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AN ECONOMETRIC MODEL OF MONTHLY PEAK LOAD:
CASE STUDY FOR AN ELECTRIC UTILITY SYSTEM

CHAPTER I
INTRODUCTION

The drastic changes in enefgy markets since the 1973-1974 energy
crisis and the expectation of continuing change in the forthcoming years
have made capacity planning by electric utilities increasingly difficult.
Along with growing uncertainty in the capacity planning, the costs of
electric generation is also rapidly increasing because of rising fuel,
capital and construction costs. According to a study of capital and fuel
costs for utilities conducted after the energy crisis, the interest rate
for new utility bonds more than doubled and the average electric utility
cost of fuel quadrupled during the ten-year period of 1965 and 1975.1

As the uncertainty of forecasting expands, also escalates the
consequential cost of planning based on inaccurate forecasts. Utility

planners therefore have begun to accelerate efforts to develop new and

1Electric Utility Rate Design Study, Rate Design and Load
Control: 1Issues and Directions (Palo Alto, California: Electric Power
Research Institute, Nov. 1977), pp. 10-11,

1
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more effective methodologies for load forecasting.2 The need for accu-~
rate intermediate and long-range forecasts in capacity planning is
becoming more important than ever as ihe lead times required for capacity
additions increase. New environmental concerns, greater complexity in
new generation technologies and longer regulatcry proceedings have almost
doubled nuclear perr plant lead times in the last decade.3 Coal-fired .
power plant lead times also have increased from si. years in 1974 to
eight years in 1977.4

Estimates of both peak ioad (Kilowatts) and energy (kilowatt-
hours) requirements in the future constitute the foundation for planning
in electric utilities. Even though the majority of existing econometric
studies of the demand for electricity are concentrated on the estimation
of kilowatt-hour demand, the energy demand forecasting is only partially
useful for the utility planning purposes.5 Because canacity is built to

meet system peak demand, utilities must be concerned in the maximum level

2The imminent necessity of new and more complicated rorecasting
methods led the Electric Power Research Institute (EPRI) to create the
Energy Modeling Forum in 1977. The forum was intended to help utilities
deal with the new complexity and uncertainty of forecasting and operated
through a working group with participants from utilities, government
agencies, universities, and consulting firms. Energy Modeling Forum,
Electric Load Forecasting: Probing the Issues-with Models (Palo Alto,
Calitornia: tlectric Power Research Institute, April 1979),

3At least ten years are expected now for nuclear power plant
lead time which was five and one-half years in 1967. 1Ibid., p. 2.

%Ibid., p. 41.

sln his 1975 survey of the econometric models of electricity
demand, Taylor found that all of the econometric studies are concerned
about the energy demand with only one exception of Cargill and Meyer's.
L. D. Taylor, "The Demand for Electricity: A Survey," The Bell Journal
of Economics, Vol. 6, No. 1 (Spring 1975), p. 92; and T. F. Cargill and
R. A. Meyer, "Estimating the Demand for Electricity by Time of Day,"
Applied Economics, Vol. 3, No. 4, pp. 233-246.
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of . demand as well as the total energy to be consumed. However, there has
been very little empirical attention to provide detailed investigations
of the factors determining level of peak demand while theoretical aspects
of the peak load problem in electricity generation have been analyzed by

many economists.6

Consequently, the desire of electric utility planners
to develop a well-defined model of peak load has been increasing over
the recent years.

The primary goal of this dissertation is to identify and appraise
the effects of economic, demographic and weather variables on the level of
peak electricity demand. An affordable and flexible model is developed
by an econometric modeling technique for the sensitivity analyses and
the load forecasting. In the study, the entire process of peak load
formation is divided into three time horizons: 1) short run, 2) long-
run adjustment period and 3) long-run equilibrium stage.

Chapter II provides a thorough review of the literature con-
cerning the peak load forecasting. Each forecasting model is classified
by the methodology used and evaluated for the appropriateness of its
' application and its selection of explanatory variables. Shortcomings of
the models are also discussed.

Chapter III presents an analytical framework to be used in this
study for analyzing the determining factors of the peak demand for

6For example, see H. S. Houthakker, "Electricity Tariffs in

Theo:yzgnd Practice," The Economic Journai, Vol. 61, No. 241 (March 1951),
pp. 1-25; P. 0. Steiner, "Peak Loads and Efficient Pricing." Quarterly
p

Journal of Economics,Vol. 71, No. 4 (Nov. 1957), pp. 585-610;

Turvey, "Peak-Load Pricing,” Journal of Political Economy, Vol. 76, No. 1
(Jan./Feb. 1968), pp. 101-113; J. T. Wenders, "Peak Load Pricing in the
Electric Utility Industry," The Bell Journal of Economics, Vol. 7, No. 1
(Spring 1976), pp. 232-241; and 0. E. Williamson, "Peak-Load Pricing and
Optimal Capacity under Indivisibility Constraints," The American Economic
Review, Vol. 56, No. 4 (Sept. 1966), pp. 810-827.
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eletriéity. An econometric model is developed by adopting a neoclassical
concept of stock adjustment for electricity-consuming appliances.

In chapter IV, the econometric model equations developed in the
previous chapter are empirically estimated for an electric utility system.
Some practical issues for the model estimation are discussed. The theore-
tical model specifications are then adjusted and refined through the
empirical study. The statistical validity of the explanatory variables
is tested and the accuracy of the model forecasts is assessed. Based on
monthly data over the 1969-1982 period, short-run, long-run adjustment
and long-run equilibrium elasticities of the peak load are examined for
the variables included in the model. Some policy implications for capacity
planning, peak load pricing and direct load management measures are also
discussed in this chapter.

Chapter V synthesizes the conclusions drawn from the previous
chapters and proposes some suggestions for improvement in peak load

forecasting.



CHAPTER II

PRESENT STATE OF THE ART FOR PEAK LOAD FORECASTING

Comprehensive surveys of the electric load forecasting models
conducted in 1975 and 1976 uncovered almost no literature of peak load

forecasting.l

This lack of concern in peak load forecasting prior to

1973 was mainly due to the low costs of electric generation and the stable
growth trends experienced by most of electric utilities. In many instances,
energy sales were steadily increasing and load factors remained stable

over the years.2 There has been a sizable increase in resources devoted

to the peak load forecasting since the 1973-1974 energy crisis. However,
nearly all peak load modeling research is still performed by utilities.
While academic models tend to be better structured and documented, the
interest of academicians has been primarily confined to investigating

the impacts of peak load pricing rather than forecasting the loads.

1L. D. Tayior, "The Demand for Electricity: A Survey," The
Bell Journal of Economics, Vol. 6, No. 1 (Spring 1975), pp. 74-110;
and Charles River Assocliates, Long-Range Forecasting Properties of
State-of -the-Art Models of Demand for Electric Ene (Palo Alto,
alifornia: Electric Power Research Instituite, December 1976).

2Load factor is a ratio of average hourly demand to peak hour
demand in a given period.
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Despite a short history of research, a wide variety of methodol -
ogies have been tried for peak load modeling. Although'further classifi-
cation within a group is necessary, the various approaches used for peak
load forecasting are basically grouped into indirect methods and direct
methods. '

A. Indirect Methods

According to the survey of load forecasting methodologies con-
ducted by Federal Power Commission in 1969, about half of the thirty
utilities responded prepare an energy forecast as the primary forecast
and produce a peak load forecast by using the energy forecast and load

factor relationship.3

Advantages argued for the indirect forecasting
methods are: 1) that energy use data are usually less erratic over
time than peak demand data and are therefore a better indicator of
underlying growth trends; 2) that load factors are no more volatile than
peak loads in the short run and in many cases tend to be stable over the
long run; and 3) that detailed data are available for energy, but not
for peak demand, by classes of services and geographical sub-divisions
and can be easily related to appropriate explanatory variables, such as
weather, income and population.4 Based on modeling sophistication, the
indirect forecasting methods are further classified by the system load

factor approach and the class of service coincident load factor approach.

3L. D. Taylor, "A Review of Load-Forecasting Methodologies in

the Electric Utility Industry," Proceedings on Forecasting Methodolo
for Time-of -Day and Seasonal Electric Ufi?if Needs (Palo Alto, Caligor-
nia: ELectric Eower Research Institute, Mﬁrcﬁ 1976), p. 85.

4Ibid., p. s6.
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1. System Load Factor Approach

The simplest peak load forecasting technique employed by
utilities is a trend extrapolation of system load factor. The trénd-
forecasted load factor is then applied aginst the energy demand forecast
to generate the peak load forecast. Since much of peak load and energy
sales fluctuations from trend-determined values is due to abnormal weather
situations, direct use of historical load factors for the trend analysis
will impede establiéﬁing a true trend. Therefore, historical values of
the peak load and ihe energy use need to be weather-normalized by the
weather sensitivity determined for each year. The weather-normalized
hiétorical load factors are then computed and trends are established.

This approach emphasizes the stabiliiy of the weather-corrected
load factors and suggests a simple extrapolation techniqué for the trend
setting. However, the post-energy-crisis experience in the last decade
shows that load factors are frequently erratic and difficult to project.
While it may be true that energy demand can be projected with greater

accuracy than peak demand, forecasting the load factor, which is neces-

than a direct forecast of peak demand. After attempting to forecast the
peak demand both directly and indirectly, a recent empirical study of
peak electricity demand Qith the monthly load data of twelve differeht
utilities concludes that it is more difficult td predict the load factor

than either peak demand or average demand.5 ‘The second disadvantage of

5R. R. Betancourt, l'.An Econometric Analysis of Peak Electricity
Dem;gd in the Short Run,“ Energy Economics, Vol. 3, No. 1 (January 1981),
p. 25.
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this approach is that a lack of hebavioral structure prohibits any impact

analysis of policy changes on peak load growth.

2. Class of Service Coincident Load Factor Approach
One way to refine the system load factor forecast discussed above

is to separately forecast load factors by class of service. System peak
load forecast is then produced by multiplying the projected class of ser-
vice coincident 1oad factors by forecasts of energy usage by class of
service.6 An advantage of this approach is that it provides more struc-
ture than the system load factor approach and is amenable to piecewise
improvement.

Changes in the system load factor afe attributable to either or
both of the two factors: 1) changes in the proportions of energy sales
to classes of service which have different load factors; and 2) changes
in the load factors of individual service classes. The class of service
load factor approach was used by Northeast Utilities Service Company (NUSC)
for their long-range load forecasting.7 The NUSC model measures the effect
of changes in the proportions of energy sales to service classes on the
system load factor but does not attempt to estimate the changes in the
class load factors. Nebraska Public Power District (NPPD) is another
utility which adopted the class load factor approach for their péak load

forecasting. Like NUSC, NPPD also used constant class load factors for

the coincident load factors by class of service are, in this
case, the class of service load factors at the time of system peak demand.

7Northeast Utilities Service Compa:'y, The Northeast Utilities
System Ten- and Twenty-Year Forecasts of Loads and Resources (Harttord,
.C%nnecficuf: Northeast UEiIIties Service Company, January 1976).
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their forecast of annual peaks for a twenty-year period.8 In the NPPD
model, the class load factors are not based on NPPD-specific data because
such data are not available. Rather, they used the load research data
compiled by other utilities which have similar service characteristics.
Since the effects of changes in class load factors are ignored, both of
the utility models are only partial models.

The major data requirements for estimating the model are class of
service coincident load profiles. While many utilities have the time of
day load data required for estimating coincident load responsibilities
for large industrial customers, little data on coincident loads for
residential and commercial customers exists until recently. Besides the
estimation problem, use of the model for forecasting may be equally or
even more difficult than most of the direct forecasting methods. This

is because the model requires forecasts of changes in the coincident load

factors and changes in energy sales by class of service at the same time.

B. Direct Methods

A counterpart of the load factor approach is direct modeling of
peak loads. In the direct models, peak load is forecasted independently
of underlying energy demand. Reasons cited for using the direct modeling
method are: 1) it is reasonable to modél directly what a utiiity system
considers the most important forecast for capacity planning; 2) load
factors are frequently erratic and difficult to project; and 3) peak

demand data can be more directly related to certain vital variables such .

8

ICF, Inc., Nebraska Public Power District System Demand and
Energy Requirements: ojections umbus, Nebraska: Nebraska
PﬁBIic Power Disfricf,~ggy ;;;;;,
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as weather and appliance stocks than energy usage data.9

Depending on
the explanatory variables used for modeling and the design of model struc-
ture, direct models are classified into time-series approaches, end-use

approaches, econometric approaches and hybrid approaches.

1. Time-Series Approaches

- Time-series techniques are designed to project future values of
a variable such as peak load of electricity on the basis of a historical .
trend of that variable. The main advantage for this method is that data
requirement for modeling is minimal. However, the model parameters are
not intuitively meaningful because they do not provide any insight into
causality. Given the expected changes in future trends of causal factors,
time-series models are generally appropriate for short-run forecasting
situations. The models are relatively unstable and accuracy of the
model forecasts decreases over time. Despite its problem for long-run
forecasting, time-series analysis has been widely used for both short-run
and long-run forecasting of peak electricity demand. Model types range
from simple extrapolation techniques to more sophisticated models such
as autoregressive-moving average (ARMA) models. Three different types
of time-series analysis will be discussed in this section: 1) trend
analysis, 2) stochastic analysis and 3) " ARMA (or Box-Jenkins) modeling.
The models reviewed below are selected bécause they are considered to be
milestones in the application of state of the art for peak load forecasting.

a) Trend analysis. Simple trend extrapolation technique was a

popular method of load forecasting shared by many utilities in early days.

9L. D. Taylor, "A Review of Load-Forecasting Methodologies in
the Electric Utility Industry," p. 86.
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Thg procedure here is to fit a trend curve to historical values of peak
load and generate a forecast by extrapolating this trend curve forward to
the desired horizon. The effect of weather on the peak is ignored assum-
ing that similar weather conditions will prevail every year at the time of
peak demands. However, the environments which produce the peak demand
can change significantly. For example, increasing rates of saturation for
air-conditioning appliances makes the electric load more weather-sensitive.
Under this circuﬁstance, the load forecast based on the simple trend analy-
sis will be less reliable with more distant history of load to be analyzed.

Recognizing the need of seasonal adjustment or weather-normali-
zation of the load data to be used for a trend analysis, Gupta proposes
a load forecasting procedure based on sepération of seasonally adjusted
and seasonal components of'peak demand.lo With weekly peak demand data
of a particular utility and associated weather data for a 12-year period,
the demand data are deseasonalized using a moving average technique. A
second-order polynomial trend is then fitted for the seasonally adjusted
demand data using a generalized least square estimation method, by which
the observations are weighted exponentially with a declining scheme start-
ing from the most recent observation. On the other hand, the seasonal
component is divided into a summer component and a winter component. The
separation of seasonal components is necessiated by the difference between
cooling load and heéting load. Therefore, two different weather-load
models are needed. Two weather-load models are specified for each year

by regression coefficients, Ks and Kw’ which are estimated by correlating

10P. C. Gupta, "Statistical and Stochastic Techniques for Peak
Power Demand Forecasting in Electric Utility Systems," PEREC Report No.
51, Engineering Experiment Station, Purdue University, August 1969.
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the summer and the winter components'of the weather-sensitive demand with
coincident dry Bulb temperature measured as a deviation from its mean,
respectively. Therefore, the values of Ks and Kw estimated in the regres-
sion analysis are expected to vary year to ysar. In order to reflect their
evolution in load forecasts, future values of Ks and Kw are projected by a
trend extrapolation based on Gompertz or polynomial curve fitting.11
The total peak demand forecast is then obtained by combining the forecasts
of seasonally adjusted and seasonal components.

Along with the procedure described above, Gupta discusses an
approach in which the load is decomposed directly into weather-senstive

12

and non-weather-sensitive components. First, weekday peak demand and

weather data are used to determine weather-load models year by year cv

season by season.13

Once the weather-load models are determined, it is
possible to separate the observed values of weekly peak demand’into
weather-sensitive and non-weather-sensitive components. A trend curve

is fitted to the non-weather-sensitive component of demand and then
extrapolated to the future. The changing coefficients of the weather-load
models are fitted by a growth curve and the expected values of the co-
efficients at the desired time of the forecast are obtained by extrapo-

lating the growth curve. Historical means and variances of the weather

11Gompertz curve is preferable to siﬁble time polynomials in the
cases where the development of air-conditioning load is well established,
because the market for air-conditioning equipment is near saturation.

1ZGupta, "Statistical and Stochastic Techniques.”

136upta uses the dry bulb temperatures of S$0°F and 70°F as the
threshold temperatures for heating load and cooling load, respectively.
Therefore, his weather-load model would be

D= D0 + Kw(T - 50)61 + KS(T - 70)62 +Uu
where 8's are binary dummy variables and u is a residual term.
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variables at the times of weekly peak loads are then used to forecast the

weather-sensitive component of future peak demand. Finally, the weather-
sensitive demand forecast is combined with the non-weather-sensitive
demand forecast to yield an estimate of future peak.

b) Stochastic analysis. The third forecasting approach consid-

ered by Gupta is a stochastic model which assumes that peak demand is the

sum of trend, seasonal and irregular components.14

A base model for peak
demand in month t will be then

D, =T, +5, + 1, (1)
where T, S and I denote the trend, seasonal and irregular components of D,
respectively. The stochastic model is formulated by specifying models

for each of these components. The trend component is

G = Qg + Y (3)

where q, is the change in trend from time t-1 to time t and uy is a

random error term with zero mean and unknown variance 62 . Combining
(2) and (3),

To= Toop +Gp +Up = 2T = Teop + Y- (4)
Letting U denote the one-period lag operator, (4) can be written as
T, - T, + PT, = u, (5)
or (1 -0°T, =u,. (6)
The model postulated for the seasonal component is
Py =Ty g2+ (1- p)vt +Ve ;- (8)
14

K. N. Stanton and P. C. Gupta, "Forecasting Annual or Seasonal
Peak Demand in Electric Utility System," IEEE Transactions on Power
Apparatus and Systems, Vol. PAS-89, No. 5 (May/June 1970), pp. 954-959.
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St is therefore assumed to be changing with a linear trend of random slope,
P, which can vary between zero and one. This model connects the successive
monthly peak demands in a regressive manner with e and Vels Vi is a
stationary zero-mean white-noise process with unknown variance °3'

Combining (7) and (8),

(1-0'2)%s = (1 -0 +pU)y,. (9)
The irregular component It is assumed to be sampled from a purely random |
process w, with zero mean and unknown variance 052 )
I = w,. _ (10)
From equations (6&, (9) and (10), equation (1) can be written as
% (l_-tU)-z ' (1(1-_ pu;zp;lz”"'t W ()
2 2

Four unknown parameters, o, , ¢ , °5 and p , must be estimated for the
postulated model (11) to be complete. This involves matching the stati-
stics of the historical demand data with corresponding statistics for the
output . of the postulated model. However, no meaningful statistics can
be produced froh the historical data or the model output because of
their nonstationarity. Since the seasonal component in equation (8)
involves a !.szar trend, St is nonstationary and Ti has a similar problem.
Hence an indirect approach is undertaken by using a reversible transfor-
mation’which converts the nonstationary process Dt into a stationary time
series D::

o, = (1 -uvPa -u'%, (12)
From equation (11),

| .
Dt = (1l - U12)2ut + (1 -p+pU)(1 - U)zvt

+ (- 02 - u8h (13)
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which is the stochastic model producing the stationary random process D:.
The four unknown barameters of the stochastic model are now determined
by matching the power-density spectra of the model output and the1trans-
formed historical demand data.

Once the miodel parameters are estimated, forecasts are produced
in either of two ways. The first method is fo obtain the moving-average
representation of the process D: and to foreéast Dt by using equation
(12). The second way is to apply a Monte Carlo gaming approach, assuming
the error terms u, v and w are all Gaussian with variances az, as and
1, respectively and using the estimated value for p. A large number of
realizations of the process are generated. The mean of the realizations
for the desired t is used as the forecast. ‘

Regarding practical application, a purely stochastic model, such
as the model discussed above, appears to have limited significance for
the demand forecasting. Serious computational difficulties are associa-
ted with conversion of the stochastic model to a suitable form for
forecasting purpose. However, once an appropriate model is obtained,
forecasts are produced quite rapidly. Since the model is nonstationary,
it does not have to be updated as frequently as the trend curves and the
weather-load models discussed earlier. Therefore, the combination of
simple stochastic models with mdre conventional techniques such as weather-

load models may have a great potential.

¢) ARMA (or Box-Jenkins) modeling. Econometric models are often

misspecified due to over-simplification, data limitations or the practice

of prrafiltering data. This is especially true for utility load forecasting
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where univariate adjustments of load data for the impacts of weather,
seasonality, and rates are offen attempted. Data limitation is a common
problem for small utilities where reliable service area data exists on
only a subset of the theoretically important causal variables. Claiming
that econometric models are not the final answer to good forecasts, Uri
poineered the application of ARMA (or Box-Jenkins) modeling techniques to
electric load forecasting as an alternative to econometric models.15

In his effort to build a Box-Jenkin§ model for infermediate
term forecasting of system loads, time-series data of monthly average
daily peak system loads obtained from a large electric utility in the
western United States for the years 1961 through 1973 were analyzed.16
Since he noticed that the size of seasonal effect increases with an
increase in the level of the series, logarithms of the original observa-
tions were takep in order to fit a model with an additive seasonal effect.
Letting the observed monthly average daily peak load at time t be
denoted by X and the log-transformed value by Z,

2, = lnx |
The first stage of the Box-Jenkins procedure is to difference the series
z, until a stationary series W, is obtained. . Because the series has a
trend and seasonal patterns completing one cycle every twelve observations,
the sample autocorrelation fuctions of the series vdv?zzt need to be

examined, where vD

p indicates that the difference operator,

15N. D. Uri, "A New Approach to Load Forecasting in the Electrical
Energy Industry," Working Paper No. 31, U. S. Department of Labor, Bureau
of Labor Statistics, November 1974.

