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ABSTRACT

This research describes a procedure for synthesizing 
any large complex logic system, such as LSI and VLSI 
integrated circuits. This scheme uses Multi-Valued Multi­
plexers (MVMUX) as the basic building blocks and the tree as 
the structure of the circuit realization. Simple built-in 
test circuits included in the network (the main circuit), 
provide a thorough functional checking of the network at any 
time. Because the network can be partitioned into nearly 
identical subnetworks (Basic-Modular-Networks or BMNs) 
which, in turn, can be further partitioned into nearly 
identical sub-subnetworks, the testing of the entire network 
may be conducted in such a manner that all the sub­
subnetworks and subnetworks are tested simultaneously by the 
built-in test circuits.

In brief, this dissertation has made the following four 
major contributions:

0 developed a multi-valued Algorithmic State Machine
(ASM) chart for describing an LSI/VLSI behavior (Sec­
tions 5.2 and 5.3)

• described a tree-structured multi-valued multiplexer
network which can be obtained directly from an ASM 
chart (Sections 4.2 and 5.3)



• introduced a heuristic tree-structured synthesis method 
for realizing any combinational logic with minimal or 
nearly-minimal MVMUX (Section 4.5)

• presented a hierarchical design of LSI/VLSI with 
built-in parallel testing capability (Chapter 7)

The procedures and methods presented in this disserta­
tion are completely general, systematic, and easy to apply 
to any m-valued (m > 2) combinational and sequential 
LSI/VLSI design.



CHAPTER I

INTRODUCTION

1.1 Advantages of LSI/VLSI Chips

The ongoing revolution in digital Large-Scale- 
Integration (LSI) spawned in the late 1960's is leaving a 
permanent imprint on all aspects of our lives. In the last 
few years, the system house has been shocked by the explo­
sive increase in the number of components that can be 
integrated on a silicon chip. The level of integration has 
closely followed the trend predicted by Moore [153] as shown 
in Fig. 1.1 : an increase by a factor of 2 every year. It is 
nowadays possible to integrate more than 100,000 components 
on a single chip. Digital circuits, such as memories and 
microprocessors show the highest integration level, while 
analog circuits exhibit a lower integration level. BecaGhe 
of the complexity, these digital circuits are better classi­
fied as subsystems than as circuits; mostly these subsystems 
include software, e.g. programmable circuits and micropro­
cessors.

- 1 -
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Fig. 1.1 Yearly Progress in Number of Components Per IC Chip.

ICs offer the fascinating advantages of smaller size, 
low power dissipation, and higher reliability; the most 
decisive advantage of ICs, however, is their cost advantage 
when mass produced. Due to their steadily improved cost 
effectiveness, ICs are forcing their way into different 
technical fields, and thereby replacing electromechanical 
functions and conventional electronic devices.

1.2 Advantages of the Use of MV Logic in LSI/VLSI Circuit

It is known (200] that the performance and cost per 
function of present LSI/VLSI circuit can be improved by the
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MV logic system. The advantages of the MV Logic are;

1. increases the information per unit area, and

2. reduces the number of interconnections, and thereby 
reduces the complexity of the circuit.

Other advantages of MV LSI/VLSI over binary LSI/VLSI are:

3. IC size reduction.

4. More information per signal line.

5. IC pins reduction.

6. Interface complexity reduction.

7. Cost-per-function reduction.

8. Higher performance.
For these reasons, recently more and more designers have 
thought of taking these advantages of MV logic and using MV 
circuits in the design of digital systems. For example, 
Intel 8087 numeric processor and Intel 43203 iAPX-432 I/O 
interface chips both use MV ROMs. Each cell of these ROMs 
can store one of the four possible signal values [1771.

Even though there are many advantages of the MV system 
over the binary system, so far the MV system is still not 
popular in practice. This may be due to the following rea­
sons:



1. Most existing digital systems are binary systems and 
most logic designers are only familiar with binary 
logic design.

2. There is still room for technological improvements in 
binary LSI/VLSI circuits.

3. Most logic designers believe, rightly or wrongly, that 
the design of binary systems is easier than the design 
of an MV system.

4. The solving of the problems of noise immunity and 
tolerance of MV circuits is much more difficult than 
that of the binary system.

The advantages of MV logic over binary logic may be 
evident from the following example.

Example 1.1; Consider the 64-to-l two-valued multiplexer and 
this 64-to-l four-valued multiplexer of Figs. 1.2(a) and (b) 
respectively. They are constructed from single-data-select 
two-valued multiplexers and single-data-select four-valued 
multiplexers of Figs. 1.3(a) and (b) respectively. The cost 
of multiplexers is proportional to the number of transistors 
used and the chip density mostly depends on the transistors 
and resistors plus the silicon surface covered with metal 
signal lines interconnecting those components. A comparison 
between two multiplexers of Figs 1.2(a) and (b) is given in 
Table 1.1. It is seen that the four-valued multiplexer has 
all the advantages cited above.
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Table 1.1 The Comparison of Four-Valued and Two-Valued MUX.

information four-valued two-valued

Total transistors 256
Total pins 68
Information per line 4
Delay time 3
Interconnection less
Circuit complexity less
Circuit performance higher
Cost per function lower
IC size smaller

378
71
2
6

more
more
lower
higher
bigger
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Fig. 1.2 (a) 64-to-l Two-Valued Multiplexer.
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Fig. 1.2 (b) 64-to-l Four-Valued Multiplexer.
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( a )

R-

(b)
Fig. 1.3 I L Circuit Single-Data-Selector Multiplexers

(a) two-valued multiplexer
(b) four-valued multiplexer.
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1.3 MV LSI/VLSI System Design Process

Several methods have been applied to the design of 
relatively small MV digital systems [9,77,116,208], but to 
this date, no method for designing a large and complex MV 
system (LSI/VLSI) has been published. However, the design of 
MV LSI/VLSI may use approaches similar to those used in the 
two-valued LSI/VLSI system [39,46,144,152,197,224]. The pur­
pose of this section is to suggest a process for designing a 
large and complex MV digital system.

Similar to the binary LSI/VLSI, the design process of 
an MV LSI/VLSI system may be divided into three major levels 
[39,224], i.e. behavioral level, structural level, and phy­
sical level. Each of these levels are further subdivided 
into many levels. The design actions are referred to as 
transformations which generate the intermediate design 
description of one level to its next level. Figure 1.4 
shows the hierarchy of MV LSI/VLSI design process. This pro­
cess may be carried out by a sequence of transformations 
performed in either of the two directions: the "bottom-up" 
and the "top-down".
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down large unit into smaller ones, and should be independent 
of the specific technology as much as possible. It also 
seems to be more adequate to support design constraints when 
different parts of a system have to be constructed at dif­
ferent times or by different design groups. Since this 
design strategy is opposite that of the bottom-up strategy, 
the main disadvantage of the top-down strategy is that by 
breaking down large units into smaller ones under technical 
constraints, the strategy poses a combinatorial problem with 
an exponential growth function and also the transformation 
sequence yields an excessive number of different solutions.

Since a design using strictly a top-down or bottom-up 
strategy very rarely occurs in practice, real developments 
normally make an alternate use of both design strategies or 
refer to the information extracted from the other branch to 
properly and efficiently guide the process.

The hierarchical design approach will be used in 
developing the design process for an MV LSI/VLSI system.
This approach is used with appropriate merging of levels to 
accomplish the design of LSI/VLSI systems. It proceeds in a 
top-down sequence with bottom-up detailed implementation and 
addresses both functional and physical problems at each 
level. The hierarchical design approach also contains those 
three major levels as shown in Fig. 1.4.

1. The behavioral level, which is the top level of the
design hierarchy, contains elements for a board
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functional system description, requirements for inter­
facing units specifying performance and compatibility, 
and methods for partitioning the system into major 
functional blocks such as processors, memory, and I/O.

2. The structural level, where the system functions are 
defined as interconnections of blocks or modules.

3. The physical level, where the physical implementation 
and process technology may be considered in order to 
construct circuit elements and determine their 
behavior.

In most cases the behavioral and structural design 
processes go on concurrently, while the physical design pro­
cess is done separately. However, it often occurs that the 
physical design process can have a tremendous influence on 
the behavioral or structural design of a system, necessitat­
ing many iterations during a design.

In this dissertation interest will be focused on struc­
tural level design, especially on the search of a new net­
work structure and its synthesis method to achieve a reli­
able and design-economical MV LSI/VLSI system. The 
hierarchical structured design process starts from each sub­
system which has been partitioned by the behavioral design 
process. It then makes a decision on which semiconductor 
technology, component module, and type of network structure 
will be used in the design of this subsystem which will
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easily be implemented in the physical process. The process 
proceeds by selecting a design tool ( a design automation 
tool is usually used in this process to reduce the designing 
time) that is suitable for the technology and the structure 
that have been chosen. This design tool should give all the 
facilities required by the design of MV LSI/VLSI logic and 
the synthesis of the subsystem which can be implemented in 
the physical design process. In order to ensure that the MV 
LSI/VLSI system is fault-free, the system must be testable. 
To eliminate external testing equipment and to reduce test­
ing time, the technique of inserting built-in test circuits 
in the various parts of the partitioned subunits of the sub­
system is recommended. The hierarchical structured design 
process presented in this dissertation is shown in Fig. 1.5 
and explained below:

This design process is to be applied to each of the
2subsystems of the partition at the behavioral level. I L and 

single-data-selector Multi-Valued Multiplexer (MVMUX) are 
chosen (Chapter 3) to be the semiconductor technology and 
the component module of the design, respectively. The tree- 
structured MVMUX is to be used in the synthesis of design 
functions (Chapter 3). As a design tool, the Multi-Valued 
Algorithmic State Machine (MVASM) chart is chosen (Chapter 
5) for the reason that it is simple to "translate" the sys­
tem design description directly into a tree-structured MVMUX 
network in a systematic way. For synthesizing the subsystem 
function, a heuristic MVMUX modular synthesis method is used



— 14 —

(Chapter 4), since this method provides a minimal network 
realization and is easy to apply manually as well as by a 
computer. Because the subsystem realization is a tree- 
structured MVMUX network, it can be partitioned into nearly 
identical subunits, which, in turn, can be further parti­
tioned into nearly identical sub-subunits, etc. This allows 
this design method to have a special desirable feature: the 
built-in parallel testing capability (Chapter 7).
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( I L MVMUX)

(Tree Structure)

(MVASM Chart)

(Heuristic MVMUX 
Modular Method )

(Hierarchical Design)

(Simple Logic Circuitry)

Take a subsystem

Choose a Design Tool

Choose a Structure Type

Synthesize Subsystem Function

Design and Insert Built-in Test 
Circuits

Choose a Semiconductor Technology 
and Component Module

Partition the Subsystem into Nearly 
Identical Subunits So that Parallel 

Testing May Be Applied

Fig. 1.5 The Hierarchical Structured Design Process.

1.4 Summary by Chapter

The dissertation consists of a total of eight chapters 
and two appendices. Chapter 2 discusses how the chip density 
of LSI/VLSI can be increased and how the complexity of 
LSI/VLSI can be reduced through the use of MV logic. Both 
conventional and MVMUX combinational logic designs are given
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in Chapter 3. The synthesis of tree-structured MVMUX net­
work is discussed in Chapter 4. Chapter 5 presents a design 
of multi-valued memory component and a new technique called 
multi-valued algorithmic state machine which is used as a 
multi-valued logic design tool. Chapter 6 reviews several 
techniques used in structured design for testability of 
binary LSI/VLSI circuits. A new proposed hierarchical design 
of MV LSI/VLSI with parallel built-in testing capability is 
introduced in Chapter 7. Chapter 8 concludes all the discus­
sions in this dissertation. Two appendices are included: 
Appendix A gives a summary of past relevant work related to 
the MV logic, and Appendix B summarizes circuit technologies 
in MV logic circuits.



CHAPTER II

IMPROVING THE CHIP DENSITY AND COMPLEXITY OP LSI/VLSI 
CIRCUITS USING MULTI-VALUED LOGIC

Recently, the rapid evolution of semiconductor technol­
ogy has allowed logic designers to design a complex digital 
system and put it in a single Integrated Circuit (IC) chip. 
In general, the IC chip may be divided into four types- 
Small Scale Integrated (SSI) circuit (gates less than 10), 
Medium Scale Integrated (MSI) circuit (10 < gates < 100), 
Large Scale Integrated (LSI) circuit (100 < gates < 1000) , 
and Very Large Scale Integrated (VLSI) circuit (gates > 
1000). The LSI and VLSI (LSI/VLSI) circuits are considered 
as a complicated digital circuit here.

Practically, to this date two classes of semiconductor 
technology are used in integrated circuits: bipolar and MOS 
technology. Recently, the size of individual MOS transis­
tors has been eliminated as a theoretically limiting factor 
in the production of LSI/VLSI circuits - nor is there even 
a nearby limit to the reduction in geometries of bipolar 
devices [26]. Both in principle can be made 10 or 20 times 
smaller, and both in theory have the same speed for a given 
active region size (base for bipolar, gate for MOS), since

- 17 -
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the switching speed of either is a measure of the propaga­
tion time of carriers through the active region. However, 
the major limitation of device size right now is the fabri­
cation technology which is still in a development stage. In 
addition, reducing the size of the device causes the 
increasing complexity of the circuit; therefore, it is quite 
difficult to manage the complexity and thus, design metho­
dology is needed.

2.1 Limits of LSI/VLSI Circuits

In order to design the LSI/VLSI chip more efficiently, 
the physical, technological and complexity constraints have 
to be improved. However, there are some limitations [153] 
of these constraints.

(1) Physical Limits

This type.is the fundamental limitation which is deter­
mined by the laws of physics, such as speed of light, 
entropy (irreversibility), uncertainty principle and thermal 
energy. This fundamental phenomena presents barriers to 
switching speed and power dissipation that cannot be sur­
passed.

(2) Technological Limits

This type of limitation depends on material constants, 
fabrication techniques and electrical parameters. The con­
straints imposed by these considerations can often be cir­
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cumvented by using new materials, lower operating tempera­
tures, structure changes, better cooling techniques, and 
other forms of device and circuit cleverness.

(a) Material constants include electrical and thermal con­
ductivity, mobility, dielectric constants, saturation 
velocity, and dopant solubility.

(b) Limits associated with fabrication techniques involve 
doping fluctuations, processing radiation, defects, 
layer thickness uniformity and pattern edge roughness, 
bias and tolerance, and reduction of high temperature 
processing cycle ( i.e., the diffusion coefficient-time 
product).

(c) Constraints relating to electrical parameters include 
oxide and junction breakdown, tunneling, hot electron 
injection, avalanche multiplication punch through con­
duction, small geometry effects, and nuclear radiation 
effects.

(3) Complexity limits

This type of limitation relates to the designer's ina­
bility to design circuitry involving very large numbers of 
components. This could also be thought of as the limit of 
the human conceptual ability. Complexity includes product 
definition, design time, engineering changes, testing, on- 
chip redundancy, computer-assisted design, and packaging.
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To date, there is still some way to go before the 
"absolute" physical limits of LSI/VLSI are reached. In 
order to exploit fully the advantages of semiconductor tech­
nology and push the current physical limits set by today's 
technology closer to the absolute physical limits set by the 
law of physics, one should find means to improve the exist­
ing semiconductor technology and find better ways of han­
dling the complex logic design problem of LSI/VLSI. The 
major advantages of LSI/VLSI are high performance and low 
cost. From previous discussion, the low cost can be 
achieved through high production volumes and by increasing 
the number of components per chip (chip density). The per­
formance of the circuit can be improved by reducing the dev­
ice capacity and by shortening propagation delay time. 
Therefore, it can be seen that by increasing the levels of 
performance and decreasing the production cost of semicon­
ductor devices and circuits, the technology is improved and 
the complexity can be easily managed.

2.2. Technological Improvement

In order to increase the performance of the circuit, 
the smaller dimension (submicron) of the device must be 
improved. It should be mentioned that the device size 
reduction, which is termed "scaling", relates to the type of 
lithographic tool needed to accomplish dimensional shrink­
age. Clearly, no single technological achievement will be 
sufficient to meet this goal. For example, advanced litho-
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graphie technology is not sufficent by itself to fabricate 
the devices with smaller features. Other technologies, such 
as solid-state physics, device modeling, processing tech­
niques, materials growth, analytical techniques, device 
design, and circuit architecture will also be required to 
improve. These technologies are developed by different 
groups of designers as follows [104]:

1. Solid-state physicists and device modelers developed 
two and three-dimensional models of the semiconductor 
devices and models of corresponding fabrication process 
for these devices.

2. Device designers developed layout styles to minimize 
the interdevice capacitance and maximize the output 
current; they also developed device test structures.

3. Lithographers fine tuned their electron-beam and opti­
cal techniques and developed new electron-beam. X-ray, 
ion-beam, and optical equipment to meet the eventual 
production requirements of the new devices.

4. Processing groups developed both a low-temperature dev­
ice fabrication process and high-accuracy pattern 
transfer techniques needed to fabricate submicron dev­
ices.

5. Materials groups developed high-reliability, high- 
conductivity interconnection materials, while also 
studying the semiconductor-device failure modes.
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Establishing an experimental device-processing line 
insured that the new device designs, new materials, and 
new processes actually work.

6. Analytical groups worked with the materials groups to 
improve their own understanding of the new materials 
and processes using different techniques, such as Auger 
electron spectroscopy, scanning-electron microscopy, 
transmission-electron microscopy, etc..

Recently, there are several technologies that try to 
improve the submicrometer (submicron) LSI/VLSI circuits 
fabrication. These technologies include X-ray, electron-beam 
and ion-beam lithography, dry etching, resists and process, 
materials growth, etc.[45,104].

(a) X-ray lithography technology

X-ray lithography appeared to have promise as a submi­
cron pattern transfer technology; it offers a strong 
economic advantage over electron-beam lithography for high- 
volume applications. X-ray lithography is a proximity 
lithography pattern technique. It was expected to have 
advantages over both the industry standard optical lithogra­
phy and high-resolution electron-beam pattern generators in 
the following areas [104] :

1. Increased throughput by parallel exposure.
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2. Improved control of diffraction effects.

3. Minimized feature broadening due to electron scatter­
ing.

4. Relative simplicity of X-ray equipment.

5. Source wavelength and brightness.

6. Automated wafer handling.

7. High-quality mask and resist characteristics.

However, the major problem has been in devising a sen­
sitive enough resist combined with a reliable bright source 
to give exposures of less than a minute. Also, small uncon­
trolled distortions in the mask substrate during and after 
patterning have caused significant distortions in the pat­
tern 164]. X-ray systems have been used to make many devices 
with 2->im features and a few in the l-;aro range. As the 
resolution and registration tolerances have tightened to 
keep ahead of the growing optical technology, the X-ray mask 
distortions for full field exposure have improved, but have 
continued to be a problem. With the current registration 
tolerances in the 0.1-0.2 jjta range, smaller x-ray masks with 
the step-and-repeat exposures of large wafers are being stu­
died. The use of step and repeat will complicate the x-ray 
systems and increase their cost compared to that of other 
lithographic systems.
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(b) Electron-Beam Lithography Technology

Electron-beam lithography is extensively used for mask 
production today and the direct-write electron-beam systems 
are being readied for the submicron device fabrication 
development and low-volume fabrication. These are due to 
electron lithography which offers higher resolution because 
of the small wave length of the 10-25 keV electrons used 
[12] and because it is not limited by diffraction.
Recently, several companies have begun developing electron 
direct writing systems. The primary advantages of electron- 
beam over contact-printing and projection-printing tech­
niques for direct slice writing are [197]

1. the elimination of masks and mask defects

2. the alignment accuracy achievement

3. the fast turnaround of computer-controlled imaging

4. the superior resolution capability

5. The geometry size compensation.

However, the major disadvantage to date has been the 
low throughput and the requirement for different resists and 
processes. In addition, the resolution is limited by the 
electron scattering and by the resists.

(c) lon-Beam Lithography Technology

Ion-beam lithography is in a very early stage of
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development. It can be expected to have at least three 
advantages over electron-beam lithography [170] ; 50-100X 
greater resist sensitivity, no proximity effects, and mask- 
less processing. This means that very-high-resolution con­
figurations could be structured by the direct-write ion-beam 
lithography using single resist layers on thick substrates 
or with no resists at all with the proper ion sources.

The ion-beam exposure of resists is a promising tech­
nique for the replication of patterns having submicron 
features. Proton ion-beam exposure of resists was stimulated 
by the possibility of having a high-resolution lithography 
technique that would not require the long exposure times 
which is necessary for the X-ray. Protons do not diffract 
significantly, they produce low energy secondary electrons 
when interacting with the matter, and can be performed into 
highly collimated beams. In addition, simple, commercial 
available sources can provide sufficient current to expose 
even the most insensitive resists in a fraction of a second 
[45] .

(d) Dry Etching Technology

In the process of submicron device fabrication, conven­
tional wet-etching technology and isoplasma etching technol­
ogy are not applicable to the process because of large 
undercutting and poor controllability in pattern width [69]. 
Therefore, a new technology known as dry-etching techniques, 
such as plasma etching and reaction-ion etching have been
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developed to produce anisotropic profiles and good dimension 
control in the process of submicron device fabrication.
These properties are especially desired for transferring 
high-resolution patterns created with X-ray, electro-beam or 
ion-beam lithography 1212].

