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Abstract 

 Despite nearly a century’s worth of research focused on investigating the 

activities of microorganisms in petroleum production systems, a large gap in the 

literature exists on the role of heterotrophic microorganisms in petroleum-impacted 

systems. This study aimed to review the current literature examining the major topics in 

petroleum microbiology while also contributing new findings towards understanding 

how heterotrophic bacteria, especially members of the Gammaproteobacteria, function 

in instigating hydrocarbon degradation and downstream biocorrosion in petroleum 

production water. Several isolates were obtained from the petroleum production water, 

examined for hydrocarbon degradation ability, and identified via 16S rRNA gene 

sequencing. One isolate, Halomonas (Gammaproteobacteria) A11A completely 

oxidized C5 n-pentane and C10 n-decane and partially oxidized C16 n-hexadecane and 

toluene as estimated through oxygen respirometry. Whole genome sequencing of A11A 

revealed it possesses an alkane monooxygenase (alkB) and also contains pathways for 

complete oxidation of n-alkanes and incomplete oxidation of aromatic hydrocarbons 

(BTEX). Fifteen additional heterotrophic isolates were identified via 16S rRNA 

ribosomal gene sequencing as Arcobacter (7 isolates, Epsilonproteobacteria), 

Thalassospira (5 isolates, Gammaproteobacteria), Marinobacterium (2 isolates, 

Gammaproteobacteria) and Salinicola (1 isolate, Gammaproteobacteria). One strain 

each of Arcobacter and Marinobacterium were tested for growth on hydrocarbons. The 

Marinobacterium strain showed moderate growth, but the Arcobacter strain was unable 

to grow on any of the hydrocarbon substrates. However, Arcobacter species contribute 

to biocorrosion by the oxidation of sulfide. Other studies have found that Thalassospira 



 

	 xii 

and Salinicola strains can degrade polyaromatic hydrocarbons. Collectively, these 

findings suggest that aerobic heterotrophs, such as Gammaproteobacteria, could 

contribute to biocorrosion by providing substrates, fully and partially degraded 

hydrocarbons, which foster the activities of sulfidogenic and fermentative 

microorganisms. Here, we propose that the underappreciated, seemingly innocuous, and 

often ignored general heterotrophs be considered as problematic and be monitored more 

closely since they can indirectly threaten the integrity of production water systems. 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



 

	 1 

Preface 

 Decades of research have investigated the functions of microorganisms in the 

petroleum production process. Microorganisms possess the ability to both induce harm 

to the oil and gas industry and the environment and mediate petroleum pollution. 

Efforts to understand the mechanisms employed by these microorganisms are 

necessary to anticipate and prevent biocorrosion/MIC. Hydrocarbon-degrading and 

aerobic heterotrophic microorganisms remain largely uncharacterized regarding their 

role in biocorrosion. This thesis aims to shed light on the topics of aerobic hydrocarbon 

degradation and the microbial ecology of production water systems. This work is the 

product of collaboration among many academic peers and industry partners and would 

not have been possible without their guidance and support. 

 The first chapter is a review of literature focused on selected topics in 

petroleum microbiology. These topics include biocorrosion and microbially-influenced 

corrosion (MIC), petroleum biodegradation and hydrocarbon degradation, 

hydrocarbonoclastic microorganisms, and gene systems involved in aerobic and 

anaerobic hydrocarbon degradation. Reviewing these topics sets the stage for the main 

chapter of this thesis, chapter 2, and provides a foundation for the rationale used to 

support the hypotheses presented throughout this work. Without the efforts and 

contributions made by decades of researchers before, the findings, implications, and 

methods themselves would not be possible. I am grateful to contribute a small piece of 

work to the collection of scientific knowledge from which I have gleaned my own 

learning. 
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 Chapter 2 and supporting materials in Appendix I and II have been made 

possible by collaborations with the University of Oklahoma Biocorrosion Center 

(OUBC). The industrial sponsors collaborating with the OUBC provided the samples 

and funding for the study. The overall goal of the study was to elucidate the causes, 

mechanisms, and solutions to corroded production water tanks in the Barnett Shale. 

Members of the OUBC investigated the differences in chemistry and microbiology 

among problematic and non-problematic production water tanks to expose key 

variances correlated with corrosion. The team aimed to answer i) if MIC was 

occurring, ii) if hydrocarbons were subject to biodegradation, and iii) what 

mechanisms could be linking the two processes.  

 A series of chemical and metabolic analyses, led by Drs. Duncan, Nanny, 

Suflita, McInerney, Lenhart, Davidova, Aktas and members of their laboratories, were 

made to quantify sulfate reduction rates, metabolic activities, iron reduction rates, and 

microbial hydrocarbon degradation. My role was to compare aerobic microbial 

hydrocarbon degradation rates to determine the preferred carbon substrates: n-alkanes, 

n-fatty acids, BTEX compounds, or oxidized BTEX compounds. The team’s initial 

findings suggested that sulfate reduction and dissolved iron were linked to microbial 

sulfate reduction activity and targeted metabolomics found evidence for aerobic 

hydrocarbon degradation (Dr. Deniz Aktas and Brian Harriman). Molecular analysis 

revealed that a significant portion of the microbial community in the problematic tanks 

consisted of Deltaproteobacteria, Clostridia, and Gammaproteobacteria (Dr. Kathleen 

Duncan and Dr. Sylvie Le Borgne). From here, I continued to investigate the role of 

Gammaproteobacteria and other heterotrophs in the production water, as described in 
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Appendix II; we hypothesized that these aerobic heterotrophs were initiating the 

degradation of condensate hydrocarbons that ultimately feed the sulfate-reducing and 

fermentative bacteria. 

 The remainder of my study consisted of enriching and isolating aerobic 

microorganisms from the production water. I isolated several heterotrophic 

microorganisms from the production water, including Arcobacter and 

Marinobacterium strains (discussed in Appendix 2) from an enrichment initiated by 

Dr. Sylvie le Borgne. Through amendment with n-alkanes, I also obtained several 

Halomonas (Gammaproteobacteria) isolates that are capable of hydrocarbon 

degradation; I hypothesized that Gammaproteobacteria in the production water degrade 

n-alkanes using monooxygenase enzymes such as alkB or cytochrome p450. 

Investigating this hypothesis involved genome sequencing of isolate A11A and oxygen 

respirometry experiments to obtain hydrocarbon oxidation rates. Annotation and 

analysis of the isolate genome was made possible by the MGMIC pipeline designed by 

Dr. Boris Wawrik, and Vince Sandifer assisted me in the bioinformatics analysis. 

Oxygen respirometry methods were mastered with guidance from Brian Harriman. 

Throughout the study, I was responsible for cultivation, DNA extraction, sequencing 

preparation and sequence analysis, oxidation rates calculations, and analysis. We found 

evidence that Gammaproteobacteria, such as the Halomonas A11A isolate, use alkB 

monooxygenase enzymes to degrade a wide range of n-alkanes and toluene 

hydrocarbons; thus, reinforcing the hypothesis that aerobic heterotrophs degrade the 

condensate hydrocarbons in the production water. 
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 Together, the findings of this work suggests that microbially-driven aerobic 

hydrocarbon degradation occurring in production water tanks contributes to 

downstream biocorrosion and MIC by providing nutrients for known biocorrosive 

sulfate-reducers and fermentative species. I anticipate publishing Chapter 2 upon 

completion of parallel degradation studies to quantify substrate loss initiated by 

Halomonas A11A. 
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Chapter 1: 

A review of selected topics in petroleum microbiology: biocorrosion, aerobic and 

anaerobic hydrocarbon degradation genetic systems, and aerobic hydrocarbonoclastic 

microorganisms 

Abstract: 
 
 Hydrocarbons are ubiquitous compounds released by both natural seeps and 

anthropogenic processes. Accidental release of petroleum hydrocarbons is a problem 

that concerns the petroleum industry, human health, and the environment. Biogenic 

sulfide production from sulfate-reducing microorganisms and direct iron oxidation by 

lithotrophic microorganisms are some of the many mechanisms that contribute to 

biocorrosion of production machinery; corrosion events often lead to accidental release 

of hydrocarbons and toxic gases. Conversely, microorganisms also play a major role in 

reducing pollution by degrading petroleum hydrocarbons and other pollutants through 

natural biodegradation processes. Microorganisms possess the power to both induce 

and mitigate harm to the environment and consequently, the oil and gas industry. 

Recognizing the natural abilities employed by microorganisms will allow researchers 

and industry leaders to better protect human health and the environment while 

optimizing the recovery of fossil fuels by preventing product losses through accidental 

releases and subsequent environmental contamination. 

 In contrast to the vast amount of literature investigating the impact and 

activities of sulfate-reducing organisms and biocorrosion, the role of 

hydrocarbonoclastic organisms in partially aerobic production water systems where 

biocorrosion occurs is largely unknown. Rather than focus on the direct players and 
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pathways involved in biocorrosion of carbon steel in the oil and gas industry, the aim 

of this thesis is to examine the role of aerobic hydrocarbonoclastic 

Gammaproteobacteria and how they can initiate a cascade of hydrocarbon degradation 

and therefore influence downstream biocorrosion. 

 

1.0 Microbially influenced corrosion (MIC) 

 Corrosion leads to the accidental release of hydrocarbons and hazardous 

compounds, damage to machinery and manufacturing materials, and contamination of 

environments. Corrosion events impact every facet of the oil and gas industry 

including engineering, economics, safety, environmental science, and human health 

(Beech et al., 2004; Duncan et al., 2009; NACE Standard TM0212, 2010; Vigneron et 

al., 2016). The origins of these corrosion problems are both biotic and abiotic. Abiotic 

events include chemical oxidation of metals when metal, water, and oxygen 

intermingle; metals become oxidized through the loss of electrons from the metal 

surfaces and weakening the pipelines and storage tanks (Hamilton et al., 2003; Suflita 

et al., 2008). Biotic corrosion also functions as an electrochemical process but 

implicates microbial physiology. The two most widely accepted mechanisms of MIC 

are chemical (CMIC) and electrical (EMIC). CMIC is described as the reduction of 

iron to produce iron sulfide instigated by sulfate-reducing microorganisms (Dihn et al., 

2004; Venzlaff et al., 2013). EMIC occurs through direct iron oxidation; lithotrophic 

microorganisms withdraw electrons directly from iron in metal surfaces (Enning et al., 

2012; 2014). While MIC is not directly linked to a single microbial species, 
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sulfidogenic, iron-oxidizing, and fermentative microorganisms are characteristic of 

petroleum systems (Dihn et al., 2004; Suflita et al., 2008; Vigneron et al., 2016). 

1.1 Sulfidogenic bacteria   

 Microbially influenced corrosion (MIC) begins with formation of biofilms on 

metal surfaces (Beech et al., 1999; 2004; Vigneron et al., 2016). The rate of corrosion 

depends greatly on the metabolites produced by the microbial community, availability 

of electron acceptors and donors, and abiotic factors such as temperature, pH, and 

salinity. Biofilms on carbon steel often consists of sulfate-reducing bacteria (SRB), 

sulfide-oxidizing bacteria (SOB), methanogens, fermentative bacteria, and iron-

oxidzing/reducing bacteria (Videla, 2002; Baker et al., 2003; Beech et al., 2003; 2004; 

Kjellerup et al., 2003; Zhang et al., 2003; Suflita et al., 2008). Sulfate-reducing 

bacteria are consistently associated with biocorrosion of carbon steel in the petroleum 

industry due to their production of corrosive sulfuric acid and sour hydrogen sulfide 

gases from sulfate and thiosulfate; whereas some SRBs are able to use steel directly as 

an electron donor without needing a hydrogen intermediate (Venlaff et al., 2013; 

Enning et al., 2014). The anaerobic conditions maintained in oil production equipment 

are ideal for SRBs; the abundance of carbon substrates (hydrocarbons, organosulfur 

compounds, organic acids, etc.), steel infrastructure of the equipment itself, and 

produced and injection waters provide SRBs with the necessary electron donors and 

acceptors to induce MIC. While SRBs are obligate anaerobes, they can be active in 

oxygen-rich environments when protected by a biofilm (Beech et al, 2002). Generally, 

SRBs rely on other microorganisms to degrade complex substrates and use the 

byproducts as substrates (Muyzer and Stams, 2008). Some SRBs can utilize 
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hydrocarbons as a carbon source, but most cannot; the majority of SRBs oxidize a 

range of organic acids and alcohols, such as lactate, acetate and fatty acids, completely 

to carbon dioxide or in the absence of sulfate may grow fermentatively (Hansen, 1993; 

Rueter et al., 1994; Daumas et al., 1988; Liu et al., 1997; Dihn et al., 2004; Parshina et 

al., 2005; Aüllo et al., 2013; Vigernon et al., 2016). Oil reservoirs and production 

waters play host to a wide range of substrates suitable for SRBs. As primary 

production slows secondary recovery methods are implemented to increase production; 

water flooding with seawater introduces high concentrations of sulfate to the reservoir 

and provides SRBs with their preferred electron acceptor and may catalyze sulfate-

reduction. 

 The majority of sulfate-reducing bacteria are characterized as 

Deltaproteobacteria. Some of the most common Deltaproteobacteria that contribute to 

sulfate reduction or are associated with reservoirs include members of the 

Desulfovibrionaceae family and are characterized as mesophilic. Specifically, 

Desulfovibrio species, all of which can utilize lactate, and Desulfomicrobium species, 

are known to grow autotrophically and are thermophilic, thus are often associated with 

high-temperature petroleum reservoirs  (Rozanova et al., 1988; Magot et al., 1992). 

Others, characterized as part of the Desulfobacteriaceae family include Desulfacinum, 

which are thermophiles and can use a wide range of substrates oxidizing them fully to 

CO2, and Desulfobacter species, which have a more limited range of substrate 

preferences (Rees et al., 1995; Lien & Beeder, 1997). In contrast, Desulfobacterium 

species have been shown to oxidize benzoic acid, p-cresol and m-cresol, and toluene, 

compounds commonly found in association with production fluids (Galushko & 
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Rozanova, 1991; Muller et al., 1999, 2001; Harms et al., 1999). A different group of 

SRBs characterized to be endospore forming and Gram-positive include 

Desulfotomaculum species; many are described as thermophilic or mesophilic with 

some halophilic and capable of lactate and ethanol oxidation (Nazina & Rozanova, 

1978; Tardy-Jacquenod et al., 1998). A thermophilic SRB, Thermodesulfobacterium, 

isolated from Yellow Stone National Park was the first thermophilic organism isolated 

from produced water from an oil well (Rozanova & Khudyakova, 1974). Further, 

archaeal sulfate reducers have been isolated and characterized; Archaeoglobus fulgidus 

was isolated from a hydrothermal system and characterized as a hyperthermophile 

capable of hydrocarbon degradation (Stetter et al., 1987). The diverse physiological 

preferences of sulfate-reducing microorganisms allow them to inhabit a variety of 

niches; their optimal growth conditions are supported by natural reservoir and 

production water conditions allowing them to play a major role in the cycling of 

carbon and sulfur in the subsurface.  

1.2 Other contributors to biocorrosion 

 Depending on the availability of sulfate in production systems sulfate reducers 

may compete or grow syntrophically with methanogens. In sulfate-limited 

environments, sulfate reducers may be forced to compete with methanogens for acetate 

and hydrogen substrates (Stams et al., 2003). Hydrogen-utilizing SRBs rapidly out-

compete the methanogens and acetogens due to higher affinity of hydrogen for the 

sulfate reducers (Stams et al., 2003). Conversely, SRBs may grow syntrophically with 

homoacetogens when they require acetate as a substrate; again the SRBs will out-

compete acetoclastic methanogens due to higher affinity of and lower threshold for 
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acetate (Schonheit et al., 1982; Brysch et al., 1987; Stephanie et al., 1994; Weijma et 

al., 2002). Syntrophic relationships between microbial communities also contribute to 

biocorrosion, hydrocarbon degradation, and methane production. Methane oxidation 

coupled to sulfate reduction is one example of syntrophic archaeal communities 

working to reverse methanogenesis while SRBs oxidize some of the intermediates 

produced (Hoehler et al., 1994; Boetius et al., 2000; Orphan et al., 2001; Nauhaus et 

al., 2002; Vigneron et al., 2016).  

 Sulfate as a terminal electron acceptor is chemically unfavorable; the E°’ of 

sulfate to sulfite redox couple is too low at -516 mV for reduction of ferredoxin at -398 

mV or NADH at -314 mV (Muyzer and Stams, 2008). This unfavorable reaction 

requires the formation of adenosine-phosphosulphate (APS) and pyrophosphate via 

ATP sulphurylase. Ferredoxin or NADH now can reduce APS since the E°’ of APS to 

sulfite plus AMP redox couple is -60 mV. Ultimately, activation of sulfate expends 2 

ATP molecules, eventually producing sulfide. Upon availability of a more 

thermodynamically and redox favorable terminal electron acceptor, many sulfate 

reducers can shift their ability to use different electron acceptors (Muyzer and Stams, 

2008). Thus, high numbers of SRBs in an environment do not indicate sulfate 

reduction as the dominant terminal electron accepting process. Thiosulfate, sulfite, 

sulfur, nitrate, and nitrite can serve as electron acceptors for some SRBs (Keith and 

Herbert, 1983; Dalsgaard and Bak, 1994; Moura et al., 1997; Lopez-Cortes et al., 

2006).  

 Oilfield machinery and production equipment are designed to operate in a 

primarily anaerobic environment to prevent the direct oxidation of steel. Anoxic 
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environments foster the growth and activity of SRBs, as discussed above. If the steel 

structure of pipelines and production tanks are exposed to oxygen, hydroxide ions are 

formed (Mand et al., 2017). This shift in oxygen availability also grants access to a 

more thermodynamically favorable terminal electron accepting process, oxidation; the 

presence of oxygen ultimately dictates the dominant microbial physiology active in the 

production machinery and waters. Aerobic and facultative anaerobes hydrocarbon-

degrading microorganisms compose a significant portion of the microbial community 

in production systems (Stevenson et al., 2011). Many aerobic or facultatively anaerobic 

hydrocarbon-degraders are halotolerant or halophilic, ideal for salty production waters 

(Gauthier et al., 1992; Alva et al., 2003; Ananina et al., 2007; de Lourdes Moreno et 

al., 2011; Lu et al., 2015). Members of the Alpha- Epsilon- and Gammaproteobacteria 

classes demonstrate hydrocarbon degradation in seawater and production water 

systems (Prabargaran et al., 2007; Luo et al., 2009). Aerobes, such as Marinobacter 

sp., Roseobacter sp., Arcobacter sp., Pseudomonas sp., among many others, have been 

identified in association with oily seawater, suggesting their involvement in the aerobic 

degradation of hydrocarbons or cycling of electron acceptors like sulfate (Prabargaran 

et al., 2007; Stevenson et al., 2011). Together, aerobic hydrocarbon degraders may 

affect MIC by supplying partially oxidized hydrocarbons and byproducts (lactate, 

acetate, fatty acids, etc.) for fermentative and sulfidogenic microorganisms to use as 

carbon sources. 
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2.0 Biocorrosion mitigation strategies 

 The impact of biocorrosion is obvious when considering the effect on 

production machinery and potential economic risks. Methods to mitigate the effects of 

corrosion are implemented at many points in the production process. Specifically, 

methods may include microbial monitoring, biocide treatments, and coatings on metal 

surfaces. Microbial monitoring predicts when and where corrosion or souring may 

occur. Strategies often include microbial counts through ATP measurements, staining 

procedures, and the use of microscopes for direct counting (Dexter et al., 1991; 

Kjellerup et al., 2003; Ollivier et al., 2005). Unfortunately, these methods can be 

biased and give inaccurate estimates on active microbial numbers (Ollivier et al., 

2005). Another treatment strategy is the use of biocides; production machinery is 

routinely flushed with biocides to kill microorganisms (Xue et al., 2015). Biocide 

treatments have differing effects due to the broad specificity of the chemicals and 

varying operating conditions of the production machinery. Injection method and 

frequency of treatment can be adjusted to the type of organism that is being targeted. 

For example, pulsing biocides at long intervals and low concentrations have been noted 

to lead to increased resistance of biocides compared to short intervals of high 

concentrations of biocides (Xue et al., 2015). Unfortunately, biocide treatments are 

often expensive and can contribute to additional corrosion problems. Moreover, 

microorganisms often develop resistance to the biocides or are unaffected by them due 

to the protective properties provided by the formation of a biofilm. Further, coating 

metals with corrosion-resistant materials has been used to mitigate corrosion effects. 

This method is expensive but works well as long as the coating is applied evenly and 
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does not leave areas unprotected. Epoxy-based and coal tar coatings have been the 

most successful at protecting against microbial corrosion, while coatings made from 

PVC often perform poorly (Videla, 1996). 

 

3.0 Hydrocarbon degradation & petroleum biodegradation 

3.1 Overview of petroleum biodegradation 

 Biodegradation of petroleum products is a concern for the oil and gas industry. 

In the event of an oil spill in terrestrial or marine systems, petroleum products are 

introduced to environments they would not otherwise be present. The ultimate fate of 

these products is of great concern to human and animal health and environmental 

safety. While some petroleum constituents are nontoxic and volatilize with air, others 

may be recalcitrant or solubilize in water and serve as dangers to human and 

environmental health (Keith et al., 1979; Alfreider et al., 2007). Petroleum fluids 

consist of a number of constituents that may be subject to microbial attack and serve as 

growth substrates. The majority of petroleum fluids consist of alkanes and paraffins, 

cycloalkanes and naphthenes, and aromatic hydrocarbons (Boylan et al., 1971; Morlett-

Chávez et al., 2010; Doherty et al., 2016). The biodegradation of petroleum products is 

influenced by several factors, both biotic and abiotic. Abiotic factors include the 

temperature of the reservoir, salinity and oil residence, while the biotic factors are due 

to microbial metabolism (Ollivier et al., 2005). Whether biotic or abiotic, 

biodegradation of petroleum products alters the physical composition of the oil. In 

general, oils that have been subject to biodegradation are less desirable due to 

increased viscosity, higher levels of sulfur, acid, and resins, and they are more difficult 
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to refine (Ollivier et al., 2005). Monitoring the quality and level of biodegradation of 

petroleum products is necessary as a measure of quality control for the oil and gas 

industry. Different classes of hydrocarbons have different rates and susceptibilities to 

biodegradation (Davidova et al., 2005). The shorter-chain aliphatic hydrocarbons (C5-

C15), n-alkanes, are the most readily biodegraded; higher molecular weight alkanes 

have decreasing solubility which can affect bioavailability to the cell. Aromatic 

hydrocarbons, and branched-chain and cyclic alkanes are more recalcitrant to 

biodegradation and depend greatly on position and number of methyl groups and alkyl 

substitution (Masterson et al., 2001; George et al., 2002). Polycyclic aromatic 

hydrocarbons (PAHs) biodegraded based on the number of rings; PAHs may consist of 

two or three rings, such as naphthalene and anthracene respectively, or be constructed 

of as many as 222 carbon atoms (Feng et al., 2009). Biodegradation of these 

hydrocarbons by heterotrophic organisms yield organic acids and alcohols that are used 

by other organisms, including sulfate-reducing bacteria, and may contribute to 

downstream reservoir souring or biocorrosion.  

 Quantifying the level of biodegradation in petroleum samples allows diagnosis 

of what types of organisms are responsible for the degradation and potential 

downstream effects. Specifically, the detection of signature intermediates and 

metabolites of biodegradation can be indicative of degradation occurring under aerobic 

versus anaerobic mechanisms. Many methods exist to allow examination of petroleum 

biodegradation, including isotopic fractionation, metabolomic analysis and 

identification, and genomic analysis to identify key genes involved in different 

degradation pathways (Fiehn et al., 2001; Bombach et al., 2010). Contamination of 
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environments by crude petroleum constituents is a problem that plagues all aspects of 

the petroleum industry.  

 Biodegradation of these compounds plays a major role in the quality of 

hydrocarbons and in efforts to clean up contaminated environments. One of the most 

successful methods employed to clean up polluted environments is through 

bioremediation; this strategy harnesses the metabolic activities of the endogenous 

microbial community to optimize the degradation of contaminants (Shim et al., 2010; 

Deng et al., 2017).  