16N. D. Uri, “"Intermediate Term Forecasting of System Loads Using

Box-Jenkins Time Series Analysis," Proceedings on Forecasting Methodolo
for Time-of-Day and Seasonal Electric UtilIty Needs (Palo Kl%o, CaIi?orn;a:
Electric Power Research Institute, March I§7E)

» pp. 60-76.
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vze = (1 -8z =z - 2
is applied D times and B isthe lagoperator. The operator vvmwill remove
a linear trend and a stable seasonal pattern. The time-series data used
in the study showed that the autocorrelation coefficients at lags ! and 12
are significant and that a lag of greater than 12 can be regarded to exert
no influence. Given these results, the following simplé model was tenta-
tively entertained to represent the seasonal dependence in the series:

(1 - 812)2t = (1 - 912812)et
where e, are independently distributed random disturbances. After removing
the between-years seasonal correlation, the between-months serial correla-
tion in the e, must also be removed. The between-months correlations could
be explained by a moving-average model of order q = 1. That is, '

(1 -Ble, = (1 - e8)ay
where a, is white noise. Then, a modified model for the observations z,
will be

(1 - 8)(1 - 8')z,= (1 - 0,B)(1 - 0,8'%)a,
where the parameters, 8] and 8y, are empirically estimated.17

Using the model specified above with the estimated parameters,
51 and 512, forecasts of the monthly éverage daily peak loads for the
years 1971 through 1973 were gengrated. Since the data used to estimate
the model ran from January 1961 to December 1970, residual analysis of the
fbrecasts is an eﬁpirical test of the forecasting ability of the model.

During the period of relatively smooth growth, the Box-Jenkins model

17In fact; the between-months correlations can be more effectively
removed by using the first differential terms of zB and e_.. Then, the model
- can be further refined to explain the seasonality of autoFegressive terms:
a1 - 112812)1\2t = (1 - 912812)Aet where the parameters, " and 8,5, are

to be estimated.
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predicts remarkably well. However, the model is not expected to perform
so well over the turbuient years like 1974-1977 because no causal variables
are included in the model to explain different structural effects.

The Box-Jenkins method discusséﬁ above uses a three-stage modgal
building procedure--identification, estimation and diagnostic cheéking.
Sinca the model identification is based on examination of the various
patterns formed by autocorrelation and partial autocorrelation functions
of AR, MA and ARMA models, the Box-Jenkins method ha§ limited use for
on-line forecasting and does not necessarily select the model which
produces the best results. As an advanced technique to the conventional
Box-Jenkins technique, Nelson and Vemuri presented a method with which
the model selection process is very simple and on-line forecasting of
hourly electric loads is automatically possible.18 The method processes
the historical hourly loads with a sequential least-squares estimator to
identify a finite-order autoregressive model which in turn is used to
obtain a parsimonious ARMA model. A procedure is also provided for
incorporating temperature as a variable to improve forecasts of weather-
sensitive loads. Compared with the Box-Jenkins method, the advanced
method involves much less human intervention and improved model identifi-

cation.

The ARMA model of (p, q) can be written as

w(B)z, =Ipe(B)at : (1)
where w(B) = 150“381' w = 1 and
8)= 3 o8
e()=iz=:0c3j ,aozl.

180. J. Nelson and S. Vemuri, Automatic Load Forecasting (Palo
Alto, California: Electric Power Research Institute, March
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Alternatively, the above model can be represented by the infinite-order
AR model of
x(B)z, = a, (2)
where = (B) = G'I(B)n(B) = I x‘Bi, x, =1.
=0 & "0

For practical application, assuming a finite order for the AR model,

x(B) = xB! (3)
h j=0 1 . )
where h is the order of the AR process. In a matrix form,
_.T
2, =22, +3 (4)

where ﬁT = [nys 2y, cennyony]
2 =02 15 Zp_os eeeesZypp]
and T is the transpose.
For a given order ﬁ, the estimate of =x, ivwhich minimizes the variance of
the residuals of the AR model, is obtained by using the following -
sequential least-squares estimator:
= Sy + Rz(zy - 2y (5)
rere By = By - Eutall + 2120 BB
and Ry = [tgagtgll'l
for N measurements of z.

La)

Without any information on 50 and io, the iterative procedure is
started by assuming large values for 30 and ib = 0. The components ”i of
the vector iN are the estimates for h of the parameters of the true infinite
ordered AR process. Value of h is also determined iteratively such that
the variance of the error between 3 and ét is minimized. In practice, the
residual variance has approximately the same value for many values of h.

The lowest value of h is chosen from those values of h for which the resi-

dual variance is about the same.
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For a parsimonious model, the next step is to identify the
parameters of the ARMA model of equation (1) from the h ordered AR

process determined in thehprevious step. From equation (2),

= #(B)z + z "17‘1: -i° (6)

Treating a as the measurable input, equation (1) can be modified as
z, = eTr . (7)

where = [zt 1» Zggr o rZpop at, t l,....,at q
and E = [-w1, “lyeeens i, 8> 2,....,6q]
Equation (7) is similar to equation (4). The parameter vector £ can be

estimated by the least-squares sequential estimator:

En = Enp + Pul(zy - Do) (®)
where P T -1.T
B = 1L - By + IR ) TR
N

and Py = L2 1 R
The estimate g.gives the desired parameters for the ARMA model of equation
(1). The order (p, q) of the ARMA model is determined by a search pro-
cedure to give the orders which best fit the higher-order AR model
identified in the previous step.

There are three alternatives proposed to ihcorporate weather
variables into the time-series model discussed above. The first method is
to expand the least-squares estimation so as to include dependence, not
only on past values of load but also on current and previous values of
weather variables. Then, the modified AR model i1l be

(L~ El o8z, = (1 + jgl B8 g + vy ()

where z, = hourly load

W, hourly weather variable

residual noise

t
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B = lag operator

%4

Bj = the coefficient for the jth delayed weather variable.

The second method is to incorporate the weather variables into the moving

tha coefficient for the ith delayed load

average portion of the algorithm. The model will be the same as (9) but
the way to develop the Bj is different. The third method is to use the
ARMA model as developed in the previous steps. The residuals of the ARMA
model are then analyzed in place of zZ, in equation (9). This analysis
would provide a correction to be added to the original forecast in a
stepwise fashion.

Neison and Vemuri tested the on-line forecasting method using
three hourly data from the Lincoln Electric System, Lincoln, Nebraska.
In the exhaustive analyses performed on this data base, they demonstrated
that their method produced significantly better results than the Box-
Jenkins method. Although they improved the data processing capability of
the commonly used Box-Jenkins method by minimizing the human intervention
in developing the stochastic models and introduced a possible means of
incorporating weather variables into a pure time-series model, their

method is still short of a mechanism to take account of structural changes.

The method was designed only for forecasting short-term (hourly) load.

2. End-Use (or Engineering) Approaches
End-use modeling approaches are characterized by their primary
reliance on physical analyses of the energy-consuming equipment. Models
are developed as functions of the capacity and efficiency of equipment,
rates of saturation (ownerships) for the equipment, rates of utilization

at the time of peak demand, weather, etc. Engineering principles are
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typically used to develop a simplified mathematical representation which
relates energy utilization to the thermal properties of envircnments and
the electro-mechanical characteristics of the energy-using equipment.
End-use models are attracted by their ability to explicitly evaluate _
various conser&ation policies and load management programs and to provide
detailed analyses of new technology impacts on electric energy demand.
For load forecasting purpose, this approach would prsoduce accurate fore-
casts brovi&ed that a user can make accurate forecasts of end-use inven-
tories. Estimation of the engineering models, however, requires creation
of a vast data base of end-use inventories and load curves. Therefore,
the large data requirements and intense modeling efforts imply a trade-
of f between level of disaggregation and quality of component forecasts.
while the lack of adequate data continues to inhibit a wide-spread
application of the end-use models, the role of end-use models has expanded
greatly since the oil embargo. For example, they are intensively used
in evaluating the impacts of conservation programs established by Congress
and state legislatures.19

Application of the end-use modeling approaches to peak load fore-
casting was pioneered by the California Energy Commission (CEC) in 1976.20

In its efforts to build a peak-load forecasting model for the electric

19See S. C. Carhart, S. S. Mulherkar and S. Yasuko, The Brookhaven
Buildings Energy Conservation Optimization Model, prepared for the Division
of Bulldings and Community Systems, U.S. Department of Energy, January 1978;
J. R. Jackson, An Econometri¢ - Engineering Analysis of Federal Energy
Conservation Programs in the (ommercial Sector (0ak Ridge, lennessee: Oak
Ridge National Laboratory, January [979); and U.S. Department of Energy,
Nonresidential Buildings Energy Consumption Survey: Buildings Character-
ristics, DOE/EIA-0278, June 198l.

20California Energy Commission, "Technical Documentation of
Procedures for Estimating Peak Demand," Mimeograph, October 4, 19/6.
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utilities in California, CEC used the daily peak load history of Pacific
Gas and Electric Co. (PG&E) for July and August of the years 1961-1975

to estimate the following equation:

D = NWD + BTAS + ¢
where D = daily peak demand in megawatts, excluding weekends and
holidays;
NWD = non-weather-sensitive demand to be estimated;
TAS = a composite temperature-appliance saturatior index

n
calculated as Z [(TEMPi> 75°) x Aci]

with TEMPi = J:%Iy average dry-bulb temperature at
weather station i;
ACi = number of electric central air conditioners in
region i; and
n = number of sub-regions in the system; for the

case of PG&E, n = 3;

g = parameter to be estimated; and

e = random error term.
The above model specification involves two strong prior assumptions:
1) the common gcoefficient for all of the sub-regions presumes that the
dependence of weather-sensitive peak demands on daily summer temperatures
is the same for each of the sub-regions; and 2) temperatures above 75°F
only interacts with air conditioner saturation in the equation. After
estimating the equation for each of the years 1961-1975, the non-weather-
sensitive demand component, NWD, as estimated from each year's PEAK regres-
sion, was then regressed on annual KwWh sales in a bivariate equation,

NWD = v + OES
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where ES annual KwWh sales and

Y, 6 parameters to be estimated.
In arder to use the above equations for peak-load forecasting, energy(kWh)
sales must be forecasted independently. With the forecasted value of NWD
and appliance saturations in hand, stability of the B coefficient is now
questionable. Efficiency and utilization rates of air conditioners repre-
sented by the magnitude of the B coefficient actually thange over time as
a function of the socioeconomic variables, such as price of electricity,
income, household size, business conditions in commercial and industrial
sectors, etc. Generally speaking, the CEC model has an obvious weakness
caused by over-simplification. The preseace of positive first-order
serial correlation in the first equation reveals the misspecification
problem. However, the model served as a stepping stone to the imporved
methods that appeared later.

A more formal and integrated end-use model was developed for.the
New England Power Pool by Battelle Columbus Laboratories in 1977.21
Although the model is an integrated load curve forecasting model, peak load
is determined by finding the peak on the curve. The model has hourly load
-curve for each detailed end uses. Hourly load on the curve for a given
end use is derived by multiplying per-unit use value for the end use
times the number of appliances of the type times the probability of the

equipment being in use at a particular hour. Seasonality is accounted for

by making the use probabilities a function of temperature for weather-

21New England Power Pool Load Forecasting Task Force and

Battelle Columbus Laboratories, Model for Long-Range Forecasting of
Electric Energy Demand (West Springfield, MA: NEPL%N, June I§77;.
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sensitive appliances. The principal data requirements for the model
estimation are end-use inventory data and unit load curves. These formi-
dable data requirements pose a real impediment for practical application
of the modeling approach. The inventory data set alone requires an
extremely expensive survey and maintenancg cost. rurchermore, the unit
load curve data are virtually unavailable for some appliances. Therefore,
the model estimation is started with initial guesses of the model para-
meters and then refined by simulation with actual system load data. To
produce a load forecast, the model reqhires the forecasts of appliance
stocks and unit load curves. Without any major policy or energy market
changes, the unit load curves are assumed to remain constant. For the
appliance inventory forecasts, Battelle uses a saturation curve fitting
method. A major advantage with the model is that its end use detail
provides a considerable potential for impact anélysis of various load
management measures. However, the inevitable compromises with data
availability results in substantial inaccuracies. Complete absence of
economic factors is another shortcoming of the model. The use of
constant unit load curves and saturation curve fitting for the appliance
inventory forecasts make the model inseﬁsitive to chénges in energy market
conditions. |

The main advantage of an end-use model is recognized to be the
capability to incorporate the impact of a given conservation program info
the load forecast. However, the energy reducing effects of conservation
programs or improved appliance efficiency are actually overstated by end-
use models. By ignoring the interaction between economic aﬁd engineering

effects, end-use models fail to account for increased electricity use by
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consumers who have installed conservation measures.22 When a consumer
replaces an old air conditioner with one which is twiée as efficient, the
effective price of electricity for air conditioning drops to half of what
it used to be. If the consumer's price elasticity of demand for electrizity
is not zero, he will react to the lower effective price by increasing the
number of hours in usage of the air conditioner. Therefore, engineering
models tend to overestimate the energy reduction achieved by the efficiency
improvement by ignoring the feedback from the engineering side to the
economic side. Another problem encountered when an end-use model is used
to assess the impact of concervation measures is a double counting problem.

Since end-use models implicitly assume ceteris paribus conditions for other

relevant factors such as weather, income, and price, one can make a mistake
of double counting if those other relevant factors do not actually remain
constant. Load reduction attributed to an audit program can be overstated
by an engineering model because the model does not take into account the
conservation effect induced byrising price of electricity. |

A real disadvantage of an end-use model is the high cost cf data
gathering. Given resource limitations and the benefit of increased accu-
racy, the appropriateness of the end-use modeling approach needs to be

evaluated case by case on the basis of cost-benefit considerations.

22This problem was pointed out by Bentley, Cosgrove and Stallcup
at the third EPRI Load-Forecasting Symposium held in March 1981. Recently,
the problem has been reissued with practical examples by kKhazzoom. See
W. G. Bently, C. E. Cosgrove and P. W. Stallcup, “"Integrating Econometric
and End-Use Models: A Realistic Approach to Conservation Programs,"
roaches to Load Forecasting: Proceedings of the Third EPRI Load-
orecastin osium (Palo 0, ornia: Electric Power Researc
Institute, Ju{y 1982), pp. 44-76; and J. D. Khazzoom, "Integrating Resi-
dential Conservation Measures into Utility Demand Forecasts," Public
Utilities Fortnightly, March 31, 1983, pp. 23-30.
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Another disadvantage of an engineering model is that no probability
statement can be attached to the results of impact analysis or the fore-

casts of end-use models.

3. Econometric Approaches

Econometric methods rely on the statistical analysis of histo-
rical time-series and/or cross section data to develop a model of peak
load-as a function of behavioral and structural variables such as economic
activities, population and weather. Economic theory is usally used to
develop a mathematical structure of the model and the model parameters
are estimated by some type of regression analysis. Econometric approach
is the most popular method of -peak-load forecasting in the electric

utility industry.23

Since the econometric approach requires modest
efforts for data development and model estimation to be implemented, it
is a well-accepted approach. Compared with the time-series methods and
the end-use methods, econometric methods are much better suited for long-
run forecasting because long-run analyses should include econometric-type
structural relationships. Evaluation of the modeling results with
statistical criteria is another advantage. However, estimated model
coefficients are frequently biased due to omitted variables, misspecifi-
cation of functional form, errors in variables and/or inadequate dynamic
representation. Multicollinearity is also a common problem which

discourages the use of econometric models.

23According to a recent survey of electric utility load fore-
casters, more than 60 percent of the participating utilities list the
econometric method as the mcst important method to be used for peak load
forecasting. See A. G. Lawrence, A Survey of Electric Utility Load
Forecasting Methods, Preliminary Issues (Eos Altos, California: Applied

orecasting alysis Inc., January 1983).
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There has been a rapid evolution of the econometric techniques
of peak load forecasting during the last decade. Oepending on how the
model is set up to treat the relationship of demand for electricity and
the requisite appliances in the short-run and the long-run, various
econometric models developed so far are classified into four types:
1) static equilibrium model, 2) flow-adjustment model, 3) stock-
ad justment model and 4) two-stage model. Aside from the problem of
short-run vs. long-run analyses of peak load formation, short-run vari-
ability of price elasticity and weather sensitivity is evaluated in an
econometric model recently déveloped.

a) Static equilibrium model. Application of the econometric

techniques to hourly load forecasting was pioneered by Cargill and Meyer
in 1971.24 In an attempt to piSvide detailed empirical investigaticns of
the factors determining the peak load demand, they developed the following

hourly load demand model :

2

PE
yi = B“ + 82”53 + 831Y + 841Y + BSiM + 861t + Ui
where y = total system load per capita at time i in Kw
PE = average revenue per KhWh
PG = average price per therm for gas

Y = real per capita personal income
M = employment of production workers i1n manufacturing
t = monthly trend variable

random error term.

c
]

24Cargill and Meyer, "Estimating the Demand for Electricity
by Time of Day," pp. 233-246.
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Cargill and Meyer estimated the equation for each of the 24 hours in a
day using seasonally-adjusted monthly means of each hourly loads for a
four-year period from January 1965 through December 1968. There are 48
observations and the equations were estimated for two regions markedly
different in terms of climate and industrial activity. The first region
is a midwest industrial city and the second is a west coast city. Accord-
ing-to the modeling results, their ecuations explain about 90 percent of
the total variation in monthly hourly demand in both regions. The price
of electricity relative to price of gas has a negative effect as expected
but is statistically significant for the first region only. The income

variable shows little significance for both regions.

Cargill and Meyer's model was primarily motivated by quantifi-
cation of the impact of electricity price on the load curve. However,
their goal is mitigated by the fact that electiricy price did not vary
by hour of day. Another problem with their model is the assumption of
independence between the hourly loads; which is not likely in a real
situation. Moreover, they failed to see the dynamic features of electri-
city demand formation. By not distinguishing between short-run and
long-run effects of the economic variables, the model implicitly assumes
instantaneous adjustment in the electicity-using capital stock to
change in the economic variables. Consequently, their model becomes a
static equilibrium model, like many earlier model. Since the static
equilibrium models are not designed to track short-run time-series varia-
tion in electricity demand nor designed to incorporate the.size or
characteristics of the electricity-consuming capital stock, they can not

provide accurate measurements of price and income elasticities.
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b) Flow-adjustment model. Electricity is required as an energy

input to utilize capital stock of some durability and does not yield any
utility in and of itself. The demand for electricity is therefore a
derived demand--derived from the demand for the services produced by
electric equipment which yields utility. Since durable goods are involved
in the process of electric demand, there is a need to distinguish between
a short-run demand for electricity and a long-run demand.

Rather than assuming instantaneous adjustment of the capital
stock, dynamic models take account of possible short-run disequilibrium
in the demand for electricity. As electric demand responds to changing
economic conditions, the, stock of appliances does not adjust as ranidly
because of its durability. Due to the time lags involved for the capital
stock adjustment, the level of electric demand can only partially adjust
in the ;hort-run. Flow-adjustment models assume that actual change in
demand is proportional to the difference between desired and previous
levels of demand. Therefore, in the short-runm,

Dy - Dpg = MO - 0y _y) (1)

*

where Dt is actual demand in period t, Dt is desired demand and A is an
adjustment factor which takes a value between 0 and 1. Given sufficient
time to adjust, A becomes 1 and the equilibrium quantity, D:, will be
demanded. The concept of flow-adjustment modeling originated with
Houthakker and aylor.zs In the flow-adjustment model originally formu-
lated by Houthakker and Taylor, the demand for electricity is expressed

as a function of the electricity consumption lagged one period and the

25H.‘S. Houthakker and L. D. Taylor, Consumer Demand in the
United Sta;es. 2nd ed. (Cambridge, Mass.: Harvard University Press, 1970).
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exogeneous variables measured as sum of their current and one-period
lagged values. For example, both current and lagged prices of eiectri-
city are included as exogeneous variables but the coefficients of those
two variables are constrained to be equal. Later, the Koyck version of

the flow-adjustment model was investigated by Taylor, Blattenberger and
‘ Verleger in an empirical study of residen;ial demand for electricity.26
The Koyck lag distributed model is derived by specifying the flow adjust-
ment process directly in discrete time as shown in euqgation (1) while the
original Houthakker-Taylor model is based on the specification in contin-
uyous time with a translation to discrete time.27 The Koyck model takes
the demand fof electricity as a function of the electricity comsumption
lagged one period and current values of the exogenous variables.

Acknowledging the time required to adjust capital stocks and

usage, Spann and Beauvais developed a dynamic model of monthly peak demand
for virqinia Electric Power Company (VEPCO) by utilizing a Koyck type of

distributed lag structure.28

The monthly peak demand model estimated with
the time series data of VEPCO for the period
InKW=a +B/InE+ B,lnD+ Bylnl + BT + B.In [NDEX + 8,1n 0
+ Xlln KNl + len Klvl‘z + E

where InKW = log of peak kilowatt demand

26L. D. Taylor, G. R. Blattenberger and P. K. Verleger, Jr. of
Data Resources, Inc., The Residential Demand for Energy (Palo Alto, Cali-
fornia: Electric Power Research Institute, January [977), Chapter 5.

27See Houthakker and Taylor, Consumer Demand in the United
States, pp. 13-17, 26-27. .

28R. M. Spann and E. C. Beauvais, "Econometric Estimation of
Peak Electricity Demands," Forecasting and Modeling Time-of -Day and
Seasonal Electricity Demands (Palo Alto, Calitornia: Electric Power
Research Institute, December 1977), Section 2, pp. 3-22.
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InE = sum of the logs of the marginal energy prices for residential,
industrial and commercial revenue classes |
InD = sum of the logs of the marginal demand prices for commercial
and industrial revenue classes |
InI = log of total taxable income
T = temperature

In INDEX = log of the activity index for electricity-intensive industries

In0 = log of the price of residual fuel oil

In KW, = log of peak demand in the previoud month

In KW log of peak demand lagged twelve months

12

€ = 3 random residual term.

