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INTRODUCTION

Let Rng denote the category of associative rings
with identity and let Z-mod denote the category of
abelian groups. For a functor F: Rng -+ Z-mod the
functors NF, LF: Rng + Z-mod are defined as follows:
NF(A) = ker ( F(A[t]) - F(A) ) induced by the augmen-
tation A[t] - A sending t to 0, and

1

LF(A) = coker ( F(A[t]) @ F(A[t™}]) + Fealt.t 1) )

induced by the obvious inclusions. For a contracted
functor F such as KO’ Kl or SK1 there is an iso-
morphism [1, Cor. 7.3, p. 663]

1 -1

- n
F(A[tl,...,tn,tl veeeaty 1) (I +2N+L ) F).

n

In particular, for F

Kl and A = Zn the

integral group ring,
K212 x 7w = KyZn ® NK,Zn @ NK Zs ® KyZm.

Martin [8, Thm. 2.2] showed that NKIZn =0 for w a

finite abelian group of square-free order.

iv
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This thesis extends Martin's results to the case
of an arbitrary finite group. The method is outlined as
follows:

We first reduce to the case where w 1is hyper-
elementary by showing that NKIZw is a Frobenius module
over GOZv. Cartesian squares then give rise to natural
Mayer-Vietoris exact sequences of K-groups [9] and hence
exact sequences of NK-groups. We then use the fact that

NK:A =0 for a regular ring A, i = 0,1 {3] and

i=2 [10].
Symbols used throughout this thesis are:
Z = the integers, Q = thé rationals, and Cm = the cyclic

group of order m.
At this time I would like to extend my thanks to
my thesis advisor, Bruce Magurn for his invaluable guid-

ance and support.
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NK, OF NONABELIAN GROUPS

1

CHAPTER 1
PRELIMINARIES

We begin by stating some definitions due to Lam
[6, p. 106]. Let Sg denote the category whose objects
are finite groups and whose arrows are inclusions
i: p > m whenever p < 7. A Frobenius functor is a
contravariant functor F: Sg -+ Comm. Ring with arrow
map (—)*, which is also a covariant functor Sg -+ Z-mod
under an arrow map (-),, such that i*(i*(x)-y) = x-i,(y)
for p + n an arrow in Sg, x € F(n), y € F(p).

Let F be a Frobenius functor. An F-module is an
object map and two arrow maps M(-), (-)*, (-)4: Sg + Z-mod
such that M(-), (-)* is a contravariant functor, M(-),
(-)4 1is a covariant functor, M(w) is an F(n)-module for

each finite group =, and for i: p - m in Sg,

* * *
i(xy) =1i (x)-1i (y) for x ¢ F(w), y € M(m)

1,(15(x)-y) = x-i,(y) for x ¢ F(m), y € M(p)

]

i*(x-i*(y)) iy(x).y for x e F(p), y € M(n).
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A morphism of Frobenius functors F + G 1is a
transformation F + G mnatural with respect to both arrow
maps. A morphism of F-modules is a transformation
f: M » N natural with respect to both arrow maps, such
that £: M(w) » N(w) 1is F(w)-linear for each finite
group .

For the remainder of this chapter, let R be a
commutative ring with identity. For = a finite group
and Rn the group ring of =« over R, let aLR denote
the category whose objects are the finitely generated left
Rr-modules which are projective as R-modules and let
G%Rn denote KOGLR)' ité Grothendieck group. G%R[-] is
a Frobenius functor. For M,N objects in ;LR the multi-

plication in Gan is [M)-[N] = [M @ N] where the bar
R

- denotes the diagonal action of m# on M ® N. An
' R

arrow i: p + 7 in Sg induces the homomorphisms

is: GRp » GRRn  defined by i,[M] = [Rm o M) for
P

* *
M] e G%Rp and i : Gan > G%Rp defined by i [N] = [N]
for I[N] ¢ Gan.

According to Lam [6, p. 114}, KOR[-] and KlR[-]
are GgRI-]1-modules. For [M] ¢ GgRm, ([N] e KjRn the

action is [M]-[N]

[M @ N], and for ([N,a] ¢ Kan the

R
action is [M]-[N,a) = [M ® N, IM ® al. An arrow i: p + 1
R

extends to a homomorphism i: Rp + Rn inducing homomor-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



phisms on KO and K, by the usual restriction and
extension of scalars.

