
(I

MICROFILMED -1 9 8 4

INFORMATION TO USERS

This reproduction was made from a copy o f a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality o f the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or “ target” for pages apparently lacking from the document
photographed is “Missing Page(s)” . If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication o f either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image o f the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method o f “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer o f a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—begnning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

UniversiV
Micforilms

International
300 N.ZMb Road
AnnArt)or.MI48t06

8404568

Santiôku l, Krayim

MULTI VALUED LSI/VLSI LOGIC DESIGN

The University of Oklahoma Ph.D. 1983

University
Microfilms

Internetionsi aoo N. Zw b Road. A m Arbor. Ml 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this docum ent have been identified here with a check mark V

1. Glossy photographs or pages.

2. Colored illustrations, paper or print.

3. Photographs with dark background______

4. Illustrations are poor copy______

5. Pages with black marks, not original copy.

6. Print shows through as there is text on both sides of page.

7. Indistinct, broken or small print on several p a g e s______

8. Print exceeds margin requirements______

9. Tightly bound copy with print lost in spine______

10. Computer printout pages with indistinct print.

11. Page(s) 10 lacking when material received, and not available from school or
author.

12. Page(s)___________ seem to be missing in numbering only a s text follows.

13. Two pages num bered____________. Text lows.

14. Curling and wrinkled pag es______

15. Other___ _______________

University
Microfilms

International

THE UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

MULTI-VALUED LSI/VLSI LOGIC DESIGN

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

By
KRAYIM SANTRAKUL
Normanf Oklahoma

1983

MOLTI-VALÜED LSI/VLSI LOGIC DESIGN
A DISSERTATION

APPROVED FOR THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

-y/JLL

0 1983

KRAYIM SANTRAKUL

ALL RIGHTS RESERVED

ACKNOWLEDGMENTS

I wish to express my sincere gratitude and appreciation
to the many individuals who contributed to this research.

I especially want to thank Dr. Samuel C. Lee, my
academic advisor, for his continuous advice, guidance and
assistance throughout my entire graduate program. He has
been a good friend who showed constant considerations in the
years we worked together. Without him, I would not have been
successful in completion of this degree.

I also wish to thank Dr. William T. Cronenwett, Dr.
William L. Kuriger, Dr. Leslie L. Miller, and Dr. Albert B.
Schwartzkopf for their valuable comments and willingness to
serve in the supervisory committee.

I am sincerely grateful to my brother and my parents-
in-law for their continuing moral support, understanding and
encouragement over many years.

The warmest thanks and most affectionate appreciation
are extended to my family, Chantra, my wife, who suffered
the most throughout the several years of graduate school,
and to Kayasith, my son, who will now be able to see more of
his father.

And finally, I wish to thank my parents. Pan and Suparb
Santrakul, who brought me up and made roe what I am with

111

their endless love. With love and gratitude, I wish to dedi­
cate this work to them.

IV

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iii
LIST OF TABLES................................ vii
LIST OF F I G U R E S viii
Chapter

I. INTRODUCTION 1
II. IMPROVING THE CHIP DENSITY AND

COMPLEXITY OF LSI/VLSI CIRCUITS
USING MULTI-VALUED LOGIC 17

III. MULTI-VALUED COMBINATIONAL LOGIC
DESIGN.............................. 30

IV. SYNTHESIS OF MULTI-VALUED FUNCTION
WITH U L M s 56

V. MVMUX SEQUENTIAL LOGIC DESIGN USING
AN MVASM CHART..................... 102

VI. STRUCTURED DESIGN FOR TESTABILITY OF
BINARY LSI/VLSI..................... 118

VII. HIERARCHICAL DESIGN OF MV LSI/VLSI
WITH BUILT-IN PARALLEL TESTING
CAPABILITY......................... 143

VIII. CONCLUSION............................ 158
BIBLIOGRAPHY.................................. 150

APPENDIX
A. RELEVANT PAST WORK....................... 178
B. MÜLTI-VALÜED CIRCUIT TECHNOLOGY 196

VI

LIST OF TABLES

TABLE Page
1.1. The Comparison of Four-Valued and

Two-Valued MDX....................... 5
3.1. Functional Complete Set for 3-Valued

L o g i c 35
3.2. Truth Table of Ternary Full Adder . . . 44
3.3. Rules for Eliminating a Map Variable

of the Map T a b l e 52
4.1. Arbitrary Truth Table Represents f(x). 66
4.2. Arbitrary Truth Table Represents

f (Xĵ 66
4.3. Number of Trivial Residue Functions

in Fig. 4 . 1 8 95
4.4 Number of Trivial Residue Functions

in Fig. 4 . 2 2 99
5.1 Basic Building Blocks of an MVASM

C h a r t 110
B.l Quaternary Full Adder Truth Table . . . 203
B.2 Truth Table of Unary Basic Ternary

Operators............................ 211
B.3 Truth Table of Binary Basic Ternary

Operators............................ 212
B.4 A Modulo 3 Full Adder Truth Table . . . 217

v i a .

LIST OF FIGURES

FIGURE Page
1.1. Yearly Progress in Number of

Components Per IC C h i p 2
1.2(a) 64-to-l Two-Valued Multiplexer 6
1.2(b) 64-to-l Four-Valued Multiplexer. . . . 7
1.3. Circuit Single-Data-Selector

Multiplexer...................... 8
1.4. Hierarchy of MV LSI/VLSI Design Process 10
1.5. The Hierarchical Structured Design

Process.......................... 15
3.1. Truth Table of MAX(x,y)........... 31
3.2. Truth Table of MIN(x,y)........... 31
3.3. Truth Table of x(a,b)............. 32
3.4. Graphical Representation of x(2,4). . . 33
3.5. Graphical Representation of x(2,4). . . 33
3.6. Truth Table of x 34
3.7. Truth Table of COMP(x)............. 34
3.8. Multi-Valued Logic Gate Symbols 36
3.9. Multi-Valued Function Representation. . 37
3.10. Map Minimization of Example 3.1 40
3.11. Black B o x 41
3.12. Map Table of S..................... 45
3.13. Map Table of C o u t 45
3.14. Map Minimization of S 46

Vlll

3.15.
3.16.

3.17.

3.18.
3.19.
3.20.

4.1.
4.2.
4.3.
4.4.

4.5.
4.6.

4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
4.14.

Map Minimization of Cout.............
MVSSI Circuit Realization of Ternary

Full Adder.........................
MVMUXs Circuit Realization of Ternary

Full Adder..........................
Use Cin as a Map-Entered Variable . .
Use y as a Map-Entered Variable . . .
Map-Entered Variable Circuit

Realization
MVMUX Diagram
Tree-Structured MVMUX Network Diagram
4-Valued One-Variable (Selector) MVMUX
General Tree-Structured MVMUX Network

Diagram
MVMUX Tree-Structured Representation.
Building Block Using MVMUX to

Implement the Six Classes of Function

.....................
F(x^,x^,Xj)............................

Subfunction of f.....................
Subfunction of F.....................
Final Representation.................
MVMUX Structure Solution.............
z|y Decomposition Matrix of f(x). . .
3-Valued x^X2 |x^ Decomposition Matrix

46

47

50
54
54

55
60
61
63

64
65

80
82
82
82
83
83
84
86
87

IX

4.15. An Arbitrary 3-Valued |
Decomposition Matrix.............. 88

4.16. Maximum MVMUX Implementation from
Decomposition Matrix in Fig. 4.15 . . 89

4.17. Possible Decomposition Matrices 93
4.18. Possible Decomposition Matrices 94
4.19. Decomposition matrices................. 96
4.20. Tree-Structured MVMUX Network

Realization...................... 97
4.21. Possible Decomposition Matrices 98
4.22. Possible Decomposition Matrices 99
4.23. Tree-Structured MVMUX Network

Realization...................... 100
4.24. Tree-Structured MVMUX Network

Realization...................... 101
5.1. SR 3-flop.......................... 104
5.2. Improved SR 3-flop.................. 105
5.3. D 3-flop............................ 107
5.4. Flow Diagram for Sequential Circuit

Design............................ 109
5.5. An MVASM Block...................... 112
5.6. An MVASM Chart to Describe a System . . 115
5.7. A Tree-Structured MVMUX/D m-flop. . . . 115
5.8. An Example of 3-Valued ASM Chart. . . . 116
5.9. The Tree-Structured MVMUX/D 3-flop

Circuit.......................... 116

6.1. Store Program Automatic Test Equipment
System................... 125

6.2. Automatic Test Pattern Generator System 126
6.3. General Structure of an LSSD Subsystem

with Two System Clocks............ 131
6.4. Configuration of Scan Path on Card. . . 133
6.5. BILBO and Its Different M o d e s........ 136
6.6. Syndrome Test Structure............... 137
6.7. Reconfiguration of 3-bit LFSR Module. . 140
6.8. Reconfiguration of 3-bit LFSR Module. . 140
6.9. Reconfiguration of 3-bit LFSR Module. . 141
6.10. Reconfiguration of 3-bit LFSR Module. . 141
7.1. Structural and Logical Level of an MV

LSI/VLSI Design Process 146
7.2. Tree-Structured MVMUX Network with

D 3-flop.......................... 148
7.3. Test Data-Input Generator Circuit . . . 150
7.4. Test Data-Selector Generator Circuit. . 151
7.5. Test Verification Circuit.......... 152
7.6. BMN with Testing Circuit............ 155
7.7. Timing Diagrams of Testing Circuit. . . 156
B.l. I^L Current-Mirror Circuit.......... 198
B.2. I^L Weight Sum Circuit.............. 199

2B.3. I L Threshold Detection Circuit 200
B.4. I^L MAX Gate Circuit................ 200
B.5. I^L MIN Gate Circuit................ 201
B.6. I^L COMPLEMENT Gate Circuit........ 201

XI

B.7. I^L LITERAL Gate Circuit............... 202
B.8. I^L CYCLE Gate Circuit................. 202

2B.9. X L Circuit Implemented in QFA......... 204
2B.IO. The Actual I L Circuit Gate

Construction 206
B.ll. Implementation of Function f(x,y) . . . 207
B.12. QFA Transfer Characteristic 209
B.13. Quaternary Threshold Logic Full Adder

Circuit.............................. 209
B.14. Unary Basic Ternary Operator COSMOS

Circuits.............................. 211
B.15. Binary Basic Ternary Operator COSMOS

Circuits.............................. 213
B.16. A Block Diagram for a Ternary Circuit

Based on Binary L o g i c 214
B.17. (a) Two Level Detector

(b) Output Circuit..................... 215
B.18. NMOS Circuits for a Modulo 3 Full Adder 219
B.19. A Basic Structure of GaAs MESFET. . . . 220
B.20. A GaAs MESFET 5-Valued MAX Gate 221
B.21. A GaAS MESFET 5-Valued MÎN Gate 221
B.22. A GaAs MESFET 5-Valued COMP Gate. . . . 222
B.23. A GaAs MESFET 5-Valued LIT Gate 222
B.24. The Basic Structure of CCD............. 224
B.25. The CCD Symbols....................... 225
B.26. The CCD Charge Addition............... 226

Xll

B.27. The CCD Charge Overflow Principle . . . 226
B.28. CCD Charge Control with Floating Gates. 227
B.29. The Schematic Diagram of Four-Valued

Full Adder...................... 229
B.30. The Static Simulation of the Operation

of the Four-Valued............. 230

Xlll

ABSTRACT

This research describes a procedure for synthesizing
any large complex logic system, such as LSI and VLSI
integrated circuits. This scheme uses Multi-Valued Multi­
plexers (MVMUX) as the basic building blocks and the tree as
the structure of the circuit realization. Simple built-in
test circuits included in the network (the main circuit),
provide a thorough functional checking of the network at any
time. Because the network can be partitioned into nearly
identical subnetworks (Basic-Modular-Networks or BMNs)
which, in turn, can be further partitioned into nearly
identical sub-subnetworks, the testing of the entire network
may be conducted in such a manner that all the sub­
subnetworks and subnetworks are tested simultaneously by the
built-in test circuits.

In brief, this dissertation has made the following four
major contributions:

0 developed a multi-valued Algorithmic State Machine
(ASM) chart for describing an LSI/VLSI behavior (Sec­
tions 5.2 and 5.3)

• described a tree-structured multi-valued multiplexer
network which can be obtained directly from an ASM
chart (Sections 4.2 and 5.3)

• introduced a heuristic tree-structured synthesis method
for realizing any combinational logic with minimal or
nearly-minimal MVMUX (Section 4.5)

• presented a hierarchical design of LSI/VLSI with
built-in parallel testing capability (Chapter 7)

The procedures and methods presented in this disserta­
tion are completely general, systematic, and easy to apply
to any m-valued (m > 2) combinational and sequential
LSI/VLSI design.