3.2 Aliphatic hydrocarbon degradation genes and pathways 

 Alkanes compose a major fraction of crude oil but are also produced from other 

natural sources such as plants, animals, and other bacteria and microorganisms 

(Ladygina et al., 2006). Some eukaryotic organisms may use the hydrophobic 

properties of alkanes and other hydrocarbons to guard against desiccation or predators, 

while prokaryotic organisms and some fungi use hydrocarbons as a food source (van 

Beilen et al., 2003; Wentzel et al., 2007). Long chains of saturated carbon atoms 

contain high amounts of energy, making them ideal substrates for organisms 

possessing the appropriate metabolic machinery to access it. Access to this energy 

requires organisms to possess mechanisms capable of activating and selectively 

oxidizing substrates without denaturing or compromising or its own enzymes to 

reactive oxygen (van Beilen et al., 2005). 

 Alkanes are most completely and rapidly degraded in the presence of oxygen. 

Aerobic degradation of alkanes begins via oxidation of a terminal methyl group 

yielding a primary alcohol. Further oxidation of the alcohol produces an aldehyde, 
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which is further oxidized to a fatty acid. Fatty acids are oxidized by a wide variety of 

microorganisms; they are directly transformed to acetyl-CoA through β-oxidation. 

(Ashraf et al., 1994; Rehm and Reiff, 1981; van Hamme et al., 2003; Watkinson and 

Morgan, 1990; Wentzel et al., 2007). Metabolic machinery used in the hydroxylation 

of alkanes differs depending on alkane chain length. Short C2-C4, gaseous alkanes are 

targeted by methane monooxygenases (Ashraf et al.,1994; van Beilen and Funhoff, 

2007). Specifically, evidence in Pseudomonas butanovora shows sequential oxidation 

of terminal groups on alkanes via butane monooxygenase, consisting of a non-heme 

iron monooxygenase (Arp et al., 1999; Sluis et al., 2002). Conversely, some species 

oxidize alkanes at sub-terminal positions, such as Gordonia sp., which utilizes propane 

via a propane monooxygenase but cannot oxidize other gaseous alkanes (Kotani et al., 

2003). Mid-length alkanes, C5-C10, are subject to attack commonly by soluble 

cytochrome p450 or integral membrane non-heme iron proteins, such as AlkB (Rojo et 

al., 2009; Groves et al., 2011). Longer chain length alkanes seem to be hydroxylated 

via a different group of enzyme pathways. Some studies have characterized AlmA as a 

long-chain alkane monooxygenase found in Acinetobacter, and has led to the 

identification of almA in Alcanivorax, Marinobacter, and Parvibaculum (Throne-Holst 

et al., 2007; Wentzel et al., 2007). Similarly, LadA, described as a thermophilic soluble 

long-chain alkane monooxygenase from Geobacillus has been described (Feng et al., 

2007). These systems are currently understood to be a group of alkane hydroxylases, 

such as flavin-binding or -dependent monooxygenases, which are different from those 

used for shorter and mid-length alkanes.  
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3.2.1 Aerobic alkane oxidation systems 

 One of the most well characterized systems for alkane oxidation is the alkB 

family of alkane hydroxylases. The alk system was first described in Pseudomonas 

putida GPo1 for its ability to oxidize C5-C12 n-alkanes to alkanols, aldehydes, acids 

and ultimately β-oxidation pathways (Baptist et al. 1963; van Beilen et al., 1994; 

Throne-Holst et al., 2007). The system consists of three major components. First is the 

alkane hydroxylase, alkB, described as an integral membrane non-heme diiron 

monooxygenase that functions to hydroxylate alkanes at a terminal methyl group (Kok 

et al., 1989; van Beilen et al., 1992). The diiron cluster permits activation of an alkane 

via a substrate radical intermediate (Austin et al., 2000; Bertrand et al., 2005; Shanklin 

et al., 1997). The second component is the rubedoxin, alkG, which functions to bind 

iron and consists of two domains, AlkG1 and AlkG2 (Kok et al., 1989). The third 

component is alkT and is a rubedoxin reductase (Smits et al., 2002). Today, more than 

60 alkB homologs have been characterized in both Gram-positive and Gram-negative 

organisms (Marin et al., 2001, 2003; Smits et al.,1999, 2002, 2003; van Beilen et al., 

2002b, 2004; Rojo et al., 2009; Wang et al., 2010; Pérez-de-Mora et al., 2011; Nei et 

al., 2014). 

 Cytochrome p450 hydroxylases are ubiquitous in all forms of life, functioning 

as protein catalysts oxygenating a wide array of compounds. Their ubiquitous nature 

has lead to a wide range of substrates they are able to catalyze, including: fatty acids 

and steroids, as well as some materials of anthropogenic origin, including, anesthetics, 

solvents, pesticides, and drugs (Bernhardt et al., 2006). Specifically, bacteria capable 

of C5-C10 alkane degradation often employ soluble cytochrome p450 monooxygenases. 
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The CYP153 class of cytochrome p450s is responsible for alkane degradation in 

microorganisms (Scheps et al., 2011). This system requires ferredoxin and ferredoxin 

reductase proteins as an electron-delivery system and is the first to exhibit specific 

hydroxylation of alkanes at the terminal position. Studies suggest the CYP153 system 

favors linear alkanes while omitting others due to the shape of a substrate-binding 

pocket and steric hindrance properties (Funhoff et al. 2006). 

3.2.2 Anaerobic alkane degradation 

 While aerobic degradation of hydrocarbons is observed and characterized 

extensively, anaerobic degradation of hydrocarbons has taken longer to understand and 

characterize. Many environments are oxygen limited, preventing the biodegradation of 

hydrocarbons and other pollutants from degrading as quickly or at all. For many years 

the degradation of hydrocarbons under anoxic conditions was believed to be 

impossible or occur at such slow rates the degradation was negligible. Further, if 

oxygen-dependent remediation methods have been used, the rapid loss of oxygen may 

leave sites anoxic, overwhelmed with biomass, or with recalcitrant compounds that 

remain a threat to health and the environment. For these reasons, the anaerobic 

degradation of hydrocarbons has been more fully examined in recent years (Heider et 

al., 1998; Aitken et al., 2004; Chakraborty et al., 2004; Haritash et al., 2009; Rabus et 

al., 2016).  

 Electron acceptors such as sulfate, nitrate, iron, manganese, and carbon dioxide 

can be coupled to the oxidation of hydrocarbons. The main pathway of anaerobic 

alkane oxidation is the fumarate addition pathway; some have considered the 

carboxylation pathway but it is not verified. Instead, the new hypothesis is that 
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anaerobic hydroxylation is followed by the formation of a ketone, which is then 

carboxylated and oxidized (Aitken et al., 2013; Callaghan et al., 2013). Fumarate 

addition involves the addition of the alkane at the C2 position to the double bond of 

fumarate, yielding an alkylsuccinate (Beller et al., 1992; Evans et al., 1992). At this 

point, further degradation occurs via carbon rearrangement of the alkylsuccinate, 

decarboxylation, and β-oxidation (Wilkes et al., 2002). Evidence of this pathway has 

been documented and characterized in sulfate-reducing conditions (Kropp et al., 2000; 

Cravo-Laureau et al., 2005; Davidova et al., 2005; Callaghan et al., 2006; Kniemeyer 

et al., 2007). Nitrate-reducing conditions and denitrifying bacteria have also given 

evidence of fumarate addition coupled to alkane oxidation (Rabus et al., 2001). 

3.2.3 Anaerobic alkane degradation gene systems 

 Activation of alkanes can be catalyzed through glycyl radical enzymes. One of 

which is the alkylsuccinate synthase (ASS) enzyme, demonstrated in Desulfatibacillum 

alkenivorans AK-01; (Callaghan et al., 2008; Herath et al., 2016) the other is the 

methylalkylsuccinate synthase (MAS) enzyme, characterized in the model strain 

‘Aromatoleum’ HxN1 (Grundmann et al., 2008). These mechanisms are also exhibited 

in the activation of aromatic hydrocarbons where benzylsuccinate synthase (BSS) acts 

to catalyze the oxidation of the aromatic rings; BSS was initially recognized to oxidize 

toluene in Thaura aromatica, a denitrifying bacterium (Altenschmidt et al., 1991; 

Leuthner et al., 1998; Heider et al., 2016). The initial characterization of toluene 

activation via BSS is initiated through removal of hydrogen from the methyl group of 

toluene. This step yields a benzyl radical intermediate which adds across the double 

bond of fumarate forming benzylsuccinate. Several similarities between the bss, ass, 



 

	 20 

and mas genes have been found; D. alkenivorans AK-01 and ‘Aromatoleum’ HxN1 

harbor genes for putative glycyl radical activating enzyme identified in the S-

adenosylmethionine (SAM) superfamily which is similar to the BSS activase (Leuthner 

et al., 1998; Krieger et al., 2001; Verfurth et al., 2004). Additional studies have shown 

the ass and mas gene systems play a role in the degradation of short chain alkanes and 

even solid paraffins under methanogenic conditions (Kniemeyer et al., 2007; Callaghan 

et al., 2010; Savage et al., 2010; Davidova et al., 2011; Wawrik et al., 2016).  

 With some exceptions, anaerobic hydrocarbon degradation occurs much more 

slowly than aerobic degradation (Gieg et al., 2009). Anaerobic degradation will 

exhaust the available electron acceptors one at a time according to availability of the 

most thermodynamically favorable electron acceptor and redox potential of the 

environment unless kinetics override. Identifying the dominant terminal electron 

acceptor in an environmental can be identified by monitoring hydrogen levels and can 

estimate the rate of in-situ degradation (Lovley et al., 1988; Harris et al., 2007). 

3.3 Aerobic and anaerobic aromatic hydrocarbon degradation and gene systems 

 A significant portion of petroleum products consist of highly soluble BTEX (n-

benzene, n-toluene, n-ethylene, n-xylene) and other aromatic hydrocarbons that are 

volatile aromatic compounds containing a benzene ring (Deng et al., 2017). BTEX 

compounds can account for up to 59% (w/w) of gasoline products, 80% of total VOC 

in refineries, and are present in a wide variety of environments due to anthropogenic 

and natural releases (Adams et al., 2001; Barona et al., 2007; Gadd et al., 2009; 

Doherty et al., 2016). High solubility values for BTEX compounds (benzene, 1791 

mg/L, toluene, 535 mg/L, ethylbenzene, 161 mg/L, xylenes, 175-146 mg/L, at 25° C) 
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make them useful as solvents for chemical companies but dangerous for human 

exposure (Dean et al., 1990; Howard et al., 1991).  The U.S. Environmental Protection 

Agency classifies these compounds as priority pollutants due to their high solubility 

and risks to human health such as their toxic, mutagenic, and carcinogenic properties 

(Keith et al., 1979; Alfreider et al., 2007). Considering these risks, extensive research 

has been focused on how to safely degrade these compounds to less toxic or non-toxic 

forms. 

 A wide variety of microorganisms are characterized to degrade BTEX 

compounds under aerobic conditions; including: Pseudomonas, Acinetobacter, 

Bacillus, Serratia, Sphingomonas and others (Huang et al., 2014; Shadi et al., 2015; 

Avanzi et al., 2015; Zhou et al., 2016). To date, the most successful studies for BTEX 

degradation have been performed with enriched microbial consortia obtained from oil-

impacted environments rather than single isolates or exogenous degraders (Prenafeta-

Boldu et al., 2004; Mukherjee et al., 2012; Jin et al., 2013). Several factors can impact 

microbial degradation of BTEX compounds, such as the concentration and chemical 

interaction of the pollutants, temperature, pH, inorganic nutrient availability, how 

adapted the endogenous microbial community is to the compounds, and other kinetic 

restraints (Singh et al., 2010l El-Naas et al., 2014). 

 Aerobic oxidation of these aromatic compounds is initiated by activating the 

aromatic ring, which is catalyzed by dioxygenase and monooxygenase enzymes to 

produce catechol intermediates (El-Naas et al., 2014; Karigar et al., 2011; Li et al., 

2014). Ring substituents targeted by monooxygenases (TOL pathway) are transformed 

to pyrocatechols or phenyl glyoxals while dioxygenases (TOD pathway) oxidize rings 
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to produce 2-hydroxy-substituted compounds (Tsao et al., 1998; Jindrova et al., 2002; 

Zhang et al., 2013). Further cleavage produces catechol compounds via intra- (catechol 

1,2-dioxygenase) or extradiol (catechol2,3-dioxygenase) oxygenases cleave between 

(ortho) or proximal (meta) to the hydroxyl groups (Smith et al., 1991; Jindrova et al., 

2002; Andreoni et al., 2007). The intermediates are all further degraded to form 

pyruvate and further metabolized through Krebs cycle (Cozzarelli et al., 2003). These 

degradation pathways are only possible in oxygen-rich environments and are often 

stunted when oxygen becomes depleted. 

 The most widely accepted and characterized pathway for anaerobic BTEX and 

aromatic hydrocarbon degradation is the addition to fumarate (Boll et al., 2010; 

Meckenstock et al., 2011; Callaghan et al., 2013). This pathway is catalyzed by 

benzylsuccinate synthase (BSS), a glycyl radical enzyme, and its homologs (Beller et 

al., 2002; Boll et al., Meckenstock et al., 2011). Metabolite analyses in a few studies 

have suggested alternative mechanisms for benzene degradation, including: 

methylation, hydroxylation, or carboxylation, but they are not widely accepted 

mechanisms and remain controversial (Meckenstock et al., 2011). 

 

4.0 Aerobic hydrocarbonoclastic microorganisms 

 A number of aerobic bacteria have been characterized as hydrocarbonoclastic 

due to their ability to degrade hydrocarbons (Yakimov et al., 2007; Rojo et al., 2009). 

Some of the most common aerobic hydrocarbon-degrading microorganisms detected in 

oil production facilities include: Marinobacterium, Pseudomonas, Marinobacter, 

Alcanivorax, Acinetobacter, Rhodococcus, and others (Yakimov et al., 2007; Vila et 
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al., 2010; Stevenson et al., 2011; Long et al., 2017). Alcanivorax borkumensis is a 

marine bacterium that can degrade and assimilate linear and branched alkanes but is 

unable to use aromatic hydrocarbons, sugars, amino acids, fatty acids and other simple 

carbon sources (Schneiker et al., 2006; Yakimov et al., 1998). Other Alcanivorax sp. 

are able to degrade pristine and phystane, allowing them to survive and proliferate in 

heavily oil-contaminated environments and even be used as bioremediation agents in 

contaminated soils (Hara et al., 2003; Harayama et al., 2004; Kasai et al., 2002; 

McKew et al., 2007a, b; Yakimov et al., 2007). The genes responsible for alkane 

degradation in A. borkumensis strain SK2 are described as part of the alkB family of 

alkane hydroxylases and bear codon similarity to those found in Pseudomonas putida; 

to date, studies have quantified Alcanivorax spp. to contain three p450 systems and two 

alkB systems (Kok et al., 1989; Golyshin et al., 2003; Hara et al., 2004; van Beilen et 

al., 2001; 2003; 2004).  

  As described herein, Pseudomonas putida GP01 was the first organism 

characterized to contain the three-component alkB alkane hydroxylase system mapped 

on the OCT plasmid (Peterson et al., 1966; van Beilen et al, 2001). This gene system 

and those similar have since been detected in isolates from many oil-contaminated 

environments; some claim it may represent the genetic foundation found in similar 

species capable of hydrocarbon degradation (Sotsky et al., 1994; Smits et al., 1999). 

Further, some strains of the opportunistic pathogen Pseudomonas aeruginosa are able 

to grow on crude oil as their sole carbon source (Belhaj et al., 2002). Belhaj and others 

described a set of P. aeruginosa strains isolated from polluted effluents from an oil 

refinery in Morocco to degrade hexane, heptane, octane, and decane using alkB and 
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alkB-related genes, further suggesting that the alkane-degrading genes are on a mobile 

OCT plasmid and may be shared via horizontal gene transfer (van Beilen et al., 2001). 

 Another well-characterized bacterium known for degrading hydrocarbons is the 

Gammaproteobacterium Marinobacter hydrocarbonoclasticus (Gauthier et al., 1992). 

M. hydrocarbonoclasticus is a halotolerant, Gram-negative denitrifying marine 

bacterium isolated from hydrocarbon-contaminated sediments. Growth on alkanes C16-

C20 revealed no evidence of cytochrome p450 activity for M. hydrocarbonoclasticus; 

however, M. aquaeolei VT8 contains homologs of both CYP153A and two copies of 

alkB (Wang et al., 2010). Many microorganisms are able to oxidize multiple types of 

hydrocarbons and alkanes and therefore contain multiple copies and gene pathways for 

aerobic hydrocarbon degradation; Alcanivorax spp. and Bacillus spp. were noted to 

contain both p450 and alkB systems, suggesting these organisms can use a wider range 

of substrates and ultimately confer higher adaptability (Smits et al., 2003; van Beilen et 

al., 2005; van Beilen and Funhoff, 2007; Rojo et al., 2009; Wang et al., 2010; Groves 

et al., 2011). Regulation of these pathways is tightly regulated and activated only in the 

presence of the appropriate alkane or hydrocarbon. 

 Another Gammaproteobacterium, related to Marinobacter, Halomonas sp. 

exhibits some hydrocarbon degradation potential but is not widely noted as a 

hydrocarbonoclastic microorganism (Pepi et al., 2005; Mnif et al., 2009; Wang et al., 

2010). Few studies have characterized the alkane degradation pathway that is used and 

have relied on GC-MS analysis to measure and identify metabolites. Specifically, a 

Halomonas strain C2SS100 produced hexadecanol, hexadecanaldehyde and 

hexadecanoic acid as intermediates through monoterminal oxidation of hexadecane 
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(Minf et al., 2009). Only recently, (Wang et al, 2010) the CYP153 gene pathway was 

identified in a strain of Halomonas ventosae but did not detect an alkB homolog or 

grow the organism on diesel oil. Halomonas spp. could be useful as bioremediation 

agents in marine systems due to their halotolerance; further studies need to elucidate 

the pathway these organisms use to oxidize alkanes and other hydrocarbons. 

Halomonas sp. and other Gammaproteobacteria are ideal targets for additional 

investigation for hydrocarbon degradation potential due to their high abundance in 

production waters (Stevenson et al., 2009; Vila et al., 2010).  

 

Concluding Remarks 

 The petroleum industry is affected greatly by the activity of microorganisms. 

Microorganisms appear to be the key to both preventing damage during production and 

degrading pollutants once they are released in the environment. While the attention is 

often directed to sulfate reducing microorganisms other microorganisms may be 

responsible for initiating the biocorrosion process. Hydrocarbon and petroleum 

biodegradation contributes to both biocorrosion and the quality of fuel products. 

Identifying organisms capable of hydrocarbon degradation will allow researchers to 

predict when and where biocorrosion may occur. In oxygen-exposed and 

microaerophilic oil production environments aerobic hydrocarbonoclastic 

microorganisms indirectly contribute to MIC by initiating hydrocarbon degradation 

and “feeding” sulfidogenic and fermentative microorganisms that directly contribute to 

corrosion. In this thesis, we hypothesize aerobic Gammaproteobacteria in production 

water oxidize n-alkanes using monooxygenase enzymes (alkB or cytochrome p450). If 
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supported, this hypothesis may serve as a model for investigating a wider range of 

hydrocarbon-degrading microorganisms, different hydrocarbon substrates, and as a 

tool to monitor for MIC. 
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Chapter 2: 

The role of Gammaproteobacteria in aerobic alkane degradation in oilfield production 

water from the Barnett Shale 

Abstract 

 Microorganisms from production water from the Barnett Shale were enriched 

with various hydrocarbons to select for hydrocarbon-oxidizing microorganisms. 

Gammaproteobacteria increased in relative abundance under n-alkane and n-fatty acid 

amendment. Nine isolates were obtained and all were identified as Halomonas using 

16S rRNA gene sequencing. Halomonas isolate A11A was capable of aerobic 

hydrocarbon degradation as evidenced by growth studies and oxygen respirometry to 

quantify hydrocarbon oxidation rate. Respirometry studies showed Halomonas A11A 

could completely oxidize (>99 % of theoretical) C5 n-pentane and C10 n-decane, 

partially oxidize C16 n-hexadecane (<76 %) and toluene (37 %). The culture also showed 

the ability to completely oxidize C6-C9 n-alkanes. Genomic analysis of A11A suggests 

that n-alkane oxidation is initiated by the alkB alkane hydroxylase system and toluene is 

activated via the tod toluene dioxygenase system. Halomonas A11A and other 

hydrocarbonoclastic Gammaproteobacteria in the production water have the potential to 

play a major role in hydrocarbon degradation and biodegradation as well as an indirect 

role in the biocorrosion cycle by contributing partially oxidized hydrocarbon metabolites 

as carbon sources for sulfidogenic and fermentative microorganisms. We propose 

therefore that aerobic hydrocarbonoclastic Gammaproteobacteria, such as Halomonas, 

should be considered as threats in production water systems. 
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1.0 Introduction  

 Anthropogenic petroleum releases and natural crude oil seeps are major 

sources of environmental hydrocarbon contamination. Petroleum products and 

contaminants are the most widespread pollutants in the environment, contributing to 

significant groundwater, aquifer, soil and ocean contamination (Albaiges, 1989; Magot 

et al., 2000; Duncan et al., 2009; Vila et al., 2010; Stevenson et al., 2011). Further, 

petroleum spills pose a threat to human health, various ecosystems, and impact on the 

economy by adding cost for remediation, fines for environmental contamination, loss 

of product, and healthcare costs for impacted individuals. Studies conducted by the 

National Association of Corrosion Engineers (NACE) and the U.S Federal Highway 

System estimated corrosion costs in the oil and gas industry reach $1.372 billion 

dollars annually (NACE Standard 1C184, 2008) and suggest that up to 40% of the 

industry’s corrosion is triggered by microbially-influenced corrosion (MIC) (Sooknah 

et al., 2007: NACE International). Corrosion often results in the loss of the structural 

integrity and spilling of pipeline or tank contents (Beech et al., 1999; 2004; Videla, 

1996; Ollivier & Magot, 2005; Suflita et al., 2014). Complex microbial communities 

are the instigators of these biocorrosion events and yet remain poorly understood 

(Magot et al., 2000; Hamilton, 2003; Vigneron et al., 2016). Moreover, methods to 

bioremediate contaminated environments through degrading petroleum products to 

less toxic or non-toxic forms through the metabolic pathways of endogenous 

microorganisms is one of the most cost effective and sustainable strategies for 

cleaning contaminated sites; however, the variability in environmental conditions and 

effect on microbial populations can limit the effectiveness of bioremediation methods 
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(Vila et al., 2010). Thus, identifying microorganisms and characterizing the pathways 

and enzymes they employ to degrade the petroleum hydrocarbons or participate in the 

biocorrosion cycle is of increasing importance (Rahman et al., 2003). 

 Microorganisms can be the source of many problems in the oil and gas industry 

including corrosion of the pipelines and storage tanks and biodegradation of the 

hydrocarbon products (Suflita et al., 2014). The structural integrity of pipelines and 

storage tanks can be compromised by microbially-influenced corrosion (MIC) or 

biocorrosion resulting in the release of petroleum products and severe environmental 

contamination (Vigneron et al., 2016). Sulfate-reducing, sulfide-producing, iron-

reducing, and acid-producing microorganisms are thought to be the main players in MIC 

due to their production of corrosive acids and gases (Magot et al., 2000; Vigneron et al., 

2016). To date, researchers consider biofilm formation on metal surfaces as one of the 

initial stages of biocorrosion (Beech et al., 1999; Vigneron et al., 2016). Moreover, the 

biofilm can function as a protective barrier from biocide treatments and oxygen for 

obligate anaerobes in dynamic environments such as pipelines and tanks (Beech et al., 

2002). Some iron-oxidizing strains, sulfate-reducing bacteria (SRB), methanogens, and 

lithotrophic bacteria can withdraw electrons directly from iron and steel surfaces in a 

process known as electrical MIC (EMIC) (Dihn et al., 2004; Enning et al., 2012; 2014; 

Vigneron et al., 2016). Additionally, SRBs and other sulfidogenic bacteria generally 

oxidize a range of organic acids, like lactate, acetate, some hydrocarbons, and other fatty 

acids coupled to the reduction of sulfate and thiosulfate in a process called chemical 

MIC (CMIC) (Hansen, 1993; Rueter et al., 1994; Dihn et al., 2004; Enning et al., 2014). 