(e) Resists and Process Technology

Resists are temporary layers applied onto the workpiece 
only for imaging purposes. After pattern transferring onto 
the active layer (insulator or semiconductor material), the 
resist is removed (stripped) in a solvent or an oxidizing 
solution. The most common resists are an organic solution 
applied on workpiece (wafer) by spinning, and dried by bak­
ing at a suitable temperature referred as "prebake tempera­
ture. " The thickness of the dried resist layer depends 
largely on the concentration of solids in the solution and 
on the spinning speed. After baking the resist-coated wafer, 
the desired pattern is exposed in the lithographic tool, and 
the resist is developed. The most important distinction 
between resists concerns the pattern polarity after develop­
ment [61].

In fact, the resist materials and processing will, by 
necessity, follow the trends of lithographic tool develop­
ment for improvements in resolution and throughput. The 
improvement of resists and the process technology are dis­
cussed in Hatzakis* paper [61].
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(f) Materials Growth Technology

One of the most important parameters which limit the 
performance of the semiconductor technology is the proper­
ties of the materials. New device structures or scaled-down 
versions of existing devices often require improvements in 
the state of the art of materials growth. Further reading 
on materials growth can be found in Economou's paper [45].

2.3 Chip Density and Management of the Complexity Improve­
ments

In general, an LSI/VLSI chip may be regarded as an 
assemblage of three types of components [40]:

1. Active devices (transistor, MOS, MESFET) which occuppy 
about 10% of the chip area.

2. Passive isolation (oxide, dielectrics) which covered 
about 20% of the chip area.

3. Passive wiring (metal, polysilicon) which occupied 
about 70% of the chip area.

One way to increase the chip density is by scaling down 
the dimension of the components. The other way is by reduc­
ing the passive wiring area; the information content of each 
connection must be increased. The scaling down dimension 
strongly depends on the semiconductor technology which has 
already been discussed. The reduction of the passive wiring 
will be considered here. In order to increase the
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information content in each connection, the time multiplex­
ing method and the level multiplexing method may be used.

1. The time multiplexing method: this method is mainly 
limited to interchip pin connections, for example, the 
data terminals and address terminals of Intel 8085 
microprocessor [110] use this method.

2. The level multiplexing method: this method reduces the 
interchip circuitry, therefore, interchip pin connec­
tions are also reduced, for example, to carry four 
information data i.e. 0, 1, 2, 3, if a binary logic 
system is used, at least 2 wires are required; but only 
one wire is needed when using the four levels multi­
plexing method. Therefore, about 50% of interchip con­
nections and 50% for interchip pin connections are 
reduced.

It can be concluded that the latter method is the best 
choice to be considered for the IC chip area reduction. As 
of this date, the mulci-valued logic system is the only 
technique that can be applied in the level multiplexing 
method. Therefore, a multi-valued logic system provides a 
solution which not only reduces the complexity of the sys­
tem, but also increases the chip density when compared with 
the two-valued logic system.

As the technology in the device dimension is improved, 
the complexity level of circuit design for LSI/VLSI requires
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a new type of design methodology. This new type of methodol­
ogy must be able to manage the complexity of the LSI/VLSI 
circuit which includes the function definition, the archi­
tectural description, the logic interpretation, the circuit 
design, the physical layout design, the wafer fabrication, 
and the testing with verification and validation at each of 
these levels. This requires proper partitioning of the 
design technique into subcircuits of manageable size. 
Furthermore, in designing any fault-free complex circuit, it 
is necessary to have an efficient and economical testing and 
a verification method with reasonable testing time. This 
may be achieved by using built-in test and verification cir­
cuits which will be discussed in Chapter 7.

To conclude, two solutions for the improvement of the 
LSI/VLSI chip are presented in this dissertation: the chip 
density and the management of the complexity. The hierarch­
ical structured design approach could be used to manage the 
complexity of the system and the multi-valued logic system 
could be used to improve the chip density.



CHAPTER III

MULTI-VALOED COMBINATIONAL LOGIC DESIGN

3.1 Multi-Valued Algebra

It is well known that binary switching theory and logi­
cal design have been based on Boolean Algebra as the 
mathematical model [168]. Multi-valued switching theory and 
logical design has been based on Post algebras [149] and 
their extension [47,95].

Definition 3.1: Binary operations:
Let X, y é Q = (0,1,2,... ,p]. Where p = m-1.

(a) MAX operation: x + y = HAX(x,y)
i.e. X + y = X for x y

= y for X 1 y
Fig. 3.1 Illustrates the Table of this MAX Operation.

- 30 —
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Fig. 3.1 Truth Table of MAX(x,y).

(b) MIN operation; x»y = MIN(x,y)
i.e. x y  = X for x < y

= y for X > y
Fig. 3.2 Illustrates the Table of this MIN Operation,

Fig. 3.2 Truth Table of MIN(x,y)

From Definition 3.1, the following properties are 
satisfied.
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Idempotent; x + x = x  x x = x
Commutation: x + y = y+x x.y = y-x
Association; (x + y) + x = x + (y + z)

( x . y ) . z  = X ' ( y . z )

Absorption: x + x * y = x  x » ( x + y ) = x
Distribution: x + y-z = (x + y)»(x + z)

x«(y T z) = X y + X z 
Null element: x + 0 = x  x * 0 = 0
Universal element: x + p = p x p  = x
Where x, y, z f 0 = {0, 1, 2,...,p} and Or p are constants.

Definition 3.2: Unary operation:
Let Xr ar b ë 0 = {0, 1, 2r...rP} and a b

(a) LITERAL operation (LIT)
x(arb) = p  if a < X < b

= 0 otherwise
Fig. 3.3 Illustrates the table of LIT operation. A graphi­
cal illustration of LIT function x(2r4) where m = 6 is shown 
in Fig. 3.4.

ab 00 01 Op; 11 12 PP

Fig. 3.3 Truth Table of x(arb).
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Fig. 3.4 Graphical Representation of x(2,4).

(b) COMPLEMENT LITERAL operation (CLIT)
x(a,b) = p if b < X < a

= 0 otherwise
A graphical illustration of CLIT function x(2,4) where m
is shown in Fig. 3.5.

= 6

Fig. 3.5 Graphical Representation of x(2,4).

(c) CYCLE operation
X = (X plus a) mod m

Fig. 3.6 Illustrates the table of this CYCLE operation.
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p-1
a

Fig. 3.6 Truth Table of x

(d) COMPLEMENT operation (COMP)
X = p - X

Fig, 3.7 Illustrates the table of this COMP operation.

0
1
2

Pp-1
p-2

Fig. 3.7 Truth Table of COMP(x)

These operations constitute a functional complete set 
as shown in Table. 3.1. Fig. 3.8 illustrates their logic 
gate symbols.
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Table 3.1 Functional Complete Set for 3-Valued Logic,

X = 0 X = 1 X = 2 Entry
0 0 0 0

0 0 1 l * x ( 2 , 2 )

0 0 2 x ( 2 , 2 )

0 1 0 l'X(l,l)
0 1 1 1"X
0 1 2 X
0 2 0 X(l,l)
0 2 1 x ( 2 , 2 )

0 2 2 x ( 0 , 0 )

1 0 0 l ' x ( 0 , 0 )

1 0 1 l-x(lrl)
1 0 2 l * x ( 0 , 0 ) + x

1 1 0 l'X(0,l)
1 1 1 1

1 1 2 1 + X

1 2 0 It*
1 2 1 1 + X(l,l)
1 2 2 1 +  x ( l , 2 )

2 0 0 x ( 0 , 0 )

2 0 1 /
2 0 2 x ( l , l )

2 1 0 X

2 1 1 1 + x ( 0 , 0 )

2 1 2 X + F
2 2 0 x ( 2 , 2 )
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2 2 1 1 + x(2,2)
2 2 2 2

:zr>y-
HAX gate 

a b

LIT gate

HAX(x,y) X-

y- > MIN(x,y)

MIN gate

---- x(a,b)
x^— a

---- x(a,b)
CYCLE gate

COMP gate

Fig. 3.8 Multi-Valued Logic Gate Symbols.

3.2 Multi-Valued Functions
jjjii

In an m-valued logic system there are m functions for 
n variables. A set of operators which can describe all of 
these functions is called a complete set. Table 3.1 shows a 
complete set of 3-valued one-variable function. Any m- 
valued switching function can be represented by a truth 
table or map table as shown in Fig. 3.9.
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0
1
2
3
4
5
6 
7

f (X)

0
0
1
2
0
3
6
0

(a)

(b)

(c)

(d)
Fig. 3.9 Multi-Valued Function Representation.
It may also be expressed by the sum-of-products in canonical 
form.

n
zi=0 î* ̂ i Eg. 3.1

Where the a is a constant in the range ( O r  I r  2,,,,,p) and 
L is the MIN of the individual LIT or COMP of variables x^rXg 
r...fX^. For exampler the canonical form of one-variable 
8-valued switching function f(x) as shown in Fig. 3.9(a) can 
be written as the following:
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f(x) = f(0).x(0,0) + f(l).x(l,l) + f(2).x(2,2)
+ f(3)"X(3,3) + f(4)*x(4,4) + f(5)*x(5,5)
+ f(6)-x(6,6) + f(7)*x(7,7)

0*x(0,0) + 0'X(1,1) + l.x(2,2) + 2"x(3,3)
+ 0-x(4,4) + 3"X(5,5) + 6*x(6,6) + 0«x(7,7) 

l*x(2r2) + 2"X(3,3) + 3.x(5,5) + 6-x(6,6)
Eq. 3.2

The other example, the canonical form of two-variable
3-valued switching function f(Xj^,X2) as shown in Fig. 3.9 
(b) can be written as

ffx^fXg) = 1"X^(0,0)"X2(1,1) + 2*Xĵ  (l,l)*X2(lrl)
+ 1*x ^(2,2)*X2(0,0) + 2*Xi (2,2)-X2(lrD

Eq. 3.3

3.3 Multi-Valued Function Minimization

The minimization of multi-valued functions has been 
considered by several researchers [5,129,173]. Many dif­
ferent methods of MV function minimization have been pro­
grammed [ 147,174,181]. The map minimization method of 
Allen and Givone [5] is used here because it is simple and 
easy to use. In this method the truth table of MV function 
is transformed to map table representation. The following 
step-by-steps minimize the MV function by finding the prime 
implicants of an MV function:

Step 1: Set the logic value inside each cell containing
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a don't care (-) to the logic value p. Let k be an index 
starting with the value p.

Step 2: Find all n-dimensional rectangular groupings of 
cells which have the logic value k, or higher, and are not 
totally contained in any large rectangular grouping of cells 
having the logic value k, or higher. The product terms which 
correspond to these groupings are prime implicants if and 
only if they subsum no term previously found to be a prime 
implicant.

Step 3: Set k to k-1.

Step 4: If k > n, repeat from step 2. Otherwise, if 
just prime implicants have been found; terminate the pro­
cess.

Example 3.1 Fig. 3.10 shows the minimization of the 
function of the map table in Fig. 3.9 (d). First, no don't 
care cells are found, only one rectangular grouping of cell 
value 2 is found as shown in Fig. 3.10 (a). Next all rec­
tangular grouping containing a logic 1 or higher are shown 
in Fig. 3.10 (b) along with their corresponding product 
terms. Thus, there are 3 prime implicants of this function 
A, B, and C. The sum of these prime implicants is the minim­
ization function.
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(a) (b)
f(3^r3^) = A + B + C 

Pig. 3.10 Map Minimization of Example 3.1.

3.4 Combinational Logic Design Using MVSSIs and MVMSIs

There are two basic approaches to the design of combi­
national MV logic: MV algebra approach and actual circuit 
approach. The MV algebra approach uses algebraic theory to 
realize the arbitrary functions by interconnecting the basic 
gates operator together. A drawback of this approach is that 
the efficiency (in terms of interconnect or packing density) 
is not evaluated since realizations for more complex func­
tions, such as adders or ALUs are not considered. In fact, 
it is questionable whether this technique would lead to 
efficient designs, since the circuits realizing the basic 
connectives are typically rather complex [114].

The actual circuit approach was proposed by McCluskey 
[117]. In this approach the design of arbitrary functions is 
developed by studying a variety of actual circuit designs 
and then abstracting the connectives that produced efficient 
design. A measure of the success of the technique is the 
fact that it results in circuits that are as efficient as
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those "invented" by an experienced designer.

An MV combinational logic design considered here is the 
design of a "BLACK BOX" to implement an MV function. This 
function.requires an MV algebraic approach as a design tool 
to.realize the circuit. The function is usually specified as 
a truth table or map table which lists the output value of a 
function for any combination of its input values. Fig. 3.11 
shows the output ffx^fXg, ...rX^) of a black box as func­
tions of the inputs ,,,,x^.

BLACK
BOX

f (x̂  fXg,...,)^)

Fig. 3.11 Black Box.

The important idea required for logic designers in 
implementing this black box is to derive the function to get 
an optimal or near optimal solution of the interconnection 
of a set of MV gates with respect to some criterion. Cri­
teria may be cost, speed, design flexibility, availability 
of complex logic functions, logic levels, noise immunity, 
power supply voltages, power dissipation operating tempera­
tures, and testability of the circuit. In this section, two 
techniques will be considered in MV combinational logic 
design. One is using Multi-Valued Small Scale Integrated 
circuits (MVSSI), i.e. MAXs, MINs, LITs, COHPs gates, the
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Other is using Multi-Valued Medium Scale Integrated circuits 
(MVMSI) i.e. MVMUXs.

A. MV Combinational Logic Design Using MVSSI Gates

The MV algebra which was presented in the previous 
chapter will be used as a tool to implement MV combinational 
logic design using MVSSI gates. The basic procedure of MV 
combinational logic design presented here is based on a 
minimization criterion to achieve a minimized circuit reali­
zation using the primitive gates. A step-by-step procedure 
of designing MV combinational logic circuits is presented as 
follows:

1. Define the MV input and output variables of the system. 
Represent the various status of the input and the out­
put by their respective variables.

2. Construct the truth table describing the system func­
tion.

3. Convert the truth table into a map table.

4. Minimize the function using the map table and the pro­
cedure given in the previous section.

5. Realize the minimized function using MVSSIs.

In order to understand the above procedure better, the
following design example is given.



— 43 —

Example 3.2; Design a ternary full adder using MVSSIs. A 
full adder is a combinational circuit that forms the arith­
metic sum of three input 3-valued variables. It consists of 
three inputs and two outputs.

Step 1; Two of the input variables, denoted by X and Y, 
represent the two significant 3-valued digits to be added. 
The third input Cin represents the carry from a previous 
lower significant position. Two outputs are necessary 
because the arithmetic sum of three ternary digits range in 
value from 0 to 4, and ternary 3 and 4 need two digits. The 
two outputs are designated by the symbols S for sum and Cout 
for carry. The ternary variable S gives the value of the 
sum. The ternary variable Cout gives the output carry.

Step 2: Construct the truth table of the ternary full 
adder as given in Table 3.2.
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Table 3.2 Truth Table of the Ternary Full Adder.

X Y Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 0 d d d
0 1 0 1 0
0 1 1 2 0
0 1 d d d
0 2 0 2 0
0 2 1 0 1
0 2 d d d
1 0 0 1 0
1 0 1 2 0
1 0 d d d
1 1 0 2 0
1 1 1 0 1
1 1 d d d
1 2 0 0 1
1 2 1 1 1
1 2 d d d
2 0 0 2 0
2 0 1 0 1
2 0 d d d
2 1 0 0 1
2 1 1 1 1
2 1 d d d



2 2 0 
2 2 1
2 2 d
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Step 3. Conveit the truth table into the map table as 
shown in Figs. 3.12 and 3.13.

N. XY
c i h ^

00 01 02 10 11 12 20 21 22

0 0 1 2 1 2 0 2 0 1
1 1 2 0 2 0 1 0 1 2
2 d d d d d d d d d

Fig. 3.12 Map Table of S.

\ X Y
C i d ^

00 01 02 10 11 12 20 21 22

0 0 0 0 0 0 1 0 1 1
1 0 0 1 0 1 1 1 1 1

2 d d d d d d d d d

Fig. 3.13 Map Table of Cout.

Step 4. Minimize the function using the map table as 
illustrated in Figs. 3.14 and 3.15.
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XY 10 11 12 20 22Ciif

Fig. 3.14 Hap Minimization of S.
X(0,0).Y(2,2).Cin(0,0) + X(0,0)»Y(l,l).Cin(l,l) 

+ X(l,l).Y(0,0)'Cin(l,l) + X(l,l).Y(l,l).Cin(0,0) 
+ X(2,2).Y(0,0)"Cin(0,0) + X(2,2)*Y(2,2)*Cin(l,l)
+ l'X(0,0).Y(0,0)'Cin(l,l) + l'X(0,0).Y(l,l)
+ l'X(0,0)"Y(l,l) + l.X(l,l).Y(2,2)"Cin(l,l)
+ l*X(2,2).Y(l,l).Cin(l,l) + l'X(2,2).Y(2,2)

XY
CirX^

00 01 02 10 11 12 20 21 22

0 0 0 0 0 0 T 0 1 1
1 0 0 ® 0 ® 1 ® 1 1
2 d d d d d d d d d

Fig. 3.15 Map Minimization of Cout.
Cout = l.X(0,0)"Y(2,2)»Cin(l,l) + l'X(l,l).Y(l,l).Cin(l,l)

+ l'X(l,l).Y(2,2) + l'X(2,2)"Y(0,0)'Cin(l,l)
+ 1*X(2,2).Y(1,2)

Step 5. Realize the function minimized by MVSSIs as 
shown in Fig. 3.16. (cost = 389)
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.’1 

. M M

. M

.31.21

Cout

Fig. 3.16 MVSSI Circuit Realization of Ternary Full Adder,
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B. MV Combinational Logic Design Using MVMSI

Based on the considerations of design flexibility, 
availability of complex logic functions, and cost per func­
tion criterion, MVMUX (which are MVMSI) are used in the MV 
combinational logic design. There are two types of methods 
to realize an MV function using MVMUX.

a. Constant-input Type Realization Method

This method is very simple; it includes the following 
steps ;

1. The same as steps 1 and 2 in subsection A. Let r be the 
number of input variables.

2. For each output variable, construct a r-level tree- 
structured MVMUX networks with m data inputs.

3. Enter the values of the output variables as the con­
stant inputs of the MVMUX networks.

For example, to realize the truth table of the ternary
full adder of Table 3.2, we need a two 3-level MVMUX net-

3works, each has a total of 3 - 27 inputs. The 27 constant
inputs of these networks are the 27 rows of the output 
values of S and Cout. Fig 3.17 illustrates MVMUXs circuit 
realization of ternary full adder.
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Fig. 3.17 MVMUXs Circuit Realization of Ternary Full Adder, 

b. Variable-input Type Realization Method

In practice, the number of "data-select" inputs of 
MVMUX chip is limited. So it is often desirable to reduce 
the set of input variables to be connected to the "data- 
select" lines. A new technique using an MV "map-entered"
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variables to reduce the number of "data-select" lines of 
MVMUX is introduced. This technique shows how the concept 
of map-entered variable may be used to considerably simplify 
the procedure for determining the data input conditions. The 
technique shows the reduction of the m-to-1 MVMUX and also 
reduces the number of levels in a tree-structured MVMUX net­
work. The map-entered variable method has already been used 
to reduce the dimension map in 2-valued logic system [30].
This method is more complicated than the 2-valued case,

m^because of the m . The MV map-entered variable method is 
used here to enter the map-entered variable as "data-input" 
of MVMUX so that the "data-select" lines may be reduced. In 
order to understand the method, a 3-valued logic example is 
given. Table 3.3 shows rules for eliminating a map variable 
of the map table for one variable, and its relative cost.
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Table 3.3 Rules for Eliminating a Map Variable of the 
Map Table,

Value of function for 
map-entered variable
X = 0 X = 1 X = 2 Entry Cost(I L)

0 0 0 0 0
0 0 1 l'X(2,2) 8
0 0 2 x(2,2) 4
0 1 0 l'X(l,l) 8
0 1 1 I'X 4
0 1 2 X 0
0 2 0 X(l,l) 4
0 2 1 x(2,2) 6
0 2 2 x(0,0) 5
1 0 0 l'X(OfO) 8
1 0 1 l'X(l,l) 9
1 0 2 1 * X (0,0)+x 15
1 1 0 l'X(0,l) 8
1 1 1 1 0
1 1 2 1 + X 3
1 2 0 X 5
1 2 1 1 + X(l,l) 7
1 2 2 1 + x(l,2) 7
2 0 0 x(0,0) 4
2 0 1 -»zX 5
2 0 2 X(l,l) 5
2 1 0 X 1
2 1 1 1 + x(0,0)
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2 1 2 X + X 4
2 2 0 x(2,2) 5
2 2 1 1 + x{2,2) 8
2 2 2 2 0

The following procedure describes the synthesis of an 
MV function using variable-input type MVMUXs:

1. The same as steps 1, 2 and 3 in subsection A.

2. Use Table 3.3 to enter the values corresponding to the 
variable reduction into its cell. Repeat all possible 
variables and compare their cost, then select the 
lowest cost to implement the function.

3. Select the MVMUX to implement the function by entering 
the value in each cell position to the "data-input" and 
map variables to the "data-select" terminals.

Figures 3.18 and 3.19 show the map-entered variables of 
the ternary full adder. From these map-entered variables, 
when Cin is used as a entered variable the total cost is 99, 
when Y is used as a entered variable the total cost is 98. 
Therefore, the entered Y variable is chosen to implement 
this system as shown in Fig. 3.20.
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XY
00 01 02 10 11 12 20 21 22

Cin Cin Cin(OrO) c ï i Cin(OrO) Cin Cin(0,0) Cin Cin

XY
00 01 02 10 11 12 20 21 22
0 0 Cin 0 Cin 1 Cin 1 1

Cout

Fig. 3.18 Use Cin as a Map-Entered Variable.

