Internatio 1973 as modified by the Pm UN - United Nations	ate ctor do System of Classification and Labelling of Chemicals nsport Association ntainer me Dangerous Goods potanol/water partition coefficient cotanol/water partition coefficient inal Convention for the Prevention of Pollution From Ships, stocol of 1978. ("Marpol" – marine pollution)
References	1	Not available.	

Indicates information that has changed from previously issued version.

Notice to reade

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

Date of Izave/Date of revision : 5/25/2015 Date of previous issue

: 8/7/2015

Version ±0.02 1010

Phenolic Resin SDS

Ma	aterial Safety Data Sheet
	FOR INDUSTRIAL USE ONLY
	Cascophen RB52345
1. Product and c	ompany identification
Product name	Cascophen RBS2345
MSDS Number	00000008613
Product Type	Phenol Formaldehyde Resin
Product use	Wood Adhesives, Composites, Laminates or Related Board Products
Manufacturer, Importer, Supplier	Momentive Specially Chemicals Inc. 160 East Broad Street Columbus OH 43215
	dinformation@momentive.com
Print date	03-JAN-2011
Telephone	For Emergency Medical Assistance Call Health & Safety Information Services, 1-866-303-6949
	For Emergency Transportation Information CHEMTREC US Domestic (800) 424-9300 CHEMTREC International (703) 527-3887 CANUTEC CA Domestic (513) 996-6686
	For additional health and safety or regulatory information, call 1 888 443 9466.
Part of the CASCO® Brand	of Adhesives and Resins from Momentive Specially Chemicals
2. Hazards ident	ification
Form	Liquid
Odor	Slight aromatic
OSHA/HCS status	This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Emergency overview	WARNING I CAUSES EYE IRRITATION. MAY CAUSE RESPIRATORY TRACT AND SKIN IRRITATION.
Potential acute health eff	ects
Inhalation	Slightly irritating to the respiratory system. Exposure to decomposition products may cause a health hazard. Serious effects may be delayed following exposure.
Ingestion	Not expected to be harmful under normal conditions of use
Skin	Slightly initiating to the skin.
Eves	Severely initiating to eyes. Risk of serious damage to eyes.

Figure A.10: Safety Data Sheet for Phenolic Resin SDS [13]

	No known significant effects or critical hazards.
Carcinogenicity	No known significant effects or critical hazards.
Mutagenicity	No known significant effects or critical hazards.
Teratogenicity	No known significant effects or critical hazards.
Developmental effects	No known significant effects or critical hazards.
Fertility effects	No known significant effects or critical hazards.
Target organs	Review Section 2 and 11 for any additional assessments.
Note: Residual formaldehy and level will depend on loc respiratory tract and may as formaldehyde as a potentia 1910, 1048 for further detail formaldehyde as carcinoge	de gas may be released from this product during processing. The amount cal conditions of use. Formaldehyde gas is initiating to the eyes and upper gygravate existing respiratory conditions or allergies. OSHA has issted I human carcinogen. See the OSHA formaldehyde standard 29 CFR s. The international Agency for Research on Cancer (IARC) has classified nic to humans.
Over-exposure signs/sym	ptoms
Inhalation	Adverse symptoms may include the following: respiratory tract initiation, coughing,
Ingestion	No specific data.
Skin	Adverse symptoms may include the following: imitation, redness,
Eyes	Adverse symptoms may include the following: pain or initiation, watering, redness,
Medical conditions approvated by over-expensive	None known
Medical conditions approvaled by over-expressive See section 11 for more d 3. Composition/	None known. Ietailed information on health effects and symptoms. Information on ingredients
Medical conditions approvaled by one-expensive See section 11 for more d 3. Composition/ Ingredient name Phenol-Erymaldehodie Poly	None known. Information on health effects and symptoms. Information on ingredients mer Sodium Salt 40798-65-0 30.0 - 50.1
Medical conditions approvaled by one-expensive See section 11 for more d 3. Composition// Ingredient name Phenol-Formaldehyde Poly	None known. Information on health effects and symptoms. Information on ingredients mer Sodium Selt <u>CAS number</u> 40799-65-0 30.0 - 50.0 e secret numbers wil be failed in Section 15.
Medical conditions approvaled by one-expensive See section 11 for more d 3. Composition/ Ingredient name Phenol-Formaldehyde Poly "Any apolicable Canadian Irad 4. First aid meas	None known. Information on health effects and symptoms. Information on ingredients mer Sodium Salt <u>CAS number</u> <u>WT %</u> warret numbers wil be faited in Section 1.5. Surres
Medical conditions approvaled by over-expensive See section 11 for more of 3. Composition// Ingredient name Phenol-Formaldehyde Poly "Any applicable Canadian Irad 4. First aid meas Eye contact	None known. Information on health effects and symptoms. Information on ingredients mer Sodium Salt e accret numbers wil be faited in Section 15. Sures Immediately fush eyes with plenty of water for at least 15 minutes, occasionally iffing the upper and lower eyelds. Check for and remove any contact lenses. Get medical attention. Chemical burns must be treated romethy a physician.
Medical conditions approvaled by onet-expensive See section 11 for more of 3. Composition// <u>Ingredient name</u> Phenol-Formeldehyde Poly "Any applicable Canadian Irad 4. First aid meas Eye contact Skin contact	None known.
Medical conditions approvaled by onet-expensive See section 11 for more of 3. Composition// <u>Ingredient name</u> Phenol-Formeldehyde Poly "Any agolicable Canadian Irad 4. First aid meas Eye contact Skin contact Inhalation	None known. Information on health effects and symptoms. Information on ingredients Immediately for an ingredients mer Sodium Salt CAS number 40798-65-0 secret numbers will be failed in Section 15. Sures Immediately fush eyes with plenty of water for at least 15 minutes, occasionally iffing the upper and lower eyelds. Check for and remove any contact lenses. Get medical attention. Chemical burns must be treated promptly by a physician. Flush contaminated skin with plenty of water. Remove contaminated cicthing and shoes. Continue to finse for at least 10 minutes. Get medical attention if symptoms occur. Wash cicthing before reuse. Clea shoes thoroughly before reuse. Move exposed person to fresh air. Keep person warm and at rest. If no breathing, if breathing is irregular or if respiratory arrest occurs, provide

