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Abstract 

Low-pressure nitrogen adsorption technique was used to investigate the specific surface 

area and pore size distributions and controlling factors for 11 wells from seven different 

shale formations with varying thermal maturity, organic matter content and clay content. 

The pore structure of these shales and isolated kerogen were studied using nitrogen 

adsorption and SEM imaging. We show that low maturity samples from the immature 

window have very low specific surface areas ranging from 1.13 to 6.91 m2/g; in contrast, 

samples in later stages of maturity have higher specific surface area ranging from 2.14 to 

41.51 m2/g. In the organic-rich shales, incorrect estimation of surface area leads to 

erroneous quantification of the pore size distribution. Surface areas measured in the “as-

received” (before solvent extraction) state did not show a strong dependence on total clay 

or organic content although these two components have high surface areas. 

Underestimation of surface area is due to the non-removal of residual water and soluble 

hydrocarbons, including bitumen. We tested this proposal by extracting the shale samples 

using an 4:1 toluene:methanol azeotrope at 63.8°C in a standard Soxhlet extractor. 

Geochemistry and pore network attributes before and after removal of soluble 

hydrocarbons were characterized. Results show that the TOC, S1, S2 of the extracted 

samples decrease significantly and the extraction process greatly increases the specific 

surface area and pore volume of the samples. The increase in the specific surface area is 

maximum in the immature window having an average increase of 175% and minimum in 

the gas window having an average increase of 15%. We determined an empirical 

relationship between surface area, TOC and clay content for various maturity windows. 

Our results indicate that the specific surface area is a function of maturity and gas 



xviii 

adsorption increases with organic pore generation as an outcome of maturation. Grain 

density measurements pre- and post-solvent extraction were used to determine the “extra-

porosity” associated with soluble bitumen and residual hydrocarbons in varying maturity 

window and then correlated with TOC. Solvent extraction increased porosity by an 

average of 93% in the immature window, 39% in oil window, 19% in condensate window, 

and 10% in the gas window.  We show for isolated kerogen, the low-maturity samples 

have very few nanopores in addition to having very low specific surface areas ranging 

from 3.74 to 9.24 m2/g. In contrast, nanopores are abundant in the mature to over mature 

kerogen, leading to high specific surface areas in range of 15.81 to 41.96 m2/g.  
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 Chapter 1: Introduction 

1.1 Overview – Shales  

Shales constitute more than 75% of the sedimentary rock in the earth’s crust and are 

characterized by fissility and the presence of fine-grained rocks made of clay- and silt- 

sized particles which are typically less than 4 microns and not greater than 62.5 microns 

in diameter (Folk, 1974; Friedman 2003). They are characterized by low porosity (< 10%) 

and ultra-low permeability, i.e. in nanodarcy range. Shales, due to their nanodarcy 

permeabilities were considered reservoir seals, preventing the escape of hydrocarbon 

from conventional reservoirs. Potter et al. (2005) and Boggs (2012) defined shales as 

laminated fine-grained argillaceous rock. Passey (2010) defined shale resources as 

‘unconventional reservoirs’, since they do not produce economic rates of hydrocarbons 

without stimulation and commonly referred them as mudstones. Bohacs (1998), Bohacs 

et al. (2005), Guthrie and Bohacs (2009) studied the shale formations rich in organic 

matter (OM) and concluded that even if the formations appear largely homogeneous, the 

vertical variability in the organic richness can occur on relatively short vertical scales 

(often much less than 1 meter).  Cramer (2008) stated that each shale is different in its 

geology, geochemistry and geomechanical properties and requires unique drilling, 

completion and production techniques.  

 

1.2 Pore Characterization 

Shales have a heterogeneous and a complex microstructure. The heterogeneity in the 

micropores is influenced by organics, thermal maturity/diagenesis, and inorganics (Hao 

et al., 2013). Understanding the complex pore system is crucial in evaluating the storage 
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and transport properties of these unconventional shale resources (Chen et al., 2013; Guo 

et al., 2013; Tian et al., 2013). Fu et al. (2015) defined the pore structure as the geometric 

shape, size and distribution of pores and throats and their connectivity in geo-reservoirs. 

The pore structure of shale oil and shale gas reservoirs is difficult to characterize because 

of the nanopore structure, associated with OM content, and a broad pore size distribution 

(PSD) unique to every shale sample studied. The generation of these nanopores takes 

place during the burial and subsequent maturation of the OM (Bernard et al., 2012; Jarvie 

et al., 2007).  

 

A diverse array of pore structures have been documented (e.g. Loucks et al., 2012 and 

Milliken et al., 2013) which are dependent on grain size, mineralogy, organic matter 

(OM) content that create a unique reservoir texture which in turn varies with burial depth, 

thermal maturity and chemical diagenesis. Methods such as low-pressure carbon dioxide 

(CO2) and nitrogen (N2) and mercury intrusion porosimetry (MIP) have been used to 

quantify the pore size distributions and pore throat distributions (Ross and Bustin, 2009; 

Chalmers et al., 2012; Clarkson et al., 2013; Kuila and Prasad, 2013). The pore structures 

that are documented in these studies are method dependent and studies have yielded 

different results because of the methods employed. Ambrose (2011) concluded that 

porosity and PSD are crucial from the viewpoint of estimation of shale gas reservoir 

volume and reservoir quality. Ross and Bustin (2009), Mastalerz et al. (2013), Zhu et al. 

(2013), Chalmers et al. (2012) concluded that OM is the main host of the pores, which 

provides the adsorption site and storage space for gas adsorption.  
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For conventional rocks, the porosity and PSD are measured using helium expansion and 

mercury intrusion (MICP) techniques. Hossain et al. (2011) showed that above-

mentioned approach yields consistent results for conventional sandstone and carbonate 

rocks. Currently low-pressure CO2 and N2 gas adsorption techniques has been adopted 

by researchers, in addition, to the conventional crushed helium porosity measurements 

and mercury porosimetry to understand the PSD and total pore volumes in shales 

(Katsube et al., 1998; Ross and Bustin 2007, 2008; Chalmers and Bustin 2008; Wang and 

Reed 2009; Kuila and Prasad, 2013). Researchers recommended using Scanning Electron 

Microscopy (SEM) to image the microstructure of shales and to understand the 

characteristics of the different pore types. Combining these results with the gas adsorption 

and MICP provides a more comprehensive analysis of pores and their distributions in 

shale.  

 

1.3 Purpose and Scope of Study 

The pore size terminology of the International Union of Pure and Applied Chemistry 

(IUPAC), which was developed by Sing et al. (1985), has been used to classify pores in 

shales. According to this classification, the pores are divided into three categories:  

a. Micropores: pores less than 2 nm diameter 

b. Mesopores:  pores in range of 2 nm and 50 nm in diameter, and  

c. Macropores: pores greater than 50 nm in diameter.  

This classification of pores is based on the physics of nitrogen adsorption in various pore 

sizes at -196°C (77.36 K). Various mechanisms, such as micropore filling (micropores), 
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combination of multilayer adsorption and capillary condensation (mesopores), and 

multilayer adsorption (macropores) dominate in the different pore sizes.  

 

This study attempts to use the nitrogen adsorption technique (BET – surface area) to 

achieve the following objectives: 

1. To understand the effect of rock components (clay and TOC) and thermal maturity 

on specific surface area measurements using the principal of nitrogen adsorption 

on various shale formations  from Barnett, Eagle Ford, Lower Bakken, Marcellus, 

Vaca Muerta, Woodford and Wolfcamp. 

2. To evaluate the impact of solvent extraction using toluene and methanol (4:1) on 

surface area, PSD, porosity and pyrolysis measurements in organic rich shales. 

3. To determine correlation between surface area, clay content, organic content and 

thermal maturity pre- and post- solvent extraction.  

4. To investigate the specific surface area of kerogen isolated from organic rich 

shales.  

 

1.4 Synopsis 

This study is divided into 5 chapters. Chapter 1 provides an introduction for the study and 

the motivation. Chapter 2 discusses the theory and principles behind gas adsorption 

measurement and previous studies related to the field. Chapter 3 describes the 

experimental procedures used in petrophysical, geochemical measurements and 

subcritical N2 gas adsorption measurements. Chapter 4 summarizes the results and their 

applications. Chapter 5 presents the conclusions and findings from our studies. 
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Chapter 2: Literature Review 

Low-pressure isothermal gas adsorption measurements using liquid N2, CO2 and CH4 

have been used extensively by several researchers (Ross and Bustin, 2009; Chalmers et 

al., 2012; Kuila and Prasad, 2013; Labani et al., 2013). These studies have been carried 

out on shales for nearly a decade, in particular to quantify the various pore network 

attributes (surface area, pore volume and pore size distribution). Understanding and 

quantifying these pore network attributes are crucial to modeling the behavior of fluids 

in porous media. Estimating the specific surface area of shales is crucial in estimating gas 

storage, since natural gas is adsorbed on the internal surfaces of the pores contributing to 

large gas storage capacity. Porosity and pore size distribution are essential in calculating 

the reservoir storage or economics. 

 

2.1 Literature Review 

Shales have received great attention in the recent years because of their emergence as 

commercial hydrocarbon resources in North America (Curtis, 2002; Montgomery et al. 

2005; Bowker 2007; Jarvie et al., 2007; Scheiber, 2010; Sondergeld et al., 2010b; Slatt 

and O’Brien, 2011). Attributes of the pore structure are porosity and pore size distribution 

(PSD). Nimmo (2004) said, ‘porosity is a single value quantification’ and it does not 

consider heterogeneity of pore structures that occur in nature. The other attribute used for 

characterizing the pore structure is the pore size distribution (PSD), which quantifies the 

volumes associated with the different pore sizes. The simplest model developed for 

inverting experimental data to the PSD is the capillary bundle approximation, where the 
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porous material is assumed to contain stack of open-ended cylindrical capillaries with 

different diameters.  

 

Porosity and PSD are used for reservoir evaluation (Ambrose et al., 2010), permeability 

prediction (Nelson, 2009), and elastic property calculations (Kuila and Prasad, 2013). A 

major challenge in estimating the transport and storage capacity of the shales is the poor 

understanding of their pore properties including size, distribution and pore hosting 

components (Nelson, 2009; Chalmers et al., 2012; Loucks et al., 2012; Kuila et al., 2014). 

The main deterrent to reliable and accurate laboratory measurements is lack of 

accessibility of the displacement fluids to the pore system. Saidian et al. (2015) states the 

reason for limited accessibility of the displacement fluids can be due to extremely low 

permeability, complicated mineral surface and fluid interactions or insufficient 

equilibration time. 

 

The visual analysis of the pore shapes, pore sizes and its distribution have been conducted 

using field emission scanning electron microscopy/transmission electron microscopy 

(FE-SEM/TEM) and focused ion beam scanning electron microscopy (FIB-SEM) by 

(Loucks et al., 2009; Curtis et al., 2010; Lemmens et al., 2011; Bernard et al., 2012; 

Chalmers et al., 2012; Curtis et al. 2012; Milliken et al., 2013). In addition to the 

qualitative estimation, the presence of micropore and mesopore spaces in a shale matrix 

has been documented by several researchers over the last decade, using non-visual 

techniques. Some examples of non-visual techniques are low-pressure gas adsorption 

(Ross and Bustin, 2009; Chalmers et al., 2012; Clarkson et al., 2013), mercury intrusion 



7 

(Howard, 1991; Mathhews et al., 1995) and NMR (Sondergeld et al., 2010a; Jiang et al., 

2013; Rivera et al., 2014; Saidian et al., 2015). 

 

Surface area and pore size distribution of nanopores have been studied through low 

pressure N2 and CO2 gas adsorption technique coupled with high pressure mercury 

injection capillary pressure (MICP) (Ross and Bustin, 2009; Mastalerz et al., 2012; 

Clarkson et al., 2013; Kuila and Prasad, 2013; Labani et al., 2013; Schmitt et al., 2013) 

and small angle and ultra-small angle neutron scattering techniques (SANS/USANS) 

(Clarkson et al., 2012; Mastalerz et al., 2012). Mercury intrusion technique is preferred 

for measuring porosity and obtaining the PSD for conventional reservoir rocks where 

pores are characterized by micrometer scale (Mathhews et al., 1995; Clarkson et al., 2012; 

Mastalerz et al., 2013). In shales, MICP can potentially create some artificial macropores 

and also cause particle deformation since shales are weak in comparison to conventional 

rocks (Giesche, 2006; Bustin et al., 2008; Sigal, 2009). On the contrary, the low-pressure 

gas adsorption technique does not create artificial macropores during the measurement 

but relies on an imperfect inversion model to determine the PSD within the limited range 

of 2 to 200 nm.  

 

Most of the gas adsorption measurement are performed using liquid nitrogen as the 

adsorbate at 77.36 K and relative pressure (P/Po) range of 0.05 – 0.99.  One limitation of 

using N2 as the adsorbate at 77.36 K is that the molecules cannot enter into the micropores 

(< 2 nm) (Gan et al., 1972; Ross and Bustin 2009) and another is that this temperature is 

hardly reservoir temperature. However, using CO2 at 273.1 K, micropores between 0.5 
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and 2 nm can be characterized (Ross and Bustin 2009). The cross-sectional area of CO2 

molecules is 0.17 nm2 which is smaller than N2, thus enabling it to access pores between 

0.5 nm to 2 nm. Studies indicate that single-point BET method can be used to compute 

the specific surface area of these micropores and using the Density Functional Theory 

(DFT) to characterize the pore distribution. BET has been used by Ross and Bustin 

(2009), Adesida (2011), Chalmers et al., (2012), Kuila and Prasad (2013) to characterize 

nanopores in shale.  

 

Bustin et al. (2008) recommended using a combination of low pressure gas adsorption 

measurement with the MICP to overcome the problems associated with the inability of 

low pressure gas-adsorption techniques and high-pressure mercury intrusion (MICP) to 

capture small and large pores respectively. They studied shales from the Antrim and 

Barnett formations (particle size < 60 mesh and degassing at 110°C) and reported bimodal 

size distributions with modes at 10 nm and around 10,000 nm, using a combination of 

low pressure CO2 and N2 adsorption and MICP. However, the authors did not distinguish 

between the pore-throat and the pore-body size distributions that were obtained as a result 

of the different techniques, but acknowledged the disagreement in pore volume in the 

overlapping region due to different theoretical assumptions used in the inversion. 