XCin
00 01 Od 10 11 Id 20 21 2d

Y Y d -*1Y Y d -J2Y Y d

XCin
00 01 Od 10 11 Id 20 21 2d
0 1-Y(2,2) d l'Y(2,2) 1 Y d 1*Y 1 d

Cout

Pig. 3.19 Use Y as a Map-Entered Variable.
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Y,
%y

CinX

CinX

Cout

Fig, 3.20 Map-Entered Variable Circuit Realization.

In the above, two combinational logic design tech­
niques, one using MVSSI gates and the other using MVHSI 
(MVMUX), are presented and their relative costs (number of 
transistors) (see Appendix B) are compared. It is found that 
for the realization of complex logic functions, the latter 
is not only more economical, but also more systematic and is 
easier to apply. Another MVMUX synthesis technique which is 
specially suitable for MV LSI/VLSI design will be discussed 
in the next chapter.



CHAPTER IV

SYNTHESIS OF MULTI-VALÜED FONCTION WITH ULMs

4.1 Introduction

Recent advances in integrated circuit technology and 
its potential advantage in logical design have motivated a 
search for synthesis techniques for logic networks using 
appropriate logic function packages as the modules or build­
ing blocks for two-valued [122,217,218] and for multi-valued 
systems [53,66,67,68,83,172]. In order to design MV 
LSI/VLSI circuits with near minimal components (to maximize 
the function per chip area), the synthesis of functions is 
necessary. In this thesis, the hierarchical tree-structured 
modular approach is chosen for the design of the MV LSI/VLSI 
because with this approach simple algorithms are available 
to realize any given logic function and are also easy to 
implement in an automation design. Moreover, the structure 
of this approach is easily partitioned into subunits, so 
that circuits can be rapidly and economically tested. The 
basic theory of the tree-structured modular approach and its 
synthesis methods are investigated in this chapter.

In general, the synthesis of an MV function may be

— 56 —
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divided into two categories. One is two-level synthesis and 
the other is multiple-level synthesis. Two-level synthesis 
is often performed by minimizing the function in the map 
[6], cube 1182]f or tabular [199] representation. Two-level 
synthesis is only practical for very small systems involving 
few variables. However, a minimum for two-level minimization 
may not be optimum due to the fan-in limit for practical 
implementation [37].

Multi-level synthesis is often used to reduce the cost 
of the function [199] and in the synthesis of a large and 
complicated system. There are two possible ways to syn­
thesize a function into a multiple-level: one is by factor­
ing from a two-level function and the other is by using the 
decomposition function technique. It has been shown 
[24,25,127] that by extending the Ashenhurst [10] and Curtis 
[37] partitioned matrix technique a fanout-free network can 
be synthesized. A fanout-free network is a network in which 
the gate outputs and primary inputs connect to at most one 
gate input. The tree-structure of such a network implies 
that there is a unique path between each primary input and 
the network output. Thus, when testing the fanout-free net­
work for correct operation, the fault-masking problem asso­
ciated with the multiple paths does not occur. The absence 
of multiple paths also implies the absence of hazards. The 
fanout-free networks are of special interest when it is
expensive to implement gates whose output drive has more

2than one gate input such as magnetic bubble logic and I L
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multi-valued logic. Basically, there are two types of MV 
components used in multi-level circuits; primitive com­
ponents and modular components. The primitive component 
synthesis is based on the minimization of primitive com­
ponents [124,187,203,223]. This type is suitable for syn­
thesis of relatively small circuits since the MV primitive 
logics are quite complex in themselves, and thus the result 
is extremely complex circuits for even simple MV functions 
of two or three variables [172].

The other type, the modular component synthesis is 
based on the minimization of the modular components. This 
type is suitable for synthesizing large and complicated cir­
cuits, mainly because the MV modular components are con­
structed from actual circuit approach [117], and can be 
easily realized the MV function in systematic process. In 
this thesis, our attention will be focused on the multi­
level synthesis with modular component approach since our 
interest is mainly focused on the MV LSI/VLSI design. The 
multi-level synthesis with modular component approach has 
been studied by Kameyaroa and Higuchi [83], and Fang and 
Wojcik [53].

The method introduced by Kameyama and Higuchi [83] is 
an extension of the early work of binary system done by Meo, 
Yau, Tang, and Voith [122,198,218]. This method minimizes 
MVMUX by finding the compatible set of ULM implicants which 
contains the possible reduction of the maximum number of



- 59 -

MVMUXs. However, this method is quite complicated. Fang 
and Wojcik's method [53] searches for a minimal number of 
subfunctions of a given function and implements it by using 
multiple data selector MVMUXs. The synthesis starts from 
the primary input end to the single output end using certain 
common properties. The networks obtained by this method are 
non-fanout-free.

In this thesis, a new heuristic multi-level synthesis 
with modular component approach for synthesizing MV func­
tions which is simple and systematic is presented. This 
method is different from all the previous methods in that
(1) it guarantees a fanout-free tree-structured network,
(2) the synthesis starts with the output end of the network, 
and (3) the procedure is simple and can be implemented by 
computer-aided design (CAD).

4.2 Theory of Tree-Structured Modular Network

The modular packages used in the tree-structured tech­
nique are of a universal logic module (ULM) type. The MVMUX 
which is one type of ULM will be considered here.

Definition 4.1; A Universal Logic Module (ULM) of n input 
variables is a logic function package that can be used to 
implement any logic function of up to n input variables by 
simply carrying its I/O terminal connections.

Definition 4.2; An MVMUX is a ULM which has one terminal
kdata output, k terminals data selector input, and m
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terminals data input; each data input can be selected by 
data selector as an output (illustrated in Fig. 4.1).

1(0)
1(1)

OUTPUT

%

Fig. 4.1 MVMUX Diagram.

Definition 4.3: The interconnection of the MVMUXs in the 
following fashion is called a tree-structured MVMUX network 
(shown in Fig. 4.2)

1. There is only one MVMUX at the output level (Ist-level)

2. Each data input and data input selector of MVMUX may be 
connected to the output of another MVMUX or an input 
variable or constant value.
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INPUTS OUTPUT

SELECTORS

2rd-level Ist-level

Fig, 4.2 Tree-Structured MVMUX Network Diagram.

Definition 4.4; In an m-valued logic system, let the truth 
value be the element of a set M = {0,1,2,...,m-l}, a 6  M, 
and X be a variable defined on M. The a and x are called 
multi-valued scalars. The a = (a^,a£,.. .a^) = aĵ a2.. .a^and x 
= (x^fXg,...x^) = x ^ X g . x ^  are called multi-valued con­
stant and variable multi-valued vectors respectively.

Definition 4.5; The symbol 22(*) denotes the maximum of the 
quantities (%).

Definition 4.6: Define

p for - aĵ
0 for x^ +  aĵ

x(a) = (x^(ai),X2(a2),...Xn(an)) = Xĵ (â )̂ X2(a2> 
and MIN[x(a)] = x^{a^) X2i^2^ ...x^fan), 
where p = m-1.

. 'Xn(an)»

Definition 4.7; The symbol ^  (x,y,z) means x or y or z, let
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’or" = ®  , therefore

(x,y,z) = X ®  y ®  z Eq. (4.1)

Definition 4.8; Define 
n

^  -1 (m —1) (m —1)... (in -1)

X = 0 XiX2...Xn= 00... 0
and
n

in -1 (m -1) (m -1)... (m -1)
f(x) = f (Xĵ X2«. .Xĵ )1 "    1

X = 0 xiX2...Xn= 00...0 Eq.(4.3)

Definition 4.9: Any m-valued k-selector MVMUX may be 
represented as

n
m -1

m-MUXIKx) : X] = hg) ' I(x) ] Eq.(4.4)
n *

where jc = xĵ X2«. .Xĵ r is the MVMUX selectors 
I(x) = I (Xj^Xg.. .Xĵ ) » MVMUX inputs 

and the subscript x of [ ] indicates that x is the vector
X

of the MVMUX.

For example, the four-valued multiplexer with one input data 
selector is represented by

4-MUX[I(x) ; X] = [1(0) ®  1(1) ®  1(2) ®  1(3)]
X

which means that which of the four inputs selected depends
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upon the value of x, i.e. the 1(0), 1(1), 1(2), or 1(3) is 
selected when x = 0, 1, 2, or 3, respectively. Fig. 4.3 
shows this MVMUX.

1(0)
1(1)1(2)
1(3)

4-to-l
MVMUX

X

Fig. 4.3 4-Valued One-Variable (selector) MVMUX.

Definition 4.10; The tree-structured MVMUX network can be 
represented by

ki kp k.
(m il) (m il)... (mil)

'-7

m-MUXlKx) : xj = I
Eq.(4.5)

The general tree-structured MVMUX network diagram is shown 
in Fig. 4.4.
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Pig. 4.4 General Tree-Structured MVMUX Network Diagram.
For example, a three-valued four-variable (Xĵ ,X2,x̂ ,Xî ) 
tree-structured MVMUX network which has x̂  ̂ = x^ as a selec­
tor in the Ist-level and Xg ” *2^3*^ i" the 2nd-level of the 
MVMUX tree-structured can be represented as

(2)»(26)
3-MUX[I(x) : X] = ['*^5© 'KXi'Xg)]

•XifX2=(0,0)
= 11(0,0) ®  1(0,1) ®  1(0,2) ®  1(1,0) ®  ...1(2,26)] 

Fig. 4.5 shows this MVMUXs representation.
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I(Of 0} —  
I(Ofl) —
I(Of 2) —

KlfO) —  
K l f D  —  1(1,2)--

I(lf26)H

I(2f0) —  
I(2fl)—
I(2f2) —

I(2f26)H

X]

X2X3X4

Fig. 4.5 MVMUX Tree-Structured Representation 
Theorem 4.1: Any m-valued function f(x) of n variables (i.e. 
X = xifX2f...xif...Xn) can be expanded with respect to any 
one of the n variableSf x^f as follows:

n
m -1

f(x) = [x^(a) »f (x^fX^f... f a f...fX^)] ]
X (a) = 0n Eq.(4.6)

This expansion can be repeated until the function is a 
constant.
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Table 4,1 Arbitrary Truth Table Represents f(x)

X 0 1 2 3
f (X) 2 3 2 0

Example 4.1 A 4-valued one variable function f(x) 
represented by Table 4.1 can be written as

f(x) = x(0).f(0) + x(l)*f(l) + x(2)*f(2) + x(3)-f(3)

Table 4.2 Arbitrary Truth Table Represents f (x̂  ̂,X2 ,x̂  )

*1
X g X j 0 1 2

0 0 0 2 2

0 1 2 0 1

0 2 1 0 2

1 0 0 0 1

1 1 1 2 1

1 2 0 0 0

2 0 1 2 0

2 1 0 0 1

2 2 1 1 0

f (Xĵ ,3^ rX^)

Example 4.2 A 3-valued function f(x^,3̂ ,x^) represented by 
Table 4.2 can be expanded as
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(a) about x^,
f(X) = X^(0)*f (OrX^fX^) + X^(l)»f (l^XgfX^) + Xj^(2)*f (2,X2,x )̂

Eq.(4.7)
(b) about x^f
f(x) = x^(0)•(XgCO)*f(0,0,x^) + XgXli'ftOflfXg) + X2(2)*f(0,2,X3)]

+ x^(l).[X2(0).f(l,0,Xj) + XgCD^f (lrl,x^) + X2(2)-f(l,2,X3)]
+ x^(2).[x2(0).f(2,0,Xj) + X2(l)*f (2,1,X3) + X2(2)-f (2,2,X3) ]

Eq.(4.8)



- 68

(c) about x^,
f(x) = x̂  (0)-[x̂  (0). {x^ (O)-.* :0,0,0) + x̂  (D-f (0,0,1)

+ x^(2).f (0,0,2)}
+ X2 (l)»{x^(0).f(0,l,0) + Xj (l)-f(0,1,1)

+ x^ (2).f (0,1,2)}
+ X2 (2)«{x^(0).f(0,2,0) + x^ (1). f (0,2,1)

+ x^(2).f (0,2,2)}]
+ x^(l).[X2 (0).{Xj(0).f (1,0,0) + Xj (l)*f (1,0,1)

+ Xj(2)'f (1,0,2)}
+ X2 (l)*{x^(0)»f (1,1,0) + (l)*f (1,1,1)

+ x^(2)*f(l,l,2)}
+ X2 (2)*{x^(0)«f (1,2,0) + x^ (l)-f (1,2,1)

+ x^(2).f(l,2,2)}]
+ x^(2)-[x2(2)*{x^(0)*f(2,0,0) + x^(l).f(2,0,1)

+ x^(2)*f(2,0,2)}
+ X2(l)*{x^(0)*f (2,1,0) + x^(l)-f (2,1,1)

+ x^(2).f(2,l,2)}
+ x^(2)•{x^(0)#f(2,2,0) + x^(l)*f(2,2,l)

+ x^(2)*f(2,2,2)}]
Eq.(4.9)

From the above example, it follows immediately that

Theorem 4.2: Any MV function f (x^^,Xg,... ,x^) can be expanded 
as:
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(a)
P P P

^  (x̂  (a^) ( (a^) *f (â  ^a^ ))..))
Xi(ai)=0 Eq.(4.10)

(b) Since all jc are linearly independent of each other, (a) 
can also be written as:

^  ^  •• ^  (â  ̂) X2(a2)..x̂ (â )-f(aĵ ,a2f..aĵ )
x^(aj^)=0 X2 (a2)=0 x^(a^)=0 Eg.(4.11)

Definition 4.11: The expression of Eq.(4.11) is called the 
canonical form of f(x)

Theorem 4.3; Any multi-valued function can be written as 

m"-l
f(x) = ^  MINIx^(a)l-f (a) Eg. (4.12)

a = 0

This theorem can be proved by using Theorems 4.1 and 4.2.

Theorem 4.4; Any function can be realized by a tree- 
structured MVMUX representation in Eg.(4.5).

Proof: By applying the following transformation between the
terms of the canonical form of the function of Eg.(4.11) and 
the modules of the tree-structured network,
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Function Multiplexer
notation notation

S  5
11^) — > a
MINlx(a)] ---- > [ ]

%f(a)------ ---- > I(x)

we immediately obtain Eq.(4.5).
Note that Eq.(4.11) is valid with the summations (maximum 
operations) over the a in any order. For example,

f(x) = .. yX^ (a^) .Xgtag). .Xjj(aĵ ) .f (aĵ ,a2,. ..a^)
Xn(an)=0. .X2(a2)=0xi (aĵ )=0 Eq. (4.13)

Definition 4.12; The realization f(x) in the form of Fig. 
4.4 is called a canonical realization of f(x).

The number of MVMUX in a canonical realization of an 
m-valued n-variable single-selector tree-structured network 
is given in the following theorem.

Theorem 4.5; An arbitrary logic function can be completely
n

expressed with a maximum of (m -l)/(m-l) MVMUXs [83].
Proof; Suppose the Ist-level of tree-structured MVMUX net­
work requires h MVMUXs, by the mathematic induction method
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the Ist-level used h MVMUXs
1

the 2nd-level used hm MVMUXs
2

the 3nd-level used hm MVMUXs

(n-1)
the nth-level used hm MVMUXs
therefore, the total number of MVMUXs (S) is

1 2 (n-1)
S = h + hm + hm + ... hm 

n
S = ( hm - h )/(m-l)
since tne Ist-level of tree-structured MVMUX network has 
only one MVMUX, which implies h = 1, thus,

n
S = (m -l)/(m-l)

Now derive a general formula for computing the number 
of MVMUX in a canonical realization using any multiple- 
selector MVMUX.

Theorem 4.6; For a given values x = the output z of the 
MVMUX is equal to
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X^Xg.

n

2 =  [ I(x) ] ̂  = Ifa^fag, ...a^) Eq.(4.15)
X = 0

Proof
By Definition 4.8 

n
m -1 (m-1)(m-1)... (m-1)

I ^  I ( x )  1 =  I I ( X i , X 2 , . . . X n ) ]
‘  i >X = 0 XiX„...x„* 00...0 Eq.(4.16)

for X = a and by Definition 4.7
— I (a agf...â )̂

Definition 4.13; Let N[l; k^ykg,...k^] be a 1-level tree-
structured MVMUX network. The numbers of selectors of the
ith-level MVMUXs are the same, that is equal to k .

Theorem 4.7: Any k-line-selector MVMUX can be replaced by a 
tree-structured MVMUX network. Suppose the numbers of the 
selector lines of the MVMUXs of each level are the same.
Let them be k^,kg,...and k^ which are less than k and k = k^ 
+ k 2+ k ... k 2

Proof ; Let N and N be the original and tree-structured 
MVMUX networks respectively. In ,any k-selector MVMUX can 
select any one of the m inputs and send it to the output of 
MVMUX. Let I (jc) be the inputs of the MVMUX. In N2, the 
total number of inputs of the network is given as follows:
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(“uil) f ( m % ) ( m % )
I(x) = [ ItXi'Xp'-'-Xi)]i k_,kp,...k,

■2i»3Î2'* * **1 “5'S»***»5, Eq.(4.i7T

kithe number of inputs of the Ist-level = m
ki kp

the number of inputs of the 2nd-level - m • m
k< ko ko

the number of inputs of the 3rd-level = m • m » m
k̂  ko ko kl

and the number of inputs of the last level = m>m>m*...m
{k< +kp"̂ " • • • ki )

= m
k

= m

Therefore, the two networks and N2 have the same number 
of inputs.

Let Xi = (Xi )
*2 = ^̂ 1

3̂  “ ( . Zjĵ  )
be the selector lines of the MVMUXs of when 3̂  ~ âl' 3^ ~ 

. .3̂  = a^, the output of the Ng be I(^ . Let

X = (Xl * • *Xl Î and a = (gl »52 ' * * *âL ̂ *
By Definition 4.9, k-selector MVMUX is
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k
m -1

m-MUX IKx) : X] = [ 3 © ’ I(x)] = %  Eq.(4.18)
d— b V

i  = fi
for X = a

= 1(a)
= Ni

By Definition 4.10

kl ko kl

m-MüX[I(x) : X] = [ )] = %
 ̂ ~  ^  1 x ,x , ...x

...g Eq.(4.19) '"1 '*2 '~1
for xi • • *351 “ and since x̂  ,X2 r.. .^are
linearly independent of each other; therefore,

ki k ki
in -1 m - 1  m —1

X, = 0 Xo- 0 X- = 0
Eg.(4.201

By Definition 4.7

“ I (Si • • *âi Î
= 1(a)

which shows that for the same set of selector values, and 
N2 will always produce the same output. Therefore, N̂  and N^ 
are equivalent, i.e. Nĵ = 1̂ .
Theorem 4.8; In a canonical tree-structured MVMUX network 
the number of MVMUXs in the ith-level is given by:
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♦MUX in the ith-level = r  1 
1

for Ist-level

¥■m the ith-level
(other than the first)

V i=2

Proof: By Definition 4.3, the first level has only one 
MVMUX. By the mathematical induction method, the number of 
MVMUX in the 2nd-level depends on the number of inputs (m ) 
of the Ist-level; the 3rd-level, 4th-level, 5th-level, ..., 
to the ith-level depend on the number input

K k_ k_ kj
(m «̂ m ^ mJ-m^m ^ m J m ^ m ^ m , . . . ,  m
of the 2nd-level, 3rd-level, 4th-level, ...the (i-1)th-level 
respectively. Therefore, for any ith-level (1 > 1) the max­
imum number of MVMUX is

i=2

Theorem 4.9: In any canonical tree-structured MVMUX network 
in which N represents an MV function with n variables there 
will be

1 + ^ ( T T
i=2 i=2
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MVMUX modules in N. Note that the in the above expres­
sion denotes the ordinary mathematical summation.

This theorem can be proved by using Theorem 4,8. This 
formula includes the one given by Higuchi and Kameyama [83] 
(see Theorem 4,5) as a special case where a single-selector 
is used in each level in tree-structured network.

Theorem 4,10; Let N be a tree-structured MVMUX network and 
DT be the delay time of the MVMUX of the ith-level, then 
the total delay time TDT(N) of the network i,e, the time 
measuring from the signal propagating from the input to the 
output of the network depends on the number of levels (1) of 
the network and the delay time of the MVMUX of each level,

1
i

TDT(N) = >  DT. Eq,(4.21)
i = 1

4,3 The Kameyama and Higuchi*s Method

This section is, in part, based on the work of Kameyama 
and Higuchi [83], In this method, an optimal MVMUX (T-gate) 
in tree-structured network is obtained by finding the compa­
tible set of ULM implicants containing the possible reduc­
tion of a maximum number of MVMUXs, One ULM implicant 
implies a possible reduction of a certain number of MVMUXs 
in a tree-structured network. Each ULM implicant has coeffi­
cient value according to the reduced number of MVMUXs, The 
compatibility of ULM implicants was also defined so that all
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the residue functions corresponding to the ULM implicants in 
a compatible set can be trivial functions.

A ULM implicant is defined to be the product term whose 
residue function is equal to a constant or an input vari­
able. If the residue function of a ULM implicant Ij of level 
n-p+1 is trivial, then the number ajOf MVMUXs are reduced in 
the tree-structured network, where aj is given as:

Paj = (m -l)/(m-l) Eg.(4.22)

where p is the number of variable in the column of the 
decomposition matrix.