Let (Rm) denote the category of finitely
generated left Rmn-modules and let GoRﬂ denote its
Grothendieck group Ko (4(Rm)). For a regular ring R,
GoRn = Gan [13, Thm. 1.2] giving us a ring structure
on GORn even when Rm 1is not commutative, i.e. when
m is not abelian.

Let Cm denote the cyclic group of order m.

A finite group 1© 1is hyperelementary if Cm 4 1 and
[m : Col = pn for some prime p, p | m, and some integer
n > 9. This is equivalent to w = C_ % B with |B] = p".

Let % be the collection of hyperelementary groups. By

the work of Lam [6, p. 123],

M(m) =} iM(p)
pPE¥
p<w
for any G%R[-]-module M[-]. This technique for computing
M(n) 1is referred to as 'hyperelementary induction' and

will be used in Chapter III.
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CHAPTER I1
ANOTHER FROBENIUS MODULE

Let A,B be commutative rings with identity,
f: A > B a ring homomorphism, = a finite group and

fi: KjAm -~ K;Brm  the induced homomorphism. For

M] e G%Aﬂ. [N,a] € K, AT,

1

fx(M]-[N,a]) = £,(IMB N, 1, @ al)
A

[Bn @ (MO N), 1

8 (1. © a)]
Am A M

Bn

[M] ‘f*([N)a])

ll

[(B® M]-[Br @ N, 1._ 8 a)
A Am BT

[(B® M) @ (Bn @ N), (1, © 1,,) @ (1 @ a)l
A B AT B M Brn

Lemma 2.1: Bn & (M & N) (B ® M) ® (Bn @ N) as Bmn-
An A A B Ar

n

modules.

Proof: Define ¢: Bn @ (M@ N) - (B ® M) © (Br @ N)
At A A B AT

by (bgO(mBn)) = (bBgm)B(18gn) for bg ¢ Bn, m e M,

ne N.,. Then ¢ 1is mn-linear:
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for hegn,

¢(h-(bg®(men)))

0

¢ (bhg®(m8n))

(b8hgm) @ (18hgn)

h- ((b8gm) 8 (18gn))

by the diagonal n-actions and the trivial action of

on B. Thus ¢ 1is B -linear.

Define y: (B ® M) © (Br @ N) - Br 8 (M 8 N)
A B An An A

by ¢ ((b8m)B(rgln)) = rbg@(g-lmgn) for b e B, rg ¢ Bm,
meM, and n € N. Then ¢y 1is rn-linear:

for h e n,

p(h- ((bEm)O(rgén)))

v ((b8hm)@(rhgén))

rbhg@(r(hg)_lhmen)
1

!

rbhg®(rg "mén)

h-(rbg&(g—lmSn))

r
v

So ¢y 1is Brn-linear as well. Checking composites,

¢y ((bOm)8(rgén)) ¢(rbg9(g-1m9n))

(rb@g(g-lm))e(legn)

(rbém)@(1egn)

(b@m)@(rgbn)
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Y6 (bgd(mén)

Yy ((bBgm)B(18gn))
b8 (gm@gn)
bg® (mén) .

Thus. ¢ and ¢ are inverses and the isomorphism has

been proved.

By the commutative square

_ 18(10a) _
Br & (M @ N) > Br © (M ® N)

At A Ar A

A
¢ Y ¢ 1]
Y ¥
(B @ M) @ (Bn ©@ N) = (B® M) ® (Bn O N)

A B An (181)8(16a) A B AT

and Lemma 2.1, f£,.([M]-[N,a]) = [M]-f.([N,a]) in Kan.

For i: p - % in Sg, the Bn-linear isomorphisms

Brn © (Bp ® N) = Bn @ N = Bn © (Am € N)
Bp Ap Ap Am Ap

* *
yield i,f, = f,i,. Also, i f, = f,i so f is natural

with respect to both arrow maps. Thus we have proved,
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Theorem 2.2: For a homomorphism f: A - B of commutative

rings, the induced homomorphism f,: K;A[-] » K;B[-] 1is a

morphism of GSA[-]-modules.

Corollary 2.3: NKIZ[-] is a GOZ[-]-module.

%A[-]-modules is an abelian

Proof: The category of G
category [6, p. 108], so ker f, is a GSA[-]-module.