CHAPTER I

INTRODUCTION

1.1 Advantages of LSI/VLSI Chips

The ongoing revolution in digital Large-Scale-
Integration (LSI) spawned in the late 1960's is leaving a
permanent imprint on all aspects of our lives. In the last
few years, the system house has been shocked by the explo­
sive increase in the number of components that can be
integrated on a silicon chip. The level of integration has
closely followed the trend predicted by Moore [153] as shown
in Fig. 1.1 : an increase by a factor of 2 every year. It is
nowadays possible to integrate more than 100,000 components
on a single chip. Digital circuits, such as memories and
microprocessors show the highest integration level, while
analog circuits exhibit a lower integration level. BecaGhe
of the complexity, these digital circuits are better classi­
fied as subsystems than as circuits; mostly these subsystems
include software, e.g. programmable circuits and micropro­
cessors.

- 1 -

- 2 -

COMPONENTS PER CHIP
16M

• BIPOLAR LOGIC
AMOS LOGIC
AMOS MEMORY
O BOBBLE MEMORY

IM

64K

4K

256

19651960 19751970 1980 1985
YEAR

Fig. 1.1 Yearly Progress in Number of Components Per IC Chip.

ICs offer the fascinating advantages of smaller size,
low power dissipation, and higher reliability; the most
decisive advantage of ICs, however, is their cost advantage
when mass produced. Due to their steadily improved cost
effectiveness, ICs are forcing their way into different
technical fields, and thereby replacing electromechanical
functions and conventional electronic devices.

1.2 Advantages of the Use of MV Logic in LSI/VLSI Circuit

It is known (200] that the performance and cost per
function of present LSI/VLSI circuit can be improved by the

- 3 -

MV logic system. The advantages of the MV Logic are;

1. increases the information per unit area, and

2. reduces the number of interconnections, and thereby
reduces the complexity of the circuit.

Other advantages of MV LSI/VLSI over binary LSI/VLSI are:

3. IC size reduction.

4. More information per signal line.

5. IC pins reduction.

6. Interface complexity reduction.

7. Cost-per-function reduction.

8. Higher performance.
For these reasons, recently more and more designers have
thought of taking these advantages of MV logic and using MV
circuits in the design of digital systems. For example,
Intel 8087 numeric processor and Intel 43203 iAPX-432 I/O
interface chips both use MV ROMs. Each cell of these ROMs
can store one of the four possible signal values [1771.

Even though there are many advantages of the MV system
over the binary system, so far the MV system is still not
popular in practice. This may be due to the following rea­
sons:

1. Most existing digital systems are binary systems and
most logic designers are only familiar with binary
logic design.

2. There is still room for technological improvements in
binary LSI/VLSI circuits.

3. Most logic designers believe, rightly or wrongly, that
the design of binary systems is easier than the design
of an MV system.

4. The solving of the problems of noise immunity and
tolerance of MV circuits is much more difficult than
that of the binary system.

The advantages of MV logic over binary logic may be
evident from the following example.

Example 1.1; Consider the 64-to-l two-valued multiplexer and
this 64-to-l four-valued multiplexer of Figs. 1.2(a) and (b)
respectively. They are constructed from single-data-select
two-valued multiplexers and single-data-select four-valued
multiplexers of Figs. 1.3(a) and (b) respectively. The cost
of multiplexers is proportional to the number of transistors
used and the chip density mostly depends on the transistors
and resistors plus the silicon surface covered with metal
signal lines interconnecting those components. A comparison
between two multiplexers of Figs 1.2(a) and (b) is given in
Table 1.1. It is seen that the four-valued multiplexer has
all the advantages cited above.

- 5 -

Table 1.1 The Comparison of Four-Valued and Two-Valued MUX.

information four-valued two-valued

Total transistors 256
Total pins 68
Information per line 4
Delay time 3
Interconnection less
Circuit complexity less
Circuit performance higher
Cost per function lower
IC size smaller

378
71
2
6

more
more
lower
higher
bigger

- 6

Fig. 1.2 (a) 64-to-l Two-Valued Multiplexer.

- 7 -

Fig. 1.2 (b) 64-to-l Four-Valued Multiplexer.

- 8 -

(a)

R-

(b)
Fig. 1.3 I L Circuit Single-Data-Selector Multiplexers

(a) two-valued multiplexer
(b) four-valued multiplexer.

- 9 -

1.3 MV LSI/VLSI System Design Process

Several methods have been applied to the design of
relatively small MV digital systems [9,77,116,208], but to
this date, no method for designing a large and complex MV
system (LSI/VLSI) has been published. However, the design of
MV LSI/VLSI may use approaches similar to those used in the
two-valued LSI/VLSI system [39,46,144,152,197,224]. The pur­
pose of this section is to suggest a process for designing a
large and complex MV digital system.

Similar to the binary LSI/VLSI, the design process of
an MV LSI/VLSI system may be divided into three major levels
[39,224], i.e. behavioral level, structural level, and phy­
sical level. Each of these levels are further subdivided
into many levels. The design actions are referred to as
transformations which generate the intermediate design
description of one level to its next level. Figure 1.4
shows the hierarchy of MV LSI/VLSI design process. This pro­
cess may be carried out by a sequence of transformations
performed in either of the two directions: the "bottom-up"
and the "top-down".

PLEASE NOTE:

This page not included with
original material. Filmed as
received.

University Microfilms International

- 11 -

down large unit into smaller ones, and should be independent
of the specific technology as much as possible. It also
seems to be more adequate to support design constraints when
different parts of a system have to be constructed at dif­
ferent times or by different design groups. Since this
design strategy is opposite that of the bottom-up strategy,
the main disadvantage of the top-down strategy is that by
breaking down large units into smaller ones under technical
constraints, the strategy poses a combinatorial problem with
an exponential growth function and also the transformation
sequence yields an excessive number of different solutions.

Since a design using strictly a top-down or bottom-up
strategy very rarely occurs in practice, real developments
normally make an alternate use of both design strategies or
refer to the information extracted from the other branch to
properly and efficiently guide the process.

The hierarchical design approach will be used in
developing the design process for an MV LSI/VLSI system.
This approach is used with appropriate merging of levels to
accomplish the design of LSI/VLSI systems. It proceeds in a
top-down sequence with bottom-up detailed implementation and
addresses both functional and physical problems at each
level. The hierarchical design approach also contains those
three major levels as shown in Fig. 1.4.

1. The behavioral level, which is the top level of the
design hierarchy, contains elements for a board

— 12 —

functional system description, requirements for inter­
facing units specifying performance and compatibility,
and methods for partitioning the system into major
functional blocks such as processors, memory, and I/O.

2. The structural level, where the system functions are
defined as interconnections of blocks or modules.

3. The physical level, where the physical implementation
and process technology may be considered in order to
construct circuit elements and determine their
behavior.

In most cases the behavioral and structural design
processes go on concurrently, while the physical design pro­
cess is done separately. However, it often occurs that the
physical design process can have a tremendous influence on
the behavioral or structural design of a system, necessitat­
ing many iterations during a design.

In this dissertation interest will be focused on struc­
tural level design, especially on the search of a new net­
work structure and its synthesis method to achieve a reli­
able and design-economical MV LSI/VLSI system. The
hierarchical structured design process starts from each sub­
system which has been partitioned by the behavioral design
process. It then makes a decision on which semiconductor
technology, component module, and type of network structure
will be used in the design of this subsystem which will

- 13 -

easily be implemented in the physical process. The process
proceeds by selecting a design tool (a design automation
tool is usually used in this process to reduce the designing
time) that is suitable for the technology and the structure
that have been chosen. This design tool should give all the
facilities required by the design of MV LSI/VLSI logic and
the synthesis of the subsystem which can be implemented in
the physical design process. In order to ensure that the MV
LSI/VLSI system is fault-free, the system must be testable.
To eliminate external testing equipment and to reduce test­
ing time, the technique of inserting built-in test circuits
in the various parts of the partitioned subunits of the sub­
system is recommended. The hierarchical structured design
process presented in this dissertation is shown in Fig. 1.5
and explained below:

This design process is to be applied to each of the
2subsystems of the partition at the behavioral level. I L and

single-data-selector Multi-Valued Multiplexer (MVMUX) are
chosen (Chapter 3) to be the semiconductor technology and
the component module of the design, respectively. The tree-
structured MVMUX is to be used in the synthesis of design
functions (Chapter 3). As a design tool, the Multi-Valued
Algorithmic State Machine (MVASM) chart is chosen (Chapter
5) for the reason that it is simple to "translate" the sys­
tem design description directly into a tree-structured MVMUX
network in a systematic way. For synthesizing the subsystem
function, a heuristic MVMUX modular synthesis method is used

— 14 —

(Chapter 4), since this method provides a minimal network
realization and is easy to apply manually as well as by a
computer. Because the subsystem realization is a tree-
structured MVMUX network, it can be partitioned into nearly
identical subunits, which, in turn, can be further parti­
tioned into nearly identical sub-subunits, etc. This allows
this design method to have a special desirable feature: the
built-in parallel testing capability (Chapter 7).

— 15 —

(I L MVMUX)

(Tree Structure)

(MVASM Chart)

(Heuristic MVMUX
Modular Method)

(Hierarchical Design)

(Simple Logic Circuitry)

Take a subsystem

Choose a Design Tool

Choose a Structure Type

Synthesize Subsystem Function

Design and Insert Built-in Test
Circuits

Choose a Semiconductor Technology
and Component Module

Partition the Subsystem into Nearly
Identical Subunits So that Parallel

Testing May Be Applied

Fig. 1.5 The Hierarchical Structured Design Process.

1.4 Summary by Chapter

The dissertation consists of a total of eight chapters
and two appendices. Chapter 2 discusses how the chip density
of LSI/VLSI can be increased and how the complexity of
LSI/VLSI can be reduced through the use of MV logic. Both
conventional and MVMUX combinational logic designs are given

- 16 -

in Chapter 3. The synthesis of tree-structured MVMUX net­
work is discussed in Chapter 4. Chapter 5 presents a design
of multi-valued memory component and a new technique called
multi-valued algorithmic state machine which is used as a
multi-valued logic design tool. Chapter 6 reviews several
techniques used in structured design for testability of
binary LSI/VLSI circuits. A new proposed hierarchical design
of MV LSI/VLSI with parallel built-in testing capability is
introduced in Chapter 7. Chapter 8 concludes all the discus­
sions in this dissertation. Two appendices are included:
Appendix A gives a summary of past relevant work related to
the MV logic, and Appendix B summarizes circuit technologies
in MV logic circuits.

CHAPTER II

IMPROVING THE CHIP DENSITY AND COMPLEXITY OP LSI/VLSI
CIRCUITS USING MULTI-VALUED LOGIC

Recently, the rapid evolution of semiconductor technol­
ogy has allowed logic designers to design a complex digital
system and put it in a single Integrated Circuit (IC) chip.
In general, the IC chip may be divided into four types-
Small Scale Integrated (SSI) circuit (gates less than 10),
Medium Scale Integrated (MSI) circuit (10 < gates < 100),
Large Scale Integrated (LSI) circuit (100 < gates < 1000) ,
and Very Large Scale Integrated (VLSI) circuit (gates >
1000). The LSI and VLSI (LSI/VLSI) circuits are considered
as a complicated digital circuit here.

Practically, to this date two classes of semiconductor
technology are used in integrated circuits: bipolar and MOS
technology. Recently, the size of individual MOS transis­
tors has been eliminated as a theoretically limiting factor
in the production of LSI/VLSI circuits - nor is there even
a nearby limit to the reduction in geometries of bipolar
devices [26]. Both in principle can be made 10 or 20 times
smaller, and both in theory have the same speed for a given
active region size (base for bipolar, gate for MOS), since

- 17 -

— 18 —

the switching speed of either is a measure of the propaga­
tion time of carriers through the active region. However,
the major limitation of device size right now is the fabri­
cation technology which is still in a development stage. In
addition, reducing the size of the device causes the
increasing complexity of the circuit; therefore, it is quite
difficult to manage the complexity and thus, design metho­
dology is needed.

2.1 Limits of LSI/VLSI Circuits

In order to design the LSI/VLSI chip more efficiently,
the physical, technological and complexity constraints have
to be improved. However, there are some limitations [153]
of these constraints.

(1) Physical Limits

This type.is the fundamental limitation which is deter­
mined by the laws of physics, such as speed of light,
entropy (irreversibility), uncertainty principle and thermal
energy. This fundamental phenomena presents barriers to
switching speed and power dissipation that cannot be sur­
passed.