These, and other partially oxidized metabolites that feed sulfidogenic bacteria are the 
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by-products of general heterotrophs and hydrocarbonoclastic (hydrocarbon-degrading) 

bacteria (Muyzer and Stams, 2008). While a great volume of research is focused on 

understanding the direct mechanisms for biocorrosion and MIC, the microbial 

participants and conditions that foster these events remain largely unknown, poorly 

characterized and unappreciated. 

 Biodegradation and biodeterioration of the petroleum products is also a problem 

for the oil and gas industry because it can reduce the quality of petroleum products 

(Head et al., 2003). Biodegraded petroleum products are less desirable because of the 

marked compositional changes (both chemical and physical), selective degradation of 

specific isomers, and acidification of some compounds (Head et al., 2003). Oil 

biodegradation occurs at the base of the oil column, deep in the reservoir, where electron 

donors and water are plentiful, but also occurs during petroleum production. 

Hydrocarbon-degrading microorganisms are present in many environments; they have 

been described and identified in a wide range of environments and conditions including: 

oxic, sulfate-reducing, iron-reducing, denitrifying and methanogenic conditions 

(Hutchins et al., 1991; Coates et al., 1996; Zengler et al., 1999; Rapp et al., 2003; Jones 

et al., 2008; Gray et al., 2010; Wawrick et al., 2016). 

 

 Depending on the origin of the petroleum products, n-alkanes may constitute 20-

50% of crude product and are detected in trace quantities in most environments (van 

Beilen et al., 2003). In aerobic alkane degradation, aerobic microorganisms use O2 as an 

electron acceptor. Oxygen is reduced to H2O and the alkane is oxidized to an alcohol via 

terminal, biterminal, or subterminal oxidation. Ultimately, the alkane is converted to a 
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fatty acid and processed in β-oxidation reactions (Boulton et al., 1984; Britton, 1984; 

Watkinson et al., 1990). Aerobic microorganisms degrade hydrocarbons using mono- 

and dioxygenase enzymes. For example, aliphatic hydrocarbons such as n-alkanes are 

oxidized by alkane hydroxylases such as the alkB system or cytochrome p450 pathways 

(Wang et al., 2010). Additional proteins such as AlmA and LadA are involved in long 

chain alkane degradation.  

 With some exceptions, petroleum hydrocarbons and other compounds are not as 

readily degraded under anoxic conditions (Gieg et al., 2009). Anaerobic degradation 

requires a non-oxygen electron acceptor, such as sulfate or nitrate, to couple the 

reduction of the carbon substrate and allow for degradation; these reactions will proceed 

according to most thermodynamically favorable and available electron acceptor based 

on the redox potential of the environment (Widdel & Rabus, 2001). Under anaerobic 

conditions microorganisms activate hydrocarbons via anaerobic hydroxylation or 

through the addition to fumarate via alkylsuccinate synthase or benzylsuccinate synthase 

enzymes (Watkinson et al., 1990; Aeckersberg et al., 1991; 1998; van Beilen et al., 

1994; Callaghan et al., 2013; Heider et al., 2016).  

 Aromatic hydrocarbons such as benzene, toluene, ethylene, and xylene (BTEX) 

that may constitute up to 59% of gasoline products are also targets of microbial 

degradation under both aerobic and anaerobic conditions (Dagley et al., 1984; Gibson et 

al., 1984; Coates et al., 1997; Rapp et al., 2003; Deng et al., 2017). In aerobic 

environments, BTEX compounds are activated through mono- and diooxygenase 

enzymes and form catechol compounds (El-Naas et al., 2014). In anoxic environments, 

most of these aromatic compounds are targeted by benzylsuccinase synthase enzymes, 
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which catalyze the additional to fumarate (Beller et al., 1997; Leuthner et al., 1998; 

Chakraborty et al., 2004). Benzene degradation is more of a mystery; some evidence 

suggests benzene is activated via carboxylation, hydroxylation, methylation, or 

reduction of the ring (Coates et al., 2002). Ultimately, these aromatic rings are cleaved 

and pushed through to complete degradation and various end products. Degradation of 

BTEX compounds have been characterized predominantly under sulfate- and nitrate-

reducing conditions (Ball et al., 1996; Rabus et al., 1995), but studies have also 

witnessed degradation to occur under Fe(III)-reducing and methanogenic conditions 

(Coates et al., 1999; Caldwell et al., 2000; Phelps et al., 2001). 

 

 Recovering crude products from the subsurface and refining them thereafter 

consume and produce significant volumes of water. The initial stages of production 

begin with drilling a well to draw fluids, including water and oil, from the reservoir to 

the surface (Ollivier et al., 2005). Throughout production, wells produce water from the 

reservoir, but as wells near the end of their production life, they produce up to 95% 

water and very little oil; the large volumes of water are stored in steel surface facility 

production water tanks until disposal. The production water tanks also serve as another 

facility to allow condensate and oil to separate from the water. Characteristically, 

production water direct from the well does not contain any dissolved oxygen, is highly 

saline (>300 g/L), has a high temperature (40-90° C), and contains significant amounts 

of condensate hydrocarbons and a variety of organic compounds and acids (Ollivier et 

al., 2005). Production waters typically harbor a wide variety of microorganisms capable 

of hydrocarbon degradation and corrosion (Lyles et al., 2013; Liang et al., 2017). By the 
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time produced water reaches the storage tanks it has been transformed according to the 

chemical and environmental parameters. The storage tanks shift in their volume of 

production water, vapor space, microbial population, oxygen concentration, and 

temperature; this dynamic nature contributes to creating an environment conducive to 

several types of corrosion and the accidental release of their petroleum-based contents 

(Heidersbach, 2010; Davis et al., 2012). Depending on the combination of 

environmental parameters, bicorrosion can occur in different areas of storage tanks, 

including the water-condensate interface, in sludge deposits on the bottom of the tank, 

cracks or fissures in the steel, and the exterior of the tank. Corrosion of the production 

machinery is studied extensively, but a complete understanding of the microbial 

interactions and community structure that contribute to the corrosion is lacking.  

 In this study, we examined a production water tank drawing from the Barnett 

Shale in north central Texas. Shale gas produced from the Barnett Shale is completely 

thermogenic and supplies over a third of the shale gas in the United States (Pollastro, 

2007). High temperatures and narrow pore size (<0.005 µm) of the shale formation does 

not support the growth of microorganisms within the formation (Bowker, 2007). 

However, cooled (82 °C) natural gas wells appear to harbor diverse microbial 

populations (Bowker, 2007). Several sites throughout the Barnett Shale have reported 

problems with biogenic sulfide production and biocorrosion despite the formation being 

abiotic (Fichter et al., 2009). One study characterized microbial populations collected 

from gas-water separators and storage tanks from two newly drilled wells (Davis et al., 

2012). Here, they monitored two sites over six months using 16S rRNA pyrosequencing 

to gauge community shifts and attempted to track the origin of the microorganisms. 
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Overall, they noted that the communities consist of halophilic and halotolerant 

Firmicutes and Proteobacteria, specifically Beta-, Gamma-, Epsilon-, and 

Deltaproteobacteria; several were classified as sulfate-reducing, thiosulfate-reducing, 

and sulfur-reducing species. Other microorganisms of interest identified throughout the 

study include chemolithoautotrophs (Arcobacter), aerobic heterotrophs belonging to 

orders Alteromonadales and Oceanospirillales (Pseudomonas, Marinobacter, and 

Halomonas) and anaerobic fermenters (Halanaerobium). They also established that the 

bacterial communities reflect the unique geochemical conditions of the reservoir rather 

than from those found in drilling muds or fracturing fluids used to create the wells. 

Considering the diverse microbial community, it is clear the production water is a very 

dynamic system and plays host to aerobic, microaerophilic, facultative anaerobic, and 

obligate anaerobic microorganisms. Specifically, water flow from the well to the 

separators and finally to the production water tanks is not homogeneous and may result 

in stagnation and areas of anaerobic water in the pipes and at the bottom of the water 

storage tanks (van der Krann et al., 2010; Davis et al., 2012). Thus, a more complete 

understanding of community interactions and interplay between the aerobic and 

anaerobic populations is necessary before biocorrosion and hydrocarbon biodegradation 

prevention strategies can be applied and relied upon.  

 

            The purpose of this study was to enrich for and identify aerobic microorganisms 

in petroleum production water, examine their hydrocarbon degradation potential, and 

detect the genes coding for the enzymes involved in hydrocarbon degradation pathways. 

We hypothesized that aerobic microorganisms, specifically aerobic 
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Gammaproteobacteria, initiate the degradation of n-alkanes via monooxygenases such as 

alkB or cytochrome p450 gene systems. We addressed our hypothesis through analysis 

of the microbial community composition in the production water before and after 

amendment with various hydrocarbons. Relative abundances of microbial community 

members were assessed through 16S rRNA gene libraries. The dominant culturable n-

alkane-degrading microorganisms were isolated after amendment of production water 

with C5-C10 n-alkanes. Nine isolates were obtained and identified as Halomonas sp. 

using 16S rRNA gene sequencing. Isolate A11A was analyzed for possession of n-

alkane monooxygenases through genome sequencing, and evaluated for hydrocarbon 

degradation ability and oxidation rate estimated by oxygen respirometry. Together, these 

methods provide valuable information regarding microbial degradation of petroleum 

hydrocarbons, suggest gene targets for hydrocarbon degradation screening, and provide 

targets to monitor groundwater, aquifer and subsurface contamination.  

 

2.0 Materials and Methods 

2.1 Production water sampling and analysis 

 Production water was obtained in June 2015 from a production water tank 

containing oil and gas from the Barnett Shale in the Fort Worth Basin (Montgomery et 

al., 2005). The production water tank sampled was chosen based on repeated detection 

of high numbers of sulfate-reducing bacteria by single serial dilution into media 

designed to facilitate the growth of sulfate-reducing bacteria (personal communication: 

L. Woods, ConocoPhilips, Decatur, TX, USA, NACE Standard TM0212, 2012). 



 

	 37 

Production water was obtained by lowering sterile 1 L bottles through the thief hatch; 

bottles were anaerobically sealed once samples were collected.  

 

2.1.1 Production water chemistry 

 On-site detection of temperature, pH, oxygen, sulfide, and thiosulfate were 

measured; pH was measured using Hydron pH papers range 2-10 (Microessentials 

Laboratory, Brooklyn, NY, USA), oxygen was measured using an FireSting O2 probe 

(OXROB10, PyroScience, Aachen, Germany). In-field measurements of sulfide (K-

9510D) and thiosulfate (K-9708) were collected using Chemetrics (Chemetrics Inc. 

Midland, VA, USA) kits according to the manufacturer’s instructions (Chemetrics Inc. 

Midland, VA, USA). Upon returning to the laboratory, sulfate (SO4
2-) and salinity, 

estimated by chloride (Cl-) anion, measurements were calculated by ion 

chromatography (Dionex model IC-1000, Sunnyvale, CA) according to Lyles et al., 

2013. Briefly, sulfate and chloride in the production water was measured by ion 

chromatography fitted with an IonPac AS4A column, ASRS 300 4 mm self-

regenerating suppressor, and a conductivity detector. A 1:100 dilution of sodium 

carbonate/sodium bicarbonate buffer served as the eluent from an AS4A ready-to-

dilute concentrate (Dionex, Sunnyvale, CA). The electrochemical suppressor was set 

at 27 mA, and the system was operated isocratically at 1.5 mL/min and. 

Chromatograph peaks were analyzed with the Chromeleon software package (Thermo-

Scientific). Cells were aseptically pipetted from the collected production water and 

counts estimated by direct methods (NACE, 2012). Briefly, counts were determined 

by epifluorescense microscopy under blue excitation using a micrometer grid on an 
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Olympus BX-61 microscope. Cells obtained from the production water were fixed 

using a 1/10 volume of 37% formaldehyde and a dilution of the fixed samples was 

stained with 5 µL of 5 ng/mL 4,6-diamidino-2-phenylindole (DAPI) in the dark for 45 

min at room temperature. Following staining, cells were filtered onto 0.22 µm black 

stained 25 mm diameter polycarbonate membrane filters (Sterlitech, Kent, WA, USA). 

An average of 30 fields were counted to estimate cell counts on each slide. Production 

water samples were analyzed for putative polar metabolites and other compounds 

present in the gas condensate and production water. Extractions were performed and 

analyzed according to Aktas et al., 2010 and 2012. Briefly, extractions from the 

production water were concentrated, derivatized, and analyzed via Gas 

Chromatography-Mass Spectroscopy (GC-MS). Metabolite identities were made by 

comparing GC retention times and fragmentation by MS profiles of commercially 

available standards. 

 

2.1.2 Molecular analysis of the microbial community 

 To preserve cells for 16S sequencing for clone libraries and metagenomic 

analysis, 5 mL of DNAzol (DN127, Molecular Research Center, Cincinnati, OH, 

USA) were added to 1 L of the production water within 6 hours of sampling. The 

following day, the remaining gas condensate was removed from the water sample and 

250 mL of the production water was filtered with a 0.2 µm cellulose nitrate analytical 

test filter funnel (145-2045, Fisher Scientific, Fair Lawn, NJ, USA). The filter was 

preserved by freezing at -80° C until DNA was extracted. DNA was extracted from the 

filtered production water samples using PowerMax Soil DNA Isolation Kit (12888, 
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Mo Bio Laboratories, Inc., Qiagen, Carlsbad, CA, USA) according to manufacturer’s 

instructions with minor modifications: 1.2 mL of the provided C1 solution was added 

to a 50 mL centrifuge tube containing the preserved filter. The tube was vortexed and 

incubated in 50° C water bath for 30 minutes and frozen at -80° C for 10 minutes; this 

was repeated three times. The PowerBead tube, 1 tube of Lysing Matrix E Beads 

(Biomedicals, Santa Ana, CA, USA), and 15 mL of bead solution were added to the 

tube and vortexed for 10 minutes and frozen at -80° C overnight. The remaining steps 

followed the manufacturer’s instructions. Following extraction, 4 mL of the DNA was 

concentrated by adding 0.2 mL of 5 M NaCl and inverting 5 times to mix , followed 

by adding 10.4 mL of 100% cold ethanol and inverting 5 times. After mixing, the tube 

was centrifuged at 2500 x g for 30 minutes at ambient temperature. Following 

centrifugation, all liquid was decanted without dislodging the pellet and allowed to 

dry. Concentrated DNA was resuspended in 500 µL nuclease-free H2O (Promega, 

Madison, WI) and quantified via fluorometry with the Qubit® dsDNA HS Assay (Life 

Technologies, ThermoFisher Scientific, Carlsbad, CA) according to the 

manufacturer’s instructions. Sample DNA was diluted 1:10 and 1:100 and stored at -

20° C. 

 Extracted DNA was amplified with 519-M13 forward primer, 5’-GTA AAA 

CGA CGG CCA GCA GCM GCCG CGG TAA-3’, with the M13 unique barcoded 

sequence (underlined). The 785 reverse primer, 5’-TAC NVG GGT ATC TAA TCC-

3’, “S-D-Bact07850b-A-18” was from Klindworth et al., 2013. The PCR product 

spans the V4 region of the 16S rRNA gene from position 519 to 802. The PCR 

reactions consisted of 12.5 µL of 2x Phusion High-Fidelity PCR Master Mix (New 
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England Biolabs, Ipswich, MA, USA), 0.5 µL of each 20 pmol/µL forward and reverse 

primer, 7.0 µL of PCR grade water, and 5 µL of DNA. Thermal incubation cycling 

was conducted on Techne Prime Thermal Cycler (Techne, Cambridge, United 

Kingdom). Cycling conditions consisted of 1 cycle of initial denaturation at 98° C for 

30 seconds, 30 cycles of denaturation at 98° C for 10 seconds, DNA annealing at 52° 

C for 20 seconds, and extension at 72° C for 10 seconds. Final extension was held at 

72° C for 5 minutes for one cycle. Amplified products were visualized via UV- 

illumination in 1% agarose (Thermo Fisher Scientific, Fair Lawn, NJ, USA) with 0.5 

TBE (Tris/Borate/EDTA) Buffer stained with 0.1% SybrSafe (Invitrogen, Carlsbad, 

California, USA) and assessed against the GeneRuler 1 kb DNA ladder (Thermo 

Fisher Scientific, Fair Lawn, NJ, USA). Product bands were cut from the gel and 

added to 50 µl of sterile nuclease-free H2O and frozen at -20° C for at least 2 hours. A 

second thermal cycling reaction consisting of 12 cycles of the same conditions was 

used to add a unique barcode on the forward primer to each DNA sample (Wawrik et 

al. 2012). The 50 µL reaction consisted of Phusion 2x Master Mix, 5 µL of the 785 

reverse primer, 15 µL PCR grade water, 4 µL of the product  band DNA, and 0.5 µL of 

unique M13 barcode. Products were visualized via UV-illumination after gel 

electrophoresis in 1% agarose with 0.5 TBE Buffer stained with 0.1% SybrSafe and 

assessed against the GeneRuler 1 kb DNA ladder. Barcoded PCR products were 

purified using Ampure® XP paramagnetic beads (Beckman Coulter, Indianapolis, IN, 

USA), and quantified using the Qubit® dsDNA HS assay. All barcoded products were 

pooled in equal concentrations and submitted to the Oklahoma Medical Research 
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Foundation (OMRF, Oklahoma City, OK) for 300 bp paired end sequencing via the 

Illumina Miseq platform.  

 The 16S library sequences from the original production water, n-alkane, and 

fatty acid amendments (described below) were analyzed using QIIME (Quantitative 

Insights Into Microbial Ecology); the pair-end reads were joined and demultiplexed in 

the QIIME software package (Caporaso et al., 2010). Operational Taxonomic Units 

(OTUs) were set at 3 percent dissimilarity and chimeras were removed using the 

USEARCH algorithm (Edgar, 2010). Taxonomy was assigned against the small 

subunit rRNA sequences from the RDP Naïve Baysian classifier (Wang et al., 2007b) 

and SILVA database Release 111 (www.arb-silva.de) (Caporaso et al., 2010; Pimenov 

et al., 2012). 

 

2.2 Aerobic enrichment of microorganisms in petroleum production water 

 Production water was used as an inoculum and amended with hydrocarbons to 

determine the degradation potential of the endogenous aerobic microbial community 

(enrichment design shown in Figure 1). Production water was inoculated into triplicate 

incubations of Widdel’s medium prepared per liter with: 10 mL of Widdel’s 10x salts 

(g/L) (NaCl, 60.0; MgCl2, 3.0; CaCl2, 0.5; Na2SO4, 3.0; KH2PO4, 0.2; KCl, 0.5) and 

supplemented with 10 ml 100x RST trace metals (g/L) (nitrilotriacetic acid adjusted to 

pH 6.0 with KOH, 2.0; and MnSO4 �H2O. 1.0; Fe(NH4)2(SO4)2 �H2O, 0.8; CoCl2 

�8H2O, 0.2; ZnSO4 �7H2O, 0.2; CuCl2 �2H2O, 0.02; NiCl2 �6H2O, 0.02; Na2MoO4 

�2H2O, 0.02; Na2SeO4, 0.02; Na2WO4, 0.02), and 3.5 g of Na2SO4 (7757-82-6 

anhydrous, reagent grade, Carolina Biological Supply Company, Burlington, NC, 
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USA) per liter. The medium was  adjusted to 7.2 pH (Widdel & Bak, 1992). 

Hydrocarbon and heterotrophic substrates (Table 1) were prepared anoxically in sterile 

160 ml serum bottles sealed with black butyl rubber stoppers (20 mm × 16 mm, Geo-

Microbial Technologies, Inc., Ochelata, OK) and secured with aluminum crimp seals. 

For every 9 mL of media, the following was added: 0.1 mL of 10 mg/mL yeast extract, 

0.3 mL 10% NaHCO3, and 1.0 mL 100x RST vitamins (mg/L):  pyridoxine�HCl, (10); 

thiamine�HCl, 5.0; riboflavin, 5.0; calcium pantothenate, 5.0, thioctic acid, 5.0; p-

Aminobenzoic acid, 5.0; nicotinic acid, 5.0; vitamin B12, 5.0, biotin, 2.0; folic acid, 2.0 

(Tanner, 1989). Hydrocarbon substrates and concentrations for amendment were 

designed based on organic extractions from the production water, described in Aktas et 

al., 2010 and Dalvi et al., 2012. 

 

2.2.1 Initial enrichment of aerobic microorganisms from production water 

 Bottles received a 10% (v/v) inoculum of production water into Widdel’s 

medium containing one of the substrates (Table 1) for a total volume of 30 mL. 

Incubations were kept in 160 ml serum bottles sealed with black butyl rubber stoppers 

(20 mm × 16 mm, Geo-Microbial Technologies, Inc., Ochelata, OK, USA) and 

secured aluminum crimps. Unamended controls were inoculated into Widdel’s 

medium without any added substrates and heat-killed sterile controls were made by 

inoculation into Widdel’s medium and then autoclaved for 30 minutes. Active 

enrichments, showing growth based on visual turbidity, were transferred (10%; (v/v) 

on three successive occasions into fresh media every 30-40 days to confirm that 

growth resulted from hydrocarbon amendment rather than carry-over of other 



 

	 43 

substrates from the production water. Enrichments were incubated at 25° C without 

shaking. Upon completion of three successful transfers, 2 mL of culture was retained 

for further molecular analysis by centrifuging the sample at 10,000 x g for 3 minutes 

to pellet the cells. The supernatant was discarded, and 100 µl DNAzol (DN127, 

Molecular Research Center, Cincinnati, OH, USA) was added to the pellet and stored 

at -20° C. 

 The DNA was extracted from the pellet via the Maxwell ®16 Tissue LEV (low 

elution volume) Total RNA purification kit (AS1220, Promega, Madison, WI). To 

preserve the sample DNA, the DNA removal steps of the Total RNA Purification Kit 

protocol were not used. Instead, samples were loaded into the prepared reagent 

cartridges along with equal parts RNA lysis buffer and RNA dilution buffer, each 400 

µL. The instrument was loaded with the elution tubes containing 100 µL nuclease-free 

water (Promega, Madison, WI, USA), provided plungers, and prepared cartridges. 

Extraction was performed with the DNA extraction program; as modified by Oldham 

et al., 2012. The DNA was quantified fluorometrically with the Qubit® dsDNA HS 

Assay. Extracted DNA from each enrichment sample was diluted 1:10 and 1:100 in 

nuclease-free H2O and stored at -20° C for subsequent molecular analysis. Extracted 

DNA from the n-alkane and n-fatty acid-amended enrichments was amplified and 

analyzed to form 16S libraries representative of each enrichment condition and 

compared to the original production water community using the same methods 

outlined above.  
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2.2.2 Progressive aerobic enrichment of microorganisms from production water 

 Additional progressive enrichments were prepared by serial dilution (1:10) to 

select for the dominant n-fatty acid- and n-alkane-degrading microorganisms in the 

aerobic enrichments (Figure 1). The active fatty acid and n-alkane incubations were 

serially diluted (1:10) into fresh media reaching 10-4 dilution, amended with the same 

n-fatty acid (C5-C10) or n-alkane (C5-C10) substrates above, and incubated in sterile 20 

mm x 150 mm borosilicate glass tubes with sterile removable caps. All dilutions were 

performed in triplicate with heat-killed and substrate unamended negative controls. 

Enrichments were prepared, monitored, and tranferred according to the methods 

outlined above. Samples were collected and preserved for subsequent molecular 

analysis according to the methods outlined above. 

 

2.3 Isolation and characterization of Halomonas A11A 

 Several n-alkane and fatty acid degrading bacteria were isolated from the 

active n-alkane- and fatty acid-amended progressive enrichments (Figure 1). Two 

isolates, A11A and A11B, were obtained from the 10-4 dilution of the first round of n-

alkane-amended progressive enrichments. Three isolates, B29A, B29B, and B29X, 

were obtained from the 10-2 dilution of the second round of n-alkane-amended 

enrichments. Two isolates, C53A and C53B, were obtained from the 10-4 dilution of 

the third round of n-alkane-amended enrichments. Two isolates, C44A and C44B, 

were obtained from the 10-4 dilution of the third round of n-fatty acid-amended 

enrichments. Isolates were obtained by streaking multiple rounds of isolated colonies 

on Widdel’s medium agar containing 15 g/L agar (Bacto agar, Difco, Detroit, MI, 
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USA). Prior to inoculation, plates were supplemented with 80 uL 0.1 M n-alkanes or 

200 uL 0.1 M fatty acids (e.g. “substrates”) by spotting the agar with the substrates 

then spreading the substrates over the agar surface with a sterile loop. Plates were 

incubated for 7 to 10 days at 25° C. Pure cultures were maintained on Widdel’s 

medium agar and in Widdel’s medium broth with added n-alkanes or fatty acids. A 1.5 

mL sample of each pure culture was transferred to a 2 mL microcentrifuge tube and 

centrifuged at 6000 x g for 5 minutes to pellet the cells. The supernatant was removed 

without dislodging the pellet, discarded and 50 µL DNAzol was added. Following 

homogenization with DNAzol, 100 µL nuclease-free H2O was added and cultures were 

stored at -20° C to be used for DNA extraction and subsequent 16S rRNA gene 

amplification. 