 

Ross and Bustin (2009) studied the pore structure of the Devonian-Mississippian and 

Jurassic shales (particle size < 60 mesh and degassing at 110°C) from Western Canadian 

Sedimentary Basin using combination of high pressure CH4 adsorption, low pressure CO2 

and N2 adsorption measurements and MICP. They reported positive correlation between 
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the micropore volumes and the TOC content of the organic rich shales, indicating that 

micro-porosity associated with the organic fraction is a primary control on CH4 

adsorption. In addition, they observed a good correlation between clay content and the 

total mercury intrusion porosity and a systematic change in pore structure with increasing 

clay content. Their work could not exclusively address the effect of clay minerals on gas 

adsorption because of the co-existence of organic matter. 

 

Lu et al. (1995), Ross and Bustin (2007), Cui et al. (2009) used CH4 adsorption on several 

shale formations and reported a positive correlation of CH4 adsorption capacity with the 

TOC in shales. Chalmers and Bustin (2008) conducted high pressure (6 MPa) methane 

adsorption measurements on Lower Cretaceous gas shale sample from Northeastern 

British Columbia. The authors reported a strong positive correlation between the 

adsorption capacity and the TOC, implying TOC content is the primary control on the 

methane adsorption capacity. Chalmers et al. (2012), Curtis et al. (2012), Wang et al. 

(2013), stated that the main factors controlling the organic pore structure are the type and 

content of OM and the maturity of shale.  

 

Hou et al. (2014) studied lower Paleozoic marine shale and Mesozoic continental shale 

to investigate the effect of pore structure characteristics on the methane adsorption of 

shale using a combination of  FE-SEM, low pressure N2 adsorption (particle size 10-14 

mesh) and high pressure CH4 adsorption measurements. They observed a positive 

correlation between the organic content, N2 – BET surface area and adsorption capacity, 

implying micro-porosity associated with organic fraction in these shales is the key factor 
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controlling the methane adsorption capacity. They also concluded that the major pore 

system of shale reservoir changes from inorganic matter pores to organic matter pores 

with the increasing thermal maturity thereby increasing the methane adsorption capacity 

of shale. 

 

Fu et al. (2015) analyzed 40 lacustrine shale samples of the Mesozoic Yanchang 

Formation in the Ordos Basin, to investigate the factors that influence the development 

of pore structure. The authors used both the qualitative and quantitative methods to study 

the pore type and size distribution using SEM, nano-computed tomography (CT), N2 

adsorption and low-field nuclear magnetic resonance (NMR) imaging. The results show 

that the pore and throat structures are dispersed in three dimensional space with spherical, 

tubular and irregular shapes. The results also show that the micro- and mesopores provide 

the main specific surface areas of pores, whereas mesopores provide the primary pore 

volume. The TOC, mineral components, and thermal maturity are the main factors that 

control the development and evolution of pore structure in lacustrine shale.  

 

Apart from the traditional way, i.e. using the “as-received” sample state for measuring 

the various pore network attributes (surface area, pore volume and pore size distribution), 

some researchers (Wei et al., 2014; Ghanizadeh et al., 2015; Wood et al., 2015) proposed 

using the solvent extraction technique to identify the impact of the maturation and 

formation of solid bitumen on the pore connectivity. Furmann et al. (2013) studied the 

impact of solvent extraction on two high-volatile bituminous coals from the Illinois Basin 

to understand the degree of bitumen extractability. The study reported an increase in 
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microporosity (using CO2 adsorption after extraction) and a shift in pore size distribution 

from meso- to macro- attributing this effect to the alteration of OM porosity for samples 

when cleaned with organic solvents.  Valenza et al. (2013) compared the pre- and post- 

solvent (dichloromethane:methanol in 9:1 ratio) extraction data for various maturity 

windows and concluded the impact of cleaning was significant in the early mature 

window. Wei et al. (2014) conducted a similar research using series of solvent (DCM for 

72 hours followed by toluene for 96 hours) extraction on samples from New Albany 

organic rich shales. They reported that the process of solvent extraction opens additional 

pore space for N2 and CO2 adsorption which is previously masked due to the presence of 

oil and bitumen. 

 

 In this study, PSD and specific surface area were quantified using N2 adsorption 

isotherms and their relation to the amount of clay present, OM content, thermal maturity 

was studied for the samples pre- and post-solvent extraction. Specific surface area was 

determined using the multi-point BET method and the PSD was obtained using the DFT 

model (discussed in Section 2.5.3). Image analyses for the shale samples from various 

maturity windows before and after solvent extraction were done using SEM. 

 

2.2 Adsorption 

Adsorption is defined as the “phenomenon of attracting and retaining the fluid molecules 

on the solid surface resulting in a higher concentration of the molecules on the surface” 

(Barnes and Gentle, 2005). The solid is called the adsorbent while the fluid molecules 

adhering to its surface are known as the adsorbate.  
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2.2.1 Categories of Adsorption 

Depending upon the strength of interaction between the fluid molecules and the solid, 

adsorption can be divided into two categories Lowell (1979) namely: 

• Physical Adsorption: also, known as physisorption is a process in which the force 

of attraction existing between the adsorbate and the adsorbent are weak Van der 

Waals forces of attraction. It takes place with formation of multilayer of adsorbate 

on adsorbent. 

• Chemical Adsorption: also, known as chemisorption is a process in which the 

force of attraction existing between adsorbate and adsorbent are chemical forces 

of attraction or chemical bond. It takes place with formation of unilayer of 

adsorbate on adsorbent.  

 

2.2.2 Adsorption Isotherms 

An adsorption isotherm provides a relationship between the amount of adsorbate 

adsorbed on the solid surface and the relative pressure (concentration) of the adsorbate in 

the fluid phase under equilibrium condition. The isotherm shape and the hysteresis pattern 

obtained provide useful information about the physisorption mechanism, energy 

interaction between the solid and gas; the shape is used to predict the types of pores 

present in the adsorbent. The International Union of Pure and Applied Chemistry (Sing 

et al., 1985) classified the adsorption isotherms into six types (Type I to VI) and four 

hysteresis pattern types (H1 to H4) based on the extensive research, performed by 

Brunauer, Emmet and Teller (1938). An elaborate description of the IUPAC adsorption 
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isotherm classification is presented in Sing et al. (1985) and Rouquerol et al. (1998). The 

isotherm types are shown in Fig. 1.  

Type I isotherm: This isotherm is concave to the relative pressure axis and the isotherm 

shape is observed with microporous solids. 

Type II isotherm: This type of isotherm is concave in the initial region to the relative 

pressure axis, then linear and finally convex at higher relative pressure. This type of 

isotherm profile does not exhibit a saturation limit and indicates an unrestricted 

monolayer-multilayer adsorption after monolayer completion. Point B (knee) observed in 

the isotherm indicates completion of monolayer adsorption and initiation of adsorption 

of successive multilayers. The isotherm is completely reversible and is typically exhibited 

by nonporous or macroporous solids. 

Type III isotherm: This type of isotherm is convex to the relative pressure axis and does 

not show multilayer adsorption and the isotherm is indicative of non-porous or 

macroporous solids with weak adsorbate-adsorbent interactions. This type of isotherm is 

not observed in shales.   

Type IV isotherm: This type of an isotherm is a variation of Type II isotherm but with a 

finite multi-layer formation corresponding to the phenomenon of capillary condensation 

and evaporation. The hysteresis loop observed in Type IV isotherm is a characteristic of 

mesopores.  

Type V isotherm: This isotherm is initially convex to the relative pressure axis. It 

exhibits hysteresis indicating the mechanism of pore filling and emptying (condensation).  
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Type VI isotherm: This type shows a stepped adsorption isotherm. This type of isotherm 

is associated with adsorption on uniform surface. The sharpness of steps depends on 

pressure and temperature of the adsorbate. 

 

Of the six isotherms shown in Fig 1, the most important for unconventional shale gas 

formation evaluation are Type I, Type II and Type IV (Kuila and Prasad 2013). 

 

Fig. 1: Classification of adsorption isotherms (Sing et al., 1985). Type I isotherm is 

for microporous solids, Type II and Type III for non-porous and macroporous 

solids, Type IV for mesoporous solids, Type V and Type VI are characteristic curves 

observed in rare case (after Lowell, 2006). 

 

 

 

 

B 
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2.2.3 Adsorption Hysteresis 

Adsorption hysteresis takes place when there is change of isotherm profile during the 

adsorption and desorption process. It provides useful information about the pore shapes. 

Sing et al. (1985) characterized the hysteresis patterns obtained from different 

mesoporous shapes into four types H1 to H4 (see Table 1). In the H1 hysteresis loop, the 

two branches are almost vertical and nearly parallel and are seen in porous materials with 

a narrow distribution of cylindrical pores. The H2 hysteresis loop indicates presence of 

interconnected pores with narrow and wide pore openings. The H3 hysteresis types are 

observed in materials having platy particles, which give rise to slit-shaped pores and do 

not exhibit any limiting adsorption at high relative pressures. In the H4 hysteresis loop, 

the two branches remain horizontal and are parallel to wide range of relative pressure. 

This type of loop is often associated with narrow slit-shaped pores. 

 

Several isotherms do not readily fit into any of the above classifications. These include 

isotherms with characteristics of more than one Type, such as the mixed Type I/IV and 

mixed Type II/IV. There is a special type of isotherm shape, classified as Type IIB 

(Rouquerol et al., 1998), which is characteristic of shales (Fig. 2). The adsorption branch 

of the isotherm has a general shape like Type II isotherms, but with a distinct H3– type 

hysteresis loop. As mentioned above, hysteresis indicates the presence of mesopores. 

These materials are not purely mesoporous as there is no indication of the completion of 

mesopore filling that would result in a plateau at higher relative pressures as in a typical 

Type IV isotherm.  
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Fig. 2: The four classifications of adsorption isotherms with hysteresis loops 

(IUPAC, 1985). Significance of each characteristic curve is provided in Table 1. 

 

 

Table 1: Hysteresis Loop Types (Condon, 2006) 

Type Characteristics Usual Interpretation 

H1 Nearly vertical and parallel 

adsorption and desorption 

branches 

Regular even pores without 

interconnecting channels 

H2 Sloping adsorption branch and 

nearly vertical desorption branch 

Pores with narrow and wide sections 

and possible interconnecting channels 

H3 Sloping adsorption and desorption 

branches covering a large range of 

relative pressure with underlying 

Type II isotherm 

Slit-like pores for which adsorbent-

adsorbate pair yield a type II isotherm 

without pores 

H4 Underlying Type I isotherm with 

large range for the hysteresis loop 

Slit-like pore for the type I adsorbent-

adsorbate pair 



17 

 

Fig. 3: N2 adsorption isotherm at 77.36K of a Woodford shale sample. The isotherm 

‘forced closure’ is observed in the relative pressure range 0.40-0.55 due to the tensile 

strength effect. 

 

Another important feature observed in many hysteresis patterns is the forced closure of 

the desorption branch where the isotherm ‘closes’ at relative pressure (P/Po) of 0.40– 

0.50 for N2 isotherms as shown in Fig. 3. This phenomenon is attributed to a process 

called the Tensile Strength Effect (TSE) (Gregg and Sing, 1982). Disappearance of the 

hysteresis is due to the instability of the hemispherical meniscus during capillary 

evaporation in pores with diameters smaller than approximately 4 nm (Groen et al., 2003). 

In these pores, the surface tension forces are stronger than the tensile strength of the liquid 

causing the meniscus to collapse which leads to a spontaneous evaporation of the bulk 

liquid phase.  

Therefore, the desorption curve is not used for pore size inversion in most shales.  
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2.3 Adsorption Mechanism 

2.3.1 BET Theory 

Langmuir’s monolayer adsorption study was extended by Brunauer, Emmett and Teller 

(1938), to multilayer adsorption (Lowell 1979). The BET theory assumes uppermost 

molecules in adsorbed stacks are in dynamic equilibrium with the vapor.  Using 

Langmuir’s theory as the starting point the specific surface area from BET theory can be 

calculated using the following equation: 

 
1

𝑉 [(𝑃𝑜 𝑃) − 1]⁄
=  

𝐶 − 1

𝑉𝑚  𝐶
 (

𝑃

𝑃𝑜
) +  

1

𝑉𝑚  𝐶
 (1) 

where, 

V – volume adsorbed, cm3/g STP 

P – equilibrium adsorption pressure, mmHg 

Po – saturated vapor pressure, mmHg 

Vm – volume adsorbed in completed monolayer, cm3/g STP 

C – BET constant 

  

Fig. 4: Typical BET Plot (slope and intercept help determine BET constant "C" and 

volume of adsorbed monolayer Vm) 
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The slope s and the intercept i of the BET plot are, 

 𝑠 =  
𝐶 − 1

𝑉𝑚  𝐶
 (2) 

and 

 𝑖 =  
1

𝑉𝑚 𝐶
 (3) 

Solving equation 2 and 3, Vm and C are, 

 𝑉𝑚 =  
1

𝑠 + 𝑖
 (4) 

and 

 𝐶 =  
𝑠

𝑖
+ 1 (5) 

The total surface area can then be calculated using 

 𝑆𝑡 =  
𝑉𝑚  𝑁𝐴 𝐴

𝑀
 (6) 

where, 

NA – Avogadro’s number (6.023 x 1023) 

A – atomic surface area of N2 at 77 K (0.162 nm2) 

M – adsorbate molecular weight (22.4) 

The ‘specific surface area’, defined as the area of the solid surface per unit mass of 

material, can then be computed by dividing the total surface area by the mass of the 

sample. 

Applications – BET theory works best for nonporous, mesoporous, and macroporous 

materials and is theoretically not applicable for microporous material (with pores < 2 nm) 

because of the occurrence of micropore filling instead of multilayer adsorption.  



20 

2.4 Micropore Volume Determination: The t-plot technique 

t- plot (Lippens and de Boer, 1965) is a widely used method permitting the determination 

of micropore volume and the external surface area (includes surface area from mesopores 

and macropores). In this method, the adsorbed nitrogen volume (VA) is plotted against the 

statistical thickness (t) of the adsorbed layer of N2. The statistical thickness obtained 

varies with the relative pressure (P/Po). The plot yields a straight line passing through the 

origin as shown in Fig. 5B, implying the sample is free of micropores. Fig. 5B, is 

considered as the standard V-t curve for a Type I isotherm and any deviation from the 

standard V-t curve, is considered as a non-linear region of the t- plot. t–plot of 

microporous material shows a straight line at medium values of t and a concave–down 

curve at lower values of t. Extrapolation of the linear region to the VA axis gives the 

specific micropore volume and the slope of the linear fit gives the external surface area. 