(2) Technological Limits

This type of limitation depends on material constants,
fabrication techniques and electrical parameters. The con­
straints imposed by these considerations can often be cir­

— 19 —

cumvented by using new materials, lower operating tempera­
tures, structure changes, better cooling techniques, and
other forms of device and circuit cleverness.

(a) Material constants include electrical and thermal con­
ductivity, mobility, dielectric constants, saturation
velocity, and dopant solubility.

(b) Limits associated with fabrication techniques involve
doping fluctuations, processing radiation, defects,
layer thickness uniformity and pattern edge roughness,
bias and tolerance, and reduction of high temperature
processing cycle (i.e., the diffusion coefficient-time
product).

(c) Constraints relating to electrical parameters include
oxide and junction breakdown, tunneling, hot electron
injection, avalanche multiplication punch through con­
duction, small geometry effects, and nuclear radiation
effects.

(3) Complexity limits

This type of limitation relates to the designer's ina­
bility to design circuitry involving very large numbers of
components. This could also be thought of as the limit of
the human conceptual ability. Complexity includes product
definition, design time, engineering changes, testing, on-
chip redundancy, computer-assisted design, and packaging.

— 20 —

To date, there is still some way to go before the
"absolute" physical limits of LSI/VLSI are reached. In
order to exploit fully the advantages of semiconductor tech­
nology and push the current physical limits set by today's
technology closer to the absolute physical limits set by the
law of physics, one should find means to improve the exist­
ing semiconductor technology and find better ways of han­
dling the complex logic design problem of LSI/VLSI. The
major advantages of LSI/VLSI are high performance and low
cost. From previous discussion, the low cost can be
achieved through high production volumes and by increasing
the number of components per chip (chip density). The per­
formance of the circuit can be improved by reducing the dev­
ice capacity and by shortening propagation delay time.
Therefore, it can be seen that by increasing the levels of
performance and decreasing the production cost of semicon­
ductor devices and circuits, the technology is improved and
the complexity can be easily managed.

2.2. Technological Improvement

In order to increase the performance of the circuit,
the smaller dimension (submicron) of the device must be
improved. It should be mentioned that the device size
reduction, which is termed "scaling", relates to the type of
lithographic tool needed to accomplish dimensional shrink­
age. Clearly, no single technological achievement will be
sufficient to meet this goal. For example, advanced litho-

— 21 —

graphie technology is not sufficent by itself to fabricate
the devices with smaller features. Other technologies, such
as solid-state physics, device modeling, processing tech­
niques, materials growth, analytical techniques, device
design, and circuit architecture will also be required to
improve. These technologies are developed by different
groups of designers as follows [104]:

1. Solid-state physicists and device modelers developed
two and three-dimensional models of the semiconductor
devices and models of corresponding fabrication process
for these devices.

2. Device designers developed layout styles to minimize
the interdevice capacitance and maximize the output
current; they also developed device test structures.

3. Lithographers fine tuned their electron-beam and opti­
cal techniques and developed new electron-beam. X-ray,
ion-beam, and optical equipment to meet the eventual
production requirements of the new devices.

4. Processing groups developed both a low-temperature dev­
ice fabrication process and high-accuracy pattern
transfer techniques needed to fabricate submicron dev­
ices.

5. Materials groups developed high-reliability, high-
conductivity interconnection materials, while also
studying the semiconductor-device failure modes.

- 22 -

Establishing an experimental device-processing line
insured that the new device designs, new materials, and
new processes actually work.

6. Analytical groups worked with the materials groups to
improve their own understanding of the new materials
and processes using different techniques, such as Auger
electron spectroscopy, scanning-electron microscopy,
transmission-electron microscopy, etc..

Recently, there are several technologies that try to
improve the submicrometer (submicron) LSI/VLSI circuits
fabrication. These technologies include X-ray, electron-beam
and ion-beam lithography, dry etching, resists and process,
materials growth, etc.[45,104].

(a) X-ray lithography technology

X-ray lithography appeared to have promise as a submi­
cron pattern transfer technology; it offers a strong
economic advantage over electron-beam lithography for high-
volume applications. X-ray lithography is a proximity
lithography pattern technique. It was expected to have
advantages over both the industry standard optical lithogra­
phy and high-resolution electron-beam pattern generators in
the following areas [104] :

1. Increased throughput by parallel exposure.

— 23 -

2. Improved control of diffraction effects.

3. Minimized feature broadening due to electron scatter­
ing.

4. Relative simplicity of X-ray equipment.

5. Source wavelength and brightness.

6. Automated wafer handling.

7. High-quality mask and resist characteristics.

However, the major problem has been in devising a sen­
sitive enough resist combined with a reliable bright source
to give exposures of less than a minute. Also, small uncon­
trolled distortions in the mask substrate during and after
patterning have caused significant distortions in the pat­
tern 164]. X-ray systems have been used to make many devices
with 2->im features and a few in the l-;aro range. As the
resolution and registration tolerances have tightened to
keep ahead of the growing optical technology, the X-ray mask
distortions for full field exposure have improved, but have
continued to be a problem. With the current registration
tolerances in the 0.1-0.2 jjta range, smaller x-ray masks with
the step-and-repeat exposures of large wafers are being stu­
died. The use of step and repeat will complicate the x-ray
systems and increase their cost compared to that of other
lithographic systems.

- 24 -

(b) Electron-Beam Lithography Technology

Electron-beam lithography is extensively used for mask
production today and the direct-write electron-beam systems
are being readied for the submicron device fabrication
development and low-volume fabrication. These are due to
electron lithography which offers higher resolution because
of the small wave length of the 10-25 keV electrons used
[12] and because it is not limited by diffraction.
Recently, several companies have begun developing electron
direct writing systems. The primary advantages of electron-
beam over contact-printing and projection-printing tech­
niques for direct slice writing are [197]

1. the elimination of masks and mask defects

2. the alignment accuracy achievement

3. the fast turnaround of computer-controlled imaging

4. the superior resolution capability

5. The geometry size compensation.

However, the major disadvantage to date has been the
low throughput and the requirement for different resists and
processes. In addition, the resolution is limited by the
electron scattering and by the resists.

(c) lon-Beam Lithography Technology

Ion-beam lithography is in a very early stage of

— 25 —

development. It can be expected to have at least three
advantages over electron-beam lithography [170] ; 50-100X
greater resist sensitivity, no proximity effects, and mask-
less processing. This means that very-high-resolution con­
figurations could be structured by the direct-write ion-beam
lithography using single resist layers on thick substrates
or with no resists at all with the proper ion sources.

The ion-beam exposure of resists is a promising tech­
nique for the replication of patterns having submicron
features. Proton ion-beam exposure of resists was stimulated
by the possibility of having a high-resolution lithography
technique that would not require the long exposure times
which is necessary for the X-ray. Protons do not diffract
significantly, they produce low energy secondary electrons
when interacting with the matter, and can be performed into
highly collimated beams. In addition, simple, commercial
available sources can provide sufficient current to expose
even the most insensitive resists in a fraction of a second
[45] .

(d) Dry Etching Technology

In the process of submicron device fabrication, conven­
tional wet-etching technology and isoplasma etching technol­
ogy are not applicable to the process because of large
undercutting and poor controllability in pattern width [69].
Therefore, a new technology known as dry-etching techniques,
such as plasma etching and reaction-ion etching have been

— 26 —

developed to produce anisotropic profiles and good dimension
control in the process of submicron device fabrication.
These properties are especially desired for transferring
high-resolution patterns created with X-ray, electro-beam or
ion-beam lithography 1212].

(e) Resists and Process Technology

Resists are temporary layers applied onto the workpiece
only for imaging purposes. After pattern transferring onto
the active layer (insulator or semiconductor material), the
resist is removed (stripped) in a solvent or an oxidizing
solution. The most common resists are an organic solution
applied on workpiece (wafer) by spinning, and dried by bak­
ing at a suitable temperature referred as "prebake tempera­
ture. " The thickness of the dried resist layer depends
largely on the concentration of solids in the solution and
on the spinning speed. After baking the resist-coated wafer,
the desired pattern is exposed in the lithographic tool, and
the resist is developed. The most important distinction
between resists concerns the pattern polarity after develop­
ment [61].

In fact, the resist materials and processing will, by
necessity, follow the trends of lithographic tool develop­
ment for improvements in resolution and throughput. The
improvement of resists and the process technology are dis­
cussed in Hatzakis* paper [61].

- 27 -

(f) Materials Growth Technology

One of the most important parameters which limit the
performance of the semiconductor technology is the proper­
ties of the materials. New device structures or scaled-down
versions of existing devices often require improvements in
the state of the art of materials growth. Further reading
on materials growth can be found in Economou's paper [45].

2.3 Chip Density and Management of the Complexity Improve­
ments

In general, an LSI/VLSI chip may be regarded as an
assemblage of three types of components [40]:

1. Active devices (transistor, MOS, MESFET) which occuppy
about 10% of the chip area.

2. Passive isolation (oxide, dielectrics) which covered
about 20% of the chip area.

3. Passive wiring (metal, polysilicon) which occupied
about 70% of the chip area.

One way to increase the chip density is by scaling down
the dimension of the components. The other way is by reduc­
ing the passive wiring area; the information content of each
connection must be increased. The scaling down dimension
strongly depends on the semiconductor technology which has
already been discussed. The reduction of the passive wiring
will be considered here. In order to increase the

- 28 -

information content in each connection, the time multiplex­
ing method and the level multiplexing method may be used.

1. The time multiplexing method: this method is mainly
limited to interchip pin connections, for example, the
data terminals and address terminals of Intel 8085
microprocessor [110] use this method.

2. The level multiplexing method: this method reduces the
interchip circuitry, therefore, interchip pin connec­
tions are also reduced, for example, to carry four
information data i.e. 0, 1, 2, 3, if a binary logic
system is used, at least 2 wires are required; but only
one wire is needed when using the four levels multi­
plexing method. Therefore, about 50% of interchip con­
nections and 50% for interchip pin connections are
reduced.

It can be concluded that the latter method is the best
choice to be considered for the IC chip area reduction. As
of this date, the mulci-valued logic system is the only
technique that can be applied in the level multiplexing
method. Therefore, a multi-valued logic system provides a
solution which not only reduces the complexity of the sys­
tem, but also increases the chip density when compared with
the two-valued logic system.

As the technology in the device dimension is improved,
the complexity level of circuit design for LSI/VLSI requires

- 29 -

a new type of design methodology. This new type of methodol­
ogy must be able to manage the complexity of the LSI/VLSI
circuit which includes the function definition, the archi­
tectural description, the logic interpretation, the circuit
design, the physical layout design, the wafer fabrication,
and the testing with verification and validation at each of
these levels. This requires proper partitioning of the
design technique into subcircuits of manageable size.
Furthermore, in designing any fault-free complex circuit, it
is necessary to have an efficient and economical testing and
a verification method with reasonable testing time. This
may be achieved by using built-in test and verification cir­
cuits which will be discussed in Chapter 7.

To conclude, two solutions for the improvement of the
LSI/VLSI chip are presented in this dissertation: the chip
density and the management of the complexity. The hierarch­
ical structured design approach could be used to manage the
complexity of the system and the multi-valued logic system
could be used to improve the chip density.

CHAPTER III

MULTI-VALOED COMBINATIONAL LOGIC DESIGN

3.1 Multi-Valued Algebra

It is well known that binary switching theory and logi­
cal design have been based on Boolean Algebra as the
mathematical model [168]. Multi-valued switching theory and
logical design has been based on Post algebras [149] and
their extension [47,95].

Definition 3.1: Binary operations:
Let X, y é Q = (0,1,2,... ,p]. Where p = m-1.

(a) MAX operation: x + y = HAX(x,y)
i.e. X + y = X for x y

= y for X 1 y
Fig. 3.1 Illustrates the Table of this MAX Operation.

- 30 —

- 31 -

Fig. 3.1 Truth Table of MAX(x,y).

(b) MIN operation; x»y = MIN(x,y)
i.e. x y = X for x < y

= y for X > y
Fig. 3.2 Illustrates the Table of this MIN Operation,

Fig. 3.2 Truth Table of MIN(x,y)

From Definition 3.1, the following properties are
satisfied.

- 32 -

Idempotent; x + x = x x x = x
Commutation: x + y = y+x x.y = y-x
Association; (x + y) + x = x + (y + z)

(x . y) . z = X ' (y . z)

Absorption: x + x * y = x x » (x + y) = x
Distribution: x + y-z = (x + y)»(x + z)

x«(y T z) = X y + X z
Null element: x + 0 = x x * 0 = 0
Universal element: x + p = p x p = x
Where x, y, z f 0 = {0, 1, 2,...,p} and Or p are constants.

