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ABSTRACT

The data modeling technigues vhiéh.are currently used
to coustruct .the 1ogic§1 view of' daﬁa have made use of
trees, gtaphs, and sets,' as undefljigg ’data structures.
However, these structures have cértain 1ilita£ions when they
are used in dynamic database representation for database
design procedures. The topological aﬁproach to the data
modeling lakés use of abstract spaces and topelogies as
mathematical structures. The daiabase space wvhich serves as
a logical viewvw of the data is inttoéuced uith.the concept of
topological space. Then, the topological strucfure provides
the concept of equivalence testing between database spéces.
Furthermore, the concept of database space egﬁivalence pro-
vides the fqnndation of the database generator uhich is an
automatic database désign nachihe.. In the databaée space,
the microcosmic set represents the set of attributes and it
plays a major role for the intra-record type representation,
vhile the selécted topology rep:esents the set of péeudo-
entity types and its p:oduct»topology plays a major role for
the inter-record type representation in the dat&base design

level procedures.
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A TOPOLOGICAL APPROACH TO DATABASE THEORY

CHAPTER 1

INTRODUCTION

[ 1.1 3 PUNDAMENTAL APPROACHES

The proper representation of information can be used to
aid hnlén intelligence. This vill continue to be one of the
most important parts of conputer-systeis; A database, which
provides information, needs to be érganized iﬁ a way that
can be processed effectively. It must repfesent as closely
as possible the Hreal world situation, and be suitable for
representation by computers. :he range of data structures,
currently used to support database'otganizatiops is a criti-
cal factor which affects syéten languagé, sto:age' organiza-
tion, ahd application prograas. Acéording to the underlying
data structures, database systems are categorized into three
fundalenta; apptoacﬁes which are the hierarchical approach,
ba;ed on trees, the netvork apptoach, based on graphs, and

the relational approach, based on sets. They are described

in Date[ 1981]) and Tsichritzis-Lochovsky[ 1982].



-2 -

- The hierarchical approach and the network approach were
developed £ron early file processing and repdrﬁ geﬁeratot
sjstens. They grew out of early- at;e-pts to iaplement
integrated data' systéls. They are éeareﬁ to the.thSical
détabase vith less concetn for the logical database aﬁd Athe
gengral database user populétion. Codd[ 1970] iptroducéd the
relational approach to strengthen the iogical VdatabaSE' and
increase data independence. This is accomplished by intro-
ducing a powerful query 1angqége and using an axionatic
approach for deriving the datébase desigﬁ procedures. 4In
the early years of the relgtional model, théré was a gtegt
déhate concerning the relative merits of network and rela-
tional approacheé, desc:ibéd in Rustin[1974] and Michaels-
uittuan-Carlson[5976]. The conclusion uaé that theré is}no
best approach éuch as there is no best progranﬁing laﬁguage

in any absolute sense.

The recent trend in database theory has been to concen-
trate on the relational approach. After examining the rela-
tional database model, one realizes that tﬂe relatioﬁ is
inadequate to store the complete semantics of the data.
Relations do not provide the appropriate facilities for
storing the structure of the relationships betqeen data
items. Chen[1976] and Codd[ 1979] have attempted to solve
‘the problenm by introducing the entity-relationship model and
the extended relational =odel, respectively. In these

efforts, database representation has been examined by a coa-~
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bination of sets'and graphs without auck concern for new
data structnres such as abstract spaces, which snpport the

database des:l.gn procedures.

[ .2 ] PROBLEM DESCRIPTION

¥e believe ihe ultimate goal of database design theory
is to build a database generator as aﬁ automatic database
design machine. The first step‘dn ihe way to the database
generator is to eétablish the conéept of egnivalence betwveen
databases; For a ngen set of atttzbutes, Beerl-nendelzon-
Sag;v-ﬂllnan[?QB'] have taken an initial look at the concept
’of equivalence in database design. They have descr;bed an
eguivalencé featn:é for dependency and representation in a
fixed set of attriﬁutes; This is an interesting approach.
However, we beliéve,‘in order to get to the database genera-
Ator;’tﬁe concept of database eQnivalence must be explored in

general for classification of databases.

The problem.description raised on the relational model
can be demonstrated by a simple example. Let us consider
relations, R1 and B2, given as follows:

R1: X1

{ avbcc(d ) P1 = { {a}-=>{b} 1},
R2: X2 = { p,qsu,v }, F2 = { (u}-=>{v} }.,
vhere X1, X2 are sets of attributes and P1, F2 are sets of

functional dependencies on X1, X2, respectively. Looking at
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this example, we can observe a certain equivalence betﬁeen
the two rel;tions. When R1 is deconposedrinib a third nor-
mal form, it will be ({a,c,d}, {a,b} uhile Bé be [p,g,n},
{a,v}. If serihtroduce a Sijectiod_h, éuéh as |
'h‘= { a—»)ﬁ, b--#v, C=«>p, d--)g }

vhich is a one-to-one onto lapping, thén the two decompo-
sitions have exactly the same process. However, finding an
apptopniate/bijection h iS not éasy task. Without regarding
the dependencies, the number of possible bijections is 4!.

In general, there are n! bijectiohs if n = |X1] = |X2].

One effective wvay of finding appropriate bijections is
to replace the sets used in the relational model with topo-
iogies. Thus, ve nmust také certain inforlation contained in
F1, Pz.into X1, X2. This task is descﬁibed as topologizing
the set of attribufes. One eiegant vay fo pntsué this task
is to first examine the properties of P1, P2 aad organize
them to certain structdres, thgn take the derived structures
iﬁto X1, X2. By topologizing the set of attributes, it has
certain structures vhich are topologies.; This mathematical
structure 4provides ﬁs vith an effective means oflgener;ting
the appropriate bijections. Thus, the topological approach
is b#éed on topologies as thé underlying abstract space for

the database design procedures.
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[ 1.3 ] OBRGANIZATION OF DISSERTATION

The basic concepts o: fopology and database theory are
sumnarized in Chapter II. ?hen, @haptér IIi describes a '
topolpgicalrvieﬁ of data célbining tpe concepts‘of toéblogy
and database. An ideal topoloéy, called an optimal topology
;n this diScussion, is derived from the axioda;ization for
.depéndencies. Chapter IV describes thebédncept oé database
equivalence by using the derived topological sttpctnres. 
- Topics on the decomposition issues for the topological data-
base model are covered in Chapﬁer V. PFinally, the conclﬁ-
sion and gonlents on future research for the topological

_ approach are given in Chapter VI.

The main frame of the text consists of DEFINITIONs,
THEORENS, and EXANPLEs. We have giveﬂn 23 définitioxis which
are yital seeds of_the text. Then,'they are supplemented by
theorénﬁ and exaiples. Throughout the text, we try to use
standard set theory notation. Finally. ¥e like to familiar-
ize the reader with oﬁr usage of square brackets. As an
'exaiple, by BASE[T], ve mean the name of the blackbox is
BASE,  the input of the blackbox is T, and the output of the
blackbox is BASE[T].



CHAPTER 1II

PRELIMINARIES

This chapter contains all of the fundamental concepts
of topology and database thedry which are néces#aty for
introducing the dissettatioh vork. Terminology and notation
selected from topology and détébase theory are reviewed
briefly. An effort has been made to standardize the nota-
tion; Certain notation in database theory has beeﬁ replaced

with standard set theory notation.

Section[2.1] describes the topology concepts that have
been used in the devéloplent of the topological approach.
Topology is one of oldest topics in mathematics. Pienty of
referehces are available to the inie:ested reader, such as
Bourbaki[ 1948], Dugnhdji[1965], and Cullen[ 1968] which are
introductory textbéoks.A Also, Steen-Seebach[ 1978] provides
elegant exaaples on various topologies. Hu[ 1965] gives an

advanced picture of theory in topology.

Section[2.2] summarizes the fuidamentals of database
theory used in the dissertation work. Database theory is
one of vital new topics in computer science. Datef 1981],

Tsichritzis-Lochovsky[1982], and Ullmanf 1962] have written
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introductotyrtextbooks that will provide the interested
reader additional hackg:ohnd in thé-génétal tdpic of data-
base models. 1In addition,_aaiert19é3] desc#ihes 'the rela-
tional approéCh hy-cbnbining auch of the feéent ibrk on the

relational database model.

[ 221 ] TOPOLOGY

A mathematical model is a set with certain structures
defined on it. A structure defined on a set is called a
topological structure. Let us begin with the definition of
the topological space. This space will give us the starting
point for’the theoretica14approach iﬁ the discussion of the
dissertation vwork. Since we only treat nontrivial finite
systeas in coamputer science, we mean a non-empty finite set
by siwmply saying a setbthroughout this.discnssion ﬁnless ve

specify othervise.

DEPINITION[2.1). TOPOLOGICAL SPACE.

A topological space is defined as a pair (X,T) consisting
of a set X aund a collection of subsets of X, satisfying the
axioms: A1, A2, and A3, where

Al: &, X ET,
A2: A, BET == ANB €T,

Al A, BET == AUB £ T. <>
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The collecpion T is called a topology on X. Elements
of T are called open sgts.b-B;glénts of X are called points.
A topoloéical space (X,T) is ‘sonetiies».refetré& to aé a
space X when the ﬁopqlpgytt'is obviqﬁs.‘ Topologizing a set
is the genefal ptocésé of inttoduéing a topolééy on the set.
The most popular process for topologizing a sét X is to
start from the arbitrary family W of subsets of X. The sét
¥ leads to a unique £opoi§gy containing W by using‘the con-

cepts of bases and subbases which are defined as follows:

DEFINITIOR[2.2]. BASE[T].
A base for a topology T, denoted BASE[T] is a subset of T
such that every element of T is a union of elements of the

BASE[T]. <>

DEFINITION[2.3]. SUBBASE[T].
A subbase for a topolegy T, donoted SUBBASE[T] is a subset
of T such that the base for T consists of intersections of

elements of the SUBBASE[T]). <

Note that from the definitions, there are quite a few
bases and subbases for a topology. The smallest base in
size is called a minimal base and the smallest subbase a
minimal subbase. Por a multiple intersection or union, the
collection of operands is called an operand set. Note that

operand sets must be finite but can be empty.
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EXANPLE[ 2.1]. ‘cOnsider a set: X= {a,b,c,d,e} . and
a subbase: Ts = { {a,b}, {b,d} }..
Then, we get a base: Tb = { X, {a,bl, {bl, {b,d} } and
a topology: T = {4, X, {a,b}, B}, {b,d}, (a,b.d} }-
In this case, Qbserie that Ts is a nigilil subbase and

Tbh is a minimal base. <>

THEOREN[ 2.1]. Por an arbitrary family W of subsets of X,
there alvays exists a unique minimal topology in size con-
taining W. <> | |

PROOF: Consider ® = SUBBASE[T]. Then, SUBBASE[T] foras
BASE[T] by taking:all possible intersections of elements and
BASE[T] fores topology T by taking all possible unions of
elements. Operations, union and intersection are uniguely

determined. <>

Let Td denote the class of all subsets of X. Observe
that Td satisfies the axioms for a topology on X. T4 is
called the discrete topology. The notation Td is used for
the discrete topology throughout this discussion. The class
(F,X} consisting of & and X alone is itself a topology on X

vhich is called the indiscrete topology.

DEFINITIOR[2.4]). PARTITION TOPOLOGY.
A partition topology is a collection of subsets of a set X
satisfying the axioms: A1, A2, A3, and A4, where

Al A ET ==> AET. <
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A partition topology is denoted by T throughout this
discussion. Hote that a topology is a closed collection
undet set operations: intiersection: and uni.on‘a‘nd t‘:hat- a par-
tition topology-is a clbsed coilectiqn uﬁdet Sétibééfations:
intersecton, union, and complement. 4Ron-é§§tj sets P and Q
aie.callgd a decomposition of X, if PUQ = X and

called a partition of X, if PUQ =X and PNQ = F.

Note the_partitiopﬂis a speciallcase of decoiposition. A
set can be represénted by a set of its subsets through the

notion of decomposition.

Let T1 and T2 be topologies on a set X. Suppose that
71 C 12, We sayrthat T1 is coarser than T2 or that T2 is
finer than T1. Observe the collection of all topologies on
X is partially ordered by the inclusion property. The
discrete topology is the finest topology and the iniiscrete
topology is = the ‘coarsest topology. All other topologies
reside betveen tpem. Thué, the boupd foh sizes of topolo-
giés on x_is given as follows:

2 < 111 £ 2, for n=(x].

THEOREN[ 2.2]. Let TV and T2 be topologies on a set X.
Then, T1NT2 is always a topology on X. <>

PROOF: Por arbitrary i, B € TINT2, observe

ANB €ET1 and ANB € T2. Then, ANB € TINT2.

The same argument on the union operation will give the

desired result. <>
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The union of topologies on the same set is not a topol-
ogy in gene:al. Bouever;vue can observe the maximum size of

topology constrncfed by the unibn of two topologies.

THEOREN[ 2.3]. Let (X,T1), (X,T2) be topological spaces.
‘Considering a topology T such tﬁat T1UT2 =ASUBBASE[Tj, ue'
can get tﬂe foliouing condiﬁioh:
Il £ 2|T71|l'.l‘2| - .3|T‘ll - 3|T2] + 6. <>
PROOF: Observe that nev elements 6f T come from inter-
sections and unions betueen-elenents of T1 and T2. Consid-
ering the set of new elelents,‘ T=DUTIUT2, vhere
D= (P, Q1 P=2aiNBi, 0 = AiUBi, |
Ri € (T - {8,X1), Bi & (T2 - {&X1) }-
Since D] £ 2(T1]1-2) (1T21-2), we get
IT] < 2(1T1l-2)(IT21'2) +|T) ¢+ |T2] - 2.

This gives the desired result. <

Let (:1,11), (X2,T2) be topological spaces. A function
f from X1 to X2 is continuous if‘and only if P E T2 implies
£'[P] € T1. The bijection f is called a homeomorphism if £
and £” are continuous. The notation f' is used for the

inverse of the function f.

DEPINITION[2.5]. TOPOLOGICAL BQUIVALENCE.
Let (X1,71), (X2,T2) be topological spaces. Then, (X1,T1)
and (X2,T2) are topologically equivalent if and only if

there exists a homeomorphism f£: X1 --> X2, <>
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EXANPLE[ 2.2]. Consider the topological spaces, (X1,T1) and
{(x2,T2) as followus: |

xn

"
i

fa,b,c,d}, T1 { & xi1, {a}, f{a,b}, [aabv‘?] )
{r.q9, nv_'] ¢ T2 = [ g, x2, {p}, (g}, W{Plg} P {QU_u:'} }.
Also consider the functions, f: 11 -¥> 12, gs X1 -=> X2:

£

X2

(2.2), (b,u) 4 (V) . @00,
{(309) ’ (bv?) e (c,u),(d,V)}.

The function f is continuous since the inverse of each

g

meaber of the topology T2 on X2 is a member of the topology
T1 on X1. The function g is not continuous, since {q,u,v}

is in T2 but its inverse {c,d} is not in Ti. <

ICOnsider a topological space (X,T). Let p be a point
on (X,T). A subset N of X is called a néighborhood of p if
N is a supersetkof an open set containing p. The class of
all neighborhoods of a point p in X is called the neighbor—

hood system of the point p.

Let Y be a subset of X. PROJECT[ T:Y] is defined as the
class 6f all intersectipns of Y with open sets in T.
Observe that PROJECT[T:Y] is a topology on Y. A topological'
space (Y,PROJECT[T:Y]) is called a subspace of (X,T) and
PROJECT[ T:Y] is called a relative topology of the topology T
on Y. Operator PROJECT has more generalyneaning in the next
section. In general, PROJECT[X:A] is the collection‘ of

intersection with A or A-component of elements in the set X.