At higher t, convex-up deviation from the linear trend indicates capillary condensation in 

mesopores (usually the case for all the shale samples studied in this work). 

 

Fig. 5: V-t curve for Type I isotherm, (after Lowell et al. 2006). 
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In theory, the t- values were calculated using an empirical equation proposed in literature 

by Harkins-Jura (1944), Halsey (1948) and Lippens and de Boer (1965), and several other 

researchers considering N2 adsorption at 77 K on specific type of materials. 

 

Halsey equation  

 𝑡 = 3.54 [
5

ln(
𝑃𝑜

𝑃⁄ ) 
]

1
3⁄

     Å (7) 

 

de Boer’s equation is expressed as  

 𝑡 = [
13.99

log (𝑃𝑜 𝑃) + 0.34⁄
]

1
2⁄

     Å (8) 

 

A general form of the equation is shown below 

 𝑡 = 𝑎 [
1

log (
𝑃𝑜

𝑃 )
]

1/𝑏

 (9) 

a = 6.053 and b = 3 when liquid N2 is used as the adsorbate at -196°C (77.36 K). 

 

The proposed way of computing the micropore volume and external surface area using 

the t- plot method is shown in Fig. 6. The straight line represented by (1) is indicative of 

a non-microporous material. For a porous material, the line will have a positive intercept 

as shown by (3), indicating presence of micropores, or it suggests filling of the mesopores. 
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Fig. 6: An example of V-t curve for a sample showing filling of micropores. The lines 

in above figure correspond to the filling of micropores. (after Lowell et al. 2006) 

 

Intercept: Volume of micropores 

 𝑉𝑀𝑃 = 𝑖 ∗ 0.001547     𝑐𝑚3 (10) 

Slope: Surface area of micropores 

 𝑆𝑡 = 𝑠 ∗ 15.47    𝑚2/𝑔 (11) 

The surface area of micropores (Smic) can be estimated by subtracting the external surface 

area (Sext) calculated by the t- plot methods from the total surface area (SBET) obtained by 

the BET equation (Rouquerol et al., 2007; Webb and Orr 1997; Kuila and Prasad 2013). 

The following equations are used to compute the micropore surface area. 

Nonporous material: St = SBET 

Microporous material: St = Sext  

Smicro = SBET – Sext 

t (Å) 

V
A
 3

1 

3 

2 

no micropores with micropores 

1 2 3 
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2.5 Mesopore Analysis 

Mesopores are characterized by multilayer adsorption onto the pore walls and 

phenomenon of capillary condensation at high relative pressures with the formation of a 

curved liquid-like meniscus. Mesopore size distribution is generally computed using the 

Kelvin equation (eq. 12). 

 

2.5.1 Capillary Condensation  

The adsorption beyond the relative pressure range of 0.35 results in filling of the 

mesopores (2 to 5 nm) with the adsorbate liquid through the process of capillary 

condensation. The onset of hysteresis loop is an indication to the initiation of the process 

of capillary condensation. It is generally regarded as a secondary process, which is always 

preceded by adsorption of the gas on the pore walls.  

 

Fig. 7, gives a detailed understanding about the mechanism by which capillary 

condensation occurs. In a confined space (capillary tube) there is higher Van der Waal’s 

forces of attraction between each particle which implies less pressure is needed for 

condensation to occur. Eventually the vapor particles stick to the walls of the capillary 

mainly due to the adhesive forces (Fig. 7A). As more vapor particles enter the capillary 

tube the vapor particles attract to each other thus forming a multilayer adsorption (Fig. 

7B). This process continues until a meniscus forms at the liquid vapor interface (Fig. 7D). 

During the desorption phase the pore is filled completely and the adsorbate starts to 

evaporate from the liquid meniscus, taking the form of hemispherical shape having some 

contact angle at a pressure less than the condensation pressure (Fig. 7E). The radius of 
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curvature at that point is related to the pore radius (basis for Kelvin equation). The closure 

of the hysteresis at lower relative pressure resembles the situation of an adsorbed 

multilayer film, which is in equilibrium (Fig. 7F).  

 

 

Fig. 7: Schematic representation of multilayer adsorption, pore condensation and 

hysteresis in a single cylindrical pore (after Lowell et al. 2006) 

 

 

2.5.2 BJH Method 

The Barret-Joyner-Halenda (BJH) method was developed by Barret et al. (1951) to 

describe the phenomenon of capillary condensation in a cylindrical pore and for 

calculating the PSD using the Kelvin equation. They proposed a computational method 

of applying the Kelvin’s equation, to be able to account for the thinning of the adsorbed 

multilayer in the larger pores to determine the PSD from the measured adsorption 

isotherm data with decreasing relative pressure. The Kelvin equation (eqn. 12) gives the 

relationship between the relative pressure and the meniscus curvature of liquid condensed 

in a pore (Fig. 7E).  
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For nitrogen at the boiling temperature, the Kelvin equation is expressed as: 

 ln
𝑃

𝑃𝑜
=  

− 0.953

𝑟𝑚
 (12) 

where, 

P – actual vapor pressure, mmHg 

Po – saturation vapor pressure, mmHg 

rm – mean radius of curvature the liquid meniscus, Å 

 

Since the process of condensation is considered to occur after an adsorbed layer has 

formed on the pore walls, thickness of the adsorbed film is accounted for using one of the 

empirical equations to compute ta. For cylindrical pores, 

 𝑟𝑝 =  𝑟𝑚 +  𝑡𝑎 (13) 

where, 

rp – cylindrical pore radius, Å 

ta – thickness of the adsorbed film, Å 

The curvature of the equilibrium meniscus is affected by pore geometry and hence, the 

Kelvin equation should be represented differently every time the meniscus changes. 

 

Groen et al. (2003) reported that use of the desorption branch of the isotherm to obtain 

the PSD would limit the accessibility of pores to approximately 4 – 5 nm, due to the 

phenomenon of tensile strength effect (TSE). Instead if, the adsorption branch of the 

isotherm was used for obtaining the PSD, the accessibility of the pores will be 2 nm, since 

the Kelvin equation becomes invalid in the micropores.  
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2.5.3 Density Functional Theory Method 

The Density Functional Theory commonly known as the DFT model is based on the 

principle of molecular statistical thermodynamics. The DFT model offers a practical 

alternative to the previously used methods, i.e. molecular dynamics and Monte Carlo 

simulations. Based on the microscopic properties of the system, such as fluid-fluid and 

fluid-solid interaction energy parameters, the pore size, the pore geometry, as a function 

of temperature has been modeled in the past using different molecular simulation 

approaches such as GCMC (Grand Canonical Monte Carlo simulation) and molecular 

dynamics to model the distribution of gas molecules in a system that is in equilibrium. 

The DFT model is a practical alternative to the above-mentioned methods since it is 

computationally less intensive and provides an accurate method of describing 

heterogeneous systems. This model results in a realistic equilibrium density distribution 

for the confined fluid as a function of temperature and pressure. Do and Do (2003) 

reported the DFT model provides a more accurate approach for pore size distribution 

(PSD) and can be used for pore size analysis for pores in the micro (< 2 nm) and meso (2 

– 50 nm) scale. 

 

Any porous solid material is never characterized by a single pore dimension, instead 

exhibits a wide distribution of pore sizes. DFT is useful in determining pore size 

distributions. The isotherm obtained as a result of adsorption on the pores, is assumed to 

be a combination of isotherm behavior in individual pores of different sizes, as shown in 

Fig. 8a. Each pore size contributes to the total isotherm. Mathematically, the relation 
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between the total isotherm obtained and the fraction of the total area of the sample that it 

represents is given by, 

 𝑄 (𝑝) =  ∫ 𝑑𝐻 𝑞(𝑝, 𝐻) 𝑓(𝐻) (14) 

where, 

Q(p) – the total quantity adsorbed per unit weight at pressure p 

q (p, H) – the quantity adsorbed per unit area at pressure p in an ideal pore size H 

f(H) – the total area of pores of size H in the sample 

 

Several researchers preferred using the DFT technique for inversion of the data to obtain 

the PSD, e.g.  Adesida (2011) and Clarkson et al. (2012). The advantage of the DFT 

model is that it applies over the complete (P/Po) range of the isotherm and is not restricted 

to a confined range of relative pressures or pore sizes; however, it strictly applies to slit-

like pores.   

 

Fig. 8: (a) Model isotherm (quantity adsorbed versus pressure) for argon in a 4 nm 

slit pore by DFT method. (b) Collection of model isotherms with different pore sizes 

(H), used to obtain the pore size distribution. (images from Micromeritics software 

manual, 2012) 
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 2.6 PSD Inversion Technique: BJH or DFT?          

The two most common inversion techniques for PSD analysis from N2 isotherm data 

include BJH and DFT techniques.  

 

One of the key assumptions used for inverting the isotherm data to obtain PSD by BJH 

technique, is the thickness equation that quantifies the thickness of the adsorbed layer on 

the pore surface as a function of relative pressure (P/Po). BJH inversion of adsorption 

isotherm data using different thickness equations is shown in Fig. 9. Significant 

differences in the calculated differential pore volume exists for the same isotherm 

experiment depending on which thickness equation is used (Fig. 9). In each case, the 

dominant pore modes remain the same regardless of the thickness equation used but the 

differential pore volume for each pore-size differs particularly at the smaller size range.  

For comparative purposes the choice of any given thickness equation is immaterial as 

long as it is kept consistent across a sample set. Rouquerol et al. (1994) concluded that 

the real pore structures are much more complex than the models can account for and that 

the inversion is based on theoretical assumptions. The reported pore sizes are considered 

as cylindrical PSD.  

 

The key assumption used for inversion in the DFT technique, is the shape of the pores is 

slit-type. This technique is more rigorous and has potential for applications in the study 

of shales, since the model calculates the specific adsorption amount in an individual pore 

range at a given experimental temperature and pressure by solving the function of grand 
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thermodynamic potential in terms of the distribution of gas density in a specific pore 

space (Li et al., 2016).  

 

Fig. 9: PSD obtained from the inversion of N2 gas adsorption data for a Wolfcamp 

shale sample from oil window using different thickness equation in the BJH method. 

The PSD shows similar peaks but the absolute volume differs depending on the 

thickness equation used.  

 

 

Fig. 10: An example of PSD of a Wolfcamp shale sample from oil window obtained 

using DFT kernels with N2 as the adsorbate.  
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Fig. 11: The model fit to the experimental adsorption data obtained for the 

Wolfcamp shale sample from oil window shown in Fig. 10. The average fitting error 

between the experimental and theoretical isotherm for DFT analysis as shown above 

is less than 0.9%. 

 

The inversion of the adsorption data from the Wolfcamp shale sample from the oil 

window using DFT model results in PSD as shown in Fig. 10 and the fit for the adsorption 

isotherm data points is as shown in Fig. 11.  The isotherm data fits perfectly with the 

model indicating lesser chances of error in the inversion of data to determine the PSD.  

 

In this study, DFT inversion technique was used, since in most cases the wt% of minerals 

dominate the composition of the shale matrix over the OM content. In addition, the pore 

shapes associated with these minerals are mainly slit type (inferred using SEM-Fig. 25) 

and hence using the DFT inversion is appropriate in shales over other inversion models. 

BJH method of inversion was used for the kerogens since the SEM images confirmed that 

the organic pores are cylindrical in shape.  
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Chapter 3: Experimental Procedure 

3.1 Introduction 

A brief description of sample preparation and methodology adopted for solvent extraction 

of shale samples is explained. SEM images were used for visualizing the pore structure 

and for analyzing the removal of soluble hydrocarbons through pre- and post- solvent 

extraction imaging. Shale samples studied during the course of this work include: Lower 

Bakken, Wolfcamp, Woodford, Eagle Ford, Barnett, and Marcellus. In addition, two 

samples of kerogen from immature Green River and Kimmeridge shales were part of this 

study. The shale samples studied vary in maturity from immature, oil, condensate and gas 

window.  

 

3.2 Experimental Workflow and Sample Description 

Samples were pulverized to 35 mesh (500 µm) and oven dried at 100°C for 24 hours 

(Sondhi 2009) to remove any free water or volatile hydrocarbons. Thereafter, the samples 

were subjected to petrophysical measurements. In addition, the “as received” (native-

crushed) shale samples were subjected to solvent extraction using a 4:1 mixture of 

toluene:methanol in a Soxhlet extractor to remove the soluble hydrocarbons. Fig. 12 

shows a flow diagram of the procedure followed in measuring the petrophysical 

properties. 
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Fig. 12: Flow chart summarizing the measurement sequence and the scope of the 

measurements. Part A: Samples are first analyzed in the “as-received” state and 

then solvent extracted as shown in Part B and reanalyzed. 

 

Petrophysical and geochemical properties of each formation are given in the Appendix 

B. In addition to the organic rich shale samples, seven – isolated kerogen sample were 

also studied. Durand (1980) defined kerogen as the fraction of sedimentary OM insoluble 

in commonly used organic solvents. The isolated kerogen ranged in maturity from 

immature to overmature. 

  

3.3 Methods 

A brief description of the methods for mineralogy (FTIR), TOC, SRA and SEM is given 

in Appendix A. 

 

Part – A  

Part – B  

Plug 

Plug 
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3.3.1 Nitrogen Adsorption  

Low-pressure N2 gas adsorption is a technique used to characterize the pore structure of 

shale (Ross and Bustin, 2009; Labani et al., 2013; Mastalerz et al., 2013). In this study, 

liquid nitrogen is used at its boiling point (77.36 K at 730 mm Hg pressure). The 

adsorption and desorption isotherms are obtained over a relative pressure (P/Po) range of 

0.05 to 0.99 at a constant temperature using Micromeritics Surface Area and Porosity 

Analyzer instrument. The experiment is carried out by increasing the pressure up to 

condensation pressure (adsorption branch) followed by reduction of pressure from Po i.e. 

the saturation pressure (desorption branch). The gas adsorption isotherm is reported as 

the quantity of gas adsorbed as a function of relative pressure (P/Po). Depending on the 

shape of the isotherm and the hysteresis pattern obtained the types of pores present can 

be qualitatively predicted based on the IUPAC classification. The details of each isotherm 

and its interpretation are discussed in detail in Chapter 2, section 2.2.2.  