The subset C of ULM implicants is a compatible set, if 
a tree structure is constructed without conflict such that 
all the residue functions corresponding to the ULM impli­
cants in C can be trivial. The synthesis problem is attri­
buted to finding the compatible set C which gives a maximum 
saving of MVMUXs. Let all the ULM implicants be {li}, (i =
1, 2,...n) and consider the 0-1 integer variable X^ such 
that a ULM implicant is in the set C if and only if Xi =
1. The objective function W which represents the reduced 
number of MVMUXs is given as:

W — ajXj_ + agXg + ...+aĵ Xĵ  Eg. (4.23)
where a was given in Eg. (4.22).
In Eg.(4.23), the constraints characterizing the MVMUX net­
work must be considered. First, the set C = (I^ I X^=l} is a
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compatible set. Second, the subsumption relationships must 
be considered between ULH implicants. If a ÜLM implicant Ij 
subsumes I (i.e. Ij = Î )̂, then Xj and cannot be simul­
taneously 1. The set of second constraints are denoted by V. 
As a result, the formulation of synthesis problem is done as 
seen in Egs.(4.24) and (4.25).

MAX W = aĵ Xi + a2%2 + ... + a^X^ Eq. (4.24)
subject to

V: X̂  + < 1 (for all Ij = I^)
C = {Iĵ  I X^=l} is a compatible set Eq. (4.25)
X^ — 0, 1 (1 — 1, ...,n)

Eqs.(4.24) and (4.25) can be transformed into the equivalent 
formulation by replacing X^ = 1-Y^.

MIN F = a^y^ + a^Yg + ... + â Ŷ̂  Eq.(4.26)
subject to

V: Yj + > 1 (for all Ij = \  )
C = {Î  I Yĵ s=0} is a compatible set Eq.(4.27)
Y^ = 0,1 (i = 1, ... ,n)

The problem is then to minimize Eqs.(4.26) and (4.27).

4.4 The Fang and Wojcik's Method

This section is, in part, based on the work of Fang and 
Wojcik [53]. In this method, the systematic design of 
multi-valued functions uses a decomposition technique that
uses a small number of modules (ULM) to implement the func­
tions. This decomposition technique incorporates the concept
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of systematic routing from subfunctions to a single output. 
The function will be rewritten such that the subfunction 
becomes the function values in the logic equation. The func­
tion is reexpressed recursively until it is represented 
entirely by the subfunctions. A two-variable ULM (MVMUX or 
T-gate) is assumed to be the component used to implement the 
function. Since the component selected is a two-variable 
ULM, only two variables are used to partition the function. 
No attempt is yet made to try three, four or more variables 
in an attempt to decompose the function.

Rather than using only a single basic component as a 
building block to implement all three-valued two-variable 
functions, they analyze these entire classes of functions 
into six classes of functions as shown in Fig. 4.6.
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Function class 1

Function class 2

Function class 3

Function class 4

Function class 5

Function class 6
Fig. 4.6 Building Block Using MVMUX to Implement 

the Six Classes of Functions.

This method can be illustrated by the following exam­
ple. Fig. 4.7 shows a three-valued two-variable function. If 
we select x̂  and 3̂  as a subfunction variables, this func­
tion can be rewritten as a three-variable function F(xg ,x̂  ) ,
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and its function values become the subfunctions defined 
with respect to and Xg. There are ten partitioned 
matrices to be searched to identify which two of the five 
variables will so partition the function as to give a 
minimal number of subfunctions. In this example, x̂  and X£ 
give five different subfunctions along with the constant 0. 
The new three-variable function Ffx^yX^fX^) is shown in Fig. 
4.8. The subfunctions of x^ and X£ are given in Fig. 4.9.

Similarly, we select xj and xZf as the subfunction vari­
ables of F(x^,X|^.,x^). A one-variable function k(x^) may be 
written with subfunctions gfx^,*^) and h(Xj,x4) as its func­
tion values where g(x^,X4) corresponds to row 0 (or 2) of 
Fig. 4.8 and hfx^fX^) corresponds to row 1. A search of the 
3-partitioned matrices of Ffx^fX^/x^) shows that the select­
ing of x^ and x^ yields the minimal number of subfunctions.

Fig. 4.10 gives the subfunctions of X3 and x^. Fig. 
4.11 is the final representation of function 
which is the original function composed of two subfunc­
tions g and h. Fig. 4.12 illustrates the design of the func­
tion in Fig. 4.7 and uses the building blocks in Fig. 4.6 to 
realize the function.
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Fig. 4.7 f .

I

*5 00 01 02 10 11 12 20 21 22
0 a b b b b a c a b1 0 d d d d 0 e 0 d2 a b b b b a c a b

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0
12

1 2  1 
1 1 1  
2 1 2

0 0 2 
2 0 0 
0 2 0

1 1 0  
O i l  
1 0  1

1 2  0 
O i l  
2 0 2

2 0 2 
2 2 2 
0 2 0

c(3^,j^) d(3^ ,X2> e(X2 fXg)

Fig. 4.9 Subfunction of f.
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1 1
0
1
2

0 1 2
a b b  
b b a 
c a b

0 1 2
O d d  
d d 0 
e 0 d

g(*3»x^) hCx^rX^)

Fig. 4.10 Subfunction of F.

5
0 1 2
g h g 
k(x^)

Fig. 4.11 Final Representation,
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2---:

X

Fig. 4.12 MVMUX Structure Solution.

Even though the networks obtained by this method may 
require much fewer MVMUX in certain cases, this method has 
little or no interest to us because it will always produce 
non-fanout-free networks.

4.5 An Optimal Heuristic MVMUX Modular Synthesis Method

Before presenting the synthesis method of the MV func­
tion, some definitions and illustrations are introduced in 
their respective order.
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Definition 4.14; An MV function is said to be trivial if it 
is a constant function or a projection function, i.e. it 
depends only on one of its variables or its complement.

Definition 4.15; An MV decomposition function is a re­
expression of a function into a set of simpler subfunctions.

Definition 4.16; If f(xi,X2,...,%n) can be decomposed in the 
form of F(J(yĵ  ,Y2f... fYg) rZi f Z2f... »Z(n_s;) » this expression 
is called a simple disjunctive decomposition of f(x^,x^
i 9 •• fXn)

The reason this decomposition is called simple is 
because the composite function has but one subfunction 0 
aside from the given variables; it is called disjunctive 
because the variable y = yirYzr•••rYsf z = 
are the disjoint subsets of the variables x = x^,X2,...,x^ . 
Therefore,

yflz = é, y U z = X

Definition 4.17; The decomposition matrix, a simple disjunc­
tive decomposition of function f(x), is a rectangular array 
of the nT functional values f-̂ arrange in m^" ^^rows and 
columns. The rows correspond to the m^^ ^ ̂ configurations of 
zi,Z2 ,...,Z(n_g) in order, and the columns correspond to the

g
m configurations of Yi Yg in order. Each position
in the matrix is occupied by a functional value correspond­
ing to a unique configuration of ŷ  f and Zĵ ,2̂
f...,Z(n_s)f and hence to a unique configuration of Xĵ ,Xg
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Fig. 4.13 shows a decomposition matrix of z|y

m —1

n-s
f_n-sf,_n-s

Fig. 4.13 z|y Decomposition Matrix of f(x)

The subscripts identifying the fi have been arbitrarily 
taken for the case in which z^= x^fZgS *2'* * *'^(n-s) “ *(n-s) 
' *(n-s+l) “ ^1' functional values need not occur in 
this order and usually will not.

For the sake of simplicity and clarity, yet without 
loss of generality, 3-valued functions are used to present 
and illustrate the following definitions. For instance, in 
a 3-valued system the x^ XgIx^ decomposition matrix for any 
function f(x) takes the form shown in Fig. 4.14.
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0 1 2

00 fl 4 fl8
01 f2 fio fl9
02 ^3 fii ^20
10 fl2 ^21
11 5̂ fl3 ^22
12 fl4 f23
20 £? ^15 ^24
21 f8 fl6 f25
22 ^9 ^17 f26

Fig. 4.14 3-Valued Decomposition Matrix.

Assignments o£ values 0/ 1, and 2 to fLof the decompo­
sition matrix of Fig. 4.14 yield
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*1X2X3
0 1 2

00 0 1 0
01 0 0 0
02 0 1 2
10 2 1 0
11 1 1 1
12 2 0 0
20 2 1 0
21 0 1 0
22 2 2 2

Fig. 4.15 An Arbitrary 3-Valued x^x^lxi Decomposition Matrix.

Definition 4.18; An arbitrary logic function of n variables 
can be realized by a full-blown tree-structured MVMUX net­
work with a maximum of 1 + ^"bvMUXs. For example,
the decomposition matrix in Fig. 4.15 can be implemented by 
a maximum of 13 MVMUX as shown in Fig. 4.16.
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0—
2—
2—

0—
2—

OUTPUT

0 “■ 
0—  
2—

0  .
0—  
2—

Fig. 4.16 Maximum MVMUX Implementation from 
Decomposition Matrix in Fig. 4.15.

Definition 4.19; A decomposition matrix is called trivial if
it represents a trivial function.

Definition 4.20; A row vector, shown under the row variables 
in a decomposition matrix is called a vertex, e.g. in the
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decomposition matrix of Fig. 4.15, 00, 01,...,and 22 are
vertexes under the row variable and x^.

Definition 4.21; The function defined by the row on the 
right hand side of a vertex is called the residue function 
of the vertex, e.g. in the decomposition matrix of Fig.
4.15, 010 is the residue function of the vertex 00.

Definition 4.22; A residue function which is a constant 
(000, 111, 222), or an input variable (012), or a complement 
of input variable (210) is called a trivial residue function 
of that vertex vector. For example, in Fig. 4.15 there are 
six trivial residue functions: 000, 012, 210, 111, 210, and 
222; these trivial residue functions correspond to vertex 
vectors 01, 02, 10, 11, 20, and 22 respectively.

Definition 4.23: Any n-variable function can be decomposed 
into n possible decomposition matrices. For example, (Xĵ ,x̂  

,Xj) can have *2*3 **1' Xj^x^lXg, and x^x^lx^ decomposition 
matrices.

Definition 4.24: In a decomposition matrix, identical non­
trivial residue functions of different vertex vectors are 
called common residue functions. For example, in Fig. 4.7 
the residue functions corresponding to X2X^= 00 and 21 are 
010 which is a common residue function of the decomposition 
matrix.

Definition 4.25; A function is called reducible if there is 
at least one trivial residue function in any of the possible
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decomposition matrices of the function. Otherwise, it is 
irreducible.

Note that any irreducible decomposition function
requires 1 + A  ( Il ni  ̂ MVMUXs to realize it.

i=2 i=2
The following is a heuristic synthesis procedure for 

realizing any MV n-variable function into a minimal tree- 
structured single-selector MVMUX network. This approach is 
different from all the previous methods in that it starts 
from the output of the network and proceeds step-by-step 
towards its input.

Step 1: Partition the n-variable function into n possible 
decomposition matrices.

Step 2:
Case 2.1: If any one of the n decomposition matrix is 
trivial, one has a trivial solution, i.e. a constant, vari­
able or its complement.
Case 2.2: If all of the n decomposition matrices do not have 
any trivial residue function, i.e. the function is irreduci­
ble, then select any one of them. Construct a tree- 
structured MVMUX network directly from the decomposition 
matrix.
Case 2.3: If the function is reducible, that is there is at 
least one decomposition matrix which has at least one 
trivial residue function, select the decomposition matrix 
with the least number of trivial residue functions and form
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m branches of decomposition matrices from this node. Each 
branch has n-1 decomposition matrices constructed from the 
n-1 variables.

Step 3: For the decomposition matrices of each of the m 
branches.
Case 3.1: If any one of the n-1 decomposition matrix is 
trivial, one has a trivial solution for that branch, i.e. to 
put this variable or its complement at the input of that 
branch.
Case 3.2: If all of the n-1 decomposition matrices do not 
have any trivial residue function, then select any one of 
them. Construct a tree-structured MVMUX subnetwork directly 
from the decomposition matrix.
Case 3.3: Same as Case 2.3.

Step 4: Repeat Step 3 as many times as needed until there 
are no variables in any of the branch functions.

This procedure is best illustrated by means of an exam­
ple.

Example 4.3 To realize the nontrivial function f{x) which 
is given in the example of Biguchi and Kameyama [83] by the 
heuristic method:

(1) Partition the 3-variable into 3 decomposition matrices 

*1*2 **3' *1*3 **2' *2*3 **1 shown in Fig. 4.17.
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0 1 2

0 0 0 0 1
0 1 1 1 2
0 2 2 2 0
1 0 0 2 1
1 1 1 2 2
1 2 0 0 0
2 0 1 1 1
2 1 2 1 0
2 2 0 1 2

0 1 2

0 0 0 1 2
0 1 0 1 2
0 2 1 2 0
1 0 0 1 0
1 1 2 2 0
1 2 1 2 0
2 0 1 2 0
2 1 1 1 1
2 2 1 0 2

0 1 2

0 0 0 0 1
0 1 0 2 1
0 2 1 1 1
1 0 1 1 2
1 1 1 2 1
1 2 2 2 0
2 0 2 0 0
2 1 2 0 1
2 2 0 0 2

Fig. 4.17 Possible Decomposition Matrices.

(2) The numbers of trivial residue functions of the three 
Xglx^, *2^3 (*1 decomposition matrices are 
4, 3 and 1 respectively.

(3) Choose the decomposition matrix XgX^ Ix̂  ̂ since it has 
the least number of trivial residue functions. There­
fore, x^ is used as the data-selector MVMUX at the out­
put level (Ist-level).

(4) Eliminate Xĵ from the first-generation decomposition 
matrix x^x^lx^ by constructing 3 branches of decomposi­
tion matrices, each of which contains the variables X2 
and x^. In the branch x̂  = 0, partition the matrix into 
two decomposition matrices x^lx^ and x^IX2 , do simi­
larly branches x̂  = 1 and 2. They are shown in Figs.
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4.18 (a), (b)r and (c). Find trivial residue functions 
in each of these matrices which are tabulated in Table 
4.3.

(a) branch = 0

(b) branch x̂  = 1

(c) branch Xĵ = 2 
Fig. 4.18 Possible Decomposition Matrices.
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Table 4.3 Number of Trivial Residue Functions in Fig. 4.18,

Branch x^ Number of trivial residue functions 
*21*3 x^lXg

x^ = 0 0 2 
1 0 
3 1

(5) Choose the second-generation decomposition matrices Xg 
|Xj, *3**2 branches x̂  = 0  ,1 and 2
respectively. Since they have the least number of 
trivial residue functions in the decomposition matrices 
of their respective branch.

(6) Eliminate the variables and 3̂  from the above
three chosen decomposition matrices respectively. Now 
these decomposition matrices have only one variable 
left as seen in Figures 4.19 (a), (b), and (c).



- 96 -

2

x^x^=01
(a)

P  2 *30 1 2

*1

P  2

Xj^X2=ll

(b)

P

*1*2=12

P 2

XiXg^ZO X 1 X 2 - 2 1

(c)
x^ X2=22

Fig. 4.19 Decomposition Matrices with
(a) XiX3=00, xiX3=01, XiX3=02
(b) XiX2=10, XiX2=ll, Xĵ X2=12
(c) XiX2=20, XiX2=21, x%X2=22.

(7) Since the third-generation decomposition matrices x^x^ 
=00 and 01, %iX2=12, and xĵ X2=20,21, and 22 are trivial 
(Case 3.1), the branches containing them are ter­
minated. Put these variables or their complements at 
the inputs of those branches.

(8) The decomposition matrices left are those of x^x^=02, x̂  

X2=10, and Xĵ X2=ll which are irreducible. Hence these 
branches are assigned in the following values: 1, 2, 
and 0 to branches xĵ X3X2=020, 021, and 022; 0, 2, and 1
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to branches XiX2*3"^00, 101, and 102; 1, 2, and 2 to 
branches x^XgX^sllO, 111, and 112 respectively.

(9) Since there are no variables left in any of the branch 
functions, the synthesis is thus completed.

The tree-structured MVMUX network realization obtained 
by the heuristic method is shown in Fig. 4.20. This network 
is virtually the same as the one given in Higuchi and 
Kameyama [83] except that x^of the third MVMUX in the second 
level has replaced the MVMUX which complements x^.

Fig. 4.20 Tree-Structured MVMUX Network Realization. 
Example 4.4 Realize the decomposition matrix in Fig. 4.15 
with the heuristic method procedure:

(1) Partition the 3-variable into 3 decomposition matrices, 
X2X3 IXX, *3 I%2 ' and x̂  X2 IXj as shown in Fig. 4.21.
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0 1 2

0 0 0 1 0
0 1 0 0
0 2 0 1 2
1 0 2 1 0
1 1 1 1 1
1 2 2 0
2 0 2 1 0
2 1 0 1 0
2 2 2 2 2

0 0 
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

\ * 3

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

Fig. 4.21 Possible Decomposition Matrices.

(2) The numbers of trivial residue functions of the three %2 
x^lx^, x^x^lXg, and Xĵ X2 lx^ decomposition matrices are 
6 , 2 ,  and 1 respectively.

(3) Choose the decomposition matrix X2̂ X£|x^ since it has 
the least number of trivial residue functions. There­
fore, x^ is used as the data-selector MVMUX at the out­
put level.

(4) Eliminate x^ from the decomposition matrix xĵ X2 |x^. Now 
n-1 = 2 .  In the branch x^ = 0, partition the matrix 
into decomposition matrices |X2 and x^lx^, do simi­
larly to branch x^ = 1 and 2 as shown in Figures 4.22
(a), (b), and (c) respectively. The trivial residue 
functions of each matrix are tabulated in Table 4.4.
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S

E

h
(a) branch = 0

(b) branch = 1

(c) branch x^ = 2 
Fig. 4.22 Possible Decomposition Matrices.

Table 4.4 Number of Trivial Residue Functions in Pig. 4.22

Branch x^ Number of trivial residue functions 
Xi 1X2 Xg |x̂

X3 = 0 
x^ = 1
x^ = 2

2
0 2 
0 2
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(5) From Table 4.4, when X3 is equal to 0, the possible 
decomposition matrices have the same trivial residue 
functions. In this case, we should process both vari­
ables and choose the one that has the least number of 
MVMUXs. If they use the same number of MVMUXs, then 
choose the one that has fewer total numbers of variable 
data inputs to the MVMUXs. The final results are shown 
in Figs. 4.23 and 4.24. However, Fig. 4.23 is chosen 
because it has fewer variable data inputs than Fig. 
4.24. Even the number of MVMUXs of the two networks are 
the same.

Fig. 4.23 Tree-Structured MVMUX Network Realization.
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Fig. 4.24 Tree-Structured MVMUX Network Realization.

In conclusion, the heuristic modular synthesis method 
presented in this section guarantees a fanout-free network 
with a possible minimal number of MVMUXs. This approach is 
much simpler when compared with any of the existing methods 
and is, therefore, much more easily included in an automated 
design process in making the MV LSI/VLSI.

So far, however, we have only discussed the MVMUX syn­
thesis methods for realizing the MV combinational logic. The 
synthesis of sequential logic using MVMUX will be presented 
in the next chapter.



CHAPTER V

MVMUX SEQUENTIAL LOGIC DESIGN USING AN MVASM CHART

The MV sequential circuit is composed of combinational 
circuits and memory circuits. The output signal of the 
sequential circuit depends on the present inputs and past 
history of inputs. The basic design of MV memory circuits 
required in a sequential circuit and an efficient and sys­
tematic design of an MV sequential logic using an algo­
rithmic state machine (ASM) chart will be presented in this 
chapter,

5.1 Multi-Valued Memory Circuits Design

The MV memory circuits considered in this thesis are 
similar to the flip-flops in a binary system. A name "m- 
flop" will be called for multi-valued flip-flop. The m-flops 
were first introduced by Irving [74]. These m-flops used 
MAX, MIN, CYCLE, and COMP gates in a cross-couple fashion. 
There are also other components which can be used to design 
m-flops such as T-gate (multiplexer) and m-valued m- 
threshold devices which can be found in Wills' thesis [206].

In order to design the m-flops, the following proper­
ties [74] must exist:

- 102 -
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1. The device must be defined for any m (m is a finite 
integer > 2).

2. It must have m stable states.

3. It must have at least one output which presents a dif­
ferent logic value for each of the m stable states.

4. It must remain in each stable state indefinitely in the 
absence of external excitation.

5. It must be able to obtain any stable state A from any 
other stable state B in a single transition with proper 
excitation.

Having the same property as binary flip-flops, any type 
of flip-flop (JK flip-flop, D flip-flop and T flip-flop) can 
be realized from SR flip-flop by adding some gates. Hence, 
the SR m-flop will be designed first. As an extension of 
binary SR flip-flop, an SR m-flop requires:

(a) If the AND operator is used, the non-deterministic
input conditions occur when x̂  + x£ < p.

(b) If the OR operator is used, the non-deterministic input 
conditions occur when xi + xg > p.

For example, using AND and COMP operators, the next-state 
equation for an SR 3-flop is

Q(t+1) = xi + X2* Q(t). (5.1)
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The logic diagram, stable states, and state table of an 
SR 3-flop are shown in Fig. 5.1.

(a) Logic Diagram

Q (= X) 0 1 2

Q (= X) 2 1 0

(b) Stable States

X. (t) 0 0 0 1 1 1 2 2 2
Xgtt) 0 1 2 0 1 2 0 1 2

0 X X 2 X 1 1 0 0 0
Q(t) 1 X X 2 X 1 1 0 1 1

2 X X 2 X 1 2 0 1 2 } Q(t+1)

The non-deterministic input conditions occur 
when %2+ %2 < P

(c) State Table 
Fig. 5.1 SR 3-Flop.

The next states for values of %i and X2 which satisfy xi
2+ X 2 < P are not defined. This eliminates p(p - l)/2 combi­

nations of values of x^ and X£ to be applied as inputs. To
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avoid this, a simple gating arrangement which gives an 
improved SR 3-flop shown in Fig. 5.2 can be used.