 Isolates obtained from n-alkane and n-fatty acid-amended enrichment were 

analyzed via their 16S rRNA gene sequence. Amplification of the bacterial 16S rRNA 

gene was performed via PCR using protocols outlined by Weisburg et al., 1991. 

Briefly, 1:100 diluted isolate DNA was amplified using 1.25 uL of primer fD1 

(5pmol/uL, 5’ AGAGTTTGATCCTGGCTCAG 3’) and primer rP2 (5pmol/uL, 5’ 

ACGGCTACCTTGTTACGACTT 3’) to yield an approximately 1500 bp product. PCR 

amplification was performed in the Techne Prime Thermal Cycler as follows: an initial 

denaturation step at 94° C for 4 minutes; 30 cycles with denaturation at 94° C for 1 

minute; annealing occurred at 48° C for 1 minute; extension ran at 72° C for 1 minute; 

and final extension occurred for 1 cycle at 72° C for 10 minutes. Products were 

visualized via UV-illumination after gel electrophoresis in 1% agarose with 0.5 TBE 

Buffer stained with 0.1% SybrSafe and assessed against the GeneRuler 1 kb DNA 
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ladder. Desired PCR products were purified for DNA sequencing using Exo-SAP IT 

(USB Co., Cleveland, OH, USA) by transferring 5 µL of the PCR product to a sterile 

PCR tube and adding 1.5 µL ExoSAP-IT reagent and cycled on the Techne Prime 

Thermal Cycler according to manufacturer’s instructions. Cleaned and amplified 

samples and sequencing primers were submitted for sequencing by OMRF. The 

sequencing primers P1 and D907R (Santegoeds et al., 1998) cover a region of 

approximately 550 bp and were used for all isolates except A11A. Isolate A11A PCR 

product was sequenced with 4 primers: fd1, rp2, P1, and D907R to cover 

approximately 1400 bp. Quality trimming of sequence chromatographs and consensus 

sequence formation from the forward and reverse reads were performed via 

Sequencher (Gene Codes Corp. Ann Arbor, MI, USA) Trimmed and assembled 

sequences were compared to existing sequences in GenBank via BLASTN and RDP 

(http://rdp.cme.msu.edu/, Ribosomal Database Project) (Altschul et al., 1990; Larsen 

et al., 1993; Cole et al., 2009; Edgar, 2010).  

 

2.3.1 Genomic and phylogenetic analysis Halomonas A11A 

 The 1432 bp 16S rRNA gene sequence of n-alkane-degrading isolate A11A 

was analyzed using an online tool, http://www.phylogeny.fr/alacarte.cgi using “a la 

carte” mode with the following parameters. The 16S rRNA gene was aligned using 

Clustal W v. 2.1 (Dereeper et al., 2008; 2010; Thompson et al., 1994) with available 

gene sequences (≥ 1411 bp) of selected species of the genera Halomonas, 

Pseudomonas, Marinobacter, and Alcanivorax as representatives of other 

Gammaproteobacteria with an emphasis on hydrocarbon-degrading species. An 
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Alphaproteobacterium, Roseovarius pacificus strain 81-2 was used as the outgroup. 

Sequences were also aligned using MUSCLE v. 3.8.31 using default settings (Edgar., 

2004) but no differences in branching order or clade membership were observed (data 

not shown). After alignment, positions with gaps were removed. The phylogenetic 

trees were reconstructed via the neighbor-joining method implemented in Neighbor 

from the PHYLIP package v. 3.66 (Felsenstein J., 1989). Bootstrap values (≥ 50 %) 

representing percentage of 1000 replicate trees in which associated taxa clustered as 

shown in both neighbor-joining and maximum-likelihood methods (Guindon et al., 

2003) are displayed on nodes (Figure 4).  Distances were calculated using FastDist 

(Elias et al., 2007). TreeDyn v. 198.3 was used to render graphical representations of 

phylogenetic trees. 

 DNA was extracted from isolate A11A from the n-alkane–amended enrichment 

for whole genome sequencing for identification of genes associated with hydrocarbon 

degradation. The culture was inoculated in marine broth and incubated at 27° C with 

50 rpm shaking for 1 week. Once turbid, 1 mL was collected and DNA was extracted 

via Maxwell ®16 Tissue LEV Total RNA purification kit according to the instructions 

outlined above and quantified via fluorometric Qubit® dsDNA BR Assay according to 

methods outlined above.  

 Following DNA extraction, the bacterial genome was sequenced by OMRF via 

the Illumina MiSeq platform using 300 bp paired end sequences. The metagenome was 

analyzed using an in house pipeline (MGMIC, Dr. Boris Wawrik, OU Biocorrosion 

Center). In brief, the sequences were assessed for quality via FastQC v. 0.11.2. 

Adapter sequences were trimmed via TrimGalore and Cutadapt (Martin, 2011). Reads 
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were trimmed further to a quality score of 30 and poly-AA tails and artifacts cut using 

HomerTools. Unpaired reads and sequences < 100 bp were removed via Trimmomatic 

(Bolger et al., 2014). Sequences were assembled using Meta-Ray (Boisvert et al., 

2010; 2012) with Kmer setting 31, all contigs <500 bp were discarded. Prodigal (Hyatt 

et al., 2012) predicted all contigs for the open reading frames (ORFs). Assembled 

DNA sequences were binned into genome scaffolds based on tetranucleotide 

frequency data using MaxBin (Wu et al., 2014). Assembled genomes were screened 

for relevant functional genes using KEGG KOBAS (KEGG Orthology Based 

Annotation System) v. 3.0 to obtain gene, enzyme, or pathway frequencies (Wu et al., 

2006; Xie et al., 2011). Briefly, the genome sequence is BLASTed against the 

sequences in the KEGG KOBAS database using the default cutoffs: E-value <10-5 and 

rank ≤5 (Xei et al., 2011). The sequences are assigned KEGG Orthology (KO) terms 

of the first BLAST hit with either a known KO assignment, an E-value <10-5, and has 

less than 5 other hits with a lower E-value that do not have KO assignments (Mao et 

al., 2005; Xei et al., 2011).  

 Annotated genes with KO identifiers were submitted to KEGG Mapper 

(http://www.genome.jp/kegg/mapper.html) to illustrate select gene pathways in the 

Halomonas A11A genome against the KEGG reference pathways (Kanehisa et al., 

2011). Pathways were reconstructed for fatty acid, long-chain fatty acid, alkane, 

benzene, toluene, ethylbenzene, and xylene metabolisms to map and identify genes of 

interest and demonstrate which pathways may be complete or incomplete. 
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2.3.2 Physiological analysis of Halomonas A11A 

 Isolate A11A was screened for hydrocarbon degradation ability by visual 

evaluation of growth in liquid medium containing various hydrocarbons. Single bottles 

of aerobic incubations received a 10% (v/v) 0.5 OD610 inoculum of isolate A11A, 

grown on the same hydrocarbon they were tested in, into Widdel’s medium containing 

20 µM of one of the hydrocarbon amendments: C5-C10 alkane mix, C5 (n-pentane), C6 

(n-hexane), C7 (n-heptane), C8 (n-octane), C9 (n-nonane), C10 (n-decane), C16 (n-

hexadecane), BTEX (benzene, toluene, ethylbenzene, and xylene), or Toluene as the 

only carbon source. No yeast extract or tryptone was used in the growth medium from 

this point forward. Marine broth was used as the positive control for visual growth, 

and a substrate unamended negative control, prepared with Widdel’s medium without 

substrates and a bottle containing inoculum plus substrate, sterilized by autoclaving for 

30 minutes, served as an abiotic control (heat-killed control). Actively growing 

cultures, showing growth based on visual turbidity, were transferred (10%; v/v) three 

successive times into fresh media every 7-10 days. The bottles were incubated at 25° C 

with 50 rpm shaking. 

 Isolate A11A was grown in Widdel’s medium with 20 µM of the hydrocarbon 

being tested as the only carbon source in preparation for respirometry. Prior to 

inoculation for oxygen respirometry, cells were quantified via optical density and 

corresponding CFU (colony forming units) per mL. Inoculum was obtained from the 

third successive transfer of the isolate grown in 20 µM of the hydrocarbon being tested 

and inoculated in fresh Widdel’s medium at 1:1, 1:2, 1:5 and 1:10 dilutions amended 

with 100 nM of the selected n-alkane. The optical density (OD) was measured 
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spectrophotometrically at 610 nm against uninoculated media as a blank. Following 

OD measurements, colony forming units were quantified by plating 50 uL of 1:10, 

1:100, 1:1000, 1:10000, and 1:100000 dilutions on marine agar in duplicate and 

incubated for 7 days at 25° C. After visible colonies formed, colonies were counted 

and used to estimate CFU/mL (# of colonies)(dilution factor)/(volume plated in mL) 

used in oxygen respirometry experiments. 

 

2.3.3 Oxygen respirometry and hydrocarbon degradation by Halomonas A11A 

 Isolate A11A was assessed for aerobic hydrocarbon degradation via oxygen 

respirometry. Bottles were incubated at room temperature on the 10-channel Micro-

Oxymax Respirometer system (Columbus Instruments, Columbus, OH, USA) housing 

an electrochemical oxygen sensor and assembled according to manufacturer’s 

instructions. Oxygen respiration was measured by purging the headspace every 4 

hours for up to 96 hours.  

Experimental yields of hydrocarbon oxidation rates were inferred from 

graphical representation of the rate of oxygen uptake (µM/min) and total oxygen 

consumption (µM) generated from oxygen respirometry and compared to theoretical 

stoichiometric mass balances for complete hydrocarbon oxidation (Table 2). The 

highest peak value in oxidation rate (µM/min) for the substrate unamended 

2,2,4,4,6,8,8-heptamethylnonane (HMN) negative control was subtracted from the 

highest peak value of each hydrocarbon-amended peak to establish the active 

oxidation rate of each hydrocarbon. This difference was divided by the theoretical µM 

of O2 required to completely oxidize the hydrocarbon. The value was converted to a 
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percentage and represents the experimental yield of µM of O2 consumed to oxidize 

each respective hydrocarbon.  

The optimal inoculum size for respirometry was determined by comparing the 

peak in oxidation rate (uM/min) for inoculation concentration at 5% and 10% (v/v). 

The cells were grown in Widdel’s medium for 10 days with 0.334 mM concentration 

of the C5-C10 n-alkane mix solution. Fresh bottles were inoculated with 5% and 10% 

inoculum measured spectrophotometrically to equal 0.5 OD610 and amended to a final 

concentration of 0.334 mM C5-C10 n-alkane mix solution. Duplicate replicates of each 

inoculum size culture with corresponding unamended controls and a sterile heat-killed 

control bottle were incubated on the respirometer for 60 hours. 

 Following optimization, the isolate was screened for hydrocarbon degradation 

ability with a suite of n-alkanes and other hydrocarbons. A 10% (v/v) inoculum of 

Halomonas A11A grown on the 20 µM C5 n-pentane, at 0.5 OD610, was inoculated in 

30 mL of fresh Widdel’s medium and screened for active aerobic hydrocarbon 

degradation. To examine the substrate range of the isolate and oxidation rate of each 

hydrocarbon each bottle received one of the following hydrocarbon substrates in 

concentrations that yield similar total-carbon concentrations: 40 µM C5 (n-pentane), 36 

µM C6 (n-hexane), 32 µM C7 (n-heptane), 28 µM C8 (n-octane), 24 µM C9 (n-nonane), 

20 µM C10 (n-decane), 2.5 µM C16 (n-hexadecane), and 32 µM C7H5CH3 (toluene) 

solution in acid-washed 250 mL Schott bottles. To avoid toxic effects, solubility 

limitations, and volatilization the hydrocarbon stocks were prepared in 2,2,4,4,6,8,8-

heptamethylnonane (HMN) and added as diluted solutions to amend culture stocks and 

respirometry bottles for the remaining tests (Rabus et al., 1993; 1995). Substrate 
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concentrations were selected to be higher than effector thresholds for monooxygenase 

and dioxygenase enzymes (Attaway et al., 2002; Rojo et al., 2009). Substrate 

unamended controls were prepared with HMN and Widdel’s medium and heat-killed 

sterile controls were made by inoculating cells into Widdel’s medium and autoclaved 

for 30 minutes.   

 Oxygen respirometry tests were used to obtain average experimental yields of 

oxygen consumption during hydrocarbon oxidation for cells grown on one substrate 

then transferred to a different substrate for testing.  Cells grown with 20 µM C5 (n-

pentane) were used to inoculate bottles prepared with C5 (n-pentane), C10 (n-decane), 

C16 (n-hexadecane), or toluene (anhydrous, 99.8%, Sigma-Aldrich St. Louis, MO, 

USA):  all at a final concentration of 20 µM. The test was repeated using cells grown 

on C10 (n-decane) and amended with C5 (n-pentane). All substrates were prepared in 

HMN and tested in triplicate replicates as previously described. Triplicate sterile heat-

killed and unamended controls prepared in HMN were used as previously described.  

 

3.0 Results 

3.1 Production water chemistry 

 Production water was tested in the field and in the laboratory to determine the 

background water chemistry parameters (Table 3). The in-field analysis of the water 

revealed a neutral pH (6.9) and an ambient temperature of 30 °C. Additional in-field 

chemical analysis of the water estimated oxygen at 0 ppm, sulfide was undetectable, 

and thiosulfate was 6.5 mg/L. Laboratory testing measured sulfate at 150 uM and 
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salinity estimated by Cl- anions to be 2.7%. Direct cell count methods estimated the 

production water to contain approximately ≤ 1.68e +6 cells/ mL. 

 Production water samples were analyzed for putative intermediates of 

hydrocarbon biodegradation. This analysis detected several n-alkanes, ranging from C5 

to C12, as well as iso-alkanes ranging from C7-C17 (Table 4). The water also contained a 

range of fatty acids between C4-C6 and alkanoic acids, including:  C5-C10, C16, C18 and 

unsaturated C18 (Table 4). Aromatic hydrocarbons were also detected, including: 

alkylated benzene, toluene, alkylated toluene, xylene, alkylated xylene, phenol, 

alkylated phenol, p-cresol, o-cresol, benzoic acid, and benzenediol (Table 4). 

Furthermore extractions detected naphthalene, alkylated naphthalene, alkylated 

cyclohexane, and cyclohexanol compounds. Notably, there was no evidence of alkyl- or 

benzyl-succinate compounds in the production water (Table 4). The extractions also 

detected several organic acids such as: α-hydroxy acids (glycolic, lactic, 

hydroxypropanoic, and hydroxybutanoic acids), dioic acids (succinic, pentanedioic, and 

hexanedioic acids), and other acids (2-butoxy acetic acid) (Table 4). 

 

3.2 Molecular analysis of the microbial community 

 Barnett Shale production water was examined to determine the endogenous 

microbial community. Summaries of the 16S rRNA gene sequence libraries depicting 

the dominant classes and genera of bacteria in the production water are represented in 

Table 5. Proteobacteria was the most abundant phylum in the production water; of the 

Proteobacteria, Deltaproteobacteria were the most abundant and represent 41% relative 

abundance of the microbial community in the production water (Table 5). Clostridia 
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compose 10.2 %, Thermotogae 11.4%, and Gammaproteobacteria 10.5% of the relative 

abundance of the microbial community (Table 5). The most abundant genera in the 

production water were Desulfobacter (29.1%, Deltaproteobacteria), Geotoga 

(Thermotogae, 9.0%), Marinobacterium (Gammaproteobacteria, 7.4%), and 

Desulfotignum (Deltaproteobacteria, 4.6%) represented by relative abundance (Table 

5). 

 
3.3 Aerobic enrichment of microorganisms from production water  

3.3.1 Initial aerobic enrichment of microorganisms in production water 

 Production water was amended with various hydrocarbon and heterotrophic 

substrates to determine if the endogenous microbial community can degrade them 

aerobically; the enrichment design is illustrated in Figure 1. Overall growth score is 

shown after three transfers, one transfer occurred every 30-40 days (Table 6). Growth 

was monitored via turbidity. The turbidity scores indicate the endogenous microbial 

community from the production water tank can grow with n-alkanes, fatty acids, and 

the positive control substrate (yeast extract plus tryptone). However, the microbial 

community did not grow in the presence of BTEX or oxidized BTEX compounds.  

 

3.2.2 Additional aerobic enrichment of microorganisms in production water 

 Initial and progressive enrichments aimed to select for the dominant n-alkane 

and n-fatty acid-degrading bacteria in the production water. Summaries of the 16S 

rRNA sequence libraries for the initial and progressive amendments with n-alkanes and 

n-fatty acids are illustrated in Figures 2 and 3, respectively. The libraries depict a 

marked shift in the dominant classes of bacteria with continued n-alkane and n-fatty 
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acid amendment; Gammaproteobacteria increase and dominate while Thermotogae, 

Clostridia, and Deltaproteobacteria decrease or disappear. Synergistia and 

Alphaproteobacteria remain at low abundance in the progressive n-alkane-amended 

enrichments; Mollicutes are enriched in the n-fatty acid but not in the n-alkane-

amended enrichment.  

 Summaries of the 16S rRNA sequence libraries for the initial and progressive 

amendments with n-alkanes and n-fatty acids depicting relative abundance of genera 

are depicted in Figures A1 and A2. Roseovarius (5.0%, Alphaproteobacteria), 

Shewanella (13.5%, Gammaproteobacteria), Halomonas (75.9%, 

Gammaproteobacteria), and Marinobacter (2.4%, Gammaproteobacteria) appear to 

increase the most in relative abundance after three transfers amended with n-alkanes 

(Table 7). Similarly, Halomonas (75.1%, Gammaproteobacteria), Marinobacter (2.4%, 

Gammaproteobacteria), Dethiosulfatibacter (7.3%, Clostridia), and Acholeplasma 

(20.8%, Mollicutes) appear to increase the most after progressive rounds of amendment 

with n-fatty acids. The aerobic conditions were not permissive for growth for 

Desulfotignum or Desulfobacter (Deltaproteobacteria), both decreasing to 0.0% of the 

relative abundance under amendment with either n-alkanes or n-fatty acids. Geotoga 

(Thermotogae) increased in abundance during initial rounds of amendment with both n-

alkanes (64.5%) and n-fatty acids (63.3%) but decreased during the progressive 

enrichments. The initial amendment with n-alkanes appear to increase the relative 

abundance Thalassospira (0.2%, Alphaproteobacteria), Arcobacter (9.9%, 

Epsilonproteobacteria), and Oleibacter (2.5%  Gammaproteobacteria) (Table 7) from 
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that seen in the production water but all had decreased by the end of the progressive 

enrichments. 

 Overall, amendment with n-alkanes and n-fatty acids selected for the 

Gammaproteobacteria Halomonas and Marinobacter. Significant differences in 

selection were that Roseovarius (Alphaproteobacteria) and Shewanella 

(Gammaproteobacteria) increased with n-alkane but not with n-fatty acid amendment. 

As well as Thalassospira (11.6% in initial n-fatty acid amendment, 

Alphaproteobacteria), Oleibacter (4.3% in initial n-fatty acid amendment, 

Gammaproteobacteria), Dethiosulfatibacter (7.3%, Clostridia), and Acholeplasma 

(20.8%, Mollicutes) increased with n-fatty acid but not n-alkane amendment (Table 7).  

 

3.3 Isolation of Halomonas strains 

 Additional progressive amendment with n-fatty acids and n-alkanes aimed to 

enrich for the dominant n-fatty acid and n-alkane-degrading organisms in production 

water. The incubations containing n-fatty acids grew more quickly than those 

containing n-alkane, as assessed visually. Nine isolates were obtained from various 

rounds of the n-alkane (C5-C10) (7 isolates) and n-fatty acid (C5-C10) (2) amendments. 

The A11A isolate was amplified with 4 primers: fd1, rp2, P1, and D907R to yield a 

1432 bp product. The other 8 isolates were amplified with D907R and P1 to obtain an 

approximately 550 bp product. All nine isolates were identified as 96-99% identical to 

16S rRNA gene sequences of Halomonas species (data not shown). 
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3.3.1 Genomic and phylogenetic analysis of Halomonas A11A 

 Isolate A11A was obtained from the 10-4 dilution of the first progressive 

transfer with n-alkanes (illustrated in Figure 1). Phylogenetic analysis of the 1432 bp 

16S rRNA gene sequence of the Halomonas A11A isolate is represented by a neighbor-

joining phylogenetic tree depicting its relationship to Halomonas species and selected 

other known marine hydrocarbon degrading bacteria (Fig. 4). Based on multiple 

alignments (Clustal W and MUSCLE) and tree reconstruction of sequence-similarity 

calculations (neighbor-joining and maximum-likelihood) the 16S rRNA gene sequence 

of Halomonas A11A is most similar to that of several unclassified Halomonas strains: 

99 % (1426/1432 bp) identical to Halomonas sp. HB.br (GU228481.1), 99 % 

(1425/1432 bp) identical to Halomonas sp. IB-559, and 99 % (1423/1429 bp) identical 

to Halomonas sp. JA6. The most closely related described species is Halomonas 

alkalicola CICC11012s (KU530128.1) which is 99 % (1418/1432 bp) identical. 

Halomonas campisalis LL1 was 97 % (1398/1432 bp) identical to the A11A isolate. 

 The assembled Halomonas A11A genome (3,264,921 bp) was screened for 

functional genes relevant to hydrocarbon degradation. KEGG KOBAS (KEGG 

Orthology Based Annotation System) 3.0 was used to detect functional genes in the 

Halomonas A11A genome (Xie et al., 2011). Aerobic hydrocarbon degradation genes 

specific for n-alkane and aromatic hydrocarbon degradation were detected in 

Halomonas A11A (Table 8). Enzyme sequences for alkane monooxygenase, alkB 

were detected but cytochrome p450 CYP 153 was not. Several dioxygenase enzymes 

were also detected: benzene dioxygenase (bed), toluene dioxygenase (tod) catechol 

2,3-dioxygenase (dmp, xyl, cat) a phenol dioxygenase and phenol hydroxylase (dmp, 
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pox). No enzymes for a xylene monooxygenase (xylMA), ethylbenzene dioxygenase 

(etbA), naphthalene 1,2-dioxygenase (nah, nda, nhz, dnt) or catechol 1,2-dioxygenase 

(cat) were detected in the genome (Table 8). The detection of these enzymes is limited 

to what is annotated in databases, we acknowledge that some enzymes are not well 

annotated and additional support for detection of some of these enzymes is necessary. 