-
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DEFINITION[2.6]. PRODUCT TOPOLOGY. .
The product topology for a topology T, denoted ™ is
defined as the collection of all ordered pairs (A,B), where

A, BET. <O

There is an alternate definition for the product topol-
ogy in topology 4literatu;e. The product topology TI1XT2
for topologiés,»T1 and T2, is defined in the lifetature as
the coliection of AXB snchv that A & T and B & T2.
Houefer iﬁ this discussion, ﬁe use the notation (A, B)
instead of AXB. ,fhe advantage of this notationrhill become
clear as we explore thé topological database iodel' in the

next chapter.

EXAMPLE[ 2.3]. Consider a topological space (X,T):
X

(a,b,c.d,e},

T= {#& X, {a,b}, (b}, (b,d}, {a,b,d} }.
Also consider a subset 6f X: Y = {b,c,d}.
Then, a subspace (Y,Ty):

r = {b,c.d},

PROJECT[ T:Y] = { &, Y, (b}, (b,d} }.

Ty

The product topology for Ty:

¥ = { (8,8), (£.7), (8, (b}), (&, (b,d}), (L,8), (L,1),
(Y, (b}), (Y, (b,d})s ((b}.B), ({b},Y), ((b],(b}),
(%), (b,31), ({b,a},®, ((b,d},Y), ((b,a}, (b)),
((b,d),(b,a}) }. <>



A parity topology,‘denotea <T> throughout this discus-
sion, is a topology such that each elenént of ;n oéen set
hasra p&rity aS an intrinsic'propetty. -Béﬁitiging a topol-
ogy is. the general 'préceSS for ihtroducihé batity in the '
topology. This ptocessﬂcén be intrbducéd by Aefining. cer-
tain paritizing opetétors._ If there is no policy on the
paritizing, all possib}e:conbinatioﬁs of patity-on open set
are considered. An actual exalple for é paritiiing op;rator

will be shown in the next chapter.

A relationship between topological and graphical struc-
tures can be expressed by a base graph for a given topology.
A minimax intersection is a non-eupty_intetsection vith tiZ
restriction on its operand set such that any'proper Subset
of the operand set except singleton set$ is not allowed as

an operand set énd any eleament of the operand set is not a

proper énbset of the others.

DEFINITION[2.7]. BASE GRAPH FOR TOPOLOGY.

let (X,T) be a topological space. Avbase graph for the
topolcyy T is defined as a pair (V,E), where

V: a set of vertices which is the collection of minimax
intersections for the elements of minimal base for the
topology T, including X and excluding &,

E: a set of edges which is the collection of partial ord-‘
ers of inclusion properties for the vertex set, excluding

transitive orders. <>
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EIABPLE{zfu]. Consider a topological space (X,T):
X = fa,b,e,d,ef),
SUBBASE[T] = ({a,b,c}, (a,b,d},(a,e}, (b,£}}.
Then, a nin;nal b#se fot Ts
{ @.b.c}, (a,b,3}, fasel, (b,£}, {a}, (b} }-
The base gréph‘fét'I is (vV,B), vhere ‘
V= (X (abcl. (b}, (ael. B.E), (), 0,
{asb} 1, |
{ tfa,b,c},X), ([a,b,d),0), ((are},X), ((b,£},T),
({a,b},{a,b,cH), (fasb}, (2,b,2)), ({2}, (asel)s
(B}, (b £1)s ((a)s(asb}) s ((b}s{asb}) 1.
as given in,ucuaz[ 2.1]. o |

tn
]

FIGURE[2.1]. An exanple of a base graph.
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THEOREN[ 2.4]. Let (X,T) be a topological space and (V,E)
be the base graph forifo Then, |Yi < 2ix|. | <

PROOF: A set V consists of a minimal bQSerfot T and new
vertices created by oioilax interéocfioos., éiocé each ele~
ment of the‘linilal baée must haoe a teptésentofive élenent
of X, the maximum size of the minimal base for T ié 1Xl.
Then, fo: the wminimal base, consider the collection of
operand sets for minimax intersections on the elements of
the minimal baée. Since each element of this collection
must have a representative elenént of the minimal base, the
maximua number of creations by -ioioax intersectioos is less
than X} which iﬁ the maximum size of the minimal base.

This gives the desired result. <

The size of base.graph has linear .bound. This is an
important result because the complexity of an algoritha to .
handle a base graph is a fuootion of its size. PFrom the set
inclusion properties, observe that a base graph is an acy-
clic digraphAvithia sink. ihe interested reader is directed
to Harary[1969] for details in introductory graph theory.
The base graph for topologyl 1§ uniguély determined since
rinimal base and the minimax intersections of its elements
are unique. The concept of the base graph will be used to
find appropriate honeonotphisné in Chapter IV. This is a

. brief review of the relevant topics in topology.
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[ 2.2 ] DATABASE THEORY

The first standardization of database systens> was the
report froi CODAS!L bBQGt197i]' whiéh is based on graph
structnrés. Ihus; the CODAS!L iér-s aré briefly examined at
the 'beginning of this discussibn. Ih theICODASIL approach,
a view of the concept 6f a record requires three 1levels of
abstraction: a,recdrd structure, An 6ccurrence of the record
structure with an entity, aﬁd an instance of.the recorﬁ vith
values assigned to each of the fecord‘fields. CODASYL
refers to the record structure as a record type, the tecord
occurrence aséociated with a particular entity as a record,
and the set of values assiqned as an instancé of the record.
Records and fields are usgd in terms of conventional infor-
mation processing. A field can hold one unit of infornation
and a record :epresenis an entity by using a collection of
fields. In this discuésion, notation t[X] is used for a
record where X is a record sttuctu:e.' If YC x, then Y is
called a pseudo-entity type and ¢[Y] is called Y~coaponent
of the record t. . Records provide an excellent tool for pro-
cessing infornation, described in Hansonf1982]. Also,
Kent[ 1979] describes the basic assumptions héhind the record

based information processing.

The CODASYL approach allous a one-~to-many relatioaship,
called an ovnership in this discussion and a set in the ori-

ginal DBTG report, bhetween records. An ovwnership contains
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tvo kinds of records: an ovner record of which there is
exactly one—and anj nniber of member records. ‘ $he CODASYL
apptqech definesj an ovnerShip type as a‘nanedftelagionship
hetveen record types. The ounership tfﬁemrceﬁsists of
Aexactly one owner record type end a nenber of leeber record
types. Thus, the concept of ownership requires three levels
of ahstraction; an ownership structure, an occurrence of
the record structure with va named reletionship; and an
instance of the ownership, described in 0lle[1978]). The
CODASYL approach refers to them as an oinership .type, an
ovnership, and an instance of ownership, :espectively.
There is an ounership vhenever there is anAevner record. An
ownership is said to empty uhen there are no mesber records.
It is interesting to conéare inier-reeord type with intra-
record type. The inter-recetd is an oueership vhile the
intra-record is a record. The choiee of these tvo types for
the database representation is one of the major roles of

designer in the CODASYL approach.

The relational approach was introduced by Codd[ 197D ] on
the basis of the set theoretic approach. The relational
approach determines the inter-record‘types dynamically while
the CODASYL approach does so statically. There are no
differences between the inter-fecord types and the intra-
record types in the relational approach. 1Imn the relational
approach, the main concepts are described with ¢the intra-

record types and the dependencies which are essentially the
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same as the inter-record types 1n the €ODASYL approach, as

described in Tszchr1t21s-Lochovsky[1982].

A relatlon scheme is a set of attt;hutes uhxle a rela-
tion is a set of reco:ds. An attrlbute is specxfxed hy a
domain uhxch is a set of posszhle 1nfo:-at1on values.
Records of a relation are expressed as n-tuples if the asso-
ciated relation scheme has n attrihutes; A fdnctienal
dependency is expressed as a pair;(x,i) vhere X and Y are
sets ef attributes. The notation X --> Y is replaced in
this discussion with (X,Y) to alloa the direct aéplication
of the product topology in the next chapter. A relation R
satisfies a funct10na1 dependency (X,Y) if uhenever there
are two records s and t in R such that s[x] = t[X], it must
also be true thet s[Y] = t[7]- .Allultivalued dependency is
expressed as a pair (X,Y) where X and Y are sets of attri-
butes. Again the notation X =>-> Y is replaced with (X,Y)
to allow the aéplication of the product topology. A rela-
tion R satisfies a multivalued dependency (X,Y) if vhenever
there are two records s and t in R such that s[X] = ¢t[X],
there nmust also exist a record w in R such that

W[XUY] = s[XUY] and w[XUTY]= t[TUT].

Two operators, PROJECT and JOIN are introduced on a set
of relations. PROJECT[R:X] is defined as a collection of
the X-component of tuples in the relation R, where X is a

subset of the relation scheme associated to the relation R.
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JOIN[RI:B2:...:Rn] is defined as a collection of tuples ¢t
such that t[Xi] ¢ Bi; i= 1,2,...,n;‘§hete Xi is a,rélation
scheme associated to the relation Ri. JOIN operator means a
natural join' in database literature. A join dependency is
expressed as a cblléciion ofvattribnte sets. A telation R
satisfies a join dependency .{ x1,xz....;xn.}, if

X = XTUX2U ... UXn and

R = JOIN[PROJECT[R:X1]:PROJECT[R:X2]:....:PROJECT[R: xn]].

where X is the relatzon schene for the relat;on R.

In addition, ve have the concept of embedded dependen-
cies. Recall the rglatioh scheme is a set of attributes.
An embedded dependency is satisfied only ip a subset of a
relation scheme, but it is not satisfied for entire relation
scheme. There exist embedded uultxvalueﬁ and eubedded join
dependencxes. Throughout this dxscussxon, ve w111 use mul-
tivalued dependency and join dependency terminology, exclud-

ing embedded dependencies.

The concept of normal forms 1is intrqduced from the
fuactional, nultiyalued, and join dependencies. The normal-
ization process ha§ been proposéd as a decomposition theory.
The main reason for thé normalization is to remove the
anomalies in the case of data insertion, deletion, and
update. Two plausable conditions are known as lossless join
property and dependency preservation property in the decon-

position processes. In general, the original relation
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should be recoverable and the data structuring dependencies

should be preserved after the'deCOIposition.

The closure set for a set of dependeneies‘is the col-
lection of dependeneies logically implied by the set of
dependencies. Tﬁe notation r+'isizsea ﬁoe fhe closure logi-
cally implied by the set P of fnnctional dependencies. Let
F be a subset of G, vhefe P and G are sets of dependencies.
Then, F is called a cover of G if all dependencies in G are
logically implied by F. VLet X be a relatioh scheie and K be
a subset of X. Then, K is calied a key if (K,X) € P+ and
(8,x) £ F+ for K C K.

The inference problem in database theory is how to
decide wvhether . a dependency is 1logically implied by the
given set of dependencies. The inference problenm hae been
solved by the chase process, described in Maier-Meadelzon-
Sagiv[1919]. %hen the chase algo:ithn is app;ied Vto the
inference‘ problem, ve say the chase is successful if a
depehdency to be teeted can be deriied from the given set of

dependencies.

Since the chase process is used to test the axiomatiza-
tion for Jjoin dependencies in the next chapter, ve examine
it some detail. A successful chase process for join depen-
dencies can be expressed as a acyclic digraph, as given in

Sciore[ 1982]. Recall that a digraph consists of vertices
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and directed edges. An acyclic digraph contains no directed
cycles. a‘siqk is a vertex ihich can bé'reached by all oth-
ers. For a directed edge (Ri;ﬁj), Ri is adjacent»to Rj and
Rj is adj&cent frdﬁ BRi. A véité; ;s a h-tnble if the rela-
tion scheme has n attributes. Each component of a n-tuple
is associated to each attribute with even or odd variable.
For a set G of edges such that |

G= ( (pi,X) | Di E D, D::a vertei set, X: a vertex },

D is associated fo a join dependency and X is associated
to a derived tuple. Initially, a set of vertices is given
by a join dependeﬁcy to be tésted. A vertex associates a
meaber of Jjoin dependency. A component of vertex has even
variable if the aenbef of join -dependency associated with
the vertex haé the attribute associated with the component,
odd variable’ othervise. Even variables are uniguely
assigned to each atttibute vhile odd vatiablés are assigned
one for each. If the relatioﬁ schéle has n attributes and
the djoin dependency tésted has k members, then there are n
even variables and at most n(k-1) Qdd variables. A derived
vertex is constructed in the wvay thaf for an attribute Xi in
the member X of applied Jjoinm depéndency, Xi-component of
derived tuple is the séle as Xi-component of the vertex
associated to the member X. Pinally, the sink bhas all even

variables.

EXAMPLE[ 2.5]. Consider a set U of attributes:

U= {a,b,c,d,e}] and a set W of join dependencies:



- 23 -

W= {J1,32,33,J4}, where

it

31 = {fa,b.cl, (c.d.e}), 32 = ({a,d}. (a.€), [b,C,el},

33 = (B,d}, {a.b,cee}}, I = {(a,b,e}, (a,c,d}},

and a jdin dgpendencyvuﬁich‘ue vqﬁt_td derive:
38 = (fa,b,c}, (0,3}, (beel, (a,e}, fa,cl)-

Hote thgt notations a5, Jﬁ,kand J7 are resé:ved for inter-
mediate Jjoin dependencies ilplicitly.. Then, ve get a set V
of vertices>given initially as fbliows:

V= (v1,§2,v3,iu.v5}; vhere |
Y1 = (al, a2, a3, bl, b2),
v2

(b3, a2, b4, au, bS5),
v3 = (b6, a2, b7, b8, a5 ),
v4 = (av, b9, bI0, b11, a5 ),
V5 = lal, b12, 33. b13, biy).
Hote that al,a2,...,a5 are even variable and bi,b2,...,b14
are odd variable. We get a set D of vertices derived by V:
D= [Dj,DZ,DB,Du}, vhere
D1 = (b6, a2, b7, a4, as5),
D2 = (a1, b9, aé, b13, a5 ),
D3 = (b6, b9, a3, a4, a5),
D4 = (a1, a2, a3, a4, as5 ).
D1 is derived from V2, V3 by using J3, D2 from V4, V5 by
J4, D3 from D1, D1, D2 by J2, and finally D4 from V1, D3 by
J1. Bote DU is the sink for the successful chase process.

The derivation graph is given in PIGURE[2.2]. <>
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FIGURE[2.2]. A successful chase process.

Inference rules are a set of rules by which new depen-
dencies can be aerivéﬂ from the given set of dependencies.
A-set of inference rules is complete for a set of dependen-
cies if any dependency which is ianied by the given set of
dependencies can be derived from thé.given set of dependen-~
cies by using those inference rnleé. The complete axiomati-
zations for inferénce rules on functional, multivalued, and
join dependencies have been explored by Arastrong[ 1974],
Beeri-Fagin- Howardf 1977], and Sciore[1982], respectively.
Issues on the complete axiomatization for dependencies will
be examined in great detail in the next chapter. This
represents a brief review of the relevant topiés in database
theory. The interested reader can look at fﬁe cited refer-

ences for more detail on a particular subject.



.CHAPTER III
TOPOLOGICAL APPROACH

The primary purpose of data modeling technigues is ¢to
provide a representation for}inforlation and manipulation
operators for such a representation. A databgse repreSenta—
tion based on the topological iiev is the‘prilary concern of
this chaptgr. The database unit for the datahaée represen-
tation in the topological model is an ahstfact Space, called
a database space. A database space is characterized by the
corresponding topological space. prropriétely selected
topologies provide'the facility to store the ‘éelantics of
the data constraints sﬁch as functional, multivalued, and

join dependencies.