Definition 3.2: Unary operation:
Let Xr ar b ë 0 = {0, 1, 2r...rP} and a b

(a) LITERAL operation (LIT)
x(arb) = p if a < X < b

= 0 otherwise
Fig. 3.3 Illustrates the table of LIT operation. A graphi­
cal illustration of LIT function x(2r4) where m = 6 is shown
in Fig. 3.4.

ab 00 01 Op; 11 12 PP

Fig. 3.3 Truth Table of x(arb).

— 33 —

Fig. 3.4 Graphical Representation of x(2,4).

(b) COMPLEMENT LITERAL operation (CLIT)
x(a,b) = p if b < X < a

= 0 otherwise
A graphical illustration of CLIT function x(2,4) where m
is shown in Fig. 3.5.

= 6

Fig. 3.5 Graphical Representation of x(2,4).

(c) CYCLE operation
X = (X plus a) mod m

Fig. 3.6 Illustrates the table of this CYCLE operation.

- 34

p-1
a

Fig. 3.6 Truth Table of x

(d) COMPLEMENT operation (COMP)
X = p - X

Fig, 3.7 Illustrates the table of this COMP operation.

0
1
2

Pp-1
p-2

Fig. 3.7 Truth Table of COMP(x)

These operations constitute a functional complete set
as shown in Table. 3.1. Fig. 3.8 illustrates their logic
gate symbols.

- 35 -

Table 3.1 Functional Complete Set for 3-Valued Logic,

X = 0 X = 1 X = 2 Entry
0 0 0 0

0 0 1 l * x (2 , 2)

0 0 2 x (2 , 2)

0 1 0 l'X(l,l)
0 1 1 1"X
0 1 2 X
0 2 0 X(l,l)
0 2 1 x (2 , 2)

0 2 2 x (0 , 0)

1 0 0 l ' x (0 , 0)

1 0 1 l-x(lrl)
1 0 2 l * x (0 , 0) + x

1 1 0 l'X(0,l)
1 1 1 1

1 1 2 1 + X

1 2 0 It*
1 2 1 1 + X(l,l)
1 2 2 1 + x (l , 2)

2 0 0 x (0 , 0)

2 0 1 /
2 0 2 x (l , l)

2 1 0 X

2 1 1 1 + x (0 , 0)

2 1 2 X + F
2 2 0 x (2 , 2)

— 36 —

2 2 1 1 + x(2,2)
2 2 2 2

:zr>y-
HAX gate

a b

LIT gate

HAX(x,y) X-

y- > MIN(x,y)

MIN gate

---- x(a,b)
x^— a

---- x(a,b)
CYCLE gate

COMP gate

Fig. 3.8 Multi-Valued Logic Gate Symbols.

3.2 Multi-Valued Functions
jjjii

In an m-valued logic system there are m functions for
n variables. A set of operators which can describe all of
these functions is called a complete set. Table 3.1 shows a
complete set of 3-valued one-variable function. Any m-
valued switching function can be represented by a truth
table or map table as shown in Fig. 3.9.

37 -

0
1
2
3
4
5
6
7

f (X)

0
0
1
2
0
3
6
0

(a)

(b)

(c)

(d)
Fig. 3.9 Multi-Valued Function Representation.
It may also be expressed by the sum-of-products in canonical
form.

n
zi=0 î* ̂ i Eg. 3.1

Where the a is a constant in the range (O r I r 2,,,,,p) and
L is the MIN of the individual LIT or COMP of variables x^rXg
r...fX^. For exampler the canonical form of one-variable
8-valued switching function f(x) as shown in Fig. 3.9(a) can
be written as the following:

— 38 —

f(x) = f(0).x(0,0) + f(l).x(l,l) + f(2).x(2,2)
+ f(3)"X(3,3) + f(4)*x(4,4) + f(5)*x(5,5)
+ f(6)-x(6,6) + f(7)*x(7,7)

0*x(0,0) + 0'X(1,1) + l.x(2,2) + 2"x(3,3)
+ 0-x(4,4) + 3"X(5,5) + 6*x(6,6) + 0«x(7,7)

l*x(2r2) + 2"X(3,3) + 3.x(5,5) + 6-x(6,6)
Eq. 3.2

The other example, the canonical form of two-variable
3-valued switching function f(Xj^,X2) as shown in Fig. 3.9
(b) can be written as

ffx^fXg) = 1"X^(0,0)"X2(1,1) + 2*Xĵ (l,l)*X2(lrl)
+ 1*x ^(2,2)*X2(0,0) + 2*Xi (2,2)-X2(lrD

Eq. 3.3

3.3 Multi-Valued Function Minimization

The minimization of multi-valued functions has been
considered by several researchers [5,129,173]. Many dif­
ferent methods of MV function minimization have been pro­
grammed [147,174,181]. The map minimization method of
Allen and Givone [5] is used here because it is simple and
easy to use. In this method the truth table of MV function
is transformed to map table representation. The following
step-by-steps minimize the MV function by finding the prime
implicants of an MV function:

Step 1: Set the logic value inside each cell containing

- 39 -

a don't care (-) to the logic value p. Let k be an index
starting with the value p.

Step 2: Find all n-dimensional rectangular groupings of
cells which have the logic value k, or higher, and are not
totally contained in any large rectangular grouping of cells
having the logic value k, or higher. The product terms which
correspond to these groupings are prime implicants if and
only if they subsum no term previously found to be a prime
implicant.

Step 3: Set k to k-1.

Step 4: If k > n, repeat from step 2. Otherwise, if
just prime implicants have been found; terminate the pro­
cess.

Example 3.1 Fig. 3.10 shows the minimization of the
function of the map table in Fig. 3.9 (d). First, no don't
care cells are found, only one rectangular grouping of cell
value 2 is found as shown in Fig. 3.10 (a). Next all rec­
tangular grouping containing a logic 1 or higher are shown
in Fig. 3.10 (b) along with their corresponding product
terms. Thus, there are 3 prime implicants of this function
A, B, and C. The sum of these prime implicants is the minim­
ization function.

- 40 -

(a) (b)
f(3^r3^) = A + B + C

Pig. 3.10 Map Minimization of Example 3.1.

3.4 Combinational Logic Design Using MVSSIs and MVMSIs

There are two basic approaches to the design of combi­
national MV logic: MV algebra approach and actual circuit
approach. The MV algebra approach uses algebraic theory to
realize the arbitrary functions by interconnecting the basic
gates operator together. A drawback of this approach is that
the efficiency (in terms of interconnect or packing density)
is not evaluated since realizations for more complex func­
tions, such as adders or ALUs are not considered. In fact,
it is questionable whether this technique would lead to
efficient designs, since the circuits realizing the basic
connectives are typically rather complex [114].

The actual circuit approach was proposed by McCluskey
[117]. In this approach the design of arbitrary functions is
developed by studying a variety of actual circuit designs
and then abstracting the connectives that produced efficient
design. A measure of the success of the technique is the
fact that it results in circuits that are as efficient as

— 41 —

those "invented" by an experienced designer.

An MV combinational logic design considered here is the
design of a "BLACK BOX" to implement an MV function. This
function.requires an MV algebraic approach as a design tool
to.realize the circuit. The function is usually specified as
a truth table or map table which lists the output value of a
function for any combination of its input values. Fig. 3.11
shows the output ffx^fXg, ...rX^) of a black box as func­
tions of the inputs ,,,,x^.

BLACK
BOX

f (x̂ fXg,...,)^)

Fig. 3.11 Black Box.

The important idea required for logic designers in
implementing this black box is to derive the function to get
an optimal or near optimal solution of the interconnection
of a set of MV gates with respect to some criterion. Cri­
teria may be cost, speed, design flexibility, availability
of complex logic functions, logic levels, noise immunity,
power supply voltages, power dissipation operating tempera­
tures, and testability of the circuit. In this section, two
techniques will be considered in MV combinational logic
design. One is using Multi-Valued Small Scale Integrated
circuits (MVSSI), i.e. MAXs, MINs, LITs, COHPs gates, the

— 42 —

Other is using Multi-Valued Medium Scale Integrated circuits
(MVMSI) i.e. MVMUXs.

A. MV Combinational Logic Design Using MVSSI Gates

The MV algebra which was presented in the previous
chapter will be used as a tool to implement MV combinational
logic design using MVSSI gates. The basic procedure of MV
combinational logic design presented here is based on a
minimization criterion to achieve a minimized circuit reali­
zation using the primitive gates. A step-by-step procedure
of designing MV combinational logic circuits is presented as
follows:

1. Define the MV input and output variables of the system.
Represent the various status of the input and the out­
put by their respective variables.

2. Construct the truth table describing the system func­
tion.

3. Convert the truth table into a map table.

4. Minimize the function using the map table and the pro­
cedure given in the previous section.

5. Realize the minimized function using MVSSIs.

In order to understand the above procedure better, the
following design example is given.

— 43 —

Example 3.2; Design a ternary full adder using MVSSIs. A
full adder is a combinational circuit that forms the arith­
metic sum of three input 3-valued variables. It consists of
three inputs and two outputs.

Step 1; Two of the input variables, denoted by X and Y,
represent the two significant 3-valued digits to be added.
The third input Cin represents the carry from a previous
lower significant position. Two outputs are necessary
because the arithmetic sum of three ternary digits range in
value from 0 to 4, and ternary 3 and 4 need two digits. The
two outputs are designated by the symbols S for sum and Cout
for carry. The ternary variable S gives the value of the
sum. The ternary variable Cout gives the output carry.

Step 2: Construct the truth table of the ternary full
adder as given in Table 3.2.

- 44 -

Table 3.2 Truth Table of the Ternary Full Adder.

X Y Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 0 d d d
0 1 0 1 0
0 1 1 2 0
0 1 d d d
0 2 0 2 0
0 2 1 0 1
0 2 d d d
1 0 0 1 0
1 0 1 2 0
1 0 d d d
1 1 0 2 0
1 1 1 0 1
1 1 d d d
1 2 0 0 1
1 2 1 1 1
1 2 d d d
2 0 0 2 0
2 0 1 0 1
2 0 d d d
2 1 0 0 1
2 1 1 1 1
2 1 d d d

2 2 0
2 2 1
2 2 d

— 45 —

Step 3. Conveit the truth table into the map table as
shown in Figs. 3.12 and 3.13.

N. XY
c i h ^

00 01 02 10 11 12 20 21 22

0 0 1 2 1 2 0 2 0 1
1 1 2 0 2 0 1 0 1 2
2 d d d d d d d d d

Fig. 3.12 Map Table of S.

\ X Y
C i d ^

00 01 02 10 11 12 20 21 22

0 0 0 0 0 0 1 0 1 1
1 0 0 1 0 1 1 1 1 1

2 d d d d d d d d d

Fig. 3.13 Map Table of Cout.

Step 4. Minimize the function using the map table as
illustrated in Figs. 3.14 and 3.15.

— 46 —

XY 10 11 12 20 22Ciif

Fig. 3.14 Hap Minimization of S.
X(0,0).Y(2,2).Cin(0,0) + X(0,0)»Y(l,l).Cin(l,l)

+ X(l,l).Y(0,0)'Cin(l,l) + X(l,l).Y(l,l).Cin(0,0)
+ X(2,2).Y(0,0)"Cin(0,0) + X(2,2)*Y(2,2)*Cin(l,l)
+ l'X(0,0).Y(0,0)'Cin(l,l) + l'X(0,0).Y(l,l)
+ l'X(0,0)"Y(l,l) + l.X(l,l).Y(2,2)"Cin(l,l)
+ l*X(2,2).Y(l,l).Cin(l,l) + l'X(2,2).Y(2,2)

XY
CirX^

00 01 02 10 11 12 20 21 22

0 0 0 0 0 0 T 0 1 1
1 0 0 ® 0 ® 1 ® 1 1
2 d d d d d d d d d

Fig. 3.15 Map Minimization of Cout.
Cout = l.X(0,0)"Y(2,2)»Cin(l,l) + l'X(l,l).Y(l,l).Cin(l,l)

+ l'X(l,l).Y(2,2) + l'X(2,2)"Y(0,0)'Cin(l,l)
+ 1*X(2,2).Y(1,2)

Step 5. Realize the function minimized by MVSSIs as
shown in Fig. 3.16. (cost = 389)

- 47 -

.’1

. M M

. M

.31.21

Cout

Fig. 3.16 MVSSI Circuit Realization of Ternary Full Adder,

— 48 —

B. MV Combinational Logic Design Using MVMSI

Based on the considerations of design flexibility,
availability of complex logic functions, and cost per func­
tion criterion, MVMUX (which are MVMSI) are used in the MV
combinational logic design. There are two types of methods
to realize an MV function using MVMUX.

a. Constant-input Type Realization Method

This method is very simple; it includes the following
steps ;

1. The same as steps 1 and 2 in subsection A. Let r be the
number of input variables.

2. For each output variable, construct a r-level tree-
structured MVMUX networks with m data inputs.

3. Enter the values of the output variables as the con­
stant inputs of the MVMUX networks.

For example, to realize the truth table of the ternary
full adder of Table 3.2, we need a two 3-level MVMUX net-

3works, each has a total of 3 - 27 inputs. The 27 constant
inputs of these networks are the 27 rows of the output
values of S and Cout. Fig 3.17 illustrates MVMUXs circuit
realization of ternary full adder.