Xi = 0

r> *2

Cross­
coupled

AND-
complement

gates

(a) Logic Diagram

Q(t) 1

(b) state Table

Q(t+1)

Q(t) 0 0 0 1 1 1 2 2 2
Q(t+1) 0 1 2 0 1 2 0 1 2
jc 0 1 2 0 001 2 0 Oil 2
4 d d d 0 12d d 0 101 d
d = don't care

(c) SR 3-flop Input Table 
Fig. 5.2 Improved SR 3-Flop.

From this improved SR 3-flop, the following D 3-flop 
can be constructed and is given in Fig. 5.3. The state 
table, excitation table, excitation map, and logic diagram 
of D 3-flop are given in Figs. 5.3 (a), (b), (c), and (d)
respectively. It should be mentioned that I L SR m-flop, D
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m-flop, master-slave SR m-flop, SR m-valued latch, and etc. 
have been designed by Dao, McCluskey and Russell [41], and 
Pugsley and Silio [151].

D
Q(t)

0 1 2 D
Q(t)

0 1 2

0 0 1 2 0 Od Id 2d
1 0 1 2 011 00 02 2d
2 0 1 2 Id
(a) State table 01 02

2 00 11 12
01 2d
X1X2(b) Excitation table

D 0 1 2 D 0 1 2
Q(t) Q(t)
0 0 1 2 0 d d d
1 0 1 2 1 0 d d
2 0 1 2 2 0 1 d

X i = D

(c) Excitation maps
Xg = D
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Cross­
coupled

AND-
complement

gates

Clock " 
(normally p) P

(d) Logic diagram of D 3-flop 
Fig. 5.3 D 3-Plop.

The other D 3-flop and master-slave D 3-flop designed 
by using multiplexer or T-gate can be found in Higuchi and 
Kameyama's paper [66].

5.2 Multi-Valued Algorithmic State Machine

Due to the increasing complexity of the integrated cir­
cuit, the classical design technique is almost impossible. 
Thus, an automated design technique is necessary in the 
LSI/VLSI circuit. Simulation is an automated design tech­
nique widely used in a variety of engineering disciplines. 
When it is too difficult to verify the correctness of the 
design by inspection, by proof, or by test, simulation may 
help. Simulation allows the designers to test a design 
before building it by modeling in detail the components from 
which the design is built and by computing their interac­
tions under various conditions. Simulation has been used in 
different levels of LSI/VLSI circuit design; behavioral.
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register-transfer, functional, gate, circuit, etc. Unfor­
tunately, these simulators do not really work for the whole 
design process because of the difficulty in preparing the 
data inputs in a form suitable for the simulator to simu­
late. For example, to write a program for a register- 
transfer simulator is very simple but to write the design 
language as the input of simulator is much more difficult to 
implement. The lack of commonality of design methods in the 
digital system design field have resulted in a delay in the 
availability of such programs.

The objective of this chapter is to develop a design 
aid which is called the HV Algorithmic State Machine (ASM) 
chart that may solve the problem of translating the data 
part of a design from a functional (behavioral) level to a 
structural and logical level through the specification of 
information.

The general design of the MV digital circuit 
represented in Chapter 3 was strictly in MV combinational 
circuits. In this chapter, an MVASM chart technique is 
introduced to be used as a design aid for the MV sequential 
logic circuit. This technique is an extension from the 
binary ASM chart which was introduced by Dines Biorner in 
1970 [19], C.R. Clare in 1973 [30], and S.C. Lee in 1976 
[96]. This new technique of designing MV sequential logic 
circuits using the MVASM chart allows the designers to real­
ize a tree-structured MVMUX directly from the MVASM chart.
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The steps of designing MV logic circuits using the MVASM 
chart are given in Fig, 5.4.

Tree-structured 
MVMUX network

Verbal 
description 
of a design 

problem

Synthesis 
Tree-structured 
MVMUX network

algorithmic 
state machine 

chart

Fig. 5.4 Flow Diagram for Sequential Circuit Design.

A. MVASM Chart Description of Logic

The MVASM chart is a state diagram that describes the 
overall behavior of the MV sequential machine. It can be 
described in terms of the three basic building blocks of 
Table 5.1.
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Table 5.1 Basic Building Blocks of an MVASM Chart.

Name Symbol
State name

State
box i

**
State code

t:

State output 
list

State exit path

Decision
box

Condition 
( MV expression )

Conditional exit 
path

Conditional 
output box Conditional output 

list 
Exit path

Multi-Valued State Box

The MV state box is used to represent a single state of 
the MV sequential machine. The letter or number or name of 
the state is encircled on the left or right of the MV state 
box; the m-ary code for the state is written along the upper 
edge of the box. If there are state outputs of the state, 
they are listed in MV state box. If the output is to become 
active immediately, an I precedes the output name. Delayed 
outputs have no prefix. The MV state box has a single exit 
path which may lead to multi-valued decision boxes, multi­
valued conditional output boxes, or other MV state boxes.
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Multi-Valued Decision Box

The MV decision box describes the inputs or qualifiers 
to the MV sequential machine. Each MV decision box has m 
exit paths (ro is a number of the levels of the logic), one 
of these is taken when its condition is active. Arrows are 
used to indicate a conditional exit path. It should be noted 
that the exit paths do not indicate any time dependence.
Only the MV state box represents functions of time.

Multi-Valued Conditional Output Box

The MV conditional output box is used to describe out­
puts that are dependent on one or more inputs as well as the 
state of the machine. The conditional outputs are listed in 
the box with immediate and delay operations permitted. The 
input to the box must be a conditional exit path and there 
must be only a single exit path.

MVASM Block

An MVASM block is a structure consisting of an MV state 
box and a network of MV decision boxes and MV conditional 
output boxes. An MVASM block is denoted by a dashed line as 
illustrated in Fig. 5.5. There is only one entrance to a 
block and any number of exit paths depends on the network 
structure of the MV decision boxes within the block. Each 
MVASM block exit path must connect to a state, and each pos­
sible path from one state to the next is called a LINK PATH. 
Therefore, each exit path is a link path. Note that in
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practice the dashed line is often omitted as a shortcut, but 
the block structures are still evident since they consist of 
a network of the MV conditional output boxes and the MV 
decision boxes between the MV state box and the next.

One state

•F

n - exit paths
Fig. 5.5 An MVASM Block.

One MVASM block describes the state machine operation 
during one state at a time. Each MVASM block represents the 
present state, Q[t]; the state outputs, f[Q(t)]; the condi­
tional outputs, f[Q(t),I], and the next state,
Q(t+1)IQ(t),I], for a set of inputs. I, of the general state 
machine.
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5.3 MVMUX Sequential Logic Design Using MVASM Chart

An MVMUX sequential logic design using the MVASM chart 
starts with describing the design using an MVASM chart of 
Fig. 5.6 which is to be realized by tree-structured HVMUX/D 
m-flop networks of Fig. 5.7. From these two diagrams we see 
that the input values of the MVMUXs of the network in Fig.
5.7 can be found directly from the MVASM chart of Fig. 5.6 
and thus this design process can be automated by a computer. 
The procedure of the MV sequential machine design using the 
MVASM chart may be outlined as follows:

1. Define the inputs, outputs, and states of the MY logic 
circuit to be designed.

2. Draw state boxes in the first row of the diagram in 
Fig. 5.6 to represent the states of the machine. Each 
state is then described by a set of values of the state 
variables q^Qg' " % '  where n = llog^sl and s represents 
the number of states. In other words, each state is 
coded by an n-tuple of m-valued numbers.

3. Indicate the state output of each state in its state 
box.

4. For each state box, connect a series of decision boxes 
to realize the verbal statements described by the prob­
lem. Output condition boxes are inserted in the paths 
whenever needed. An MVASM block is formed.
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5. From each exit path of an MVASM block, draw the transi­
tion line to its next state. Now the MVASM chart to 
describe the system is completed.

6. Each m-valued state variable of the MVASM chart is 
realized by a tree-structured MVMUX network in cascade 
with a D m-flop as shown in Fig. 5.7. The data-select 
lines of MVMUX network are the state variables and 
input variables.

7. The data inputs of the MVMUX network are the next state 
code values.

This design procedure is best illustrated by an exam­
ple. Without loss of generality, consider the MVASM chart of 
nine states shown in Fig. 5.8 where the 3-valued logic is 
used. The tree-structured MVMUX/D 3-flop network realization 
of this chart is shown in Fig. 5.9. The input values to the 
MVMUXs of Fig. 5.9 are obtained from the state variables and 
the transition paths from one state to another indicated on 
the MVASM chart. For example, the values of 1 and 2 at the 
inputs of the first MVMUXs of the two blocks are obtained 
from the state variable values q^ = 1 and qg = 2 of the 
final state 6 of the transition path from state 1 to state 6 
as indicated in dark line. The rest of input values to the 
MVMUXs are found in a similar manner.
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Fig. 5.7 A Tree-Structured MVMUX/D m-Flop.
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Fig. 5.8 An Example of 3-Valued ASM Chart.
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Fig. 5.9 The Tree-Structured MVMUX/D 3-flops Circuit
Realization of the 3-Valued ASM Chart of Fig. 5.8.
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To this point, we have presented several general and 
practical procedures for designing both combinational and 
sequential LSI/VLSI, Because of their high complexity and to 
ensure these circuits are fault-free after fabrication, any 
external test technique used will be extremely costly and 
almost impossible. The design of HV LSI/VLSI with built-in 
test circuits, hence, becomes necessary. The design of HV 
LSI/VLSI with built-in test circuits hence becomes neces­
sary. Several state-of-the-art techniques for binary 
LSI/VLSI design are presented in the next chapter.



CHAPTER VI

STRUCTURED DESIGN FOR TESTABILITY OF BINARY LSI/VLSI

The rapid evolution of the semiconductor technology 
towards an ability to put hundreds of logic gates on a sin­
gle chip of silicon offers a great potential for reducing 
power, increasing speed, and reducing cost. Unfortunately, 
several problems must first be solved in order to fully 
exploit these advantages of the LSI/VLSI. Testing of the 
system is one of those problems that needs to be solved 
before realizing this system.

Testing must be done throughout the life of a system 
[22] since faults may occur or be introduced into a circuit 
during manufacturing, assembly, storage and service. During 
each of these periods, the nature of the faults introduced, 
and consequently the type of testing which must be per­
formed, is different. During manufacturing, typical faults 
which may exist are open bonds, open interconnections, bulk 
shorts, shorts due to scratches, shorts through dielectric, 
pin shorts, cracks, etc. Hence, a newly manufactured circuit 
may contain multiple faults, some permanent and some inter­
mittent faults, such as the shorting of two leads due to 
mechanical or voltage stressing. Some of these faults can be
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modeled as logical faults while others cannot. Faults may 
also be introduced during assembly and testing. In addition, 
faulty elements may not be discovered until after assembly. 
During storage new faults may occur in a circuit due to fac­
tors such as temperature, humidity, leakage of sealed ele­
ment, and aging. These factors usually cause parametric 
rather than logical faults in a circuit. Finally, in ser­
vice, these same factors occur as well as others caused by 
heat dissipation, vibration, and voltage and current stress.

The purpose of this chapter is to present the basic 
concepts in the testing of two-valued LSI/VLSI system which 
will be developed in multi-valued logic in the next chapter.
This chapter begins with the logical fault models, followed
by the traditional function and logical test techniques, 
design techniques for testability, and structured design for 
testability.

6.1 Logical Fault Models

In this section, the definitions of tests for logical
faults and developed logical fault models for the most com­
mon faults which occur in the current technologies are 
presented.

Definition 6.1; A single application of values to the input 
terminals is called a fault-detection test.

Definition 6.2; A set of tests, which leads to a definite 
conclusion as to whether or not the circuit operates
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correctly for all input combinations is called a fault- 
detection experiment.

Definition 6.3; A set of inputs which detects all possible 
(detectable) faults is called a complete detection test set.

Definition 6.4: A set of tests which distinguishes all pairs 
of possible faults is called a complete location test set.

Definition 6.5; A minimal complete test set of a circuit is 
a complete test set that contains a minimum number of tests.

Definition 6.6; An intermittent fault is, or appears to be 
present at some times but not at others.

Definition 6.7: A permanent fault is a fault always being 
present.

Definition 6.8; Exhaustive testing is a testing technique 
that uses all possible input combinations to generate test 
patterns (no fault model is used).

Definition 6.9; A random test or probabilistic test is a 
testing technique that uses some input combinations to gen­
erate test patterns (the fault model may be used).

Traditionally, faults have been modeled as a single 
permanent stuck-at fault model [22]. This model assumes 
that an input or output of a circuit element is fixed to 
either a logic 0 (stuck-at-0) or a logic 1 (stuck-at-1). 
However, such an assumption does not generally cover the
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bridging faults [121] that may occur. Usually, the bridging 
faults have been detected by having a high level that is in 
the high 90% of the single stuck-at fault coverage where the 
single stuck-at fault coverage is defined to be the number 
of faults that are tested and divided by the number of 
faults that are assumed [205].

The other important fault models are multiple stuck-at 
faults and bridging faults. The multiple stuck-at faults is 
a fault which is composed of several single stuck-at faults 
that occur simultaneously.

A bridging or short circuit fault [22,121,213] is a 
fault which causes two or more lines in a network to connect 
together. In general, the stuck-at faults can be considered 
as a special case of the bridging faults, but some kinds of 
the bridging faults (for instance, a feedback bridging fault 
which occurs between two lines and forms a loop) cannot be 
modeled as a stuck-at fault. Since increasing numbers of 
components are being fabricated into an IC chip, the possi­
bility of bridging faults increases.

It is known [205] that there are two major facets of 
the functional testing problem: test generation and test 
verification. Test generation is the process of enumerating 
stimuli for a circuit which will demonstrate its correct 
operation. Test verification is the process of proving that 
a set of tests are effective toward the end.
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6.2 Types of Tests Used in Testing ICs

In general, there are three types of test which are 
usually performed on the digital integrated circuits: DC 
parametric, AC parametric, and functional tests [62].

a. The DC parametric tests

The electrical DC parametric tests verify specific 
parameters specified in terms of voltage or current, A DC 
test is performed by forcing a current and measuring a 
resultant voltage or by forcing a voltage and measuring the 
resultant current. A pure voltage measurement would assume a 
forced current of zero. A differential voltage measurement 
measures the voltage difference between two floating points. 
The most common DC parameters measured are continuity, leak­
age, power consumption, voltage high/low levels, drive capa­
bility, and noise. The important characteristics to be con­
sidered when performing a DC parametric test are the accu­
racy and test time per parameter per device pin.

b. The AC parametric tests

The AC parametric tests verify time-related parameters 
specified in terms of seconds. The basic characteristic of 
the AC parametric tests is the measurement of the time rela­
tionships at which a device operates, for example, the time 
it takes the output of a device to switch from 10% of its 
output level to 90%. The AC tests also measure the delay 
until the device output is produced after an input is
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applied. Varying input timing relationships for an accept­
able output is also an AC test. The most common AC parame­
ters measured are rise and fall time, propagation delay, 
set-up and release times, and access time.

c. The functional or logical tests

The functional or clock rate tests are the tests 
required to verify that the device performs its operations 
or its function as the design intended. Logical zeros and 
ones are propagated through the device in such a manner that 
each device internal node is verified to operate properly. 
Functional testing is sometimes referred to as a clock rate, 
node or truth table testing. The basic characteristics of a 
functional test are the application of parallel and random 
data and the comparison of the device output to a predicted 
data pattern. The data is applied at rates specified for the 
device. The most significant testing considerations include 
the efficiency of pattern generation, edge-to-edge timing 
control, and input/output and mask switching.

The functional test may be divided into two classes: 
traditional test techniques and design for testability tech­
niques.

6.3 The traditional functional and logical test techniques

The traditional test techniques are usually suitable 
for small scale integrated circuits (SSI) and medium scale 
integrated circuits (MSI). This class of tests [22] is the
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tests that applied to the circuit (unit) under the test 
(ÜÜT) using automatic test equipment (ATE). In one class of 
such systems, binary patterns are applied to the UUT and 
also to a reference unit realizing the same function as the 
UUT, and the outputs are compared. In more sophisticated 
computer controlled testing systems, test programs are 
automatically translated to the appropriate input stimuli, 
and the output signals are automatically interpreted and 
processed by the computer. A typical configuration for such 
a test system is shown in Fig. 6.1. Here X is the applied 
test stimuli, and Z' is the observed response from the UUT. 
The processor compares Z ' with Z which is the known good 
response from the UUT. Based upon this information the ATE 
can determine whether or not the UUT is faulty (fault detec­
tion) , and if so, where is the site of the fault (fault 
location). Often, more accurate fault location information 
can only be obtained by probing signals internal to the UUT. 
A sophisticated ATE would instruct the test operator, via 
the display, as to exactly which signals should be probed. 
The central problem in test generation is creating the input 
X and computing the normal response Z and the responses due 
to each fault of interest such that fault detection and 
location can be efficiently carried out.
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Fig. 6.1 Store Program Automatic Test Equipment System.

The generation of test patterns to be applied by the 
digital tester to the UUT is an important and difficult 
problem. Such test patterns are sometimes computer gen­
erated. Fig. 6.2 shows a block diagram for the typical 
automatic test pattern generation system. The inputs to the 
system are a description of the circuit for which test pat­
terns are to be generated including the faults to be tested 
and the initial state information. Test patterns are then 
generated, simulated, and the circuit response is analyzed 
to produce dictionaries which specify circuit response to
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tests under various fault conditions in a format which is 
easily utilized for repair. This is repeated for each test 
pattern until the pattern generation is concluded.
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Fig. 6.2 Automatic Test Pattern Generator System.
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Therefore, it is evident that in order to test the
LSI/VLSI systems, this class encounters many difficult prob­
lems as follows [118,119,]:

(1) A fault model is required. In the LSI/VLSI circuits, 
the classical assumption that only single stuck-at- 
faults need to be modeled may no longer be valid. More 
complex models are possible, but they substantially 
increase the difficulty of test pattern generation.

(2) Test pattern generation is required. Automatic test 
pattern generation is very costly and typically does 
not provide sufficiently high fault coverage. Manual 
test pattern generation has the added disadvantage of a 
long delay inserting into the production cycle. For 
sequential circuits, automatic generation may be broken 
down completely, and manual generation can be very 
lengthy and produce poor results.

(3) An expensive tester is required. When test generation
produces many patterns, the tester is tied up for a
long time so that many testers may be needed.

(4) Fault coverage is too low. Because of the expense of
running test generation programs, it is necessary to 
stop before tests for all of the stuck faults have been 
determined. In fact, it may not be practical to obtain 
tests which detect more than 80% of the single stuck 
faults. Low fault coverage does not really eliminate
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costs, but shifts the cost from test generation to 
repair of systems with defective parts.

6.4 Design Techniques for Testability

The design techniques for testability are techniques 
that allow the IC tester to be controllable and observable 
so that the IC chip can be tested economically and within a 
reasonable time. This class of test is usually applicable 
for the LSI/VLSI systems. In order to enhance the testabil­
ity of the IC, the following may be required.

1. Partitioning of the circuit into manageable subunits.

2. Improving the controllability of the circuit

3. Improving the observability of the circuit

The latter is the most effective means as it is evident from 
the fact that most test procedures are either exponential­
time algorithms or at least proportional in time to the 
number of gates to the power of n with n > 2.

Almost any implementation of the above enhancements 
will be in conflict with the LSI/VLSI design objectives; 
improving the observability and controllability will require 
additional pins and silicon area, and the partitioning for 
testability may not be in accordance with normal functional 
partitioning. Thus, there will always be a trade-off between 
the testability and overhead.
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The design for testability techniques to alleviate 
testing problems are divided into two categories [205,119]. 
The first category is that of the ad hoc technique for solv­
ing the testing problem. These techniques solve a problem 
only for a given design and are not generally applicable to 
all designs. This is contrasted with the second category of 
structured approaches. These techniques are generally appli­
cable and usually involve a set of design rules by which 
designs are implemented. The objective of a structured 
approach is to reduce the sequential complexity of a network 
to aid test generation and test verification.

6.5 Structured Design for Testability

A considerable number of papers on the structured 
design for testability of LSI/VLSI have been published in 
the literature [8,46,55,89,119,165,178,184]. Among these 
publications the Level Sensitive Scan Design (LSSD) [46], 
Scan path [55], Built-In Logic Block Observation (BILBO)
[89], Syndrome Testing [165], and Autonomous Testing [119] 
have received the most attention.

A. Level Sensitive Scan Design (LSSD)

The basic idea of the LSSD approach (as shown in Fig.
6.3) is to transform the difficult task of testing a sequen­
tial circuit into a simple task of testing a combinational 
circuit. This approach uses the concept that the memory ele­
ments in the IC can be threaded together into a shift regis-
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ter; the memory elements values can be both controlled and 
observed. This technique enhances both controllability and 
observability, allowing us to augment testing by controlling 
inputs and internal states and to easily examine internal 
state behavior. However, there are some disadvantages in 
this approach:

1. The LSSD is a passive test aid in the sense that exter­
nal devices are required for generating test patterns 
and evaluating test answers. This is not a drawback as 
long as the system is large enough to justify an exter­
nal test or maintenance processor. But, in smaller and 
distributed systems, the LSSD is less useful.

2. The LSSD process is the serialization of the test; it 
potentially costing more time for actually running a 
test. It follows the idea that the increasing chip com­
plexity will lead to longer scan paths and test times 
and thus cancel a certain degree gained by transforming 
the test problem into a combinational one.