3.3.1.1 Set up 

Micromeritics Tri-Star™ II 3020 instrument was used for adsorption study. Fig. 13 shows 

the schematic of the sample tube which is placed inside the dewar containing liquid 

nitrogen at -196°C (77.36 K) for determining the quantity of nitrogen adsorbed. The 

detailed procedures are described in the Appendix A. 

In the analysis port, at first the free space (dead volume of the tube) is volumetrically 

measured using helium prior to the measurement of the adsorption and desorption 

isotherm. The sample tube, as shown in Fig. 13, is kept in a liquid nitrogen dewar and 

dosed with a known amount of nitrogen at a series of precisely controlled pressures. The 
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molar quantity of nitrogen dosed to the sample is calculated from the pressure and 

temperature measurement, using the real gas equation of state.  

 

 

Fig. 13: Schematic of a sample tube placed in dewar containing liquid nitrogen, 

LN2, at cryogenic temperature of -196°C (77.36K). 

 

The instrument was used to measure the amount of gas adsorbed on the surface of the 

crushed shale samples which was then used to determine the surface area within the 

relative pressure range of 0.05 – 0.30 using the multi-point BET equation (Brunauer et 

al., 1938). The PSD was computed using the adsorption branch of the nitrogen isotherm 

using the DFT model for pores between 2 to 200 nm in diameter.  
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3.3.1.2 Calibration  

Accurate calibration of the system is crucial in determining the quantity of gas dosed and 

subsequently the quantity adsorbed by the sample. The pressure transducers are crucial 

measuring devices in this setup and are calibrated using an empty sample tube to get a 

value of zero quantity adsorbed. The system is then checked for accuracy using a 

reference material, in this case carbon black. The calibrated isotherms in all three test 

ports are shown in Fig. 14. The surface area for carbon black in all the three ports were 

within the range of 20.6 ± 0.75 m2/g provided by the manufacturer.  

Additionally, the system was run with pure clay minerals obtained from University of 

Missouri – Columbia Source Clay Minerals Repository. This was done as an additional 

check. The clay minerals tested are listed in Table 2. The results obtained are compared 

with those reported in literature.  
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Fig. 14: Adsorption-desorption isotherms using nitrogen at 77.36 K for carbon black 

(standard reference) in test ports 1, 2 and 3. The isotherms do not show hysteresis 

confirming the carbon black sample used is non-microporous.  

 

 

Table 2: List of clay minerals with its source 

Clay Minerals Source 

Illite (IMt-1) Cambrian Shale 

Kaolinite (KGa-1b) Warren County, Georgia 

Na-Montmorillonite (SWy-2) Gonzales County, Wyoming  

Smectite Separated by density using a proprietary 

gravimetric procedure developed by Statoil 

 

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

a
n

ti
ty

 A
d

so
r
b

e
d

 (
c
m

3
/g

 S
T

P
)

Relative Pressure (P/Po)
CB-1 Adsorption CB-1 Desorption

CB-2 Adsorption CB-2 Desorption

CB-3 Adsorption CB-3 Desorption

Surface area – Carbon Black

Port 1 – 20.16 m2/g

Port 2 – 20.22 m2/g

Port 3 – 20.17 m2/g



37 

Fig. 15 shows the adsorption-desorption isotherms of the clay samples. We know, that 

the shape of the isotherms can be used to qualitatively assess the porous structure of the 

materials. The isotherms of illite, montmorillonite and smectite differ from the shape of 

isotherm obtained for kaolinite.  

 

Kaolinite shows an almost reversible Type II isotherm indicating absence of micro- and 

mesopores with macropores being dominant. The amount of gas adsorbed at low relative 

pressure (P/Po – 0.05) is very small indicating that kaolinite has negligible or non-

existent micropores. On the other hand, illite, montmorillonite and smectite show a 

significant hysteresis pattern. As per the IUPAC classification, they show a Type IV 

isotherm. The distinct hysteresis patterns observed between the evaporation and 

condensation isotherms, suggest that capillary condensation has occurred within the 

mesopores (Gregg and Sing, 1982; Bustin and Clarkson, 1999). Failure to show a plateau 

at high relative pressure is an indication of presence of macropores in the material.  These 

clay minerals show Type H3 hysteresis pattern indicating the presence of slit-like pores.  
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Fig. 15: Adsorption-desorption isotherms using nitrogen at -196°C (77.36K) for 

powders of illite, kaolinite, montmorillonite and smectite. The hysteresis effect is 

prominent in illite, montmorillonite and smectite and not in kaolinite. This indicates 

that micro-, meso- and macropores dominate in illite, montmorillonite and smectite 

while macropores dominate in kaolinite. 

 

Cases et al. (1992) and Kuila and Prasad (2013) reported that micropores in smectite have 

slit-shaped or wedge shaped pores. The isotherms also show the ‘forced closure’ of the 

desorption branch at relative pressure of 0.45-0.5 due to the ‘tensile strength effect’. This 

indicates that illite, montmorillonite and smectite have significantly larger amount of 

small mesopores with diameter < 4 nm (Groen et al. 2003). This implies that the illite, 

montmorillonite and smectite have more micropores in comparison to the kaolinite. 
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Macht et al. (2011) studies of pure clay minerals, reported that the surface area of various 

pure clay minerals varies from 40 m2/g to about 200 m2/g depending on the particle size 

and the degassing temperature. The results in this study are consistently lower than those 

reported in literature since our degassing temperature (100°C) was lower than the values 

reported by other reserachers. A comparison of the lab study on the clay minerals with 

those reported in literature is shown in Table 3.  

Table 3: Comparison of clay surface area from this study and literature studies 

based on N2 adsorption isotherms. 

Clay Minerals 

N2 SBET – This 

study (m2/g) 

N2 SBET - Literature 

(m2/g) 

References 

Smectite 26.8 31.1 Kuila and Prasad 2013 

Illite 23.4 29.4 Ross and Bustin 2009 

Na-rich 

Montmorillonite 

24.7 30 Ross and Bustin 2009 

Kaolinite 19.1 

15.7 

11.5 – 21.0 

Liu et al., 2013 

Cao et al., 2015 
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3.3.2 Solvent Extraction  

The samples in this study were analyzed in two different states:  

a. “as-received” and  

b. toluene and methanol extracted.  

About 10 – 12 grams of shale samples were crushed to a uniform particle size less than 

35 mesh (<500 microns). The samples were thoroughly mixed. The basic petrophysical 

measurements included values of crush helium porosity, grain density, surface area, 

organic content and thermal maturity. Shale samples for solvent extraction were 

individually wrapped in a filter paper thimble. Based on a previous study by Gupta et al. 

(2017), we used a mixture of toluene and methanol in the ratio of 4:1 and heated between 

65 to 75°C for a period of 24 hours to remove soluble hydrocarbons or ‘bitumen’. The 

samples after solvent extraction were dried in an oven for 48 hours at 100°C for 

evaporating any organic solvents present in the sample post extraction. Petrophysical 

measurements were repeated post extraction.  

 

 

3.3.3 Gas Chromatography-Mass Spectroscopy 

The shale samples from each well/formation were solvent extracted as described in 

section 3.3.2. The extracted filtrate or hydrocarbons after cleaning the shale samples, 

were concentrated using rotary evaporation and then analyzed using gas chromatography-

mass spectroscopy (GC-MS). GC-MS analysis was performed using Agilent 

Technologies 7890B GC system. The GC oven temperature was maintained between 

70°C and 300°C. 
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An example of the gas chromatography (GC) spectrum conducted on the extracted 

hydrocarbons is shown in Fig. 16. GC measurements provide the composition of the 

extracted liquid hydrocarbon phase. Liquid hydrocarbon constituents from C11 to C30+ 

were measured. The measured density of the soluble hydrocarbons varied from 0.71 to 

0.85 g/cc. The apparent density of bitumen was calculated by volumetric averaging of 

elemental alkanes. The quantified density of the soluble hydrocarbons was later used to 

compute “extra” porosity (discussed in section 3.3.4), which was occupied by residual 

heavy hydrocarbons. 

 

Fig. 16: An example of GC-MS spectrum used to analyze residual hydrocarbon 

composition. Each of the major peaks corresponds to different alkanes from C11-

C30+. 

 

 

 

 

 

 

C17 

C30+ 
C11 
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3.3.4 Extra porosity Determination 

The amount of extra porosity exposed in each sample during the process of solvent 

extraction was then computed using the equation 16 (derived in Appendix A): 

 ∅𝐻𝑒
𝑐𝑙𝑒𝑎𝑛 =  ∅𝐻𝑒

𝑛𝑎𝑡𝑖𝑣𝑒 +  ∅𝑒𝑥𝑡𝑟𝑎  (15) 

   

 ∅𝑒𝑥𝑡𝑟𝑎 =  
𝜌𝑔

𝑐𝑙𝑒𝑎𝑛 −  𝜌𝑔
𝑛𝑎𝑡𝑖𝑣𝑒

𝜌𝑔
𝑐𝑙𝑒𝑎𝑛 −  𝜌𝑏𝑖𝑡𝑢𝑚𝑒𝑛

 (1 −  ∅𝐻𝑒
𝑛𝑎𝑡𝑖𝑣𝑒) (16) 

where, 

 𝜌𝑔
𝑐𝑙𝑒𝑎𝑛 − grain density of the clean sample, gm/cc 

𝜌𝑔
𝑛𝑎𝑡𝑖𝑣𝑒 − grain density of the native sample, gm/cc 

𝜌𝑏𝑖𝑡𝑢𝑚𝑒𝑛 − density of the extracted HC obtained using mass spectroscopy, gm/cc 

∅𝐻𝑒
𝑐𝑙𝑒𝑎𝑛 − porosity of the clean sample 

∅𝐻𝑒
𝑛𝑎𝑡𝑖𝑣𝑒 − porosity of the native sample 

∅𝑒𝑥𝑡𝑟𝑎 − porosity obtained after extraction of the soluble HC’s 

 

3.3.5 Kerogen isolation 

To investigate the impact of thermal maturity and different OM type on surface area 

measurements and to understand their dominant pore sizes, kerogen samples from 

different shale formations (Kimmeridge, Green River, Woodford, Marcellus) were 

selected for this study. Kerogen concentrates of the bulk were prepared by means of 

conventional demineralization method by a commercial lab. A detailed procedure is 

discussed in the Section 6, Appendix A. 
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Chapter 4: Results and Discussions 

A total of 94 samples were studied: 27 samples from Wolfcamp, 8 samples from Barnett, 

16 samples from Lower Bakken, 8 samples from Woodford, 4 samples from Marcellus, 

23 samples from Eagle Ford and 8 from Vaca Muerta. Petrophysical measurements were 

carried out on all the samples in their “as-received” and after solvent extracted state. The 

shale samples were analyzed to examine the relationship between nitrogen gas adsorption 

capacity, TOC content, kerogen type, thermal maturity, mineral compositions and pore 

size distribution (PSD).  

 

4.1 Sample Mineralogy  

Mineralogy of all the samples was determined using transmission FTIR. The average 

mineralogy for the shale formations is presented in the Fig. 17. Lower Bakken, 

Wolfcamp, Woodford and Marcellus samples are rich in clay (average of greater than 40 

wt.%). Eagle Ford samples are rich in carbonates with calcite being the dominant 

carbonate mineral (greater than 70 wt%).  All the shales had clays present with illite being 

the dominant clay. No significant amount of smectite was present in the samples studied.  

  
 

2%

76%

15%

3%4%

Eagle Ford

40%

10%

41%

8% 1%

Woodford



44 

   
 

  
 

  
 

 

Fig. 17: Average FTIR mineralogy of the shales presented in this study  
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4.2 Total Organic Carbon 

The TOC values for the “as-received” samples from the immature window range from as 

low as 0.7 wt% to as high as 16 wt% (Fig. 18 – immature: patterned bars). The average 

TOC values for each of the maturity window in their “as-received” state are immature 8.6 

wt%, oil 5.8 wt%, condensate 4.9 wt%, gas 4.9 wt%.  

 

Fig. 18 represents a box and whisker plot for measured TOC values for all the shale 

samples pre- and post- solvent extraction from varying maturity windows. The patterned 

bars represent TOC values in the as-received state whereas the filled bars represent the 

TOC values post extraction. The cross marks within the box plots represent the average 

values for each case and the horizontal black line represents the median of the dataset. 

Post extraction the TOC value reduces the maximum in the oil window and least in the 

gas window. N indicates the number of samples in each maturity window. Individual 

value of TOC for each sample are reported in Appendix B.  
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Fig. 18: Box and whisker plot of TOC measured in different shale formations plotted 

based on their maturities. The cross marks in each bar represents the average TOC 

value.The average TOC values for immature, oil, condensate and gas in their as-

received state are 8.6, 5.8, 4.9, 4.9 wt% respectively. The TOC value reduces post 

extraction showing maximum reduction in the oil window and least in the gas 

window. N indicates the number of samples in each maturity window. 

 

 

 

 

 

 

 

 

N = 23 N = 21 N = 29 N = 12 
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4.3 Source Rock Analysis  

The pyrolysis flame ionization detector was used to detect the S1 and S2 peaks to identify 

the hydrocarbon components liberated at varying temperatures. The S1 fraction contains 

most of the residual light hydrocarbons and condensate trapped within the pore spaces of 

the rock. McCarthy et al. (2011) states that majority of the S2 peak comes from kerogen 

and is thus immovable. Fig. 19 and Fig. 20 represents the SRA S1 and S2 values pre- and 

post-extraction respectively in the form of a box and whisker plot. The S1 value decreases 

considerably post extraction in immature, oil and condensate window implying the 

removal of the producible liquid hydrocarbons by dissolution in the organic solvents. In 

case of the gas window there is negligible S1 indicating all the producible liquid 

hydrocarbon has been converted to gas. 