CbtOM Oj M O QiO tO Q iM O Dj O M Qj tO M Qj O tO Oj tO M Oj M O

uu

kO

CO

50 -

d---

1 ■ ■ ""

0---

Cout

1--

0---

Ci

Fig. 3.17 MVMUXs Circuit Realization of Ternary Full Adder,

b. Variable-input Type Realization Method

In practice, the number of "data-select" inputs of
MVMUX chip is limited. So it is often desirable to reduce
the set of input variables to be connected to the "data-
select" lines. A new technique using an MV "map-entered"

- 51 -

variables to reduce the number of "data-select" lines of
MVMUX is introduced. This technique shows how the concept
of map-entered variable may be used to considerably simplify
the procedure for determining the data input conditions. The
technique shows the reduction of the m-to-1 MVMUX and also
reduces the number of levels in a tree-structured MVMUX net­
work. The map-entered variable method has already been used
to reduce the dimension map in 2-valued logic system [30].
This method is more complicated than the 2-valued case,

m^because of the m . The MV map-entered variable method is
used here to enter the map-entered variable as "data-input"
of MVMUX so that the "data-select" lines may be reduced. In
order to understand the method, a 3-valued logic example is
given. Table 3.3 shows rules for eliminating a map variable
of the map table for one variable, and its relative cost.

- 52 -

Table 3.3 Rules for Eliminating a Map Variable of the
Map Table,

Value of function for
map-entered variable
X = 0 X = 1 X = 2 Entry Cost(I L)

0 0 0 0 0
0 0 1 l'X(2,2) 8
0 0 2 x(2,2) 4
0 1 0 l'X(l,l) 8
0 1 1 I'X 4
0 1 2 X 0
0 2 0 X(l,l) 4
0 2 1 x(2,2) 6
0 2 2 x(0,0) 5
1 0 0 l'X(OfO) 8
1 0 1 l'X(l,l) 9
1 0 2 1 * X (0,0)+x 15
1 1 0 l'X(0,l) 8
1 1 1 1 0
1 1 2 1 + X 3
1 2 0 X 5
1 2 1 1 + X(l,l) 7
1 2 2 1 + x(l,2) 7
2 0 0 x(0,0) 4
2 0 1 -»zX 5
2 0 2 X(l,l) 5
2 1 0 X 1
2 1 1 1 + x(0,0)

— 53 —

2 1 2 X + X 4
2 2 0 x(2,2) 5
2 2 1 1 + x{2,2) 8
2 2 2 2 0

The following procedure describes the synthesis of an
MV function using variable-input type MVMUXs:

1. The same as steps 1, 2 and 3 in subsection A.

2. Use Table 3.3 to enter the values corresponding to the
variable reduction into its cell. Repeat all possible
variables and compare their cost, then select the
lowest cost to implement the function.

3. Select the MVMUX to implement the function by entering
the value in each cell position to the "data-input" and
map variables to the "data-select" terminals.

Figures 3.18 and 3.19 show the map-entered variables of
the ternary full adder. From these map-entered variables,
when Cin is used as a entered variable the total cost is 99,
when Y is used as a entered variable the total cost is 98.
Therefore, the entered Y variable is chosen to implement
this system as shown in Fig. 3.20.

— 54 —

XY
00 01 02 10 11 12 20 21 22

Cin Cin Cin(OrO) c ï i Cin(OrO) Cin Cin(0,0) Cin Cin

XY
00 01 02 10 11 12 20 21 22
0 0 Cin 0 Cin 1 Cin 1 1

Cout

Fig. 3.18 Use Cin as a Map-Entered Variable.

XCin
00 01 Od 10 11 Id 20 21 2d

Y Y d -*1Y Y d -J2Y Y d

XCin
00 01 Od 10 11 Id 20 21 2d
0 1-Y(2,2) d l'Y(2,2) 1 Y d 1*Y 1 d

Cout

Pig. 3.19 Use Y as a Map-Entered Variable.

- 55 -

Y,
%y

CinX

CinX

Cout

Fig, 3.20 Map-Entered Variable Circuit Realization.

In the above, two combinational logic design tech­
niques, one using MVSSI gates and the other using MVHSI
(MVMUX), are presented and their relative costs (number of
transistors) (see Appendix B) are compared. It is found that
for the realization of complex logic functions, the latter
is not only more economical, but also more systematic and is
easier to apply. Another MVMUX synthesis technique which is
specially suitable for MV LSI/VLSI design will be discussed
in the next chapter.

CHAPTER IV

SYNTHESIS OF MULTI-VALÜED FONCTION WITH ULMs

4.1 Introduction

Recent advances in integrated circuit technology and
its potential advantage in logical design have motivated a
search for synthesis techniques for logic networks using
appropriate logic function packages as the modules or build­
ing blocks for two-valued [122,217,218] and for multi-valued
systems [53,66,67,68,83,172]. In order to design MV
LSI/VLSI circuits with near minimal components (to maximize
the function per chip area), the synthesis of functions is
necessary. In this thesis, the hierarchical tree-structured
modular approach is chosen for the design of the MV LSI/VLSI
because with this approach simple algorithms are available
to realize any given logic function and are also easy to
implement in an automation design. Moreover, the structure
of this approach is easily partitioned into subunits, so
that circuits can be rapidly and economically tested. The
basic theory of the tree-structured modular approach and its
synthesis methods are investigated in this chapter.

In general, the synthesis of an MV function may be

— 56 —

— 57 —

divided into two categories. One is two-level synthesis and
the other is multiple-level synthesis. Two-level synthesis
is often performed by minimizing the function in the map
[6], cube 1182]f or tabular [199] representation. Two-level
synthesis is only practical for very small systems involving
few variables. However, a minimum for two-level minimization
may not be optimum due to the fan-in limit for practical
implementation [37].

Multi-level synthesis is often used to reduce the cost
of the function [199] and in the synthesis of a large and
complicated system. There are two possible ways to syn­
thesize a function into a multiple-level: one is by factor­
ing from a two-level function and the other is by using the
decomposition function technique. It has been shown
[24,25,127] that by extending the Ashenhurst [10] and Curtis
[37] partitioned matrix technique a fanout-free network can
be synthesized. A fanout-free network is a network in which
the gate outputs and primary inputs connect to at most one
gate input. The tree-structure of such a network implies
that there is a unique path between each primary input and
the network output. Thus, when testing the fanout-free net­
work for correct operation, the fault-masking problem asso­
ciated with the multiple paths does not occur. The absence
of multiple paths also implies the absence of hazards. The
fanout-free networks are of special interest when it is
expensive to implement gates whose output drive has more

2than one gate input such as magnetic bubble logic and I L

— 58 —

multi-valued logic. Basically, there are two types of MV
components used in multi-level circuits; primitive com­
ponents and modular components. The primitive component
synthesis is based on the minimization of primitive com­
ponents [124,187,203,223]. This type is suitable for syn­
thesis of relatively small circuits since the MV primitive
logics are quite complex in themselves, and thus the result
is extremely complex circuits for even simple MV functions
of two or three variables [172].

The other type, the modular component synthesis is
based on the minimization of the modular components. This
type is suitable for synthesizing large and complicated cir­
cuits, mainly because the MV modular components are con­
structed from actual circuit approach [117], and can be
easily realized the MV function in systematic process. In
this thesis, our attention will be focused on the multi­
level synthesis with modular component approach since our
interest is mainly focused on the MV LSI/VLSI design. The
multi-level synthesis with modular component approach has
been studied by Kameyaroa and Higuchi [83], and Fang and
Wojcik [53].

The method introduced by Kameyama and Higuchi [83] is
an extension of the early work of binary system done by Meo,
Yau, Tang, and Voith [122,198,218]. This method minimizes
MVMUX by finding the compatible set of ULM implicants which
contains the possible reduction of the maximum number of

- 59 -

MVMUXs. However, this method is quite complicated. Fang
and Wojcik's method [53] searches for a minimal number of
subfunctions of a given function and implements it by using
multiple data selector MVMUXs. The synthesis starts from
the primary input end to the single output end using certain
common properties. The networks obtained by this method are
non-fanout-free.

In this thesis, a new heuristic multi-level synthesis
with modular component approach for synthesizing MV func­
tions which is simple and systematic is presented. This
method is different from all the previous methods in that
(1) it guarantees a fanout-free tree-structured network,
(2) the synthesis starts with the output end of the network,
and (3) the procedure is simple and can be implemented by
computer-aided design (CAD).

4.2 Theory of Tree-Structured Modular Network

The modular packages used in the tree-structured tech­
nique are of a universal logic module (ULM) type. The MVMUX
which is one type of ULM will be considered here.

Definition 4.1; A Universal Logic Module (ULM) of n input
variables is a logic function package that can be used to
implement any logic function of up to n input variables by
simply carrying its I/O terminal connections.

Definition 4.2; An MVMUX is a ULM which has one terminal
kdata output, k terminals data selector input, and m

— 60 -

terminals data input; each data input can be selected by
data selector as an output (illustrated in Fig. 4.1).

1(0)
1(1)

OUTPUT

%

Fig. 4.1 MVMUX Diagram.

Definition 4.3: The interconnection of the MVMUXs in the
following fashion is called a tree-structured MVMUX network
(shown in Fig. 4.2)

1. There is only one MVMUX at the output level (Ist-level)

2. Each data input and data input selector of MVMUX may be
connected to the output of another MVMUX or an input
variable or constant value.

— 61 —

INPUTS OUTPUT

SELECTORS

2rd-level Ist-level

Fig, 4.2 Tree-Structured MVMUX Network Diagram.

Definition 4.4; In an m-valued logic system, let the truth
value be the element of a set M = {0,1,2,...,m-l}, a 6 M,
and X be a variable defined on M. The a and x are called
multi-valued scalars. The a = (a^,a£,.. .a^) = aĵ a2.. .a^and x
= (x^fXg,...x^) = x ^ X g . x ^ are called multi-valued con­
stant and variable multi-valued vectors respectively.

Definition 4.5; The symbol 22(*) denotes the maximum of the
quantities (%).

Definition 4.6: Define

p for - aĵ
0 for x^ + aĵ

x(a) = (x^(ai),X2(a2),...Xn(an)) = Xĵ (â)̂ X2(a2>
and MIN[x(a)] = x^{a^) X2i^2^ ...x^fan),
where p = m-1.

. 'Xn(an)»

Definition 4.7; The symbol ^ (x,y,z) means x or y or z, let

- 62 -

’or" = ® , therefore

(x,y,z) = X ® y ® z Eq. (4.1)

Definition 4.8; Define
n

^ -1 (m —1) (m —1)... (in -1)

X = 0 XiX2...Xn= 00... 0
and
n

in -1 (m -1) (m -1)... (m -1)
f(x) = f (Xĵ X2«. .Xĵ)1 " 1

X = 0 xiX2...Xn= 00...0 Eq.(4.3)

Definition 4.9: Any m-valued k-selector MVMUX may be
represented as

n
m -1

m-MUXIKx) : X] = hg) ' I(x)] Eq.(4.4)
n *

where jc = xĵ X2«. .Xĵ r is the MVMUX selectors
I(x) = I (Xj^Xg.. .Xĵ) » MVMUX inputs

and the subscript x of [] indicates that x is the vector
X

of the MVMUX.

For example, the four-valued multiplexer with one input data
selector is represented by

4-MUX[I(x) ; X] = [1(0) ® 1(1) ® 1(2) ® 1(3)]
X

which means that which of the four inputs selected depends

— 63 —

upon the value of x, i.e. the 1(0), 1(1), 1(2), or 1(3) is
selected when x = 0, 1, 2, or 3, respectively. Fig. 4.3
shows this MVMUX.

1(0)
1(1)1(2)
1(3)

4-to-l
MVMUX

X

Fig. 4.3 4-Valued One-Variable (selector) MVMUX.