3. In considering the cost performance impacts, there are 
a number of negative impacts associated with the LSSD 
philosophy. First of all, the shift register latches in 
the shift register are, logically, two or three times 
as complex as simple latches. Dp to four additional 
primary inputs/outputs are required at each package 
level for control of the shift registers. External 
asynchronous input signals must not change more than
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once every clock cycle. Finally, all timing within the 
subsystem is controlled by externally generated clock 
signals.

Output

XI

VI
X?

Xn
Vo

Fig. 6.3 General Structure of an LSSD Subsystem with Two 
System Clocks.

B. Scan Path

The basic idea of the scan path approach [55] is the 
same as that of LSSD approach. This approach used raceless 
D-flip flop as a memory element in the scan path circuit as 
shown in Fig. 6.4. The difference between the scan path and 
the LSSD approach is that the LSSD is a level-sensitive 
operation- the ability to operate the clocks in such a 
fashion that no races will exist. The LSSD used a separate 
clock to operate latch 1 and latch 2, while the scan path 
used both clocks to operate latch 1 and latch 2.
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In the system operation (normal mode operation), only 
clock 1 is used to operate the D-flip flop by keeping clock 
2 at logic 1 for the entire operation. When clock 1 is Or 
the data can be loaded into latch 1. As long as clock 1 is 0 
for sufficient time to latch up the data, it can then turn 
off. As it turns off, the result data in latch 1 will be 
loaded in latch 2. This assumes that as long as the output 
of latch 2 does not come around and feed the system data 
input to latch Ir latch 2 is active. The period of time that 
occurs is related to the delay of the inverter block for 
clock 1, This race condition is exposed to the use of only 
one system clock.

In the scanning operation (testing mode operation], the 
D-flip flop with scan path has its own scan input called 
test input. It operates by clock 2; for example, when clock 
2 is 0, the data is loaded into latch 1, and the result in 
latch 1 is loaded into latch 2 when clock 2 is 1. The delays 
to avoid the race problem are the same as in the above dis­
cussion.
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Fig. 6.4 Configuration of Scan Path on Card.

C. Built-In Logic Block Observation (BILBO)

The BILBO technique [89,139] combines the LSSD, scan 
path, and signature analysis [1,143] techniques together.
The basic concepts of BILBO are based on the following prin­
ciples:

1. All the test patterns are generated in the IC chip.

2. The test results for ÜÜT are evaluated on the IC chip.

3. The overhead (additional pins and silicon area) is kept
minimal.

4. The external testing equipment is reduced to a minimum;
the only action from outside the IC chip is initializ­
ing the test and reading the go/no go information from 
the IC chip.

In general, the BILBO technique operates almost the
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same as the LSSD and the scan path techniques, except that 
the BILBO technique has the circuit or memory storage to 
generate the test patterns within itself. Usually, the test 
patterns can be generated by the following methods:

1. Derive a minimum complete test patterns set and store
it in the memory storage of that chip. This method uses
greater amount silicon area when the number of test
patterns increases.

2. Design a combinational circuit or linear feedback shift 
register which can generate a minimum complete test 
patterns set. This method is often difficult to design 
to match all those sets, and the circuit may be very 
complicated.

3. Design a counter or linear feedback shift register to
generate all possible test patterns ), which is
called an exhaustive test. This method is only good 
for the small numbers of input, and no fault model is 
needed.

There are four basic operation modes in the BILBO tech­
nique [89]: basic system operation, linear shift register or
LSSD operation, signature analysis operation, and reset mode 
operation.

1. Basic system operation mode (Cĵ Cg) = 11. When 11,
the BILBO of Fig, 6.5(a) will be reduced to the circuit
shown in Fig. 6.5(b). Under this operation, the
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values are loaded into , and the outputs are avail­
able on for system operation. This would be a normal 
register function.

2. LSSD operation mode {,Ĉ C2~ 00). When Cĵ C2= 00, the 
BILBO register takes on the form of a linear shift 
register as shown in Fig. 6.5(c). Data scan-in is 
input to the left through some NOT gates, and it basi­
cally lines up the registers into a single scan path 
until the data scan-out is reached.

3. Signature analysis operation mode (Cĵ C2= 10). When C1C2 
= 10 in this mode as shown in Fig. 6.5(d), the BILBO 
register takes on the attributes of a linear feedback 
shift register of a maximum length with multiple linear 
inputs. If there are inputs to the BILBO registers, 
can be controlled with fixed values in this mode opera­
tion; the BILBO will output a sequence of patterns 
which are very close to random patterns.

4. Reset mode (Cĵ C2= 01). When Cĵ C2= 01 in this mode, it 
would force a reset on the register.
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Fig. 6.5 BILBO and Its Different Modes.
(a) General Form of BILBO Register
(b) CfCp = 11 System Orientation Mode
(c) C.Cp = 00 Linear Shift Register Mode
(d) C.Cp = 10 Signature Analysis Register 

with m Multiple Inputs (Z^, Z2,...,Zg)

D. Syndrome Testing

The syndrome testing technique [165,166] is used to 
test the permanent stuck-at faults in the combinational sys­
tem. This technique is based on the number of minterme real­
ized by switching function and requires all the test pat­
terns (2^) be applied to the input of the circuit (each 
input combination is applied exactly once) and count the 
number of ones appearing at its output. Therefore, the only 
difference between the syndrome and the ones-count is the 
location of the binary point. Thus, there is no essential 
difference between the syndrome and the ones-count, and a 
binary counter can serve the purpose of measuring the
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syndrome. If the syndrome stored in the counter by the time 
the test has been completed is equal to the fault-free syn­
drome, the circuit is declared fault-free; otherwise the 
circuit is faulty. It should be noted that in order to make 
the syndrome-test procedure of acceptable length, large cir­
cuits with many inputs must be partitioned to subcircuits so 
that each subcircuit will have no more than 20-25 inputs. 
Each subcircuit then is designed to be syndrome-testable.

Pattern
Generator

Compare
Register

COUNTERCut

Fault
Signal

Fig. 6.6 Syndrome Test Structure.

In order to design testable combinational circuits, 
some extra I/O pins have to be inserted so that the final 
circuit will be syndrome-testable. The advantage of the 
syndrome testing technique is a very low storage requirement 
for implementation; therefore, the expensive stage of test 
generation can be avoided. Fig. 6.6 shows the syndrome 
testing system structure procedure where the syndrome- 
testable circuit does not include the pattern generator, 
counter, or compare register.
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E. Autonomous Testing

The autonomous testing technique [119] is similar to 
the syndrome testing technique in that they both require the 
all possible patterns be applied to the system inputs. How­
ever, with the autonomous testing, the outputs of the system 
must be checked for each pattern against the value for the 
good machine. Consequently, irrespective of the fault model 
autonomous testing will detect the faults by assuming that 
the faulty machine does not turn into the sequential machine 
from the combinational machine. In order to help the system 
apply its own patterns and accumulate the results of the 
tests rather than observing every pattern for 2^ input pat­
terns, a structure similar to the BILBO register is used. 
This register has some unique attributes and is shown in 
Figs. 6.7-6.10. If a combinational system has 100 inputs, 
the system must be modified so that the subsystem can be 
verified and, thus, the whole system will be tested.

In order to exhaustively test each subsystem, all the 
subsystem inputs must be controllable at the input of the 
system, and all subsystem outputs must be observable at the 
system outputs. This can be achieved in two ways: hardware 
partitioning and sensitized partitioning. The hardware par­
titioning technique is performed by inserting multiplexers 
and connecting the embedded inputs and outputs of each sub­
system to those primary inputs and outputs that are not used 
by the subsystem under the test mode operation. The sensi­
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tized partitioning technique can be done by applying the 
appropriate input pattern to some of the input lines. The 
effect achieved is similar to that of the hardware parti­
tioning technique. The paths from the primary inputs to the 
subsystem inputs and the paths from the subsystem output to 
the primary output can be sensitized. Using these paths, 
each subsystem can be tested exhaustively.

The autonomous testing technique has improved the tes­
tability of the system as follows:

1. It is not required to have the fault model for testing
since all possible test patterns are used.

2. Memory storage for the test patterns is not required
since all the possible test patterns can be generated
by counter circuit or feedback shift register circuit.

3. It is not required to have an expensive external test­
ing equipment.

4. There is no serial scan in and scan out of the test 
pattern to the system; therefore, the testing time is 
reduced.

However, there are some disadvantages to the autonomous 
testing technique in which partitioning a system into sub­
systems is needed to add some components in order to be con­
trollable for the testing and system operation mode. This 
adding component also reduces the speed operation of the
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0
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1

Normal Operation 
Input Generator 
Signature Analyzer

Fig. 6.7 Reconfiguration of 3-Bit LFSR Module.

N = 1: Normal operation
Fig. 6.8 Reconfiguration of 3-Bit LFSR Module.
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N = 0, S = 1; Signature Analyzer
Fig. 6.9 Reconfiguration of 3-Bit LFSR Module,

N =  Of S = 0: Input Generator
Fig. 6.10 Reconfiguration of 3-Bit LFSR Module.

In conclusion, several design-for-testability tech­
niques for the two-valued LSI/VLSI and their advantages and 
disadvantages have been presented. Some of these techniques 
may be implemented in a new design for testability with the 
built-in testing capability of the HV LSI/VLSI tree- 
structured MVMUX network. This new design technique is 
intended to avoid the use of any expensive external testing 
devices and yet is still able to thoroughly test the chip 
within a reasonable test time. Moreover, such a test may be
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conducted at any time during the lifetime of the chip. A 
detailed discussion of this new design technique is 
presented in the next chapter.



CHAPTER VII

HIERARCHICAL DESIGN OF MV LSI/VLSI 
WITH BUILT-IN PARALLEL TESTING CAPABILITY

In this chapter, the concept of a hierarchical design 
process which handles the complexity problem of the HV 
LSI/VLSI will be introduced. The tree-structured modular 
HVMUX network discussed in Chapter 5 will be used here to 
design the testability of MV LSI/VLSI systems with parallel 
built-in test capability. With the help of the MVASH chart 
introduced in Chapter 4 as a design tool, it will be shown 
that the design process is very efficient and easy to imple­
ment.

7.1 The Need for MV LSI/VLSI Design for Testability

It is known that MV LSI/VLSI ICs offer even more advan­
tages over the discrete component circuits than the two­
valued ICs which were discussed in chapter 2. However, the 
trade-off is that in the design of MV LSI/VLSI ICs, the 
problem of testing becomes an even more complicated one. 
This is because the chip density due to the use of MV logic 
is increased, and the components in MV LSI/VLSI chip are 
also increased, and hence the complexity of the chip. As
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mentioned in Chapters 2 and 6, testing is one of the most 
important problems in two-valued LSI/VLSI circuits and also 
is in MV LSI/VLSI. The problem of testing in LSI/VLSI cir­
cuits is a problem of complexity with the well-known ten­
dency towards exponentially increasing expenditure in both 
test time and test equipment (conventional test). In MV 
LSI/VLSI, the test time increases exponentially (m^ ) with 
m-valued logic and n variables. Therefore, conventional 
testing for HV LSI/VLSI circuits is almost impossible. One 
way to solve this MV LSI/VLSI chip test problem is to 
integrate the testability of the circuit as a part of the 
design. As discussed in chapter 6, this approach allows us 
to test the MV LSI/VLSI chip, not only to eliminate expen­
sive external test equipment, but also to shorten the test 
time.

The design for testability in MV LSI/VLSI uses the same 
fundamental approach as in the two-valued LSI/VLSI which is 
controllable and observable. In order to avoid expensive 
external testing devices and be able to test the chip at any 
time, the built-in test capability technique could be used. 
Because of the complexity of MV LSI/VLSI increasing exponen­
tially with respect to m valued logic and n variables, the 
hierarchical approach could be used to reduce the complexity 
problem of the system. Because the networks are tree- 
structured and have identical subunits at each level, one 
can reduce the complexity of the network by applying the 
parallel testing technique which will be presented in this
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chapter. Instead of using fault models which are very com­
plicated, especially for MV LSI/VLSI circuits, exhaustive 
tests will be applied; this ensures that the network is 
fault-free once it passes the tests. It is worth noting that 
because of the absolute reliability feature of this 
approach, the designer should consider the trade-off between 
the amount and cost of the built-in hardware and the testing 
time savings.

As discussed in Chapter 1, a hierarchical design pro­
cess of MV LSI/VLSI consists of three levels (see Fig. 1.4).

(1) Behavioral level

(2) Structural and logical level

(3) Physical level

Here only the structural and logical level design will be 
discussed. In this method, this level consists of five 
steps as shown in Fig. 7.1.
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Test procedure

Built-in testing 
circuit

Partitioning 
tree-structured 
HVMUX network

Each subsystem 
description 
transform to 
ASM chart

Transform 
ASM chart to 
tree-structured 
MVMUX network

Fig. 7.1 Structural and Logical Level of an MV LSI/VLSI 
Design Process.

The first two steps have been discussed in Chapter 4. The 
last three steps will be discussed in the next three sec­
tions.

7.2 Partitioning for Testability Circuit

It is evident that the larger and more the complicated 
the circuit is, the longer it will take to test it. It is 
desirable to partition a large circuit into smaller subcir­
cuits and to test them simultaneously. In doing so, not
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only may the subcircuit testing process in general be great­
ly simplified, but also the total testing time may be shor­
tened. However, the size of the subcircuits of the parti­
tion decided upon should be based on the trade-off between 
the desirable or required testing time for the chip and the 
total amount of built-in test circuit hardware needed for 
conducting the parallel test.

In Section 4.3, a general design procedure presented 
can transform any sequential logic into a tree-structured 
MVMUX network composed of nearly identical sections, such as 
the one shown in Fig. 7.2 (see the network of Fig. 4.9).
Such a section of the network will be referred to as a Basic 
Modular Network (BMN). Since all the BMN of a tree- 
structured MVMUX network are of the same structure, one can 
apply the built-in parallel testing technique to test this 
type of network. Note that in applying such a test, further 
partitioning of the BMNs may be needed as shown in the exam­
ple of Fig. 7.2. It should also be noted that with only 
slight modification, the test procedure described below may 
be applied to any BMNs with missing tree branches. Such BMNs 
may result from a minimization process during the synthesis 
of the network. The two BMNs of the network of Figs. 5.20 
and 5.23 are examples of such cases.
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Fig. 7.2 Tree-Structured MVMUX Network with D 3-Flop,
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7.3 Built-in Test Circuits for BMN

There are three functional circuits that will be built 
inside an MV LSI/VLSI chip. One is the test data input gen­
erator which will generate all the possible signal levels 
(i.e. m = 3, the signal levels are 0,1, and 2) to the 
inputs. The second is the data-selector generator which
will generate all possible m" patterns (i.e. for m = 3 and

4n = 4, a total of 3 = 8 1  patterns will be generated). The
last one is the test verification circuit which will iden­
tify a fault in each partition subunit. In designing these 
circuits, the following requirements must be considered.

1. The built-in circuit must be much simpler than the main 
circuit itself.

2. In order to ensure that the built-in test circuit is
initially fault-free, one should be able to check it by 
using an external probe before packaging. After pack­
aging, the circuit should have a high probability of 
fault-free maintainance throughout the lifetime of the 
chip.

3. The number of IC pins used for the built-in tests
should be less than 10% of the total IC pins.

4. The circuit should be able to test the system at any
time.

After a tree-structured MVMUX network is partitioned.
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the designer will insert the three types of circuits in it 
for the purpose of parallel testing. They are;

(1) Test data-input generator: It is an m-valued generator 
which furnishes input data to the input leads of each 
partition block. This unit is controlled by a synchro­
nous clock and by control line C. The unit is inactive 
when C = 0 (see Fig. 7.3). The symbol — —| ~y* in Fig.
7.3 denotes the cycling gate whose output is determined 
by (y + 1) mod 3.

r\L> _ >
U

D
CLK cz C

CLKl
Fig. 7.3 Test Data-Input Generator Circuit.

(2) Test data-selector generator: It is a modular
counter when h is the number of selectors of the parti­
tion block. It is also controlled by the synchronous 
clock and by control line C. It becomes inactive when C 
= 0. It is used to select one of the m^ inputs of the 
partition block, (see Fig. 7.4)
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ï
CLK

CLK
CLK2

Fig. 7.4 Test Data-Selector Generator Circuit

(3) Test verification circuit: It is a multi-bus comparator 
circuit. (see Fig, 7.5 )
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Output of data-input 
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partition 
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Fig. 7.5 Test Verification Circuit.

It should be noted that during the normal operation, 
these testing circuits can be completely isolated from the 
main circuit by the switches , x, with the control line, C 
0, as shown in Fig. 7.2.

7.4 Test Procedure

The built-in test capability for the MV LSI/VLSI cir­
cuit consists of two basic operation modes, normal mode and
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test mode. These two modes are controlled by the signal that 
apply to a control IC pin which is called the test control 
terminal.

1. Normal mode; In this mode, the built-in test units are 
isolated from the main circuit.

2. Test mode; In this mode, the MV LSI/VLSI circuit is 
connected to the built-in test units. The values of 
data inputs and data selectors are supplied by the 
data-input generator and data-selector generator 
respectively. Each 5MN is tested exhaustively by a 
parallel process. The output response of each subcir­
cuit is verified by the verification unit.

After the test circuits are in place as shown in Fig. 
7.6, the following test procedure will be in order.

Step 1: Set C = 1 to isolate the inputs and outputs of all 
the partitioned blocks and also to reset all the test cir­
cuits.

Step 2: Test data-input generator which generates a zero and 
sends it to all partitioned block inputs. The test data- 
selector will generate 0 and send it to the data-selector 
lines of all the partitioned blocks. The outputs of the 
partitioned blocks are compared with the inputs at the 
verification circuit. If any of the two sets of data are 
different, a fault is detected; this process will be 
repeated for test data-selector values 1, 2 ...m.
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Step 3: Repeat Step 2 for data-input values 1, 2, . p.
The process, however, will be terminated whenever a fault is 
detected by the verification circuit.
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CLKl CLK2 DISPLAY

Fig. 7.6 BMN with Testing Circuit.

In order to ensure that all operations of the testing 
are synchronized, two clock generators are employed: a test 
data-selector generator clock and a test data-input genera­
tor clock. Their timing diagrams and the outputs of their 
respective units are shown in Fig. 7.7.
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L
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Fault-free output from verification circuit

Fig. 7.7 Timing Diagrams of Testing Circuit.

As a final note, the definition of BMN was rather 
loose; it could be defined, for example, by a network with 
twice (or larger) the size of the network in Fig. 7.2. How­
ever, this will not effect the basic test procedure outlined 
above.

In summary, an easy-to-apply hierarchical MV LSI/VLSI 
design technique with built-in test circuits to provide
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highly efficient parallel testing capability has been 
presented. The synthesis method included in this technique 
is completely general and is applicable to any sequential 
logic design; including the binary as a special case. More­
over, unlike most of the known techniques for the binary 
LSI/VLSI circuits, this technique requires only two extra 
pins (the control pin and the verification pin), very simple 
built-in test circuits, and virtually no external test 
equipment; yet it provides a thorough and exhaustive test 
for the entire circuit-both its combinational and D m-flop 
parts. The test may be conducted at any time during the 
lifetime of the chip. If a chip passes this test, the chip 
is guaranteed to be fault-free.



CHAPTER VIII

CONCLUSION

Four major considerations in the design of binary 
LSI/VLSI are functional complexity, chip density, pin limi­
tation, and chip testability. It has been shown that MV 
logic offers many advantages over binary logic especially in 
the areas of reducing functional variables and therefore 
pins; this increases the information per unit area and 
thereby reducing the hardware components. Consequently, a MV 
logic system provides a solution which not only reduces the 
complexity of the system but also increases the chip den­
sity.

Due to the complexity and size of LSI/VLSI, any attempt 
to test these circuits using external testing means is 
almost impossible, especially when an exhaustive test is 
desired. It is therefore suggested that a built-in circuit 
test technique be used. A set of requirements for the 
built-in test circuits has been given. A new hierarchical 
design procedure using the ASM chart as a design tool has 
been presented. This design procedure can be used for syn­
thesizing any combinational and sequential logic with a 
tree-structured MVMUX network plus D m-flops. It has been

— 158 —



- 159 -

shown that the use of the tree-structured MVMUX network in 
the design of LSI/VLSI offers the following advantages:

1. It makes the synthesis procedure simple and systematic, 
especially for designing complex function circuits.

2. One can insert simple built-in test circuits in the 
network for conducting exhaustive tests at any time.

3. The network can be partitioned into nearly identical 
subnetworks, each of which is connected to a built-in 
test circuit and can be tested simultaneously.

Finally, it should be noted that the technique for 
designing MV LSI/VLSI presented in this dissertation 
includes the technique for designing binary LSI/VLSI as a 
special case. It should also be noted that the process of 
designing MV LSI/VLSI can be adapted to automation.
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APPENDIX A

RELEVANT PAST WORK

J.Lukasiewicz [109] (1920) was the first pioneer to 
publish on three-valued symbolic logic. The next, year E.L. 
Post [149] introduced a general theory of elementary propo­
sitions which was one of the first publications on multi­
valued logics. He gave a definition of m-valued logic that 
was a generalization of the usual two-valued calculus. He 
defined the most important operations and discussed some of 
their properties by means of the tables of values.

B.A. Bernstein [17] (1924) presented three-element 
algebras. His publication gave a representation of a com­
plete or incomplete truth table by a polynomial defined from 
the sum and product of modulo 3 operations.

J. Lukasiewicz and Tarski [108] (1930) introduced m- 
valued logics which were included in the Post calculi, but 
not conversely. In fact, the Post logics are symbolically 
complete, i.e. all operations and relations in these systems 
definable by tables of values are definable in terms of the 
primitive ideas of these logics; however, the Lukasiewicz- 
Tarski system do not share this property.
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D.L. Webb [204] (1935-1937) reduced the required number 
of undefined ideas to one and proved most of the important 
propositions of m-valued logic by numerical interpretation 
in term of the congruity. This consists, essentially, in 
using tables of values in a general way that eliminates 
trial and error.