 To more fully illustrate the functional metabolic pathways of interest in 

Halomonas A11A, fatty acid, alkane, and BTEX metabolic pathways were 

reconstructed using KEGG Mapper. Fatty acid metabolism in Halomonas A11A is 

illustrated in Figure 5 and 6; genes present in the genome are indicated in green and 

suggest several complete pathways for fatty acid metabolism are present. Not found in 

this genome assembly are genes coding for three acyl-CoA dehydrogenases (1.3.3.6, 

1.3.8.9, 1.1.1.211), an enoyl-CoA dehydrogenase (4.2.1.17), one ligase enzyme 

(6.2.1.6), and an acyltransferase (6.2.1.20) used in long-chain (C13-C22) fatty acid 

metabolism. Figure 7 depicts alkane metabolism; here, nearly all enzymes are present 

for complete oxidation of alkanes, it has a rubredoxin reductase (1.18.1.1) but does not 

have rubredoxin reductase (1.18.1.4) and ferredoxin reductase (1.18.1.3). Genes for 

benzene metabolism are illustrated in Figure 8; the genome appears to contain 

sequences for several enzymes used in the initial oxidation reactions, such as benzene 

dioxygenase (1.14.12.3), phenol hydroxylase (1.14.13.-), phenol 2-monooxygenase 

(1.14.13.7), catechol 2,3-dioxygeanse (1.13.11.2) but is missing several down-stream 

enzymes. Similarly, the pathway for toluene degradation (Figure 9) features several of 

the same initial enzymes, such as toluene dioxygenase (1.14.12.3, 1.14.12.11) 

enzymes and aryl-alcohol dehydrogenase (1.1.1.90) and 4-cresol dehydrogenase 
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enzymes; however, the genome lacks several downstream genes involved in toluene 

degradation. The pathway for ethylbenzene degradation (Figure 10) in Halomonas 

A11A only features 2-hydroxy-6-oxo-octa-2,4-dienoate hydrolase (3.7.1.-) and acetyl-

CoA transferase (2.3.1.16) enzymes. The putative pathway for xylene metabolism 

(Figure 11) in Halomonas A11A lacks the initial xylene monooxygenase (1.14.13.-) 

but contains the aryl-alcohol dehydrogenase (1.1.1.90) enzymes and additional 

enzymes similar to those for toluene and benzene metabolism. Table A2 lists the genes 

of interest in the fatty acid, alkane, and BTEX metabolic pathways.  

 

3.3.2 Physiological analysis of Halomonas A11A  

 Halomonas A11A showed hydrocarbon degradation ability based on the 

preliminary screening in liquid medium and was chosen for additional investigation 

using oxygen respirometry. The isolate showed growth, as judged by turbidity, after 

three transfers with all tested n-alkane substrates and toluene but did not grow with 

BTEX or in the unamended medium. Based on the successful screening results, 

Halomonas A11A was chosen for additional testing with oxygen respirometry to 

quantify the rate of aerobic hydrocarbon degradation via oxygen consumption. Prior to 

inoculation and incubation the cells, were quantified via optical density and CFU 

(colony-forming units). Based on CFU calculations and OD measurements a 

Halomonas A11A culture of 0.5 OD equals 4.6 x 106 cells/mL. 

3.3.3 Oxygen respirometry and hydrocarbon degradation by Halomonas A11A 

 Based on peak rates of oxygen uptake achieved with different inoculum size, 

10% (0.21 µM/min) vs 5% (0.019 µM/min), a 10% (v/v) inoculum size from a 0.5 
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OD610 culture (e.g. 3.5 x 105 cells/mL) was determined to be the most appropriate for 

oxygen respirometry (Figure A3).  Further optimization of conditions for oxygen 

respirometry tested 2,2,4,4,6,8,8-heptamethylnonane (HMN) as an inert carrier for the 

hydrocarbons to avoid possible toxic effects, solubility limitations, and volatilization 

of the hydrocarbons. The use of HMN was determined to be appropriate since it did 

not affect oxygen consumption values or rates of oxygen uptake when comparing 

triplicate cultures containing n-pentane versus cultures containing n-pentane in HMN 

(Figure 12).  Likewise, substrate unamended controls with HMN added did not differ 

from previously observed unamended values without HMN (Figure 12). Cells were 

not washed prior to inoculation, instead, the carry-over of hydrocarbons from transfer 

to the unamended control was subtracted from the totals and not included in the 

calculations. 

 Initial screening of hydrocarbon degradation using individual C5-C10, C16 n-

alkanes and toluene showed that all aliphatic hydrocarbons (C5-C10, C16 n-alkanes) and 

the aromatic hydrocarbon, toluene, resulted in higher oxidation uptake (Figure 13) and 

total oxygen consumption (Figure 14) compared to the unamended plus 

heptamethylnonane (HMN) and sterile controls. All hydrocarbons appear to peak in 

rate of oxygen uptake between 68 and 76 hours after inoculation (Figure 13). 

Incubation with C6 n-hexane and C7 n-heptane yield the highest rates of oxygen uptake 

of 0.327 and 0.368 µM/min, respectively and the highest total oxygen consumption at 

669.587 and 701.979 µM O2, respectively at 80 hours after inoculation (Figure 14). 

The isolate did not consume oxygen in response to 0.1 M BTEX; oxygen rates and 

consumption were similar to the sterile heat-killed control (data not shown).  
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Molar O2 consumption calculations to infer hydrocarbon oxidation rates were 

obtained from oxygen respirometry yields of total oxygen consumption and oxygen 

uptake rates calculated from Figures 13 and 14 and Table A3. Complete (> 75%) or 

partial oxidation was determined by calculating the percent of theoretical molar O2 

consumption derived from the experimental oxygen consumption versus the 

theoretical molar O2 concentration required to completely oxidize the hydrocarbons 

(Table 9). Different concentrations of each hydrocarbon were used to have similar 

amounts of carbon in each experimental unit. The most complete or highest percent of 

theoretical oxygen consumption occurred with amendments of C9 n-nonane (118%), 

followed by C7 n-heptane (92.9%), C6 n-hexane (82.4%), and C5 n-pentane (76.2%) 

(Table 9). The lowest percent of theoretical oxygen consumption occurred when 

coupled with amendments of C10 n-decane (67.9%), toluene (64.5%), C16 n-

hexadecane (56.6%), and C8 n-octane (49.1%) (Table 9). 

 Following hydrocarbon degradation screening and optimization experiments 

the Halomonas A11A isolate was used to obtain average experimental yields for 

oxygen consumption during hydrocarbon oxidation inoculated from cells grown on n-

pentane versus grown on n-decane. All rates were obtained by comparison to triplicate 

unamended HMN controls and heat-killed controls. In the first experiment, cells 

grown on C5 n-pentane were used as an inoculum and inoculated in bottles amended 

with 20 µM C5 n-pentane and C10 n-decane (Figures 15). The total oxygen 

consumption over 68 hours for the C5 n-pentane amended bottles and the C10 n-decane 

amended bottles were 300.8 and 272.5 µM, respectively (Figure 15). Cells grown on 

C5 n-pentane and amended with C10 n-decane appear to lag in oxygen uptake 
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compared to the cells amended with C5 n-pentane. The C5 n-pentane-amended bottles 

increased steadily in oxygen uptake and peaked at 0.151 µM/min at 60 hours; whereas, 

the C10 n-decane-amended bottles increased steadily in oxygen uptake rate until 37 

hours then slowed, peaked at hour 60 at 0.107 µM/min, and was sustained for the 

remainder of the experiment (Figure A4). In both cases, the rates of oxygen uptake and 

total oxygen consumption were greater than what was observed with the unamended 

HMN control. The total O2 consumption and molar calculations suggest the C5-grown 

Halomonas A11A cells completely oxidized n-pentane C5 (94.5% of theoretical) but 

did not completely oxidize the n-decane C10 (60.6% of theoretical) (Table 10). 

 

 The test was repeated with cells grown on C5 n-pentane as an inoculum and 

inoculated into bottles amended with 20 µM C16 n-hexadecane and toluene (Figure 16) 

to contrast extremes of the hydrocarbon range tested (e.g. C5 versus C16) and screen 

for induction of a different enzyme system (e.g. alkane monooxygenase versus toluene 

dioxygenase). The total oxygen consumption over 72 hours for the C16 n-hexadecane 

amended and the toluene amended bottles was 289 µM and 337 µM O2, respectively 

(Figure 16). Oxygen uptake rates for C16 n-hexadecane and toluene were very similar; 

the oxygen uptake rate for C16 n-hexadecane peaked at 0.2 µM/min at 68 hours and the 

uptake rates for toluene peaked at 0.177 at 60 hours (Figure A6). The rates in oxygen 

uptake and total oxygen consumption for C16 n-hexadecane and toluene are greater 

than what was observed with the unamended HMN control. Here, the C5-grown 

Halomonas A11A cells did not appear to completely oxidize C16 n-hexadecane 
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(72.3%) or toluene (37.0%) based on total oxygen consumption and molar calculations 

(Table 10). 

 The test was repeated with cells grown on C10 n-decane as an inoculum and 

inoculated in bottles amended with 20 µM C5 n-pentane or C10 n-decane (Figure 17). 

Here, the C5 n-pentane amended bottles peaked in oxygen uptake at 0.218 µM/min at 

72 hours and the C10 n-decane amended bottles peaked in oxygen uptake at 0.239 

µM/min at 92 hours; these peak rates occurred later than the previous experiment with 

cells grown on C5 n-pentane (Figure A5). The total oxygen consumption over 80 hours 

for the C5 n-pentane amended bottles and C10 n-decane amended bottles is 547.5 and 

611.8 µM, respectively (Figure 17). The rates of oxygen uptake and total oxygen 

consumption observed with the C10 n-decane-grown cells amended with C5 n-pentane 

and C10 n-decane are higher than those observed in the unamended HMN controls. 

Cells grown on C10 n-decane appear to generate complete oxidation of C5 n-pentane 

(99.2%) and C10 n-decane (104.4%) (Table 10). 

 

 Collectively, cells grown on C10 n-decane appear to generate the most 

complete oxidation and the highest percent of theoretical for C5 n-pentane (99.2%) and 

C10 n-decane (104.4%) (Table 10). Cells grown on C5 n-pentane appear to generate 

complete oxidation when amended with C5 n-pentane (94.5%) but suggest incomplete 

oxidation when amended with C10 n-decane (60.6%) (Table 10). The lowest 

experimental yields and percent of theoretical were obtained from C5 n-pentane-grown 

cells amended with C16 n-hexadecane (72.3%) and toluene (37.0%), suggesting 

incomplete oxidation of the hydrocarbons. 
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4.0 Discussion 
 
 Gammaproteobacteria were the most abundant class of bacteria after 

amendment with n-alkanes and n-fatty acids in production water. More specifically, 

Halomonas dominated all of the progressive enrichments amended with n-alkanes and 

n-fatty acids. Isolation of Halomonas strain A11A allowed the direct testing of n-

alkanes C5-C10, C16, and toluene degradation and quantification of hydrocarbon 

oxidation rate. These results suggest that Gammaproteobacteria such as Halomonas 

play an important role in aerobic hydrocarbon degradation in petroleum production 

facilities.  

 Aerobic hydrocarbon biodegradation in the production water is supported by 

additional observation. Organic extractions of the production water (Table 4) provided 

evidence for aerobic hydrocarbon degradation; the detection of aerobic intermediates 

including, cresols, phenols, catechols, cyclohexanols, and various fatty acids indicate 

active aerobic hydrocarbon degradation occurs in the production water (Gibson et al., 

1968; 1984; Smith et al., 1991). Conversely, some key indicators of anaerobic 

hydrocarbon degradation were absent; no benzyl- or alkylsuccinates or e-

phenylitaconate were detected (Leuthner et al., 1998; Beller et al., 2000; Callaghan et 

al., 2010; Aktas et al., 2012). The absence of alkylsuccinates could either suggest very 

little anaerobic aliphatic hydrocarbon degradation occurs in the tank or possibly 

anaerobic alkane degradation does not occur through addition to fumarate but through 

a different mechanism. Similarly, the absence of signature metabolites for anaerobic 

aromatic hydrocarbon degradation, benzylsuccinates, suggests either very little or only 

transient anaerobic aromatic hydrocarbon degradation occurs or that the aromatic 
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hydrocarbons are activated through another mechanism. Considering the presence of 

many different aerobic hydrocarbon intermediates and the absence of anaerobic 

hydrocarbon degradation signature metabolites, we assume aerobic oxidation of the 

hydrocarbons was an important degradation pathway in this production water tank. 

 

 A number of methods examined aerobic hydrocarbon degradation potential in 

the production water. Several isolates were obtained through amendment with 

hydrocarbons. Based on the1432 bp 16S rRNA gene sequence, isolate A11A, enriched 

through amendment with hydrocarbons, was identified as most closely related to 

Halomonas (Oceanospirillales). The closest characterized species is Halomonas 

alkalicola CICC11012s (99 %). H. alkalicola CICC11012s was originally isolated 

from a household product plant in China (Tang et al., 2017). Hydrocarbon degradation 

ability has not been tested on this H. alkalicola CICC11012s. The most closely related 

Halomonas strain to Halomonas A11A is Halomonas HB.br (GU228481.1, 99%) 

(McSweeney et al., 2011). Halomonas HB.br was isolated from an oxalate degradation 

bioreactor; here, the authors detected Halomonas sp. in three separate bioreactors and 

reasoned that these microorganisms play a role in degradation of oxalate and other 

organic acids.  

 Halomonas A11A demonstrates the potential to oxidize a wide range of 

hydrocarbons such as, n-alkanes C5-C10 and C16 as well as toluene (Tables 9 and 10) 

and to play an important role in hydrodcarbon degradation. Upon initial examination, 

Halomonas A11A appears to oxidize C5-C10 n-alkanes more completely rather than 

longer C16 n-alkane or aromatic toluene hydrocarbons; these findings are comparable 
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to the range of n-alkanes detected in the original production water (Table 4). The most 

complete oxidation (>75 % of theoretical) was achieved with Halomonas A11A cells 

grown on C10, followed by amendments with C5 or C10 (Table 10). The reconstructed 

pathways depicting alkane metabolism also support these findings; the Halomonas 

A11A genome appears to contain nearly all of the gene sequences coding for enzymes 

required for complete hydrocarbon oxidation; however, no gene sequences for the 

ferredoxin or rubredoxin reductase were identified. This could be due to differences in 

the enzyme sequence compared to those in the KEGG database or to an incomplete 

genome assembly The highest oxidation rates and most complete oxidation occurred 

with n-pentane C5 (99.2 %) and n-decane C10 (104.4 %) when grown previously with 

n-decane C10 (Table 10). The experimental yields that were >100 % are likely caused 

by carry-over of n-decane C10 in the inoculum. These experiments also allowed us to 

hypothesize if a different enzyme system would be induced by growing cells on a 

short C5 n-alkane and then amending them with longer C10 or C16 n-alkanes. We can 

see that when cells are grown on C5 n-pentane and amended with C10 n-decane 

(60.6%) they are not as efficient compared to when the cells are grown on C10 n-

decane and amended with C10 n-decane (104.4%) (Table 10). This may suggest a 

difference in affinity for the alkane monooxygenase enzyme or more than one copy of 

the gene.  

 Conversely, Halomonas A11A cells grown on C5 and amended with C16 (72.3 

%) and toluene (37 %) generated the lowest experimental percentages, suggesting less 

efficient or incomplete oxidation (Table 10) or insufficient time for induction of a 

different enzyme system. Moreover, the reconstructed pathways for benzene, toluene, 
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ethylbenzene, and xylene were far from complete. Collectively, these findings could 

suggest Halomonas A11A lacks the full suite of enzymes for complete oxidation of 

aromatic compounds or may imply that the enzyme systems used to activate C16 and 

toluene are different than those used to activate C5-C10 n-alkanes and were not active 

in the cell resulting in less efficient oxidation as enzyme systems were switched. 

Further, the enzyme kinetics for long chain alkanes and for aromatic toluene have 

different kinetic affinities and specific activities than short- and mid-chain length n-

alkanes.  While very little data exists for mono- and dioxygenase enzyme kinetics for 

Halomonas sp. some reference material exists for P. oleovorans and P. putida and 

may be applicable due to the phylogenetic similarity between Pseudomonas and 

Halomonas. The Km values for hexane, octane, and decane were determined in P. 

oleovorans and used to examine oxidation rates catalyzed by a monooxygenase 

(Peterson et al., 1967). At saturating concentrations (hexane (Km  = 6.0 mM), octane 

(Km  = 0.77 mM), and decane (Km  = 0.58 mM)) they determined octane was oxidized 

most rapidly (3.3 µmoles/min/mg protein) followed by hexane (2.5 µmoles/min/mg 

protein) then decane (1.3 µmoles/min/mg protein). They also note that the Km for 

hexane hydroxylation is much higher than those for octane and decane, suggesting the 

purified monooxygenase enzyme in their study has a lower affinity for hexane. In a 

separate study, the specific activity of a monooxygenase, also described as an alkane 

and fatty acid ω-hydroxylase, in P. oleovorans was examined with octane as the 

substrate (Ruettinger et al., 1977). Here, they report the specific activity of the 

monooxygense to be 1.23 µmol/min/mg, which is three times greater than these 

authors previously reported (McKenna et al., 1970). More recently, the specific 



 

	 68 

activities of benzene and toluene dioxygenases have been investigated in P. putida and 

may provide insight on the kinetics of BTEX oxidation in Halomonas A11A (Bagnéris 

et al., 2005). Here, they find significant differences in substrate specificity between the 

benzene and toluene dioxygenases despite the similarities in catalytic properties, 

structure, and gene organization; the specific activity (µmol/min/mg) of the toluene 

dioxygenase with benzene as a substrate was 0.045, with ethylbenzene as a substrate 

was 0.054, and with toluene as the substrate was 0.056; all of which are significantly 

lower than the specific activity recorded for octane oxidation in P. putida. It is not 

surprising that mid-length n-alkanes have a higher specific activity than aromatic 

hydrocarbons; taken together, these findings combined with the results obtained in our 

study may suggest that Halomonas A11A is capable of degrading aromatic 

hydrocarbons, such as toluene, but the enzyme system was not induced until the cells 

were grown with toluene, resulting in less efficient oxidation. Exposure of the cells on 

toluene would likely result in more efficient oxidation. A more thorough investigation 

of mono- and dioxygenase kinetics in Halomonas and degradation studies with C16- or 

toluene-grown cells may provide insight on these questions. 

 Complete oxidation of alkanes leads to the production of CO2 while generating 

cell growth and proliferation (van Beilen et al., 2003). Alternatively, the incomplete 

oxidation of n-alkanes and other hydrocarbons and formation of these partially 

oxidized by-products could lead to them serving as substrates for other bacteria. Short-

chain (<C12) n-alkanes are notably difficult targets for degradation by bacteria due to 

their high water solubility and toxicity (van Beilen et al., 1994; Belhaj et al., 2002; 

Smits et al., 2002). This is one of the first reports of a Halomonas isolate to degrade a 
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short-chain (C5) n-alkane and toluene hydrocarbons in pure culture. Based on the data 

shown here, the ability to oxidize a wide range of hydrocarbons including short-chain 

n-alkanes, Halomonas A11A may be a candidate for use as a bioremediation tool. 

 One previous study estimated n-alkane degradation potential by isolates, 

including two Halomonas strains, from an oil-contaminated site through comparative 

gas chromatography of n-alkane-amended and unamended controls (Hassanshahian et 

al., 2012). Here, they note medium length (C12-C18) n-alkanes were degraded more 

completely (greater than 50%) than n-alkanes with shorter (C9-C11) or longer (C19-C25) 

chain lengths. The authors in this study determined the alkB group III genes, 

characterized to catalyze the degradation of long-chain n-alkanes (>C16) were present 

in the two Halomonas strains (Kohno et al., 2002; Hassanshahian et al., 2012). Our 

study adds to the list of possible targets for aerobic n-alkane degradation for 

Halomonas sp. In a separate study, Feknous and others measured n-alkane degradation 

by Halomonas venusta NY-8 using turbidity measurements (Feknous et al., 2017). 

Here, they noted a lag period in the presence of n-hexane, but turbidity increased from 

an OD of 0.04 to 0.277 after 216 hours. In the presence of n-heptane growth was 

stimulated within 48 hours, ODs increasing from 0.107 to 0.248 within 96 hours. The 

most significant growth was observed in the presence of n-decane, where they 

observed ODs to increase from 0.135 to 0.902 within 24 hours. Based on growth 

kinetics determined by turbidity measurements they conclude H. venusta NY-8 can 

degrade a wide range of hydrocarbons at different rates, with the maximum rate 

occurring at 3.12 mg/L n-heptane. Long chain alkane hydroxylases, almA (>C32) and 

ladA (C15 to C36) (Feng et al., 2007; Throne-Holst et al., 2007) were not detected in the 
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genome of A11A. While this information suggested Halomonas sp. can grow in the 

presence of lower molecular weight n-alkanes our study aimed to provide a more 

quantitative measurement of n-alkane oxidation.  

 Compared to other hydrocarbon-degrading microorganisms, such as 

Pseudomonas and Marinobacter, very little is known about the role of Halomonas sp. 

in aerobic hydrocarbon degradation. Halomonas represented a small percentage 

(2.2%) of the relative abundance in the original production water but may play a 

significant role in aerobic hydrocarbon degradation. Several studies have detected 

Halomonas sp. in hydrocarbon-impacted environments (Wang et al., 2007; Mnif et al., 

2009; Hassanshahian et al., 2012; Feknous et al., 2017). Others have quantified 

surfactant production by Halomonas sp. and observed strains to degrade (non-

hydrocarbon) aromatic compounds (Garcia et al., 2004; Mnif et al., 2009). However, 

few have directly isolated strains capable of hydrocarbon degradation or quantified the 

hydrocarbon degradation rates; even fewer have identified genes responsible for 

hydrocarbon degradation (Garcia et al., 2004; Hassanshahian et al., 2012; Feknous et 

al., 2017).  

 Oxygenases initiate the aerobic oxidation of alkanes by introducing oxygen 

atoms derived from molecular oxygen into the carbon-hydrogen chain to produce 

primary alcohols and later fatty acids that may enter downstream metabolic pathways 

(Hayaishi et al., 1955; van Beilen et al., 2003). For aliphatic hydrocarbons, such as n-

alkanes, the most common and well-characterized oxygenases or monooxygenases 

include the alkB alkane hydroxylase system. This membrane-bound alkane 

hydroxylase is well described in Pseudomonas putida (oleovorans) GPo1 and 
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Pseudomonas aeruginosa (Kok et al., 1989ab; van Beilen et al., 1994, Das et al., 

2015). In P. putida GPo1 the proteins are encoded on a large plasmid, known as the 

OCT plasmid (Chakrabarty et al., 1973). Two alk clusters are encoded on the plasmid; 

the alkBFGHJKL includes the alkB promoter, a membrane-bound soluble electron 

transport system with two rubredoxins (alkF and alkG), a NAD-dependent aldehyde 

dehydrogenase (alkH), an alcohol dehydrogenase (alkJ), an acyl-coA synthetase 

(alkK), and an outer-membrane protein (alkL)  (Kok et al., 1989a; van Beilen et al., 

1992; 1994). The other alk cluster (alkST) encodes for a rubedoxin reductase (alkT) 

and the positive regulator for both alk clusters (alkS) (Kok et al., 1989b). In general, 

the substrate range for alkB is reported to range from C5-C16 and may oxidize at the 

terminal, sub-terminal, or biterminal positions (Smits et al., 2002; van Beilen et al., 

2003). Others have described the alkB system in three groups based on phylogenetic 

comparisons (Kohno et al., 2002; Hassanshahian et al., 2012). The alkB system also 

shows promise as a gene marker for detecting n-alkane-degrading bacteria in 

contaminated environments (van Beilen et al., 2003).  

 To date, few studies have characterized the alkane hydroxylase systems in 

Halomonas. Hassanshahian and others detected alkB genes in several isolates 

including two Halomonas strains, using several alkB-specific primers (Kohno et al, 

2002; Hassanshahian et al., 2010; 2012). The lack of available annotated alkB 

sequences for Halomonas sp. made detection and comparison difficult; we detected 

alkB in Halomonas A11A through KEGG KOBAS gene sequence matches; however 

we do not know how many copies of alkB are in the Halomonas A11A genome.  
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 Bacterial cytochrome p450 systems have also been reported to catalyze n-

alkane oxidation. Cytochrome p450s are ubiquitous catalysts found in all domains of 

life able to hydroxylate and oxidize a wide range of compounds (van Beilen et al., 

2005). The p450-like enzyme responsible for n-alkane oxidation was characterized in 

Acinetobacter and classified as class I p450 family CYP153 (Asperger et al., 1981; 

Maier et al., 2001). To date, few have identified or detected cytochrome class I 

CYP153 enzymes in any Halomonas sp. One study detected one CYP153 in a strain of 

Halomonas ventosae (AY268080) (Wang et al., 2010). Here, they amplified to detect 

both CYP153 p450 and alkB genes using degenerate primers of 800 and 550 bp 

products, respectively, but no PCR products were verified by sequencing. Although 

they did not detect an alkB alkane monooxygenase they did detect, for the first time, 

one copy of the CYP153 gene in a Halomonas sp. They also imply that Halomonas 

and the other bacteria in their study, related to Alcanivorax dieselolei B-5T, may have 

acquired the CYP153 through horizontal gene transfer based on the high similarity in 

phylogeny among the isolates based on alignment of the putative cytochrome p450 

CYP153 family. In our study, we did not detect a cytochrome p450 CYP153 family 

alkane hydroxylase gene; and no other alkane monooxygenases (ladA, almA) were 

detected, suggesting Halomonas A11A degrades n-alkanes via the alkB alkane 

hydroxylase gene system. 