The definition of the database space is introduced in
‘Section[ 3.1] by assuming an arbitrary topology. In the fol-
loving sections, ve vill treat issues surrounding the selec-
tion of the topology. The obvious method for the selecting
the topology is to base the topology on the data semantics
of the application such as the data constraints. The pro~
perties of functional, multivalued, and join dependencies

are exanined and the complete axiomn system of the relational



model are extended to the topological space by assuming the
discrete tbpologies in Section{3.2). They can be general-

ized in the case of arbitrary topologies.

In Section[ 3.3)], ve will examine the topologizing pro-
cess, reguired to selectvan optimal tbpology. Section[3.4]
intrqduces structures based on the optimal topology to
axiomatize the cohcepts of functional, multivalued, and join
dependencies. A series of algorithas to co-pﬁte the struc-

tures are included.

{ 3.1 ] DATABASE SPACE

The database :ep;esentation in the topological model is
given by an abstract space, called a database space. Let us
begin with tﬁe definition of the database space. Originally
the database space was defined by Baik-Miller[ 1983] through

the éoncept of the topological space as follows:

DBSIBITION[3.1]. DATABASE SPACE (DBSP).

A n-dimensional Database Space, usually denoted by p" is a
n-dimensional space constructed by the n attributes as the n
coordinates such that the sét of n coordinates is a topolog-

ical space. <
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Note that the most important portion of database space
is the topology in the sense of stoting data semantics.
since we have not explored the approprlate topologya we

-

assume an arbxtrary topology in thzs dlscnsszon.

A point in the n-dimensional DBSP, expressed by a n-
tuple, teflects e tecord for an entity., Infany instance, if
data for a record is avaxlable tken the point associated
with the record is a valxd poxnt, otherwise it is an invalid
point. A surface Lp the DBSP reflects a record for which
information is partially available. A surface is a record
with null values. Thus, the number of null values in the
record 1is the degree of freedol of the surface. The set of
all valid points inoluding surfaces in the database space
represents afailable information for the current instance of

the database.

| |
i CITY t STATE | POPULATION |
— | i- |
}] Rorman ] OK ] 71500 |
| Miami { OK | 1200 |
| Niami | TX | 800 |
| Austin | - TX | NOLL |

|

PIGURE[ 3.1]. A sample data set I.
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EXAMPLE[ 3.1]. Consider a set X of attributes:
X = { CITY, STATE, POPULATION }.
A 3-dinen$ion§1 DBSP is forped by the 3 coordinates:
CITY, STATE, and POPULATION.

The CII!-coor&inéte reptesents é domain of the attribate
CITY, a set of cities. The STATE-éoordinate represents a
domain of the attribute STATE, a set of states. The
POPUilTION;fQQrdiRate >represen£s ‘a domain of the attribute
PdPULATIOR, a set of positive integers. If we introduce an
arbitrary topology T: o |

T = (& X, {CITY,STATE}, (POPULATION} },

then (X,T) is a topological space. In a éettain instance,
if the information of three cities which are Horman, OK wvwith
popqlation 71500, niami, OK with population 114200, and
Biami, TX with population 800, as giﬁen in PIGURE[3.1], is
available, then thrée points in the DBSP, (Borman,0K,71500),
(mianmi,OK, 14200) , and (Miami,TX,800) are valid points in the
instance. 1In the 3-dimensional case, the D§SP is expressed
by the Buclidean Space, as given'in FIGURE[ 3.2]- In*aﬁother
instance, if we know a city, Austin, TX nith unknown popula-
tion, then it is represented as a su:face; (Austin,T!,NUtL)
which -has the first degree of freedom. Thus, the Surface,
(Austin, TX,NULL) will be a straight line in the conventional

Buclidean Space. <O
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DINMENSION OF DATABASE SPACE

POPULATION-coordinate

1)

(Norman, OK, 71500)

STATE-coordinate
.

L4l

OK

Norman

CITY-coordinate

TOPOLOGY OF DATABASE SPACE

CITY
STATE

-1
POPULATION |
-1

INSTANCE OF DATABASE SPACE

(Norman,0K,71500)
(niami,OK, 14200)
(Niami, TX,800)
(Austin, TX,NULL)

FIGURE[ 3.2]. An example of a Database Space.



- 30 -

Ignoring the dimensionality of database space, the
database space ié sinply denoted by'Dgﬁithout specifying its
dinensiona;ity. Pot a datahase space D, the dineaéion-bf D,
denbteﬁ Diﬁ[b] is the set 6£ éébr&inates; the'topblogy of D,
denoted ioé[nj is a topology on DIN[D], and an ipstance of
D, demoted INS[D] is the set of valid surfaées and pointé.
Then, a database space D can be specified by DIA[D],
TOP[D], and INS[D]. The topolgical space for the database
space D is given as pair (DIH[Dj,TOP[D])., ;Sonetines vhen
the instance of database space is ignored, a database space
D is sinply'expressed as a topological space (x,rj, vhere
X ="DIA[D] and T = TOP[D]. We will use both notations

(x,T) and (DIM[D],TOP[D]), throughout this discussion.

We need to pay attention on the dimension of a database
space. The dimension, DIN[D] is constructed by the set of
coordinates. A coordinate is defined by the domain 6f an
attribute. The domain of an attribute ai, denoted DOM[ai]
is a set of values. Then, the size of a database space is
deterained by the size of its ddnains. By assuming

DIN[D] = {al,a2,a3,.<.an} for a database space D,
the size of D:
ID] = |poN[a1]l X {DOM[a2]] X .... X |DOM[an]l,
where |DON[ai]l is the size‘of DON[ ai ].
Note that DOﬂtai] must be a finite get, since it nmust be
represented by computers. The semantics of the domains is

determined by query language for users. Certain domains can
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be the same set or a domain can be a subset of another
domain. The information processing.capability of database
space is 1limited by deterniningvfhe coordinates and their

proper dosains.

[ 3.2 ] AXIOMATIZATION FOR DEPENDENCIES

The best topology for our purpose cam be selected by
examining the data selanticé of the application. The data
constraints imposed on the database by thé functional, =Rul-
tifalued, and Jjoin dépendencies are the piace to initiafe
our discussion. The dependencies are defined in ﬁeris of an
abstract space using the discrete topology in this section.
Axiomatization process for a set of fnnétional dependencies
vas ~first explored by Atlsttong[1979]. By assuming a
disc:ete topology Td, Arastrong axiom systenm £or a set of

functional depehdencies on Td, can be given as follous:

THEORENM[ 3.1]. A complete axiom system for functional depen-

dencies on a discrete topology Td is given as follows:

P1: tCx ==> (X,Y) € P[Td],
P22 (X,7) € F[Td] ==> (XUZ, YUZ) € F[Ta],
P3: (X,7), (Y,2) € P[TA] ==> (X,2Z) € F[Ta]J,

where X, Y, 2 € T4,
P[Td]: a set of functional dependencies on Td. <

PROOF: See APPENDIX[A.1]. <>
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Note the collection, F[Td] is a subset of the product
topology Tda of the disc;ete topology Td. Also, P[fd] is a
closed collection onATd, inttoducédvby usihg ~the 'colp1éte
axiom 'sysﬁei. .In the casé §£ﬁan’arhitrary iopology, the
closed colléction'P[T] for a topology T can be 'gehetalized,-
because if x; Y, z4é T themn XUZ, YUZ E T.

The advantages of the genefalizatiog to an arbitrary
topology will becoie clear when ve ére fo select an oétinal
topology in the pext section. In the case of the discrete
topology, P[Tﬁ] = F+ vhere F+ is the closure for tﬁe set P
of functional dependencies. Axionatizaiion process for a
set of nultivalued dependencies was explored in the paper
given by Beeri—ragin-ﬂdvardt1977]., By assuming a discrete
topology Td, a complete axioi systena for a set}of aul-

tivalued dependencies on Td can be given as follows:

THEOREHN[ 3.2]. A complete axion system for multivalued
dependencies on a discrete toéology Td is given as follows:
M1z (X,Y) € r[faj ==> (X,Y) € M[Td],
N2: (x,Y) € 8[Td], (XUY, Z) € P[Td]
. ==> (X, TNZ) € P[Td],
¥3: (X,Y) € N[Td] ==> (X, TUY) & N[Td],
ez (X,Y) € H[TA] ==> (XUZ, YUZ) € B[Td],
M5:  (X,Y), (¥,2) € M[Td] ==> (X, YNZ) € n[Td],
where X, Y, 2 € ?ﬁ,
M{Td]: a set of multivalued dependencies on Ta4. <O

PROOF: See APPENDIX[A.2]. <>
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Axioms, M1 apd N2 state that functional dependencies
are the special case of nnltivaluedrdependeeeies by theit
de:inifions..ﬁoteethat M[Td] is a subset of the product
topoiogy 4sz of_the;diserete topoloéy Td. - Also, a[td] is a
closed collection eh 55, introdﬁced‘by nsing the ;eonplete
axiom system for iuiiivalued dependencies. invthe case of
an arhitrery partitioh tepb;ogy, the eiosed collection N[ T]
for a-topology T can be generelized, because |

if X, Y, 2E ¥ then TOY, YUZ, TNz & T.

Since axioms N3 and M5 invelve 'a complement operation,
this axiom systea can be generalized to an arbitrary parti-
tion topology which is a eiosee coLiectien under the comple-
ment ope:ation. Agaih here, the edvahtages_of the generali-
zation to an arbitrary topelogy will beeene ,cleaﬁ uhee ve
select an optimal topology in the next section. In the case
of the discrete topology, Td = Ta and B[Td] = N+ where M+

is the closure for the set M of multivalued dependencies.

The a;ionatization process for a set of generalized
join dependencies vas exanined by Sciore[ 1982]. -However, in
this discussion, by introducing the concept of parity topol-
ogy, the eonplete axiom systea is constructed and a closed
collection G{Td] on a parity discrete topology <Td> is
derived. Since the complete axiom system is given on a par-
ity discrete topology, we need to define paritizing process.
Consider three functions given as folious:

EVER[X] = a set of even members of a set X,
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ODD[X] = a set of odd members of a set X, and

ROOT[X] = a set X without parities.

Now, ve can define:a éarigizing operator as follows:

paﬁITI[AJ = {pi|] A= ['x ji X = noomtni] 3.

| noor[BVBN[ni]](1xdor[onb[nj]] =81,

vhere Di, Dj are elements of <Td> and an dpéiénd A is a
set of open seis in a“diSCtete topology. One can seekfron
the definition that an element pf the sets ofﬂoperand A will
pick up either an even or odd parity _ahd retain it
throughout the paritizing process. §e use notation a+ to
denote even parity and a- to denote odd parity for an eié-

ment a in this discussion.

EXANPLE[ 3.2]. Consider a set A: A = [ a1, A2, A3 ],
vhere Al = {a,d}, A2 = {a,e}, A3 = {b,c,e}.
Then, an example of the appiication,of PARITY is:

PARITY[A ] =‘[ D1, bz, D3 }, where
D1 = {a-,d+}, D2 ; {a-,e+}, D3 = {b-,ct+,et}.
Also, examples of introduced functions are:

ROOT[D1] = A1, EVEN[D1] = {d+4}, ODD[D1] = fa-}. <>

Observe the operator PARITY determines the aultiple
results of the operaiion. All possible results should be
considered. The deparitizing process is to simply remove
their parities. §e have examined the preliminaries for
introducing a complete axiom system for join dependencies on

a parity discrete topoloy. Assuminy a parity discrete
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topology <Td> and the operator PARITY, a complete axiom sys-

tea for join dependencies on <Td> is given as follows:

THEOREH[ 3.3]. A coumplete axiom systen for join» dependen-
cies on a parity discrete topology <Td> is given as follows:

G1

(X,Y) € B[Td] ==> {XUI, TUT} € 6[Td],
G2: (P, 0} £ G[Td], ROOT[P]NROOT[Q] # &

==> (ROOT[P]NBOOT{Q], ROOT[Q)) € M[Td],
G3

D & G[Td] ==> DU({Q} € G[Td],
Gl: Du(é,m € G[Td], PCQ == DU{Q} & G[Td ],
G5: DU(Q) € G[Td], E E s[raj,
Vk = [ a 7| at szu[‘éinej]. ODD[EiNEJ] = &,
for all pairs Ei, Bj € E, i7 3t
ROOT[ Yk ] NROOT{ODD[Q]] = &,
v=(P 1 P=EpNQUYK), BPEB}
==> DUV & G[Td],
where X, YETd, P, QE <rd>, D, B E<Td>,
Td: a discrete topology,
<Td>: a parity topology of the discrete topology Td,
G[Td]): a set of join‘ dependencies on <Td>. <>

PROOF: See APPENDIX[A.3]. <>

EXANPLE[ 3.3]. Considering EXAMPLE[2.5], we have a set U of
attribhutes: g = fa,b,c,d,e}, and

an initial set W of join dependencies for W C G[Td]:

= (31,32,33,Jd4}, where

J1 = {{a,b,c}, {c,d,e}}, JI2 = {{a,d}, (a,e}, (b,c.e}},
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J3 = {{b,d}, [afb.Q:e}]a J4 = {{a,b,e}, {a.cad}}-

Then, we can deri§e joi@ dependencies, J5, Jd6, J7, and J8
by the following apPl?catibns of the axiom systen; By
applying éxibn G5 to'diﬁéhé 33; | |

9331T1[32]v= {ta-,d+}, fa-,e+}, {b-,ct,et}],

Q = fa-,d+},

E = PARITY[J3] = {({b+,d+}, (af,h+,c+.e*}},

Yk = {[b+}, | |

Vv = {{b+,d+}, {a-,b+}}, and then

JS = DUV

{{b+,d+}, {a-,b*}, (a-,et], {b-,c+,et}}.
By applying axiom G5 to J5 and J4,
Jé = DUV
= {{b+,d+}, (a-,b+}, {a-,e+}, {a+,b-,e+}, [at,c+}}.
By applying axiom G3 anh G4 to J6,
J7 = {{b+,d+}, {a-,b+,e+}, [a+,b-,e+t}, {a+,ct+}}.
By applying axiom G5 to J1 and J7,
PARITY[J1] = {{a+,b+,c+}, (c+,d+,e+}},

Q

fc+,d+,e+4},

Yk = {a+,b+},

vV = {{b+,d+}, {b+,e+}, {at,et}, {at,ct}], and then

38 = {{a+,bt,ct], [b+,d+}, [b+,e+], (a+,e+}, [a+,c+}]).
' since G[Td] is given on a parity topology, deparitized
join dependencies from J5, J6, J7, JB represent a set of all
possible paritized join dependencies by applying the PARITY

operator. FIGUORE[3.3] gives the derivation process. <>
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PIGURE[ 3.3]. A successful derivation process.

Axioms, G1, G2 state that multivalued dependencies are
a special case of join dependencies. G[Td] is a subset of

the power set of the parity discrete topology. Also, G[Td]
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is a closed collection on the parzty dzscrete topology<md>
introduced by using the conplete ‘axzon systen for Join
aependenc1es. In the case of an arhltrary partltion topol-
ogy the closed collectxon G[T] for a topology T can be gen-
erallzed, because Vk E <T> in the axxom G5. We have exanm-
ined the complete axlon_systems for functional, nultivaluéd,
and Jjoin dependenciés‘and are reody to look at tho process
of using the dependéncies in ihe coostrootion of the topol-

ogy for an abstract space.

[ 3.3 ] TOPOLOGIZING THE SET OF ATTRIBUTES

In the previous section, we examined the closed collec-
tions: P[Td], M[Td ], and G[Td] which are given on a discrete
topology Td. FNote that P[Td] is a set‘of functional depen-
dencies, NM[Td] is a set of multivalued dependeocies, and
G[Td] is a set of join debendepcies. Also note that the
closed collections can be given on arbitrary topologies. An
ideal toéology. called an optimal topology, is minimal in
size but fine enough to accommodate the closed collections.
We describe a way to introduce an optimal topology im this
section. Recall that for a given set P[T] on an arbitrary
topology T, a subset FsS[T] of P[T] is called a cover of F[T]
if P[T] is implied by Fs[T]. From the concept of minimal

cover, MINCOVERs for P[T], M[T], and G[T] are introduced in



- 39.~-

such a uay that the BIHCOVBB 1s a ulnzlal cover, as, given in

the follovxng def1n1t10ns..