Definition 4.10; The tree-structured MVMUX network can be
represented by

ki kp k.
(m il) (m il)... (mil)

'-7

m-MUXlKx) : xj = I
Eq.(4.5)

The general tree-structured MVMUX network diagram is shown
in Fig. 4.4.

— 64 —

Pig. 4.4 General Tree-Structured MVMUX Network Diagram.
For example, a three-valued four-variable (Xĵ ,X2,x̂ ,Xî)
tree-structured MVMUX network which has x̂ ̂ = x^ as a selec­
tor in the Ist-level and Xg ” *2^3*^ i" the 2nd-level of the
MVMUX tree-structured can be represented as

(2)»(26)
3-MUX[I(x) : X] = ['*^5© 'KXi'Xg)]

•XifX2=(0,0)
= 11(0,0) ® 1(0,1) ® 1(0,2) ® 1(1,0) ® ...1(2,26)]

Fig. 4.5 shows this MVMUXs representation.

— 65 —

I(Of 0} —
I(Ofl) —
I(Of 2) —

KlfO) —
K l f D — 1(1,2)--

I(lf26)H

I(2f0) —
I(2fl)—
I(2f2) —

I(2f26)H

X]

X2X3X4

Fig. 4.5 MVMUX Tree-Structured Representation
Theorem 4.1: Any m-valued function f(x) of n variables (i.e.
X = xifX2f...xif...Xn) can be expanded with respect to any
one of the n variableSf x^f as follows:

n
m -1

f(x) = [x^(a) »f (x^fX^f... f a f...fX^)]]
X (a) = 0n Eq.(4.6)

This expansion can be repeated until the function is a
constant.

— 66 —

Table 4,1 Arbitrary Truth Table Represents f(x)

X 0 1 2 3
f (X) 2 3 2 0

Example 4.1 A 4-valued one variable function f(x)
represented by Table 4.1 can be written as

f(x) = x(0).f(0) + x(l)*f(l) + x(2)*f(2) + x(3)-f(3)

Table 4.2 Arbitrary Truth Table Represents f (x̂ ̂,X2 ,x̂)

*1
X g X j 0 1 2

0 0 0 2 2

0 1 2 0 1

0 2 1 0 2

1 0 0 0 1

1 1 1 2 1

1 2 0 0 0

2 0 1 2 0

2 1 0 0 1

2 2 1 1 0

f (Xĵ ,3^ rX^)

Example 4.2 A 3-valued function f(x^,3̂ ,x^) represented by
Table 4.2 can be expanded as

- 67 -

(a) about x^,
f(X) = X^(0)*f (OrX^fX^) + X^(l)»f (l^XgfX^) + Xj^(2)*f (2,X2,x)̂

Eq.(4.7)
(b) about x^f
f(x) = x^(0)•(XgCO)*f(0,0,x^) + XgXli'ftOflfXg) + X2(2)*f(0,2,X3)]

+ x^(l).[X2(0).f(l,0,Xj) + XgCD^f (lrl,x^) + X2(2)-f(l,2,X3)]
+ x^(2).[x2(0).f(2,0,Xj) + X2(l)*f (2,1,X3) + X2(2)-f (2,2,X3)]

Eq.(4.8)

- 68

(c) about x^,
f(x) = x̂ (0)-[x̂ (0). {x^ (O)-.* :0,0,0) + x̂ (D-f (0,0,1)

+ x^(2).f (0,0,2)}
+ X2 (l)»{x^(0).f(0,l,0) + Xj (l)-f(0,1,1)

+ x^ (2).f (0,1,2)}
+ X2 (2)«{x^(0).f(0,2,0) + x^ (1). f (0,2,1)

+ x^(2).f (0,2,2)}]
+ x^(l).[X2 (0).{Xj(0).f (1,0,0) + Xj (l)*f (1,0,1)

+ Xj(2)'f (1,0,2)}
+ X2 (l)*{x^(0)»f (1,1,0) + (l)*f (1,1,1)

+ x^(2)*f(l,l,2)}
+ X2 (2)*{x^(0)«f (1,2,0) + x^ (l)-f (1,2,1)

+ x^(2).f(l,2,2)}]
+ x^(2)-[x2(2)*{x^(0)*f(2,0,0) + x^(l).f(2,0,1)

+ x^(2)*f(2,0,2)}
+ X2(l)*{x^(0)*f (2,1,0) + x^(l)-f (2,1,1)

+ x^(2).f(2,l,2)}
+ x^(2)•{x^(0)#f(2,2,0) + x^(l)*f(2,2,l)

+ x^(2)*f(2,2,2)}]
Eq.(4.9)

From the above example, it follows immediately that

Theorem 4.2: Any MV function f (x^^,Xg,... ,x^) can be expanded
as:

- 69 -

(a)
P P P

^ (x̂ (a^) ((a^) *f (â ^a^))..))
Xi(ai)=0 Eq.(4.10)

(b) Since all jc are linearly independent of each other, (a)
can also be written as:

^ ^ •• ^ (â ̂) X2(a2)..x̂ (â)-f(aĵ ,a2f..aĵ)
x^(aj^)=0 X2 (a2)=0 x^(a^)=0 Eg.(4.11)

Definition 4.11: The expression of Eq.(4.11) is called the
canonical form of f(x)

Theorem 4.3; Any multi-valued function can be written as

m"-l
f(x) = ^ MINIx^(a)l-f (a) Eg. (4.12)

a = 0

This theorem can be proved by using Theorems 4.1 and 4.2.

Theorem 4.4; Any function can be realized by a tree-
structured MVMUX representation in Eg.(4.5).

Proof: By applying the following transformation between the
terms of the canonical form of the function of Eg.(4.11) and
the modules of the tree-structured network,

- 70 -

Function Multiplexer
notation notation

S 5
11^) — > a
MINlx(a)] ---- > []

%f(a)------ ---- > I(x)

we immediately obtain Eq.(4.5).
Note that Eq.(4.11) is valid with the summations (maximum
operations) over the a in any order. For example,

f(x) = .. yX^ (a^) .Xgtag). .Xjj(aĵ) .f (aĵ ,a2,. ..a^)
Xn(an)=0. .X2(a2)=0xi (aĵ)=0 Eq. (4.13)

Definition 4.12; The realization f(x) in the form of Fig.
4.4 is called a canonical realization of f(x).

The number of MVMUX in a canonical realization of an
m-valued n-variable single-selector tree-structured network
is given in the following theorem.

Theorem 4.5; An arbitrary logic function can be completely
n

expressed with a maximum of (m -l)/(m-l) MVMUXs [83].
Proof; Suppose the Ist-level of tree-structured MVMUX net­
work requires h MVMUXs, by the mathematic induction method

- 71 -

the Ist-level used h MVMUXs
1

the 2nd-level used hm MVMUXs
2

the 3nd-level used hm MVMUXs

(n-1)
the nth-level used hm MVMUXs
therefore, the total number of MVMUXs (S) is

1 2 (n-1)
S = h + hm + hm + ... hm

n
S = (hm - h)/(m-l)
since tne Ist-level of tree-structured MVMUX network has
only one MVMUX, which implies h = 1, thus,

n
S = (m -l)/(m-l)

Now derive a general formula for computing the number
of MVMUX in a canonical realization using any multiple-
selector MVMUX.

Theorem 4.6; For a given values x = the output z of the
MVMUX is equal to

- 72 -

X^Xg.

n

2 = [I(x)] ̂ = Ifa^fag, ...a^) Eq.(4.15)
X = 0

Proof
By Definition 4.8

n
m -1 (m-1)(m-1)... (m-1)

I ^ I (x) 1 = I I (X i , X 2 , . . . X n)]
‘ i >X = 0 XiX„...x„* 00...0 Eq.(4.16)

for X = a and by Definition 4.7
— I (a agf...â)̂

Definition 4.13; Let N[l; k^ykg,...k^] be a 1-level tree-
structured MVMUX network. The numbers of selectors of the
ith-level MVMUXs are the same, that is equal to k .

Theorem 4.7: Any k-line-selector MVMUX can be replaced by a
tree-structured MVMUX network. Suppose the numbers of the
selector lines of the MVMUXs of each level are the same.
Let them be k^,kg,...and k^ which are less than k and k = k^
+ k 2+ k ... k 2

Proof ; Let N and N be the original and tree-structured
MVMUX networks respectively. In ,any k-selector MVMUX can
select any one of the m inputs and send it to the output of
MVMUX. Let I (jc) be the inputs of the MVMUX. In N2, the
total number of inputs of the network is given as follows:

- 73 -

(“uil) f (m %) (m %)
I(x) = [ItXi'Xp'-'-Xi)]i k_,kp,...k,

■2i»3Î2'* * **1 “5'S»***»5, Eq.(4.i7T

kithe number of inputs of the Ist-level = m
ki kp

the number of inputs of the 2nd-level - m • m
k< ko ko

the number of inputs of the 3rd-level = m • m » m
k̂ ko ko kl

and the number of inputs of the last level = m>m>m*...m
{k< +kp"̂ " • • • ki)

= m
k

= m

Therefore, the two networks and N2 have the same number
of inputs.

Let Xi = (Xi)
*2 = ^̂ 1

3̂ “ (. Zjĵ)
be the selector lines of the MVMUXs of when 3̂ ~ âl' 3^ ~

. .3̂ = a^, the output of the Ng be I(^ . Let

X = (Xl * • *Xl Î and a = (gl »52 ' * * *âL ̂ *
By Definition 4.9, k-selector MVMUX is

— 74 —

k
m -1

m-MUX IKx) : X] = [3 © ’ I(x)] = % Eq.(4.18)
d— b V

i = fi
for X = a

= 1(a)
= Ni

By Definition 4.10

kl ko kl

m-MüX[I(x) : X] = [)] = %
 ̂ ~ ^ 1 x ,x , ...x

...g Eq.(4.19) '"1 '*2 '~1
for xi • • *351 “ and since x̂ ,X2 r.. .^are
linearly independent of each other; therefore,

ki k ki
in -1 m - 1 m —1

X, = 0 Xo- 0 X- = 0
Eg.(4.201

By Definition 4.7

“ I (Si • • *âi Î
= 1(a)

which shows that for the same set of selector values, and
N2 will always produce the same output. Therefore, N̂ and N^
are equivalent, i.e. Nĵ = 1̂ .
Theorem 4.8; In a canonical tree-structured MVMUX network
the number of MVMUXs in the ith-level is given by:

- 75 -

♦MUX in the ith-level = r 1
1

for Ist-level

¥■m the ith-level
(other than the first)

V i=2

Proof: By Definition 4.3, the first level has only one
MVMUX. By the mathematical induction method, the number of
MVMUX in the 2nd-level depends on the number of inputs (m)
of the Ist-level; the 3rd-level, 4th-level, 5th-level, ...,
to the ith-level depend on the number input

K k_ k_ kj
(m «̂ m ^ mJ-m^m ^ m J m ^ m ^ m , . . . , m
of the 2nd-level, 3rd-level, 4th-level, ...the (i-1)th-level
respectively. Therefore, for any ith-level (1 > 1) the max­
imum number of MVMUX is

i=2

Theorem 4.9: In any canonical tree-structured MVMUX network
in which N represents an MV function with n variables there
will be

1 + ^ (T T
i=2 i=2

— 76 —

MVMUX modules in N. Note that the in the above expres­
sion denotes the ordinary mathematical summation.

This theorem can be proved by using Theorem 4,8. This
formula includes the one given by Higuchi and Kameyama [83]
(see Theorem 4,5) as a special case where a single-selector
is used in each level in tree-structured network.

Theorem 4,10; Let N be a tree-structured MVMUX network and
DT be the delay time of the MVMUX of the ith-level, then
the total delay time TDT(N) of the network i,e, the time
measuring from the signal propagating from the input to the
output of the network depends on the number of levels (1) of
the network and the delay time of the MVMUX of each level,

1
i

TDT(N) = > DT. Eq,(4.21)
i = 1

4,3 The Kameyama and Higuchi*s Method

This section is, in part, based on the work of Kameyama
and Higuchi [83], In this method, an optimal MVMUX (T-gate)
in tree-structured network is obtained by finding the compa­
tible set of ULM implicants containing the possible reduc­
tion of a maximum number of MVMUXs, One ULM implicant
implies a possible reduction of a certain number of MVMUXs
in a tree-structured network. Each ULM implicant has coeffi­
cient value according to the reduced number of MVMUXs, The
compatibility of ULM implicants was also defined so that all

- 77 -

the residue functions corresponding to the ULM implicants in
a compatible set can be trivial functions.