 Besides aliphatic hydrocarbons, aromatic and polycyclic aromatic 

hydrocarbons are of great concern as pollutants in oil-impacted environments. 

Halomonas sp. are not the most abundant species of bacteria associated with these 

environments but some studies have characterized Halomonas sp. to degrade or grow 
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with a range of aromatic compounds or cleave aromatic rings (Romano et al., 1996; 

Ventosa et al., 1998; Melcher et al., 2002; Alva et al., 2003). More than one study has 

shown that Halomonas sp. can degrade phenol and benzoate (Alva et al., 2003; Garcia 

et al., 2005; Sei et al., 2009; Lu, et al., 2015). Compared to aliphatic hydrocarbons, 

even less is known about the degradation of BTEX compounds by Halomonas sp.  In 

one study, Halomonas sp. were associated with an enrichment culture composed 

largely of Gammaproteobacteria obtained from a hypersaline environment that 

degraded benzene and toluene in up to 29% NaCl; however no toluene- or benzene-

degrading Halomonas isolates were obtained or tested directly (Sei et al., 2009). 

 Aromatic hydrocarbons are activated by mono- and dioxygenases in aerobic 

environments (El-Naas et al., 2014). The initial oxidation produces catechol 

compounds, which are then targeted by a series of ring cleavage reactions to ultimately 

produce pyruvate and enter the Krebs cycle (Smith et al., 1990; Cozzarelli et al., 

2003). Several studies have detected catabolic genes involved in aromatic compound 

degradation in Halomonas sp. Specifically, one group detected sequences for catechol 

1,2-dioxygenase (FN997643), 83% sequence similarity to the Halomonas 

organivorans partial (catA) gene sequences, and phenol hydroxylase (GQ281096), 

79% similar to the Pseudomonas sp. DHS3Y phenol hydroxylase alpha subunit gene 

sequence, enzymes in a Halomonas isolate capable of phenol degradation (94% of 500 

mg/L phenol) (Lu et al., 2015). Others have isolated catechol 1,2-dioxygenase 

(catRBCA) gene cluster as well as the benzoate catabolic gene cluster (benAB) from 

Halomonas organivorans G-16.1 when grown with phenol and benzoic acid (de 

Lourdes Moreno et al., 2011). Few studies have isolated Halomonas sp. able to 
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degrade BTEX compounds in pure culture; in our study we obtained quantitative 

evidence for toluene oxidation by Halomonas A11A as well as genomic evidence for a 

range of aromatic hydrocarbon degradation genes. We detected sequences for benzene 

(bed) and toluene (tod) dioxygenases, which catalyze the initial oxidation of benzene 

and toluene aromatic rings, and phenol hydroxylase P0 protein (dmp, pox), phenol 2-

monooxygenase, and phenol dioxygenase enzymes, which are used in the initial attack 

of aromatic hydrocarbons (Fong et al., 1996). Catechol 2,3-dioxygenase (dmp, xyl, cat) 

enzyme sequences and enzymes for complete degradation to produce formate, 

pyruvate, and acetyl-CoA were also detected (Figure 8, Table 8, Table A2). No 

evidence for gene sequences encoding for xylene monooxygenase (xylMA), 

ethylbenzene dioxygenase (etbA), naphthalene 1,2-dioxygenase (nah, ndo, nhz, dnt), or 

catechol 1,2-dioxygenase were detected. While some of these enzymes and others 

were not detected, it may be due to a lack of available annotated sequences for 

Halomonas sp. and/or an incomplete genome for A11A. The presence of gene 

sequences coding for these enzymes in Halomonas A11A suggests the isolate may be 

capable of complete oxidation of several aromatic hydrocarbons, including benzene 

and toluene, and is supported by the toluene oxidation observed in our study. To more 

fully support this hypothesis, comparative BLAST analysis of nucleotide sequences 

for the genes of interest and parallel degradation studies are necessary. 

 Many other microorganisms were enriched with n-alkane amendment and may 

play an important role in the production water. Marinobacter and Marinobacterium 

(Alteromonadales) are commonly associated with hydrocarbon and petroleum-

contaminated environments and were present at 0.1% and 7.4%, respectively, of the 
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relative abundance in the original production water (Huu et al., 1999). Marinobacter 

species are one of the most common aerobic marine microorganisms associated with 

laboratory and in-situ hydrocarbon degradation (Gauthier et al., 1992; Huu et al., 

1999; Striebich et al., 2014). Like many other hydrocarbonoclastic bacteria, 

Marinobacter employs the alkB alkane monooxygenase for alkane degradation but has 

shown potential to degrade a wide variety of hydrocarbons such as diesel fuels, jet 

fuels, and polycyclic aromatic hydrocarbons (PAH); some studies exhibit 

Marinobacter growing on hexadecane or single PAHs as sole carbon sources (Vila et 

al., 2010; Smith et al., 2013; Striebich et al., 2014). The relative abundance of 

Marinobacter did not significantly increase with amendment with n-alkanes or n-fatty 

acids and ended at 2.4% with both after the progressive enrichments were complete. 

This slight increase in abundance of Marinobacter in both types of enrichment may 

suggest that Marinobacter is a participant in the degradation of complex organics such 

as n-alkanes and n-fatty acids. A close relative of Marinobacter, Marinobacterium was 

present in the production water at 7.4% and has been associated with hydrocarbon-

contaminated environments, oil-water separator tanks, hypersaline oil-impacted 

environments, and shown potential to degrade some hydrocarbons even under sulfate-

reducing conditions (Yakimov et al., 2005; Yuehui et al., 2008; van der Krann et al., 

2010; Sherry et al., 2013). Marinobacterium was under the limit of detection (0.0%) at 

the end of the progressive enrichments amended with both n-alkanes and n-fatty acids 

but two strains were isolated using a different enrichment protocol and discussed in 

more detail in Appendix 2.  



 

	 76 

 Some microorganisms commonly associated with hydrocarbon-impacted 

environments or known to degrade hydrocarbons were below the limit of detection in 

the original production water but appear as isolates or in later enrichments. Oleibacter 

sp., another Gammaproteobacterium, (Oceanospirillales) exhibits n-alkane-

degradation ability (Teramoto et al., 2011). Oleibacter marinus 2O1 was isolated from 

seawater after amendment from crude oil. In the initial round of enrichments with n-

alkane amendments, Oleibacter increased from below the limit of detection (0.0 %) in 

the original water to 2.4 % but is not detected after the final rounds of enrichments 

Roseovarius, an Alphaproteobacterium, has been associated with oil-impacted 

environments and identified to degrade a range of hydrocarbons including crude oil, 

aliphatic hydrocarbons (C10-C35), and polycyclic aromatic hydrocarbons (Harwati et 

al., 2007; Lai et al., 2011; Kimes et al., 2013; Gallego et al., 2014; Kappell et al., 

2014). Roseovarius was not isolated from the production water but did increase from 

below detection (0.0 %) in the original production water to 5.0 % after amendment 

with n-alkanes. Since Roseovarius was not detected in the n-fatty acid-amended 

enrichments we propose that Roseovarius may have a more direct role in the oxidation 

of hydrocarbons.  Shewanella, another Gammaproteobacterium (Alteromonadales), is 

recognized as iron-reducing bacterium (Caccavo et al., 1992; Myers et al., 1994; 

Heidelberg et al., 2002). This problematic microorganism is a facultative anaerobe 

with a versatile metabolism capable of dissimilatory iron reduction, sulfite reduction, 

and iron sulfide production, all of which have been linked to biocorrosion events in 

pipelines or storage tanks (Gerdes et al., 2005; Beech et al., 2010; Lutterbach et al., 

2009). In the original production water Shewanella was below the limit of detection 
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(0.0 %) but increased to 13.5 % after amendment with n-alkanes; Shewanella may play 

a major role as an n-alkane degrader in the production water as well as participate in 

the biocorrosion process. These microorganisms, as well as others in the production 

water, are part of a larger community that contributes to aerobic hydrocarbon 

degradation and may participate in downstream biocorrosion events. 

 A few microorganisms were only detected in the n-fatty acid-amended 

enrichments. These microorganisms, Dethiosulfatibacter (7.3%, Clostridia) and 

Acholeplasma (20.8%, Mollicutes) most likely play a larger role in cycling fatty acids 

and partially oxidized organics in the production water instead of directly oxidizing 

hydrocarbons. We also observed Geotoga (Thermotogae), an anaerobe tolerant to 

some oxygen (Davey et al., 1993), to increase in relative abundance during the initial 

enrichments but this was likely due to enrichment bottles becoming anoxic and 

permitting the growth of surviving anaerobes rather than enriching for n-alkane or n-

fatty acid degraders; Geotoga is not known to degrade n-alkanes but is detected in 

hydrocarbon-impacted environments (Grassia et al., 1996; Magot et al., 2000) and was 

present (9.0%) in the original production water. 

 

 Our hypothesis, that Gammaproteobacteria in the production water degrade n-

alkanes using a monooxygenase such as the alkB or cytochrome p450 systems, has 

been supported by our findings. Considering the enrichment of Halomonas with n-

alkane amendment, the complete oxidation of a wide range of n-alkanes, and the 

detection of an alkB in Halomonas A11A, we report here that Halomonas A11A, 

representing Gammaproteobacteria, degrades n-alkanes in the production water via 
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monooxygenase gene systems. This study is among the first to report Halomonas as a 

hydrocarbonoclastic microorganism capable of degrading short-chain (C5-C10) and 

long-chain (C16) n-alkanes as well as aromatic hydrocarbons like toluene. We propose 

that Halomonas and other Gammaproteobacteria oxidize n-alkanes and other 

hydrocarbons both completely and incompletely in the production water and 

contribute to biocorrosion by supplying corrosive species, such as sulfidogenic and 

fermentative microorganisms, with partially oxidized substrates. Therefore, we 

propose that monitoring the aerobic microbial community in production water tanks 

and other sites where oxygen intrusion is common  is equally as important as 

monitoring for sulfidogenic and fermentative species. Methods to monitor for aerobic 

hydrocarbon degradation could include detection of mono- and dioxygenase gene 

targets (alkB, CYP153, tod, bed, catechol dioxygenases etc.) and/or signature 

metabolites indicative of aerobic hydrocarbon degradation. Further, we propose that 

production water tanks and other production equipment be kept anoxic when possible; 

preventing oxygen exposure to production water will slow down the hydrocarbon 

degradation process and slow the proliferation of sulfide and acid production. 

 

 Many production water tanks experience chronic corrosion enhanced by 

microbial activity. Identifying microorganisms in the tank and how they contribute to 

the corrosion and degrade the hydrocarbons, is valuable to the oil and gas industry and 

for human health. Characterizing the microorganisms and their physiology promotes 

further understanding in methods to mitigate corrosion events and ultimately prevent 

the release of petroleum products. The majority of literature focuses on the impact of 



 

	 79 

sulfur cycling in biocorroded environments but hydrocarbon-degrading and 

heterotrophic microorganisms remain largely uncharacterized in their role in 

biocorrosion. Halomonas spp. may also contribute more directly to biocorrosion 

through cycling sulfur or through surfactant production but this was not the focus of 

this study (Ventosa et al., 1998; Mnif et al., 2009). Further, we only examined one 

isolate; in the production water system the competition with other organisms and 

syntrophic behavior of the microbial community may result in more partially oxidized 

metabolites rather than complete oxidation of the hydrocarbons. Together, the 

detection, isolation, and enrichment of a wide range of bacteria including Gamma-, 

Alpha-, Epsilon-, and Deltaproteobacteria allow us to better understand how they 

function in the production water and continue to contribute knowledge regarding the 

interactions that occur in production water and petroleum systems. Aerobic 

heterotrophs and hydrocarbonoclastic bacteria, lithotrophic sulfide oxidizers, 

chemolithotrophic iron-reducers, and anaerobic sulfate-reducing bacteria are all 

present in the production water; together, under the right conditions, these 

microorganisms may contribute to biocorrosion in the production water tanks and 

other production equipment. 
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Tables 
 

Chapter 2: The role of Gammaproteobacteria in aerobic alkane degradation in oilfield 

production water from the Barnett Shale 

 
Table 1. Hydrocarbon and heterotrophic substrate amendments used for enrichment of 

microorganisms in production water.  

Substrate Volume per 30 ml 
n-alkanes (C5-C10)a 100 µl of 0.1 M solution 
BTEX (benzene, toluene, ethylene, xylene)a 100 µl of 0.1 M solution 
n-fatty acids (C5-C10)b 300 µl of 0.1 M solution 
Oxidized BTEX (p-cresol, phenol, catechol)a 400 µl of 0.1 M solution 
Yeast Extractc,d  
Tryptonec,d 

0.3 ml of 10 mg/ml  
0.2 ml of 20 mg/ml  

aAll hydrocarbon substrates were from Sigma-Aldrich (St. Louis, MO, USA): C5, n-
pentane, anhydrous >99% CAS 109-66-0; C6, n-hexane, anhydrous >99% CAS 110-
54-3; C7 , n-heptane, anhydrous >99% CAS 142-82-5; C8, n-octane, anhydrous >99% 
CAS 111-65-9; C9 n-nonane, anhydrous >99% CAS 111-84-2; C10 n-decane, 
anhydrous >99% CAS 124-18-5; Benzene, for HPLC, 99.9%, CAS 71-43-2; Toluene, 
anhydrous >99.8, CAS 108-88-3, Ethylbenzene, analytical standard, CAS 100-41-4; -
xylene, analytical standard, CAS 95-47-6; p-cresol, >99%, FG CAS 106-44-5; phenol, 
GR for analysis ACS, Reag, CAS 108-95-2; catechol/ 1,2-dihydroxybenzene, 
ReagentPlus, >99%, CAS 120-80-9 
bAll n-fatty acids were Sigma-Aldrich (St. Louis, MO, USA): C5, pentanoic acid, 
analytical standard, CAS 109-52-4; C6, hexanoic acid, >99%, CAS 142-62-1; C7, 
heptanoic acid, GC grade, CAS 111-14-8; C8, octanoic acid, FG grade, CAS 24-07-2; 
C9, nonanoic acid >96% FG grade, CAS 112-05-0; C10, decanoic acid, >98% FCC, FG 
grade, CAS 334-48-5 
cDifco, Detroit, MI, USA 
dPositive control substrates for heterotrophic microorganisms 
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Table 2. Balanced stoichiometry for complete oxidation of various hydrocarbons.  

n-alkane Balanced stoichiometry  Carbon:Oxygen ratio for 
100% theoretical yield 

C5 n-pentane C5H12 + 8O2 à 5CO2 + 6H2O 1:8 
C6 n-hexane C6H14 + 9O2 à 6CO2 + 6H2O 1:9 
C7 n-heptane C7H16 + 11O2 à 7CO2 + 8H2O 1:11 
C8 n-octane C8H18 + 12O2 à 8CO2 + 8H2O 1:12 
C9 n-nonane C9H20 + 14O2 à 9CO2 + 10H2O 1:14 
C10 n-decane C10H22 + 15.5O2 à 10CO2 +11H2O 1:15.5 
C16 n-hexadecane C16H36 + 25O2 à 16CO2 + 18H2O 1:25 
Toluene C7H5CH3 + 10O2 à 8CO2 + 4H2O 1:10 
Stoichiometric calculations made using http://www.webqc.org/balance.php 
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Table 3. Environmental parameters of Barnett Shale production water. Measurements 

were made in-field (pH, oxygen, sulfide, and temperature) or immediately following 

return to the laboratory (sulfate, thiosulfate, salinity, and direct cell counts). 

Water chemistry parameter Result 
pH 6.9 
Oxygen 0 ppm 
Sulfide Undetectable 
Thiosulfate 6.5 mg/L 
Sulfate 150 uM  
Salinity 2.7% 
Temperature 30 °C 
Direct cell counts ≤ 1.68e +6 cells/ mL 
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Table 4. Organic extractions of Barnett Shale production water identifying putative 

polar metabolites, intermediates, and other compounds. Production water extractions 

were concentrated, derivatized, and analyzed by Gas Chromatography-Mass 

Spectroscopy (GC-MS). Metabolite identities were made by comparing GC retention 

times and fragmentation by MS profiles of commercially available standards. 

Class Species detected in production water 
n-alkane C5-C12 
Iso-alkane C7-C17 
n-fatty acid C4-C6 
Alkanoic acids C5-C10, C16, C18 and unsaturated C18 
Aromatic  Alkylated benzene, toluene, alkylated toluene, xylene, alkylated  

xylene, phenol, alkylated phenol, p-cresol, o-cresol, benzoic  
acid, benzenediol 

Polyaromatic Naphthalene, alkylated naphthalene 
Cycloalkane Alkylated cyclohexane 
Alcohol Cyclohexanol 
α-hydroxy acids Glycolic acid, lactic acid, hydroxypropanoic acid, hydroxybutanoic  

acid 
Dioic acids Succinic acid, pentanedioic acid, hexanedioic acid 
Other acids 2-butoxy acetic acid 
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Table 5. Summary of the dominant classes and corresponding genera of bacteria 

detected via 16S rRNA sequencing of original Barnett Shale production water. 

Class Relative 
abundance (%) 

Genus* Relative 
abundance (%) 

Deltaproteobacteria 41.0 Desulfotignum 4.6 
  Desulfobacter 29.1 
  Desulfuromonas 1.1 
    
Gammaproteobacteria 10.5 Halomonas 2.2 
  Marinobacterium 7.4 
    
Bacilli 2.0 Bacillus 1.1 
    
Clostridia 10.2 Halanaerobium 2.4 
  Dehalobacterium 4.8 
    
Synergistia 5.3 Dethiosulfovibrionaceae 3.3 
    
Thermotogae 11.4 Geotoga 9.0 
*Only Genera with a relative abundance of >1% are listed 
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Table 6. Aerobic enrichment of microorganisms in Barnett Shale production water 

amended with hydrocarbon and heterotrophic substrates in Widdel’s medium. Growth is 

indicated by (+/-), where (+) indicates growth, estimated by visual turbidity after 3 

transfers, (-) indicates no growth after 3 transfers. All enrichments were prepared in 

triplicate in aerobic 160 mL sealed serum bottles. Unamended bottles, which consisted 

of the medium and inoculum but without the substrate, were used to check for 

endogenous respiration. Sterile heat-killed bottles were used as negative controls. 

Bottles were incubated at 25 °C. 

Substrate/ Amendment Growth 
Unamended Control - 

Sterile heat-killed control - 

n-alkanes (C5-C10) + 
BTEX (benzene, toluene, ethylene, xylene) - 
n-fatty acids (C5-C10) + 
Oxidized BTEX (p-cresol, phenol, catechol) - 
Yeast Extract & Tryptone + 
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Table 7. Summary of 16S rRNA sequence libraries from the original Barnett Shale 

production water and after the third round of the initial and progressive enrichments 

amended with n-alkanes and n-fatty acids. 

  Relative abundance (%) 
   n-alkane 

amendment 
n-fatty acid 
amedment 

Class Genus* Original  Initial  Progressiv
e  

Initial  Progressive  

Alphaproteobacteria Thalassospira 0.2 0.4 0.2 11.6 0.0 
 Roseovarius 0.0 0.3 5.0 0.1 0.0 
       
Deltaproteobacteria Desulfotignum 4.6 0.0 0.0 0.2 0.0 
 Desulfobacter 29.1 0.0 0.0 0.7 0.0 
       
Epsilonproteobacteria Arcobacter 0.7 9.9 0.0 2.0 0.0 
       
Gammaproteobacteria Shewanella 0.0 0.5 13.5 1.5 0.5 
 Halomonas 2.2 0.3 75.9 0.3 75.1 
 Marinobacterium 7.4 0.9 0.0 1.0 0.0 
 Marinobacter 0.1 0.4 2.4 0.1 2.4 
 Oleibacter 0.0 2.5 0.0 4.3 0.0 
       
Clostridia Dethiosulfatibacter 0.6 0.0 0.0 0.3 7.3 
       
Thermotogae Geotoga 9.0 64.5 9.2 63.3 9.2 
       
Mollicutes Acholeplasma ND 0.0 0.0 0.2 20.8 
* Only genera that attained a relative abundance > 1% in either the original production 
water or the final round of enrichments are shown.  
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Table 8. Evaluation of Halomonas A11A genome for genes involved in the aerobic 

degradation of alkanes and aromatics.  

Class of 
Enzyme 

Enzyme 
Designation 

Enzyme 
Commission # 

Gene Halomonas 
A11A 

Monooxygenase   Alkane monooxygenase 
  

1.14.15.3 alkB Yes 

Cytochrome p450  
  

1.14.15.3 CYP 153 ND 

Alkane monooxygenase 1.14.13.- almA ND 
 
Alkane monooxygenase 
 

 
- 

 
ladA 

 
ND 

Xylene monooxygenase 1.14.13.- xylMA ND 

Phenol 2-monooxygenase 
 

1.14.13.7 - Yes 

Dioxygenase 
 

Benzene dioxygenase 1.14.12.3 bed 
 

Yes 

Toluene dioxygenase 
 

1.14.12.11 tod Yes 

Ethylbenzene dioxygenase 1.13.12.- etbA ND 

Naphthalene 1,2-dioxygenase 1.14.12.12 nah,	ndo,		
nbz,	dnt 

ND 

 
 
 
 
 
Other 

Phenol dioxygenase 1.14.13.7 - Yes 

Catechol 1,2-dioxygenase 1.13.11.1 cat ND 

Catechol 2,3-dioxygenase 1.13.11.2 dmp, xyl, cat  Yes 

Phenol hydroxylase 1.14.13.- dmp, pox Yes 
ND, not detected 
Yes: Genes detected in A11A genome through the MGMIC pipeline housing the 
KEGG KOBAS database using the default cutoffs: E-value <10-5 and rank ≤5 (Xei et 
al., 2011) 
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Table 9. Range of hydrocarbons oxidized by Halomonas A11A. Oxygen (µM) 

consumption during hydrocarbon oxidation (“Experimental”) is compared to the 

consumption based on complete oxidation (“Theoretical”, see Table 2). Experimental 

values were derived from single incubation bottles inoculated with C5 n-pentane-

grown inoculum cells amended with nearly-equal carbon concentrations as shown in 

Figures 6 & 7. 

Hydrocarbon 
 

Experimental: 
µM hydrocarbon  

Theoretical: µM O2  
for 100% oxidation 

Experimental: µM 
of O2 consumed 

Percent of 
theoretical 
consumed 

C5 n-pentane 40 320 243.8 76.2 
C6 n-hexane 36 324 266.9 82.4 
C7 n-heptane 32 352 327.1 92.9 
C8 n-octane 28 336 165.1 49.1 
C9 n-nonane 24 336 397.1 118.2 
C10 n-decane 20 310 210.5 67.9 
C16 n-hexadecane 12 300 169.7 56.6 
Toluene 32 320 207.5 64.9 
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Table 10. Comparison of oxygen consumed for n-pentane versus n-decane grown 

Halomonas A11A cells. Experimental values were derived from averaged triplicate 

incubations for C5 n-pentane-grown or C10 n-decane-grown inoculum cells amended 

with 20 µM of the hydrocarbon. 