Since the model equation is double-logarithmic and involves a distributed
lag structure, coefficients of the economic variables are tne shori-run
elasticities of demand. Coefficients of the lagged dependent variables,
Al and *2 represent a partial adjustment of the demand flow and the sum of
these two coefficients is interpreted as the percentage of any adjustment
to a change in the economic variables which does not take place in the
short-run. Long-run elasticities are computed by dividing the short-run
elasticities by 1 - a; -,

Besides the separate estimation of short-run and long-run
elasticities, Spann and Beauvais present the following important empirical
findings obtained through the study:

i) Price elasticities of peak demand are smaller than existing esti-
mates of price elasticities of KWh sales. This means that utility load
factors may deteriofate with rising real prices of electricity and the

optimal capacity mix should move toward more peaking units. However,
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implementation of peak ‘load pricing or any effective load management
measure could reduce the pressure of capacity additions. Absolute magni-
tudes of the price elasticities far smaller than 1.0 also imply ihat peak
load pricing may increase the total revenues of electric utilities.
ii) Income elasticity of peak demand is larger than income elasticity
of KWh sales.. Thefefore, increasing real incomes would lead to more

..... maemmm wmd ..

o .
puUiCNases giiu Uvs ticn

izaticn ¢ liancac which tand to 52 gperating at
the time of peak demand. Air conditioner is a good example.

iti) Peak demands are sensitive to alternative fuel prices. This
result indicates a strong substitution pcisibility between electricity
and other fuels.

One difficulty with the simple flow-adjustmenp model described
above is its implicit assumption of static expectations. The model impli-
citly assumes that consumers expect current levels of prices and income to
maintain and persist indefinitely. It is, however, implausible to assume
that the current KW demand depends solely on the current values of the
economic variables. Since the economic variables are subject to change
from period to period, it might not be rational to base important dec]sions
entirely on the current values. One possible way to introduce a concept
of dynamic expectation into the model is to apply an adoptive expectation
scheme, which assumes that expectations are updated each period by a
fraction of the discrepancy between the current observed value of the

29

variable and the previous expected value. With adoptive expectations,

the current values of the economic variables in the model are replaced by

29J. Johnston, Econometric Methods, 2nd ed. (New York: McGraw-
Hill Book Co., 1972), p. 30T.
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the expected values. Each of the expected values is obtained from a
geometrically declining lag distribution similar to the Koyck scheme.

c¢) Stock-adjustment model. While capital stock adjustment is

indirectly reflected in the flow-adjustment models, capital stock is an
explicit argument in the stock-adjustment models. Following Fisher and
Kaysen, stock of electricity-using appliances is measured by the number

of watts that the stock can potentially draw.3°

In the capital stock
model, consumption of electricity is expressed as a product of utilization
rate times the stock of appliances. Rather than forcing a single equation
to deal with the potential disequilibria in electricity and capital

demand as in the case of the flow-adjustmeht model, the stock-adjustment
model utilizes explicit and separate equations for each decision.
Therefore, the model is composed of a set of appliance stock and utili-

zation equations. For example, a simpie form of the model could be

D =U(x, 7, Z)S (1)
U = Qo + Glx + qu + 032 . (2)
S = g WS,

isl ivi
Sy= By + Byx + By¥ + By(r + 6)P; + B,z (4)

where D = demand for electricity
U = composite rate of utilization for all end uses as an aggregate

S = stock of electric appliances measured in terms of potential use

of watts

x = income

1 = price of electricity
30

F. M. Figher and C. Kaysen, A Study in Econometrics: ‘he
Demand for Electricity in the United States (Amsterdam: North Holland
Publishing Co., I96Z2]).
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Z = any other factors that might be relevant

th

s. = stock of the i~ type of appliance

th where

ith appliance

w. = weight for the i~ appliance. c¢efined as W; =

L I
S

1]

u; denotes the normal rate of utilization for th

r = market rate of interest

th

6 = rate of depreciation of the i~ appliance stock

Pi = price per watt of additions to the ith

In the stock-adjustment model, the distinction betweén short-run and

appliance sotck.

long-run is made by fixity of the capital stock. The stock of electric
appliances is assumed to be fixed in the short-run. Therefore, the
short-run demand for electricity can be regarded as a choice of utilization
rate for the existing stock. Since the capital stock is variable and the
utilization rate is at equilibrium in the long-run, the lcng-run demand
for electricity is equivalent to'the demand for an equilibrium stock of
electricity-consuming capital goods.

The stock-adjustment model described above was originally
conceived by Taylor and later used for residential electricity demand

for‘ecasting.31

In their modeling efforts, the utilization equations were
aggregated over all appliances by weighting the individual appliances
with normal Kwh usage. The stock equations were estimated separately for

ten of the eleven most popular electric appliances for residential use.32

31Taylor, “The Demand for Electricity: A Survey," pp. 80-83;
and Taylor et al., The Residential Demand for Energy, Chapters 3 and 6.

32The eleven appliances are refrigerators, room air conditioners,
electric water heaters, electric stoves, automatic clothes washers, con-
ventional clothes washers, electric clothes dryers, dishwashers, electric
space heating and central air conditioners. Among those eleven appliances,
no equation was estimated for dishwashers.
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The major concern with stock-adjustment models is the data availability
for detailed appliance stocks. The appliance data requirements becoﬁe
formidable in the case of peak demand modeling which covers all sectors
of the utility system. There are all kinds of appliances to be analized
for the entire system. Although Taylor and others were lucky enough to
obtain a good data base of appliance stocks constructed by Data Resources,
Inc., they are still concerned about the potential heteroscedasticity in
the error terms of the appliance stock equations.33 This probiem is
generally attributed to weaknesses in the estimation data base. While a
great deal of time and efforts were put into construction of the appli-
ance data base, there still remains much room for improvement. Since
the data refer to saturation rates rather than to capacity, they do not
reflect multiple ownership of appiiances and changes in rated efficiency.
Another deficiency in the data base is the absence of information on the
amount of living space and the thermal characteristics of existing housing
structures. Availability of that information should considerably improve
the model's ability to explain the amount of space cooling and heating
energy use.

While the stock-adjustment modél is concepfually superior to
the flow-adjustment model, its serious empirical weakness is the formi-
dable data requirements. Data limitations often lead to a number of
bold assumptions that could produce biased forecasts. Use of the stock-
adjustment approach for peak load modeling is much more difficult than
the case of residential energy sales modeling. Because a system's peak

demand is the maximum level of demand which is achieved coincidently-by

33T'aylor et al., p. 5 of Chapter 10.
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all sectors of a utility system, the peak demand forecast should be
defived by selecting the highest value of the hourly load forecasts.
Therefore, hourly load profiles for each of the appliances are required
for the modeling, in addition to the stock data. Due to these virtually
impossible data requirements, no stock-adjustment model of peak demand
has been developed so far.

d) Two-stage (or time-varying parameter) model. <A typical

hourly load demand is decomposed into base and weather-sensitive compo-
nents. The base component is demanded to meet daily life style and
business requirements while the weather-sensitive component corresponds
to space cooling and heating requirements. Short-run fluctuations of the
load demand at a specific hqur of a day of the week are mainly induced by
changes in weather conditions. In the long-rdn. however, impacts of the
weather variables normalized over time and long-run attributes, such as
changes in income, population, appliance stock and industrial mix, become
predominant factors to determine the level of load demand. To produce
long-term forecasts of hourly electricity consumption, Quantitative
Economic Research, Inc. (QUERI) used a two-stage modeling method.34 The
two-stage (or time-varying parameter) model of electricity demand was
estimated with hourly load, weather, economic and demographic data for
32 regions of the U.S. for the period 1962-1974. In the first stage, a
short-run model was estimated by relating the hourly demand in each region

to weather and time-of-day variables. The set of short-run parameters

34Quantitative Economic Research, Inc., ional Load-Curve
Models: QUERI's Model gQ%cification, Estimation, and Valldation (Palo
o, California: ectric Power Research Institute, Augus )

Volume 2. '
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estimated in the first stage were then related to the long-run variables
in the second stage.

A simplified version of the QUERI's model estimated in the first
stage is

Yy = By + B1H0UR14 + BZCOMFORT INDEXt + Uy
where Y¢ is the load demand at hour t, HOUR14 is.a dummy variable which
takes on the value of unity from one to two o'clock in the afternoon and
zero otherwise, COMFORT INDEXt is a temperature-hﬁmidity index measured
at hour t and u, is a random disturbance term. Since all of the 8's are
expected to have positive signs, the daily peak in the summer would nor-
mally occur at 2 p.m. for this simplified system. But abnormal weather
or a large value of u can change the time of peak. The actual model
estimated by QUERI is much more complicated and represents the average
hourly load curve in a given region for a given quarter of the year.

The short-run model has a total of 55 explanatory variables: constant
term, 23 hourly binaries, a binary for early Monday morning hours, 6 day
binaries, 8 sine and cosine terms for Saturdays and Sundays, a time trend
and 15 weather variables including a 24-hour moving average temperature
and a moving average of 5 past-midnight temperatures to account for
cumulative temperature effects.

In the second stage, a pboled time-series cross-section analysis
was performed to explain the differences in the shapes of the load curves
across regions and also over time, by relating the B coefficients esti-
mated in the first stage to the economic and demographic variables. A
simplified version of the QUERI's second stage model for region k and

year v and season s {s



39

Bikys = Y10 ¥ Y11 APPLIANCE STOCK
BZkvs = Y0 *+ Y21 CENTRAL AIR.

Again, the actual equations estimated are much more complicated. -In
total, 50 socioeconamic variables are included: constant term, 32
regional bjnaries. 3 demographic variables, employment per thousand
population in eight energy-inténsive industries to capture the industry
mix, per capita income, number of electrically heated homes, stocks of
central and room air conditioners, a weighted avefage stock of eight

commonly used weather-insensitive appliances, and the average residen-

tial and industrial prices of electricity.

Although the two-stage modeling method was designed for a big
geographical region which has both time-series and cross-section data,
the time-varying parameter model can be also successfully implemented at
a utility service area level. With the time-series data only, the two-
stage modeling is achieved by estimating the short-run model coefficients
with the hourly load and weather data for each year and then regressing
the short-run model coefficients estimated in the first stage with the
annual economic and demographic data to estimate the long-run model coef-
ficients. Although the examples provided for two- stage modeling are
confined to the hourly-load curve forecasting, the methodology discussed
above is also applicable to the case of peak load modeling.

So far, most of the hourly demand models developed by the utili-
ties have been only for short-term forecasting and can not explain the '
shifts of the hourly load curves over time. To meet both the short-term
and the long-term needs of hourly load or daily peak load forecasting,

QUERI's two-stage model is quite promising. Building a long-range hourly
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load model requires that a tremendous amount of data be analyzed. For
example, the number of observations on each of the load and the weather
variables will equal 8,760 values per year of the history used. This
sums to be 113,880 when the sampling period covers thirteen years as in
the case of QUERI's study. Rather than model this huge data in one
expensive and unwieldy step, the two-stage method synthesizes the origi-
nal data into fewer data points through-a time-series parameterization
phase before getting into an econometric estimation phase. ’

Although the estimated results with the QUERI model are gener-
ally encouraging, scme of the model coefficients involve sign problems.
Particularly, the effect of per capita income on the constant term of
the first-stage equation was significantly negative for summer and the
industrial electricity price coefficient was significantly positive
during the evenings of spring and summer quarters. However, since the
income variable has significant positive effects in many pf the hourly
binaries and some weather variables as well, the combined effect of
income was definitely positive. This is why QUERI estimated the income
elastjtitles not Trom partial regression coefficients but from total
simulation effects. The simulation exercises also indicate that the
combined price elasticity is indeed negative as one would expect. One
possible reason for the sign problems mighi be the multicollinearity
among the variables in the second-stage equatibn. The multicollinearity
was caused by mixing appliance stock variables with income, price and
demographic variables which are in turn determining‘factors of the sizes

of appliance stocks.
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A similar type of two-stage model was independentiy developed
by Data Resources, Inc. (DRI) and estimated over a common data base.35
The DRI model differs in the choice of functional form used to decompose
hourly loads into weather-sensitive and base components and in the speci-
fication used to model economic and sociodemographic effects. While the
DRI model is free of the sign problems, the load characteristics of the
commercial and industrial sectors need to be modeled in greater detail.

e) Va;iable elastiéity model. The functional form most widely

used for electricity demand modeling is double logarithmic. In a double-
log demand model, elasticity of the demand with respect to each of the
variables in the model is directly represented by the model coefficient
for the correspohding variable. Since tﬁe model coefficients are fixed,
the double-log demand model is also called a "Constant-elasticity model."
However, this constant-elasticity assumption conflicts with the actual
phenomena observed in the recent years. The sensitivity of electricity
demand to price changes has increased with the substantial rise in energy
costs after the energy crisis. In fact, this experience can be explained
by the Slutsky equation in which the price elasticity of the ordinary
demand curve equals the price elasticity of the compensated demand curve
minus the corresponding .income elasticity multiplied by the portion of
total expenditures spent on the commadity in question.36 Since electri-

city demand is commonly believed to be price inelastic, the share of the

35Data Resources, Inc.,(%g%ional Load Curve Models: Specification
and Estimation of the DRI model (Palo Alto, California: Electric Power
Research Institute, January [981), Volume 1.

36J. M. Henderson and R. E. Quandt, Microeconomic Theory: A
Mathematical Approach, 2nd ed. (New York: McGraw-Hill, Inc., 1971},
pp. 31-32.
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commodity in the consumer's budget will increase as the price of electri-
city goes up. Therefore, the price elasticity of the Uncompenéated demand
for electricity is getting larger with the increase in electricity price,
with other things being equal. Another phenomenon frequently observed
but cbnflicting with the constant-elastiqity assumption is that the price
elasticity becomes lower in the peak demand period than in the average
deménd period. This is because the need for electricity is greater at
the time of peak when weather conditions are more extreme. In terms of
the Slutsky equation, the income elasticity of electricity demand decreases
as the weather becomes more extreme and the electricity becomes more of
a necessity. Therefore, the uncompensated price elasticity of electricity
demand should be lower with more extreme weather conditions.

The above two properties of the price elasticity of electricity
demand are well embodied in the short-run model of monthly peak demand

developed by Betancourt.37

Using the monthly data of 12 different utili-
ties over 1972-76 period, some useful alternative functional forms to the
traditional double-log model are estimated and analyzed. These alterna-
tive functional forms are characterized by an increasing elasticity of
the demand to price changes as price increase and a decreasing elasticity
as the weather becomes more extreme. The new functional forms employed
in Betancourt's study result from a simple generalization of the double-
log demand functions with constant coefficients to allow the price
elasticity of the demand to vary with constant coefficients to allow the

price elasticity of the Qemand to vary with the previous levels of the

37R. R. Betancourt, "An Ebonometrlc Analysis of Peak Electricity
Demang ;n the Short Run," Energy Economics, Vol. 3, No. 1, January 1981,
pp. 14-29.
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electricity price and weather variables. In his study, the short-run
period is defined as the time period in which the composition of the
stocks of electric appliances is stable. Changes in the 'avarage'
utilization rate of the units of electric equipment in the study area
are, therefore, mainly due to changes in the utilization rates of the

equipment.38

With the above definition, specification of the short-run
demand for electricity is equivalent to the specification of a functional
form for the average utilization rate. In a simple form, his model
descrived as

0,

where Dt = electricity demand at the time of peak

°! G')(P_| ] zt)xaa

u (Y, P, X)S = (agY P €t )S (1)

Y = income

P = price of electricity

one-period lagged price of electricity

X = other exogenous variables such as weather conditions

Zt = hourly average of heating and cooling degrees for the day of
monthly peak and the day before the peak

S = the maximum number of KW that can be consumed by the units of

equipment in the study area

a's

coefficients to be estimated.
Several alternative specifications were selected for the function
“Z(P-l' Zt) in this study. They are
aylPy. Z) =ay @
22(Pyr Lp) =wp(P ) =8P (3)

38The average utilization rate is a weighted average of the
utilization rates of the different units of equipment in the study area
where the current stocks of the units of the equipment are used as the
weights.
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ap(P iy Z,) =ap(Z,) = o + 12 + 620 (4)

ay(P_y. Z,) =BP_; + 71? + GZE B ' (5)

where Zg and Zg are average heating degree nours and cooling degree hours
for the day of monthly peak and the day before the peak.

If the effects of the lagged pfice and the weather variables
on the absolute value of the price elasticity are both significant,
equation (5) can be incorporated with equation (1). In this model, one
would expect the coefficients, v and 6, to be positive while the coeffi~
cient B is expected to be negative. Without restrictions on the values
of v, 6 and B coefficients, it is therefore'possible to obtain positive
price elasticities which are inconsistent with the utility maximization
theory. In a double logarithmic form, equation (1) will be

lnDp=lnao+allnY+a2(P_l,Zt)lnP+a3lnX+lnS. (6)
For empirical purposes, it would be advantageous to convert equation (6)
into the first-difference equation. With a time-series data, existénce
of linear time trends in the independent variables is likely to cause
multicollinearity problems and the first-differencing of the equation will
take care of the problems. Combining equation (6) with equation (5) and
converting the resulting equation into yearly first difference,

H

dy = o, + oy + BP* 4 W+ onC + ax + S - (7)

where the lower case letters, d_, y, x and s, denote the yearly rates of

P
growth in the respective variables and
P* = P_;(p) + (InP_j }(P_; - P_,) (8)
H H H '
W= 2y + me_ @l - 4 ) (9)

W= ZC(p) + InP_ (28 - 20 ). (10)



45
In the absence of a time trend, the intercept term in equation (7), Eb,
should be zero. _

Betancourt estimated equation (7) and three other equations
formulated with the alternative specifications for a,y(P_;, Z ) shown in
equations (2), (3) and (4). A point worth noting is that the rate of
growth of new residential customers was used as a proxy for the rate of
growth of the stock of electricity-using equibment (s}. It should be also
noted that the weather variables involved in x were suppressed because
in the early stages of the empirical research they led to substantial
multicollinearity problems with the weather variables in NH and wc. A
similar problem arose when a constant term was introduced in equations

(3) and (5). Therefore, the models he actually estimated are not nested
models. The most interesting aspect of the empirical results is the

variation in the price elasticity estimates under extreme conditions.
Evaluating the price elasticity at the mean value of price in the sample,
all of the four models show the estimates of the price elasticities under
normal conditions to be fairly inelastic. However, an increase in peak
price to two standard deviations above the sample mean raises the price
elasticity substantially. Since the price elasticities under normal
conditions are so low, a sharp price differential for the peak period may
be required to successfully manage peak demand. The impacts of extreme
weather conditions were also tested in the models. The priori expecta-
tions of the leés price elasticities with the more cooling and heating
degree hours. were cdnfirmed by the positive value of the estimated y and
6 coefficients. In order to measure the changes in price elasticities,

the extreme heating situations are defined by the temperatues ranging 9°F
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to 48°F depending on the locations of the different utility service areas
under the study. The extreme cooling situations are set for the tempera-
tures of 81°F to 90°F. Through the analysis, the extreme cooling is found
to be far more powerful in making the electric load demand inelastic than
the extreme heating. An implication of this finding for peak load manage-
ment is that substantially different peak prices for the summer and fhe
winter peaks may be necessary. In sum, the variable elasticity models
developed by Betancourt provide valuable tools to evaluate the impacts
of various tim-of-day pricing schemes on electricity consumption. The
study results suggest that even if the demand for electricity is not very
sensitive to the price of electricity under normal circumstances, it can
be very sensitive when the price increases substantially. However, it
should be also racogrirsad that the price impact on the electricity demand
is partially cancelled by extreme weather condtions.

A defect of Betancourt's peak demand model lies in the treatment
of the weather variables. In the model, the weather variables are vieQed
as the indirect factors which influence the load demand formation only
through changing the level of price elasticity. However, it may be unrea-
sénable to treat the weather variables as only supplementary to the price
variable because weather-sensitivity analysis is also an important purpose
of peak demand modeling. If the weather elasticity of the load demand is
larger than the price elasticity in absolute terms as observed in many
empirical studies, the model certainly has a problem tec accomodate the
impacts of weather correctly. Moreover, the weather variables used in
the model are too crude. This is a main reason why the model estimation

did not produce impressive statistical results for explanatory power.
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Considering a neutral zone of temperatures which does not require any space
air conditioning, use of 65°F as the base température for both heating and
cooling in load demand modeling may not be appropriate. Another problem
with the temperature variables in the model is the assumption of a strict
linear relation between the temperatureS and the weather-sensitive loads.
Different slopes for various temperature ranges could be tried to reflect
a non-linearity. By using the simple average heating degree hours and
cooling degree hours calculated for the peak day and the day before the
peak, the model actually restrained the coefficients of the current day's
temperature variable and the previous day's temperature variable to be
equal. However, impact of the current day's weather is normally expected
to be bigger than the previous day's which is included in the model to

merely take account of an accumulation effect.

4. Hybrid Approaches

Evolution of the peak load modeling techniques has followed
three primary paths--time-series approaches, end-use approaches and
econometric approaches. As discussed in the previous sections, each of
the methods has its own strengths and limitations. Time-series models
require a minimal amount of the data to be analyzed but do not provide
any insight into causality. The models are relatively unstable and accu-
racy of the modzl forecasts decreases over time. Although end-use models
have the capability to explicitly evaluate various conservation policies
and load management programs and to provide detailed analyses of new
technology impacts on electricity demand, enormous data requirements and
intense modeling efforts pose a trade-off problem between the level of

disaagregation and the quality of component forecasts. Because of the
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huge data requirements, most electric utilities have been reluctant to
undertake the development of end-use models. Another major problem with
end-use models is the difficulty in capturing price and income effects
on the intensity of appliance usage and the stock of appliances. The
econometric method is a widely-accepted approach and requires only modest
efforts for data development and model esiimation. Inclusion of economic,
demographic and weather variables in the model increases precision of the
model forecasts. Evaluation of the modeling results with statistical
criteria is another advantage. However, the models are aggregate in
nature and can not provide the detailed analyses concerning conservation
policies and load management programs. Since the model development is
based on past behavioral relationships, the models are also limited in
their ability to respond to abrupt structural changes and new technolo-
gies of energy use.