A ULM implicant is defined to be the product term whose
residue function is equal to a constant or an input vari­
able. If the residue function of a ULM implicant Ij of level
n-p+1 is trivial, then the number ajOf MVMUXs are reduced in
the tree-structured network, where aj is given as:

Paj = (m -l)/(m-l) Eg.(4.22)

where p is the number of variable in the column of the
decomposition matrix.

The subset C of ULM implicants is a compatible set, if
a tree structure is constructed without conflict such that
all the residue functions corresponding to the ULM impli­
cants in C can be trivial. The synthesis problem is attri­
buted to finding the compatible set C which gives a maximum
saving of MVMUXs. Let all the ULM implicants be {li}, (i =
1, 2,...n) and consider the 0-1 integer variable X^ such
that a ULM implicant is in the set C if and only if Xi =
1. The objective function W which represents the reduced
number of MVMUXs is given as:

W — ajXj_ + agXg + ...+aĵ Xĵ Eg. (4.23)
where a was given in Eg. (4.22).
In Eg.(4.23), the constraints characterizing the MVMUX net­
work must be considered. First, the set C = (I^ I X^=l} is a

— 7 8 —

compatible set. Second, the subsumption relationships must
be considered between ULH implicants. If a ÜLM implicant Ij
subsumes I (i.e. Ij = Î)̂, then Xj and cannot be simul­
taneously 1. The set of second constraints are denoted by V.
As a result, the formulation of synthesis problem is done as
seen in Egs.(4.24) and (4.25).

MAX W = aĵ Xi + a2%2 + ... + a^X^ Eq. (4.24)
subject to

V: X̂ + < 1 (for all Ij = I^)
C = {Iĵ I X^=l} is a compatible set Eq. (4.25)
X^ — 0, 1 (1 — 1, ...,n)

Eqs.(4.24) and (4.25) can be transformed into the equivalent
formulation by replacing X^ = 1-Y^.

MIN F = a^y^ + a^Yg + ... + â Ŷ̂ Eq.(4.26)
subject to

V: Yj + > 1 (for all Ij = \)
C = {Î I Yĵ s=0} is a compatible set Eq.(4.27)
Y^ = 0,1 (i = 1, ... ,n)

The problem is then to minimize Eqs.(4.26) and (4.27).

4.4 The Fang and Wojcik's Method

This section is, in part, based on the work of Fang and
Wojcik [53]. In this method, the systematic design of
multi-valued functions uses a decomposition technique that
uses a small number of modules (ULM) to implement the func­
tions. This decomposition technique incorporates the concept

- 79 -

of systematic routing from subfunctions to a single output.
The function will be rewritten such that the subfunction
becomes the function values in the logic equation. The func­
tion is reexpressed recursively until it is represented
entirely by the subfunctions. A two-variable ULM (MVMUX or
T-gate) is assumed to be the component used to implement the
function. Since the component selected is a two-variable
ULM, only two variables are used to partition the function.
No attempt is yet made to try three, four or more variables
in an attempt to decompose the function.

Rather than using only a single basic component as a
building block to implement all three-valued two-variable
functions, they analyze these entire classes of functions
into six classes of functions as shown in Fig. 4.6.

— 80 —

Function class 1

Function class 2

Function class 3

Function class 4

Function class 5

Function class 6
Fig. 4.6 Building Block Using MVMUX to Implement

the Six Classes of Functions.

This method can be illustrated by the following exam­
ple. Fig. 4.7 shows a three-valued two-variable function. If
we select x̂ and 3̂ as a subfunction variables, this func­
tion can be rewritten as a three-variable function F(xg ,x̂) ,

- B l ­

and its function values become the subfunctions defined
with respect to and Xg. There are ten partitioned
matrices to be searched to identify which two of the five
variables will so partition the function as to give a
minimal number of subfunctions. In this example, x̂ and X£
give five different subfunctions along with the constant 0.
The new three-variable function Ffx^yX^fX^) is shown in Fig.
4.8. The subfunctions of x^ and X£ are given in Fig. 4.9.

Similarly, we select xj and xZf as the subfunction vari­
ables of F(x^,X|^.,x^). A one-variable function k(x^) may be
written with subfunctions gfx^,*^) and h(Xj,x4) as its func­
tion values where g(x^,X4) corresponds to row 0 (or 2) of
Fig. 4.8 and hfx^fX^) corresponds to row 1. A search of the
3-partitioned matrices of Ffx^fX^/x^) shows that the select­
ing of x^ and x^ yields the minimal number of subfunctions.

Fig. 4.10 gives the subfunctions of X3 and x^. Fig.
4.11 is the final representation of function
which is the original function composed of two subfunc­
tions g and h. Fig. 4.12 illustrates the design of the func­
tion in Fig. 4.7 and uses the building blocks in Fig. 4.6 to
realize the function.

— 82 —

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 20 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2X2%1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 2 0 1 1 0 0 0 0 1 1 1 00 1 1 2 2 2 2 1 0 1 2 0 0 0 0 0 0 2 0 0 1 2 2 2 2 1 0 1 20 2 2 0 0 0 0 2 1 2 0 0 2 2 2 2 0 0 0 2 2 0 0 0 0 2 1 2 0
1 0 2 0 0 0 0 2 1 2 0 0 2 2 2 2 0 0 0 2 2 0 0 0 0 2 1 2 01 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 2 0 1 1 0 0 0 0 1 1 1 01 2 1 2 2 2 2 1 0 1 2 0 0 0 0 0 0 2 0 0 1 2 2 2 2 1 0 1 2
2 0 1 2 2 2 2 1 0 1 2 0 0 0 0 0 0 2 0 0 1 2 2 2 2 1 0 1 22 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 2 0 1 1 0 0 0 0 1 1 1 02 2 2 0 0 0 0 2 1 2 0 0 2 2 2 2 0 0 0 2 2 0 0 0 0 2 1 2 0

Fig. 4.7 f .

I

*5 00 01 02 10 11 12 20 21 22
0 a b b b b a c a b1 0 d d d d 0 e 0 d2 a b b b b a c a b

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0
12

1 2 1
1 1 1
2 1 2

0 0 2
2 0 0
0 2 0

1 1 0
O i l
1 0 1

1 2 0
O i l
2 0 2

2 0 2
2 2 2
0 2 0

c(3^,j^) d(3^ ,X2> e(X2 fXg)

Fig. 4.9 Subfunction of f.

83 -

1 1
0
1
2

0 1 2
a b b
b b a
c a b

0 1 2
O d d
d d 0
e 0 d

g(*3»x^) hCx^rX^)

Fig. 4.10 Subfunction of F.

5
0 1 2
g h g
k(x^)

Fig. 4.11 Final Representation,

— 84 —

2---:

X

Fig. 4.12 MVMUX Structure Solution.

Even though the networks obtained by this method may
require much fewer MVMUX in certain cases, this method has
little or no interest to us because it will always produce
non-fanout-free networks.

4.5 An Optimal Heuristic MVMUX Modular Synthesis Method

Before presenting the synthesis method of the MV func­
tion, some definitions and illustrations are introduced in
their respective order.

— 85 —

Definition 4.14; An MV function is said to be trivial if it
is a constant function or a projection function, i.e. it
depends only on one of its variables or its complement.

Definition 4.15; An MV decomposition function is a re­
expression of a function into a set of simpler subfunctions.

Definition 4.16; If f(xi,X2,...,%n) can be decomposed in the
form of F(J(yĵ ,Y2f... fYg) rZi f Z2f... »Z(n_s;) » this expression
is called a simple disjunctive decomposition of f(x^,x^
i 9 •• fXn)

The reason this decomposition is called simple is
because the composite function has but one subfunction 0
aside from the given variables; it is called disjunctive
because the variable y = yirYzr•••rYsf z =
are the disjoint subsets of the variables x = x^,X2,...,x^ .
Therefore,

yflz = é, y U z = X

Definition 4.17; The decomposition matrix, a simple disjunc­
tive decomposition of function f(x), is a rectangular array
of the nT functional values f-̂ arrange in m^" ^^rows and
columns. The rows correspond to the m^^ ^ ̂ configurations of
zi,Z2 ,...,Z(n_g) in order, and the columns correspond to the

g
m configurations of Yi Yg in order. Each position
in the matrix is occupied by a functional value correspond­
ing to a unique configuration of ŷ f and Zĵ ,2̂
f...,Z(n_s)f and hence to a unique configuration of Xĵ ,Xg

— 86 —

Fig. 4.13 shows a decomposition matrix of z|y

m —1

n-s
f_n-sf,_n-s

Fig. 4.13 z|y Decomposition Matrix of f(x)

The subscripts identifying the fi have been arbitrarily
taken for the case in which z^= x^fZgS *2'* * *'^(n-s) “ *(n-s)
' *(n-s+l) “ ^1' functional values need not occur in
this order and usually will not.

For the sake of simplicity and clarity, yet without
loss of generality, 3-valued functions are used to present
and illustrate the following definitions. For instance, in
a 3-valued system the x^ XgIx^ decomposition matrix for any
function f(x) takes the form shown in Fig. 4.14.

— 87 —

0 1 2

00 fl 4 fl8
01 f2 fio fl9
02 ^3 fii ^20
10 fl2 ^21
11 5̂ fl3 ^22
12 fl4 f23
20 £? ^15 ^24
21 f8 fl6 f25
22 ^9 ^17 f26

Fig. 4.14 3-Valued Decomposition Matrix.

Assignments o£ values 0/ 1, and 2 to fLof the decompo­
sition matrix of Fig. 4.14 yield

— 88 —

*1X2X3
0 1 2

00 0 1 0
01 0 0 0
02 0 1 2
10 2 1 0
11 1 1 1
12 2 0 0
20 2 1 0
21 0 1 0
22 2 2 2

Fig. 4.15 An Arbitrary 3-Valued x^x^lxi Decomposition Matrix.

Definition 4.18; An arbitrary logic function of n variables
can be realized by a full-blown tree-structured MVMUX net­
work with a maximum of 1 + ^"bvMUXs. For example,
the decomposition matrix in Fig. 4.15 can be implemented by
a maximum of 13 MVMUX as shown in Fig. 4.16.

— 89 —

0—
2—
2—

0—
2—

OUTPUT

0 “■
0—
2—

0 .
0—
2—

Fig. 4.16 Maximum MVMUX Implementation from
Decomposition Matrix in Fig. 4.15.

Definition 4.19; A decomposition matrix is called trivial if
it represents a trivial function.

Definition 4.20; A row vector, shown under the row variables
in a decomposition matrix is called a vertex, e.g. in the

- 90 -

decomposition matrix of Fig. 4.15, 00, 01,...,and 22 are
vertexes under the row variable and x^.

Definition 4.21; The function defined by the row on the
right hand side of a vertex is called the residue function
of the vertex, e.g. in the decomposition matrix of Fig.
4.15, 010 is the residue function of the vertex 00.

Definition 4.22; A residue function which is a constant
(000, 111, 222), or an input variable (012), or a complement
of input variable (210) is called a trivial residue function
of that vertex vector. For example, in Fig. 4.15 there are
six trivial residue functions: 000, 012, 210, 111, 210, and
222; these trivial residue functions correspond to vertex
vectors 01, 02, 10, 11, 20, and 22 respectively.

Definition 4.23: Any n-variable function can be decomposed
into n possible decomposition matrices. For example, (Xĵ ,x̂

,Xj) can have *2*3 **1' Xj^x^lXg, and x^x^lx^ decomposition
matrices.

Definition 4.24: In a decomposition matrix, identical non­
trivial residue functions of different vertex vectors are
called common residue functions. For example, in Fig. 4.7
the residue functions corresponding to X2X^= 00 and 21 are
010 which is a common residue function of the decomposition
matrix.

Definition 4.25; A function is called reducible if there is
at least one trivial residue function in any of the possible

- 91 -

decomposition matrices of the function. Otherwise, it is
irreducible.

Note that any irreducible decomposition function
requires 1 + A (Il ni ̂ MVMUXs to realize it.

i=2 i=2
The following is a heuristic synthesis procedure for

realizing any MV n-variable function into a minimal tree-
structured single-selector MVMUX network. This approach is
different from all the previous methods in that it starts
from the output of the network and proceeds step-by-step
towards its input.

Step 1: Partition the n-variable function into n possible
decomposition matrices.

Step 2:
Case 2.1: If any one of the n decomposition matrix is
trivial, one has a trivial solution, i.e. a constant, vari­
able or its complement.
Case 2.2: If all of the n decomposition matrices do not have
any trivial residue function, i.e. the function is irreduci­
ble, then select any one of them. Construct a tree-
structured MVMUX network directly from the decomposition
matrix.
Case 2.3: If the function is reducible, that is there is at
least one decomposition matrix which has at least one
trivial residue function, select the decomposition matrix
with the least number of trivial residue functions and form

- 92 -

m branches of decomposition matrices from this node. Each
branch has n-1 decomposition matrices constructed from the
n-1 variables.