Hydrocarbon 
 

Experimental: µM 
hydrocarbon  

Theoretical: µM O2  
for 100% oxidation 

Experimental: µM of 
O2 consumed 

Percent of 
theoretical 
consumed 

C5 n-pentane grown cells (Figure 8)   
C5 n-pentane 20 160 151.9 ± 19.4 94.5 
C10 n-decane 20 310 187.9 ± 9.6 60.6 

C5 n-pentane grown cells (Figure 9)   
C16 n-hexadecane 20 500 361.3 ± 17.5 72.3 
Toluene 20 200 74.1 ± 13.8 37.0 

C10 n-decane grown cells (Figure 10)   
C5 n-pentane 20 160 158.8 ± 20.1 99.2 
C10 n-decane 20 310 323.6 ± 17.9 104.4 
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Figures 
 

Chapter 2: The role of Gammaproteobacteria in aerobic alkane degradation in oilfield 

production water from the Barnett Shale 

 

Figure 1: Diagram of enrichment design. The original production water was subject to 

an initial round of amendment with n-alkanes (C5-C10) or n-fatty acids (C5-C10) 

conducted in triplicate and transferred three times. After initial amendment, 

progressive amendments with n-alkanes or n-fatty acids were made by serial dilution 

to 10-4 and transferred three times. Isolates were obtained from the 10-4 dilution of 

each n-alkane transfer and from the final transfer of n-fatty acids (bolded). 
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1b.  
Initial n-fatty 
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2a. Progressive n-alkane amendment  
  

       Dilutions 
Transfer 1: 10-1 10-2 10-3 10-4 
Transfer 2: 10-1 10-2 10-3 10-4 
Transfer 3: 10-1 10-2 10-3 10-4 

 

2b. Progressive n-fatty acid amendment  
  

       Dilutions 
Transfer 1: 10-1 10-2 10-3 10-4 
Transfer 2: 10-1 10-2 10-3 10-4 
Transfer 3: 10-1 10-2 10-3 10-4 
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Figure 2. 16S sequence libraries representing the relative abundance (%) of different 

classes of bacteria in the initial and progressive rounds (“transfer”) of enrichment 

amended with n-alkanes (C5-C10) compared to the corresponding unamended transfer. 

Each transfer is represented by the 10-4 dilution. 
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Figure 3. 16S sequence libraries representing the relative abundance (%) of different 

classes of bacteria in the initial and progressive rounds (“transfer”) of enrichment 

amended with n-fatty acids (C5-C10) compared to the corresponding unamended 

transfer. Each transfer is represented by the 10-4 dilution. 
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Figure 4. Phylogenetic tree of Halomonas, featuring strain A11A (in bold) (1432 bp), 

and selected other hydrocarbon-degrading Gammaproteobacteria. The phylogenetic 

relationship is based on multiple alignment (Clustal W) of near-complete (≥ 1411 bp) 
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16S rRNA gene sequences using the neighbor-joining algorithm. Bootstrap values (≥ 

50 %) based on 1000 replications are shown on nodes. The values represent bootstrap 

values for the topologies of maximum-likelihood and neighbor-joining trees, 

respectively. Roseovarius pacificus 81-2 (Alphaproteobacterium) was used as the 

outgroup. Bar, 0.06 substitutions per nucleotide position.  
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Figure 5. Fatty acid metabolism in Halomonas A11A.

 

Enzymes inferred from genes present in the Halomonas A11A genome are indicated in 
green. 
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Figure 6. Long chain (C13-C22) fatty acid metabolism in Halomonas A11A. 

 
Enzymes inferred from genes present in the Halomonas A11A genome are indicated in 
green. 
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Figure 7. Alkane metabolism in Halomonas A11A.

 

Enzymes inferred from genes present in the Halomonas A11A genome are indicated in 
green. 
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Figure 8. Benzene degradation in Halomonas A11A.

 

Enzymes inferred from genes present in the Halomonas A11A genome are indicated in 
green. 
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Figure 9. Toluene degradation in Halomonas A11A.

 

Enzymes inferred from genes present in the Halomonas A11A genome are indicated in 
green. 
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Figure 10. Ethylbenzene degradation in Halomonas A11A. 

 
Enzymes inferred from genes present in the Halomonas A11A genome are indicated in 
green. 
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Figure 11. Xylene degradation in Halomonas A11A. 

 

 
Enzymes inferred from genes present in the Halomonas A11A genome are indicated in 
green. 
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Figure 12. Effect of 2,2,4,4,6,8,8-heptamethylnonane (HMN) as a carrier for n-alkanes on the 

total consumption of oxygen (µM). Triplicate replicates containing either n-pentane, 

(diamonds) n-pentane plus HMN (squares), or HMN (triangles) were inoculated with 10% 

(v/v) of Halomonas A11A at 0.5 OD610. A sterile heat-killed control and an unamended bottle, 

which consisted of the medium and inoculum but without the substrate, were used to compare 

the endogenous respiration. Each bottle was incubated at 25 °C. Bars represent one standard 

deviation of the average from the triplicate replicates. 
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Figure 13. Rate of oxygen uptake (µM/min) by Halomonas A11A when grown with 

various hydrocarbons. Widdel’s medium with hydrocarbon substrates at equal carbon 

number concentration served as the sole carbon source for cell growth. Bottles were 

inoculated with 0.5 OD610 10% (v/v) of Halomonas A11A previously grown on 20 µM 

C5 n-pentane. A sterile heat-killed control and an unamended bottle with 

heptamethylnonane (HMN) served as controls. Each bottle was incubated at 25 °C.  
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Figure 14. Total oxygen consumption (µM) by Halomonas A11A coupled to 

hydrocarbon oxidation. Widdel’s medium with hydrocarbon substrates at equal carbon 

number concentration served as the sole carbon source for cell growth. Bottles were 

inoculated with 0.5 OD610 10% (v/v) of Halomonas A11A previously grown on 20 µM 

C5 n-pentane. A sterile heat-killed control and an unamended bottle with 

heptamethylnonane (HMN) served as controls. Each bottle was incubated at 25 °C.  
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Figure 15. Total oxygen consumption (µM) coupled to n-pentane (diamonds) and n-decane 

(squares) oxidation by n-pentane-grown Halomonas A11A cells. Widdel’s medium with 

20µM n-pentane and 20µM n-decane served as the sole carbon source for cell growth. 

Triplicate replicates were inoculated with 0.5 OD610 10% (v/v) of Halomonas A11A. A sterile 

heat-killed control and an unamended bottle with heptamethylnonane (HMN) (triangles) 

served as controls. Each bottle was incubated at 25 °C. Bars represent one standard deviation 

of the average from the triplicate replicates. 
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Figure 16. Total oxygen consumption (µM) coupled to n-hexadecane (diamonds) and toluene 

(squares) by n-pentane-grown Halomonas A11A cells. Widdel’s medium with 20µM n-

hexadecane and 20µM toluene served as the sole carbon source for cell growth. Triplicate 

replicates were inoculated with 0.5 OD610 10% (v/v) of Halomonas A11A. A sterile heat-killed 

control and an unamended bottle with heptamethylnonane (HMN) (triangles) served as 

controls. Each bottle was incubated at 25 °C. Bars represent one standard deviation of the 

average from the triplicate replicates. 
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Figure 17. Total oxygen consumption (µM) coupled to n-pentane (diamonds) and n-decane 

(squares) oxidation by n-decane-grown by Halomonas A11A cells. Widdel’s medium with 

20µM n-pentane and 20µM n-decane served as the sole carbon source for cell growth. 

Triplicate replicates were inoculated with 0.5 OD610 10% (v/v) of Halomonas A11A. A sterile 

heat-killed control and an unamended bottle with heptamethylnonane (HMN) (triangles) 

served as controls. Each bottle was incubated at 25 °C. Bars represent one standard deviation 

of the average from the triplicate replicates. 
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Appendix 1:  

Supplemental Tables for Chapter 2: The role of Gammaproteobacteria in aerobic 

alkane degradation in oilfield production water from the Barnett Shale 

 

Table A1. Additional progressive aerobic enrichment amended with n-alkanes (C5-

C10) and n-fatty acids (C5-C10) in Widdel’s medium. (1) First progressive transfer (2) 

second progressive transfer (3) third progressive transfer. Growth is indicated by (+/-), 

where (+) indicates minimal growth and (++++) indicates most turbid growth, 

estimated by visual turbidity at each transfer, (-) indicates no growth. All enrichments 

were prepared in triplicate (A, B, C). All amended bottles received a final 

concentration of 3.34 mM n-alkanes (C5-C10) or 10 mM n-fatty acids (C5-C10) 

respectively. All bottles were incubated at 25 °C for up to two weeks. Sterile heat-

killed bottles and unamended bottles, which consisted of the medium and inoculum 

but without the substrate were used as controls. 
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1. First progressive transfer 
n-fatty acids (C5-C10) n-alkanes (C5-C10) 

Dilution A1 B1 C1  A B C 
10-1 ++++ +++ ++++ 10-1 ++ +++ +++ 
10-2 ++++ + ++ 10-2 + ++ ++ 
10-3 ++ + ++ 10-3 + + + 
10-4 ++ + ++++ 10-4 - + + 

2. Second progressive transfer 
n-fatty acids (C5-C10) n-alkanes (C5-C10) 

Dilution A1 B1 C1  A B C 
10-1 ++++ +++ ++++ 10-1 ++ ++ ++ 
10-2 ++++ + ++ 10-2 + + + 
10-3 ++ + ++ 10-3 + + + 
10-4 ++ + ++++ 10-4 - - + 

3. Third progressive transfer 
n-fatty acids (C5-C10) n-alkanes (C5-C10) 

Dilution A1 B1 C1  A B C 
10-1 ++++ +++ ++++ 10-1 ++ ++ ++ 
10-2 ++++ +++ ++++ 10-2 + ++ ++ 
10-3 ++++ ++ +++ 10-3 + + + 
10-4 ++++ ++ ++++ 10-4 - + + 

Unamended controls were prepared in triplicate for each transfer by inoculating medium 
with no added substrate. Growth occurring in the unamended controls never scored more 
than (++) and was usually (+) or (-). 
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Table A2. Select metabolic pathways and genes of interest in the Halomonas A11A 

genome. Detection of annotated gene sequences in Halomonas A11A by KEGG 

KOBAS using the default cutoffs: E-value <10-5 and rank ≤5, and illustrated using 

KEGG Mapper v. 2.6 (http://www.genome.jp/kegg/mapper.html). 

Metabolic pathway Function/description Enzyme 
Commission # 

Halomonas 
A11A 

Fatty acid  Long chain fatty acid CoA 
ligase 

6.2.1.3 Yes 

 acyl-CoA dehydrogenase 1.3.3.6 No 
 acyl-CoA dehydrogenase 1.3.8.7 Yes 
 acyl-CoA dehydrogenase 1.3.99.- Yes 
 acyl-CoA dehydrogenase 1.3.8.8 Yes 
 acyl-CoA dehydrogenase 1.3.8.9 No 
 enoyl-CoA hydratase 4.2.1.17 Yes 
 enoyl-CoA hydratase 4.2.1.74 No 
 acyl-CoA dehydrogenase 1.1.1.35 Yes 
 acyl-CoA dehydrogenase 1.1.1.211 No 
 acetyl-CoA acyltransferase 2.3.1.16 Yes 
 glutaryl-CoA dehydrogenase 1.3.8.6 Yes 
 acetyl-CoA acyltransferase 2.3.1.9 Yes 
 ligase 6.2.1.6 No 
Long chain fatty acid Acyltransferase 6.2.1.20 No 
(C13-C22) CoA dehydrogenase 5.3.3.8 Yes 
 CoA dehydrogenase 5.1.2.3 Yes 
Alkane  Alkane monooxygenase 1.14.15.3 Yes 
 Ferredoxin reductase 1.18.1.3 No 
 Rubredoxin reductase 1.18.1.4 No 
 Rubredoxin reductase 1.18.1.1 Yes 
 Alcohol dehydrogenase 1.1.1.1 Yes 
 Oxidoreductase 1.1.99.20 No 
 Aldehyde dehydrogenase 1.2.1.3 Yes 
 Oxidoreductase 1.2.5.2 No 
 Alkane monooxygenase 1.14.15.3 Yes 
Aromatic degradation Benzene/toluene dioxygenase 1.14.12.3 Yes 
 phenol hydroxylase 1.14.13.- Yes 
 dehydrogenase 1.3.1.19 No 
 Toluene monooxygenase 1.14.13.- No 
 Phenol 2-monooxygenase 1.14.13.7 Yes 
 Xylene monooxygenase 1.14.13.- No 
 Aryl-alcohol dehydrogenase 1.1.1.90 Yes  
 Hydroxybenzaldehyde 

dehydrogenase 
1.2.1.64 No 
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 Hydroxybenzaldehyde 
dehydrogenase 

1.2.1.7 No 

 Hydroxybenzaldehyde 
dehydrogenase 

1.2.1.28 No 

 Hydroxybenzyl-alcohol 
dehydrogenase 

1.1.1.97 No 

 4-cresol dehydrogenase 1.17.99.1 Yes 
 4-hydroxybenzaldehyde 

dehydrogenase 
1.2.1.96 No 

 Benzylsuccinate synthase 4.1.99.11 No 
 Benzylsuccinate CoA-

transferase 
2.8.3.15 No 

 Benzylsuccinyl-CoA 
dehydrogenase 

1.3.8.3 No 

 Catechol 1,2-dioxygenase 1.13.11.1 No 
 Catechol 2,3-dioxygenase 1.13.11.2 Yes 
 Muconate cycloisomerase 5.5.1.1 Yes 
 Muconolactone D-isomerase 5.3.3.4 No 
 3-oxoadipate enol-lactonase 3.1.1.24 Yes 
 3-oxoadipate CoA-transferase 2.8.3.6 No 
 Acetyl-CoA transferase 2.3.1.16 Yes 
 3-oxoadipyl-CoA thiolase 2.3.1.174 Yes 
 2-hydroxymuconate-

semialdehyde hydrolase 
3.7.1.9 Yes 

 2-keto-4-pentenoate hydratase 4.2.1.80 Yes 
 4-hydroxy 2oxovalerate 

aldolase 
4.1.3.39 Yes 

 Acetaldehyde dehydrogenase 1.2.1.10 Yes 
 Procatechuate 3,4-

dioxygenase 
1.13.11.3 Yes 

 3-carboxy-cis,cis-muconate 
cycloisomerase 

5.5.1.2 Yes 

 4-carboxymuconolactone 
decarboxylase 

4.1.1.44 Yes 

 Ethylbenzene hydroxylase 1.17.99.2 No 
 Naphthalene 1,2-dioxygenase 1.14.12.12 No 
 Phenylethanol dehydrogenase 1.1.1.311 No 
 Acetophenone carboxylase 6.4.1.8 No 
 Ethylbenzene dioxygenase 1.14.12.- No 
 Cis-dihydroethylcatechol 

dehydrogenase 
1.3.1.66 No 

 2-hydroxy-6-oxo-octa-2,4-
dienoate hydrolase 

3.7.1.- Yes 

Positive detection of enzymes in Halomonas A11A genome indicated by “Yes” in 
table. 
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Table A3. Molar calculations of hydrocarbon oxidation. (A) Amount of hydrocarbons 

used. (B) Total oxygen consumed in experimental bottles at peak oxidation rate. (C) 

Total oxygen rate in unamended bottles at peak oxidation rate. (D) Difference in total 

oxygen consumed between experimental and unamended bottles at time of peak 

oxidation rate. (E) Theoretical concentration of oxygen required to (100%) completely 

oxidize the hydrocarbon in the experimental bottle. (F) Percent of theoretical 

calculated by (D)/(E). 

 Experimental (µM) Theoretical 
 A B C D E F 

Hydrocarbon µM Total O2 Unamended Difference 100% % 
n-pentane C5 20 295 143 152 160 95 
n-decane C10 20 331 143 188 310 60.6 
n-hexadecane C16 20 276 140 361.1 500 72.3 
toluene C7H5CH3 20 261 187 74.1 200 37.0 
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Appendix 1:  

Supplemental figures for Chapter 2: The role of Gammaproteobacteria in aerobic 

alkane degradation in oilfield production water from the Barnett Shale 

 
 

Figure A1. 16S sequence libraries representing the relative abundance (%) of different 

genera of bacteria in the initial and progressive rounds (“transfer”) of enrichment 

amended with n-alkanes (C5-C10) compared to the corresponding unamended transfer. 

Each transfer is represented by the 10-4 dilution. The relative abundance of 

Desulfobacter is less than 1% in the enriched cultures the purple color seen in high 

relative abundance in lanes 2-22 refers to Halomonas. 

  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Dethiosulfatibacter  Geotoga 

Roseovarius 

Oceanobacter 

Halomonas Thalassospira 

Arcobacter 

Marinobacter 

Dethiosulfovibrio 

Shewanella 



 

	145 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1s
t  tr

an
sf

er
 

(n
-a
lk
an
es
) 

In
iti

al
 

en
ric
hm
en
t 

1s
t  tr

an
sf

er
 

un
am
en
de
d 

2n
d  tr

an
sf

er
 

un
am
en
de
d 

2n
d  tr

an
sf

er
 

(n
-a
lk
an
es
) 

3r
d  tr

an
sf

er
 

un
am
en
de
d 

3r
d  tr

an
sf

er
 

(n
-a
lk
an
es
) 



 

	146 

Figure A2. 16S sequence libraries representing the relative abundance (%) of different 

genera of bacteria in the initial and progressive rounds (“transfer”) of enrichment 

amended with n-fatty acids (C5-C10) compared to the corresponding unamended transfer. 

Each transfer is represented by the 10-4 dilution. The relative abundance of 

Desulfobacter is less than 1% in the enriched cultures, the purple color seen in high 

relative abundance in lanes 2-22 refers to Halomonas. 

  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Dethiosulfatibacter  Geotoga 

Roseovarius 

Oceanobacter 

Halomonas Thalassospira 

Arcobacter 

Marinobacter 

Dethiosulfovibrio 

Shewanella 



 

	147 

 
 
 
 
 
 
 

In
iti

al
 

en
ric
hm
en
t 

1s
t  tr
an
sf
er

 
 (n

-f
at

ty
 a

ci
ds

) 

1s
t  tr

an
sf

er
 

un
am
en
de
d 

2n
d  tr

an
sf

er
 

un
am
en
de
d 

2n
d  tr

an
sf

er
  

(n
-f

at
ty

 a
ci

ds
) 

3r
d  tr
an
sf
er

 
un
am
en
de
d 

3r
d  tr

an
sf

er
  

(n
-fa

tty
 a

ci
ds

) 



 

	148 

  
Figure A3. Effect of different inoculum sizes on oxygen uptake by Halomonas A11A. 

Widdel’s medium with C5-C10 n-alkane mix at 0.334 µM equimolar concentration served 

as the sole carbon source for cell growth. Bottles were inoculated with 10% (v/v) or 5% 

(v/v) of Halomonas A11A grown on the n-alkane mix at 0.5 OD610. Sterile heat-killed 

and unamended bottles, which consisted of the medium and inoculum but without the 

substrate, was used to check for endogenous respiration. All bottles were incubated at 25 

°C. 
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Figure A4. Rate of oxygen uptake (µM/min) of n-pentane and n-decane by n-pentane-

grown Halomonas A11A cells. Widdel’s medium with 20 µM n-pentane and 200 nM 

n-decane served as the sole carbon source for cell growth. Triplicate replicates were 

inoculated with 10% (v/v) of Halomonas A11A at 0.5 OD610. A sterile heat-killed 

control and an unamended bottle with heptamethylnonane, which consisted of the 

medium and inoculum but without the substrate, were used to compare the endogenous 

respiration. Bars represent one standard deviation of the average from the triplicate 

replicates. Each bottle was incubated at 25 °C.  
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Figure A5. Rate of oxygen uptake (µM/min) of n-pentane and n-decane by n-decane-

grown Halomonas A11A cells. Widdel’s medium with 200 nM n-pentane and 200 nM 

n-decane served as the sole carbon source for cell growth. Triplicate replicates were 

inoculated with 10% (v/v) of Halomonas A11A at 0.5 OD610. A sterile heat-killed 

control and an unamended bottle with heptamethylnonane, which consisted of the 

medium and inoculum but without the substrate, were used to compare the endogenous 

respiration. Bars represent one standard deviation of the average from the triplicate 

replicates. Each bottle was incubated at 25 °C.  
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Figure A6. Rate of oxygen uptake (µM/min) of n-hexadecane and toluene by n-

pentane-grown Halomonas A11A cells. Widdel’s medium with 200 nM n-hexadecane 

and 200 nM toluene served as the sole carbon source for cell growth. Triplicate 

replicates were inoculated with 10% (v/v) of Halomonas A11A at 0.5 OD610. A sterile 

heat-killed control and an unamended bottle with heptamethylnonane, which consisted 

of the medium and inoculum but without the substrate, were used to compare the 

endogenous respiration. Bars represent one standard deviation of the average from the 

triplicate replicates. Each bottle was incubated at 25 °C.  
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Appendix 2: 

Isolation of the dominant cultivable aerobic heterotrophic bacteria from oil field 

production water produced from the Barnett Shale 

Abstract 

 Aerobic heterotrophic microorganisms are commonly found in oil production 

waters but their contribution to biocorrosion is largely unknown. This study aimed to 

isolate aerobic heterotrophic bacteria from a petroleum production water tank and 

determine their potential to degrade petroleum hydrocarbons. Partial oxidation of 

hydrocarbons by aerobic bacteria could provide nutrients to foster the activity of 

sulfate-reducing and other biocorrosive microorganisms. Fifteen isolates obtained from 

heterotrophic amendment of production water were identified via 16S rRNA ribosomal 

gene sequencing as Arcobacter (7 isolates), Thalassospira (5), Marinobacterium (2) 

and Salinicola (1). One strain each of Arcobacter and Marinobacterium were selected 

for hydrocarbon degradation testing as representatives of Epsilonproteobacteria and 

Gammaproteobacteria, respectively. The Marinobacterium strain showed moderate 

growth with C5-C10, C16 n-alkanes and strong growth with C5-C10 n-fatty acids as the 

sole carbon source. The Arcobacter strain was unable to grow on any of the 

hydrocarbon substrates above but Arcobacter species are noted for contributing to 

biocorrosion by the oxidation of sulfide. Other studies have found that Thalassospira 

and Salinicola strains can degrade polyaromatic hydrocarbons. The microorganisms 

isolated in this study serve as representatives of the aerobic heterotrophic microbial 

community in the petroleum production water and indicate that aerobic heterotrophic 
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bacteria could indirectly contribute to biocorrosion through the partial oxidation of 

hydrocarbons and sulfide oxidation.  
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1.0 Introduction 

 Petroleum production facilities play host to a wide variety of microorganisms. The 

functions of these resident microorganisms can be deleterious: contributing to direct 

oxidation of steel and sulfide-driven MIC, reservoir souring, or hydrocarbon degradation 

leading to poor product quality (Head et al., 2003; Duncan et al., 2009). While these 

problems plague petroleum production and cost the industry millions of dollars annually, 

efforts to monitor and predict biocorrosion are met with little success. This is likely due to 

the limited understanding of the mechanisms of biocorrosion and the microbial 

communities that contribute to it (Hamilton et al., 2003; Little et al., 2006; Vigneron et 

al., 2016). Thus, research on the microbial populations associated with petroleum-

impacted environments is invaluable. Sulfidogenic bacteria, iron-oxidizing and iron-

reducing bacteria, other metal-reducing bacteria, and fermentative microorganisms are 

often characteristic of biocorroded systems but a significant portion of the microbial 

community also consists of seemingly innocuous heterotrophs (Dihn et al., 2004; Suflita 

et al., 2008; Stevenson et al., 2011; Vigernon et al., 2016).  

 The microbial physiologies represented in petroleum-impacted ecosystems are as 

diverse as the environments they inhabit. Petroleum and oil reservoirs are characterized as 

strictly anoxic environments despite playing host to a wide variety of microaerophilic and 

aerobic microorganisms as well as the facultative and obligate anaerobes (Adkins et al. 

1992; Voordouw et al., 1996; Telang et al., 1997; Mand et al., 2017). The source of these 

aerobic microorganisms is not well understood but their involvement in hydrocarbon 

degradation and biocorrosion could provide clues about the overall microbial ecology of 

oily ecosystems. The role of the general heterotrophs in production water is understood to 
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cycle carbon, including the petroleum hydrocarbon substrates, but how these 

heterotrophic organisms contribute to corrosion is largely unknown and partly ignored 

(Abed et al., 2005).  

 The objective of this study was to use cultivation based methods to isolate some of 

the dominant cultivatable aerobic heterotrophic microorganisms from petroleum 

production water and to elucidate their role in the production water, especially with 

respect to biocorrosion. Isolates obtained from petroleum production water from a water 

storage tank producing from the Barnett Shale were isolated using heterotrophic media 

and identified via 16S rRNA gene sequences. Hydrocarbon degradation potential was 

examined qualitatively using liquid and solid medium amended with a range of 

hydrocarbons found in the production water. Comparisons of these isolates to known 

petroleum-related microbial communities can provide insight into what roles these 

cultivatable microorganisms may play in the production water microbial community. 