DEFINITIOR[3.2]. MINCOVER[E[T]].
vulucovzé[r[r]] is defined as a subset of P[T], : satisfying
the following conditions: - | | |
1. (xuvz, YU?zZ) £ urncovzn[r[r]] for 2 # 4,
2. (z2,Y) ¥ uzncovzn[r[r]] if (x Y) € F[T] for XC 2,
3. [, !) 4 uucovzn[r['r]] if (x,2) € F[T] for YC 2,
h. P[T] is implied by nINCQVEB[P[T]],

where X, Y, Z £ f, T: an'arbitrary.topology- <

EXANPLE[ 3.4]. Consider a topological space (U,T):
U= fa,b.c.d,e},
T: an arbitrary tbpology which aqcﬁluodatés the initially
given set 6£ functidnal dependencies, such that
(fa,b}, {b.c}), ‘(ic},(d)), (Lb,c},(d)) € E[TI.
Then, ({a,bl, (C.d}), ((c], (4)) € WINCOVER[P[T]]. <>

DEFINITION[3.3]). MINCOVER[N[T]]. -

urucovzn[a[r]] is def;ped.as a subset of B[f], satisfying
the follouing condition;:

1. (xQz, YUZ) & NINCOVER[M[T]]) for 2 # &,

2. (2,Y) & MINCOVER[M[T]] if (X,Y) € 8[T] for XC 2,

3. (X, YUZ) .£ BINCOVER[M[T]]

if (X,Y), (X,Z) & MINCOVER[M[T]].
4. M T] is implied by NINCOVER[H[T]],
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vhere X, Y, Z € T,

% a partition topology of am arbitrary topology T. O

EXAMPLE[ 3.5]. Conc_i.det a<t.opologicn1 spnce (U,__'.l‘): .

U= fabicidiel,

T: an arbitratly topoiogy, vhich accoamodates the initially
~given set of nnltinalued dependencies, such that o
(@b} oo s (s (), ((Bsc) @))€ BLT)..

'rhen, ve can. get

(fa,b}, (1), ((c}, @), (fa,b},(4}) € BINCOVER[A[T]]. <>

Both BIRCOVBB[P[T]] and MINCOVER[M[T] minimize the left
side wvhile MINCOVER[P[T]] nax:uu.zes the n.ght sxde and
MINCOVER[M[T]] ninidnizes the right side from the coanditions
given -in their definitions.v In. the relational database,
assum.ng the selected topology is a. dx.screte topologyy Td,
the concepts of elenentary funct:.onal dependency and elenen-
tary multivalued dependency vere introduced in the paper by
Zaniolo-Melkanoff[ 1981]. A functional dependency is cailed
an~elenentary dependency if it has the f.drn |

(X, {p}) where pEX and (Y, {r}) ,E’P[Td] vhere YC x..
A multivalued dependency (X,¥) is called an elenentary
dependency if Y is d:.sjox.nt froms X and
(A,B) & H[Td] wvhere ACX and B C Y.
Both elementary functional dependencies and elementary
multivalued dependencies have -mininum left side and minimum

right side. Thus, the collection of elementary multivalued
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dependencies conpnted from n+ is MINCOVER[N[Td]]. However,
HIRCOVB§[P[T6]] can be co-puted(by laxiuizing the right side
from the col;ection  of:g1eléntaty fhhctional dependencies
from P¢. . - o - t
DEFINITION[3.4].. MINCOVER[G[T]].

-u:ucov;n[s[T]] is defined as-a subset of G[T], satisfjing
tﬁe following conditions: |

1. AU (X} & NINCOVER[G[T]] |

if AU(I,Z} e. 6[T] for X =1YUZ,

2. B & NINCOVER[G[T]] if B € MINCOVER[G[T]] for B C A, -

3. G[T] is implied by MINCOVER[G[T]I, - '

vhere X, Y € T, .A.g.?l", '

T: a partition topolagy of an arbitrary topology T. <>

The first condition minimizes the size of each elemeat
of a join dependency. The second condition minimizes the
size of a join dependency. Thus, in the sense of =mininmal

size, MINCOVER[G[T]] is a minimal cover of G[T].

EXAMPLE[ 3.6]. - Consider a topological space (U,T):
U= (a,b,c,d,e},
T: an arbitrary topology which accommodates the initially
given set of join dependencies, such that
{ta,b,c}, (c,d}, {crel}, {{a,b,c),(cid,e}],
{(a,b,c), by}, (crd, e} € S[T].
Then, ({a,b.c}, {c,d}, (c,e}} € BINCOVER[G[T]].
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Note that {{a,b,c},f{c,d,e}} violates condition 1 and

{{a,b,c},{b,c},{C,d,e}} violates condition 2. <>

MINCOVER[F[T]], MINCOVER[M[T]], and MINCOVER[G[T]] are
unique minimal covers of.f[I]. u(T], énd G[T],'ﬁéspectively,
since they are construcfed by liniiization and ua;iiizé;ion..
The unigueneSs can be-directlj'recoénizéd Sy e¥anining the
conditions given in their definitiohs.' Oniy'relaihing con-
sidgtation iS that . the counterpart of éﬁ qpen'seﬁ aust be
included for the unigue minimal cover.of nultivalnéd depen-
dénéies. Now, ve éanAdefine optimality for the selection of

the topology as follows:

DEPINITION[3.5). OPTINAL TOPOLOGY.

Por the given F[T], B[T], and GLT] on an afbiérary . topol-
ogy T, the subbase for an optiual topology To is definéd as
follows:

(X,Y) € BMINCOVER[F[T]] ==> X, Y & SUBBASE[To],
(5, Y) € nxncoinn[u[r]] => X, Y € susa;sz[io],
{ A1, A2, ..., An } & MINCOVER[G[T]] '
==> A1, A2, ..., An &€ SUBBASE[To]. <O
EXAMPLE[ 3.7]. Considering EXAMPLE[3.4],
(ta b}, [c,a)), ((c}, (d}) € HINCOVER[F[T]].
Thus, {a,b}, {c,d}, {c}, {4} € SUBBASE[To]. <>

Note that from the definition, an optimal topology is
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fine enough to acconnodaté.the closed collections. Thus,
the structure of closed collectiqnsvc&n\be inﬁiédpced into .
the  op§igql< t6poiogy., Obsetve‘tﬁat_underfihe‘assunption,
the optinai tdpologf is thg finésﬁ- topé;ogy,' vhich 'ig a
discreté @opology; the topologicél dagabaqe-uill‘he exactly
the sampe as the relational database. Inifhé hext, section,

"we examine a set of structures introduced on the optimal

topology.

[ 3.4.] STRUCTURES ON TOPOLOGY

[ 3.8.1 ] CONSTRAINT STRUCTURES '

After obtaining the optimal topology for the set of
attributes, strdctures called stropg, weak, and join con-~
straints, éan be.introduced on this topological space.: The
three types of constraints?are ahstracé strucﬁdtes redefined
fron the functional, nqltivalned, and,joiqrdependencies. He
formalize - the definitién 'of the constraint structures

through the notion of complete axiom systems.

DEPINITION{3.6]). STRONG CONSTRAINT ON OPTIMAL TOPOLOGY.
A strong constraint, denoted S[To] on the optimal topology

To is a subset of the product topology of To, satisfying the
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complete axiom system for the set of functional dependencies

on the optimal topology. . <>

BXAEPLE[3.8]- Considerihg B:A§9L3[3.7],.ue have
AINCOVER[E[T]] = { ({a,bl.(c.d}), ((c},(d}) } and
SUBBASE[To] = [ (a,b), (c.dls (e}, (A} }-.

Then, vé get an optimal topé;ogy To: .- - .

To = { £, U, (a,b,c.d}, {a,b,cl, {a,b,d}, [a,b}, {c,d},

(cl, (@1 and | | |

a strong constraiht S[To] on To:

S{To] = { (0,0), (U, (a,bsCed})s <eeee (U, (d}),
({a,b,c,d}, (a,b,c,d}), ev--. ({a,b,Crd},{d}), coeee
(fc.a), (d), ({a,b},(c.a}), ({a,b},(c}). ({a.b}. (d}),
(i}, @), (0,0), (5,8 ). <>

DEPINITION[B.?]., WEAK CONSIB&IBT»QH OPTINAL TOPOLOGY. .

A weak constraint, denoteﬁ W[To] on.the optimal. topology
To is a subset of the product_tqpology of.pariition topology
of To, satisfying the coaplete axion sysfen £é: the set of

multivalued dependencies on the optimal topology.. <>

DEFINITION[3.8]. JOIN CONSTRAINT ON OP?IHAL TOPOLOGY.

A join constraint, denoted J[To)] on the optinal topalogy
To is a subset of the power set of the partition topology of
To, satisfying the complete axiom systen :or the set of join

dependencies on the optimal topology. <>
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Constraints, S[To], W[To], and J[:To] are the redefini-
tions on an optimal topology frpn the’set of depgndeﬁciés in
the relational database;f The advanfage of thésé_dfedéfini—
tions is the fact that ‘they do not uée.ghé!entitj level
rules. In otﬂer vbrd; they are defined viﬁhoht ﬁsing the
collection of fnples. The ﬂefinitions are_given dirgctly by
the complete axioh systeas on the topoloéical space without
concerning thg instances. Recall that a:daiabase space D is
completely specified by DIN[D], Ioé[b], and. ius(p]. Con-
straint structures aie defined_‘on the.toéological,space
(DIutD],TOP[D]), ignoring IBS[b] for the database séace D.
Dependency closures, F[T], B[T], and G[{T] are introduced oh
an arbitrary topology T. Thus, in the case of T = To,

S{To] = F{To], W®[To] = M[Toj, and J[To] = G[To].

From now on, we will use ihe notations, S[T], ¥W[T]), and
J[I]. for strong, veak, and join constraint. In this case,
ve assume that the topology T is alwvays optimized unless we

specify otherwvise. .

[ 3.4.2 ] CONPUTING THE STRUCTURES

In the previous section, we exanined the basic concept
of w=minimal cover for P[T], M[T), and G[T] on an arbitrary
topology T. An optimal topoloéy To uaé computed from the
MINCOVER which was shown to be a minimal cover. For any

given set of W of functional dependencies, P[Td] is coamputed
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on thé discrete topology Td. By introducing an optilal
topology To for r[Td], S[To] can be colpnted on the optxmal
topology To. From the deflnztxon of HIHCOVBR[P[I]] for an
arhltrary topology T, ¥e can get the follouxng resnlt for
the set W:

BINCOVER[F[Td]] = NINCOVER[S[T0]]..

This arquaent says the fact.toere are algorithms to com-
puté the MINCOVERs of S[ioj, W[To], ah& &[To]_on the optimal
topology To, when a.set.of dependenéigé is givén on the
discrete topology Td; The foiloqing algorithlé for the min-

covers are created directly from their definitioms.

ALGORITHM[3.1]. MINCOVER[S[To]].
INPUT: a set of functional dependencies;
OUTPUT: MINCOVER[S[To]]:
PROCESS: |
(1] TENP <——- INPUT;
[2] vhile there e;isfs an element (XUZ, YUZ)
of TEMP | | |
do delete (XUZ, YUZ) froi TEMP,
if Y # # imsert (XUZ, Y) into TEMP;
[3]  while ihere exists a pair (X,Y), (Z2,Y) of TENP
vhere X C 2 ”
do delete (2,Y) from TENP;
[4] while there exists a pair (X,Y), (V,Z) of TEHP
vhere v C Y

do insert (X,2) into TENP;
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[5] vhile there exists a pair (X,Y), (X,2) of TEMP
do delete ;i,r), (X,Z) from TENP,
j.nse:_:t (x, !uzj in#é TENP;

[6] vhile there exists a paifl (x,i),t(x,Z) .of rzué

| | where Y sz |

do deléte (X,Y) from TENP;

{7] OUTPUT <--- TENP;
t8] halt;.

END OF MINCOVER[S[To]]. <>

EXANMPLE[ 3.9]. Considering B!AﬁPLB[B.u] in Section[3.3], we
can examine ALGOBIrﬁu[3.1].. Then, the set of functional
dependencies, giQen initig;ly, is |

{ (fa,b}, {bsc), ({c}, (1), ({b,C},(a}) }-

These are an inpﬁt of AiGdBITHHt3.1j. Theh, in.step [21,
delete [[a,b],[ﬁ,c}) agd insert (fa,b},{c}).. In step [3],
delete ([b,c],[dij; Then, in étép th]; insert ({a,b},[d}).
In step [S5], delete ({a,b},(c})., ({a,b}, (d}) and insert
({a,b},{c,d}). In step t6], delete ndthing.. ’Pinaliy,' ve
get an output of ALGORITHN[3.1]:

MINCOVER[S[To]] = {.({aéb}.{c.ﬂ})n ({c},(d}) }. <>

ALGORITHM[ 3.2]. MINCOVER[W[To]].
INPOT: a set of multivélued dependencies;
OUTPUT: ~ MIRCOVER[®[To]1];
PROCESS:

[13] TEMP <-- INPUT;



(2]

3]

[4]

(5]

[6]
[7]

for
do
uhile
do

while

do
while

do»

OUTPOUT

halt:;
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all elements (X,Y) of TEAP

insert (:._?Tj?) into TEMP;
ghe;e-exists an eleient v(x'UZ. _IUZ)
offrzué B D

delete (XUZ, TUZ) fros TEAP,

if Y £ 8  insert (XUZ, Y). into TENP;
there exists a pair (X,Y), (Z,Y) of TENP

uhex:e‘ I'C VA

.dej.ete . (Z4Y) - £xom TENP;

there exists a pair (X,Y), (X,Z) of iEuP

delete -(I,A!UZ) -from TBUi’:

. === TENP;

END OF NINCOVER[W[To]]. <>

ALGORITHM[3.3].

IﬁPUT:

MINCOVER[J[To0]].

a set of join -dependencies:

ODTRUT: MINCOVER[J[To]];

PROCESS:
£1] TENP
[2] while
do
[3] while
do

<--- INPOT;

there.exists an element .Ji of TENP
such that ACB for A, B €. i
delete Ji froma TENP,

insert Ji - {A} into TEHNP;

there exist element Ji, Jj of TB&P
such that AQB, BE€JJ for all A € Ji
delete Jj from TENP;



[4] OUTPUT <--- TENP;
[5] halt; .