The ring homomorphism Z -+ A induces a morphism

n

GOZ[-] GgZ[-] -+ G%A[-], making ker f, a GOZ[~]-

module. Now apply Theorem 2.2 with A = Z[t], B = Z,

and £ augmentation.

Corollary 2.4: For any finite group m,

NK,Zn = ] i,NK,Zp
pEMW
p<m

1

where M- is the class of hyperelementary groups.
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CHAPTER TIII

A VANISHING RESULT

We are now in a position to prove the main result

of this thesis.

Theorem 3.1: If = 1is a finite group of square-free

order then NKIZﬂ = 0.

Proof: By Corollary 2.4 we can assume that = 1is hyper-
elementary. Let = =C_ 4B with |B| = p, p a prime

and p | m. Let Cm = <a>, Cp = B = <b>. Then = has

the presentation

™ =< a,b: a%, bP, bab~ta™?® >

"1 (mod m). If o« =1 (mod m) then = is

where of
abelian and thus NKIZn =0 [8, Thm. 2.2].
For a divisor d of m, let Z4 denote a complex

dth root of unity. The twisted group algebra

primitive
Q(zy)°B has the additive structure of a free right Q(g4)-

module based on B and multiplicative structure determined
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by that in Q(cd), by that in B, and the rule ba = a%.
For any collection M of positive divisors of m,

let ©@(M) denote the image of Zn wunder the composite

Zn > Qn —» @ QUz,)°B —> 8 Q(g4) B
d|m deM

For each d ¢ M there is a Cartesian square

¢
M) —— IM-{d})

7
&(d) —— d)/J

where ¢,y are projections and J = y(ker ¢) is the

ideal of ©(d) generated by I ¢e(cd), and @e(x)
ecM-{d}

is the minimal polynomial of L, over Q [7, pp. 403-4].
Then ¢e(cd) is a unit of Z[;d] if neither d/e nor
e/d 1is a power of a prime, and is associate in Z[;d] to
a prime q if e/d = qr for socme r > 0 (7, Lemma 9.3 ].
Choosing d minimal in M and using the fact that m is

square-free we obtain

I o (gq) ~ n o (Tq) I pP. =Y
ecM-{d} € d Py prime pid d P; prime 1
pich pideM
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n means associate to. So for a minimal

where
divisor d ¢ M, J is the ideal generated by .

If d is such that B =+ Aut(Q(zy)) has a non-
trivial kernel then ©01(d) is in fact the group ring
Z[cd]B and NKIZ[cd]B = 0 [8, Thm. 2.2]. This occurs
exactly when d | (m,a-1).

Otherwise, B acts faithfully on Q(gyq). Let
F = Q(zy?, the subfield of Q(gy) Lleft fixed by the
action of B. The cyclic algebra Q(;d)OB =
(Q(Cd)/F, b, 1) [11, p. 259] is a crossed-product algebra
with trivial factor set and hence isomorphic to M_(F)
{11, Cor. 29.8]). Then dimF Q(;d) = p and by choosing
the integral basis (1, gg4,..., ;dp'l} for Q(z ) /F,
the isomorphism Q(;d)OB > Mp(F) above restricts to
Z[cdloB = @(d) ~» MP(R) where R 1is the ring of integers
in Q(Cd)B.

For a nonzero prime P 4 R, P-Z[;d] = Ple--'P e

g
where Pl""’P are distinct maximal ideals in the

Dedekind domaing Z[cd] and e is the ramification index.
Since e | p, e=1 or e=p, 1If e=1 then P is
unramified in Z[cd]. Otherwise e = p; but the only
primes P 4 R that ramify are those for which q | d
where ZNP =qZ, and p ] d since p |/ m. Hence e # 0
in Z/qZ and P is tamely ramified in Z[cd]. So
Z[cd]°B is hereditary [11, Thm. 40.15] and hence regular.

Thus NKiZ[;d]°B =0 for i=20,1,2.
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Mp(R) is a maximal order containing ©(d) and
d-Mp(R) C 0(d), so @(d)/(y) = Mp(R/(Y)) [7, Prop. 10.2].
For each pair of primes pi'pj in the factorization of
Y, piz + ij = Z and so piR + ij = R, By the Chinese
Remainder Theorem R/(y) = ? R/(pi) and thus
MP(R/(Y)) = @ Mp(R/(pi)L Since p; ] d, (p;) 1is unram-

1

ified in Z[cd], hence in R as well. So (pi) = g Pij
where {Pij} are distinct maximal ideals in R. Thus

.), a direct sum of matrix rings

® MP(R/(pi)) = @M (R/PiJ

i i,j P
over fields, hence regulér. So NKi(o(d)/(y)) = 0 for
i=20,1,2.