 

2.0 Materials and Methods 

2.1 Sample collection from Barnett Shale production water tank 

 Production water produced from the Barnett Shale was obtained from a 

production water tank in Dec. 2014 from top-water and middle-water levels. Production 

water samples were obtained by lowering sterilized 1 L bottles through the thief hatch; 

bottles were sealed anaerobically once samples were collected. On-site measurements 

of oxygen, pH, temperature, thiosulfate and sulfide were taken using methods outlined 

in Chapter 2. Measurements of NaCl via Cl- anions were estimated in the laboratory 

according to methods outlined in Chapter 2. Samples were filtered through a 0.45 µm 
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cellulose nitrate analytical test filter funnel (145-2045, Fisher Scientific, Fair Lawn, NJ, 

USA) within 6 hours of sampling to collect bacterial cells for isolation and 

identification. Filters were preserved by storing at 4° C until January 2015. 

 

2.2 Isolation of aerobic heterotrophic bacteria from production water 

 Filtered cells from the top-water samples were inoculated into 2 g/L glucose 

broth, Difco marine broth (2216 Difco, Detroit, MI, USA), marine broth with added 1% 

yeast extract, or marine broth with added 1% yeast extract and 5% tryptone, all 

prepared in deionized water (dH2O). All cultures were incubated for 48 hours. Turbid 

cultures were streaked onto marine broth with added 1.5% agar (MA) plates amended 

with substrates (Table 6); top-level filtered water was used rather than dH2O to 

replicate the native environment. Plates were incubated at 27° C for 72 hours. Plates 

were checked for growth and colony morphology; two or three isolated viable colonies 

were chosen from each plate and streaked onto marine agar three times for purity. 

Marine agar plates were incubated at 27° C for 1 week. Cultures were maintained on 

marine agar.   

 

2.3 Analysis of isolate DNA  

 Fifteen isolated colonies of dominant aerobic heterotrophic bacteria were 

selected for DNA extraction and downstream molecular analysis for identification 

based on 16S rRNA gene sequences. Cultures were inoculated in marine broth and 

incubated at 27°C with 100 rpm shaking for 1 week or until turbid. Following 

incubation, 1 mL of the culture was transferred to a sterile screw-cap tube, containing 
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sterile 50% glycerol, reaching a final concentration equaling 25% (v/v), and stored at -

80° C for long-term preservation. Another 1 mL of the culture was transferred to a 1.5 

mL microcentrifuge tube and centrifuged at 6000 x g for 5 minutes to pellet the cells. 

The supernatant was removed without dislodging the pellet then centrifuged again for 

30 seconds at 6000 x g. The remaining supernatant was discarded and 50 µL DNAzol 

(DN127, Molecular Research Center, Cincinnati, OH, USA) was added to lyse the cells 

and preserve DNA. Following lysis with DNAzol and vortexing, 100 µL nuclease-free 

H2O (Promega, Madison, WI) was added and the lysates were diluted 1:0 and 1:100 in 

nuclease-free H2O and stored at -20° C to be used for 16S rRNA gene amplification. 

 Samples were analyzed via 16S rRNA gene sequencing of PCR products 

amplified using the primers and following the protocol outlined by Muyzer et al. 

(Muyzer et al., 1993). Briefly, 1:100 diluted isolate DNA was amplified using 0.5 µL of 

each forward and reverse primer: GM5F (5 pmol/mcl) and D907R (5 pmol/mcl) to 

obtain an approximately 550 bp product. PCR amplification was performed in Techne 

Prime Thermal Cycler (Techne, Cambridge, United Kingdom) using the DGGE 

Touchdown protocol (Muyzer et al., 1993). In brief, DNA was incubated for 5 minutes 

at 94° C; the hot start technique was used to minimize nonspecific annealing and the 

annealing temperature was set initially at 65° C, then decreased by 1° C every 2 cycles 

until  reaching touchdown temperature at 55° C (e.g. 20 cycles) and then repeated 

fifteen times at 55° C for a total of 35 cycles. A final primer extension step occurred at 

72° C for 3 minutes. Products were visualized via UV-illumination after gel 

electrophoresis in 1% agarose (Thermo Fisher Scientific, Fair Lawn, NJ, USA) with 0.5 

TBE (Tris/Borate/EDTA) Buffer stained with 0.1% SybrSafe (Invitrogen, Carlsbad, 
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California, USA) and assessed against the GeneRuler 1 kb DNA ladder (Thermo Fisher 

Scientific, Fair Lawn, NJ, USA). Desired PCR products were purified for DNA 

sequencing using Exo-SAP IT (USB Co., Cleveland, OH, USA) by transferring 5 µL of 

the PCR product to a sterile PCR tube and adding 1.5 µL ExoSAP-IT reagent and 

cycled on the Techne Prime Thermal Cycler according to manufacturer’s instructions. 

Cleaned and amplified samples were submitted for sequencing by OMRF (Oklahoma 

Medical Research Foundation, Oklahoma City, OK). Bacterial isolate 16S rRNA gene 

sequences were manually trimmed for quality using CodonCode Aligner version 5.1.5 

(CodonCode Corporation, Centerville, MA, USA). The approximately 500 bp 

sequences were compared to existing DNA sequences in GenBank via BLASTN and 

RDP (http://rdp.cme.msu.edu/, Ribosomal Database Project)  (Larsen et al., 1993; 

Altschul et al., 1997; Benson et al., 1999) (Table A7).  

 

2.4 Screening of hydrocarbon degradation ability 

 Two isolates were screened for hydrocarbon degradation potential. Arcobacter 

1A and Marinobacterium 7C isolates (Table A7) were inoculated into triplicate 30 mL 

liquid Widdel’s medium, as prepared previously in Chapter 2, and amended with the 

C5-C10 n-alkane mix, individual C5-C10, C16 n-alkanes, C5-C10 n-fatty acids, or BTEX 

(20 nM) to a final concentration of 20 µM. Bottles were incubated for up to two weeks 

at 27° C with 50 rpm shaking. Heat-killed and unamended bottles served as negative 

controls and Marine agar served as a positive control. Growth was estimated visually 

by turbidity. Incubations were transferred three times to establish growth was based on 

hydrocarbon degradation rather than carry-over of other growth factors. 
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 Strains Arcobacter 1A, Marinobacterium 7C, and Halomonas A11A (described 

in Chapter 2) were plated on Widdel’s medium agar supplemented by spreading 80 uL 

0.1 M C5-C10 n-alkane solution (used for amendment), 80 uL of individual 100 mM C5-

C10 n-alkanes, or C5-C10 n-fatty acids (Figure A7) as the only carbon source. To prevent 

toxic concentrations of BTEX affecting the growth of the isolates, 25 uL of the 0.1 M 

equimolar BTEX solution was dropped on to sterile 0.45 um filter paper and placed in 

the lid of a glass Petri dish and incubated upside down to allow the BTEX fumes to 

enrich the streaked isolates, the plate was sealed in a plastic box to reduce escaping 

fumes and incubated in a chemical fume hood. Plates were incubated individually in 

sealed plastic bags to prevent and limit the loss of the volatile hydrocarbons and from 

contaminating other plates. The plates were incubated in the dark at 25° C for 2 weeks 

in an incubator. Widdel’s medium plates without hydrocarbons served as a negative 

control, and marine agar plates served as positive control plates. Escherichia coli AC# 

25922, which cannot degrade hydrocarbons but does grow on marine agar, was used as 

a negative control organism for growth with hydrocarbons.  

 

3.0 Results 

3.1 Chemical parameters of Barnett Shale production water 

 Production water collected from the Barnett Shale in December 2014 was 

assessed for chemical parameters. The salinity of the production water, as estimated by 

Cl- was 3.1% NaCl, oxygen was between 0.295-0.58 ppm, the temperature of the water 

varied from 11.13-20.0° C, the pH was 6.9, thiosulfate equaled 51 mg/L, and sulfide 

was measured at 0 mg/L (Table A6).  
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3.2 Isolation of dominant aerobic heterotrophs from Barnett Shale production water  

 Isolation of aerobic microorganisms from filtered water from a production water 

storage tank on solid heterotrophic media yielded 15 isolates (Table A7). Isolates were 

identified using the 16S rRNA ribosomal gene sequence with all sequences being >500 

bp in length. Seven isolates were most closely related to the 16S rRNA gene sequence 

of Arcobacter marinus, ranging from 97%-99% identity. Of the eight remaining 

isolates, five were identified as most closely affiliated (97-100% 16S rRNA gene 

sequence identity) to Thalassospira xiamenensis, two to Marinobacter maritimun, and 

one to Salinicola salarius. According to RDP (Ribosomal Database Project) 

(http://rdp.cme.msu.edu/) Classifier program each isolate matched the respective 

identified genus 100%, whereas the BLASTN match at the species level ranged mostly 

between 97 – 100 %.  

 

3.2 Physiological analysis: Hydrocarbon degradation screening  

 Two isolates, Arcobacter 1A and Marinobacterium 7C, were selected for 

additional physiological analysis to test hydrocarbon degradation ability. Halomonas 

A11A, obtained from n-alkane-amended enrichment, was also examined for 

hydrocarbon degradation ability and is discussed in Chapter 2. The isolates were 

screened for their ability to grow in the presence of a range of short and medium length 

aliphatic hydrocarbons, such as n-alkanes C5-C10 mix, individual C5-C10, C16 n-alkanes, 

BTEX, and C5-C10 n-fatty acids in liquid and solid medium (Table A8). Isolates were 

also assessed for their ability to grow in the presence of BTEX compounds. 

Marinobacterium 7C grew in the presence of all n-alkanes and n-fatty acids but not in 
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the presence of BTEX or in the unamended control medium. Growth in liquid medium 

was strong after three transfers (as assessed by turbidity) and grew best when amended 

with the n-fatty acids, the C5-C10 n-alkane mix or medium length C9, C10, and C16 n-

alkanes (Table A8). On solid media colonies were very small, smaller than colonies 

grown on marine agar. Arcobacter 1A grew very weakly and slowly in the presence of 

the C5-C10 n-alkane mix but did not grow in the presence of individual n-alkanes or 

BTEX in liquid medium (Table A8). Growth of 1A was visible in the first transfer but 

was not visible after three transfers. The isolate did not form visible colonies on any of 

the hydrocarbon-amended plates but did form visible colonies on the positive control, 

Marine Agar. The Arcobacter isolate grew weakly in the presence of n-fatty acids in 

liquid and solid media (Table A8). Halomonas A11A grew in the presence of all n-

alkanes and n-fatty acids on solid media but did not grow in the presence of BTEX 

compounds or in the unamended control medium. Colonies were visible but smaller 

than colonies on marine agar. Similarly, in the liquid medium, A11A grew strongly 

with all individual n-alkanes as well as the C5-C10 n-alkane mix after 1 week. Growth 

with C5-C10 n-fatty acids was visible after three days. No growth was visible with 

BTEX hydrocarbons or in the unamended control. 

 
 
4.0 Discussion 

 The objective of this study was to isolate and identify the dominant culturable 

aerobic microorganisms from petroleum production water. Four different genera of 

aerobic/facultatively anaerobic Proteobacteria were isolated from petroleum production 

water. Arcobacter (Epsilonproteobacteria) was the most common isolate obtained from 
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isolation methods using heterotrophic media but does not appear to be a hydrocarbon 

degrader; limited growth may be a factor of hydrocarbon toxicity and requires further 

investigation. Arcobacter is more likely to function as a chemolithotrophic sulfide-

oxidizer (Vandamme et al., 1991; Roalkvam et al., 2015). For the petroleum industry 

Arcobacter has shown use as a sulfide scavenger and sulfide control agent in sour 

reservoirs (Telang et al., 1999; Gevertz et al., 2000; Hubert et al., 2005; Gregoire et al., 

2014). All of the Arcobacter isolates obtained in this study were most closely related to 

Arcobacter marinus. A marinus was originally isolated from seawater amended with 

seaweed and starfish obtained from the East Sea, Korea and grew optimally with 3-5 % 

NaCl in aerobic and microaerophilic conditions (Kim et al., 2010). To date, no studies 

have investigated the hydrocarbon degradation potential of A. marinus but others have 

found Arcobacter sp. to be associated with hydrocarbon-impacted environments. 

 Previously, Arcobacter sequences have been detected in association with 

petroleum-contaminated sites in the Barnett Shale and the North Sea (Grabrowski et al., 

2005; Dahle et al., 2008 David et al., 2012). In one study, sequences were closely 

associated with sulfur-containing compounds and linked to cycling sulfide produced by 

sulfidogenic bacteria in the Barnett Shale (Fitcher et al., 2009; David et al., 2012). 

Other studies have characterized Arcobacter as a microaerophilic sulfide-oxidizer and 

nitrate reducer (Ellis et al., 1977; Vandamme et al., 1991; Gevertz et al., 2000). 

Arcobacter has been cultivated and detected in a wide variety of environments 

including marine, hypersaline, and oil field brine (Teske et al., 1996; Gervertz et al., 

2000; Wirsen et al., 2002; Kim et al., 2010). Filamentous sulfur produced by 

Arcobacter is recognized as an end product in many of these environments (Wirsen et 
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al., 2002; Sievert et al., 2007). More recently, Roalkvam and others showed for the first 

time that an Arcobacter strain could grow on complex organic substrates and oxidize 

acetate with elemental sulfur as the electron acceptor (Roalkvam et al., 2015). Further, 

they characterized Arcobacter anaerophilus IR-1 to grow lithoautotrophically on 

hydrogen and hydrogen sulfide, lithoheterotrophically on thiosulfate and elemental 

sulfur, and organoheterotrophically on yeast extract, peptone, tryptone, and other 

organic acids. These findings suggest that Arcobacter sp., including those isolated in 

our study, might be capable of using complex organic substrates (possibly 

hydrocarbons) as carbon sources and use a wide range of electron acceptors (sulfur, 

nitrate, oxygen). The physiology and metabolic potential of Arcobacter, as well as other 

Epsilonproteobacteria, may be more diverse than previously thought and will require a 

more complete analysis to characterize their role in production water environments. 

This diverse physiological and metabolic potential certainly provides clues as to how 

these microorganisms persist in such a harsh and dynamic environment. Additional 

quantitative examination of Arcobacter spp. may reveal the true potential of these 

microorganisms and their range of functions in petroleum-impacted environments. 

 Marinobacterium isolates, representing Gammaproteobacteria, obtained from 

the production water using heterotrophic media show more potential as hydrocarbon 

degraders. Marinobacterium 7C was able to grow with all of the n-alkanes as the sole 

carbon source both in liquid and on solid media and grew robustly in the presence of 

C5-C10 n-fatty acids. Both of the Marinobacterium isolates obtained in this study were 

most closely related to Marinobacterium maritimum (NR116301) (Kim et al., 2009). 

This species was originally isolated from Arctic marine sediments during screening for 
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thiosulfate-oxidizing bacteria. Optimal growth for M. maritimum requires aerobic, 

mesophilic, and 2% NaCl conditions. Very few studies have focused on pure cultures of 

M. maritimum but other Marinobacterium spp. have been detected in petroleum 

environments. 

 Previous studies identified other Marinobacterium spp. associated with crude 

oil-impacted marine environments, oil-water separators, and high salt oil reservoirs 

(Yakimov et al., 2005; Yuehui et al., 2008; van der Krann et al., 2010; Sherry et al., 

2013). One study found Marinobacterium and other Gammaproteobacteria were 

significantly enriched in oil-amended sulfate-reducing enrichments (Sherry et al., 

2013). Here, they suggest that the bacterial community is driven more by the presence 

and degradation of the hydrocarbons rather than the sulfate and consider 

Marinobacterium may be responsible for some of the observed hydrocarbon 

degradation. Normally, Marinobacterium spp. are aerobic, halophilic, heterotrophic 

microorganisms often associated with marine systems but have also been shown to be 

facultatively anaerobic and degrade phenol, benzoate, and carbazole, which is often 

found in petroleum distillates (Castorena et al., 2005; Inoue et al., 2005; Kim et al., 

2007). Little quantitative evidence exists to classify Marinobacterium as a hydrocarbon 

degrader; our study is a brief and incomplete examination suggesting these 

microorganisms may grow on hydrocarbons as a sole carbon source. Additional 

quantitative evidence of hydrocarbon degradation is necessary to test this hypothesis. 

 Of the other isolates, Thalassospira (Alphaproteobacteria) was the second most 

numerous (5/15) isolate obtained from heterotrophic amendment of the production 

water. No further testing was done on these isolates but previous studies have described 
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Thalassospira strains to degrade phenanthrene, a polyaromatic hydrocarbon (PAH)  

present in petroleum products (Kodama et al., 2008; Zhao et al., 2008; Vila et al., 

2010). Other studies have detected Thalassospira sequences using molecular 

techniques in marine PAH-degrading microbial communities, pyrene and naphthalene 

amended cultures, and as part of a corrosive biofilm in a water pipeline  (Cui et al., 

2008; Vila et al., 2010; Lopez et al., 2013). Little evidence exists to quantify the 

hydrocarbon or PAH-degrading properties of Thalassospira sp. but it likely functions 

as part of the larger microbial community involved in hydrocarbon and PAH 

degradation in petroleum-impacted environments including production water tanks. 

 The least abundant isolate (1/15) obtained from the production water was 

identified as Salinicola sp. Salinicola is a Gammaproteobacterium and part of the 

Halomonadaceae family very closely related to Halomonas spp. (Ananina et al., 2007; 

Tang et al., 2017). Salinicola sp. are described as moderately halophilic 

chemoorganotrophs capable of naphthalene degradation (Ananina et al., 2007). No 

physiological analysis was performed on this isolate in this study but we consider the 

Salinicola sp. in the production water may be part of the larger microbial community 

involved in hydrocarbon degradation. Considering its close phylogeny with 

Halomonas, discussed in Chapter 1, it may be capable of hydrocarbon degradation in 

pure culture but additional experiments are necessary to support this hypothesis. 

 Based on previous studies and the results obtained in our study it is reasonable 

to expect the Arcobacter strains in the Barnett Shale production water are contributing 

to biocorrosion and the sulfur cycle by functioning as chemolithotrophic sulfide 

oxidizers. We also propose that Arcobacter may play a role in hydrocarbon degradation 
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or degradation of other complex organics and should be investigated more thoroughly 

(Roalkvam et al., 2015). Similarly, Marinobacterium spp. present in the production 

water tank likely exist dominantly as heterotrophs by degrading sugars, fatty acids, and 

complex organic substrates, such as hydrocarbons, present in the production water. 

These microorganisms can serve as representatives of the more diverse microbial 

community in the petroleum production water that can be targets of additional 

cultivation measures to examine their role in biocorrosion or hydrocarbon degradation. 

In this study we see the dominant cultivatable aerobic population of microorganisms, 

representing Gamma- and Epsilonproteobacteria, have the potential to degrade 

petroleum hydrocarbons and may therefore provide substrates for biocorrosive 

microorganisms in the production water; thus, the presence of a large population of 

aerobic general heterotrophs in production water systems may be a matter of concern. 
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Appendix 2: Tables 

Isolation of the dominant cultivable aerobic heterotrophic bacteria from oil field 

production water produced from the Barnett Shale 

 
Table A4. Chemical parameters of Barnett Shale production water collected in 

December 2014. Values given are the range for three samples taken from one tank, from 

the bottom, middle, and top of the water layer.  

Chemistry December 2014 
% NaCl 2.7-3.1 
Oxygen (ppm) 0.295-0.58 
Temperature (° C) 11.13-12.00 
pH 6.90-6.93 
Thiosulfate (mg/L) 51 
Sulfide (mg/L) 0 
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Table A5. Isolate identity based on partial 16S rRNA gene sequences. Bacterial DNA 

was amplified using primers: GM5F (5 uM) and D907R (5 uM) primers. All sequences 

were >500 bp in length. Trimmed sequences were compared to those in Ribosomal 

Database Project (RDP) using the RDP Classifier Program and to the GenBank 

database using BLASTN.  

Ribsomal Database Project: Classifier1  BLASTb   

Isolatec: 
% Genus 

match Genus Identity Closest Match 
 

Accession # 
% 

Identity 
1A 100% Arcobacter Acrobacter marinus CL-S1 NR_116342.1 97% 
3A 100% Arcobacter Acrobacter marinus CL-S2 NR_116342.1 98% 
3B 100% Arcobacter Acrobacter marinus CL-S3 NR_116342.1 99% 
4A 100% Arcobacter Acrobacter marinus CL-S4 NR_116342.1 99% 
5A 100% Arcobacter Acrobacter marinus CL-S5 NR_116342.1 99% 
6A 100% Arcobacter Acrobacter marinus CL-S6 NR_116342.1 100% 
7A 100% Thalassospira Thalassospira xiamenensis KJ658416.1 99% 
7B 100% Thalassospira Thalassospira xiamenensis KJ658416.1 99% 
7C 100% Marinobacterium Marinobacterium maritimum NR_116301.1 97% 
8A 100% Salinicola Salinicola salarius KC583226.1 100% 
8B 100% Marinobacterium Marinobacterium maritimum NR_116301.1 97% 
8C 100% Thalassospira Thalassospira xiamenensis KJ658416.1 99% 
9A 100% Arcobacter Acrobacter marinus CL-S1 NR_116342.1 99% 
9B 100% Thalassospira Thalassospira xiamenensis KJ658416.1 99% 
9C 100% Thalassospira Thalassospira xiamenensis KJ658416.1 99% 
aThe RDP Classifier shows the genus match percentage of each isolate and genus level 
identification. 
bBLASTN indicates closest genus and species match with percent identity to 
characterized species with accession numbers. 
cIsolate numbers indicate the original plate they were isolated on (1-9), and the letter of 
the colony on the plate (A, B, or C). 
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Table A6. Hydrocarbon degradation screening by isolates obtained from Barnett Shale 

production water. Growth in liquid medium was estimated by visual turbidity estimates 

and scored based on (+) weak growth to (+++) strong growth or no growth (-) in 

Widdel’s medium amended with various hydrocarbons at 200 µM. Turbidity scores 

were based on growth after three transfers. Growth on solid medium was estimated by 

formation of visible colonies (+) or no growth (-) on Widdel’s medium plates amended 

with 80 µL of 100 mM of various hydrocarbons. Unamended Widdel’s medium was 

used as a negative control, Marine agar as a positive control. Plates were incubated in 

individual sealed plastic bags at 25° C in the dark for 2 weeks.  

 Liquid medium  Solid medium 
Substrate 1A 7C A11A  1A 7C A11A 

C5-C10 n-alkanes + ++ +++  - + + 
C5 n-pentane - + +++  - + + 
C6 n-hexane - + +++  - + + 
C7 n-heptane - + ++  - + + 
C8 n-octane - + ++  - + + 
C9 n-nonane - ++ ++  - + + 
C10 n-decane - ++ +++  - + + 
C16 n-hexadecane - + ++  - + + 
C5-C10 n-fatty acids + +++ +++  + + + 
BTEX - -    -     -    -    - 
Unamended - - -  - - - 
Marine broth + + +  + + + 
1A Arcobacter, 7C Marinobacterium, A11A Halomonas 
E.coli AC#25922 was used as a negative control organism and did not grow on any of 
the hydrocarbon-amended plates. It did show growth on the positive control medium, 
Marine agar. 
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Appendix 2: Figures 

Isolation of the dominant cultivable aerobic heterotrophic bacteria from oil field 

production water produced from the Barnett Shale 

 

 

 

 

 

 

 

 
 
 
Figure A7. Hydrocarbon degradation screening of isolates obtained from Barnett Shale 

production water. Marinobacterim 7C and Arcobacter 1Aobtained as described in 

Appendix 2 and Halomonas A11A obtained from enrichment amended with n-alkanes 

(Chapt. 2) were screened for hydrocarbon degradation potential by streaking onto plates 

previously spread with a C5-C10 n-alkane solution (80 uL 0.1 M) or 80 uL of each 

individual C5-C10 and C16 alkane (100 mM). Plates amended with BTEX were 

incubated in glass Petri plates with the BTEX solution (25 uL of equimolar 0.1 M) was 

dropped on to sterile 0.45 um filter paper and placed in the lid of the glass Petri dish 

and incubated upside down. Escherichia coli AC# 25922 was used as a negative control 

for hydrocarbon degradation. All isolates were streaked on Marine agar as a positive 

control condition. Plates were incubated in individual sealed plastic bags at 25° C in the 

dark for 2 weeks. 
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