P.C. Rosenbloom [157] (1941) introduced postulate-set 
for Post algebras and proved the fundamental theorems from 
the assumptions. The Post algebras are generalized in anal­
ogy to the extension from 2-element Boolean algebras to m- 
element Boolean algebras. He proved that two m-valued Post 
algebras with the same finite number of elements were simply 
isomorphic, and deduced, as a corollary his postulate-set 
was completed when a postulate to the number of elements was 
added.

A.D. Booth and J. Ringrose [20] (1951) were the first 
to publish on the realization of tristable memory using 
triode values, then K.C. Johnson [76] noted supplements of 
the analysis of tristable memory.

H.R.J. Grosh [57] (1952) studied the properties of the 
algebraic ternary representation of numbers applied to the 
arithmetic operations.

R.A. Henle [63] (1955) applied the principle of reali­
zation of multi-stable memory using closed loop systems con­
taining nonlinearities to some transistorized circuits. This
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was an interesting introduction to the design of different 
types of tristable trigger circuits. R.S. Mackay and R. 
McIntyre [111] described the design, using triode values, of 
a ternary pulse counter based on the use of the nonlineari­
ties inherent in grid current. (A study of the problem of 
functional stability and of coupling between the stages has 
been completed.)

M. Greniewski [56] (1956) represented the states 0,1,2 
by current -i,0,+i and by using three position relays; he 
also described the realization of various ternary functions 
of one or more variables. C.Y. Lee and W.H. Chen [94] stu­
died the synthesis of combinational structures using opera­
tors with an application to the series of algebraic ternary 
adder. G.C. Moisil [130,131,132] applied 3-valued logics to 
the design of circuits using contacts and relays.

In 1958, the first full scale 3-valued computer was 
completed at Moscow state University in Soviet Union. R.D. 
Berlin [16] defined the concept of a functional set, and 
examined various functional sets and the corresponding 
trivial decompositions with a view of synthesis of m-ary 
combinatorial structures. After reviewing m-valued logics 
and ternary logics, E. I. Huehldorf [140] described two 
methods of synthesis of ternary combinatorial structures 
based on the existence of trivial disjunctive decompositions 
using the operators J%(x), a £{0,1,2}, and maximum and 
minimum functions. He used the semiconductors for the reali-
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zation of ternary logic circuits and applied to the ternary 
adder. R. Right [154] applied m-valued logic to circuits 
containing m-position switches.

After defining an example of complete functional com­
binatorial operators which comprised the maximum, minimum, ^210 

(x), fj^oo(x), and f^gofx) functions and which could easily 
be realized by means of vacuum tubes, R. Vacca [196] (1959) 
examined the problem of realization of a ternary adder con­
sisting of two half-adders. However, the problem of the 
representation of the numbers in ternary was not dealt with 
in his article; the adder structure described was not very 
economical.

J. Again [2] (1960) described the SETUN computer in 
which ternary logic was used. G. Epstein [47] used a number 
of operators larger than the number of operators chosen by 
the Rosenbloom to enable the set of axioms of the Post alge­
bra to be simplified and also to allow this algebra to be 
studied with the aid of Boolean algebra and lattices. After 
reviewing a representation of numbers by means of a natural 
ternary code or an algebraic ternary code and remarking on 
algorithms for addition, subtraction and multiplication,
D.J. Morris and W. Alexander [136] proposed the realization 
of ternary switching elements by means of magnetic tores.

H.B. Baskin [14] (1961) described a circuit made up 
with four tunnel diodes which might enable the realization 
of basic structure in a logic of m values. After reviewing
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the advantages obtained by the use of m-ary bases in the 
digital systems, R, Hallworth and G. Heath [58] described 
ternary switching circuits realized by means of semiconduc­
tors. Designed on the basis of the elementary functions pro­
perties of the components, these circuits allow the realiza­
tion of many functions. K.H. Trampel [189] described a logic 
circuit comprised of two transistors which realized the com­
binatorial function

H.B. Baskin [13] (1962) studied the problem of the syn­
thesis of the m-ary combinatorial structure by means of the 
maximum, minimum and (x) operators. After remarking on 
the realization of the operators of the catalogue, two 
methods of synthesis were given. The first was based on the 
trivial decomposition of the given function and the second 
was the result of an examination of the truth table which 
represented the function.

D.J. Anderson and D.L. Dietmayer [7] (1963) used a fer­
rite core with two apertures with suitable winding and 3- 
phase excitation to obtain a large number of ternary com­
binatorial elements in a 0,1,2 = -v(t), 0, v(t) representa­
tion, where the quantities v(t) are current or voltage 
pulse. However, the introduction of combinatorial structures 
poses problems of insulation and excitation which did not 
seem to had been solved. W.H. Hanson [60] was the first to 
publish on the synthesis of ternary combinatorial structures 
using ternary threshold operators, but the methods of syn­
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thesis were not very convenient. H.E. Kallmann [79] dis­
cussed the possibility of realizing memories with m stable 
states by means of nonlinear and negative resistances. J.H. 
Karp [84] studied the problem of the disjunctive and non­
disjunctive decomposition of m-ary functions, and applied 
the results obtained by taking into account the properties 
of the given function to the synthesis of binary structures.

C.F. Kool and J.L. Weaver [91] (1964) studied the non­
linear Hall effect of the ternary logic element using the 
0,1,2: -i, 0, +i representation, where i is the current. The 
nonlinear magnetoconductive properties of the semimetal of 
high mobility (bismuth) and the majority and dual fglO 
function ternary operators were realized economically. The 
dynamic characteristics of these elements were studied 
theoretically and experimentally. F. Salter [159] described 
the design of tristable trigger circuit by means of a tunnel 
diode. J. Santos, H, Arango and M. Pascual [161] described 
the design of a ternary memory by means of ferrite tore. J. 
Santos and H. Arango [164] gave an application of ternary 
logic to an adder, and studied a method of the synthesis of 
2-layer structures. They also described a binary-coded ter­
nary memory and the use of a tore memory in the ternary 
logic. H. Yoeli and R. Shlomo [221] described an application 
of the ternary logic to the detection of static switching 
hazards in the binary combinatorial structures.

N.P. Brusentzov [23] (1965) used fast magnetic amplif-
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iers as physical elements and as an algebraic ternary 
representation of the numbers, and he also described the 
design of an adder in ternary logic. H.E. Kallmann [78] 
described the realization of nonlinear resistances having a 
staircase characteristic using diodes connected in opposi­
tion and in parallel. M. Yoeli and G. Rosefeld [220] 
developed a method for synthesizing the ternary combina­
torial structures using a catalogue of operators made up 
from the maximum and minimum functions and the functions J 
(x). The structures obtained are of the two-layer type.

R.D. Merrill [123] (1966) gave a practical method of 
two-layer synthesis of a ternary function defined by truth 
table, and then described the realization by means of ter­
nary threshold logic operators of the corresponding combina­
torial structure. The method described is a generalization 
to the ternary case of the simplifying methods suggested by 
McClusky. A. Mukhopadyay [141] extended Shannon's work on 
the symmetric binary functions. After some definitions con­
cerning the symmetric ternary functions were given, a number 
of theorems were stated and demonstrated. These theorem 
make it possible to work out methods of identification and 
synthesis of the ternary switching structures. J. Santos, H. 
Arango and F. Lorenso [160,162] developed the synthesis of 
the ternary combinatorial structure by means of threshold 
operators of the bivalent type. This method of the synthesis 
was an extension of Quine's method and enables a truth table 
in a two-layer type of structure to be constructed; the
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advanced-carry circuit, which makes it possible to use an 
algebraic ternary adder, was also discussed.

S. Thelliez [186,188] (1967) described the operation of 
possible realization by means of transistors and diodes of 
Lee and Chen's T operator, and constituting with the con­
stant functions |0|, |1|, ||2| as a functional set. An 
algorithm for the synthesis of ternary combinatorial struc­
ture based on the functional decomposition was then given.

C.M. Allen and D.D. Givone [4] (1968) offered an algo­
rithm for the synthesis of 2-layer m-ary combinatorial 
structure. S. Thelliez [185] introduced the design and the 
construction with semiconductors of reliable ternary logical 
operators. He also introduced the incremental computation 
elements with a view to obtaining specialized calculating 
structures. M. Yoeli and I. Halpern [219] proposed a ternary 
arithmetic unit which was based on the ternary symmetric 
number representation using digit +1, 0, -1. The advantages 
of this number representation were given in detail, and full 
adder was developed.

D.I. Porat [148] (1969) presented the developments in 
algebras and techniques for realization of 3-valued switch­
ing functions. Digital arithmetic, ternary codes, composi­
tion algebras, minimization, circuit and sequential circuit 
design were discussed. He then demonstrated the feasibility 
of 3-valued digital systems.
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Z.G. Vranesic, E.S. Lee and K.C. Smith [201] (1970) 
described a many-valued switching function based on a basic 
set which was potentially implementable in the economic 
sense. They developed an algorithmic simplification tech­
nique to facilitate synthesis of nontrivial many-valued 
switching functions. J. Santos and H. Arango [163] described 
a graphic method using a modified Veitch diagram for the 
calculation of the weighting vector. The method was based on 
an algebraic procedure that allows the evaluation of each 
coordinate solely in terms of the value of the function and 
independently of the other coordinates.

R.C. Braddock, G. Epstein and H. Yamanaka [21] (1971) 
presented multi-valued logic design in binary computers 
which emphasized three transistor, tri-stable circuits. V.C. 
Hamacher and Z.G. Vranesic [59] compared the cost and speed 
of 15 digit ternary parallel multiplier and 24 bit binary 
parallel multiplier. S.C. Lee and E.T. Lee [102] described 
an algorithm for identifying multi-valued symmetric switch­
ing functions using parallel processing and investigated 
some general properties of these functions. They also 
defined the mixed multi-valued symmetric and algorithm for 
identifying. M.E. Liebler and R.P. Roesser [105] introduced 
a set of functions that took on a prime number of real 
values which was generalized from conventional Walsh func­
tions. S.Y.H. Su and P.T. Cheung [108] presented a cubical 
representation for multi-valued switching functions which 
was very convenient for digital computer processing. E.G.
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Zavisca and C.M. Allen [222] presented an approach to 
multi-valued sequential circuit synthesis.

S.Y.H. Su and A.A. Sarris [183] (1972) presented the 
relationship between multi-valued switching algebra and 
Boolean algebra by introducing different definitions for the 
complements of multi-valued variables. S.Y.H. Su and P.T. 
Cheung [181] presented a cubical representation for multi­
valued switching functions; they also introduced "compound 
literals" which yielded a realization with less hardware 
than the existing methoods. W.R. Smith III [175] described 
some algebraic properties and minimization techniques for 
multi-valued lattice logics.

G. Prieder, A. Fong and C.Y. Chao [54] (1973) completed 
the first emulation of a full scale ternary computer. T.A, 
Irving [74] presented a new family of multi-valued memory 
devices based on a unique set of multi-valued logic opera­
tors. The devices were compared to binary memory elements 
(flip-flop). They also demonstrated the synthesis of the 
memory devices from the set of operators. L.J. Janczewski 
[75] introduced a new method of multi-valued logic function 
synthesis based on implementating a simple and practical 
realization operator "two side Upper Limiter". The method 
was based on an assumption that every m-valued, n-variable 
function forms a discrete n-dimension hyper space. R.P. Mat- 
trey, D.D.Givone and C.M. Allen [113] applied multi-valued 
algebra concepts to neural modeling. C. Moraga and A.
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Bittner [134] showed that ternary driving of a stepping 
motor increased the resolution better than the binary driv­
ing with the same motor. A comparative study of parallel and 
serial error detectors was represented including comments on 
the tolerances allowed for threshold gates. D.A. Sheppard 
applied [169] multi-valued logic to fault detection. A.S. 
Wojcik [211] applied multi-valued logic to asynchronous cir­
cuits.

Z.G. Vranesic, K.C. Smith and A.Druzeta [202] (1974) 
designed R-stable circuits which are the kernel of R-valued 
storage elements. D.K. Pradhan [150] showed that for N, a 
power of prime number, we could have a N valued algebra 
where the defined operations were that of a finite field.
The modular algebra which is complete for N, a prime 
number, was included. Furthermore, it was established that 
N-valued switching functions for N-power of a prime number 
could be expressed in a form similar to Reed-Muller expan­
sion for binary functions. J.F. McDonald [120] extended the 
Weiner-Smith Algorithm for m-ary synchronous sequential cir­
cuit design. H.T. Mouftah and I.E. Jordan [137] designed 
the basic circuits for ternary operators (Inverters, NAND 
and NOR) with the COS/MOS integrated circuits. U.J.
Strasilla [179] discussed a multi-valued memory system using 
capacitors as storage elements. D.M. Miller and J.C. Muzio 
[128] described a cellular array that could realize any com­
binational ternary switching function.
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R.S. Ledley and H.K. Huang [93] (1975) extended the 
principles of Boolean matrix methods to Postian matrix 
methods and investigated its application in the multi-valued 
logic design. S.C. Lee and Y. Keren-Zvi [101] showed that 
any multi-valued logic truth table could be represented by a 
single (vector) function. They also found a canonical sum- 
of-products and product-of-sums form of this function. P.T. 
Cheung and D.M. Purvis [28] described a computer-oriented 
heuristic algorithm for the minimization of multiple-output 
multi-valued switching functions. The positional cubical 
representation for multi-valued switching functions was 
extended to represent multiple-output functions.

J. Dussault and G. Metze [44] (1976) introduced an m- 
valued (m = 2) generalized Boolean algebra obtained by 
extending the set of operators of m-valued Boolean algebras. 
The additional operators needed for functional completeness 
were unary operators and were selected such that the basic 
structure and the simplicity of Boolean algebras were 
retained. Y.H. Pao and J. Altman [145] introduced the use of 
associative memory techniques in the implementation of 
multi-valued systems. R. Spillman [176] examined the problem 
of detection of single stuck-type faults in multi-valued 
combinational circuits. H.T. Mouftah, K.C. Smith and Z.G. 
Vranesic [138] presented the application of COS/MOS 
integrated circuits in the construction of a three-valued 
positional control system. D.M. Miller and J.C. Muzio [124] 
considered the two-place decomposition in multi-valued logic
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system. L. Kohout [90] applied multi-valued logic to brain 
modelling of neuromuscular and to modelling of movement con­
trol.

T.T. Dao, E.J. McCluskey, and L.K. Russell [41] (1977) 
introduced multi-valued integrated injection logic. C. 
Moraga [135] introduced the spectrum domain to represent the 
ternary functions which allowed special transformation pro­
perties of function to be easily detected. J.P. Deschamps 
and A. Thayse [42] used a unified theory that yields partic­
ular cases in canonical expansions: Newton expansions, the 
Nyguist expansions, the Kodandapani-Setlur expansions, and 
the Taylor expansions. J.T. Butler [25] presented the syn­
thesis technique for multi-valued fanout-free networks by 
extending the partition matrix technique of Ashenhurst and 
Curtis. T.C. Yang and A.S. Wojcik [215] presented the 
results of simulating the ternary asynchronous logic net­
works at the gate level by using a FORTRAN simulator. M. 
Kameyeiroa and T. Higuchi [82] described the practical state 
assignment for the multi-valued synchronous sequential cir­
cuits. C.L. Lam and Z.G. Vranesic [92] described a method 
for hashing keys in file addressing applications using the 
multi-valued nonlinear feedback shift registers which 
allowed the implementation of the hardware in a very simple 
way.

D. Etiemble [48] (1978) presented two different ver­
sions of voltage mode multi-valued circuits to define a 4-
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valued bus: TTL circuits for a 4-valued open collector bus, 
and TTL circuits for a 4-valued + high impedance bus. E.J.
McCluskey [1161 introduced logic design of multi-valued with

PI L logic circuits. D. Akins [3] suggested an approach to 
computer arithmetic for designers of multi-valued logic pro­
cessor. T. Higuchi and H. Hoshi [65] offered the design 
features of a special-propose microprogram-controlled ter­
nary computer suited for realizing the real-time digital 
filters by programming. S.C. Lee and Y.M. Ajabnoor [98] 
extended the concept of Boolean difference (Boolean deriva­
tive) to multi-valued switching algebra, and showed that 
every multi-valued switching function of these algebras has 
a Maclaurin series expansion, and the derivation of tests 
for fault detection of stuck-type faults of multi-valued 
combinational circuits was prssented. T.C. Yang and A.S. 
Wojcik [216] described the parallel and serial decomposi­
tions of multi-valued sequential machines. K.W. Current and
D.A. Now [34] applied the multi-valued threshold logic in 
large scale integrated circuits for digital signal process­
ing circuits.

C.B. Silio, Jr., J.H. Pugsley and B.A. Jeng [171]
(1979) used multi-valued read only memory to reduce the con­
trol memory. E.J. McCluskey [117] presented an algebraic

2method for designing multi-input, multi-valued I L circuits. 
J.L. Huertas and J.H. Carmona [72] presented a new family of 
ternary C-MOS circuits whose principal advantage lies in the 
avoidance of resistors for generating the logic levels. J.G.
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Tront and D.D. Givone [192] introduced GaAs MESFETs to use 
as a basic circuit elements in multi-valued circuits. A.D. 
Singh, J.R. Armstrong and P.G. Gray [172] used universal 
iterative tree structures to design multi-valued combina­
tional and sequential circuits. H. Karoeyama and T. Higuchi 
[83] described a synthesis of multi-valued logic networks 
with the minimum number of T-gates by considering the 
universal logic module implicant and equal residue function 
in a tree-structured network. W. Wojciechowski and A.S. 
Wojcik [210] presented an approach to the design of multi­
valued combinational logic using an automatic theorem prover 
as a design tool. R.C. Windecker [207] extended the theory 
of stochastic combinational networks of two-valued to 
multi-valued logic. V.H. Tokmen and S.L. Hurst [190] 
described the ternary switching functions which may be real­
ized by the use of universal logic modules; the specifica­
tion and use of such modules are based upon the canonic 
Reed-Muller ternary expansion.

H.G. Kerkhoff and M.L. Tervoert [87] (1980) introduced 
the charge-coupled device to implement multi-valued logic in 
large scale integrated circuits. S.C. Lee and M.P. Tull 
[97] introduced a method for realizing parallel processing 
machines using multi-valued logic. V. Dahl [38] introduced a 
three-valued logic for natural language computer applica­
tion. S.L. Hurst suggested that optical signals may well be 
eminently suitable for conveying ternary and higher-valued 
data due to the absence of cross-talk between optical
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frequencies and other factors. M.P. Tull [193] presented 
four-valued gate-level logic simulator which was programmed 
in FORTRAN and operated in a timesharing environment. H.Y.
Lo [107] introduced two methods of deriving fault detection 
tests in algebraic and map forms of multi-valued combina­
tional logic. S.C. Lee and Y.M. Ajabnoor [99] presented 
static hazard detection and static hazard elimination after 
they are detected in multi-level multi-valued combinational 
circuits. M. Kameyama and T. Higuchi [81] studied radix 4 
signed-digit arithmetic circuits for high-speed digital 
filtering.

M. Karpovsky [85] (1981) surveyed some new theoretical
results on spectral methods for functional decomposition, 
synthesis and testing of multi-valued logical networks with 
many inputs and many outputs. S.L. Hurst [73] used Harr 
transformation to synthesize the multi-valued networks. A. 
Papachristou [146] investigated the implementation of 
multi-valued logic by content-addressable memory processing.
D.C. Rine [155] introduced picture processing using multi­
valued logic. H. Coy [31] investigated the description of 
multi-valued functions by the use of decision diagrams which 
allowed a straightforward implementation of functions by 
either MAX- and MIN-gates (and some unary operators) or by a 
single gate type, the T-gate (or multiplexer). Functional 
tests for these implementations are easily derived from the 
diagrams. D.M. Miller [125] examined the spectral methods 
for the detection of a broad class of function symmetries.
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S.C. Lee and Hao-Yung Lo [103] introduced a map partition 
method for fault detection in an multi-valued logic system 
which was simpler than the conventional map method. S.C. Lee 
and W.D. Ballew [100] examined the upward compatibility of 
binary Boolean algebras with Post algebras.

K.W. Current [32] (1982) presented the active and pas­
sive circuits for conversion of quaternary logic signals to 
analog waveforms by using the standard bipolar integrated 
circuit technology. M. Kameyama and T. Higuchi [80] proposed 
a digital processor called multiple-valued array processor.
A. Beach and J.R. Armstrong [15] studied a chip layout for

2multi-valued I L. M. Karpovsky [86] considered methods for 
testing (error detection, correction, and location) in 
multi-valued computations which are based on systems of 
linear equality and inequality checks and on analysis of the 
corresponding syndromes. N. Tomabechi, M. Kameyama and T. 
Higuchi [191] proposed the residue arithmetic circuit using 
multi-valued ring counters which provided the capability of 
counting the multi-valued simultaneously. M. Hu and K.C. 
Smith [71] proposed a self-checking synchronous sequential 
machine based on a 2-of-3 valued logic circuit. D.M. Miller 
[126] presented the application of spectral techniques to 
fault detection which allowed the use of a weaker condition 
in the selection of constrained syndrome tests than is pos­
sible in the conventional function domain. W.S.
Wojciechowski [209] presented a methodology for structured 
design of digital systems in multi-valued logic. K.Y. Fang
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and A.S, Wojcik [53] presented an approach to systematic 
design of multi-valued logic functions using a decomposition 
technique that used a small number of modules to implement 
the functions. M.S. Knudsen [88] presented a nine-valued 
logic simulation algorithm especially suitable for a fast 
and accurate analysis of digital NMOS-circuit.