The Mayer-Vietoris exact sequence resulting from

the Cartesian square is
NKZU(d)/(y) -+ NKIB(M) - NKIU(M-{d}) e NKIU(d) -+ NKIO’(d)/(Y)

and thus NK,O0WM) = NKla’(M-{d}).

By iterating this procedure, starting with M. the
set of all divisors of m and peeling off the minimal
divisor d ¢ M, we obtain NK,Zn = NKICKM) = 0, proving

cthe theorem.

Higher N's are defined recursively by

Ntk = NvIK)) for j =1,2,... Using Theorem 2.2 with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

A =12[s,t], B =2[t] and £f: s + 0 we can use hyper-
elementary induction to compute NZKIZn. For m a
hyperelementary group of square-free order, we tensor the
Cartesian squares in the proof of Theorem 3.1 with Z[t],
producing new Cartesian squares and preserving regularity

(2, Thm. 9.5]. Thus NKIZw[t] = 0. Continuing inductively

we obtain

Corollary 3.2: NjKIZn =0 for m a finite group of

square-free order, j =1,2,...

Theorem 2.2 remains valid when Kl is replaced
by K, and so NKOZ[-] is also a GOZ[-]-module. The
Mayer-Vietoris sequences in the proof of Theorem 3.1 hold

for NK, and NKyA = 0 for A regular. Thus we have

Corollary 3.3: NjKozn =0 for m a finite group of

square-free order, j =1,2,...
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CHAPTER IV
A NONVANISHING RESULT

Theorem 4.1: Let R be the ring of integers in a number

field F, m a finite group and a: 7 + p a surjective
homomorphism with p abelian. Then the induced homo-

morphism ay: NK,Rm + NK;Rp 1is surjective.

Proof: Let e = (1/n)- § x where K = ker a and
xeK

n = |K|]. Then e 1is a central idempotent in Fr, and
from the idempotents e and 1l-e we obtain a Cartesian

square

Rt ————> A

Rp ————» (R/nR)p
Y

where A = Rn/( ] x). We get a Mayer-Vietoris sequence
xeK

(Ot*,B*) Y*'G*
NKlR'n — NKlRo ® NKIA _— NKl(R/nR)p .

13
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By inspection of the sequence it suffices to show
Y*(NKlRo) c 6% (NK 1) .

For any commutative ring A, the decomposition
K;A = SK;A @ U(A) gives NK,A = NSKIA ® NU(A) where
U is the functor A -+ units of A, If £: A+ B 1is a
homomorphism of commutative rings then the induced homo-
morphism f£,: NK;A - NK,B takes NSK;A to NSK;B and
NU(A) to NU(B). Furthermore, NU(A) = 1 + t-Nil(A){t]
where Nil(A) 1is the nilradical of A.

Since Rp 1is contained in the semisimple group
algebra (Q 8 R)p, Rp 1is reduced and so NU(Rp) = 0.

(R/mR)p 1is a commutative Artinian ring and hence

NSKl(RlnR)p 0 [1, Prop. 10.1, p. €85]. Therefore,
y*:NKIRp > NKl(R/nR)p is the zero homomorphism and the
assertion follows.

Corollary 4.2: Let 7 be a finite group and “ab its

ab

abelianization. Then NKIZn - NKIZn is surjective.

Martin [8, Thm. 3.12] showed that NKIZC r £ 0
P

for p an odd prime, r 22 or p=2, r 2 3. So if
n is a finite group with quotient C as above, then

r
P
NKIZn # 0.

If NKIZ[C2 x CZ] # 0 then for n even,

ab

NKIZDn # 0 since Dn = 02 x CZ’ Here Dn denotes the
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dihedral group of order 2n. Whether NK12[02 x C2]
vanishes or not is unknown at present. Knowledge of

NK,zC would help in answering questions of this type.