END OF MINCOVER[J[Tol]l. <

THEOREM[ 3.4]. ALGORITHEs {3.1], [3.2], and [3.3]. compute
cqrrectly.their MINCOVERS. <> | -
PROOF: COnsidering ALGORITBB[B.?], each step does not
violate' the condition‘being,a cover for the inputéd set of
fun;tioﬂal depeﬁdéncies. The step-[i]'nininizeé"left side. -
Ihe. steps [4], [5]; and [6] laxinizé right side. Thus, the
result is a minimal cover for.the‘ipputéd set of functional
dependencies.. Recall that an optinai topology is givep by
the MINCOVER[{P[T]]- COnsidefing ghe MINCOVER[F[T]] is a
subset of P[T]; we recognize the algoritﬁﬁ co:reétly gives
the result HMINCOVER[S[To]]. The sa-e‘ argument can be

applied to ALGORITHN[3.2] and ALGORITHN[3.3]. <>

Consider an arbitrary set of dependencies which is ini~-
tially given. ALGORITHM[3.1], ALGORITHN[3.2], and ALGO-
RITHA[3.3] compute axkcovzn[S[To]];  MINCOVER[W[To]], and
MINCOVER[J[To]]). respeciively. Thén, an oétinil tbpology
can be given by the lincdvers from the .definition. Recall
that a subbase of optimal topology can he diréctly chosen by
the mincovers. Thus, a givén arhitrarf set of dependencies,
an optinal topoiogy, To for the set of dependencies can be

computed through the mincovers as follows:
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ALGORITHN[3.4]. SUBBASE[To].
INPOT: NINCOVEE[ S[To]], BINCOVER[W[T0]],
| grncovzh[d[ro]]:
OUTPUT: SUBBASE[To];
PﬁOCESS:.
[1] TENP <~-- HNINCOVER[S[To]], MINCOVER[W[To]]:
[2] vhile there exist an eleneﬁt.(x,t) of TENP
do insett x,‘! | iﬁto ~SﬁBBASB[Tﬁ],
delete (X,Y) from TEMP:
‘[3] TEMP <—- HINCOVER[J[To]J;
[4] vhile- there exist an elenén;
{ A1, 22, «u., An } Of TENP
do insert A1, A2, -.., An into SUBBASE[To],
delete { A1, A2, ..., An'} from TBHP{
[5] OUTRUT <--- SUBBASE[Tol; |
[6] halt:

END OP SUBBASE[To]. - <>

THEOREN[ 3.5]. ALGORITHM[ 3.4 ] computes correctly‘a subbase
of optimal topology for the given-constraints. <>

PROOF: Obvious by DEFINITION[3.5]. <>

Since all of basi; features for the database design
unit in the tdpological database model are defined, ué close‘
this chapter by giving a co-prehehsive example of a database
selected from geogréphical data, in order to illustrate the

topological database model as followus:



P G G G SR Gup M D S Mt GRS Gy Gyt GED Gum SSuS S WD Gy GIES MEL SN0 Gum SUS Gum Sut S GUD Gs P haw GRS mum R G Smd SIS Gty G NES Gy fhe St Gme Db Shud s Gnmd

River Metropolis

G GRS fam Gmg S Gme SN e GES Gete BN BB Gunt s SmS ALR GRS SIS Guy NS Sumt PP G GED GUS SN S Sum GEw eEe Gnat SN S Auw Mt GG LS Ged Gnm G Sl Eap SNe NG Gy Gmo G e

[ necl3unsra

*II 395 e3jep ardues y

River

Mississi

Missouri

— g S GQue e S,

Ohio

— tmm e Gmn St emme

Arkansas

e Sy Gnse wmem Mt wme @ees

Length _

2350

e Gem et S Suse Swb

1450

__Discha:g

642000

76000

e uus Gunt Supn G Sum

258000

- s Ry VRS s ame

45000

OQutflow

S e Gt e s S

Mississil

Mississi

| Metropol
‘St-Louis

‘Memphis

|_New-Orle
| Minneapo

Kansas=C

| Omaha __ _

Louisvil

uy A8 Sme Gy Sus hee

Cincinna

Pittsbur

Wichita

Tﬁlsa

g S guts She Smm

Little~

State

(/]
2]
-

8

1

|0-3
[
=]
=
o
[y}
m
o

I
I
|
I
I

| Louisian
| Minnesot

L

]
=]

804

I

|
!
(

N

o

r

ol

ka

Kentucky

Ohio

Peﬁnsylv

Kansas

Oklahoma

Gy Sue e S ewa

Arkansas

1820

Sme B0en Gunes Gon Wun mn

2330

470

. atdy Gms Sy Smw Qemm

1170

610

|_Populati

iy gy ehes

0! 2216000

. 81,3000

|- 1175000
| 1978000
- 1254000

SO sy B Gum G G

ol _ 548000

- 881000

1476000

- 2165000

- 367000

- 569000

e fene Geum gum Gme Gues

380000

D GEn GEn GUe Gme Gt G0 Gy Sun i Guy SEe Guy Gy B SR GHS e B0 Jub G G Sne Suwm

- 16 -



- 52 -

EXAMPLE[ 3.10]. A database space D is defined froa the geo-
gtaphiéal »&ata,v,as given in ricuaé[s.a], ia fhé folloving
vaye. DIH[D], the d;nensxon of the databaae space D, is
glven by a set of. all attrlbutes as follois*

{R, L, C, O, B, S, L, P ], vhere

B: a set of t;yers,

L: a set of positive integers (length of the river),

C:‘a set of posztlve 1ntegers (dlscharge of the rlver),

0: a set of outflous of the rivers,

M: a set of aetropolises located on the bank of-the river,

S: a éet of states, | -

A: a se£ of positive integers (area of-the netropolis),

é: a set of posifive integefs | |

(population of the metrogolis),

This database space is a 8-dimensional Space., PIGGRE[B.S]
shows the dinahsion of a-B-dimensional épace. Thé.sénantics
of the data constra@nts-gives us fanctional‘and nultiaalaed
dependencies, such that ' |

({R} ., {L.C.O}). ({H S}, {A.Pl) € P[T].
({B} ,{8,5,4,P}) 5 B[T]-

Then, ve have nmcovnaiszmo]] by u.connnu[a 1]

{ ({8}, (L,C,0}), ([H S}, [A.P}) }a

n:ucovzn[n[ro]] by ALGORITHH[ 3. 2].

{ ([R} (4,5.A,P}) }.

Note that we consider only the original members of.H[T] in

this case. Prom this fact, an optimal topology To is com-

puted by a subbase of the topology, such that
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(R}, {L.C,0}, {M,S}, (A,P} & SUBBASE[To].
TDP[D], a topology of the datahase space D, is computed by
the SUBBASB[TO] as follons.
{ 9, DIN[D), (R}, €00, (M.S1. (A2}, (R,L,C.O},
(®,8,5}, (BA,P}, {L,C,0,H,S}, (L,C,0,A,P},
(n,S,a,%}, (81,C,0,8,5}, (B,L,C,0,A,P}, (R,N,S,A,B},
{L,C,0,H,S,A,P} }. ' | |
Note that TOP[D] is an optimal topolagy To and SUBBASE[To]
is a minimal base of rop’[n]; given in .rIcuag[s.s,‘].' INS[D ],
a set of 12 points in the datahaso space D, is given in FIG-
ODRE[3.7]. finally, a strong constraiat S[Tol ;; éiven as
follous: | | . | | |
f {{r},(L,C,0}), ({M.S}.{A, P}). ({R,H,5}, {LcC.O.l.P}).
(0% SeA/R} (M S}) s (0H/SsRsRY, {A/R]) gunnnnsen
{{x.c,0,M,5}, {A,P}), ({R L,C,0}, [I-cC.O}):--------
(DIHLD].DIHID])c (DIB[D]a{B.S.A Pl):---------
(#,&), (DIN(D], O, ((B], U),......, ({1, Scl.P}oﬂ) )-

R[To] can be computed in a 51l11ar manner. <

Recall that we assume a discrete topology in the case
of relational database model. In the exanple above, for the
discrete topology T, we have P{(T] as follovs.

 F[T] = S[To] U { ({L,C,0}, &L,CH), ({L,C,0},(C,0}),
(L,C,0}, (L,0})s ((LsC,0}s (L})puneme
(L.C}, iLhH, (L,Cl,{L})s ({L,C},(C}) sevcae }.
ICOmparing FLT] to Stfo], we can obsefve that F[T] includes

lots of trivial dependencies.
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(ulssxssippx,2350 642000,Gulf,
. St-Louls,ﬂzssour1,2380 2216000)

(HlSSlSSlppl,2350 6“2000.Gu1f, .
aenphls,rennessee,ezo 8#3000)

(HlSSLSSlppL,2350 602000 +Gulf, .

Beu-Orleans,Louxszana,810,1175000).

(HlSSLSSlppL,2350 642000, Gulf.z
aznneapolxs,ulnnesota,21&0,1978000)

(Blssou:1,2500,76000 u1551551ppl,
Kansas-61ty,ulssour1,1090,1254000)

(Missouri, 2500, 76000 HlSSlSSlppl,
Onaha,Rebraska,u70,5u8000)

(0h10,1300 258000 +sMississippi,
Louzsvxlle,xentncky,990 881000)

{ohio, 1300, 258000 51551551991,
clncxnnatx,tho,lezo 1076000)

(0hio, 1300,258000, axssxssxppx,
Pittsburgh, Pennsylvania,2330 2165000)

(Arkansas, 1450,45000 51551551pp1,
- Bichxta,xansas 470 367000)

(Arkansas, 1450, QSOOO,uxsszssxppl,
Tulsa,oklahona,1110 569000)

(Arkansas, 1450,45000 HlSSlSSlppl,
thtle-Rock,Arkansas,G10,380000)

PIGURE[3.7]. Amn Instance of a Database Space.
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CBAPTBB IV

DATABASB BQUIVALBBCB

Topologizing the set of attr;butes, the sets used in
the relational lodel'have been reélaced with the topoiogiés,
in the topological model. We vill examine the coaéapt of
database egdivalence in theltopologiéal lbdel thtough the
facility of topologies in this éhaptet. since'thé daiabase.
space was introduced for the nathenatlcal treatnent of the
topological view of the data, our task is to find appropt;—

ate szectlons betveen the database spaces. .

The structure of a database space is specified by the
corresponding topoiogical.'space. Obseaving'thé iellknoun
property of topologicai eguivalencé, appioptiate bijections
vhich vwe need to :ind becone honeonotéhisné. Thus, Seing a
haneono:phisn is a nécessary conditionlfor the Sijection of
our task; For database spaceé to be topoloéically
equivalent it is a necessary conditioh that.they are struc-
tﬁrally equivalent. TheA optinai topology introdaced‘in
Chapter III refiects the structures on the sét. Thus, the
procedure to f£ind aépropriata bijections of our task'can be

separated into two tasks. The first task is to determine
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homeonorphisas. The second task is to select the appropri-
atg bijections among .the honeonorphisns; An- algorithn for
deternining homeomorphisas showing the database equivalence

is given in ALGORITHM[4.1].

In Section[&.1] we introduce the definition of database.
equivalence. Definitiéns for thé”topblogical egui;a;ence ‘
and constraint egﬁivalence are described; The> base 'gtaphs
for the topologies"ate used to.consiruct.the apprbpriate
homeonorphisas to show the topological éguivalencé. in Seé—v
tio&[“.Z], ve examine the base gréph féan fopplbgy to find
the appropriate homeomorphisas. At the'énd of;this'chapter;
ve briefly lay the foundation for the database §enétator.
We believe the concebt of datahase egniyalence'is'thé criti-

cal first step in achieving database design autonition.

[ 8.1 ] EQUIVALENCE OF DATABASE SPACES

The concept of dgtahase space.eguivalence is formally
defined in this section;, Recall that ihenever.tuo tépologi-
cal spaées are topologically equivalent there exists‘ a set
of homeonorphisnms. Since the constraint structure is given
on the optimal topology, the concebt of equivalenée of con-
straint structures can be defined by using the appropriate

homeomorphisa as follows:
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DEFINITIONR[4.1]. CONSTRAINT BQUIVALBHCB OF DAIABASE SPACES.
‘Database spaces, ‘DT, D2 afé' éalled strong Aconsttaint
eguzvalent for sttong constta;nts, S1[IOP[D1]], SZ[IOP[DZJJ
1f and only 1f there exxsts a honeolorphzsn°‘
B: DIH[D1] —> nra[nzj
for the tppological spaces:
(pIN[D1],TOP[D1]), (DIN[D2],TOP[D2]), such that
if  (A1,B1) € S1[TOR[D1]] o '
‘then (h[Al],h[B1]) € SZ[TOP[DZ]] and
if [a2,B2) € S2[TOP[D2]]
then (b'[A2],5'[B2)) € SI[TOP[D1]]. <

Formally in the same mannner, weak constraint and join
constraint eguivﬁlence can be defined. Obsefve:that if
détébase<spaces,.bi, D2 are consttaiuﬁ egﬁivaient' tﬁen. thé
corresponding .two topological spaces,:(ﬁIH[b1j,TOP[ﬁH]) ahd
(DIN[D2],TOP[D2]) are topologically eguiiaiént- since ' there
exists a homeomorphisa, . o

h: DIM[D1] —-> DIN[D2].

In this discussioh;'let ué call dgtabase spaces, D1,. D2
are topologically‘éguiyalent if,thebcorresponAing tdpologi-
cal spaces are' topologically eguiv&lent. fhus, fbr the
given database spaces, being topdlogiéally equivalent is a
necessary condition for being constraint eguivaleht,'bnt. it
is not a sufficient condition. This necessary éondition
gives us an intermediate step for the classification .of

equivalent database spaces. The concept of topological
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equivalence of database spaces plays iamportant role in the
algoritha for testing the constraint'eguivélence of dﬁtabase

spaces in the next section.

[ 4.2 ] DETERMINING THE HOBEONORPHISHS

A procedure for finding the appropriate'houeonohphiéns
is based on the base graphs for topologies. Recall that the
definiiion of base graph is given in DﬁPINIrIOk[2;7].. It is
briéfly reexasined heré. Consiéeriﬁé.a topéloéicéi space
(x,T), lgt Bvbe the nininal base aﬁd c bé tﬁe coiiection .of
intersections for> elements ‘'of B. Then, the set {X}UBUC
can be expressed'as a connected acyclic digtaph; called the
base graph fof topology T, in the foli&wing vay. The vertex
set is a'set .IXJLJBLJC and,the edgé sét is é sét of the
partial orders of inclusion propettiés for the leibers of
set (X} UBUC excluding the trahsitive orders. The weight
of a vertex is thé Size of sét. The base graph has énly one
source which is X. Also, note thaé trahéitive ‘edgeé; such
as A1=>A3 in the case of A1->A2, 324513, are eliiinated

from the edge set.

From elementary graph theory, recall that.a bigraph is
a graph whose vertex set V can be partitioned into two sub-

sets V1 and V2 such that every edge of the bigraph joins V1
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with v2. A bigraph is nontrivial if
21V and 2 _<'_ |v2|‘.
If a b1graph contalns evexy edge joxnxng v and- 72,~ then
the blgtaph is a- colplete bigraph. Por exalple, a graph
(V,E), where V = {A1,32,B1,B2) and
B = [(11;31),‘(11,32), (a2,B1), (A2,B2)}, is a . complete
bigraph. Tﬁen, the'pfoperties of a‘basé‘gtaph for a topol-

ogy can be suamarized in the following tenotk.

REMARK[4.1]. Let (X,T) be a topological space. Then, “the
base graph (V,E) for T has the folloving propertzes.
() It is nnxgne fot the topology Te.
(2) The size of vertex set is honnded by 2iXxj.
(3) It does not include ~‘ |
o nontrivial conplete blgraph (Vs,Es)
as a subgraph such that
Vs = v1_uv2, v l'WZ =g, and
for (a,b) £ B, o
a £ V1 if and only if b € v2.
(4) It does not include transitive-edges. <>
PROOP: ' - o
(1) Because a minimal base, intersections, and inclusion
properties of sets are unique if the sotS'are‘finite.
' (2) By THEOREM[ 2.4].
(3) Assume that a subgraph {Vs,Bs) satisfying the given
conditions exists. Let . '

V1= ( al,a2,cceerai } and
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V2 = { b1,b2,....,b] }.

Then, b1NbD2MNe...Ndj = a1Ua2U.... Vai and
BINb2N....Nbj is a minimax intersection.