 

Fig. 19: Box and whisker plot of SRA S1 peak values pre- and post-extraction for 

shale samples from different maturity windows. The change in S1 peak post-

extraction is significant indicating the removal of producible liquid hydrocarbons 

and a part of bitumen that are generated below 300°C. Gas shale samples do not 

show any S1 peak affirming the conversion of the hydrocarbons to the gas. 
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Fig. 20 shows the change in S2 values for different maturity windows. S2 represents the 

fraction of hydrocarbons that are generated above 300°C. It is observed that the change 

in S2 value is minor in comparison to the significant change seen in the S1 values post-

extraction. The minor change observed in S2 value is likely due to the dissolution of the 

bitumen since the majority of kerogen which contributes to the S2 value is insoluble in 

the organic solvents. 

 

Fig. 20: Box and whisker plot of SRA S2 values pre- and post-extraction for shale 

samples from different maturity windows. The change in S2 peak post-extraction is 

minor in comparison to the S1 peak. Similar to the S1 peak the samples from the gas 

maturity window do not show significant presence of S2 peak.  
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4.4 Crushed Helium Porosity and Extra Porosity as a function of Maturity   

The effective porosity of the samples was obtained using Karastathis (2007) method. The 

porosity for the “as-received” state of samples ranges between 1.65% to 12.55%. The 

average porosity values for each of the maturity studied are 3.74% (immature), 6.19% 

(oil), 7.85% (condensate), and 7.2% (gas).  The porosity measurements were repeated 

after samples were Soxhlet extracted using toluene and methanol (4:1). Post extraction 

there was a certain coloration of the organic solvents suggesting removal of mobile 

hydrocarbons. The bitumen density was computed using GC-MS spectra for each well 

after the extracted fluids were concentrated and then using equations 15 and 16 described 

in section 3.3.4, the increase in porosity was computed.  

 

A comparison of the “as-received” and solvent extracted porosities is shown in Fig. 21 in 

the form of box and whisker plot. The cross marks in the center of the bars indicate the 

average value for each case. Crushed rock helium porosities measured pre- and post- 

solvent extraction shows a general increase in porosity. Post extraction the average 

porosities in each maturity window increase from 3.7% to 7.2% for immature, 6.2% to 

8.6% for oil, 7.9% to 9.3% for condensate and 7.2 to 7.9% for gas window. This increase 

implies, that the occupancy and blockage of pore spaces in shales by bitumen and mobile 

oil significantly affects the porosity measurements. The average percentage increase in 

porosity is in the following order: immature (93%) > oil (39%), condenste (19%) > gas 

(10%).  
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The increase in porosity can be attributed to the removal of soluble hydrocarbons and 

solid bitumen from the pore system (either coating on the grains or from the pore network 

of the samples) using organic solvents. To identify as to where the soluble HC’s are being 

removed from, the PSD analysis for pre- and post- solvent extraction  was done, results 

are shown in Section 4.6.2. In addition, the SEM images (discussed in detail in Section 

4.5) were used as a visual aid to quantify the removal of soluble hydrocarbons during 

Soxhlet extraction in each maturity window and visually identify the removal of HC 

coating on the grains. 

 

Fig. 21: Box and whisker plot of crushed helium porosity for different maturity 

shales pre- and post- solvent extraction. The cross marks in each histogram 

represents the average porosities in each case. The average percentage increase in 

porosity for immature, oil, condensate, and gas window are 93%, 39%, 19% and 

10%, respectively. The increase in porosity post-extraction is high in the liquid rich 

shales implying the presence of soluble HC’s leading to an underestimation of the 

effective porosity of the shales in the “as-received” state. N indicates the number of 

samples in each maturity window. 

 

N = 23 N = 21 N = 29 N = 12 
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The next step of this study, was to correlate the increased porosity, referred to as the 

“extra-porosity” with organic content for different thermal maturity windows (Fig. 22). 

 

We observe a good correlation for the samples in the immature and the oil window. This 

implies that the impact of Soxhlet solvent extraction is good in immature and oil window 

removing the soluble (mobile) hydrocarbons. In case of the gas window there is a weak 

negative correlation, suggesting absence of the mobile hydrocarbons.  

  

  

Fig. 22: Relationship between extra porosity and TOC – post extraction, wt% for 

different thermal maturity window. The strongest correlation coefficients are 

obtained with the immature and oil window. 
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Fig. 23: Relationship between extra porosity with TOC, wt.%. The extra porosity 

was obtained due to removal of soluble hydrocarbons during Soxhlet extraction. 

 

Fig. 23 is a combination of all the samples from each maturity window shown in Fig. 22 

to have a broader look at all the formations and maturity together. The results indicate a 

positive linear correlation between the two parameters, i.e., “extra” porosity and TOC. 

The maximum amount of extra porosity was found in the Lower Bakken formation, which 

belongs to the immature window. A unique trend is observed in each well which can be 

attributed to the maturity, clay and organic content.  
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4.5 SEM 

Figs. 24, 25 and 27 show SEM images of Bakken, Eagle Ford and Marcellus samples 

from the immature, oil and gas maturity window, respectively, pre and post solvent 

extraction. These samples were selected based on their TOC and clay contents. 

 

The Bakken sample has high clay (57 wt.%) and organic content (13.2 wt.%). Fig. 24 

shows the SEM pre and post solvent extraction. The image shows extremely high organic 

content with very little organic pore development. This is consistent with the measured 

surface area for the “as-received” state which was only 2.74 m2/g. The image shows a 

clear boundary between the organics and the minerals separated by fractures. 

 

Fig. 24: SEM images of the immature shale from the Lower Bakken formation 

(clay – 57 wt%, TOC – 13.2 wt%,) showing the cracks and poorly developed organic 

matter pores. The image shows removal of some soluble HC post extraction. 

Pre –  

  

Post –  
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The Eagle Ford sample from the late oil window shows the presence of small pores hosted 

inside the organic pores. After solvent extraction more pores are exposed. It is clear from 

these images that the pore sizes increase with the removal of bitumen and soluble 

hydrocarbons are removed. The images on the right show exposure of the previously 

coated clays and organics “post extraction”. These clays and organics contribute to the 

increase in porosity and surface area, that we observe as a function of solvent extraction 

mainly in the oil and the condensate window.  

 

 

3 µm 

5 µm 

Pre –  Post –  

Post –  Pre –  
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Fig. 25: Alteration in organic microstructure before and after solvent extraction in 

Eagle Ford - late oil window (clay – 14.3 wt% and TOC – 5.2 wt%) sample 

qualitatively providing information about the location of the pores throughout the 

sample. In each case, the size of the pores within the organics increases upon solvent 

extraction. 

 

The above image shows how the bitumen occupies the pore and hinders the pore 

connectivity and inhibits the exposure to the organics which are the main contributors to 

the surface area.  

 

Loucks et al. (2009) reported that the shale reservoirs host abundant pores in OM. In the 

gas window, Curtis et al. (2012) observed more porosity in the organic matter as the 

maturity increases. The general explanation given by Curtis et al. (2012) is that the 

generation of hydrocarbons by cracking of the kerogen will produce porosity in the 

organic matter. Valenza et al., (2013) observed an increase of the specific surface of the 

organic matter from 50 m2/g on immature samples to 400-600 m2/g on post mature 

samples. This is consistent with the development of porosity as a function of maturity. 

However, the weakness of the trend observed by Curtis et al., (2012) suggests that the 

10 µm 

Post –  Pre –  



56 

origin of the organic matter could play an important role on the generation of organic 

porosity or possibly the inadequacy of the Ro (%) measurements. 

 

Fig. 26: Organic porosity as a function of thermal maturity (Curtis et al. 2012). A 

weak positive correlation can be observed. This implies thermal maturity is a 

contributing factor but not the sole factor controlling adsorption. 

 

Based on the above explanations and studies we find the SEM images for the Marcellus 

sample show ample numbers of smaller organic pores. This accounts for the high surface 

area (41.53 m2/g) obtained in the “as-received” sample. In addition, if we closely examine 

the images pre and post extraction, we do not see any change in the size of the pores or 

any visual change in the microstructure implying all the bitumen has been converted to 

gas during maturation. The numerous organic pores are a result of cracking of kerogen.  
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Fig. 27: SEM images of the gas shale from the Marcellus formation (clay – 72 wt%, 

TOC – 4.5 wt%) showing abundant organic pores. There is no change in the 

microstructure pre- and post-extraction. The pores associated with clay minerals 

appear to be slit-shaped.  
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4.6 Adsorption / Desorption Isotherms for shales and kerogens 

Nitrogen adsorption/desorption isotherms and their hysteresis patterns may provide 

information about the physisorption mechanism and pore structure characteristics of 

shales (Kuila and Prasad, 2013). In this study, nitrogen gas adsorption technique was used 

to obtain the quantitative pore structure parameters including the specific surface area 

(SSA) and PSD of OM with different thermal maturity.  

 

4.6.1 Low pressure N2 analyses – Organic rich shales  

Low pressure N2 isotherms for “as-received” and solvent extracted organic rich shale 

samples are shown in Fig. 28. According to the IUPAC classification of isothermal 

adsorption curves, the isotherms of shale samples were confirmed to be Type IV and 

hysteresis is Type H3 indicating slit-shaped pores (Sing et al. 1985) and the ‘forced 

closure’ phenomena of the desorption isotherm confirming the presence of pores with 

diameter less than 4 nm. 

 

In general, the adsorbed N2 quantity and the specific surface area increased post 

extraction, Figs. 28 a, b, c and d. The adsorption isotherms show that, the adsorption 

quantity dramatically increases as the relative pressure approaches 1.0, without showing 

a saturation phenomenon. This implies the presence of meso- and macropores in the shale 

sample and confirming the occurrence of capillary condensation at higher relative 

pressures. The Soxhlet extract was analyzed using GC-MS spectra which showed the 

presence of both light and heavy hydrocarbons from C11 to C30+. This confirms that 

solvent extraction removes intermediate to heavy hydrocarbons and hence the increase in 
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surface area in immature, oil and condensate window can be attributed to removal of 

soluble hydrocarbons which are clogging the pore space within the OM (Mastalerz et al., 

2013).  

 

The adsorption isotherm for the solvent extracted Bakken sample (Fig. 28a – immature 

window) shows a faster and a larger adsorption capacity than the adsorption isotherm for 

the “as-received” formation at lower relative pressure (P/Po < 0.8), indicating that the 

former (solvent extracted sample) has more nanopores. This confirms that Soxhlet solvent 

extraction removed the soluble hydrocarbons which previously coated the surfaces of the 

pores and decreased the estimation of the specific surface area. Valenza et al. (2013) 

observed similar increase in surface areas of shales after solvent extraction, especially 

noticeable within a Ro range of 1.0 – 1.5 %, and attributed this effect to the opening of 

formerly bitumen-clogged pores. The percentage increase in specific surface area after 

solvent extraction for different maturities are shown in Table 4.  

 

The adsorption isotherm for the “as-received” Marcellus sample (Fig. 28d – gas 

window), shows a higher surface area  compared to samples from lower maturities (Figs. 

28a – 28c). This large increase might be due to the generation of abundant nanopores 

during maturation which contribute to the surface area. Another aspect is that the percent 

increase in surface area post extraction is negligible in the gas window. This indicates 

that in these mature shales there is no mobile HC’s. 
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Fig. 28: Adsorption-desorption isotherms of the shale sample from: a. Bakken 

(immature), b. Wolfcamp 2 (oil), c. Wolfcamp 4 (condensate) and d. Marcellus (gas) 

formations. The isotherms for the native and clean samples from each formation are 

shown. In all but the Marcellus isotherm for the “as-received” sample shows a 

substantial surface area implying the presence of abundant nanopores. The circles 

represent the “as-received” state and the diamonds represent the solvent extracted 

state. 
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Table 4: Summary of the measured specific surface areas for the samples shown in 

Fig 22. 

Formation Maturity 

“As-received” 

surface area 

(m2/g) 

“Solvent-extracted” 

surface area  

(m2/g) 

Increase 

% 

Bakken Immature 4.68 16.44 251 

Wolfcamp 2 Oil 8.61 14.86 72.7 

Wolfcamp 4 Condensate 17.36 25.00 44 

Marcellus Gas 41.51 41.93 0.9 

 

The adsorption increases with increasing maturity, as shown in Table 4. Soxhlet extracted 

samples show noticeable changes in the quantities of adsorbed nitrogen. These 

observations indicate the BET surface area increases as much as 251% for samples from 

immature window to little change for samples from the mature gas window.  
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4.6.2 Pore size distribution for organic rich shales 

The distribution of pore volume with respect to pore size can be displayed as cumulative, 

incremental or differential distribution curves (Chalmers et al., 2012; Clarkson et al., 

2012; Kuila and Prasad, 2013). The plot of dV/dlog(D) versus D (pore diameter) is 

frequently used to display the PSD using the BJH method (Clarkson et al., 2012; Kuila 

and Prasad, 2013). In this study, DFT technique was used for the PSD analysis for the 

organic-rich shales between 2 – 200 nm for two reasons:  

1. The hysteresis pattern based on the IUPAC classification suggest the pores are slit 

shaped. 

2. The wt% of minerals dominated over the organic matter content and that the pore 

types associated with the minerals are slit type which was confirmed using SEM 

(shown in Fig. 27).  

 

The PSD of the mesopores and part of the macropores obtained from the gas adsorption 

analysis using differential and cumulative pore volumes pre-solvent extraction is 

presented in Fig. 29. For the immature window the PSD is mainly dominated by larger 

meso- and smaller macropores. In case of oil, condensate and gas window, the PSD 

suggested multi-modal distribution with the main mode approximately between 25 and 

60 nm and the other mode is less than 10 nm. 

Immature Samples 

For the immature window, the pore size is mainly dominated by larger meso- (> 10 nm) 

and smaller macropores in comparison to other maturity groups (Fig. 29 – Immature). 
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The PSD peaks in volume around 30 – 60 nm and progressively decreases in volume 

toward smaller pore sizes.  

Oil window samples 

Samples from the oil window exhibit a similar character to the immature wells,  but 

contain less porosity within the fine macropore and coarse mesopore size fraction (Fig. 

29 – Oil). The samples from Wolfcamp formation display a modal peak in pore volume 

at approximately 3 nm which is associated with clay hosted porosity, indicating clay 

microstructure may be a significant control on  porosity (Kuila et al. 2014b). The PSD 

peaks in volume around 30 – 90 nm and progressively decreases in volume toward smaller 

pore sizes. TOC shows a moderate control on the pore distribution, with greater TOC 

samples generally having greater pore volumes and vice versa.  