APPENDIX B

MULTI-VÀLÜED CIRCUIT TECHNOLOGY

Recently, the HV circuits may be divided into three 
classes according to the semiconductor technology [40]: 
bipolar, MOS/MESFET and CCD devices. The bipolar is the 
current mode operation device and is not limited to any 
logic value. The MOS/MESFET is the voltage mode operation 
device, where active devices are used as voltage switches 
and signals are voltage level; its practical purposes is 
confined to the ternary logic only. The CCD is the charge 
operation mode device and can be used with any logic value.

B.l MV Bipolar Device Technology

Recently, the bipolar device technology TTL, ECL and Î  
L are investigated by several researchers. The I^L is 
received the most attention in the MV circuits because its 
circuit structure is highly suitable for the implementation 
of "threshold" type of functions [200] which are particu­
larly useful in the MV arithmetic circuits. It also can be
fabricated in the higher MV LSI/VLSI circuits package den-

2sity due to the fact that I L contains only active transis­
tor components (no resistors). On the other hand, the pack­

- 196 -
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age density of bipolar LSI/VLSI logic such as TTL and ECL 
are limited primarily by the area occupied by resistors and
wiring. Due to practical photoetching limitations, resistor

2area will not easily be reduced by the same factor as I L
2transistor areas [156]. The other advantages of I L over 

the TTL and ECL are as follows [156]:
2(a) Low power consumption; therefore, I L gate power dissi­

pation is much lower than the equivalent TTL function 
(a factor of 10 to 100) and it also has higher IC pack­
age density.

2(b) I L wafer processing is much simpler than TTL and ECL 
(4-5 masks as compared to 7-9).

2However, to this date I L is not likely to directly
replace high speed logic, such as ECL because the increased

2processing difficulty necessary for I L to achieve ECL per-
2formance would largely nullify the yielded advantage. But I

L has a significant advantage over the MOS technologies in
2that I L can easily be combined with TTL and ECL on the same 

LSI/VLSI chip to achieve additional speed.

B.2 A  MV Circuits
2I L devices functioning as current amplifiers are suit­

able for multi-threshold logic circuit implementation and
2multi-valued logic primitive gates realization. The MV I L 

devices design rules are given by Dao [40] and have been 
fabricated according to these rules and have proven to be
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reliable and reproducible.

There are three fundamental circuit operations in
2current mode MV I L which has been introduced by Dao [41]: 

Input replication, weighted sums, and threshold detection.

a. Input replication

This operation replicates the input signal by using 
current-mirror imaging or the folded-collector method. The 
method used to control the saturation of the n-p-n transis­
tors is based on adding an extra "dummy collector" to the 
multicollector n-p-n transistor and folding this back to the 
base. Fig B.l shows the basic current-mirror circuit opera­
tion, it is assumed that the dummy collector area (DA) is 
smaller than the other collector areas (CA) by factor of x, 
and assuming the same current density in each collector.

Eg. B.l

‘•cl
c2

c3

Pig. B.l L Current-Mirror Circuit.

b. Weighted sums or linear summation

This operation forms the arithmetic sum of several
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weighted replicas by varying the size of the output collec­
tors. Collectors of different sizes and from different 
current mirrors are connected together to form a weighted 
sum. For example, the weight sum in Fig. B.2 is equal to 3x
+ y.

3x + y

Fig. B.2 I^L Weight Sum Circuit,

c. Threshold detection

This operation determines if the sum exceeds a deter­
mined threshold value by setting thresholds. The attractive­
ness of lies in the ease with which constant current 
sources can be integrated into the gate structure. Fig. B.3 
shows this circuit configuration; for input x < T the output 
y will be 0, for x > T the output will be p.
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C) T

X T-xN Si

Fig. B.3 I L  Threshold Detection Circuit.

With these three basic operations of the I^L circuit, 
it is possible to generate any MV elements. The following 
five MV element [41,151] circuit and their relative cost are 
given. The relative cost is considered from the number of 
transistors in the circuit. These MV I^L elements can be 
implemented in any m-valued.

MAX Gate Element

X

1 C)

MAX(x,y)

î = r i  iy I . f "
1 (x-y if X

I, “ p-MAX(x,y

if x ^ y

y)

Fig. B.4 I L MAX Gate Circuit.

Fig. B.4 shows the circuit of this gate; x and y are 
m-valued input variables, two constant current sources are 
(p, p, where p = m-1), the output MAX(x,y) is equal to x if
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X > y and is equal to y if y > x. The relative cost (number 
of transistors) of this gate is 3.

MIN Gate Element

MIN(x.y)

Fig. B.5 I^L MIN Gate Circuit

Pig. B.5 shows the circuit of this gate; x and y are 
m-valued input variables, three constant current sources are 
(p, p, p), the output MIN(x,y) is equal to x if x < y and is 
equal to y if y < x. The relative cost of this gate is 4.

COMPLEMENT Gate Element

Fig. B.6 I L COMPLEMENT Gate Circuit.

Fig. B.6 shows the circuit of this gate; x is a m- 
valued input variable, one constant current source is (p),
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the output X = p - X. The relative cost of this gate is 1

LITERAL Gate Element

a-h
x(a,b)

Fig. B.7 I^L LITERAL Gate Circuit,

Fig. B.7 shows the circuit of this gate; x is an m- 
valued input variable, the four constant current sources are 
(a-1/2, b+1/2, 1, p), the output x(a,b) is the values of x 
between a and b when a < b. The relative cost of this gate 
is 4.

CYCLE Gate Element

P - 1

p-

Fig. B.8 I^L CYCLE Gate Circuit
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Fig. B.8 shows the circuit of this gate; x is an un­
valued input variable, a is a m-valued constant, four con­
stant current sources are (p+1/2, 2p, p-1, 2p), the output x 
= (x plus a) mod m. The relative cost of this gate is 5.

2Several I L HV circuits have been designed with these 
operators, such as multiplexer, universal quad logic gate, 
quaternary adder, quaternary full product, quaternary ROM, 
quaternary quantizer, quaternary D latch. Quaternary D 
flip-flop, master-slave RS m-flop, quaternary-coded decimal 
counter, ternary to binary decoder, etc. The layout of some 
of these circuits has been developed by Beach and Armstrong 
[15]. Table B.l illustrates the truth table for the quater­
nary full adder and Fig. B.9 shows the quaternary full adder

2(QFA) circuit implemented by the I L technology.

Table B.l Quaternary Full Adder Truth Table.
CARRYSUM
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X o-

y o-

c± o-

-ÇZT

Ci

x+y+c

ij

I

“X

^  8

Fig. B.9 I L Circuit Implemented in QFA.

The actual construction of each of the operator cir­
cuits designed above has been done by Ballew [11]. This 
actual construction has been done with integrated circuits 
offered by EXAR integrated systems in their custom IC 
design kit [106]. Figures B.IO (a), (b), and (c) illustrate 
COMP gate, MAX gate, and CYCLE gate respectively.
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5.0V

2.3Smi2

2.4V

267KA7
X ----

(a) COMP gate construction

1. 6mn

(b) MAX gate construction
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X+a 
mod 4

(c) CYCLE gate construction
Fig. B.IO The Actual I L Circuit Gate Construction.

B.3 TTL MV Circuits

The TTL MV circuits have been studied by Etiemble and 
Israel 148,49,50,51,52]. Their method is based on Birk and 
Farmer's method [18] which implemented ternary circuits with 
the current technologies of the TTL binary integrated cir­
cuits. A general scheme to realize the function f(x,y) is 
given in Fig. B.ll. The ternary to binary conversion is 
realized with threshold detectors (decoder circuit) and the 
binary to ternary conversion is realized by encoder the cir­
cuit.
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CIRCUITS
2-VALUED

Fig. B.ll Implementation of Function f(x,y).

B.4 ECL MV Circuits

The ECL MV circuits are used to implement a multi­
threshold element which was originally proposed by Druzeta 
[43]. The quaternary threshold logic full adder (QFA)
[33,34], four-valued threshold logic digital correlator [36] 
and four-valued threshold logic counter [35] have been 
reported by Current and How. The ECL is the fastest standard 
logic family due to its nonsaturating operation [34]. The 
ECL threshold is not purely a current mode technique; input 
signals are voltage levels which are converted into current 
levels inside the circuits by differential pairs, currents 
are then linearly combined and results are converted back 
into voltage levels before any threshold detections which 
are performed by differential voltage comparators. Conven­
tionally, fixed voltage references are created for the 
thresholds which raises the problem of sensitivity of the 
detectors with bias voltage and fabrication [40].

Several ECL MV circuits have been simulated and/or 
breadboarded with discrete devices. One of these is the
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quaternary threshold logic full adder circuit [33,34]. The 
QFA is implemented by either using the current steering pro­
perties of ECL based, current-mode threshold logic circuits

2or the current steering capabilities of I L. Logical vari­
ables are developed as integer multiples of an easily dupli­
cated reference amount of current. These currents are then 
summed and differentiated to produce the desired logical 
results. The QFA accepts two four-valued input currents A 
and B and a binary carry input current C, and produces a 
two-quaternary-digit, four-valued output word CS that 
represents the sum of the inputs, where C is the most signi­
ficant digit. The transfer characteristics for this function 
are shown in Fig. B.12. The circuit realization to be 
described makes use of a set of switching thresholds illus­
trated in Fig. B.12(a). Figures B.12(b) and (c) show the 
SUM and CARRY outputs. Fig. B.13 shows ECL-based QFA [34].
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Ref. Voltage

Carry
1
0
3
2
1

Sum

0

Fig. B.12 QFA Transfer Characteristic.
(a) Switching Thresholds
(b) CARRY Output
(c) SUM Output.

cc

800
•<— O SUM

OCARRY
EE

Ô  VEE
Fig. 3.13 Quaternary Threshold Logic Full Adder Circuit.
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B.5 HOS/MESFET MV Devices Technology

The MOS/MESFET devices technologies received particular 
interest in the HV LSI/VLSI due to the considerations of 
functional density, power consumption, high speed (MESFET 
only) and interfacing with the existing binary circuits. 
These devices are operated with voltage mode; therefore the 
circuit use voltage levels to represent the HV logic values.

a. HOS HV Circuits

Recently, two types of HOS circuit has been considered 
for use in the HV LSI/VLSI; CHOS (COSHOS) and NHOS. The 
CHOS HV circuits were first proposed by Houftah and Jordan 
[137] who designed the basic ternary operators with the Com­
plementary Symmetry Hetal Oxide Semiconductors (COSHOS). 
There are two basic types of ternary operators that they 
considered: unary operators and binary operators. The unary 
operators consist of simple ternary inverter (STI), positive 
ternary inverter (PTI), negative ternary inverter (NTI), 
forward diode (FD) and reverse diode (RD). Their truth 
table and circuits are illustrated by Table B.2 and Fig.
B.14 respectively.
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Table B.2 Truth Table of Unary Basic Ternary Operators.

X STI(x) PTI(x) NTI(x) FD(x) RD(x)
+ - - - + 0

0 0 + — 0 0

- + + + 0 —

INPUT

j o  OUTPUT (PTI)
12Kf

_ 0  OUTPUT (STI)

INPUT <o~

Ü
12k | input

f o OUTPUT (NTI)

T^S(-4V)

20K

I
OUTPUT

FD

..OUTPUT

RD

Fig. B.14 Unary Basic Ternary Operator COSMOS Circuits.

The binary operators consist of ternary NOR and ternary 
NAND and their truth table and circuits are illustrated by 
Table B.3 and Fig. B.15 respectively.
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Table B.3 Truth Table of Binary Basic Ternary Operators,

X y TOR TAND TNOR TNAND

+ + + + - -

+ 0 + 0 - 0

+ - + - - +

0 + + 0 - 0

0 0 0 0 0 0

0 - 0 - 0 +

- + + — +

- 0 0 - 0 +

- - - — + +
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INPUT 1

INPUT 2

12K

OUTPUT
I2K

H-

NOR

V (4V) DD

12K
OUTPUT

12K

INPUT 1 o

INPUT 2 O

NAND

Fig. B.15 Binary Basic Ternary Operator COSMOS Circuits.

With these basic COSMOS ternary operators, several fun­
damental ternary circuits, such as CYCLE gate, J%(x) arith­
metic circuits , T-gate or multiplexer and ternary flip-flop 
or memory (D-flip flop, T-flip flop) have been constructed. 
However, the Mouftah and Jordan design approaches [137] were 
mainly restricted to ternary logic exclusively. Huertas and 
Carmona [72] presented the C-MOS which may be extended to 
the four-valued logic system.

Recently, the development of CMOS and NMOS ternary 
logic circuits are based on the design technique depicted in 
Fig. B.16 [29], where a circuit is composed of three stages:
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(1) The first stage consists of input decoders which con­
vert input ternary signals into binary signals 
representing literal two-valued functions of single 
ternary variables.

(2) The second stage consists of literal logic which com­
bines literals by means of binary logic circuits.

(3) The third stage consists of an output encoder which 
converts binary signals from the second stage into the 
correct ternary output.

Binary • 
Signals

Binary
SignalsTernary

Input
Signals.».

Ternary
Output
Signals

Literal
Logic

Fig. B.16 A Block Diagram for a Ternary Circuit Based on 
Binary Logic.

The NMOS ternary was introduced by Russell [158]. Sup­
pose a standard NMOS depletion load technology with a sin­
gle supply voltage V is considered. The built-in threshold 
Vrp of an enhancement switch device provides an obvious way 
to use the standard inverter as a voltage detector of level 
Vt as shown in Fig. B.17(a). In order to implement the ter­
nary logic, a second level detector with threshold set at 
midway between and has to be devised. Russell pro­
posed a totem pole structure of the switch device of the
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inverter, whereby the source of normal switch is connected 
to another enhancement device with a shorter gate to source 
(Vqs=0) and the threshold voltage . Fig. B.17(b) shows the 
total circuit which operates as a source follower as soon as 
the input level exceeds the compound threshold (Vj + V-t ).
The result of this is that = 1/4 Vcc and V t + Vt = 3/4 Vcc

LEVEL 2-e»-

OUT <012>

Fig. B.17 (a) Two Level Detector
(b) Output circuit.

HcCluskey [115] presented a method for designing ter­
nary NMOS logic circuits which is based on a circuit family 
invented by Russell [158]. The circuits are fabricated by 
using standard silicon gate enhancement/depletion technology 
which is suitable for MV LSI/VLSI implementation. The fabri-



— 216 —

cated circuits operate with three signal voltages; <0, 2.5, 
5> volts equivalent to the logic symbol <0, 1, 2> respec­
tively. Table B.4 shows the maps for a modulo 3 full adder 
and the NMOS circuit implementation of this table is shown 
in Fig. B.18.
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Table B.4 A Modulo 3 Full Adder Truth Table.
SUM

CIN = 0 CIN = 1

A = CIN-P CIN -Q

C = 0

B = CIN-Q

0 0 2 1
C = 0

1 2P = *0* Y2 + *1' Yl + %2' YO Q = x . y  + x . y  + x , y

CIN-P
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CARRY
CIN = 0 CIN = 1

X 0 1 2 X 0 1 2

0 1 1 1 0 1 1 0
1 1 1 0 1 1 0 0
2 1 0 0 2 0 0 0
A = CIN'T CIN-T-Q

IX 0 1 2 X 0 1 2

0 d d d 0 d d 1
1 d d 1 1 d 1 1
2 d 1 1 2 1 1 1
B = 1 B =1

0 C = 0
0 0 1 1  X + y + X - y
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Fig. B.18 NMOS Circuits for a Modulo 3 Full Adder, 

b. MESFET MV Circuits

MV GaAs MESFET device was introduced by Trent [192] in 
1979. The GaAs appears superior to silicon for high fre­
quency and high-speed devices because of its higher electron 
mobility and energy-band gap. The FETs are used to take 
advantage of the higher electron mobility. The GaAs MESFETs 
are majority carrier devices and are basically junction 
field-effect transistors, and they exhibit no charge-storage 
effects. They have no insulating metal oxide layer, and
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their relatively simple geometry may permit easier fabrica­
tion of narrow channel lengths. The GaAs MESFET may be used 
when speed is the primary requirement, and silicon can still 
be used for low-speed less costly circuits.

Fig. B.19 shows the basic structure of a GaAs MESFET 
device; the device has three terminals, source, gate, and 
drain. In order for the GaAs MESFET device to be useful in 
the MV logic, the pinch off voltage Vp of the transistor 
must be variable. The pinch off voltage is given as

-qNd 2 
Vp = — * a

26
where Nd is the channel doping concentration, a is the chan­
nel thickness, q is the electron charge, and 6 is the sem­
iconductor permittivity. The detail of physical operation of 
the MV GaAs MESFET can be found in Tyal and Liechti's work 
[194,195]. The MV GaAs MESFET 5-valued MAX, MÎN, COMP, LIT 
and their relative cost (number of MESFET in the circuit) 
are shown in Figs. B.20, B.21, B.22, B.23 respectively.

Source Drain

Ohmic contac

Ohmic contact

n-api layer

Depletion region

Fig. B.19 A Basic Structure of a GaAS MESFET.
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%

Fig. B.20 A GaAs MESFET 5-Valued MAX Gate.

Fig. B.21 A GaAs MESFET 5-Valued MIN Gate.
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Voltaic level 
Shifter

Fig. B.22 A GaAs MESFET 5-Valued COMP Gate.

Fig. B.23 A GaAS MESFET 5-Valued LIT Gate,

C, Charge Couple Device MV Technology

CCD was introduced for MV logic by Kerkhoff and Dijks- 
tra [87]. This device is very well suited for the MV 
LSI/VLSI logic design because of its high packing density, 
low power consumption , and ease of fabrication. It has been 
predicted [27] that a four-valued CCD memory will have a
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higher information density; and therefore, a lower cost per 
bit when compared with a binary RAM having the same minimum 
geometry. This fundamental idea has been put into practice 
by workers of Mitsubishi, who have doubled the storage capa­
bility of a binary 65 k bit CCD memory by packing two bits 
of memory into each storage site [214].

The basis of the CCD is the Metal-Oxide-Silicon (MOS) 
capacitor. Fig. B.24(a) [167] shows an isolated MOS capaci­
tor formed by a metal electrode deposited on a thermally 
oxidized p-type silicon substrate . Fig. 8.24(b) shows a 4- 
valued potential well (bucket) [87] which can store a cer­
tain amount of electron charge, where s is storage gate, Vg 
is a voltage apply to the storage gate, is the interface 
potential, and is the unity charge packet. Fig. 8.24(c) 
shows the basic structure of a charge couple device which 
consists of an input section, a transfer section and an out­
put section, where t is the transfer gates. The detail of 
the physical operation of the CCD is given by Sequin and 
Hobson [167,70]. Fig. 8.25 [87] shows the symbols using in 
the CCD MV.
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(b) A Four-valued potential well

(c) A CCD structure 
Fig. B.24 The Basic Structure of CCD.
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Fig. B.25 The CCD Symbolics.

There are three basic operations to design the CCD MV 
circuits which will be discussed as follows:

a. Charge addition

This operation can add the charge packets in different 
storage wells and transfer them into a common storage well. 
The example is illustrated in Fig. B.26.
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Fig. B.26 The CCD Charge Addition,

b. Charge subtraction

This operation uses the charge overflow principle. The 
maximum charge handling capacity of a well is proportional 
to its gate area and the voltage differential between the 
gate and its adjacent one. If the source provides a charge 
in excess of the capacity of the sink, then the excess 
charge is transferred to the subsequent sink given a proper 
bias of the sinks and the barrier gates. This operation is 
shown in Fig. B.27.

\ ■ a \ a \
o> <i> <»>■ \ /

0 ”=

Fig. B.27 The CCD Charge Overflow Principle
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B.6 Charge follower/complement

A very important structure in the CCD MV logic is the 
floating gate shown in Fig. B.28. It is able to detect a 
charge pocket non-destructively under the floating sense 
gate 1, and control the transfer of another charge pocket by 
means of the floating barrier gate. An amount of charge 
under the floating sense gate in this structure is converted 
into a certain voltage on the barrier gate. This barrier 
gate control propriety has been judiciously put into use by 
Kerkhoff et al. [87] to perform charge threshold detection, 
charge complementation, charge regeneration, and charge 
redistribution (or well extension).

y<o.i>

<i,o>

Fig. B.28 CCD Charge Control with Floating Gates.

Several CCD HV circuits have been designed [87], such 
as literal gate, four-valued full adder, quaternary-to- 
binary-converter, binary-to-quaternary-converter, successor, 
complement, etc. An example of the four-valued full adder 
is shown in Fig. B.29. The four-valued full adder performs
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the addition of two four-valued inputs X and Y and a two­
valued carry input Cin, resulting in four-valued sum output 
S and two-valued carry output Cout. in the behavior of the 
full adder circuit, two situations can be distinguished:

1. The total input charge (Cin + X + Y) does not exceed 
three unity charge packets. In this case all the input
charges are transferred to the sum output.

2. The total input charge exceeds three unity charge pack­
ets. The above mentioned transfer path is now blocked. 
The sum and the required carry output signal are now
obtained by the charge transfer via a parallel path.

The CCD four-valued full adder static operation has 
been simulated by Kerkhoff and is shown in Fig. B.30. All 
the data for calculations were derived from their design 
lay-out.
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Fig. B.29 The Schematic Diagram of Four-Valued Full Adder.
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Fig. B.30 The Static Simulation of the Operation of the 

Four-Valued Full Adder.