None of the three hodeling approaches is the ultimate solution
to the load forecasting and demand analysis proSlems. One way to improve
the existing modeling techniques is to develop an integrated model by com-
bining them for the advantages inherent in each of the techniques. Recent
efforts to integrate the three primary modeling methods are classified
into three groups: 1) time-series/econometric model, 2) econcmetric/
time-series model and 3) end-use/econometric model. |

a) Time-series/econometric model. Pure time-series approaches

have been extensively criticized because one can not provide an explana-
tion when the resulting forecasts are poor. Since the time-series models
.are void of economic theory, they can not be used to test hypotheses

about econcmic phenomena. However, simple time-series models can often
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outperform large econometric models, especially for short-range forecast-
ing purposes.' To mitigate the intensity of the criticisms of a pure
time-series approach and to produce an improved method of peak load
forecasting, Uri considered a hybrid model which combines a Box-Jenkins
analysis with an econometric approach whereby variation in the time-series
model coefficients is explained by various independent variables over
time.3? | .

Following the Uri's ARMA model discussed earlier in ARMA model-
ing section of this study,

a1 -8)(I - B‘z)zt = (1 - 0,8)(1 - a,,B)a, (1)

where z, = log-transformed value of observed monthly peak system load
B = backward shift operator
a = white noise
84, 84 = parameters to be empirically estimated.

Assume that the parameters 0, and 912 are estimated by a Box-Jenkins
procedure with a historical data set of 48 monthly peak system load obser-
vations. Also, assume that the forecasting equation is reestimated at
intervals of three months and forecasts made at time t are based on
parameters estimated with the preceding 48 observations. The procedure
just described will produce a sequence of estimates for 8, and 9'2 which
will vary through time. A time-series approach could be utilized to ana-
. lize the evolution of this sequence. However, Uri proposes an econometric
approach insfeadT In his model, 9, and eié are functions of price of

electricity, income, temperature, ctc., and a regression analysis is

39N. D. Uri, "A Mixed Time-Series/Econometric Approach to
Forecasting Peak System Load," Annals of Applied Econometrics, January
1979, pp. 155-174.
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performed accordingly. Thérefore, letting 94 and 842 represent vectors
of 61 and 612 reestimated every three months and X denote a set of econo-
mic and weather-related variables,

9_1=XO.+U ’ (2)

82 = X8 + v ' (3)
where o and 8 are appropriate vectors of coefficients and u and v are
random error terms.

Based on the assumption that thermodel equation (1) is reesti-
mated at quarterly intervals, the error terms u and v in the equations (2)
and (3) will be necessarily autocorrelated and will also likely be hete-
. roscedastic. The existence of autocorrelation is due to the fact that,
with a data set of 48 observations, the data sets utilized for estimating
8's at the time t and the time t-3 have 45 observations in common, the
data sets for @'s at the time t and the time t-6 have 42 observaticns in
common, and so on. Consequently, the first 15 subdiagonals of the
covariance matrices of u and v will be in the proportions of 0.9375,
0.8750, 0.75, ..., respectively, to the main diagonal. Therefore, a
generalized least-squares method is to be used in estimating « and B.

Namely, o« and B should be estimated by

a= (x'n'lx)'lx'nflgh (4)
8= (xex)Ixo e, (5)
where o 0.9375¢2  0.87500% . . .. 0 0o )
- -2 -2
0.9375¢] o2 0.937565 . . .. 0 0
n= | o0.87500% ) . . .
ISP K712
- -2
(00 e e e 0.937562 ,  o%
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and ai is the estimated variance of the ith

element in 8,. The covari-
ance matrix ¢ is defined similarly.

Uri used Pacific Gas and Electric Company (PG&E) data for
January 1961 through December 1969 to estimate his model. After the
model was estimated by both Box-Jenkins methods and econometric techni-
ques, a monthly load forecast was produced for the period January 1970
through December 1973. First, the quarterly forecasts of 9, and 8y, were
made for this period. Then, forecasts of the monthly peak system load
were made with the forecasting equation being updated at quarterly inter-
vals. The results indicate that the hybrid model performs better in 42
of 48 months than the pure time-series model. The hybrid model outperforms
the pure time-series model by adjusting the model parameters to capture
economic and demographic effects.
. The hybrid model discussed above clearly provided an improvement
over a conventional Box-Jenkins forecasting model. However, the approach
involves some pitfalls and conceptual problems. In the first stage of
model estimation, the time-series model is estimated for subperiods.
Since the model is explicitly nonstationary, autocovariances are not
available over the whole sample period. Then, the model identification
becomes a lot more difficult than in conventional time-series analysis.
In the second stage of model estimation, the dependent variable is the
series of parameter estimates from the time-series model. Since the
absolute values of the dependent variable should be constrained to be
smaller than 1.0, there may be problems with the linear regression
specification. For example, if the electricity price increases drasti-

cally, the estimated moving-average coefficient will exceed unity and
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the model will not be invertable. If the model is not invertable, the
forecast error will increase over time. Another problem is in the
interpretation of the econometric model parameters. The independent
variables in the regression model are not used to determine the level of
peak demand. Rather, they are used to determine the serial correlation
properties of the peak.

Uri's approach can be viewed as sturcturally estimating the
parameters of a time-series model by supplanting a moving average filter
with a structural equation model. Since the regression model tries to
explain the seasonal component by structural factors, the model estimation
might be mofe useful after deseasonalization and detrending. In hybrid
approach similar to Uri's, Hendricks, Koenker and Poirier suggest a method

for the deseasonalization.40

In the first stage of their hourly load
modeling efforts, daily load shape is approximated by connecting adjacent
pericds with a polyncmial function--cubic spline. In brief, a cubic
spline is a continuous piecewise cubic polynomial with continuous first
and second derivatives and allows jumps in its third derivative at pre-
determined knots. The cubic spline approach removes serial correlation
from the residuals of the time-series model. Finally, innovations of the
time series are structurally estimated by relating theknots of the spline
function to explanatory variables in an econometric model. The cubic
spline analysis is surely an improvement on the time-series techniques

used in load forecasting. However, there are two disadvantages with the

analysis. First, the model is inherently short-run-and no attempt has been

4OH. Hendricks, R. Koenker, and D. J. Poirier, "Residential

Demagg ggr Electricity," Annals of Applied Econometrics, January 1979,
PP. 33=37. )
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made to explain year to year changes in the model parameters. Second,
the model parameters are not robust and not necessarily intuitive. The
authors presented the empirical results for 1972 and 1¢/3. Tne mpdei
coefficients are dissimilar in many places and imply very different fore-
casts.

b) Econometric/time-series model. Another hybrid approach

considered by Uri is that one takes an econometric approach in estimat-
ing the parameters of a model, uses the estimated coefficients to compute
the residuals between the actual and ex post forecasts, reduces these
residuals to white noise by a Box-Jenkins method and produces final fore-
casts using a combined model.41 Using a flow-adjustment model of demand,
the econometric model equation becomes
In Dt = a4+ a,aln Pt-l + azoln Yy + 5351n TMAxt + s4oln TAVGt
+(1 -8)InD, _, + &g,

where Dt = peak demand in period t
Pt~l = average price of electricity lagged one period
Yy = average weekly earnings for period t

2
rz<

maximum temperature in period t

TAVGt

€

average temperature for period t

an error term

a, 8, By, By, By and B4 = parameters to be estimated.
With the same PG&E data he used before, the logarithmic flow adjustment
model was estimated by an ordinary least-squares estimation method. Once

the demand model was estimated, the residuals representing differences

41Uri, "A Mixed Time-Series/Econometric Approach to Forecasting
Peak System_Load.” pp. 155-174.
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between the actual and fitted values of the peak system load can be com-
puted. Then, a Box-Jenkins time-series analysis was performed on the
residuals to identify and estimate a second-order moving-average model,

(1 - 0,820z, = (1 - 0,8 - 0,8%)a,
' where ét represents the estimated residuals and a represents independent
random deviates with zero mean and variance ag.

Once the time-series model was identified and estimated, the
final step in using the Box-Jenkins technique was to forecast with it.
The forecasts of the residuals were then combined with the forecasts of
the econometric model to produce the final forecasts. A pure econometri-
cian might argue that any regularity discovered in the residuals is the
result of an improperly specified econometric model. Given the goal of
improved forecasts and at the same time being constrained by the avail-
ability of short-run data, however, this approach can prbvide a good
compromise. Comparing the ex post forecasts for the period of January
1970-December 1973, Uri found that the combined model outperforms a pure
econometric model in 37 of 48 periods. When compared with the time-
series/econometric model, the econometric/time-series model requires
substantially less efforts to estimate, forecast and combine the various
components.

The model discussed above is a special case of distributed lag
models. Sincé the use of Box-Jenkins analysis for the residuals does
not have any basis in economic theory or any particular restrictions to
be used, there appears to be no necessity to be confined only to the
Box-Jenkins approach. A conventional distributed lag model may be even

better. Serially correlated errors in a regression model with a lagged
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dependent variable lead to inconsistent estimates of the model parame-
ters. The two-stage estimation of the combined model even sacrifices
asymtotic efficiency. Therefore, joint estimation of the parameters is
to be done whenever it becomes possible. However, the forecasting per-
formance of the combined model appears to be not dehaged by the two-stage
estimation procedure because inconsistencies among the estimated para-
meters may have actually cancelled each other.

c) End-use/econometric model. Econometric models allow

important economic and demographic factors to be incorporated into the
forecasting process. But, they are lacking in the ability to respond
to structural and technological changes occuring over time. End-use
models are capable to explicitly analyze impacts of conservation and
other changes in consumption patterns and have been increasingly used
by the electric utilities lately. They are, however, costly to develop
and maintain and mostly incapable of incorporating economic and demogra-
phic effects. With increasing necessity to evaluate a broad range of
policy impacts in recent years, utility planners have been putting much
of their efforts to develop more complex and structurally detailed
forecasting models by integrating the econometric and the end-use
methods.42 Here again, most of the efforts are concentrated in energy

sales forecasting--especially in sectoral sales models.43 The integrated

42After studying electric load forecasting issues and models,
the first Utility Modeling Forum (UMF) working group, composed of 43
utility members, concluded that development of appropriate techniques
for integrating end-use and econometric models is a forecasting challenge
of the '80s. See Booz. Allen & Hamilton Inc., Electric Load Forecasting:
Challenge for the '80s (Palo Alto, California: Electric Power Research
Insfifu%e, September 1980), p. 5-11.

43See, for example, The University of Arizona Engineering Experi-

ment Station, Proceedings: End-Use Models and Conservation Analysis (Palo
Alto, California: ELectric Power Research Tnstitute, July I982).
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models exhibit structural details which is the strength of traditional
end-use approach while maintaining firm behavioral foundations in the
economic theory of consumer choice. The models treat the major appli-
ances explicitly, projecting their respective market penetrations,
-operating efficiencies and utilization patterns. Besides the usefulness
for the impact analysis of various load management and conservation
measures, the model is also expected to produce a more accurate forecast
because the aggregated type of econometric approach and the disaggregated
type of end-use approach complement each other in a single model. Like
a conventional end-use model, a major drawback to implement the model is
huge requirements for data collection and parameter estimation. And the
expanded complexity of the mecdel makes evaluation of simulation results
difficult. |

Compared with the energy sales models, there have been quite a
few efforts to apply the integrated approach to peak load modeling. The
lack of efforts is not due to less importance of peak load analysis in
utility planning, but attributable to technical difficulties and data
limitations to implement the modeling approach. Since level of peak
demand is determined by the energy use of all customer classes at the
peak hour, a separate model for contribution of each customer class to
peak is ideal but practically rejected at a utility level because of
resource and data limitations. Since peak demand modeling covers all
revenue sectors, the end-use and economic data requirements for an inte-

grated model of peak load are tremendous when compared with a sectoral

energy sales model.
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Georgia Power Company made an early effort of integrating end-
use analysis to improve the forecasts of their econometric model of annual

system peak demand.44

Georgia Power Company's model is a multi-stége
process in which actual peaks were first weather-normalized by using
dry-bulb temperature, a dummy variable reflecting the time of day that
the annual peak occured and a trend term represented by the Julian date
of the year. The normalized historical loads and state macroeconomic
data were then analyzed using econometric analysis techniques to develop
a long-range forecasting model. However, some change from historical
rélationships, such as air conditioners approaching saturation, appliance
efficiency improvements, conservation as an ethic, the use of more solar
energy and electric vehicles, can be expected during the forecast period.
Therefore, adjustments to the econometrically-based forecasts were made
by utilizing end-use information, in order to capture those expected
structural changes into the model. Finally, the annual growth rates
projected by the long-range model were combined with the short-range
model forecasts which were separately derived from the model developed

by a multivariate time-series analysis Similar to the econometric/time-
series approach discussed in the previous section. Although flexibility
needed fdr scenario evaluation and the ability tb defend the results
before both management and regulators are increased by taking into account
the fashionablé issues, the Georgia model itself is still viewed as an

econometric model, not an integrated model. Even, some of the adjustment

4 narles Broder, “"Method for Forecasting Peak Demand,"
roaches to Load Forecasting: Proceedings of the Third EPRI load-

orecastin osium (Palo o, Calitornia: Electric Power Researc
Institute, Uu;y 19827, pp. 168-194. ’
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factors covered in the final stage could enter the model directly. For
example, air-conditioning saturation and weather variables can be combined
and used as independent variables of the econometric model. In that case,
the weather-normalization done in the first stagé of the modeling is not -
necessary. Generally speaking, the Georgia model is crude and its fore-
casts are exceedingly based on judgements and arbitrary assumptions.45
Because of the intrinsic limitations of the macroeconometric

approach to explain the impacts of coﬁservation and load management stan-
dards, the California Energy Commission (CEC) has recently developed a
peak demand model using é microeconometric end-use approach.46 The CEC
approach: 1) uses both engineering and econometric techniques, 2) is a
partially indirect modeling method which initially forecasts energy sales
fo? seven distinct sectors and takes the sectoral energy sales forecasts
as inputs to three submodels of peak load at the customer level, 3) ana-
lyzes and forecasts electricity as part of the total energy picture, and
4) uses a very large and diverse data base. To obtain the forecast of
system peak demand, two components areAadded Jater for the transmission

and distribution losses and for the effect of voltage regulation.47

45Their econometric model has nothing but income variables as
explanatory variables and the future appliance efficiency improvement
assumed in the adjustment stage is too arbitrary. With a subjective
judgement, it is simply assumed that a 15 percent improvement over pre-
1974 efficiency standards will come about in a linear fashion, increasing
by | percent per year until it levels off in 1988. There are several
other cases of arbitrary assumptions made to supplement the lack of data.

46M..R. Jaske, "Analysis of Peak Load Demand Using An End Use
Load Forecasting Model," Proceedings: End-Use Models and Conservation
Analysis, Section 11, pp. T-53.

47The California Public Utilities Commission (CPUC) and several
municipal utilities have a staged program to more closely regulate final
line voltages and substation stepdown. These activities are expected to
save energy and peak load.
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The CEC energy sales model has seven categories of customer
types which need special model structure, types of input data, explana-
tory variables, etc. The seven sales categories are: 1) residential
energy sales, 2) commercial building energy sales, 3) street lighting
energy sales, 4) transportation, communications, utilities and national
defense energy sales, 4) -industrial energy sales, 6) agricultural
energy sales and 7) domestic water pumping energy sales. Residential
energy sales model consists of three principal components: 1) satura-
tions of end uses of various competing fue{ sources, 2) numbers of
households living in a single family, multi-family and mobile homes and
3) unit energy consumption (UEC) of individual end uses. Total resi-
dential energy sales in a given year is then the product of total number
of households multiplied by the fraction of households using a particular
electric appliance multiplied by the year average UEC for that appliance,
summed over all of the residential end uses. Because the choice of
appliance types and their energy consumption varies among different
housing types, the model separately considers energy use in single family,
multi-family and mobile home dwellings. The UEC estimates are based on
studies of actual appliance efficiency étandards. fuel prices, household
income and household size. The commercial buildinbs forecasting model
is similar to the residential model. The model 1s composed of three
basic components: 1) squafe feet of floor space, 2) fraction of floor
space using each end use and fuel type and 3) energy consumption per
square foot of floor space. The commercial building energy sales model
is disaggregated into 1l building types, eight end uses and three fuel

types. The commercial model is a refined version of the Oak Ridge
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commercial building model developed by J. Jackson and W. Johnson earlier.48
The street lighting energy sales model is a simple function of residential
customers and street lighting demand lagged one year. The lagged street
lighting energy sales is included to explain the stock adjustment mecha-
nism inherent in demand for durable goods. For transportatibn, communi-
cations, utilities and ﬁational defense energy sales, each two-digit'SIC
code industry is modeled using a constant energy efficiency ratio wkich

is detgrmined by dividing the 1958 quarterly fuel and energy summary
consumption data by values of each explanatory variable, such as employ-~
ment, personal income or hourseholds. Forecasts are then simply the product
of the ratio times projected values of explanatory variables. The CEC
industrial energy sales model uses an industry-specific macroeconometric
approach, which separately estimates consumption for 20 different
manufacturing industfies. 5 mining and extraction industries and 3
construction industries. The model incorporates the energy consumption
increase associated with complying with federal and state air pollution
raquirements, the impact of nonresidential building stancards and tne
induﬁtrial energy-savings audits conducted by the utilities. Agriéulturai
energy sales model has two submodels: a crop production model and a dairy
and livestock production model. Crop production accounts for 80 percent
of total agricultural energy consumption with irrigation-water pumping
using most of the energy. The crop production energy sales forecasts

are obtained by multiplying the forecasts of future acreage by estimates

of energy requirement per acre. The energy demand for dairy and livestock

48.]. Jackson and W. Johnson, Commercial Energy Use: A
Disaggregation by Fuel, Building Type and End Use (Oak Ridge, Tennessee:
Uak Ridge National Laboratory, rebruary [39/8).
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production is assumed to be directly related to the level of beef and
dairy production. In domestic water pumping energy sales model, estimates
of future domestic water qemands in the 1] hydrologic areas are multiplied
by the amount of energy needed to distribute surface and ground water to
project energy use for domestic water requirements.

When used for reak load forecasting, the annual energy sales
forecasts for afl sectors are disaggregated into monthly quantities using
an analysis of actual billing records. Each monthly consumption is then}
partitioned intd daily energy use. -The base eriergy uses ;n the residen-
tial and the industrial sectors are assumed to be equally distributed
for each day in a given month. The amount of space.conditioning energy
depends on the weather occured om that day. Commercial customers have
various consumption patterns depending on the type of business. Finally,
hourly loads on a given day are determined by using a load profile which
is distinct for each residential end use, each commercial end use by
building type and each industrial two-digit SIC code.

The peak load forecasting methodology comprises five parts.

The first two parts forecast hourly load in the residential and the
commercial buildings sectors where an end-use model was used to forecast )
sales. The third part produces hourly load forecasts for the transpor-
tation, communications, utilities and national defense sector, strset
lighting, industrial, agricultural and domestic water pumping sectors

in which the forecasts are made for each individual industry. The

fourth component adjusts the hourly load forecasts to the system level

by adding transmission and distribution losses and subtracting voltage

requlation savings. The fifth component extracts annual peak load from
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the hourly load forecasts for all days, calibrates to the actual observed
peak for 1978 and adjusts the original load forecasts by the calibration
factor to produce a final forecast for each year.

Empirical tests of the CEC model were conducted using the data
developed for two southern California Utilities--San Dieéo Gas and Electric
Company and Southern California Edison Company. The conservation analysis
performed for peak loads demonstrates the capability of the model to quan-
tify the savings resulting from conservation measures. The load forecast-
ing model produces detailed end use output for each of the major submodels
--residential, commercial .buildings, industrial, etc. Therefore, the
model provides a-basis for detailed analysis of the effect of conservation
measures on individual end uses. Intersectoral shifts in load composition
can also be analyzed conveniently.

While the macroeconometric models require relatively little data,
the microeconometric end-use models, such as the CEC model, require
prodigious amounts of data. Joint CEC/utility surveys of over 50,000
customers were conducted to collect the body of knowledge about how
energy is used in the state, such as residential appliance ownership and
use, household characteristics, comhercial buildings characteristics and
fuel choices in businesses. In addition, the CEC relied on the data ffbm
numerous sources not connected with the utilities: a detailed survey of
energy use in 500 commerciai buildings conducted by an i1ndependent con-
tractor, end-use metering of.a few selected commercial buildings, floor-
space construction data on 280 building types purchased from the F. W.
Dodge Company, detailed hourly weather data from National Oceanic and

Atmospheric Administration (NOAA), end-use load profiles from the reports
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of Association of Edison Illuminating Companies (AEIC), operating charac-
teristics of end uses reported by equipment manufacturers, etc. However,
the data base used by the CEC still hasmuch room to be improved. For example,
lack of buildings energy use simu!ation data and end-use metering data
forced the CEC to use the hourly load profiles based on the AEIC load
résearch samples which does not necessarily fit for the study area.

Two important factors influencing the éhape of future hourly
load curve and therefore the level of peak demand are market penetration
of electric applianceé and sectoral difference in load growth. While
the sectoral load growth differential has received a full attention in
the CEC peak demand model, virtually nothing has been done to take
account of changes in appliance stocks. Use of the fixed hourly load
profiles for hourly energy allocation is another problem, because changes
in life stylé can significantly alter the shape of the hourly load curve
for a given end use in the long-run. Although the CEC model has been
used to produce forecasts through the year 2000, the absence of appliance
penetration functions and fixity of hourly load profiles make the quel
static and valid only for short-run forecasting. Modeling the penetra-
tion of new technologies, such as electric heat pump and solar systems,
is also an important factor to be considered as more new technologies

become marketable.



CHAPTER III

DEVELOPMENT OF AN ECONOMETRIC MODEL OF MONTHLY PEAK LOAD

The survey of various peak load modeling approahces, discussed
in Chapter II, indicated that the most refined and desirable way to model
the peak load demand is the integrated end-use/econometric approach.
Although the modeling method is still at a pioneering stage, advantages
of the integrated approach are quite encouraging. By incorporating behav-
ioral foundations of econometric models and engineering information con-
cerning energy use and the opportunity for capital-energy substitution
from end-use models, the integrated model can provide explicit represen-
tation of conservation and load control measures. Since the aggregated
analysis of econometric modeling is combined with the disaggregated method
of end-use modeling, the integrated model is expected to provide a more
accurate forecast by reducing the error resulting from aggregation across
end use, building type, equipment age, etc. The model also has a capabil-
ity to evaluate market penetration of rnew technologies. However, huge
data requirements and model estimation efforts discourage implementation
of the hybrid modeling approach. Another disadvantage of the model, due
to its complexity, is the difficulty to conduct elasticity analyses.