Condensate window samples 

The samples from the condensate window show variable amount of coarse meso- and 

macropores and slightly greater fine mesopore volumes in comparison to the immature 

and oil window samples. The pore volume only decreases slightly in the fine mesopore 

size fraction (Fig. 29 – Condensate). All the samples from the same well display similar 

pore size distribution trends. No significant correlation is observed between pore volume 

distribution and  TOC and moderate correlation with clay content. 

Dry gas window samples 

Overmature samples, in general have the least amount of pore volume within the 

macropore and coarse mesopore in comparison to samples from other maturity (Fig. 29 

– Gas). There is pronounce increase in pore volume with decreasing pore size.  High pore 

volumes are associated with high TOC (> 4 wt%) and high clay contents (> 40 wt%). The 
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sample with the greatest fine mesopore volume is associated with both high TOC (8.4 

wt%) and high clay content (48 wt%). 
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*BN – Barnett and MC – Marcellus  

Fig. 29: Comparison of PSD for immature, oil, condensate, and gas window. The 

graph for differential and cumulative pore volume from each maturity is shown as 

a function of pore width derived from the N2 adsorption branch of the isotherms 

using the DFT model. 
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The distribution of specific surface area with respect to pore size, for varying maturity 

samples show similar shapes. (Fig. 30). DFT method of PSD was used to quantify the 

mesoporous characteristics of the shale samples in each maturity window (Section 2.6). 

The PSD suggests that specific surface areas are dominated by pores smaller than 10 nm 

in width, which is consistent with the results for many gas shales in North American 

basins (Chalmers and Bustin, 2008; Ross and Bustin, 2009). 

 

Fig. 30: Comparison of surface area distribution with pore size derived from N2 

adsorption isotherm using DFT model for varying maturity samples. 

 

The next part of the analysis was to compare the distribution of specific surface area with 

respect to pore size, for samples from the immature, oil and gas window pre- and post-

extraction, to identify, where exactly the soluble HC’s are coming from (grain coating).  
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Fig. 31: N2 differential surface area plots for selected samples from varying thermal 

maturity window subjected to solvent extraction. Plots were generated using the 

DFT method applied to the adsorption branch of the isotherms. The maximum 

change in surface area was observed in the oil window suggesting removal of 

movable hydrocarbons from the finer mesopores. 
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Immature window samples 

In case of the sample from the immature window (Fig. 31 – immature) the method of 

solvent extraction is effective only in smaller mesopores (< 10 nm) suggesting that the 

organic solvent dissolves the soluble hydrocarbons and the solid bitumen present in these 

small pores. Another possibility can be that the residual oil mixes with the solvent, begins 

to mobilize and is redistributed within the porous network of the rock. Some of the oil 

may have coated the clay particles or entered the mesorpores greater than 7 nm. 

Oil, condensate and gas window samples 

In case of samples from oil, condensate and gas window it is evident that the impact of 

organic solvents is effective in the pores ranging from 2 – 20 nm, since, beyond 20 nm, 

the differential surface area curves overlay that of the “as-received” state of the samples 

suggesting most of the HC’s are coating the smaller grains thereby inhibiting the 

measurement of true surface area. 

 

4.6.3 Isolated Kerogen 

Kerogen was isolated from their respective shale formations and then analyzed for 

specific surface area and PSD. The shapes of the isotherms for each kerogen type are very 

distinct. Figs. 32, 33 and 34 shows a plot of quantity adsorbed versus relative pressure 

for kerogen samples from the immature, oil and gas maturity region having Tmax in the 

range of 417°C to >600°C.  

Green River (IM), Kimmeridge (IM), Woodford (IM), Lower Bakken (O) and Wolfcamp 

(O) kerogens barely show any hysteresis. The forced closure of hysteresis at relative 

pressure of 0.45 was not observed suggesting absence of micropores. The presence of 
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larger meso- and smaller macropores is confirmed by the gradual uptake of N2 at relative 

pressure of 1.0. 

 

 

 

Fig. 32: Nitrogen adsorption and desorption curves for different kerogen samples 

from the immature window. 
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Fig. 33: Nitrogen adsorption and desorption curves for different kerogen samples 

from the oil window. 

 

 

Fig. 34: Nitrogen adsorption and desorption curves for different kerogen samples 

from gas window. 
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isotherm does not show a strong ‘forced closure’ of the desorption branch (Groen et al., 

2003).  

 

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

Lower Bakken Adsorption

Lower Bakken Desorption

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Wolfcamp Adsorption

Wolfcamp Desorption

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

EagleFord Adsorption

EagleFord Desorption

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

Marcellus Adsorption

Marcellus Desorption

Relative Pressure, P/Po 

Relative Pressure, P/Po 

Q
u

a
n

ti
ty

 A
d

so
rb

ed
, 

c
m

3
/g

 S
T

P
 

Q
u

a
n

ti
ty

 A
d

so
rb

ed
, 

c
m

3
/g

 S
T

P
 



75 

The isotherm of the OM from the Marcellus sample shows a characteristic phenomena of 

hysteresis i.e. the open loop hysteresis as explained by Gregg and Sing (1982). They 

attribute this phenomenon of lack of hysteresis loop closure below a relative pressure of 

0.45, as the result of swelling or adsorption of nitrogen in the micropores. Mastalerz et 

al. (2012) and Cai et al. (2013) observed similar phenomena in adsorption in coals and 

marine shales.  

 

4.6.4 Pore size distribution for isolated kerogens 

The PSD for the OM was obtained using the BJH inversion method, since the OM pores 

are typically round to sub-round bubble-like pores (Fig. 27). These OM pores either occur 

as individual pores, unconnected bubble pores or as bubble pores that connect and create 

a potential network.  The OM samples from Woodford, Bakken and Eagle Ford have 

BET-surface area of 9.24 m2/g, 15.81 m2/g and 30.58 m2/g respectively.  

 

The PSD patterns for the isolated kerogens are similar to those of their shale counterparts, 

but the pore volumes associated with the kerogens is higher than the respective shale 

samples (Fig. 36).  
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Fig. 35: Plots showing pore volume distributions with pore diameter derived from 

the N2 adsorption branch of isotherms for Woodford, Bakken and Eagle Ford 

kerogens using BJH model.  

 

Fig. 36 shows the relationship between the pore size distribution and the pore surface 

area for the isolated kerogen from immature (Woodford), low maturity (Bakken) and 

mature (Eagle Ford) windows. The specific surface area of immature Woodford kerogen 

and the low-maturity Bakken kerogen is due to the pores of diameter below 10 nm. 

However, for the mature Eagle Ford kerogen the specific surface area is attributed to 

pores of diameter 2 and 9 nm. The specific surface areas progressively increases with 

thermal maturation as more gaseous hydrocarbons are generated which are associated 

with finer meso- and micropores.  
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Fig. 36: Plots showing pore surface area distributions with pore diameter derived 

from the N2 adsorption branch of isotherms for Woodford, Bakken and Eagle Ford 

kerogens using BJH model. The abrupt increase in the pore volume (6 – 10 nm) for 

the Eagle Ford sample can be due the irregular fit of the adsorption isotherm data 

points with the BJH model.  
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4.7 Surface area correlation with clay, TOC and thermal maturity on adsorption 

One of the important characterization parameters in evaluating the unconventional shale 

resource plays is the TOC. The amount of OM present is found to be directly proportional 

with total porosity (Passey et al., 2010), microporosity (Chalmers and Bustin, 2007; Ross 

and Bustin, 2009) and methane adsorption capacity (Lu et al., 1995; Cui et al., 2009; 

Zhang et al., 2012).  

 

The dependence of specifc surface area on clay content and TOC for the “as-received” 

shale samples is shown in Fig. 37 and 38. Fig. 37 shows a plot of BET surface area, m2/g 

for the “as-received” samples and clay content, wt%. The surface area obtained for the 

the “as-received” samples shows a very weak correlation with clay content. This is 

counter intuitive to the notion that increasing clay content should correlate with increased 

surface area. The graph consists of  data points from six formations and 10 different wells, 

varying in thermal maturity from immature to gas. The maximum surface area obtained 

was 41.51 m2/g (Marcellus – gas window) with a clay wt% of 48. The significance of the 

high surface area in over mature samples can be attributed to the presence of nanopores 

in the kerogen generated with increasing thermal maturation. The surface area of various 

pure clay minerals varies from 25 m2/g to about 200 m2/g (Macht et al., 2011). 
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Fig. 37: Relationship between BET-surface area and clay for “as-received” shale 

samples from different maturity windows. The surface area shows a weak positive 

correlation with amount of clay. The surface area increases as a function of maturity 

from as 1.14 m2/g (Wolfcamp 1 – immature) to as high as 41.51 m2/g (Marcellus – 

gas). The low surface area in the immature window can be attributed to the presence 

of soluble hydrocarbons coating the surface os the shale samples, masking the true 

surface area. The increase in surface area with increasing maturity is attributed to 

the generation of nanopores. 

 

Fig. 38 shows relation between BET-on “as received” surface area with OM content 

represented in terms of TOC. The data appear to possess considerable scatter. There is no 

definite correlation observed. As such, the differences in the amount and composition of 

organic and/or inorganic minerals in different shales may cause significant differences in 

the specific surface area. The open symbols represent “as-received” state of the samples.  
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Fig. 38: Relationship between BET-surface area and TOC for “as-received” shale 

samples from different maturity windows. The surface area shows a considerable 

scatter. There is no definite correlation observed between the two variables.  

 

Cao et al. (2015) concluded that the surface area in organic rich shale is mainly controlled 

by the kerogen type, clay mineral content and maturity. In addition, it is also influenced 

by dominant type of clay mineral, age, depth of burial and other factors. Lu et al. (1995) 

found that illite content was an important influence on the specific surface area of 

Devonian shales and that the CH4 adsorption capacity increased substantially with 

increasing illite content. Based on the results he also concluded that the structure of illite 

as it resides within the shales may differ from sample to sample, and that not all the illite 

in the shales is expected to be accessible for adsorption.  
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Fig. 39 shows the “as-received” specifc surface area and illite content for the different 

shales. We observed that above 20 wt% illite there is a positive relationship between the 

two parameters. In addition, the other observation that we highlight here is for the same 

illite content the higher maturity shale sample shows a higher specific surface area 

suggesting significant contribution to the total gas storage. In case of samples having low 

organic content, illite may be responsible for adsorbed gas storage in shale samples.  

 

Fig. 39: Cross-plot of “as-received” surface area with illite content. The data set 

from all the maturity is plotted and shows a weak positive correlation between the 

two parameters. The vertical line at 20 wt% illite is indicative of two different 

relationships observed. Lower illite content (< 20 wt%) do not show any correlation 

with specific surface area whereas, illite content greater than 20 wt% shows a weak 

positive relation.  
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Fig. 40 is a graphical representation (box and whisker) of surface area values as a function 

of maturity. 

 

Fig. 40: Box and whisker plot of N2-BET surface area in the “as-received” state for 

all wells, sorted by increasing maturity. The black line inside the bars is the median 

and the cross marks is the average. The wide range of values (e.g. Marcellus) may 

be indicative of the sedimentary variability. 

 

The next part of the study was to solvent extract the samples and re-examine the 

relationship between BET-surface area, clay content and TOC (post extraction) for 

immature, oil, condensate and gas maturity window (Figs. 41-44). The open symbols in 

the figures represent samples in the “as-received” state whereas the closed symbols 

represent the samples post extraction.  

Immature Oil Condensate Gas 
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To determine the dependence of clay content  and TOC on the BET-surface area multiple 

linear regression was run pre- and post-extraction in each maturity window on the above 

data set. The coefficients for clay and TOC, adjusted R2 and p-value for each case is 

mentioned in Table 5 (as-received) and Table 6 (solvent extracted). The significance 

level of α = 0.05 was used. A p-value (calculated probability) of 0.05 shows 95% 

probability that the observed relationships will exist, implying confidence in the observed 

relationship i.e. smaller the p-value (p < 0.05) larger the probability of correlation 

between the two parameters (surface area and TOC; surface area and clay). 

 

In case of “as-received” shale samples the N2 BET surface areas vary from 1.13 to 41.51 

m2/g. No significant correlation exists between N2 BET surface area and sample 

composition when comparing all the wells. The lack of correlation can be attributed to 

the presence of wide range of thermally mature samples which alters the shale 

microstructure. For gas wells, N2 BET surface area averages 14.92 m2/g and shows no 

correlation with clay content (R2 = 0.14) and a  positive correlation with TOC (R2 = 0.63). 

 

With respect to the p-values listed in Table 5 for the “as-received” samples using multiple 

linear regression, the coefficients for clay and TOC do not have a significant effect on the 

prediction of surface area (p > 0.05) for the immature samples. In case of oil and 

condensate window the coefficents for clay showed a significant effect on the prediction 

of surface area with low p-value (p < 0.05) but no effect of TOC (p > 0.05). In case of the 

gas window, the story is reversed as we observed surface area has a strong dependence 

on TOC with very low p-value (p=0.005) and no dependence on clay (p=0.43). 
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Table 5: Statistical evaluation of TOC, clay and maturity on surface area in the “as-

received” state. 