Thus; (Vs,ﬁs)rdoes not eiisi. o

() By the definition; ttensitiée otders of inclnsion are

eliminated.. <

Since the base graph for a topology is unique, topolog-
ical spaces are topeiogically equivaledt if and omly if theA
base gsaphs for topoloéies ase equivaient. Befh the .vertex
set and the edge set have 1ineet“boend by the p;eberfies
{2), (3), and (4). Considering tvo topoiegieal' spaees and
tvo correspondxng base graphs, an 1souorphlsn for the two
base graphs is a honeonorph;sn for the two topologlcal
spaces, because the vertex.set of base graph is a bese of
ihe correspoeding topelogy. An algofithn for tesiihg the
equivalence of base graphs is not hard to he found from

BEBABK[Q 11, as dlscussed brlefly helov.v

Two base graphs (V1,E1), (V2,B2) are isomorphic if
there exists a bijection h napping.vf te vz;.éﬁch that, for
any p,q € Vi, (p.q) € E1 if and enly if (h[p],htqj)'.a E2. .

An autonorphisi ef a graph is an isonorphism of the graph
onto itself. The automorphism partztlon of a graph consists
of cells satisfying the condition that tvo ve:tlces are in
the same cell if and only if there exists an isonorphism

from the graph to itself mapping the first vertex to the



- 62 -

second. The graph isonorphisn problea is egnivalent to the
graph autoaorphxsa partxtxon problea, as glven in. Pouler-et
a1[1983]. Io see thxs, flrst construct a graph vhxch 1s the
d;sjoznt union of the tvo ngen base gtaphs whxch are. to be
tested for lsOIOtPhLSD-A Then, construct the graph autonor-
phism partxt;on for the dzsjoxnt union. Ihe or;gznal tvo'
base graphs are 1sonorph1c 1f and only 1f there exxsts one
ce11 of the autonozphlsn partltion containzng a vertex fron'
each of the o:xgxnal base graphs. Ih;s ls.a:hrlef dlscus-
sion on the graph antonoréhisn pattitich.- Intefcstea reader
can look at the Powler-et a1[1983] paper for deta;ls of the

general algorlthl.

A procedure for the base graph automorphisa partition
is described brieflf below. Verticeé‘in the cénevccll arc
said to be 1nd;st1ngulshable uhiic yvertices in ﬁifferent
cells are said to be dlStngUlShaDIE. Bdges (p,g), (u,v)
are said to be lndxstlngulshable if both vettxces p, u_ are
indzstlngnlshable and vertzces g, v are 1ndlst1ngnxshab1e.
Othervise, they are said to be d15t1ngu1ahable. Dxfferences
of vcrtices are depth, ieight, the number of direcé‘edges,
and the number of inverse edges. iﬁitially, vértices.of the
base graph are partitioned into the diffefent cells by their
differences. Then, a recntsi&e partitioclp:oceéuce can be

applied by the distinguisﬁahle edges as follous:
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procedure AUTONORPHISH-PARTITION (graph) ;
{ COMNENT: Input is the disjoiht nniee of the two given
base graphs whxch are to be tested for egn;valence. }
procedure GRAPH—PARTITION(cells, dlstlnguzshable-edges).
do GBAPH-PLR:ITIOHIHG by d;stznguishable.edges;
if 'gtaph pattitioned . .
then mark dlstlnguzshable dzrect edges
call GRLPH-PABTITIOH(cells. d;rect-edges)
mark dxstlngulshable inverse edges
call GRAQH-PIRTITION(cells, 1nverse-edges)
else null; | o B - -
end of QBAPB-PARTITIOH;
amain procedure‘ '
do GRAPH~PARTITIOHIHG by vertex differences:
call GRAPH-PARTITIOB(verteXPSet-cells, edge—set).
check syapetric ring graph°

end of AUTONORPHISN-PARTITION.

EXANPLE[ 4.1]. Let (X,T) be a topolegical space, where'
X =‘{a,b,c,d,e,f} and
BASE[T] = [ (a},(a,bl,{a,b,c},(d,e},[d,e,f} }.
Then, a baeefgtaph (V,BE) for T:
{ X, (al, (a,b} , (a,b,cl, (4, €}, (doe, £} )
{ (ta,b,c},X), ({d,e,f},X), ([aob} [a,b,c}),
((als(a,b}) s ((doel, (3,0 £D) -
Considering only this base graph, AUTOMORPHISM-PARTITION

v

E

will give the folloving computations.
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Initial cells of vertices:
(. (@bech, @oetll, (b, (Well, ().
After partltlonlng, fxnal cells of vertzces. . l\' )
{x3. [(a-hoc}}. [{d:eof}}o {{aob)}:' [[d,e}}, {{a}}-
uote that the cell {[a,b,c} {d,e,f}} las partitoned 1nto
the two cells {{a,b,c}} and {{d.e,f}} by the dlstlngulshable'
edges ({a,b}, (a,bsc}) and (el @oesfl). <> |

Note that if a graph ,includes a oont:ivlal_ conplete
bigraph as a suboraph as glven in fIéﬁBE[u 1]; tﬁen tﬁis
partition ptocedure fails. Note that a base graph can not
include a nontr;v;al conplete blgraph.. The other Lnterest-
ing problen is the 1nc1usxon of a synmetrxc rxng graph as a
subgraph of the base graph. aAn exalple of lncludlng syn—
metric ring graph is given in PIGUBﬁ[uré]. The partltlon
procedure also fails in this case. . Thls condltzon can exxst'
for base graphs and after applying the.partxtxon' procednre,
this situation aust be checked.c Siace each pariifioning'
process’has n as a‘bound and the naxiaoa ounbec 52 recntsive
calls is n, the coaplexity of the partition ptocedu;e'has an '

% bound. We haye described a procedu:ev'to 'deterniae the
homeonorphisms between twvo topological spaces. A topologi-
cal structure of a topological Space can be identified. by
its base graph. The automorphism partition procedure gives
a partition of a base graph to show indistinguishable ver-
tices. The correctness of this process can be summarized in

the following theoren.
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THEOREM[ 4.1]. The hase graph anto-orphxsn partit;on pro-
cedure cortectly deternxnes honeonorphlsns._ <>

PROOF: Let G1, 62 be base graphs fog Fopplogies, T1,.¢2,
respectively to be teéted for;hbneﬁiSréhisi. By“;pplying
the graph autonorphxsn partztzon procedure to the dzsgoxnt
union of the base graphs, G1, G2, vwe have a set of cells.
Recall that a cel; 1g,a set of 1ndxst1nguzshable ver§1ces
which ieans tﬁaf"igd,vegtiées ;Eéui;{ﬁhéﬁsaiéréell'if'and.
only if tyere exists an isonorphish frbﬁ-the.graph té.itself
mapping the first vertéx,to the second; Por each{céll, if
ve create an automorphisa laéping a vérééx in Gf to.ﬁuvertex
in G2, then:this autonorphisn is an-isb;orphién laépinj G1
to G2, becanse»tuo vértices iﬁ thé salévcell‘_are indistin-’
gnishable. 'Since ‘a vertex is an oéeﬂ-set, an isdiprphisn '
napping Gl to G2 is a honeonoréhién‘nappiﬁgrr1‘to;T2 ﬁy. the
. definition of honeonérphis-. Thus, the &uténorpiisn Eteétéd

is a homeomorphisa. <>

We have determined a set of homeomorphisams by the ver-
tex partitioning of base graphs; Those hoieonorph;sns shou
ohly the topological.eguivalence of. database spaces. 'To
show the constraint egnzvalence of database spaces, we need
the appropriate bxjectxons for 1nd15t1nguishahle ve:txces
which are in the sane cell. Appropr;a;e bxject;ons can be
determined by introducing the Strnctute of séopeﬁet into £he
partitioned base graph. A scopeset for a strong coastraint

S[T], denoted by SCOPESET[S[T]], is a set of scopes for S[T]
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such that a scope is - XUY if (x,!) € NINCOVEB[S[T]]-

Ihe formal deflnltlon of the scopeset is ngen in the next
chapter., Kote' that a head of scope and a tail is a set of
vettxces by their deflnztlons. Séhpes>aré‘in&iStinguishable

if both heads and ta;ls are 1ndxst1ngulshah1e. Otherwise,
they are - d;stlngnxshahle. Inztlally, a scopeset can he pat-
tmtxoned by puttlng 1ndlst1nguzshahle scopes into the sane
cell. Since vertxces are dxstlngnxshable if they helong to
distinguishable head or hail, the parhitioned.schpését pro-
vides a way for further partitioning the -partitiqneﬁ basév

graph. Thus, ue,jhave an .aigbrihhn"té deterhihe the'w

homeomorphisms showing the strong constraint equivalence of

database spaces as follous:

ALGORITHE[4.1]. DATLBASB-SPACB-EQUIV&LBHCB.
INPUT: base grapks, G1, G2 for topologxes, T1, T2,.
strong constraxnts, 51[11], SZ[TZ]. |
OUTPUT: false or :
true with homeomorphisms
showing strong éonstrhint equivalence of
database spaces, (X1,T1), (X2,T2):;
PROCESS: | B .
[1] create graph by disjoint union of G1, G2;
[2] call AUTOMORPHISN-PARTITION (graph);
[3] create union of SCOPESET[S1[T1]], SCOPESET[S2[T2]]:
(4] do SCOPESET-PARTITIONING -

by distinguishable scopes;
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£5)] mark distinguishgble.vertices;
[6] do GR#Pﬁ-Pl#TI&IbﬁIHG-f -
| 'bfidistingu;shgble fe:tices;.
[7] if exist | I
then oﬁfPUT == create’isoiorphisn
uappingnc1'to;G2.
~with épncéf#iég
scopzszi[s1[r1]].
scopzshrﬁs:przjj
else OUTPUT <K-- false;v |
[8] halt;

END OF DATABASE-SPACE-EQUIVALENCE. <>

THEOREN[ 4.2]. ALGORITHM[ 4.1] determines correctly existing
homeomorphisas showing the strong coﬁstraint egquivalence of.
the database spaceé.; <> o ' T
PhOOP: By applying the graph autonorphisn'partition pro-'
cédure, ve .héve a set of cells...A éell.is a set of indis-
tinguishable ve:ticeé iﬁ the sense of tﬂe bésé graph“ struc-
ture by THEORENM[ 4.1]. Applying fuiéher partition.by thé
scopesét structures ﬁpr strbng conétrainté} verticeé in the
sape cell are inﬂistiﬂguishable in thé sense of both the
base graph structnfe and the scopeset Strﬁcéure. Thué, the
created automorphisa, as given in. fnnoknn[u.1]; isA é

homeomorphism showing the strong constraint eguivalehce of

database spaces. <O
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EXANPLE[ 4.2]. Consider database spaces, D1, D2, where

DIN[ D1 ]

(a.b.c.d,e,£,9,h,i} ,

DIA[D2] = (PrQoToSets U, Vouox) e
and sgfs.of functidnéivdépenaengieé, P1, 72, vhere
P1 = {({a}, (bsC,d}) . ({BY, (€1) s ({e]s (£ Goboil) o (L€} s (a1)Ds
P2 = [((B}, (9,505}, ((2) s (210 (EED, (0,0 ¥oxd) o (Qu o V00D o

Then, we have

SUBBASE[ TOP[D1]] = ({a},(b,c,d}, (b}, (c}, (e},
[fogtyl’h‘i.-}. . [f] ’ [é}} 0
{{p}., [glr(S} « {3}, (1} . {t},

fu,v,v,x}, (u}, (11

SUBBASE[ TOP[ D2]]

The disjoint union:of.base graphs foé the automorphisa
partition is given-in PIGUBE[E;Bj. ; :
After grﬁph‘partition, ve have 5 celis:
({al, (&}, P}, (t}},  ((b,C,a},(d,T,S}},
(b, (e}, (9}, (C}),  (£,9,h,d), (0,v,v,50),
LLE} . g}, (13, (V)] - | -
After scopeset pértition, ve have_3 cells:
| {{azb,c,d},{p:9.,T,S]],
{{b:c},{£f:q},(g:r}, (usv}},
({e:£,9,k,i},{t:u,v,v,x}}.

Note that noiation {head: tail} is uséd'for a scope..
By repartitioningjthe cells of graph,'ié have 8 celis:
{{fal. {p}}., {{e},(t}], {[b}.Iq}ic {{c},{f]},
(8, (), (@031, ((5,C,8), (@Ts)],

(£, 9,h,3), [0, Vo ¥,X}] & |

Finally, with concerning the strong constraint, we have
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isomorphisms showing the strong const:ain£ eguivalgnce:
@l --> ), ©) > @, € —> @,
@ --> =), (e} > 1, 8 > w,
(9} ==> 1, (h,d) -> v

our task is done. <>

dunny

DO MO @O O
OO OC

olololo)

PIGURE[ 4.3]. An example of a graph for partition.
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Note that ALGORITHN[4.1] shows only the strong con-
straint egquivalence. However, this algorithl conceptuaily
can be extended to include the weak comnstraint and the ,joiﬂ

constraint.

[ 8.3 ] REMARKS ON A DATABASE GENERATOR

The ultimate goal of database design automation is to
build a database generator which is an automatic éatabase
design lachiné. a détabase gene:atbr ié whn ‘aléonitﬁn such
that input 1is available inf;rnation, like data and étruc-
tures, and output is a database design which preser#es the

available inforamation.

Databases are classified into the equivalent  classes
for the construction of database generatof by.using the con-
cept of database eﬁuivalence. ‘Thué, the"fuﬁction‘ of. data-
base generator can be represeﬁted aé‘é u:diiensional spéce;
called a database generator space.' fhenédofdinates of the
database genefator space represen£ th; détabaée clasé which
is classified into the equivalent class. The & coordinates
are ATTRIBUTES, TOPOLOGIES, CONSIR‘INTS, and DECONPOSITIONS.
ATTRIBUTES-coordinate is a set of att:ibutes, TOPOLOGIES-
coordinate is a set of topologies, CONSTBAINTS-coordinéte is

a set of constraints, and DECOMPOSITIONS-coordinate is a set
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of decoapositions.

Databases are classified, first by the nnabe: of attri-
butes, second by'thé introduced iépoioéiés, third by the
given consttaints,. finally By' tﬁe..aéplied- décoaﬁosition
processes.. In g¢eneral, the theofy of‘a databaée gehetaior
is to study the propertiés of databaéé‘ generatofv-spéée;_
While the examination of the details of the d&tahase géné:a-

tor are beyond the scope of this discussion, the cdncépt is

important to pointing out our interest database eguivalence.



CHAPTER V

DATABASE DECOMPOSITION

A central idea of the database .design is the notion of
deconposition in the relational datébase Qodgl. In Qene:al,
complex information is to be eipreésed.as a énpe:position of
simpler components without nissiﬁg infbrnatibn. Heidescrihe
the notion of decouposition for the ”tbéological .dﬁtébase

model in this chapter.

Section[4.1] includes the concept of subspace for the
decomposition processes.. Sectioh[u.zj iﬁiroduées naﬁipﬁla-
tion operators to handle the subspaceé:‘ In the ‘décaifoéi-
tion process, two plausable condition§ afe kno&n‘as 1;éslesé
join and dependency preservation' propefties. Sectisn[u.B]
describes the conceéts‘df scopes and neighborhobds for con-
straint preserving decompositions. . finaliy, scbﬁesét'sttué-
tures help the tie breaking task fbr the'synnetfic vériices'
of the base graph when we ‘are trjihg to show constraint

equivalence.
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[ 5.1 ] SUBSPACE

Recall the concept of subspace, given in Section[2.1].
For the readers convepience ihe hasi;’ﬁofation ié'reexénined
here. For a database space b, if t E IHS[D'j and X c Diﬂfnj,
then t[X] is used to represent the X-component of £hé‘tnp1e‘
t and PBOJECI[IHS[D]:X]»is used td‘represeﬁt thé collection'
of the x-coiponént of thé tuples i;“IRS[D];; Ihe nbtation
PROJECT[ TOP[D]:X] is used for a'relﬁiive topology df -TObe]
on X, as given in Section[2.1].”AThhs, the hotafion PROJECT
is defined as follows: L B '.-

PROJECT[TOP[D]:X] = { Xi | Xi = YiNX, Yi € TOP[D] }.