64
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The end-use/econometric model can be viewed as a special case
of the stock-adjustment model. Three main elements of the end-use/
econometric model are rate of utilization, efficiency choice (or energy
use requirement) and equipment choice for each end use, while the main
arguments of the stock-adjustment model are composite rate of utilization
for all end uses and appliance stocks. Since the efficiency choice énd_
equipment choice equations are essentially two separate expressions of
the stock adjustment process, the integrated modeling approach is a
highly disaggregated version of the-stock-adjustment model ing method.

Besides being accurate and defensible, a practical forecasting
model should be flexible and affordable.. In terms of the affordability,
the end-use/econometri¢ modeling approach has an obvious problem when
used in 3 utility environment. As a matter of course, the utilities can
gradually improve and expand their data bases and eventually ready them-
selves for the integrated modeling. The aggregate stock-adjustment model
has a good potential to evolve to a microeconometric end-use model by
increasing the level of disaggregation through the end-use and load
research data that become available. Since the model is flexible, the
levels of disaggregation for both the utilization rate and the appliance
stock variables can be controlled b; the data availability. Another
advantage of the aggregate stock-adjustment model 1s that sensitivity
analyses of the economic variables, such as prices and income, are
relatively straightforward because the model handles the system peak load
as an aggregate, not through sectoral energy sales models.

The stock-adjustment modeling approach was systematically formu-

lated by Taylor and later adopted for residential electricity demand



66

modeling.1 While the stock-adjustment model of residential energy demand
developed by Taylor et al. distinguishes the long-run demand from the
short-run by the fixity of capital stocks, the capital stock-adjustment
process itself is not reflected in either the short-run or the long-run
elasticity analyses. In their theoretical model, the short-run demand
for electricity is viewed as the choice of a utilization rate for the
existing stock of electric appliances, while the long-run demand for
electricity is equivalent to the demand for an equilibrium stock of
electricity-consuming capital goods. There is a missing link between

the short-run and the long-run demand formation, which is the capital
stock-adjustment stage. In the empirical section of the study, however,
Taylor and others seem to recognize that the short-run model developed
for theoretical exposition does not cover the short-run effects of price
and income on appliance stocks.2 The model equations they actually esti-
mated are utilization rate equations and appliance saturation rate equa-
tions in various functional forms. While the utilization rate equations
are estimated for a composite rate aggregated for allvappliances,.the
appliance saturation rate equations with a Koyck's distributed lag are
regressed for each of ten major household appliances. For empirical
presentation of the price and income elasticities of residential electri-
city sales, the elasticities calculated from the short-run equation
holding the stock of appiiance fixed (or the utilization rate equation

only) are no longer called short-run elasticities. The value defined as

1T'aylor, "The Demand for Electricity: A Survey," pp. 80-83;
and Taylor et al., The Residential Demand for Energy, Chapter 3.

2T'aylor' et al., The Residential Demand for Energy, Chapter 6.
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a short-rup elasticity in the theoretical development of the model is
now retermed to be short-run partial adjustment elasticity. Total short-
run elasticity is then measured by summing the partial adjustment elasti-
city calculated from the utilization rate equation and the weighted
average of short-run elasticities of appliance stocks estimated from the
appliance saturation rate equations. The weights used to aggregate the
elasticities of appliance stocks are the normal utilization rates of each
appliances. Long-run elasticity for the electricity sales is calculated
by adding the short-run partial adjustment elasticity obtained from the
utilization rate equation and the weighted average of long-run elastici-
ties of appliance stocks obtained from the appliance saturation rate .

equations.

The fact that the appliance data used for the empirical study are
in terms of saturatior rates, while the theoretical models have been
formulated in terms of capacity, causes some pratical problems. Since
the saturation rate is defined as the proportion of households having the
appliance in question, the rates would be equivalent to a stock series
only when capacities of the appliances are constant across households
and time. However, appliance capacity usually varies among households
and through time. An additional problem associated with the use of
saturation rates is that many households own more than one refrigerator,
room air conditioner, et¢c. Therefore, the saturation rates provide only
lower-bound estimates of the number of appliances in a region. Because
true values of the normal utilization rates are not observable, the
aggregated short-run and long-run elasticities of appliance stoﬁks are

destined to involve an approximation and affect the accuracy of the
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estimated total elasticities of electric demand. As a matter of fact,
the normal utilization rates used for weighting the elasticities
calculated from the ten appliance saturation rate equations are the
normal consumption estimates for the year 1971 provided in a Stanford

Research'lnstitute study.3

The data used for the empirical estimation

is, however, an annual series for the years 1960 through 1972. Since

the aggregate appliance saturation series used to calculate fhe historical
composite utilization rates from the energy sales data is also obtained

by weighting the saturation rates of eleven selected individual appliances
with the 1971 normal usage rates, the estimates of the short-run partial
adjustment elasticities involve the same approximation problem.4 Accu-
racy of the model forecasts of the energy sales is also in doubt, because
ihie energy sales forecasts are produced with the projected utilization
rates and appliance saturation rates, not with the projected potential
load of appliances.

Most of the problems with Taylor's stock-adjustment model are
due to the lack of the appliance usage and capacity data required to
successfully implement the model. In this chapter, an econometric model
of peak load demand will be developed by following a neoclassical concept
of capital stock adjustment. The model is macroeconometric and therefore
does not involve the problem of extensive data requireménts and can be
easily implemented in a utility environment. Since the peak demand

measured in megawatts is the dependent variable in the model, elasticity

3Ibid., Appendix 1.

4
Among the eleven major appliances, dishwashers were excluded
in the estimation of appliance saturation rate equations.
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analyses and forecast generation are straightforward. The capital stock-
adjustment process is explicitly included in the model and plays a direct
role in the demand analysis. In the peak load model to be developed, the
entire process of electricity demand formation is divided into three time
horizons: 1) short run characterized by variable utilization rate but
fixed capital stock, 2) long-run adjustment period featured by variable
utilization raté and capital stock adjustment and 3) long-run equili-
brium stage.
In a general functional form, peak load demand is given by
D, = UK (1)

where Dt = demand for electricity at the time of peak load

%

stock of electricity-using capital goods measured in terms of
potential use of watts

composite rate of utilization for all electric appliances at

ct
L]

the time of peak load.
To obtain the value of Kt' it is necessary to aggregate across appliances.
Since the probability of operation at the time of system peak load is
different among the appliances, a simple summation of the potential watt
usage of the appliances would be inaccurate. An obvious way to aggfegate
the appliances would be to weight each appliance by a long-run probability

of operation at the time of peak load. Then,

K

L= TPt (2)

nt+3

i=1

where ki denotes the stock of the ithappliance measured in potential

watt usage and Pi(t) is the long-run probability of operation at the

th

time of peak for the i~ appliance.
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A. Short Run

The short run is defined as the period in which a fixed stock
of electricity-consuming capital goods exists and, due to time limitation,
there is no possibility for the stock to change. Therefore, the peak
demand for electricity in this period can be viewed as the choice of

utilization rate for the existing stock of electricity-using capital

goods.
Empirically assuming that
- - o
U, = u(PE,, W) = agPEf u‘{* (3)
where PE = price of electricity
W = any other factors that might be relevant (e.g., weather

variables),
D, = UpKy = (agPEg* W DK,
Since Kt is invariable in the short run,
- a, ' :
D, = APQ We (4)
where A = “OKt'

Allowing price elasticity of the demand to vary with the previous levels
of the electricity brice,

o) = ay(PE, ;) = oPE,_ .0 | (5)
Combining the equations (4) and (5),

5As discussed in Chapter II, the section on the variable elas-
ticity model, this hypothesis is explained by the Slutsky equation, The
nrice elasticity of the ordinary demand curve equals the price elasticity
. of the compensated demand curve minus the corresponding income elasticity
multiplied by the portion of total expenditure spent on the commodity in
question. Since the demand for electricity is commonly believed to be
price inelastic in the short run, the share of the electric bill in the
consumer's budget will increase with a higher price of electricity.
Consequently, the price elasticity of the uncompensated demand for
?lecggicity gets larger with the increase in the price of electricity
tself.
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OPE¢ .
D, = APE," ~t-lits . (6)
The equation (6) can be easily estimated in a double-logarithmic form
and the model estimated would take the form;
In Dt= InA+ QPEt_lln PEt +a21nwt+ €, - (7)
With the model equation (7), the immediate-run demand for electricity at

the time of system peak has a constant weather elasticity, ay, but

variable price elasticity, °pEt-1'

B. Long-Run Adjustment

The long-run adjustment period is defined as the time duration
which is long enough to vary both the rate of utilizatibn and the stock
of electric appliances within certain limits. The time duration is,
however, not long enough to achieve an equilibrium stock. In the long-
run adjustment period, consumers attempt to bring their actual stock of
the capital goods into line with a certain desired level which is deter-
mined by the level of income, prices and other factors. However, the
actual level of the capital stock will be still different from the
desired level because of psychological, institutional or technological
bafriers to the speed at which a descrepancy between actual and desired

levels can be eliminated.

Assuming a simple adjustment process given by
* A

&1

*
where Kt

desired level of the capital stock

A = adjustment factor which takes a value between 0 and 1,
* -
K, = (KM (kP h (9)

Let K: be determined by
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* B. 8
K, = K(PE,, PG, PKy, Y., 0,) = BoPEY PG P dadve (10)
where PG = price of competing fuel source such as nutural gas

PK = price of electricity-consuming capital goods

Y = per. capita income
0 = other relevant factors such as population, depreciation
rate of the appliance stock and market interest rate.
Then, .
= B, ppABa piAB; ABL qABs 1A
Ky = ByPE™ Par PP P 0l K ) (1
Combining the equations, (1), (3) and (11),
Dy = UK
_ pA8 B, o ABs\AB, MBs L 1-2
= agPEy W2 BOPE, ™ PG PKED Y “\t"‘t 1
- o +AB, ya prABapy AB AB AB; 1
= ooaoP N PGt PKt ’Y . Ot Ktl (12)

=

Since Kt 1= =l

o1,
-(1-21) 1-2
G = BT =0

oy Aoy -0 FAe,
E1%0P ) - 13)

tl

Substituting K1l::l in the equation (12) with the equation (13),

0.

= o2p* pp2 P& PEt—tflﬂc; H:zutlﬂ% PG?B‘PQB’ Y:B.. o8 pl-2

b Dy~ (14)

The long-run adjustment model equation in a double-logarithmic form will

be then,

InDy = v + MINPE +v,ln PE, | + vglnW, + v, InW,_; + 75In PG,

+ 161n PK; + 17ln Y.+ -raln 0t + Tgln Dt-l +e, (15)
where Yo = 2 lnuo +>.lnq)
T =g AR
Y2 = -0 4
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13 =9

Tg = -0 +1e,
15 = A%

Tg = AB3

17 =By

18 = ABg

19 = 1 -

Therefore, the long-run adjustment model becomes a combination of the
state-ad justment model of Houthakker and Taylor and the geometrically
distributed lag model of Koyck.6
The reduced model equation (15) involves an identification
problem to be used for empirical estimation of the original model
parameters. The parameters, a's, 8's and A, are nonlinear functions of
the unrestricted coefficients, y's. After the equation (15) is estimated,

solution for the restricted parameters of the long-run adjustment model

will be,
72
01 R
T9
<
02'-'730"-—4
g
8 ‘71791'72
= —
79(1'79)

6The state-adjustment model of Houthakker and Taylor differs
from their flow-adjustment model in that the coefficients of the one-
period lagged exogenous variables are not constrained to be equal to
their counterparts for the current variables. See Houthakker and Taylor,
Consumer Demand in the United States, pp. 9-24.




74

5
B-‘.
2 1 - Yq
16
b g
B4= 7
1 - 19
b 4
B = 8 .
1-19
l:l-"g.

As shown above, a, is overidentffied. The identification problem can be
solved by estimating the restricted parameters by the nonlinear least-
squres estimation method or the maximum likelihood estimation method.7
But with the nonlinear regression analysis, computations are very

complicated and the maximum of the likelihood function can be a local

one rather than a global one. The variables causing the overidentifi-
cation problem are the current and one-period lagged weather variables.
Therefore, another way to solve the problem is to remove the weather-
sensitive portion from the demand or weather-normalize the demand before

regressing the model equation. Thus, rearranging the equation (15),

D
t
In (—1;) = 70 + 7lln PEt + 721n PEt-l + Tsln PGt + Tsln PKt + Y7ln Yt

¢ D)
W1

7J. Kmenta, Elements of Econometrics (New York: Macmillan
Publishing Co. Inc., T97T), pp. 446-347.
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where y's are as defined for the equation (15). As far as the value of
ap is predetermined, the equation (16) is exactly identified. In this
case, we cén use the ordinary least-squares (OLS) estimation method to'
estimate the unrestricted coefficients of the equation (16) and use the
solution for 7's to obtain the estimates of «,, B's and A. The resulting
estimators inherit the desirable asymtotic, but not small-sample properties
from the unconstrained estimates of v's. This is because the model para-
meters are nonlinear fu;ctions of thé unconstrained coefficients and
unbiasedness does not carry over via nonlinear functions.® With the
equation (16), the unconstrained estimators themselves are not unbiased
due to the presence of Dt-l among the explanatory variables, so that
none of the constrained estimators are unbiased.- However, if the dis-
turbance terms, €, are randomly distributed, the presence of Dt—l will
produce the OLS estirators which are still consistent though biased in
finite samples. Since the negative bias in the OLS estimators is an
inverse function of sample size, the problem of biased estimators becomes
negligible with a sufficiently large number of observations.9

To make the model equation (16) estimable with the OLS method,
the value of'u2 should be known in advance. Although the true value is
unknown, the best linear unbiased estimate (BLUE) of @, obtained by

regressing the immediate-run model equation (7) can be used as a

8Consistency of the estimators carries over through a continuous
function but the same does not, in general, apply to unbiasedness. Ibid.,
p. 166.

9For a simple model, Dt = BDt_l + Vi which has a lagged dependent

variable but serially uncorrelated v's, E(§) -8 = -28/n where n = sample
size. See Johnston, Econometric Methods, pp. 305-306.
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predetermined value. Using the predetermined value of az(qz), the actual
levels of peak demand will be seasonally adjusted by removing the weather
impacts on the load. After the reduced model equation (16) is estimated
for the non-weather-sensitive portion of the demand, all of the original
model parameters, @'s, B's and A, can be identified. Since the model is
double-logarithmic, long-run adjustment elasticities of the demand are
directly represented by the estimated coefficients, ¥'s, for the corres-
ponding explanatory variables. Finally, the long-run forecast of peak
load will be produced by combining the base (or non-weather-sensitive)
load forecast generated with the equation (16) and the weather-sensitive
load forecast obtained by using 62 and the normal values of the weather

variables.10

C. Long Run Equilibrium

The long-run equilibrium will be established when the actual
level of the capital stock reaches the desired level. Since Kt = K:,
A =1.0. From the equation (12), the long-run equilibrium model will
be then,

Dy

*
UpKe = UKy
oy +B B2 pBs yBs oBs
agBoPEL:  * Wy PG PK® Ve OF (17)

Rewriting the model in a double-logarithmic form,

lrlDt = 60 + 611rlPEt + 62Ht + 63PGt + 64PKt + 65Yt + 660t + e, (18)

10As occasionally exampled in Chapter II, separate modeling of
the base load and the weather load or weather-normalization of the load
history before the model estimation is a common practice in the utility
load forecasting. For an intensive study of weather-normalization
techniques, see Cambridge Systematics, Inc. and Quantitative Economic
Research, Inc., Weather Nomaljzation of Electricity Sales (Palo Alto,
California: Electric Power Research Institute, June
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where 60 = 1nu0 + lnB0
61=c1+81
%= %
63 = 82
64 = 63
65 = 84
66 = BS' -

When matched with the long-run adjustment model equation (16), long-run
equilibrium model equation will be

D
ln(w—?—) = 8 + 6 InPE, + BPG, + 8,PK, + &Y, + 60, + &  (19)
where 6's are as defined for the equation (18). Because the value of
A was less than l.O-in the long-run adjustment period, elasticity of demand
becomes larger in the long-run equilibrium stage for all of the explana-
tory variables except for the weather variable where the long-run coeffi-

cient is the same as the short-run's.



CHAPTER IV

EMPIRICAL APPLICATION

The peak load demand models developed in Chapter III will be
estimated for an electric utility system. The electric utility selected
for the empirical study is Lincoln Electric System (LES) operating in a
major metropolitan area (Lincoln SMSA or Lancaster county) of Nebraska.
LES is a summer peaking utility and experienced an annual peak load of
428 megawatts (MW) in August 1983, excluding transmission losses. The
empirical results of the model estimation will be used for identifying
and appraising the effects of economic, demographic and weather variables
on the level of monthly peak demand. The model forecasts of the peak
loads for 1983-2000 will be produced and evaluated. Finally, some policy
implications of the empirical results will be explored for power supply

planning, peak-load pricing and direct load control measures.

A. Practical Issues for Model Estimation

In order to practically apply the theoretical model equations
presented in the previous chapter, they need to be substantiated for

real world situations. Before going into a model estimation stage,
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several practical issues concerning the explanatory variables of the
model will be discussed. Then, the model specifications are to be

adjusted for empirical estimation.

1. Marginal Price vs. Average Price
In hic 1975 survey article, Taylor criticized the conventional
use of ex post average price in the electricity demand modeling and

maintained that the use of ex post price leads to the problem of simul-

taneity and identification.l

A correct procedure is, according to him,
to include both a marginal and an average prices taken from actual tariff
schedules, not calculated ex post, as predictors in the demand function.
The marginal price refers to the last block of the rate that energy was
consumed in, while the average price is the average price per KWh of the
electricity consumed up to, but not including, the final block. Empirical
use of the electricity price represented by the marginal price plus the
measure of intramarginal expenditure has been successfully tested for
residential energy demand modeling by Taylor and others.2

However, construction of the composite price yariable for peak
load modeling is not so easy because system peak load is the sum of
coincident demands of all revenue classes at the time of system peak and
utilities usually have different rate structures for various classes of
customers. In the case of LES, residential and small commercial customers

are charged with a seasonally differentiated rate which is higher for the

1Taylor, "The Demand for Electricity: A Survey," p. 79.

2Taylor et al., The Residential Demand for Energy; and L. D.
Taylor, G. R. Blattenberger and R. K. Rennhack of Data Rgsources. Inc.,
Residential Demand for Ene (Palo Alto, California: Electric Power
Research Institute, April 1982), Vol. 1.
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suﬁmer energy use.3 The summer seasonal energy charge is flat regardless
of usage amount and includes a summer conservation credit provision td low
users in order to minimize the impact of the seasonal rate structure on
non-airconditioning customers. In the winter months, residential customers
are classified into electric space heating customers and non-eleétric space
heating customers. While non-electric space heating customers pay a flat
energy charge, electric space heating customers are charged with a one-step
declining-block rate to address the winter heating energy sales. Electric
heating customers of small commercial and industrial classes can apply for
a special end-use heating service rate in the winter months. The energy
charge for that heating service is the same as the residential heating
customers' which is lower than the regular commercial rate. Large commer-
cial and industrial bills are determined by a three-part tariff which
consists of energy, demand (or capacity) and customer charges. The demand
charge for large customers are based on the individual customer's monthly
load factor.

As illustrated above, the rate structure of a particular utility_
system is complex and involves much more than the declining-block rate
Taylor assumed. In order to include the effects of differing marginal
energy prices with the declining-block rate and the two-part (energy and
demand charges) nature of electricity tariffs in the industrial and commer-
cial sectors, Spann and Beauvais used two price variables, an aggregate
energy price and an aggregate demand price, in their econometric model of

peak load for Virginia Electric Power Company (VEPCO).4 The energy price

3Lincoln Electric System,. Rate Schedules, Service Regulations for
1982 and 1983 (Lincoln, Nebraska: Tincoln Electric System, 1982).

4Spann and Beauvais, "Econometric Estimationm," p. 6.
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is the sum of the logs of the marginal energy prices in the industrial
and commeréial sectors plus the sum of the logs of two marginal energy
prices in the residential sector. Utilization of these simple aggregate
price variables implicifly assumes that the elasticities of peak demand
with respect to energy prices and with respect to démand prices are the
same for all classes of customers. There is no priori reason to believe
that this is the case. An alternative'approach-would be to weight the
marginal price charged each customer class with the percentage of total
system sales to that customer class. This weighting scheme could appro-
priately include the effects of different growth rates of the prices for
different classes and the effects of changes in customer mix on the peak
demand and the price elasticity at the time of peak. Besides the problem
of weighting, the VEPCO model is still lacking an intramarginal price
variable or a price variable measuring changes in the customer charge.

A considerable amount of effort is required to obtain information
on the marginal and intramarginal prices from the tariff structures for
various customer classes. Taylor's call for use of the marginal price in
the last consumption block and the average price to that point is based on
the conventional.utility maximizing model for an individual customer. He
did not discuss the difficulty associated with aggregation across indivi-
duals in different final blocks. Especially for peak demand modeling,
relevance'of such framework for the data aggregated over individual
customers in different customer classes with different tariff schedules
seems to be questionable. Meanwhile, the information on average price is
readily available from the utilities' sales and revenue data. Betancourt

provides an interesting analysis of the problems with the ex post average
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price variable by utilizing the results of Levi's study on the effects of
measurement errors on Ordinary Least-Squares (OLS) estimates.s The use
of ex post average price can be interpreted as introducing an errors-in-
the-variables problem into a demand equation. Application of OLS to the
demand equatiqn leads to inconsistent estimates unless the error is con-
stant from observation to observation. Extending the derivation given
by Levi in his equation (8),

('31"2 + °eu)21j

plim 8, = B, +

3 |z|+<:§ I,
where aj = estimated coefficient for variable j
gj = true parameter for variable j
B = true coefficient of monthly average price
<€ = variance of the error in the price variatle
%y = covariance of the error in the equation and the error in the
price variable
T =

variance-covariance matrix of independent variables when using

the true price variable

and subscript 1 indicates the price variable measured with error.6

2
e

the price variable will be asymtotically biased toward zero with o, = 0.