2
We now observe that NKIZ[-] is in fact a Green
module over GOZ[-]:
For A a commutative ring and 7© a finite group,
KlA[t]n has the Mackey subgroup property: for any groups

p,p' < m the composite

i, i
KlA[t]p' — KIA[t]n —_— KlA[t]p

is equal to the sum, over all double cosets opgp' c «

of the composite

*

i -1 conj. 1. i
KjAltlp' — K;A[t]l(g “ognp') —= K Alt]l(onge'g 7) — K;A[t]p

This follows by the extension of the Mackey Subgroup
Theorem to the case of an arbitrary commutative ring

(4, p. 237]). Since NKlAﬂ is a summand of KlA[t]n it
inherits the above property, and with the G%An-module

A

structure becomes a module over the Green functor GOA[-].

By [5, Prop. 1.1' and 1.2],

NKIZn g lim NKIZp z lim NKIZp
—_— ~—
p<m p<m
pEN pEN
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where % 1is the collection of hyperelementary subgroups
and the limits are taken with respect to inclusion and

conjugation among subgroups in .

It is worth noting that the above observations

hold for NKO as well.
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CHAPTER V

NKl OF FREE PRODUCTS

Let A be an R-ring, i.e. R 1is a subring of
A and there is a ring homomorphism e: A + R such that
e(r) = r for r ¢ R. The homomorphism KIR - KlA is
injective, and denote the cokernel by KI(A;R).

Note that A[t] 1is an R[t]-ring. The augmen-
tation t -+ 0 induces homomorphisms KIA[t] > KlA and
KlR[t] - KlR, thus inducing a homomorphism
K, (Ale];R[t]) » Ky (A;R). Denote the kernel by NK; (A3R).

We consider the case R =2 and A = Zrn for any

group 7. Consider the diagram

0 0 0
+ ¥

0 ~» NKIZ > KIZ[t] + KIZ + 0
+ ¥ +

0 ~» NKIZN -+ KIZ[t]n +> KIZn + 0
¥ ¥ ¥

0 - NKl(Zn;Z) > Kl(Z[t]n;Z[t]) - Kl(Zn;Z) - 0
+ ¥ +
0 0 0

17
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All rows and columns are exact, and NKlz = 0 since
Z 1is regular. Thus NKl(Zn;Z) g NKIZn.

Let p,n be arbitrary groups and let p x n
denote their free product. The integral group ring
Z[p * n] 1is isomorphic to the free product of rings

Zp * Zn. For a complete discussion of free products
YA

see {12, p. 355] or perhaps [1, p. 198].

in

(Z[p * n])[t] (Zp * Zn) [t]

VA

nt

(Zp * Zn) © Z[t]
Z Z

n

(Zp © Z[t]) * (Zn © Z[t]) [1, p. 202]
/ zlt) z

Zplt] * Znlt]
Z{t]

n

We state a result of Stallings [13, Cor. 6.2.1]:

Lemma 5.1: If R is a regular commutative ring, and if
A and B are kernels of retractions of the R-rings
A and T onto R, and if A g B is a flat R-module,

then Kl(A * T;R) = Kl(A;R) @ Kl(r;R).
We shall apply this result to the cases R = Z,Z[t],

A= 2p,2p[t] and T = Zn,Zn(t].

Consider the diagram,
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0« (z2u) Iy @ (0o Ty « (Mt @ (131240319219 « (zrud Ty @ (zt9) TN « o

Us+uxd<«d
= £q paonput = pasnput | 4
I (312 I I
0 « (Zf{u x d1Z) ™M + ([3)z¢[aJuz * [3]92)*¥ + (Z'[u » d]Z) N« 0
0 + (zt{u % 017)Ty - ([31z[31[u % 912) Iy - (zt(u * )TN« 0
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All rows are exact by definition. The two bottom-right
vertical maps. are isomorphisms by Lemma 5.1, and commute
with the horizontal maps by the naturality of the isomor-
phisms of Bass and Stallings. Thus ¢ is an isomorphism

and we have proved,

Theorem 5.2: Let p,n be arbitrary groups. Then

NKIZ[p * nJj

n

NKIZQ & NKIZH.

Corollary 5.3: NKIZ[F] = 0 for any free group F of

finite rank.

n

Proof: NK12[F] NKIZ[Z *x ccc % 7]

lez[z] ® --- 0 lez[zl

[

NKlz[t,t
=0

18 ... 8 NKlz[c,t“

1

by the regularity of 2Z[t,t -] [2, Cor. 9.7].
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