. By using this hétation, the concebt bfv a 'suh§§;ce .of' a

databaée space is introduced as foliovs:

DEFINITION[5.1].. SUBSPACE OF DATABASE SPACE.
Let D be a database space._ Then; a dataﬁase space S is a
subspace of b if and oaly if | -
prn(s] C pIA[D] and

TOP[ S] = PROJECT[TOP[D J:DIN[S]]. <>

EXANPLE[ 5.1]. Consider a database space D:
DIA D] = fa,b,c,d}, | -
TOR{ D] = (&, DIN[D], (¢}, {d}., ([c,d}, f{a,b},
(a,b,c}, (a,b,d}}- |
Then, considering a database space S:.

DIM{S] = (a,b,C},
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TOP{S] = {#, DIM[S], (c}. {acb}}:

ve can observe S is a subspace of b. <

Since if n = |X] then'a database space {X,T) is a n-
dimensional space, a.snbspace éluays has.a.dilegéiop smaller
than or equal to the dinenéibn of ofiginal spacé; Becalllan.
instance of a n-dimensional dataﬁase épacé is a set of n-
tuples. If an instance of a databaée space D, Iustb] is
carried into a subspace S of ii; then aniinstance of the
database space S, INS[S] is given as | |

INS[S] = PROJECT[ INS[DJ:DIN[S]].

EXANPLE[ 5.2]. Considering EXAMPLE[3.1], an example of sub-
space S is . .
DIN[{S] = {CITY,STATB}, TOP[S] = {&#,DIN(S]}-..
For this subspace S, aiz-dinenéiOQAI.figﬁre»aﬁd IHSiS] are

given in FIGURE[S5.1]. <>

Subspaces play the major role in database design since
they are the basic database unit. cénsidefing a topology T
on the universal set U, space (U,T{.is cﬁiled a niéfocbsnie
database sp&ce. The formal defiﬁition«fér the iic:béosnic.
database space will be given in the néxt section; Thé major
problen of database design is to finﬁ the way to represent a
microcosmic database space by using a éet of subsp&éés of
the microcosmic space. Recall that a database space D is

completely specified by three things: DIM[D], TOP[D], and
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INS[D]. In the assumption of a licrocosnic database space,
specificatiou of DIu.and TOP is necesséty“ sinée join con-
straints 'on the microcosamic datdbasé spaceviﬁét be_ptoiided
tovthe hser for the design ;evél; Bovéver, spgcificatioh df
INS[D] is not neéessa:y since daﬁi cbnsttaints éré définéd-
by the notion of the attribute set';ithodf ﬁéing the 'potion

of the record level instance.

Recall the concepts of intra-record type and inter-
record type, as given in Seciion[2.1j, fbt daiahasé.
representation. Por . the readgrs cdﬁvehience, an exalble .6£
those types from BXLHPLE[3;1b], Ais”given in-PIGU§B[5.2];
Nou,_ve wvant to take those conéepté into tﬂe'dafabase spaéeA
representation. In the database $pace b, intra-record type
cén be representéd by DIN[D] and inter;record type Ean he
represented by TOP[D]. Since thé oinhal topology is coﬁ-
structed from data'constraints suéh as depeﬁdenéies; the
inter-record typés, detived from dafa éonst:aihts, nusé be
included in TOP[D]. The usefulness of TOP as inter;reéord

type check can be shown in the folloviﬂghexanéle.

EXANPLE[ 5.3]. -Coﬁsider pI¥{Dp] = {a,b,c,d,e,f} and
functional dependenéies, ([a},[b;c;d}f; ‘({d},{e,fi).
" Then, a topology TOP[D]. is ' . -
TOP[D] = (&, X, (a},.(d}. (b,c,d}, {e.f}, (a,d}, (a,e,f},
(a,b,c,d), {d,e,f}, (b,c.d,e, £}, (a,d,e,£}}-

Now, we can observe that {a,b,c,d} énd {b,e,f} are'a poor
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decomposition in the sense they.do.no; have lossless join
property since fa,b,c,d} N [bye,f} = .{.h} 2 'rOPv[D].

In the potion.of relational datiﬁise;;ué’cihibbgerve that
this inpliés that t{b},{a,h.c,d}) ;iﬂd ({bi,ib,e,f}) ‘are
not functional dependencies.; ;<>‘ - .

Note that TOP gives a necessary condition to check . for

a poor deconpositibn,. as giéen:ih‘iﬂé example above. ie
wvill examine this feainre in iofe '&étdil'.in'jSeétioh[S.B].
The othé: inéetesting feature is the compariéon begneen the
optimal and the discrete topology in the practical d;tabase |
environ;ent._ . In- the practical éatabasé design, increasin§
the size of intra~record type is idcreasingAtﬁe size Sf 6pen
éet in the optimal topology. fhis Strucfure ié quite'coulon
in a practical database environnenf, éitiéssed ﬁy' elployée
information. For example, we have fﬁﬁétionai.dépendencieé,v
cuch as ) C e . . v

(eaployee, employee nanme),

(employee, address),

{employee, educational béckgtonnd).

(employee, department), '

(gnployee, salary).

In this case, a set {enployee naie, addtess, educational
background, department, salary} can be én intté—record
type, making it an open set in the opfinal topology. This
reduces the number of open sets reguited in the optimal

topology for many practical applications.
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(Austin ,TX)

DIN[ S] CITY
STATE
N
[ 4
TOP[S] | . - |
: . ] . .. CITY . |
| STATE |
| |
INS[S] | . i
I .{(Norman,0K) |
t (Mianmi, OK) |
| {#iaai, TX) . |
i . |
| i

PIGURE[{ 5.1]. - An example of a Subspace.

R L M S P

e haeetd s - !
[ K I P |
B i b | -1 I
R L
j ===l l
[ X !
f===f==] ===
!
l .
M| S P
1==NA=-1 1= i

FIGURE[ 5.2]. Intra-record and inter-record types.
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{ 5.2 ] MANIPULATION OPERATORS

In the previous section, by introducing the concept of
subspace, ﬁe illustrated that thé'tééologicai dataﬁase can
be represented by a set of détabasé spﬁces. To iﬁnipuiaté
the set of database spﬁces, manipulation opetators nust be
defined. Since‘databaseAspaces have new facilities Sﬁch as
TOP which are not available in the relational datahdsé, new
operators are needéd; The data opef&tﬁr'DOP>and the struc-
ture opetatot S0P are defined aé-baéic lanifulaiion opera-
tors. Note that our intention is not ih the synéax of

operators but in the semantics of operators at this moment.

DEFINITION[5.2]. DATA OPERATOR (DOP).
Syntax:' i
DOP{ ACCESS/ CREATE/ FILTER ]
ACCESS: { D1, D2, D3.i....., Dl }
CREATE: [ a1, a2, 53, ...;;. ;l }
PILTER: { C1, C2, €3, evees Cn )
Semantics: S
ACCESS: a set of database spaceé,
CREATE: a set of attributes,
FILTER: a set of conditionms,
DOP[ ACCESS/ CREATE/ PILTER ): database space, vhere
DIN{DOP] = CREATE, |
SUBBASE[TOP[DOP]] = { X | X = PROJECT[TOP[Di]:Si],

Si = CREATENDIN[Di], Di & ACCESS },
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IRS[DOP] = { t | t[Si] & Paoazcn'[ustm.] sil,
Si = cazuznnxu[m.], Di € ACCESS,

t satzsfles PILTBB }. ,<>

DEPINITION[5.3). STRUCTURE OPERATOR '(sop)..
Syntax: | | ' |
SOP[ ACCESS/ OBJECT/ SQUERY ]
ACCESS: { D1, D2, D3, eeeee, D1 }
OBJECT: { al, a2, a3, -----, am }
SQUERY: { 01, 02, 03, «-eces Q0 }
Semantics: A »
ACCESS: a set of database spaces.
OBJECT: a set of attr;butes,
SQUERY: a set of queries,
SOP[ ACCESS/ OBJECT/ SQUERY ]: a series of trues and
falses selected from element of‘SQUEB!‘as follows:
True: if OBJECT has the property 1ndzcated by SQUBR!,

False: 1£ OBJECT does not have. <>

Considering a manipulation operation Wi where
ACCESS[¥ij = { D1, D2, D3, eeeeep Dn }, the domain of
the operation ﬁx, denoted DDH[V;], is defxned as
DOM[ Wi ] = DIN[D1)JUDIN[D2]U+.... UDIN[Dn]. Then,
CREATE[Wi] or oBJECT[Ni] C DOM[Wi]. |
Considering a set W of operations vheré
B = (W, U2, H3, eeeee, Wm }, the domain of the set ¥,

denoted DOM[ W], is defined as
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pon{ Wl = DOH[H1]&JDOH[92]LJ.....LJDOB[Bn].
FPor a collectzon ¥ of opetatlons, ve can sinttoduce the

concept of microcosmic database space as follows:

DE?IHITIDH(S Q]. uICROCOSHIC DATABASB SPACB (MDBSP) .

Considering a database space u ana a set ) of uanzpulatxon
operations, the database space Uis a nxcrocosmxc database
space for the set W of operatlons 1f and only 1f

pon(wj C pIN[U]. <>

Operator DOP has three operaads: ACCESS, CREATE, and
FILTER. ACCESS is given‘as a sec 5£ dacabase.spaces; CRBATB
as a set of atfributes, aad ?ILTEﬁ as a set of copdigions.
General desctiptioa on'the process of che pop opetation is
expressed in the follou;ng uay.A ?ltst pop v;ll access all
relevant database spaces fronm the ‘operand ACCESS, then‘
create nev database space D, suchAthat a dinension .of D,
DIN[D] 1is defined by operand éﬁzﬁik;” l.tcpclcgf of D, ‘
TOP[D] is computed by a subbase of IO?[D] which is the union
of all topologxes f:on the subspaces DIH[D](\DIH[DL] for
all Di in operand ACCESS. An xnstance of D, INS[D] is a
collection of alli tuples satisfying the conditions in
operand FILTER, such that DI;[D]?\DIHtDi] component of the
tuple} in INS[b] is equal to the sane conponent of certain
tuple in INS[Di] for instances of all database spaces 'in
operand ACCESS. Conditions in operand ‘PILTBR can be

expressed by using comparison and boolean operators such as
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>, <. =, union, intersection, and coaplement.

EXANPLE[ 5.4]. As illustration of the DOP operator, the

following exapplés can apply to tﬁe hatabase Sbace D; given

in EXANPLE[3.10]:

E

F

G

DOB[ (}/ {R,L,C,0}/ & I
DOP[ D}/ (R,M,S,P}/ { 2000000<P } I;
DOP[ (E,F}/ (R,L,8}/ { 2000<L} J.

For the readers’convenience, database spaces, E, F, and G

are given as follows:

DIN[ E]
TOP{ E]

INS[ E]

DIN[F]

TOP[F]
INS[F]
DIN[G]

TOP[ G]

 INS[G]

{R,L,C,0},

(8, DIN[E], (R}, (L,C,O}},

{ (Mississippi,2350,642000,Gulf),
(Missouri,2500,76000, Hississippi) o
(Ohio,1300,258000,Hississippi) ,
(Arkansas,1&50,“5000,uiséis§ippi) };“

(’,4,5,P}, | |

(g, DIS[F], (B}, (%,S}, (P}, .(R,M,5}, (R,P},

{n.S,2} 31, | |

{ (nississippi,St-Lonis,uissouri,2216000),
(Ohio,Pittsburgh,éennsjiiéﬁia,2i65000) }.

- S o

(8, DIN[G], {R}, (L}, (%}, (R,1}, (L.M}, {R.} 1,

{ (Mississippi,2350,St-Louis) }. <> . '

In order to examine whether DOP can manipulate fully

database spaces, operator DOP can be compared with the rela-
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tional.algehra as_given belou. INS[DOE] is
cartes;an proanct if D;f\Dj B}
natnral jo..n J.f DLﬂDj 4, and
1ntetsect10n xf D1 = Dj for D1, D3 AéCESS-'

Thus, IES[ boP] opetates in the sané power as thé,poéer of
relational algebra. Hoyevet; ih'moidét tb.ﬁanipulate the
facility‘of topologies, an operatién.fbp[noéj is inﬁfﬁdnced.
This is the iaih reason for hot Si;éiy édbpfiﬁg'reiétidﬁal

algebra.

The result of an operator SOP is a boolean variable._
Examples of - SQUBB! ares: 'Is OBJECT candxdate key 2, 'IS
OBJECT lossless jozn 2', The operator SOP carries out the
'resplt whether operand OBJB¢T ééieéted- fﬁon the operand

ACCESS satisfies the condition specifiéd by‘operand SQUERY.

[ 5.3 ] DEPENDENCY PRESERVATION

The concept of a dependency preserving decomposition is
one of the major topics in database theory. This section
introduces the matter ipto the topological database. Let us
begin with the precise definition of aiébnstraint preserving

decomposition.
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nzrmxnou[s 51 s[T) PRESERVING DECOMPOSITION.

Let S[ TOP[D]] be a strong constx:a:.nt on a database space
D, S[TDP[P]] on P, and S[TOP[Q]] on Q.j Then, P and Q 1s
called a S[TOP[D]] preservxng deconposztlon of D -

:.f and only if pIN[D] = DI![P]UDIH[Q]

and there does not e;xst a set 1 suchdthat"

A € TOP[D], A.2 TOP[P], B € woefe], BEc,
and (,c) € TOR[D}. ©

EXAHPLE[ 5.5].  Comnsider a database space D:
DIn{D] = [alblcld)' R .
TOP[ D]

{2, X, b, (S, (arhec] )

. and an elelent of S[TOP[D]]°' ([a,b} [c]) & SLTOP[D]].
Then, decomposxtxon DIN[P] = [a,c) and DIBLQ] = [b d}

is oot a strong constraint preserving deconposltlon,.hecause

- e e e

in this case

TOP[P] = (&, DIN[P], {a}, {c}}, (c} € TOP[P],
but (a,b} £ TOP{P]. <>

FPor a more mathematical treatment on the existancy of
dependenc} preserving deconpositieh, fhe eonceét of neigh-
borhood on the database space is iﬁftoddced along.'the same
fashion as in the: topological space. A neighborhood is
defined through the eoncept ef scoée fef the constraint,

introduced as follows:
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DEFINITION[5.6]. scopzsm[ S[ T] ].
A set SCOPBSBT[S[T]] is a set of scopes for S[T] snch that
SCOPBSBT[S[T]] {st s= xLJz,
X, € uxncovnh[S[T]] }.
‘In this case, X is éélleé the»head df’s #nd  Y is called
the tail of S. <> | o A

Recall if (X,Y) € S[T] then the scope for (X,Y) is XUY
in relational database theo:y. Then, a SCOPBSET[S[T]] is a
set of all scopes vh;ch are derzved fro- the. axn;nal cover
of S[T]. Since SCOPESET[S[T]] is a sﬁbsét of topology T,

scopes can be treated as another structure on the topology.

DEFINITIONR[5.7]. NEIGHBORHOOD.