Maturity Predictor Coefficients p-value Adjusted R2 

Immature 

Clay 0.017 0.49 

-0.03 TOC 0.042 0.53 

Intercept 2.75 0.0013 

Oil 

Clay 0.11 p < 0.05 

0.83 TOC -0.04 0.48 

Intercept 3.06 0.0005 

Condensate 

Clay 0.14 p < 0.05 

0.24 TOC 0.15 0.63 

Intercept 1.77 0.55 

Gas 

Clay 0.09 0.43 

0.58 TOC 4.87 p < <0.05 

Intercept -13.61 0.083 

 

Figs. 41-44 show the correlations between BET-surface area, clay content and TOC post 

extraction. The surface area measurements (post extraction) now show correlations with 

clay content and TOC which were not evident in the “as received” state (Fig. 37 and 38).   
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4.7.1 Immature window 

As-received Solvent extracted 

  

  

Fig. 41: Relationships between BET-surface area with clay and TOC for “as-

received” and solvent extracted state for the samples in the immature window 

(Bakken-dark orange, Wolfcamp 1-light orange). 
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4.7.2 Oil window 

As-received Solvent extracted 

  

  

 

0

5

10

15

20

25

30

0 20 40 60 80
Clay, wt%

0

5

10

15

20

25

30

0 20 40 60 80
Clay, wt%

0

5

10

15

20

25

30

0 5 10 15 20

TOC - As received, wt%

Eagle Ford 1 Wolfcamp 2

0

5

10

15

20

25

30

0 5 10 15 20

TOC - Solvent extracted, wt%

Eagle Ford 1 Wolfcamp 2

Fig. 42: Relationships between BET-surface area and clay and TOC for “as-

received” and solvent extracted state for the oil window (Eagle Ford 1-maroon, 

Wolfcamp 2-red) shale samples. 
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4.7.3 Condensate window  

As-received Solvent extracted 

  

  

Fig. 43: Relationships between BET-surface area with clay and TOC for “as-

received” and solvent extracted state for the condensate window (Eagle Ford 2-blue, 

Vaca Muerta-indigo, Wolfcamp 3-light blue, Wolfcamp 4-dark blue, Woodford-

purple) shale samples. 
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4.7.4 Gas window 

As-received Solvent extracted 

  

  

Fig. 44: Relationships between BET-surface area with clay and TOC, for “as-

received” and solvent extracted state for the gas window (Barnett-dark green,  

Marcellus-light green) shale samples. 
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Based on the observations from Fig. 41-44, a positive correlation is observed between 

“solvent extracted” surface area and TOC. Surface area has a clay content dependence 

which is evident only after extraction. We observe a similar behavior between the BET – 

solvent extracted surface area and TOC content. The correlation between surface area and 

TOC in each maturity window becomes stronger post-extraction implying that the true 

surface area of a rock is restored to its original value by solvent extraction and that clay 

surface area are hidden by residual oil. 

 

Wolfcamp 1 (immature) formation shales have low surface areas, this can be attributed 

to the fact that the kerogen nanopores are not well developed, which implies that the 

kerogens does not provide sufficient effective adsorption sites for gas adsorption leading 

to low surface area (1.13 m2/g to 2.23 m2/g). In addition, the clay content of these samples 

is low, leading to very limited surface area contribution from minerals. Gasprik et al. 

(2014) stated that the lower surface area values can be attributed to the fact that the pores 

may be occupied by bitumen and/or hydrocarbons which impedes the surface area 

estimation. Valenza et al. (2013) studied Haynesville and Caney shale samples from the 

gas window pre and post solvent extraction. Their results are reported in Fig. 44 along 

with the results from our study.  

 

Multi linear regression results post extraction are documented in Table 6. The 

coefficients for clay and TOC post extraction do not have a significant effect on the 

prediction of surface area (p > 0.05) in the immature window. Although, the p-value 

reduced for both the parameters, the higher reduction in p-value was observed for TOC 
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and also based on the coefficients the TOC shows a higher dependence on surface area 

over clay content. The weak positive correlation between the surface area and the TOC 

in the immature window can be attributed to the poor development of the OM pores. In 

case of oil, condensate and gas window the impact of solvent extraction leads to a strong 

prediction of surface area post extraction since the coefficents for both, clay and TOC 

have a very low p-value (p < 0.005). Further ahead, purely based on the coefficients of 

clay and TOC we can infer that TOC has a much stronger impact compared to clay.  

 

Table 6: Statistical evaluation of TOC, clay and maturity on surface area post 

extraction.  

Maturity Predictor Coefficients p-value Adjusted R2 

Immature 

Clay 0.06 0.44 

0.08 TOC 0.33 0.16 

Intercept 6.38 0.01 

Oil 

Clay 0.19 p < 0.05 

0.78 TOC 1.69 p < 0.05 

Intercept 2.20 0.19 

Condensate 

Clay 0.33 p < 0.05 

0.63 TOC 2.25 p < 0.05 

Intercept -4.88 0.14 

Gas 

Clay 0.29 p < 0.05 

0.85 TOC 4.06 p < 0.05 

Intercept -16.05 0.008 
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Our results indicate that the thermal maturation can significantly affect the gas adsorption 

in organic rich shales; where gas adsorption is in the following order: Immature <Oil < 

Condensate <Gas. This relationship is the result of increased presence of small pores 

which is in agreement with Curtis et al. (2012), where they showed an increase in organic 

porosity for Woodford samples with increasing thermal maturity. 

 

Post extraction we also tried to compare the inorganic surface area (total surface area – 

organic surface area) with the clay content to determine the dependence of the inorganic 

surface area with the total clay content. We did not observe any correlation between the 

two parameters which can be attributed to the following reasons: 

1. While measuring the surface area of the sample, the organic surface area is 

underestimated due to the coating of the clay layers onto the organics, which 

inhibits accounting for all the organics contributing to the actual surface area of 

the rock. 

2. The contribution from the inorganics may not be completely associated with the 

surface area from each of the individual clay minerals present due to the changes 

in the clay morphology. 

 

Wang et al. (2013), Ross and Bustin (2009), Chalmers et al. (2012), Curtis et al. (2012) 

stated that the main factors controlling the organic pore structure are the type and amount 

of OM and the maturity of shale. Mastalerz et al. (2012) observed similar results for 

samples from gas shales. Our results show that TOC is the controlling factor in 
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determining the surface area in each maturity window and that the dependence becomes 

stronger as we move from the oil to the gas window (Figs. 40-44 and Table 6).  

The comparison of BET-surface area pre- and post-extraction for the 10 wells grouped 

together by maturity is represented in the form of box and whisker plot, shown in Fig. 45. 

The results indicate that the maximum impact of Soxhlet extraction on surface area was 

in the immature window and the least in the gas window. This is also associated with 

increase in porosity as observed in Fig. 21. The average percentage change in BET 

surface area is approximately 175% in the immature window and 15% in the gas window. 

 

 

Fig. 45: Box and whisker plot for the 10 wells from six different shale formations 

showing the increase in surface area with increasing thermal maturity. The black 

cross marks shown in the figure are the mean values for each dataset. The average 

percentage increase in immature, oil, condensate, and gas window are 175%, 136%, 

101% and 15% respectively. 

 

 



93 

4.8 Dependance of surface area on maturity of kerogens 

Jarvie et al. (2007) and Schieber (2010) have suggested that the pores in OM are a result 

of the generation of oil and gas with increasing thermal maturity.  

The previous section highlighted the impact of solvent extraction and the surface area 

after extraction as a function of maturity. In this section, we examine the response of the 

extracted kerogen. Fig. 46 shows the plot of surface area with increasing thermal maturity 

for isolated kerogen from this study and literature (Cao et al., 2015; Rexer et al., 2014). 

The trend of increasing surface area with increasing maturity is similar to the pattern 

observed in the shale samples.  

 

Fig. 46: Graphical representation of the data reported in Appendix B, Table 15. The 

graph consists of data points from this study (blue dots) and from the literature 

(Rexer et al., 2014; Cao et al., 2015; Hu et al., 2015; Wang et al., 2015) (red dots). 

The increasing trend observed in BET surface area with increasing maturity from 

immature to over mature is in agreement with the previous studies in the literature.  

 

 

0

10

20

30

40

50

410 420 430 440 450 460 470 480

B
E

T
 -

S
u

r
fa

c
e
 A

r
e
a

, 
m

2
/ g

Tmax, °C

Literature This study

Immature Oil window Gas Condensate + Dry 



94 

4.9 Economic Analysis 

The increase in porosity post extraction is maximum in the immature and oil window and 

almost negligible in the gas window. This further confirms the importance of measuring 

the crushed helium porosity for liquid rich samples only after extraction. An example of 

the calculation of reserves based on the change in porosity in an oil and gas reservoir is 

shown below. Table 7 consists of the parameters used for calculating the reserves.  

 

Initial oil in place is given by:  

 𝑁𝑖 =  
7758 ∗ 𝐴 ∗ ℎ ∗  𝜑 ∗ (1 − 𝑆𝑤𝑖)

𝐵𝑜𝑖
 (17) 

 

Initial gas in place is given by: 

 𝐺𝑖 =  
43560 ∗ 𝐴 ∗ ℎ ∗  𝜑 ∗ (1 − 𝑆𝑤𝑟 − 𝑆𝑔𝑟)

𝐵𝑔𝑖
 (18) 

 

Table 7: Data for estimating the in place reserves for oil and gas reservoirs. 

Area 160 acres 

Net productive thickness 200 ft 

Average Swi for oil reservoir  50% 

Average change in porosity for oil reservoir  3% 

Bo at Pi 1.5 res bbl/STB 

Average Sgr for gas reservoir  5% 

Average Swr for gas reservoir 30% 

Average change in porosity for gas reservoir  1% 
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Bg at Pi 0.006 ft3/SCF 

Initial reservoir pressure 4000 psi 

 

In this study we computed the change in OIP and GIP reserves based on the change in 

porosity in an oil and gas reservoir respectively. Based on the values given in Table 7 the 

OIP reserves will be underestimated by 2 MM STB and the GIP will be underestimated 

by 1.5 MMM SCF.  
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4.10 Summary – Analysis of adsorption capacity of different shales.  

Shale adsorption capacity was determined using nitrogen as the adsorbate. Adsorption 

capacity was measured on samples from different maturity formations across North 

America. TOC and maturity are the main factors influencing the specific surface area, 

other factors such as kerogen type, the dominant clay mineral type and moisture content 

play minor roles. Hao et al. (2013) summarized the list of factors affecting the gas 

adsorption in organic-rich shales. This study shows that the development of nanopores in 

kerogen leads to an increase in the adsorption capacity and hence the specific surface area 

with increasing TOC and maturity. This is verified when the immature shale (Wolfcamp 

1 with low TOC) undergoes maturation to condensate (Wolfcamp 4 high TOC) and the 

obtained specific surface area increases. The adsorption capacity differs greatly between 

the same maturity window with different type of clay minerals present. Schettler and 

Parmoly (1990) argued that gas adsorption was primarily associated with illite, and the 

adsorption onto kerogen was of secondary importance for shale formation within the 

Appalachian Basin. They concluded that the clay minerals, dominated by illite, provide a 

large surface area and effective adsorption sites and can be the most important medium 

for gas adsorption. A plot of surface area with illite content in each maturity window is 

shown in Fig. 39. Our results show a similar trend as proposed by Schettler and Parmoly, 

with increasing illite content the surface area increased linearly, i.e. they have a weak 

positive correlation.  
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Chapter 5: Conclusions 

We studied the effect of OM richness, maturity, and mineralogy on the adsorption 

capacity of organic rich shale using nitrogen as the adsorbate. The main conclusions are 

summarized as follows: 

• Specific surface area increases with the increasing thermal maturity as result of 

maturation of the OM and generation of smaller and smaller nanopores. 

• The specific surface area and porosity are strongly dependent on sample cleaning. 

• Solvent extraction increases the porosity of the shale samples in the order of 

immature (93%) > oil (39%) > condensate (19%) > gas (10%). 

• “Extra-porosity,” recorded as the difference between “as received” and solvent 

extracted porosity, is directly related to the TOC. 

• Solvent extraction using toluene and methanol opens additional pore space for N2 

adsorption thus, increasing the surface area multifold depending on the maturity 

window of the sample. The effect of solvent extraction on measured surface area 

is greatest in the lower maturity samples (175% in immature) and becomes 

systematically less as maturity increases (15% in gas).  

• Comparing PSD curves for surface area pre- and post- extraction, a significant 

increase in contribution from the smaller mesopores ( 2 – 7 nm) was observed in 

the immature and oil window due to removal of mobile hydrocarbons. 

• The relationships between the surface area (SA), clay content and TOC are 

masked in “as received” samples due to the coating of the soluble hydrocarbons 

onto the organic pores by almost a factor of 2 to 3. 
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• The relative abundance of micro– and fine mesopores in shales is controlled by 

both, the clay and the OM contents. An empirical correlation was developed for 

each maturity window based on the TOC and clay content and surface area (see 

Table 6). The primary controlling factor for the adsorption capacity in shale is the 

TOC content at any maturity level and the correlation between TOC and surface 

area post extraction becomes stronger with increasing maturity.  

• Comparison to historical data is questionable without a clear description of how 

the samples are treated or cleaned prior to the measurements. 

 

Recommendation 

In order to have a proper comparison of the data from lab to lab the samples must be 

cleaned and cleaning procedure must be stated. 
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Appendix A: Experimental Procedure 

1. Nitrogen Adsorption Procedure 

Prior to the adsorption analysis, the following steps were followed: 

Step 1: Crush the core sample and sieve it to pass through a screen of 35 mesh 

and mix it thoroughly for uniformity. 

Step 2: Heat the sample in an oven at 100°C for 24 hours. 

Step 3: Sample tube, which is sonicated, washed and dried in oven for 4 hours is 

weighed empty with a rubber cap. 

Step 4: Put approximately 1-2 grams of crushed sample into the sample tube and 

cover with the rubber cap. The sample tube is weighed again 

Step 5: The sample tube along with the crushed sample is put in the degassing 

port and degassed for 12 hours at 100°C under vacuum to remove any moisture 

or volatile matter if any. 

Step 6: After 12 hours of degassing the sample tube along with the rubber cap is 

weighed again and the weight loss is noted. 

Step 7: The degassed sample/tube with the filler rod and isothermal jacket is put 

in the analysis port. 

Step 8: The Dewar flask is filled with liquid Nitrogen 

Step 9: The empty tube weight, degassed sample weight, N2 characteristics are 

entered in the analysis software. 

Step 10: The measurement and analysis starts automatically after equilibrium is 

attained through the instruments computer software.  
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2. Transmittance FTIR Mineralogy 

In this study, the mineralogical estimation was done using the FTIR technique proposed 

by Sondergeld and Rai (1999) and Ballard, (2007). Sixteen commonly found minerals in 

sedimentary rocks are quantified using this technique. These minerals are quartz, calcite, 

dolomite, siderite, aragonite, illite, smectite, kaolinite, chlorite, mixed clay, oligoclase 

feldspar, orthoclase feldspar, albite, pyrite, apatite and anhydrite. Mineralogy was 

determined after removing the organic matter. The organic natter was removed using a 

low temperature plasma asher (Kale 2009). 