Large spill	Stop leak if without risk. Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see section 13). Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see section 1 for emergency contact information and section 13 for waste disposal.
Small spill	Stop leak if without risk. Move containers from spiil area. Dilute with water and mop up if water-soluble or absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.
7. Handling	and storage
Handling	Put on appropriate personal protective equipment (see section 8) Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wish hands and face before eating, drinking and smoking. Do not breathe vapor or mist. Do not ingest, Avoid contact with eyes, skin and clothing. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Keep away from acids. Empty containers retain product residue and can be hazardous. Do not reuse container.

Storage Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see section 10) and food and drink. Separate from acids. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

8. Exposure controls/personal protection

Ingredient name Consult local authorities f	Occupational exposure limits or acceptable exposure limits.
Recommended monitoring procedures	If this product contains ingredients with exposure limits, personal, workplace atmosphere or biological monitoring may be required to determine the effectiveness of the ventilation or other control measures and/or the necessity to use respiratory protective equipment.
Engineering measures	Use only with adequate ventilation. If user operations generate dust, fumes, gas, vapor or mist, use process enclosures, local eshaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits.
Hygiene measures	Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to
1/3/2011	43

the workstation location.
Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or articipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.
Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary.
Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists or dusts.
Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.
hemical properties
Liquid Not applicable. Not applicable. Not applicable. Clear, reddish-brown Slight aromatic 11 - 12 Approx. 102 °C(216 °F) Less than 0 °C(32 °F) Approx. 11750 - 1.1950 Approx. 22 mm Hg @ 25 °C(77 °F) Not available Dynamic- 1.200 - 1,800 cPs Brookfield Infinite Not available Approx. 0.4 (n-Butyl acetate=1) Not available
reactivity
Hazardous polymerization may occur under certain conditions of storage or use.
Hazardous polymerization may occur under certain conditions of storage or use. Strong oxidizer,

	artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth to-mouth resuscitation. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, ite, beit or waistband. Get medical attention if adverse health effects persist or are severe. In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours.
Ingestion	Wash out mouth with water. Do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Get medical attention immediately.
Protection of first aid personnel	No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.
Notes to physician	In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours.

See section 11 for more detailed information on health effects and symptoms.

5. Fire-fighting measures		
Flammability of the product	In a fire or if heated, a pressure increase will occur and the container may burst.	
Extinguishing media Suitable	Use an extinguishing agent suitable for the surrounding fire.	
Not suitable	None known.	
Special exposure hazards	Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training.	
Hazardous combustion products	Decomposition products may include the following materials: carbon oxides, nitrogen oxides,	
Special protective equipment for fire-fighters	Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.	