Because 211.|II. o and -8, are positive, the estimated coefficient of
Since the electricity consumption at the peak hour in a month is only a
small protion of the total electricity use during the month, it may be

reasonable to assume Gy 0. Therefore, the price elasticity of peak

5Betancourt, “"An Econometric Analysis of Peak Electricity Demand
in the Short Run," p. 19 and p. 283; and M. Levi, "Measurement Errors and
Bounded OLS Estimates," Journal of Econometrics, Vol. 6, 1977, pp. 166-167.

6Betancourt,"An Econometric Analysis," p. 28.
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demand measured with the ex post average price is not biased in the pro-
bability limit.

The specification errors resulting from using the ex post averagé
price were measured and tested by Smith for 27 investor-owned utilities
over the period 1957-1972.7 The test he conducted for the errors in the
average price models is the regression specification error test (RESET)
developed by Ramsey. RESET examines the null hypothesis of full ideal
conditions against the alternative hypothesis of a non-null mean vector
for the error by applying the usual F test.8 Completing the tests for
the residential demand in each of 27 electric utilities, he concluded that
the average revenue pricé measure, if deflated and adjusted for simulta-
neity, provides estimates of the residential demand which would not be
rejected on statistical grounds. The problem orf simultaneity and identi-
fication with the ex post average price variable is due to a declining
relation between nominal average revenue and quantity consumed. If a real
average price which is the average revenue deflated by consumer price index
is used in a double-log model, an exact linear relation between the average
revenue and the deflator will serve to identify the demand function.9

The electricity price variable in the empirical model will be an
weighted moving average of real average prices for the previous twelve

months. The average price variable, converted into real terms for use in

7V. K. Smith, "Estimating the Price Elasticity of US Electricity
Demand, " Energy Economics, Vol. 2, No. 2, April 1980, pp. 81-85.

8J. B. Ramsey, "Classical Model Selection through Specification
Error Tests," in P. Zarembka (ed.), Frontiers in Econometrics (New York:
Academic Press, Inc., 1974), pp. 30-20.

9Smith, "Estimating the Price Elasticity,” p. 83.
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~ a rational consumption model, has @ distributed lag structure to explain

a dynamic adjustment of coﬁsumer's behavior. fhe lagged real average price
variable has another important advantage--the price variable is free of
the simultaneity and identification problem while only a little effort is
required to calcylate.it. The distributed lag structure of thé variable

will be explained in the next section. 7

2. Lagged Effects of Price and Income Variables
All of the nominal price and income variables in the theoretical
models will be transformed into real terms. The consumer price index for
all items (CPI-all items) will be used to deflate the prices of electricity
and natural gas while the total personal consumption expenditure (PCE)

deflator will be used for per capita real personal income.10

Local price

data for electric appliances are rarely available. As a proxy for the

real price of electricity-consuming capital stock, CPI-household appliances

divided by CPI-all items is adopted. '
A problem with the simple stock-adjustment model presented in

the previous chapter is its implicit assumption of static expectations.

It is implausible to assume that the optimum level of demand for the

appliance stock is solely dependent upon the current values of prices and

income. Becausé of the time lag between the actual use of energy and the

billing, current average prices of electricity and natural gas are not

even observable until the end of billing cycle. Consequently, the elec-

tricity price variables in the short-run model equation (equation (7)

10Since natural gas is a predominant fuel source for heating and
fuel oil takes a minimal share of the heating energy market in Lincoln SMSA,
natural gas is viewed as the only competing fuel source against electricity.
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in the previous chapter) need to_bé’lagged by one period.v Besides the
utility-specific billing problem, it might not be rational to base the
investment decisions about the durable goods entirely on the current

prices of fuel sources and appliances. The concept of dynamic expectations
can be added into the model by applying an adoptive-expectation scheme.

With the assumption of dynamic expectations, the current price variables .
in the simple model are replaced by the expected values of those vari-

ables. A simple form of adoptive expectation is expressed by

* * *
Pr - Pry =0 - Pry) (1)
where P = price of electricity, natural gas or appliance stock
P* = expected level of P
6 = adjustment factor which takes a value between 0 and l.11

According to the equation described above, expectations are updated each
period by a fraction of the discrepancy between the current observed value
of the variable and the previous expected value. Rewritingthe equation (1),

*
P

*
+ = 6Pt + (1 - es)Pt_1

= 6P, + (1 -0)[6P, | + (1 - 6P, ]

=6[P, + (1-6)P, 1+ (1-8)%P) ,

=6[P + (1 =8P + (1 -6)%P, 5+ cuut (1 -06)0P, ]

+ (1 -8 (2)
where n = i + 1.
Since (1 - 6)"P:_n will be have an insignificant magnitude with a suffi-
ciently large value of n, the equation (2) becomes
x

n
i
P, =62%(l ~8)P, ,. 3)
t i=o t-l

11Johnston, cconometric Methods, p. 301.
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Therefore, the empirical model to be estimated will have the price

variables caculated with a geometrically declining lag distribution.
Due to the billing procedures of electric and gas utilities,

consumers do not know the current average prices paid until the end of

the period. Since the current prices are not observable, the equation
(3) is modified to be

* n i-1 T : '

PE, =6 £ (1 -6) "PE _. for electricity price and (4)
=0 £y
* n i-1 .

PG =6 % (1-2) PG, _; for natural gas price, (5)

i=1
while

* n-1 i . :

Pl(t = aiz (1 -8) PKt-i for appliance stock price. (6)

Prelimﬁnary model estimations were conducted to find fhe appropriate
value for n. Depending on the different values of n, values of &6 were
set for the sum of all the weighting factors in each case to be equal to
1.0. After checking with 3-month, 6-month, 12-month and 24-month period,
the 12-month moving average price variables were found to provide the
best fit. Value of the adjustment factor, 6, is 0.8 for the adjustment
period'af twelve months.

Cost of appliance stock is actually more than the purchase price
alone. Depreciation 6f the equipment is to be considered as a variable
cost. Interest payment, if any, is a fixed cost to be added tothe pur-
chase price. It is practically impossible to obtain the data of depré-
ciation rates for all electric appliances in the utility service area.

The history for market interest rates is, however, readily available from
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the financial publications. Omitting the depreciation rates but combin-
ing the market interest rates with the price of electric quipment, the
equation (6) will be . .

[(1 + )P, T =8I (1-8)T( +ry )P ] (7)

where r = market rate of interest.12

The real income variable in the empirical model will also be a
weighted moving average for twelve-month period. However, the calculation
method of the weighted moving average is different. Following Friedman's
approach to empirically estimate the permanent income, the distributed
lag income to be used in the model is shown by the formula,

11

Y )
Y, =8 Z (1 -8 +a)ly
t %5 t-i

where Y: = per capita permanent real income which is a weighted moving

" average income for twelve-month period

a = trend parameter (0.0194 for this case)

8

ad justment parameter (0.194 for this case).
The values for a and B were determined such that the sum of all weighting

factors for twelve months is equal to 1.0.

3. Selection of Weather Variables and Threshold Temperatures
for Various Weather Impacts
Change in weather conditions has a vital role in the electric

demand formation. This is especially true in summer and winter months

12The interest rate to be used for this case is the interest rate
charged by commercial banks for personal installment loan. Unfortunately,
the data for terms of consumer installment credit are available only from
1980. As a proxy for the interest charge for installment loans, monthly
series of annual prime rates will be used.
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when the weather-sensitive cooling and heating loads constitute a
substantial portion of fhe consumer's total'energy requirement. A
preliminary but intensive study of fhe impact of weather on peak load
demand was performed with some monthly weather-load models. The daily
peak demand and hoﬁrly weather observations for 1978-1982 were utilized
in the study. The weather variables tested in the preliminary study
are air temperature, dew point temperature, relative humidity, wind speéd
andrsky cover. The composite weather variables, such as temperature-
humidity index (THI) and wind chill (WC), were also tested. The formulas
used for calculating THI and WC are13
THI = 0.55T + 0.2T'dp +17.5
WC = (10JWV + 10.45 - WY)(33.0 - T.)

where THI = temperatdre-humidity index

T = air temperature °F
po = dew point temperature °F
WC = wind chill measured in terms of kilogram calorie loss per
hour and square meter14
WV = wind velocity in meters per second
TE = ajr temperature °C.

13The wind chill equation cannot be used for wind speed higher
than 20 meters per second (45 MPH). For source of the equation, see
Siple Passel, "Measurement of Dry Atmospheric Cooling in Subfreezing

Temperatures, ” Proceedings of the American. Philosophical Society, Vol. 89
(1945), pp. 177-199.

14Hind chill factor which is normally used in a weather report is
a wind-chill equivalent temperature which is estimated by subtracting the
wind chill from air temperature. Since wind chill is calculated in Kilo-
gram calories, the wind chill factor unavoidably involves a human guess
when the wind chill is converted to temperature units.
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In addition to the weatﬁer variables, the monthly weather-load

models also include a yearly trend variable to grasp a secular growth

trend and the type-of-day dummy variables to distinguish the different

consumption patterns on weekdays, Saturdays, Sundays and some special

holidays like Christmas day and the Thanksgiving weekend. To find the

best specification for each of the monthly model equations, various .

possible combinations of the weather variables were applied to two

plausiblé functional forms of equation--simple linear and double
logarithmic forms. Because space air-conditioning and heating equip-
ment is not operated within certain temperature range, application of the
threshold concept to the temperature variables will make the model co-
efficients more appropriate and precise to measure the true weather
sensitivity of air-conditioning and space-heating loads. Appropriate but
different threshold temperatures were found for each of the weather
variables by a grid search process based on the statistical significance
tests repeated after the regression runs with different threshold points.
The weather study presents the following important findings:

1) Wind chill at the time of peak demand is the most significant weather
variable in determining the level of peak demand in the winter months.
But, the wind chill variable is effective only when the air tempera-
ture is below 40°F,

2) Cold ueatﬁer build-up effect of temperature and wind speed is proved
to be significant by including the 24-hour moving average of wind

chill before ;he time of peak. But this is possible only when the
24-hour moving average temperature is below 32°F. The 48-hour moving

average was tested to allow a longer time period for the weatﬁer



3)

4)

5)

6)

7)
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build-up but found to be insignificant.

Temperature~humidity index at the time of peak is the most powerful
factor to explain the summer daily peak loads. However, the;value of
THI should be at least 75.0 before producing any effect on the load.
Warm weather accumulation effect appears to be very significant by
the large magnitude of the coefficient and t-statistic of the
cooling-degfee-day variable calculated with the 24-hour moving average
termperature before the time of peak.

Humidity does not have a significant build-up effect on the cooling
load while wind speed shows a lagged impact on the heating load in
the extremely cold weather situation. Lagged values of THI were

tested for significance but failed.

No winter weather build-up effect was detected in the transition

“months, April and October. However, the summer weather storage

effect, which is measured by the cooling degree days based on the
24-hour moving average temperature from the time of peak, is still
significant in those two swing months.

Due to a partial operation of the existing air-conditioning eduip-
ment in April and May, it would be necessary to separately estimate
the coefficients of the summer weather variables into two groups,

the early summer months and the mid through late summer months. Many
consumers, expecially residential users, are reluctant to turn on the
air-conditioners in April and May unless warm weather prevails for a
sufficiently long period. Therefore, summer-weather elasticity of
the loads in April and May tends to be samller than the mid and late

summer months, such as June through early October.
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4. Model Specifications Adjusted and Refjned
for Empirical Study

It is ideal to use a cross-section data for the short-ruﬁ model
estimation and a time-series data for the long-run adjustment and the
long-run equilibrium model estimation. However, limited availability of
the data does not permit this. Since LES is a municipal utility and the
samllest local unit used in most'of the economic and demographic data
reports is a city or county, it is hard to conduct a cross-section analy-
sis. Data for the period of Jénuary 1969 through December 1982 will be
used to estimate the coefficients of the both the short-run and the long-
run adjustment model equations. The.long-run equilibrium elasticities .of
the demand will be derived from fhe long-run adjustment model coefficients.

a) Short run. Use of the time-series data for the short-run

model e§timation has a direct conflict with the fixity of capital stock
assumed in the short run. The stock of eléctric appliances is freely
changeable during the 14-year period covered in the time-series data
while the fluctuation of monthly peak load in the short run is supposed
to be only due to the changes in the rate of utilization. Therefore, the
load growth induced by the change in capital stock should be separated
from the total load growth before tho short-run model coefficients are
estimated. Assumming that the electricity-consuming capital stock has

grown exponentially during the years,

e

capital stock in the base year (1968 in this case)

K

where Ko

T

trend term which {s equal to the year minus 1968

]

a3z = coefficient for the yearly trend term, T.-
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Combining the °quation (1) with the equations (1) and (3) of Chapter III,
Uk = (PR s et @)
where C = “0 0° '

Since @,

GPEt-l from the equation (5) in Chapter III,

OPEt oy uaT

l

D, = CPE, . 3)
Taking a double-logarlthmlc form, the equation (3) will be,

InD, = InC + ®PE,_In PE, + %, 1n W, + *5T.

(4)
Because the portion of the load growth produced by the change in capital
stock is discounted by 03T, the shoft-run coefficients, ¢ and @,, can
be estimated with the time-serieé data, still maintaining the assumption
of fixed capital stock. As explained in the previous sections, the
electricity price variables need to be lagged by one period to reflect
the time lag between the actual use of energy and the billing. The
weather impact on the load i$ not as simple to explain as shown in the
equation (4). Utilizing the results of the preliminary weather-load
model estimation discussed in the previous section, the short-run
model equation expanded for the empirical study will be,
lnDt =1InC +°PEt zln PE(: 1+ 910H DTEMP oln HC
2DHZDATEMP321n Wc2a, + 93D4ln (THI - 75)t
8,05 In (THI - 75), + 8:DSIn (THI - 75),
GD4 In CDDZ4 + 9705 In CDDZ4

8DSln CDDZ4t + 95T + €, : (5)
where Dt = monthly peak load (MW)
C = constant term

real average price of electricity per Mwh ($)

’E,
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DN1 = dummy variable for the swing and the winter months which

DTEMP40

DATEMP32

WC
WC24,

CDDZ4t

T
o.a3 and

is equal to 1 for January-April and October-December and
equal to 0 otherwise

dummy variable for the winter wontiis which is equal to 1
for January-March and November-December and equal to 0
otherwise

dumty variable for the temperature at the time of monthly
peak load below 40°F

dummy variable for the average temperature during the
24-hour period before the time of monthly peak load

below 32°F

wind chill at the time of monthly peak load

average wind chill calculated for the 24-hour period before
the time of monthly peak load

dummy variable for April

dummy variable for May

dummy variable for the summer Qpnths which is equal to 1
for June-October and equal to 0 otherwise
temperature-humidity index at the time of monthly peak load;
if THI < 75, THI - 75 = 1

cooling degree days calculated with the average temperature
for the 24-hour period before thé time of monthly peak load
yearly growth trend variable equal to the year minus 1968

o's = coefficients to be estimated

e = residual term
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b) Llong-run adjustment. As presented in the equation (16) of
Chapter III, the actual level of peak demand needs to be'seasonally
adjusted by removing the weather-sensitive component. This adjusfment
is necessary to avoid the overidentification problem of the model para-
meters. Since the true values of the weather variable coefficients are
unknown, the best linear unbiased estimates of e's (5'5) obtained by
regressing the short-run model equation (5) will be used to calculate _
the weather-sensitive component of the load. Therefore, the seasonally-

adjusted demand will be represented by,

InD; = ln(-u_.,—) = InD, - [0,DW,DTEMP,; In WC, + 0,DH,DATEMP,, In WC24,

+ 9304ln {THI - 75)t + e4DSIn (THI - 75)t
+ GSDSln (THI - 75) + 96041" CDDZ4t
+ 67051n CDDZ4t + eBDSIn CQDZ4t] (6)
As explained in the second sec¢tion of this qhapter, the price and income
variables in the long-run adjustment model will be the 12-month weighted
moving average of the previous values. Along with the economic variables,
population of the utility service territory is introduced into the model
equation. The demographic variable has an equivalent role as the number
of consumers in an ordinary aggregate demand function. Using the weighted
moving average values for the price and income variables and assigning
the population variable for 0t in the equation (16) of Chapter III, the
long-run adjustment model equation to be estimated for empirical analysis
will be,
InD, = T + 71ln PE: +7,1n PE: { *Tg1n PG: +151n [Q +,rt)PKt]*
+71nY, Yy + TgInPOPy + 1gln D , + ¢ (7)
where D£ = weather-independent portlon of monthly peak demand (MW)
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. 12

i-1
PE, = 0.8 £ (1-0.8)'"PE, _.
PR i=1 ft-i |
PE. = real average price of electricity per MWh ($)
. 12 i-]
PG, = 0.8 T (1 -0.8)'"pg, .
Gt i=0 Gt"l

PGt = real average price of natural gas per Mcf ($)

11 -
[(1 + r)PK, 1" = 0.8 E - 0.8)IL(1 + g _;)PK, ;]

r = annual prime rate reported fQr the month
PKt = real price of electricity-consumning capital stock
approximated by CPI-household appliances divided by
CPI-all items
\!,2’:0.194;1_:10(1-0.194+o.0194)iv1t_i
Y, = per capita real income ($)
POPt = population of Lincoln SMSA
v's = coefficients to be estimated
¢, = residual term.

¢) Long-fun equilibrium. Adopting the adoptive-expectation

scheme for the economic variables as already done for the long-run adjust-
ment modeling, the equation (19) of Chapter III is converted to,
InD} = 8, + bi In PE:,'lr + 651n PG: + 8 In[(l + rt)PKt]* +8:1n Y:

+ 861N POP, + ¢, . : (8)
where D{, PE:, PG:. (1 + rt)PKt]*, Y: and POPt are the same variables
already defined earlier. The equations (15) and (18) of chapter III show
that the long-run coefficients, &'s, are linearly related to the long-run
adjustméntlnodel coefficients, v's. Once v's are estimated in the long-run
adjustment analysis, the long-run equilibrium price, income and population

elasticities will be measured by the following relations:
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w +v

o = L2
A

Y
63=—5

A

v,
64=—6

A

. -
65=—7

A
%=28

A

where A =1 - Y- Since A takes a value between 0 and 1, the long-run
equilibrium elasticities are expected to'be larger than the long-run

ad justment model's.

B. Data Base

The econometric model of monthly peak load developed in this
study accompanies an extensive data base. In addition to a 14-year:
(1969-1982) history of monthly peak demand by the LES customers, the
data base includes economic, demographic and weather information suitable

for the LES service area.

1. Source of Information-
Sources of the data used for the empirical study of the model
are provided below:

Variables Sources

Peak Electricity Demand Lincoln Electric System, Demand and
Ene Statistics, monthly history
?or~§anuary 1969-December 1983.



Variables

Consumer Price Index and Personal
Consumption Expenditure Deflator

Price of Electricity

Price of Natural Gas

Price of Capital Stock

Interest Rate

Personal Income
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Sources

U.S. Dept. of Commerce, Bureau of
Economic Analysis, Business Conditions
Digest, Vol. 20, No. 5 {May 1980),

p. 99; U.S. Dept. of Commerce, Bureau
of Economic Analysis, Survey of Current

Business, Vol. 59, No. Il (November
1979), p. 38; and Council of Economic
Advisers, Economic Indicators, monthly
issues for August 1979-January 1984,
p. 2 and p. 23.

Lincoln Electric System, Financial and

ggerating Statement, monthly reports
or January -December 1983,

p. 7.

Consumption and revenue data for
January 1968-December 1983 reported
by Cengas, a local subsidiary of
Minnegasco in Lincoln, Nebraska.

U.S. Dept. of Labor, Bureau of Labor
Statistics, The Consumer Price Index,
monthly issues for February 1968-
July 1974; and U.S. Dept. of Labor,
Bureau of Labor Statistics, CPI

Deatiled Report, monthly issues for
August-T974-January 1983.

Board of Governors of the Federal
Reserve System, Federal Reserve
Bulletin, monthly issues for January
T969-December 1982.

U.S. Dept. of Commerce, Bureau of
Economic Analysis, Survey of Current
Business, p. 51 of Vol. 6U, No. 4
(Rpril 1980), p. 55 of Vol. 61, No. 4
(April 1981), p. 62 of Vol. 62, No. 4
(April 1982) and p. 42 of Vol. 63,

No. 4 (April 1983); U.S. Dept. of
Commerce, Bureau of Economic Analysis,

1980 OBERS BEA Rngonal Projections,
of. 3, July > P ; an e
data compiled by Bureau of Business

Research, University of Nebraska-
Lincoln.
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Variables ' Sources

Population U.S. Dept. of Commerce, Bureau of the
Census, 1970 Census of Population and
1980 Census of Population, Vol. 1
(Number o?InﬁaBi%anfs ), Part 29
(Nebraska), p. 25 and p. 17 respecti-
" vely; Jerome A. Deichert, Nebraska
Population Projections 1990 - 2020
(E?ncoln, Nebraska: Bureau of Business
. Research, University of Nebraska-
: Lincoln, November 1982), p. 123; and
the data compiled by Bureau of Business

Research, University of Nebraska-
Lincoln.

Local Weather Data U.S. Dept. of Commerce, National
Oceanic and Atmospheric Administ-
ration, Local Climatological Data:
Lincoln, Nebraska, monthly reports
for January 1968-December 1983;
and U.S. Dept. of Commerce, National
Weather Service, Surface Weather
Observations at Lincoln, Nebraska,
unpublished hourly records for
January 1968-August 1972.