Considering a topological space (X,T).,

if G € scopzsﬁm[S[r]] and p € G,

then G is called a écope neiéhbo:hood of p. A subsét N of
X is called a ne;ghhdrhoodybfj p if H‘ié a snpe:set.of all
scope neighborhoods:of pe The coli;ctidh of ali. neighbor-~
hoods of p € X, denoted np'ié called thé néighborhood syé—
tem of p. < - . '

Note that each attribute has one neighborhoo¢ systen.
Considering tvo pointsv P, 9E€EX, P andAg até sepatablé by
the functional dependency pteserving décompbsition if there
exists N € Np such that p&€ N and q & N. This neéns

that two attributes p and q can be separated by a certain
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.

functional dependency preserving decomposition. We close
this chapter by reviewing the general»decOIposition theory..
A topolog;cal database is represented by a set of datahase
spaces. A database sPace can be represented by a set of
subspaces through the notlon of deconpos1t10n. The struc-
tures of SCOPESET and ’HBIédsbndoon .provide 'eppropriate
infornation for the deconposition' nrocess. Recall that
topologxes are the closed collectlon under set operatlons..
Decomposition theory can be generallzed by applyxng the set
operations on the chosen topologies and by decon9051ng the

database space into the approprxate snhspaces..
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CONCLUSION

[ 6.1 ] CONCLUDING REMARKS

A topological database approach is presented. The
database unit of this lodel is a dotabasé‘spoce.o The data—
base space represents the topolog1c31 view of the data. A
series of strnctnres, on the database space is also
presented. The oefined structures iﬁ this disouséion are
optinal topology, strong constraxnt, weak constralnt, Join

constraint, scopeset, and nexghborhood.

The task to topologize the set of attributes creates
the topological structure to the rélotional dotaoase-hy the -
result of data semantics onalysis. . Tous, the topologzcal
approach, based on topologies, is expected as more general
approach than the relational apptoach, based on sets._. In
general, topology ptooides higher level iathenoticol sophis-
tication than that of set theory. ﬁndet the vaséunption of‘
the discrete topology, the 'topoioéioal databése &111 be
exactly the same as the relational ﬁotabose. One signifi-
cant benefit cf topological strncture.is to provide an'algo-

rithm to test the equivalence of database spaces. We
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believe that the concept of database eguzvalence prov1des

the critical first step tovards the database generator.

[ 6.2 ] FUTURE RESEARCH

We can anticipate four areas for the future research on
the topological database approach. These areas are briefly

described in the following seétions.

[ 6-2.1 ] TOPOLOGICAL REPRESENTATION OF INTER-RECORD TYPES

The properly selected topology provides the faczllty to
store a portion of the semantics of the data. Topologxes
;are able to represent 1nter-record types in thg topological
database. The prséer reptesehtatibn 6f record based‘iﬁfot-
mation can be accbnplished by the .c6u5ination.'of ihtra-
record type and inter-record tyﬁe'iﬁ the datébasé.deSién
level. PFor a database space (DIutD],TQP[D]j, thé facili¥
ties, DIN[D], TOP[D] are able to represent the combination
of the two types. Aﬁ intra-record~ty§e can be réflécfed by
an open set. When we select thevcdllection of intri-record
types as'a subset of the topoldgy, the.topological databaée
model will be a model for design iével.' e believé}future

studies nust pay much concern to this ability of the topo-
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logical database model.

[ 6.2.2 ] CLASSIFICATION OF DATABASE SPACES

Many properties of a topological space depend on the
distribution of the open sefs in the épace.. If there are
few open sets, then the space is‘nﬁfe likely to be seéarable
and an arhxtrary fnnct;on on the space to so-e othet space
is more likely to be cont;nuous. Thxs . fact suggest; that
there is a certain -eghgﬁplogy f5£ ihe qléssificatioh of
database_spaces.;'fhe classes of spaces —fOt infinite sets
have been well developed in tppoiogf literaturé; Now, we
are facing the classes of séaces fof finite éets. ¥e can
suggest some useful tools f:on toéoldgf litératﬁre as fol-
lows. A topological palr (x,a) is def;ned as a topological
space X and a subspace A of x. A :elat;ve honeonorphzsu is
defined as a map | . .

£f: (X.,A) --> (Y,B)
of a topological pair (X,2) into a-toéological pair (Y,B) .
such that £ laés x(fi'hoiedno:phicalifidﬂtoA YNB. This‘is
a relaxation of the continuity:cdnditibn. A tettaction of a
space X onto a subspéce A of X is a'lip - '
rs X --> A4 .
such that r[a]=a for a € X. A subspéce A of a space
X is a retract in this case. The broject operatioﬁ in a

database can be accomplished by a retract. The classificd-
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tion process can be ptovided by establishing the separation
axiom systen...ie believé the Separaéibn 'aiion syéten' for
finite spaces can be éonséructed tﬂ:ongﬁ.the concepts of
topologiéal ?:opétties such as relatife honeon@ﬁphisn aﬁd

retraction.

[ 6.2.3 ] HMETRIZATION OF DATABASE SPACE

In a topolpgical space (X,T), ordered pairs of elements
in X is called a metric on X if and-dniy if it satisfies the
trianqular properties for every eleieni in x; If-ée define
certain orders on aonainsj'and diﬁensiohé of a dadabase
space, then we are able to introduce a 'certain leﬁric to
express the relatioﬁship bétveen~ éoints on the spﬁce.. A
dependency can be replaced wifh a éet- of functioné. ﬁe
believe’ the set of functions, vhich is giien 5y 5 depén-
dency, provides proper information for the uetrizatioﬁ pro-

cess.

[ 6.2.4 ] DOMAIN ORGANIZATION

In a database space, a coordinate associates a domain
which is a finite set of values. A domain can be organized
in proper way. If there is many-to-one relationship mapping

a domain ai to a domain aj, then the domain ai can be clas-
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sified by the domain aj. Purthermore, by maps
£1: [ai}---)faj} and £2: »[ai} --> {akj,
the domain ai is classxfied in tno levels by aj and ak.
In gene.al, by naps ' '
gl: f{ai,aj} --> {am} and g2: (ai,ak] -->.[an},
ve have the result that (&i} = [ai;ajifi{ai,ai} has tve
levels c1assxf1cat10n. The déniiﬂ ciassifiéétion‘provides
fast access for certaln group of gnetzes. Topology provides

the classxfxcatzon levels for donaLus.
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APPBBDIX[A.1] PROOF OP IHBORBB[3.1]
An orlgznal work of the proof is in Arnstrong[197u]. The

proof is acconpl;shed by the follouxng 4 steps.

(I) Define notatiomns as follows:
Ps[Td]: a se£ of functional dépenﬁeﬁcies
| for the discréte topoldgf‘rﬁ, -
F+[Td]: a set 6f functi&nal dépeﬁdéaciés which are
logically implied by Ps[Tdl, .
F*[Td]: a set of functiénél deééhdencies.uhich are
derived from the &xionhsfé£e- by r;tré];.-
Then, for the set of axidls {fl'rz‘f3},

ve want to prove P*[Td] P+[Td].

(II) Prove FP*[Td] C F+[Td]: Soundness.
Considering arhittarj X, Y, 2 Ehfd an&' fi; t2 ¢ ﬁ,
t1[X] = t2[X] ==> ti[¥] = t2[¥] for Y C X, )

tI[XUZ] = t2AXUZ] ==> tI[X] = t2[X], t1[z] +2[2]
| => tIY] = t2[Y], t1[2] tz[z]

( because (X, !) e P[Td] )
t1YUZ] = tZ[IUZJ,
tiy] = t2[!]

L]
1
v

t1[X] = t2[X]

1]
U
v

( because (x.!) [ 4 P[Td] )

= ti[z] = t2[Z]
( because (Y,Z) € P[Td] )'
Thus, by the definition of functional dependency, we get

Fe[Td] S P+[Td].
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(III) Prove P+[Td] EP*[T&]: Conpleteness.
- Por an arbitrary X € Td, define f*, Dx, as follows:
™= {Y 1 (5,1) € PAT413, |
Dx = {yl YE&LUY, !-E f* l-
Consider a set qf,:écprds { t1,-£2 ]; such that B
t1[Dx] = t2[Dx] and tI[DE] # t2[B¥)..
Then, { t1, t? }. satisfiés rfstmﬁ]; because
for an arbitrary (Y,z) € Fs[Td],
if Y C px then z C px by 'axi'.on F37
Considering an arbitrary (X,2) E’?#[Id], |
(X,2) & P#[Td] ==> Z § T* |
| ==> ZNDx # 4
==> t1[2] ¥ t2[2]
==> (X,2) ¥ F+[Td]-
Thus, we get P+[Td] CPe[Td].

{(IV) FPinally, by the results of (II) .and (III), ve get
| P*[Tda] = Pe[TA]. <>

APPERDIX[A.2] PROOF OF '.razoa-nu[3.2]

Beeri-Fagin-Howard[ 1977 ] gives an original vbrl.c .of th.e
proof. We will consider onlyAa‘set. of. nulti;raluea dépenden-
cies. Then, the conplete 'axion “syétén' 'is in\}olvéd by
axioms, N3, M4, and B5. The proof is 'accouplished by tvhe

following 4 steps.
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(I) pefine notations as followus:
Us[Td]: a set of nultlvalued ﬂependencxes
| for the dzsc:ete topology Id,. »
B+[Td]: a set of nnltlvalued dependenc1es vhlch are
loglcally 1np11ed by ns[rd], N o
H*[Td]: a set of lultlvalned dependencxes uhzch are
derived fton the axionm systen by as[Td].
Then, for fheAset of a#ioné {uj.ﬁi,ué,uu,HS},

ve want to prove u*t 'rdj- = -!‘l:[- fd 1.

(II) Prove N*[Td] C N+[Td]: Soundness.
Considering arbitraﬁy X, ¥, 2 € 1d and'
t1, t2, t3, t4 £ R,
£X] = e2[x] ==> £1[¥] = t2[ Y]
( because (x.!) 8 P[!I:d] ) ‘
==> t2[XUY] = t1[XUY] and t2[XUY) = t2(XOTI,
L1[X] = £2[X] ==> ¢3[XUY] = t1[‘x.u:]' and '
t3[TUT] = tz[xux] |
( because (x,!) € N[Td] )
==> £3(XUTUT] = t1[XUXOT]
{ because m xn(xu!) XU! ) and
t3[XUTUT] = tZ[XUXU!] L
( because t3[X] = t1[X] t2[X] ).,
t1(XU2Z] = t2[XUZ] ==> t3[XUY] = t1[XUY] and
¢3(XUY) = t2[TOT]
( because ti[X] = t2[X], (X,¥) € N[Td] )
==> t3[XUTUZ] = tI[XUTUZ]
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( hecause t1[Z] t2[Z] t3[2] ) and
t3XOYUZ] = 2{TUTOZ] ) |

( hecause XUIUZ c XU! )e
t1[X] = t2[X] ==>
| ';;3"[xuz] t1I[xUI]. and t3[xU!] t2[YUY]
( because (X,Y) E B[Td] ) and '
£A[TUZ] = t3[YUZ] and ty[YUZ] = t[TUZ]
( because t3[Y] = t1[Y], (Y.2) £ mTal )

==> e T0TNz] = £3[TUTNZ] = t2[TUTNZ]
( because xuznzCzuz, TOINz CTUY )
and  t4[YUZ] = t1[YUZ] ’
( because t4[Y] = t1[!] )

il
H
v

LU XUTNZ) ] = t2[XU(TNZ) ]

{ because 'tll[x]' = t2f1] )» and

L XU(INZ) ] = tI[TU{ENZ ]

( because m) = Tn@uz C !u'i')'.
Thus, by the defm:.t:.on of lultn.va].ued dependency Ve get.
ue[Ta] C e[ T].

(IIX) Prove M+[Td] C NM*[Td]): Coampleteness. .
For an arbitrary X € Td, define T';, éx, as follovs:

T*

(¥ 1 (XY € Msfraj, ¥ =TXNAY},

Bx = { 2i, 2§, z2k | P, Q€ T+, 2i, 23, 2k ¥ 9,
2i = PN@, zj =FNQ, zk =PNQ }.
Then, for arbitrary 2i, 2j € Bx; | |
ziNzj = 8, 2ziNX = g, 2jNX = 4.

Consider a set of records { t1, t2, ..., tn } and
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z1, 22, <.., Zn € Bx,
wvhere m = |Bx] and n 2"‘. bsﬁch t\hvat
t1[x] = t2[2] = eeeceee = tn[x], o
t1[21] = £2[21] = cevevnee = tn/2[z1 3.
tn/2+1[z1] tn/2+2[21] R tn[z1],
t1[22] = t2[22]

cecsnene = tn/Q[ZZ] tn/2+1[22]

tn/2+2[22] = eosvcoves = t3n/“[22],
tn/8+1[22] = tn/4s2[22] = .... - tn/2[22] t3n/4+1[ 22]
= t30/“*2[22] = caossoeme = tn[22]'

t1[Zr] t3[Zm] tS5[Zm] = eccecees = tn-12m],

{1

t2[Zm] = t4[Z8] = t6[ZB] = ccuecuan = tn['zn]-
Then, {t1,§2,....,tn} sat:.sf:.es us[:l'd], because
for an érbitrary (Y,2) € us[Td Je o
if B #2N2i £7i for zi & T%, then YﬂZl z 9.
COnsidering an arhitrary (x AN 4 a*[rd], .
(X,2) & M*[TA] ==> 2 & T* '
=> z2#{z| z¢&2i, i€k}
=> (L7) £ BTa) -
where k is an arbitrary suhset of set [1,2,3,....,;1].

Thus, we get H+[Td] C ut['ra].

{IV) Pinally, by the results of (II) and (III), ve get
Ne[TA] = M4[TA]. <>
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APPENDIX[A.3] PROOF OF THEOREN[3.3] .

| An origihal work of ihe proof is from Sciore[jQQZ]. Ne
vill cqnéidet only a set of join deéendencies; Theh, the
cpipléte axial systenm is invqlved'by axioms, Gé, GQ,.ahd‘GS..

The proof is accomplished by ihe follouin§ 4 éteps.

(I) The inference problem has been solved by the chase
process. Recall that a successful éhase prdcess for join

dependencies cah be expressed as an acyclic digraph bﬁith a

sink.

(II) A successful derivation process by the axiom systen
cén be expressed as an &cyclié digraph with a gink, as
decribed below. In the suécessfﬁl deri;ﬁiioﬁ process, each
vertex associates to one or nmore gienenté of join.debenden-
<cies. For an edgé set G, such that‘* - |

G = (Di,X) | Di € D, D: a vertex set,. X: a vertex },

the vertex set D associates to a‘join dépendency 'aﬁd .tﬁe
_vertex X associatés to a substituted vertex. 1Initial vertex
set is giien by a joinm dependéncy éo be tésted.\ The substi-:
tution process is ’given byvthe axidns, G3, G4, ahd G5 in
such a vay that.substﬁtutes ' | |

D to DU({Q},
DU(P,Q} to DU(Q}, and
DU(Q} to DUV,
repectively. The sink is a join 'dependency wvhich 1is a

singleton set.
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(III) A successful derivation process can simulate a suc-
cessfﬁl chase proéess in the sale-o:der. Only éonsiderable
sitnation,is the case thaf ceriain -é£tribu§ej.appears more
than once in a‘jbin dependency bht itﬁdoeé'not appear in the
substituted vertex. Axiom G5 ététés that this attribute
nust be paritized with an even parity.if fﬁevaSsociatéd cbﬁ-
panent of aséociated vertetiin theAShééeséful cﬁaée, process
has even variabble befote’brocéssing the éubstifution.. Ini-
tially, al;_attribntes were péritiiea‘ vith odd' patities.
Thus, axiom GS can sinulate thisléifﬁaiion.- Ih the other
situations, a derivafion p:odesé sinblylénbétitﬁtes a‘vertex
set by using a joiﬁ dependgncf ﬁhich is nSed in the chase

- process.

(IV) Pinally, by the result of (III), for a given Jjoin
dependency £o be tested, there iS a-shccessful chﬁsé brocess
Aif and only if there is a successful derivatiohliproceés by
the axiom systesm. Thus, the axion #jsten is a conplefe

axiom system for join depéndencies. <