6. Accidental release measures

Personal precautions	No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. Avoid breathing vapor or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment (see section 8).
Environmental precautions	Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
1/3/2011	33

Materials to avoid	Reactive or incompatible with the following materials: oxidizing materials, acids,
Hazardous decomposition products	Decomposition products may include the following materials: carbon monoxide, carbon dioxide, aldehydes (including formaktehyde), oxides of nitrogen particulate matter, other organic compounds,

11. Toxicological information

Acute toxicity Product name Cascophen RBS2345

10 10 - 10 - E	LC50 Inhalation	Rat	> 2501 ppm/1 hEstimated
	16 CFR Part 1500.41	Rabbit	Slight Skin Imitant
	16 CFR Part 1500.42	Rabbit	Severe Eye Irritant

Acute toxicity

Ingredient name

Other Toxicological Information

Carcinogenicity

Classification		
Ingredient name		
Phenol-Formaldehyd	e Polymer Sodiun	h Sait
_	ACGIH	Not classified
	IARC	Not classified
	NTP	Not listed
	OSHA	Not regulated
	EU	Not classified

12. Ecological information

Environmental effects

No known significant effects or critical hazards.

Biodegradability

Phenol-formaldehyde polymers have a very low rate of biodegradation. Conclusion/Summary

Other adverse effects

Bioaccumulation is expected to be minimal. Product is initially a mobile liquid which will solidify on aging. Unreacted monomer may be leached into ground water even after normal curing has occurred.

13. Disposal considerations

Waste disposal

The generation of waste should be avoided or minimized wherever possible. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposel legislation and any regional local authority requirements. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

14. Transport information

The data provided in this section is for information only and may not be specific to your package size or mode of transport. You will need to apply the appropriate regulations to properly classify your shipment for transportation.

1/3/2011

6/3

Regulatory UN/N/ Information numb	A Proper shipping name er	Classes/"PG	Reportable Quantity (RQ)	
CFR	Non-regulated			
TDG	Non-regulated			
MOMMDG	Non-regulated			
IATA (Cargo)	Non-regulated			
PG : Packing group				
15. Regulatory	y information			
US regulations HCS Classification	Initiating material			
U.S. Federal regulations	SARA 311/312 Classification in	rvnediate (acute) health has	card, reactive	
	SARA 313 - Supplier Notification This product contains the followin requirements of Section 313 of T Reauthorization Act of 1986, and Part 372. None required.	en Ing toxic chemical(s) subject de III of the Superfund Am Subpart C-Suppler Notifica	to the reporting endments and ston Requirement of 40 CFR	
	SARA 302 Extremely Hazardov	s Substances None requi	ired.	
State regulations	Massachusetts RTK Substance	es None required.		
	New Jersey RTK Hazardous St	ubstances None required.		
	Pennsylvania RTK Hazardous	Substances None require	ه	
	California Prop. 65: WARNING California to cause cancer. Form	: This product contains a ch aldehyde - 50-00-0,	emical known to the State of	
<u>Canada</u> WHMIS (Canada)	Class D-2A: Material causing oth	er toxic effects (Very toxic)	e.	
Canadian lists	Canadian NPRI: None required.			
International regulation Chemical inventories	Europe inventory All comp Australia inventory (AICS) China inventory (ECSC) 1 Japan inventory (ENCS) N Japan inventory (ENCS) N Konsa inventory (SHL) N Konsa inventory (SHL) N New Zealand Inventory (N Philippines inventory (N United States inventory (TS Canada Inventory All com	vonents are listed or exempt Not determined. Not determined. Int determined. Int determined. Int determined. 250 Not determined. 250 Not determined. 250 A Bo) All components ar ponents are listed or exempt	ted. re listed or exempted. sted.	
16. Other info	rmation			
Hazardous Material	Health : 2			
			2.9	

Information System III (U.S.A.)

Flammability: 0 Physical hazards : 0 Chronic :

Caution: HMIS[®] ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks Although HMIS[®] ratings are not required on MSDSs under 29 CFR 1910;1200, the preparer may choose to provide them. HMIS[®] ratings are to be used with a fully implemented HMIS[®] program. HMIS[®] is a registered mark of the National Paint & Coatings Association (NPCA). HMIS[®] materials may be purchased exclusively from J. J. Keller (800; 327-6868. The customer is responsible for determining the PPE code for this material.

Prepared by	Product Safety & Regulatory Compliance Group, (614)225-4778
Date of Issue	20-NOV-2010
Date of printing	03-JAN-2011
Version	3.1

Notice to reader

Notice to reader The information provided herein was believed by Momentive Specialty Chamicals ("Momentive") to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Momentive are subject to Momentive's terms and conditions of safe. MOMENTIVE MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY MOMENTIVE, except that the product shall conform to Momentive's specifications. Nothing contained MOMENTIVE, except that the product shall conform to Momentive's specifications. Nothing contained herein constitutes an offer for the sale of any product.

* and * Licensed Irademarks of Momentive Specialty Chemicals Inc.

1/3/2011

8/3