2. Processings and Formation of Data Sets

Although monthly data for most of the variables were obtained
from the sources described above, only annual values are available for
the population and personal income at a county level. Monthly population
of Lancaster county for January 1969 through April 1980 was therefore
estimated by linearly interpolating the annual figures. The annual
population figures were treated as the population for July of the cor-
responding year, with the exception of 1970 and 1980 in which population
censuses were conducted and the census figures represent the population
as of April. The population estimates for the months after April 1960
were produced by extrapolating the 1980 census figure with the average

monthly compound growth rate implied by the county population projection
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made by Bureau of Business Research of University of Nebraska-Lincoln
for 1985.1°

Monthly total personal income for 1970-1980 was estimated by
adjusting the annual total personal income figures with the monthly
adjustment factors calculated from the Lincoln SMSA annual wage earnings
by industry and the monthly employment by industry for January 1970-
December 1980.'® Due to the lack of industrial wage and employment
data, monthly income adjustment for 1968-1969 and 1981-1982 was
conducted with the Lincoln SMSA manufactufing employment and average
hourly wage rate for the month.17 Since the 1982 annual total personal
income figure for Lancaster county-is not available yet, the 1982 per
capita personal income for Lancaster county was estimated by multiplying
the 1982 U.S. per capita personal income with the 1981 ratio of the

Lancaster per capita income to the U.S. per capita income, 0.984.18 The

153, A. Deichert, Nebraska Population Projections 1990-2020
(Lincoln, Nebraska: Bureau of Business Research, University of Nebraska-
Lincoln, November 1982), p. 123.

16The industrial wage earnings by Lancaster county are reported
in U.S. Dept. of Commerce, Bureau of Economic Analysis, Local Area Personal
Income 1970-1975, Vol. 5, August 1977, p. 252 and Local Area Personal
Income 1975-[980, Vol. 5, June 1982, p. 138. The monthly industrial
employment figures are published in Nebraska Dept. of Labor, Division of

Employment, Employment Review, monthly issues for January 1970-
December ]1980.

17The monthly manufacturing employment and hourly wage data
were collected from Nebraska Dept. of Labor, Division of Employment,
Employment Review, monthly issues for January 1968-December 1969;
ang Nggraska Dept

pt. of Labor, Division of Emgloyment, Nebraska Work Trends,
monthly issues for January 1981-December 1982.

18The 1982 per capita persoﬁal income for the U.S. is reported in
U.S. Dept. of Commerce, Bureau of Economic Analysis, Survey of Current
Business, Vol. 63, No. 8 (August 1983), p. 50.
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total personal income figure for 1982 was then obtained by multiplying
the per capita income estimate with the population estimate for the year.
In order to be used in a rational consumption model, all oi the
economic variables measured in nominal terms were transformed into real
terms. The consumer price index for ail items was used to deflate the
price variables while the total personal consumption expenditure deflator
was used for real personal income. After being deflatéd into real terms,
the economic variables still require a further processing to obtain the
proper values for the model estimation. Using the formulas presented in
the previous section, the 12-month weighted moving average values were
calculated for the electricity and natural gas prices, the purchase cost
of capital stock and the per capita real personal income. Since the
National Weather Service does not report the values of temperature-humidity
index and wind chill, the two composite weather.variables were calculated
from air temperature, dew point temperature and wind sbeed by using the
formulas shown in the earlier section. The 24-hour moving average values
of the weather variables were also prepared by using the hourly weather

data compiled for Lincoln, Nebraska.

C. Results of Model Estimation and Interpretations

The coefficients of the empirical model equations were estimated
with the time-series data of 168 monthly observations for 1969-1982.
A general computer program for econometric analysis called "SHAZAM" was

utilized in the model estimation and statistical test procesé.19 The

19K. J. White, "A General Computer Program for Econometric Methods
- SHAZAM," Econometrica, Vol. 46, No. 1 (January 1978), pp. 239-240; and
K. J. White, SHAZAM - An Econometrics Computer Program, Version 4.5.

(Vancouver, B.C., Canada: University of British Columbia, January 1983).
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estimates of the model coefficients are provided in a equational form,

along with the t-statistics in parantheses. Summary statistius for the
estimated equation are shown below the equation. The summary statistics
include degrees of freedom (df), multiple correlation coefficient adjusted
for degrees of freedom (F?), standard error of regression (59) and Durbin-

Watson statistic (DW).

1. Short Run

The model equation was first estimated by Ordinary Least-Squafes
(OLS) estimation method. However, the estimated equation revealed an
autacorrelation problem. - The Durbin-Watson statistic calculated for the
residuals was 1.0l while the lower limit for the significance level of
5 percent is 1.57. One practical solution for the first-order auto-
correlation problem is_the use of Cochrane-Orcutt interative process.z,0
The short-run model equation was then reestimated by taking a Cochrane-
- Orcutt procedure with the value of.convergence. 0.001. Tne estimation

results are as shown below:

lrlDt = 4.7766 - 0.00005 PEt-ZI"'PEt-I + 0.01296 DW,DTEMP,, In NCt

(61.871) (-0.024) (3.700)

+ 0.00546 DW,DATEMP,, In W24, + 0.03190 Dy In (THI -,75)t
(2.105) (0.738)

+ 0.02886 Dg In (THI - 75)t + 0.10179 DS1n (THI - 75)t
(0.901) (7.038)

+ 0.07006 Dy In CDDZ4t + 0.14264 Dgln CDDZ4t
(3.707) (10.563)

+0.15826 DS1n CDD24, + 0.04028 T -
(13.568) (10.335)

20Johnstori. Econometric Methods, p. 262.
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df = 157
® = 0.9377
S; = 0.07686
DW = 2.234
6, = 0.55471
(8.641)

where 5, is the estimate of the first-order autocorrelation coefficient
and the t-ratio for the coefficient is provided in paranthesis. All of
the summary statistics were calculated for the original equation, not
the first-difference equation. According to the Durbin-Watson statistic
calculated after the second regression, the serial correlation in the
error term was mostly first-ordered and the problem is not significant
any longer. The explanatory power of the equation indicated by Fz is
sufficiently large and the standard error of regression is reasonably
small. Although the signs of the coefficient estimates are as expected,
electricity price, THI in April and THI in May turn out to be insigni-
ficant to explain the level of peak load. The absolute magnitudes of
the t-ratios and the coefficients for those variables are very small.
Otherwise, the model specification produces fairly acceptable estimation

results.

An analysis of the regression results reveals the following
facts: _
1) Fluctuations of the monthly peak demand in the short run are mainly
caused by changes in the weather conditions. 4
2) Price of electricity has a negligable impact on the peak load. Values
- of the t-statistic and the coefficient of the price variable are

close to zero.
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3) Regression results for the weather variébles are consistent with
the findings reported after the preliminary study of weather-load
relationship.

4) Separate estimation of the coefficients for the summer weather vari-
ables in April and May is justified. The estimated coefficients for
the transition months are significantly smaller than the coefficients
for the mid and late summer months, because only a part of the exist-
ing air cbnditioners in the utility system are being operated in
April and May. The separate coefficient estimation also proves tﬁat
THI at the time of peak demand has a neglegible influence on the
levels of April and May peak loads. Although the temperature vari-
able, CDD24, still exerts a significant impact, the mild and sporadic
nature of April and May weather makes the impact of humidity
ineffective. '

5) The yearly trend variable, T, seems to be playing a proper role to
digcount the secular growth of the peak load accrued by the increase
in appliance stock over the period of the time-series data. According
to the estimated coefficient of T, the weather-normalized load has

been growing at an average annual growth rate of 4.03 percent.

2. Llong-Run Adjustment
Weather-sensitive portion of the monthly peak load was removed
from the actual load history by using the actual weather values and the
coefficients of the weather variables estimated in the previous step.
Once the data series of D{ and Dé-l were established, the long-run adjust-
ment model equation was estimated by the OLS estimation method. The

regression results are provided below:
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InD{ = ~14.6470 - 0.08252 In PE, + 0.153051n PE,_, + 0.05227 In PG,

t
(-4.625) (-0.585) (1.065)  (1.858)
+0.69863In [(1 + r, )PK,J* + 0.66210In v: + 2.4139 In POP
(2.198) | (3.513) (3.754)
+0.286351n D} |
(3.809)
df = 160
® = 0.8724 -
55 = 0.0669
h = -0.076

where h is Durbin h statistic. Since the model equation has a lagged
* dependent variable on the right-hand side, the conventional durbin-Watson

test is biased towards the value for a random disturbance .21

-As the
autocorrelation coefficient, p, tends to unity, the asymptotic bias tends
to the value of .I .0 minus the coefficient of Df:-l‘ A large sampie test
for serial correlation when lagged dependent variables are present can
be done by computing Durbin h statistic .22 The statistich is then
tested as a standard normal deviate. Because h = -0.076 > -1.645, one
would accept the hypothesis of no autocorrelation at the 5 percent level.
| From U, = goPEng:’
K, = 8oPER pefx pKB: Y2 ofs and
K = (K (k)P 7A

_21Johnston, Econometric Methods, p. 307.

221hid., pp. 312-313. The formula for Durbin h statistic is

h=r I—'L—m where r = | - %d. d = conventional Durbin-Watson statistic,
- nv

n = number of observations, and Q(b) = estimate of the sampling variance

for the coefficient of the lagged dependent variable.
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>0, «,<0, (32>0, BO>0, B1<0, 82>0, 83<0, B4>0, 85>0 ('lf Ot = POP) and

a
0 1
0<x<l. Then, signs of the long-run adjustment model coefficients should be

*
W= + 181 <0 for PEt

*
v = -+ Aal >0 PEt-l
*

% = XBZ >0 PGt
*
¥ = ABy <0 [(1 + 1, )PK,]
*
79 = l - l >0 D£-1.

With one exception of the capital stock price variable, all the coefficient
estimates have correct signs. One important factor responsible for the
positive sign of the appliance price variable is the technical innova-
tion achieved by the electric appliance manufacturing industry. Since
the 1973-1974 energy crisis, a gréat deal of energy efficiency improve-
ment has been achieved by the appliance manufacturers. Furthermore, real
purchase costs of the appliances also declined. Accofding to the
time-series data compiled for this study,.the'real purchase cost index
was 1.023 in January 1969, but gradually decreased to 0.711 by December
1982. Conservation thfough capital investment, such as solar energy,
more frequent maintenance of the appliances and increased thermal integrity
of buildings, has strengthened the positive relationship between the '
capital stock price variaple and the energy use requirement of the
capital stock.

In order to measure the net effect of the appliance price
variable, an annual trend variable was added into the model. The trend

variable is purported to explain the decrease in the load capacity of
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capital stock attained by the efficiency improvement and conservation
activities taken after the energy crisis. The base yéar of ;he trend
variable was selected by a search proéess--taking each of the years
after 1973 as the base year and proceeding as follows:

1) The trend variable was calculated by using the formula,

In(TR..).. =1n(cy - by)

by ‘cy
where by = base year, cy = current year and (TRby)cy = 1.0 if cy<by.

2) The trend variable was added into the model and the model coefficients
were reestimated.

3) The steps 1) and 2) were repeated until the absolute magnitude of
the t-ratio for the trend variable became sufficiently large. After
the search process, it was found that the conservation activities
and the appliance efficiency improvehent provoked by the energy crisis
had started to draw 2 significant amount of the system-wide load
reduction from 1976.
' The OLS estimation results for the new model equation are as

follows:

InD; = -12.6910 - 0.10851 In PE, + 0.17613 1n PE, _, + 0.09555 In PG,

(-4.235)  (-0.820) (1.306) (3.429)
-0.08616 In [(1 + rt)th]* + 0.88236 In Y: + 1.7614 1n POP
(-0.258) (4.834) (2.850)
+0.186911n D! | - 0.07261In TR,gys
(2.545) (-4.801)

df = 159

® = 0.8879

Sy = 0.06276

h = 0.655
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where TR1975 = yearly trend térm for the conservation and efficiency
improvement which is equal to the year minus 1975. With the trend vari-
able added into the model, all of the coefficients are estimated with
the correct signs. The annual trend for declining capital stock due to
the conservation measures and efficiency improvement is fairly evident
and overall explanatory power of the model equation is slightly improved.
The capital stock price variable now has a negative coefficient but
significance of the price variable in the model is negligable. Insigni-
ficance of the capital stock price variable is due to durability of the
capital stock. Higher applianée price is normally expected to discourage
new additions to the capital stock. However, the increased price does
not necessarily mean a reduced capital stock because of the durability
of existing capital stock. In some cases, the higher appliance price
could maintain the higher load levels from the existing capital stock
by deterring the replacement of obsolete units with more energy efficient
units.

Besides the problem of low t-ratios, the estimated coefficients
of the current and lagged electrici'ty price variables lead to a wrong
sign for a restricted parameter, B - From the equation (15) of chapter

111,

71 = G1 + l81. 12 = "61 + 101 al'Id A= l - 79-

Therefore,
Y T4Yq + T
Yg_ '\'9 - 79 -

Because oy is the electricity price elasticity of the short-run
demand and By is the electricity price elasticity of the desired capital

stock, both of the estimated coefficients, 51 and 31 should have negative
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values. Since ¥o=- 0.10851, ?2 = 0.17613 and ?9 = 0.18691,
& = -0.94233 and 81 = 1.02549. The sign of 31 is correctly negative

but the positive value of 81 is clearly wrong. For the value of 31 to
1
be less than zero, ?1 --éé

3
- 9 _
The long-run adjustment model was reestimated without the capital

stock price variable. The reestimation results are reported below:

InD} = -13.3480 - 0.10540 In PE, + 0.17834 In PE;_| + 0.09588 In PG,

(-8.902) (-0.802) (1.329) (3.454)
+0.876281n Y, + 1.89761n POP + 0.186551n D |
(4.857) (6.235) (2.548)
- 0.070771n TRyg7e
(-5.353)
df = 160
@ = 0.8885
5 = 0.06258
h = 0.671

While the overall fitness of the model gets slightly better, virtually
no improvement is seen for the estimated coefficients of the electricity
price variables. The primary reason for the poor t-statistics and the
distorted values of the estimated coefficients is a collinearity between
PE: and PE:_I. Because the time gap between PE: and PE::__l is only a
month, PE:_l closely tracks PE:. This seems to be an inevitable weak-
ness of a monthly model.

Some useful inference about the electricity price effecf can be
drawn from the short-run and the long-run adjustment model estimation

results for the electricity price and the natural gas price.variables.
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The price of electricity has dual effects on the levelrof peak load.

One effect is through a change in utilization rate and the other effect
is by way of a change in capital stock. As the time duration incfeases
from the short run to the lon-run adjustment period, the electricity price
- elasticity of the utilization rate at the time of peak demand becomes
larger but the level of the price effect remains insignificant. If the
electricity price has any notable impact on the peak load lovel, it is
through a substitution between electric and natural gas appliances. For
example, the average real price of natural gas paid by the residential
customers in Lincoln, Nebraska increased 87.1 percent from 93¢ per Mcf

in 1969 to $1.74 per Mcf in 1982. Meanwhile, the average real price of
electricity paid by the séme customers rose only 14.8 percent from $16.24
per MWh in 1969 to $18.64 per MWh in 1982. As a result, the percentage
of electric space-heating customers in the residential sector became

more than doubled from 2.1 percent to 5.7 percent for the same period.
This appliance substitution effect is confirmed by the significance of
the natural gas price variable in the model. The current electricity
pfice variable, PE:, does not show much significance for the appliance
switch, probably because the real price of electricity in Lincoln had
been very stable.

An appropriate way to explain the appliance substitution effect
is through the use of the relative price of electricity to the natural
gas price. The data is not readily available, but the addition of the
relative purchase cost of the electric appliances to the natural gas
~ counterparts would make the model specification more palusible. Combining

PE: and PG: to create the relative price variable and giving up PE:_l
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which originated from the utilization rate équation, the long-run adjust-
ment model was regressed again. The regression results for the revised
equation are presented below: ‘ l

InD} = -12.8610 - 0.00649 In (PE,/PG,) + 0.96021 In Y}

(-8.627)  (-1.801) (5.793)
+ 1.65521n POP + 0.234581n D | - 0.04647 In TR,q e
(5.675) (3.088) (-3.826)
df = 162
e - 0.8810
Sy = 0.06466
h = -0.890

Compared with the previous model equation, all of the coefficients in the
new model equation have correct signs and sufficiently large t-statistics
for significance maintaining about the same levels of B and 59.
reiatively low values of the coefficient and t-ratio for the price
variable still may be a concern. But, the small price effect can be
easily explained by durability of the appliances. The appliance conver-
sion induced by a change in the relative fuel price is checked and slowed
by the durability of capital stock.

The weighted moving average income and the population of the utility
service area are two important factors determining the level of peak
electric demand. Since the model equation is double-logarithmic, the
estimated coefficients directly measure the long-run adjustment elasti-
cities of the beak load in terms of the corresponding economic and
demobraphic Qariables. As indicated earlier, the peak demand is quite

inelastic with respect to the electricity and natural gas prices.
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Income elasticity of the demand is close to 1.0 and it tells that the
peak load will grow at the same rate of the income groﬁth. The peak

load demand will increase faster than the population growth. The“capital
stock-adjustment process is evidénced by the positive coefficient and a
sufficiently large t-ratio of the lagged dependent variable. The adjust-
ment factor, A, is estimated to be 0.76542. The annual trend for the
conservation activities and the appliance efficieﬁcy improvement is

significant and expected to continue for a while.

3. Long-Run Equilibrium

The long-run equilibrium elasticities of the peak demand are
estimated by linearly relating to the long-run adjustment model coeffi-
cients. Since PE:;_1 and PK: have been removed from the long-run adjust-
ment model, the long-run equilibrium model specification is accordingly
revised into,

D' P* * *

In e = 8 + 63ln ( Et/PGt) + asln Yt + 661n POPt + e

TR1975 is excluded because the conservation and efficiency improvement
will be phased out in the stock equilibrium stage. The long-run
equilibrium elasticities of the load demand, &'s, are then obtained by
dividing the lorg-run adjustment model coefficients with a:

65 = 0.00643 _ 4 oosss
0.76542

o = 0.96021 _ 4 o545
0.76542

8 = 522 - 2 1625,
0.76542

While the income elasticity- of the peak demand becomes greater than 1.0
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in the long-run equilibrium, the price elasticity is still minimal. The

population elastiéity gets fairly large.

D. Forecasting Evaluation and Policy Implications

The peak load model equations estimated in the previous section
are ready to be used for the load forecasting. In this section, the
forecasting performance of the demand model is evaluated by simulating
the monthly peak loads in 1983 and comparing the estimated values with
the actual loads. The model equations are also used to produce the
annual peak load forecasts for 1984-2000. The modelinﬁ and forecasting
results are then utilized to draw some policy implications for power

supply planning, peak-load and direct load control.

1. Preparation of Input Data for Forecasting
Since the econometric model of monthly peak load employs econo-
mic, demographic and weather variables to explain the growth and monthly
variations of the load, the model forecasts are directly affected by the
assumptions for the future growth trends of the input variables.

a) Population. Lancaster county population estimates for

1983-2000 are based on the monthly average compound growth rates projected
by the Bureau of Business Research (BBR) in its population forecasts for
the selected years of 1980-2000.23 The annual average compound growth
rates assqciated with the population estimates are 1.020 percent for
1983-1985, 0.818 percent for 1985-1990, 0.845 percent for 1990-1995 and
0.810 percent for 1995-2000.

23Deichert, Nebraska Population Projections 1990-2020, p. 123.
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b) Per capita real personal income. The annual total real

personal income for 1984-2000 were prepared on the basis of the average
annual growth rates projected by the Bureau of Economic Analysis (BEA)
in its forecasts of the Lincoln SMSA income growth for the case of a

moderate change in the industrial share.24

However, some adjustment to
the BEA's forecasts was made because the projected growth rates look too
high in light of a thirteen-year (1970-1982) history. While the average
anndél growth rate for 1970-1982 was 2.88 percent and the average growth
rate in the future years is not expected to be higher than the historical
rate, the BEA's projected growth rate for 1978-1985 is 3.95 percent.per
year. The over-projection is due to the fact that the BEA's income
projections were produced before the economic recession of 1980-1982 and
the 1978 actual figure was used as a base for compounding. Therefore,
the historical average annual growth rate, 2.88 percent, was assumed for
1984-1985 and the average annual growth rates for thé remaining years

in the forecasting period were projected by proportionally reducing the
BEA's projections with the ratio of 2.88 to 3.95. The adjusted forecasts
of average annual growth rates are 2.56 percent for 1985-1990 and 2.11
percent for 1990-2000. Monthly income estimates for 1983 were prepared
by using the near-term forecasts of quarterly growth rates published by
Manuafcturers Hahover Trust Company.25 Annual average income forecasts
were then generated for 1984-2000 by applying the average annual growth

rates projected in the previous step to the 1983 annual inéome estimate.

24U.S. Dept. of Commerce, Bureau of Econonic Analysis, 1980
OBERS BEA Regional Projections, Vol. 3, July 1981, p. 138.

25Manufacturers Hanover Trust Co., Economic¢ Report, monthly
issue for June 1983, pp. 2-3.
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Monthly income forecasts for 1984-2000 were obtained by adjusting the
annual average incoﬁe forecasts with tﬁe fifteen-year (1968-1982) average
monthly adjustment factors. Next, monthly per capita real personal income
projections were produced by dividing the total income forecasts with the
population estimates. Finally, theviz-month weighted moving average
values were calculated with the monthly per capita real personal income
projections.

c) Prices of electricity and natural gas. Actual data were

compiled for the average real prices of electricity and natural gas in
the months of 1983. Through a discussion with the Resource and Trans-
mission Planning Department of LES about the prospects for capacity sales,
future costs of fuel soubces and debt coverage schedules, the real price
of electricity is projected to grow at an annual rate of 3.0 percent for
1984 -1985 and no growth after 1985. Future growth rates for the real
price of natural gas was éstimated by analyzing the future rate increase
schedule announced by Northern Natural Gas Co., the natural gas whole-
saler to Lincoln SMSA, and the results of the fecent study on future fuel
availability and prices by the Fuel Cell Users Group.26 The estimated
annual rates of increage in the real price of natural gas are 5.0 percent
for 1984 and 3.0 percent thereafter. The electricity and natural gas
price forecasts were then used to calculate thcllz-month weighted moving

average prices for each month of the forecasting period.