 

3. Total Organic Carbon Determination 

The weight percent of organic matter (OM) in a rock sample is given by ‘Total Organic 

Carbon’ or TOC.  TOC is composed of three components namely, the extractable organic 

matter (EOM), the convertible carbon and the residual carbon fraction (Jarvie, 1991).  

 

The Leco C844 machine was used for measuring the organic carbon content. The 

experiment was conducted after the crushed sample (particle size ≤ 35 mesh) was treated 

with HCl to remove any inorganic carbonate present. Thereafter, the sample was placed 

in the Leco Carbon Analyzer where the carbon in the sample is oxidized to carbon dioxide 

by the combustion of organic carbon in a pure stream of oxygen. The gas stream then 

passes through an infrared (IR) detector or thermal conductivity detector (TCD) which 

determines the amount of CO2 produced.  
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4. SRA™  

Pyrolysis is used to quantify the organic carbon content as well as to establish the type of 

kerogen present inside the rock and the thermal maturity of the sample. Source Rock 

Analyzer™ (SRA) by Weatherford Laboratories was used to carry out the dry pyrolysis 

measurements. 

 

Procedure: 

A small amount (< 1 g) of sample ground to 35 mesh undergoes a programmed 

temperature heating in a pyrolysis oven. The sample is first heated to 300⁰C for 3 minutes 

and held constant to volatilize the free hydrocarbons present in the sample. The flame 

ionization detector (FID) records the first peak and quantifies it as S1 which is denoted in 

mg of hydrocarbon per gram of rock. Temperature is then increased at 25⁰C/minute to 

600⁰C. This leads to cracking of kerogen in the rock sample which results in generation 

of hydrocarbons and is called the generative potential of the rock. FID quantifies this peak 

as S2 and is denoted in mg of hydrocarbons per gram of rock. S2 peak is used to determine 

Hydrogen Index (HI) of the sample which is measured in terms of mg of hydrocarbon in 

S2 per gram of TOC (S2×100/TOC). The temperature associated with the peak of S2 is 

called Tmax and is the measure of organic thermal maturity. During cool down i.e. between 

300-400°C, the trapped CO2 is released resulting in a third peak S3 which is determined 

using the infrared detectors. S3 is used to determine Oxygen Index (OI) of the sample 

which is expressed as the ratio of mg of CO2 in S3 per gram of TOC (S3×100/TOC). 

Knowing the HI and OI and using the Van Krevelen diagram, the kerogen type can be 

determined (Hunt 1996). 
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5. Scanning Electron Microscopy 

The SEM was used to visualize the pore structures of the shale samples. To better view 

the pore type and the pore microstructure within shales, we performed broad beam argon 

ion milling on samples from Bakken, Wolfcamp and Marcellus formation to obtain a 

highly-polished surface (Loucks et al., 2009; Sondergeld et al., 2010b; Curtis et al., 2012). 

The imaging of nanopores was performed on the surfaces prepared by argon ion milling 

using an accelerating voltage of 30 kV and a milling time of 4 hours. Curtis et al. (2010), 

Slatt and O’Brien (2011), Milliken et al. (2013) concluded imaging the samples can 

provide important information on the variation of pore types, pore size, pore 

microstructure and general locations of pores throughout the sample.   

The samples are imaged in the back scattered mode at various magnifications to quantify 

the effect of solvent extraction on different maturity windows. The sample preparation 

procedure is in accordance with Curtis et al. (2012). 

 

6. Kerogen isolation procedure 

The procedure followed to isolate the kerogen from the rock samples is described below: 

  

Step 1: The shale samples were crushed and sieved for uniformity to pass through 

a screen of 35 mesh (500 µm).  

Step 2: The sample was treated with chloroform to remove any free hydrocarbons 

and bitumen. The obtained sample was then dried in an oven at 100°C. 

Step 3: The sample is then treated with 6M HCl acid to remove the carbonate 

minerals.  
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Step 4: The sample was then treated twice with 6M HCl + 48% HF acid to 

eliminate the presence of any siliceous mineral. 

Step 5: The obtained sample was treated with 6M HCl acid again to remove any 

newly formed complex fluorides. 

Step 6: The treated sample was again cleaned with chloroform to remove any 

newly freed HC’s and bitumen during this process. The final product obtained is 

kerogen with small amount of pyrite. 

 

7. Derivation for Extra Porosity 

 

𝝋𝒄𝒍𝒆𝒂𝒏 =  𝝋𝒏𝒂𝒕𝒊𝒗𝒆 +  𝝋𝒆𝒙𝒕𝒓𝒂 

 

𝝋𝒆𝒙𝒕𝒓𝒂 =  
𝝆𝒈𝒓𝒂𝒊𝒏 𝒄𝒍𝒆𝒂𝒏 −  𝝆𝒈𝒓𝒂𝒊𝒏 𝒏𝒂𝒕𝒊𝒗𝒆

𝝆𝒈𝒓𝒂𝒊𝒏 𝒄𝒍𝒆𝒂𝒏 −  𝝆𝒃𝒊𝒕𝒖𝒎𝒆𝒏
 (𝟏 −  𝝋𝒏𝒂𝒕𝒊𝒗𝒆) 

 

𝑽𝒃𝒊𝒕𝒖𝒎𝒆𝒏

𝑽𝒈𝒓𝒂𝒊𝒏 𝒏𝒂𝒕𝒊𝒗𝒆
=  

𝝆𝒈𝒓𝒂𝒊𝒏 𝒄𝒍𝒆𝒂𝒏 − 𝝆𝒈𝒓𝒂𝒊𝒏 𝒏𝒂𝒕𝒊𝒗𝒆

𝝆𝒈𝒓𝒂𝒊𝒏 𝒄𝒍𝒆𝒂𝒏 −  𝝆𝒃𝒊𝒕𝒖𝒎𝒆𝒏
 

 

𝑽𝒈𝒓𝒂𝒊𝒏 𝒏𝒂𝒕𝒊𝒗𝒆

𝑽𝒃𝒖𝒍𝒌
= 𝟏 −  𝝋𝒏𝒂𝒕𝒊𝒗𝒆 

 

𝑽𝒃𝒊𝒕𝒖𝒎𝒆𝒏

𝑽𝒃𝒖𝒍𝒌
=  

𝝆𝒈𝒓𝒂𝒊𝒏 𝒄𝒍𝒆𝒂𝒏 −  𝝆𝒈𝒓𝒂𝒊𝒏 𝒏𝒂𝒕𝒊𝒗𝒆

𝝆𝒈𝒓𝒂𝒊𝒏 𝒄𝒍𝒆𝒂𝒏 −  𝝆𝒃𝒊𝒕𝒖𝒎𝒆𝒏
 (𝟏 −  𝝋𝒏𝒂𝒕𝒊𝒗𝒆) 
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Appendix B: Sample Description 

 

Table B- 1: Lower Bakken – Mineralogy, TOC, Porosity and Surface area 

(Immature) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Porosity 

Native  

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xx561 11 33 10.7 3.5 4.3 16.17 

xx537 9 40 6.3 4 3.86 9.62 

xxx57 33 9 11.9 3.5 4.84 13.94 

xxx29 17 20 15.5 3.5 4.43 13.5 

xxx61 3 37 0.2 6.13 3.55 5.39 

xxx65 15 21 9.9 5.53 5.57 15.73 

xxx29 23 18 14.2 3.5 3.71 10.06 

xxx33 16 21 15.0 3.5 4.68 16.44 

xxx69 39 5 8.6 3.5 6.64 15.99 

xxx29 57 6 13.2 2.66 2.74 10.98 

xxx35 36 8 12.6 3.02 3.18 8.25 

xxx55 38 9 11.2 2.82 3.32 10.21 

xxx59 22 10 9.3 3.39 3.04 8.74 

xxx29 31 3 14.3 3.37 1.91 14.39 

xxx59 23 3 16.0 3.49 2.97 6.26 

xxx68 55 3 7.2 3.40 5.73 15.7 
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Table B- 2: Wolfcamp 1 – Mineralogy, TOC, Porosity and Surface area  

(Immature) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Porosity 

Native  

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xx97 14 25 1.6 7.70 2.23 5.24 

xx74 22 14 1.8 3.95 3.71 4.01 

xx76 10 29 0.9 2.42 1.43 2.35 

xx28 29 29 4.3 1.65 1.76 7.22 

xx39 25 35 7.8 2.12 1.43 2.2 

xx52 11 56 3.6 1.30 1.13 1.34 

xx59 25 6 1.0 8.02 4.99 9.73 

 

Table B- 3: Wolfcamp 2 – Mineralogy, TOC, Porosity and Surface area 

(Oil) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Porosity 

Native 

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xx92 71 3 3.1 7.59 9.93 16.96 

xx16 62 4 3.8 7.77 8.66 17.18 

xx19 63 4 2.1 8.96 8.61 14.86 

xx31 39 16 2.9 7.32 9.39 17.45 

xx37 56 8 2.8 6.86 8.51 16.36 

xx61 57 5 3.1 7.40 10.06 19.81 



117 

xx30 61 4 5.3 8.27 9.63 26.6 

xx39 50 5 7.9 8.17 6.72 23.56 

xx72 44 16 2.6 5.87 8.62 15.75 

 

 

 

Table B- 4: Eagle Ford 1 – Mineralogy, TOC, Porosity and Surface Area 

(Oil) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Porosity 

Native  

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xx598 23 69 3.0 7.23 6.89 11.15 

xx603 33 54 2.6 6.69 6.91 13.60 

xx626 11 82 3.2 4.57 3.87 6.26 

xx650 23 69 1.6 5.37 3.96 5.92 

xx690 10 85 1.9 5.82 2.13 4.29 

xx767 6 84 2.3 3.14 3.87 9.37 

xx798 6 86 13.4 3.96 2.72 12.40 

xx817 9 76 15.0 4.65 4.52 17.45 

xx824 9 76 14.2 4.86 3.08 16.72 

xx834 16 72 11.2 5.47 4.36 14.26 
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Table B- 5: Wolfcamp 3 – Mineralogy, TOC, Porosity and Surface area 

(Condensate) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Porosity

Native  

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xx393 43 12 2 6.63 7.62 16.05 

xx425 55 11 1.6 10.42 10.06 16.55 

xx499 53 15 1.2 7.22 9.56 15.37 

xx527 58 6 4.0 8.40 6.68 20.75 

xx536 58 10 3.5 10.49 2.68 18.62 

xx580 5 77 1.1 3.42 1.15 2.80 

 

 

Table B- 6: Wolfcamp 4 – Mineralogy, TOC, Porosity and Surface area 

(Condensate) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Porosity 

Native 

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xx68 44 23 5.7 10.99 16.45 28.66 

xx94 40 30 4.4 9.01 17.36 25.00 

xx11 36 17 3.7 7.04 12.48 17.96 

xx63 32 23 4.1 7.53 12.34 20.00 

xx028 54 7 2.8 10.77 16.28 22.79 
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Table B- 7: Woodford – Mineralogy, TOC, Porosity and Surface area 

(Condensate) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Native 

Porosity 

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xxx13 31 21 2.2 6.97 2.54 2.64 

xxx56 50 9 7.5 6.06 4.49 5.1 

xxx90 31 12 3.8 4.97 3.12 11.83 

xxx22 55 9 9.8 7.8 9.29 31.24 

xxx45 46 8 6.5 5.7 5.84 27.23 

xxx56 31 10 8.2 8.21 7.26 33.42 

xxx62 31 13 4.6 6.74 4.61 17.51 
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Table B- 8: Barnett – Mineralogy, TOC, Porosity and Surface area  

(Gas) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Native 

Porosity 

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xx57 7 91 2.3 3.18 3.97 5.16 

xx09 36 12 4.7 9.59 9.98 11.04 

xx09 26 9 5.1 6.63 11.73 12.07 

xx68 41 3 4.8 6.46 10.7 11.81 

xx71 42 2 6.5 7.25 15.56 15.66 

xx08 41 14 5.0 6.12 19.76 19.83 

xx43 44 8 4.9 5.6 14.56 15.76 

xx51 47 5 3.2 5.05 13.03 15.47 

 

Table B- 9: Marcellus – Mineralogy, TOC, Porosity and Surface area 

(Gas) 

Depth 

Clay 

wt% 

Carbonate 

wt% 

TOC 

Native 

wt% 

Native 

Porosity 

% 

Surf. Area 

Native 

 m2/g 

Surf. Area 

Clean 

m2/g 

xx99 72 4 4.5 9.78 9.83 21.99 

xx68 63 5 4.4 10.78 13.46 20.1 

xx12 48 10 8.4 13.07 41.51 41.93 

xx57 15 74 4.8 2.88 2.83 4.66 
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Table B-10: The maturity and the BET surface area of different kerogens. The 

samples highlighted in gray are from this study and compared with the data from 

literature. 

Maturity 

Window 

Formation 

Tmax 

°C 

BET – 

Surface Area 

(m2/g) 

References 

Immature 

Type II China - 1.1 Wang et al., 2015 

Green River 417 3.74 This study 

Youganwo Formation 

– China  

427 5.54 Cao et al., 2015 

Kimmeridge 422 7.06 This study 

Posidonia Shale WIC 

7155 

429 7.5 Rexer et al., 2014 

Woodford 420 9.24 This study 

WF Hydrous 

Pyrolysis - Native  

424 10.8 Hu et al., 2015 

WF Hydrous 

Pyrolysis - 300C 

429 11.2 Hu et al., 2015 

Posidonia Shale WIC 

7145 

425 12.5 Rexer et al., 2014 

Oil 

Bakken 435 15.81 This study 

Posidonia Shale HAR 

7060 

447 17.9 Rexer et al., 2014 
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WF Hydrous 

Pyrolysis - 330C 

439 18 Hu et al., 2015 

Wolfcamp - Key9 445 22.3 This study 

Posidonia Shale HAR 

7038 

449 27.3 Rexer et al., 2014 

Gas 

Condensate 

WF Hydrous 

Pyrolysis - 400C 

- 26 Hu et al., 2015 

WF Hydrous 

Pyrolysis - 365C 

463 27 Hu et al., 2015 

Eagle Ford 465 30.58 This study 

Marcellus > 600 41.96 This study 

Posidonia Shale HAD 

7119 

459 56.1 Rexer et al., 2014 

Posidonia Shale HAD 

7090 

464 68.1 Rexer et al., 2014 
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