26The Fuels and Fuels Processing Subcommittee, Report on the
Availability and Prices of Alternative Fuels to Suppl Euel CelT Power
Plants iﬂasﬁinﬁfon. D.C.: The Fuel Cell Unsers Group of the Electric

UEiTity Industry, July 1983), p. 7.
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d) Weather values;' The actual weather data for 1983 is avail-

able from the National Weather Service in Lincoln, Nebraska. The fifteen-
year (1968-1982) mean values of the weather variables are used as- the

normal values for the forécasting period.

2. Forecasting Evaluation

Weather-sensitive components of the monthly peak loads in 1583
were simulated by using the estimated-coefficients of the weather vari-
ables in the short-run equation and the actual monthly weather values.
Weather-independent components of the loads were simulated by applying
the prepared input values to the long-run adjustment model equation
estimated in the final regression. The model estimates of the 1983
monthly peak loads were then obtained by combining the weather-sensitive
components and the weather-independent components separately sinuiatied
for each month. The ex post forecasts of the monthly peak loads are

compared with the actual values as follows:

Month  Actual Load (MW) Estimated Load (MW) Forecasting Error (%)

1 226.0 218.9 | -3.14
2 225.0 216.5 -3.78
3 219.0 208.6 -4.75
4 216.0 1949 -9.77
5 221.0 253.9 14.89
6 357.0 371.3 4.01
7 412.0 415.9 0.95
8 428.0 427 .2 0.19
9 402.0 402..1 0.03

10 204.0 194.5 -4.66
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Month  Actual Load (MW) Estimated Load (MW) Forecasting Error (%)
11 235.0 222.8 -5.19
iz 271.0 232.0 -14.39

The mean absolute error percentage of the estimated loads is 5.48. This
seems to be within a reasonable range. However, consistent underestima-
tion of the winter-month loads is a problem.. This bias of the modél

" estimates was found to be caused by three unusual'things happened in the
utility service area during the year of 1983. A recent survey done by

LES revealed that

1) an extraordinarily large increase in the number of residential
dwelling units with electric space and water heating produced an
extra weather-sensitive load of approximately 2,050 KW,

2) over 5,000 portable electric heaters were sold with a total estimated
load of over 7.000 KW comparéd with only 600 units with a combined
load cf 900 KW sold in 1972, and

3) three large commercial customers had converted to electric space
heating for a total estimated load of 200 KW as a result of the

promotional efforts made by LES.27 |

Therefore, over 9 MW of extra load in electric heating equipment was sold

and installed in the system during 1983. To accomodate this type of

unusual lcad growth, the model needs a heating

se .t

end-ice variahle tno he
incorporated with the winter weather variables. I[f the data is available,
a space-heating saturation variable weighted by load capacity of the

appliances would be a good candidate.-

27Lincoln Electric System, "Many Factors Caused LES to Establish
New Winter Peak," LES Talk, Vol. 12, NO. 1 (January 1984), pp. 4-5.
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The monthly peak load forecasts for 1984-2000 were generated in
the same way as the 1983 load simulation except that the normal weather
values were used. The weather-normalized forecasts of annual peaks for

1984-2000 are presented below:

Year Annual Peak Demand Forecast (MW)
1984 415.3
1985 427.2
1986 437.8
1987 449 .1
1988 460.3
1989 472.7
1990 485.9
1991 498.5
1992 : © o 511.2
1993 524.2
1994 537.6
1995 551.4
1996 565.5
1997 580.0
1998 v595.5
1999 610.7
2000 626.9

The'projected average annual growth rate of the peak demand is 2.86
percent for 1984-1985, 2.61 percent for 1985-1990, 2.56 percent for
1990-1995 and 2.60 percent for 1995-2000. Compared with the historical
average annual growth rates, 3.68 percent for 1973-1978 and 3.01
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percent for 1978-1983, the prcjected load growth rates seem to be

reasonable.

3. Policy Implications of the Empirical Results

a) - Power supply planning. Along with the forecasts of system

inlet energy, the projected levels and seasonal variations of peak load
guide a utility system extensively for generation capacity planning, power
generation and purchase scheduling, financial analysis including rate -
makings, etc. In the previous section, the annual peak loads for 1984-
2000 were estimated by choosing the maximum value for each year from

the monthly load forecasts generated through the model developed in this
study. Throughcut the forecést years, the annual peak is expected to
occur in July. The annual peak load forecasts, for example, provide a
direct use for the capacity planning. According to a recent report on
LES' power supply capacity, sum of the existing and committed power supply
resources is about 672 MW in the summer months (May-October) and 626 MW in
the winter months (November--April).28 On the other hand, the expected
power supply requirement which is the sum of the projected annual peak,
transmission losses (19 MW), reserve requirement and participation sales
to the Mid-Continent Area Power Pool (approximately 21 percent of the
projected peak) is 669 MW in 1994 and 684 MW in 1995. Therefore, the
demand model foretells that the utility system have a power shortage

after 1994 without any increase in generation capacity or power purchase
committment. Growth rates of the projected peak loads are sensitive to

different assumptibns concerning the growth rates of the economic and

28Lincoln Electric System, Power Supply Division, Load and
Capacity Summary, August 1983.
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demographic factors included in the model. Such uncertainties in fore-
casting the future loads should be considered.in the capacity planning.
Given these uncertainties, flexibility and the degree to which a capacity
expansion program can be slowed or accelerated are as important as the
problem of minimizing the costs of meeting a future load requirement.
Utility system planning is therefore to be done through a stochastic

optimization framework.

b) Load management. A critical lesson learned from the 1970s
is the importance of efficient utilfzation of non-renewable energy
resources. A key challenge of the electric utilities in the 1980s will
be a successfull integration of the traditional supply planning and
operations with the emerging measures of actively influencing the level
of demand for the mutual benefit of the utilities and their customers.
The demand-side management of the electric load can be operated by a
price mechanism or 3 direct load control. The primary objective of the
load management is to shift the time of use of electric power and reduce
energy consumption during the utility's peak-load period. A reduction in
the utility's peak load lowers costs of generating and distributing
electricity by either detering construction of a new power plant or
allowing the substitution of base-load generating plant (which involves
a large fixed investment but uses less costly fuel sources) for peak-
load generating plant (which usually burns expensive petroleum-based
fuels). According to the argument made above, the demand-side manage-
ment of the load appears to be clearly beneficial. Inappropriate appli-
cation of the load management, however, can be harmful to the economies of

the utility and its customers. Therefore, a systematic assessment of
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the costs and benefits of proposed load management measure is necessary

before implementing the measure.

Peak-load pricing is an indirect measure to reduce the system's
peak demand. Although welfare aspects of the peak-load pricing has been
discussed by many theoretical studies, a utility-specific impact of the
pricing measure should_be predicted by analyzing the empirical estimates
of the eleciricity price elasticities. The monthiy model estimates of
the price elasticities for all of the three time horizons consistently
show that the peak load demand is highly inelastic. The measured price
elasticities were close to zero and the price variable is even insignifi-
cant in the short rﬁn when the price elasticity of the load is reduced
by extreme weather conditions. Meanwhile, the utility's recent estimates
of the price elasticities of kilowatt-hour sales are much higher than the
model estimates of the price elasticities of peak load.29 The'price
elasticities of residential and commercial energy sales which take more
than 70 percent of total sales are estimated to be 0.53 for the summer
residential, 0.21 for the winter residential, 0.57 for the summer commer-
cial and 0.45 for the winter commercial energy sales. Besides higher
elasticities, the price variable is fairly significant in the energy sales
modél. The fact that peak demand price elasticities are significantly
less than the price elasticities of energy sales implies that increased
peak price with decreased off-peak price will increase kilowatt-hour sales,
both absolutely and relatively to system peaks. Thus, the primary effect

of peak-load pricing will be a reduced fuel cost for power generation

29Lincoln Electric System, Power Supply Division, 1983 Econo-
metric Forecasting of Energy Sales, Load Requirements and Number of
Customers, November 1983, pp. 29-35.
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through a shift in the mix of ‘capacity additions toward a base-load plant.
In addition, the peak load pricing will increase the total revenue of the
utility because a price increase in the inelastic portion of a demand
curve and a'price decrease in a more elastic portion of the demand curve
increase total revenue. The extremely low price elasticities of the

peak load demand casts a doubt about the effectiveness ofrthe load controi
through price mechanism. A fairly big difference between peak and off-
peak prices is required to see any noticeable reduction in the peak load.
The price differential, however, should be cost-justified, in order to
maintain a rate equity between classes of customers and a fair return on
investment for the utilities.

Many utilities are currently faced with staggering capital
investment requirements for new plants, significant fluctuations in the
load growth, declining financial performance and regulatory and consumers
concern about rising prices. For such utilities, direct load control
can provide an effective means to reduce or postpone construction of
new generating facilities. Electric water heater and residential central
air conditioner are two prime candidates considered for a load control.
From the utility point of view, direct load control affects both costs
and revenues. While the load management measure lowers generation and ™
capacity costs by inducing a more favorable load shape, thera are also

“costs incurred from purchase and installation of control devices and
program implementation. A cost-benefit analysis will determine the
present value of changes in net revenue by implementation of the program.
From the participating customer's point of view, the load management

program offers opportunities such as a lower quality of service at a
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lower rate (industrial interruptible service) and about the same quality
of service at a lower-rate (residential air-conditioning or water heating
load control where the customer does not perceive that his load is being
controlled). If a load control program is mandatory, it can also result
in some customers having lower quality service at the same or a higher
price. A cost-benefit analysis takes these possible effects into account
by determining the amount of income a customer would have to gain or lose
in order to be as well-off under the load managemént program as‘without
the program. Required income changes must be determined for a substantial
number of years and discounted to obtain the present value of customer's
benefits or losses.

To evaluate the effectiveness of a load control system and
technique, it is necessary to estimate the amount of KW demand reduction.
For this purpose, an end-use (or engineering) model is definifely prefer-
able to an econometric model. Given the lack of data for end-use modeling,
however, a weather-load model similar to the short-run model developed
in this study can provide a good analytical tool for the cases of weather-
sensitive load control. If a fixed-time cycling of residential central
air conditioners is considered as a load control measure, the weather-load
model will be regressed for the central air-conditioning residential
customers. The estimated coefficients of the weather variables will be
used to simulate the total air-conditioning load without control under
the weather conditions at the time of peak demand. Then, the amount of
load reduction with a given time-based control can be estimated by
multiplying the total air-conditioning load with the corresponding rate

of interruption. Finally, an optimum level of the interruption rate will
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be determined by a cost-benefit analysis and the level of customers'

tolerance.



CHAPTER V
CONCLUSIONS

Forecasts of peak load (KW) and energy demand (KWh) are two key
elements for electric utility power supply planning. Until recently,
most of the modeling studies on electricity demand have concentrated on
the estimation of energy demand. Because capacity is built to meet
system peak demand, peak-load forecasting is equally important fcr the
utility planning purposes. Since there has been very little empirical
analysis that provides detailed investigations of the determining factors
of peak demand, the desire of utility planners to develop an effective
and well-defined method of peak load modeling has been increasing over
the recent years.

Despite a short history, a wide variety of methodologies have
been tested for peak load modelirg. Depending on the explanatory vari-
ables used for modeling and the design of model structure, direct modeling
methods are classified into time-series approaches, end-use approaches,
econometric approaches and hybrid approaches. Time-series models require
a minimal amount of the data to be analyzed but do not provide any insight
into causality. Given the expected changes in future trends of causal

124
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factors, time-series models are generally appropriate for short-run

forecasting situations. End-use models have the capability to explicitly
evaluate various conservation policies, load management programs and the
impacts of new technology on electricity demand. However, due to a huge
data requirement and intense modeling efforts,-most electric utilities
are reluctant to undertake the development of end-use models. Another
disadvantage with the end-use model is the difficulty in capturing price
and income effects on the load demand. Econometric modeling is the most
popular method and requires only modest efiorts for data development and
model estimation. Evaluation of the modeling results with well-recognized
statisticc] criteria is another advantage. Meanwhile, the models are
aggregate in nature and can not provide the detailed analyses of conser-
vation policies and load management measures. Econometric models are also
limited in their ability to respond to abrupt change and new technolcgies
for energy use.

Since none of the three modeling approaches can provide an
ideal solution, there have been vigorous efforts to develop an integrated
model by combining them for the advantéges inhebent in each of the
methods. The most promising and desirable way to model the peak load
demand seems to be an integrated end-use/econometric approach. The
integrated quels exhibit structural details which is the strength of
traditional end-use approach while maintaining firm behavidral foundations
in the economic theory of consumer choice. Since the models treat the
major appliances individually and project market penetrations, operating
efficiencies and utilization patterns of the appliances, they allow

explicit représentation of conservation programs, load control measures
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and new technologies. The integrated models are also expected to produce
a more accurate forecast because the disaggregated method of end-use
modeling is supplementary to the aggregated analysis of econometric
modeling reducing the error resulted from aggregation across end use,
building type, equipment age, etc. On‘the other hand, enormous data
requirements and model estimation efforts discourage implementation of
the hybrid modeling approach. The end-use/econometric modeling approach
has an obvious problem of affordability when considered for use in.a
utility environment.

The end-use/econometric model is viewed as a special case of
the stock-adjustment model which belongs to the category of econometric
modeling approaches. Since the integrated modeling approach is a dis-
aggregated version of the stock'-adjustment modeling method, the stock-
adjustment model has the potential to evolve to a microeconometric end-
use model by increasing the level of disaggregation as more end-use and
load research data become available. In addition to a modest requirement
for data and for modeling efforts, an advantage of the stock-adjustﬁent
model over the integrated model is that sensitivity analyse§ of the
explanatory variables are relatively straightforward because the econo-
metric model handles the system peak load as an aggregate, not through
the sectoral energy sales models, as the integrated modeling approach
does.

A stock-adjustment model of peak load demand has been developed
in fhis study. The model is macroeconometric and divides the entire
process of electricity deﬁand formation into: 1) the short run

characterized by variable utilization rates but fixed appliance stock,
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2) the long-run adjustment featured by variable utilization and appliance
stock adjustment and 3) the long-run equilibrium stage. Since thekmodei
is aggregate in nature and does not require detailed appliance stbck data,
it is not difficult to implement in a utility environment. In the double-
log ﬁodel developed in the study, the short-run demand for electricity -
at the time of peak has constant weather elasticity but variable electri-
city price elasticity. The price elasticity of the uncompensated demand
for electricity gets larger with an increase in the price of electricity
itself. The long-run adjustment model becomes a combination of the state-
ad justment model of Houthakker and Taylor and the geometrically distributed
lag model of Koyck. The long-run adjustment model involves an overidenti-
fication problém with the iagged weather variablie coerticients. 1he
problem can be solved by removing the weather-sensitive portion from the
ioad demand or weather-normalize the demand before estimating the model.
Since the model is double-logarithmic, elasticities of the demand are
directiy represented by the coefficients of the corresponding variables.
In the long-run equilibrium, the actual level of the appliance stock
reaches a desired level. Because of the perfect adjustment of the
appliance stock, elasticity of the load demand tends to be larger in
the long-run equilibrium stage for the economic and demographic factors
included in the model. Changes in weather conditions affect the level
of peak load py changing the weather-sensitive appliance utilization
rates. Since weather variables are believed to have no impact on the
volume of existing appliance stock, weather elasticities of the demand

are held constant throughout the three time horizons.
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In order to be used practically, the theoretical model speci-
fications must be adjusted and refined. Assuming rational comsumption
behavior, all the nominal variables are converted into real terms; When
elaborated for real world situations, the concept of dynamic expectations
is added into the long-run models by using the l12-month weighted moving
average values for price and income variables. Although the price vari-
ables in the demand model are average revenues, the distributed lag
structure of the real values prevents the problem of simultaneity and
identification. The price variables are lagged by a month to take account

~of the time lag between the actual use of energy and the billing. A

great deal of effort has been made to detail the weather-load relations.

The stock-adjustment model of peak demand nas been estimated
for the Lincoln Electric System (LES) using a time-series data for January
1969-December 1982. Since the use of time-seriés data for the short-run
model estimation has a direct conflict with the fixity of capital stock
assumed in the short run, the load growth induced by the change in appli-
ance stock is separated by utilizing a yearly growth trend variable.

After evaluating the empirical estimation results, the following conclu-

sions are drawn:

1) Fluctuations of the monthly peak demand in the short run are mainly
caused by weather variations.

2) Due to a partial operation of existing air-conditioners, summer-weather
variable coefficients for April and May peak demand are significantly
lower than the same coefficients for the mid and late summer months.

3) Air temperature is the most powerful weather variable determining the

level of monthly peak load. In addition, wind speed has a significant
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impact on the winter-month loads while humidity has a vital effect

on the mid and late summer-month loads.

The importance of both cold and warm weather build-up effectsfis
demonstrated by the significant effect of thé 24-hour moving average
temperature variables. Although wind speed shows some accumulation
impact on the heating load in extremely cold weather situations,
humidity does not seem to have a noticeable build-up effect on the
cooling load. |

No winter weather build-up effect is detected in seasonal transition
months, April and October. However, the summer weather storage effect
is still significant in these two swing months.

The conservation activities including improvements in appliance
efficiency induced by the energy crisis has resulted in a considerable
amount of load reduction since 1976.

Price elasticity of the peak load demand is fairly low and most of
the price effect is through a switch between electric and natural gas
appliances. Price elasticity of the short-run demand is actually
reduced by extreme weather situations at the time of peak load. The
electricity price variable in the short run has the values of t-ratio
and coefficient close to zero. The relative price of electricity to
natural gas in the long-run adjustment model also shows a very low
coefficient but a significant t-ststistic.

Per capita real personal income and population of the utility service
area are two important factors determining the level of peak load in
the long run.

The appliance stock-adjustmeni process is confirmed by a positive
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coefficient and a sufficiently large t-ratio of the lagged dependent
variable in the long-run adjustment model.

10) While the income elasticity of the peak demand becomes large? than
1.0 in the long-run equilibrium, the price elasticity is still
negligable.

The forecasfing performance of the estimated model equations has
been evaluated by simulating the monthly peak loads in 1983. The perfor-
mance turns out to be reasonably good except for the winter months when
the utility system experienced some unusual growth of heating load. The
estimated model equations also have been used to predict the annual peak
loads for 1984-2000. Comparison of the model forecasts with the existing
and committed power supply resources tells that the utility system will
have a power supply shortage after 1994 without increase in generation
capacity or purchase committments. The model estimation results provide
some interesting policy implications for peak-load pricing. For example,
since the estimated price elasticities of peak load are considerably less
than the price elasticities of energy sales which were separately estimated
by the utility, increased peak price with decreased off-peak price will
increase energy sales both absolutely and relatively to system peaks.
Total revenue of the utility will increase and fuel cost for power
generation will be reduced through a shift in the resource mix toward
base-load plants. The extremely low price elasticities of the peak demand
also imply that a sharp difference between peak and off-peak prices
may be required to see any noticeable effect of the load control through
price mechanism. From andther view point, the short-run model has a

good potential to be used to analyze the impact of direct weather-
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sensitive load control programs, such as time-based cycling of residen-
tial central air conditioners.

Although the monthly péak demand modeling study has been{completed
without any mojor problem, use of a time-series data for the short-run
model estimation is still a concern.' The per capita income.variable is
considered to be a good explanatory variable for the short-run demand.

. However, inclusion of the income variable in the short~run equation will
subsequently bring a lagged income variable into the long;run ad justment
model as in the case of the electricity price variable. When a time-series
data is used, the current and the one-month lagged income variables are
.likely to have a collinearity problem. Along with the same problem between
the current and the lagged price variables, the long-run adjustment model
estimation will result in chaos. If a cross-section data is available,

an ideal case is using the cross-section data for the short-run model
estimation and a pooled cross-section/time-series data for the long-run
adjustment model estimation.

As more end-use and load research data become available, the
stock-adjustment model of peak demand can gradually evolve to an inte-
grated end-use/econometric model by increasing the level of disaggregation
for both the.utilization rate and the appliance stock. The first step to
the integrated model can be made by incorporating the weather variables
with the electric space-heating and air-doncitioning saturation variables.
Besides that weather-sensitive load takes a sizable portion of the peak
load, the seasonal component of the load is easily separable. Furthemore,
the stocks of weather-sensitive appliances and non-weather-sensitive

appliances are likely to grow at different rates. For example, income
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and pricg elasticities of the air conditioners which are near saturation
are expected to be much lower than the elésticities of other electric
appliances, such as eiectric cooking and home entertainment appliénces.
The weather-sensitive portion of the peak load in the long run will be,
therefore, more accurately explained'by directly relating the weather-
induced change in utilization rate to the variable stock of space-
conditioning appliances. The appliance saturation variables are prepared
as a composite rate which takes account of both the number of units and |
load capacity for different types of the appliances.

As an illustration, a composite saturation rate of residential
air conditioners is calculated by 1) categorizing the residential air
conditioners into central units and window units: 2) disaggregating the
type of housing served by the air conditioners into single-family and
multiple-family dwelling units, 3) assigning typical values of potential
load (KW) for each of the different types of air conditioners in different
housing types, 4) calculating the sum of potential loads for all of the
existing air conditioners and 5) dividing the total potential load of
the existing air conditioners with the maximum possible potential load.
The maximum possible potential load is estimated by.multiplying the
typical value of load capacity for a central air conditioner in a single-
family housing with the total number of housihg units in the utility
éerviée area. For the air conditioners in commercial and industrial
establishments, the composite saturation rates can be calculated by using
the information of air conditioner capacity and the floor space data of
currently air-conditioned area versus total potential area for air-

conditioning. The total composite saturation rate for the utility system
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will be obtained by aggregating the residential, commercial and industrial
saturation rates weighted with the volume of summer-seasonal energy sales
to each sectors. Once a composite air-conditioning saturation rafe is
prepared, the summer weather variables in the short-run model will be
replaced by the products of the saturation rate and the weather variables.
A composite space-heating saturation variable can be prepared in the same
way described above and can be combined with the winter weather variables
in the long-run adjustment model. The stock-adjustment model can be
furthef refined by utilizing more information about end uses, such as

the production processes and fuels used by the industrial consumers.

The preparation of an adequate data base for the end-use variables is

required to improve the model.
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