Step 3: For the decomposition matrices of each of the m
branches.
Case 3.1: If any one of the n-1 decomposition matrix is
trivial, one has a trivial solution for that branch, i.e. to
put this variable or its complement at the input of that
branch.
Case 3.2: If all of the n-1 decomposition matrices do not
have any trivial residue function, then select any one of
them. Construct a tree-structured MVMUX subnetwork directly
from the decomposition matrix.
Case 3.3: Same as Case 2.3.

Step 4: Repeat Step 3 as many times as needed until there
are no variables in any of the branch functions.

This procedure is best illustrated by means of an exam­
ple.

Example 4.3 To realize the nontrivial function f{x) which
is given in the example of Biguchi and Kameyama [83] by the
heuristic method:

(1) Partition the 3-variable into 3 decomposition matrices

*1*2 **3' *1*3 **2' *2*3 **1 shown in Fig. 4.17.

— 93 —

0 1 2

0 0 0 0 1
0 1 1 1 2
0 2 2 2 0
1 0 0 2 1
1 1 1 2 2
1 2 0 0 0
2 0 1 1 1
2 1 2 1 0
2 2 0 1 2

0 1 2

0 0 0 1 2
0 1 0 1 2
0 2 1 2 0
1 0 0 1 0
1 1 2 2 0
1 2 1 2 0
2 0 1 2 0
2 1 1 1 1
2 2 1 0 2

0 1 2

0 0 0 0 1
0 1 0 2 1
0 2 1 1 1
1 0 1 1 2
1 1 1 2 1
1 2 2 2 0
2 0 2 0 0
2 1 2 0 1
2 2 0 0 2

Fig. 4.17 Possible Decomposition Matrices.

(2) The numbers of trivial residue functions of the three
Xglx^, *2^3 (*1 decomposition matrices are
4, 3 and 1 respectively.

(3) Choose the decomposition matrix XgX^ Ix̂ ̂ since it has
the least number of trivial residue functions. There­
fore, x^ is used as the data-selector MVMUX at the out­
put level (Ist-level).

(4) Eliminate Xĵ from the first-generation decomposition
matrix x^x^lx^ by constructing 3 branches of decomposi­
tion matrices, each of which contains the variables X2
and x^. In the branch x̂ = 0, partition the matrix into
two decomposition matrices x^lx^ and x^IX2 , do simi­
larly branches x̂ = 1 and 2. They are shown in Figs.

- 94 -

4.18 (a), (b)r and (c). Find trivial residue functions
in each of these matrices which are tabulated in Table
4.3.

(a) branch = 0

(b) branch x̂ = 1

(c) branch Xĵ = 2
Fig. 4.18 Possible Decomposition Matrices.

- 95 -

Table 4.3 Number of Trivial Residue Functions in Fig. 4.18,

Branch x^ Number of trivial residue functions
*21*3 x^lXg

x^ = 0 0 2
1 0
3 1

(5) Choose the second-generation decomposition matrices Xg
|Xj, *3**2 branches x̂ = 0 ,1 and 2
respectively. Since they have the least number of
trivial residue functions in the decomposition matrices
of their respective branch.

(6) Eliminate the variables and 3̂ from the above
three chosen decomposition matrices respectively. Now
these decomposition matrices have only one variable
left as seen in Figures 4.19 (a), (b), and (c).

- 96 -

2

x^x^=01
(a)

P 2 *30 1 2

*1

P 2

Xj^X2=ll

(b)

P

*1*2=12

P 2

XiXg^ZO X 1 X 2 - 2 1

(c)
x^ X2=22

Fig. 4.19 Decomposition Matrices with
(a) XiX3=00, xiX3=01, XiX3=02
(b) XiX2=10, XiX2=ll, Xĵ X2=12
(c) XiX2=20, XiX2=21, x%X2=22.

(7) Since the third-generation decomposition matrices x^x^
=00 and 01, %iX2=12, and xĵ X2=20,21, and 22 are trivial
(Case 3.1), the branches containing them are ter­
minated. Put these variables or their complements at
the inputs of those branches.

(8) The decomposition matrices left are those of x^x^=02, x̂

X2=10, and Xĵ X2=ll which are irreducible. Hence these
branches are assigned in the following values: 1, 2,
and 0 to branches xĵ X3X2=020, 021, and 022; 0, 2, and 1

- 97 -

to branches XiX2*3"^00, 101, and 102; 1, 2, and 2 to
branches x^XgX^sllO, 111, and 112 respectively.

(9) Since there are no variables left in any of the branch
functions, the synthesis is thus completed.

The tree-structured MVMUX network realization obtained
by the heuristic method is shown in Fig. 4.20. This network
is virtually the same as the one given in Higuchi and
Kameyama [83] except that x^of the third MVMUX in the second
level has replaced the MVMUX which complements x^.

Fig. 4.20 Tree-Structured MVMUX Network Realization.
Example 4.4 Realize the decomposition matrix in Fig. 4.15
with the heuristic method procedure:

(1) Partition the 3-variable into 3 decomposition matrices,
X2X3 IXX, *3 I%2 ' and x̂ X2 IXj as shown in Fig. 4.21.

— 98 —

0 1 2

0 0 0 1 0
0 1 0 0
0 2 0 1 2
1 0 2 1 0
1 1 1 1 1
1 2 2 0
2 0 2 1 0
2 1 0 1 0
2 2 2 2 2

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

\ * 3

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

Fig. 4.21 Possible Decomposition Matrices.

(2) The numbers of trivial residue functions of the three %2
x^lx^, x^x^lXg, and Xĵ X2 lx^ decomposition matrices are
6 , 2 , and 1 respectively.

(3) Choose the decomposition matrix X2̂ X£|x^ since it has
the least number of trivial residue functions. There­
fore, x^ is used as the data-selector MVMUX at the out­
put level.

(4) Eliminate x^ from the decomposition matrix xĵ X2 |x^. Now
n-1 = 2 . In the branch x^ = 0, partition the matrix
into decomposition matrices |X2 and x^lx^, do simi­
larly to branch x^ = 1 and 2 as shown in Figures 4.22
(a), (b), and (c) respectively. The trivial residue
functions of each matrix are tabulated in Table 4.4.

- 99 -

S

E

h
(a) branch = 0

(b) branch = 1

(c) branch x^ = 2
Fig. 4.22 Possible Decomposition Matrices.

Table 4.4 Number of Trivial Residue Functions in Pig. 4.22

Branch x^ Number of trivial residue functions
Xi 1X2 Xg |x̂

X3 = 0
x^ = 1
x^ = 2

2
0 2
0 2

- 100 -

(5) From Table 4.4, when X3 is equal to 0, the possible
decomposition matrices have the same trivial residue
functions. In this case, we should process both vari­
ables and choose the one that has the least number of
MVMUXs. If they use the same number of MVMUXs, then
choose the one that has fewer total numbers of variable
data inputs to the MVMUXs. The final results are shown
in Figs. 4.23 and 4.24. However, Fig. 4.23 is chosen
because it has fewer variable data inputs than Fig.
4.24. Even the number of MVMUXs of the two networks are
the same.

Fig. 4.23 Tree-Structured MVMUX Network Realization.

- 101 -

Fig. 4.24 Tree-Structured MVMUX Network Realization.

In conclusion, the heuristic modular synthesis method
presented in this section guarantees a fanout-free network
with a possible minimal number of MVMUXs. This approach is
much simpler when compared with any of the existing methods
and is, therefore, much more easily included in an automated
design process in making the MV LSI/VLSI.

So far, however, we have only discussed the MVMUX syn­
thesis methods for realizing the MV combinational logic. The
synthesis of sequential logic using MVMUX will be presented
in the next chapter.

CHAPTER V

MVMUX SEQUENTIAL LOGIC DESIGN USING AN MVASM CHART

The MV sequential circuit is composed of combinational
circuits and memory circuits. The output signal of the
sequential circuit depends on the present inputs and past
history of inputs. The basic design of MV memory circuits
required in a sequential circuit and an efficient and sys­
tematic design of an MV sequential logic using an algo­
rithmic state machine (ASM) chart will be presented in this
chapter,

5.1 Multi-Valued Memory Circuits Design

The MV memory circuits considered in this thesis are
similar to the flip-flops in a binary system. A name "m-
flop" will be called for multi-valued flip-flop. The m-flops
were first introduced by Irving [74]. These m-flops used
MAX, MIN, CYCLE, and COMP gates in a cross-couple fashion.
There are also other components which can be used to design
m-flops such as T-gate (multiplexer) and m-valued m-
threshold devices which can be found in Wills' thesis [206].

In order to design the m-flops, the following proper­
ties [74] must exist:

- 102 -

- 103 -

1. The device must be defined for any m (m is a finite
integer > 2).

2. It must have m stable states.

3. It must have at least one output which presents a dif­
ferent logic value for each of the m stable states.

4. It must remain in each stable state indefinitely in the
absence of external excitation.

5. It must be able to obtain any stable state A from any
other stable state B in a single transition with proper
excitation.

Having the same property as binary flip-flops, any type
of flip-flop (JK flip-flop, D flip-flop and T flip-flop) can
be realized from SR flip-flop by adding some gates. Hence,
the SR m-flop will be designed first. As an extension of
binary SR flip-flop, an SR m-flop requires:

(a) If the AND operator is used, the non-deterministic
input conditions occur when x̂ + x£ < p.

(b) If the OR operator is used, the non-deterministic input
conditions occur when xi + xg > p.

For example, using AND and COMP operators, the next-state
equation for an SR 3-flop is

Q(t+1) = xi + X2* Q(t). (5.1)

— 104 —

The logic diagram, stable states, and state table of an
SR 3-flop are shown in Fig. 5.1.

(a) Logic Diagram

Q (= X) 0 1 2

Q (= X) 2 1 0

(b) Stable States

X. (t) 0 0 0 1 1 1 2 2 2
Xgtt) 0 1 2 0 1 2 0 1 2

0 X X 2 X 1 1 0 0 0
Q(t) 1 X X 2 X 1 1 0 1 1

2 X X 2 X 1 2 0 1 2 } Q(t+1)

The non-deterministic input conditions occur
when %2+ %2 < P

(c) State Table
Fig. 5.1 SR 3-Flop.

The next states for values of %i and X2 which satisfy xi
2+ X 2 < P are not defined. This eliminates p(p - l)/2 combi­

nations of values of x^ and X£ to be applied as inputs. To

- 105 -

avoid this, a simple gating arrangement which gives an
improved SR 3-flop shown in Fig. 5.2 can be used.

Xi = 0

r> *2

Cross­
coupled

AND-
complement

gates

(a) Logic Diagram

Q(t) 1

(b) state Table

Q(t+1)

Q(t) 0 0 0 1 1 1 2 2 2
Q(t+1) 0 1 2 0 1 2 0 1 2
jc 0 1 2 0 001 2 0 Oil 2
4 d d d 0 12d d 0 101 d
d = don't care

(c) SR 3-flop Input Table
Fig. 5.2 Improved SR 3-Flop.

From this improved SR 3-flop, the following D 3-flop
can be constructed and is given in Fig. 5.3. The state
table, excitation table, excitation map, and logic diagram
of D 3-flop are given in Figs. 5.3 (a), (b), (c), and (d)
respectively. It should be mentioned that I L SR m-flop, D

- 106 -

m-flop, master-slave SR m-flop, SR m-valued latch, and etc.
have been designed by Dao, McCluskey and Russell [41], and
Pugsley and Silio [151].

D
Q(t)

0 1 2 D
Q(t)

0 1 2

0 0 1 2 0 Od Id 2d
1 0 1 2 011 00 02 2d
2 0 1 2 Id
(a) State table 01 02

2 00 11 12
01 2d
X1X2(b) Excitation table

D 0 1 2 D 0 1 2
Q(t) Q(t)
0 0 1 2 0 d d d
1 0 1 2 1 0 d d
2 0 1 2 2 0 1 d

X i = D

(c) Excitation maps
Xg = D

- 107 -

Cross­
coupled

AND-
complement

gates

Clock "
(normally p) P

(d) Logic diagram of D 3-flop
Fig. 5.3 D 3-Plop.

The other D 3-flop and master-slave D 3-flop designed
by using multiplexer or T-gate can be found in Higuchi and
Kameyama's paper [66].

5.2 Multi-Valued Algorithmic State Machine

Due to the increasing complexity of the integrated cir­
cuit, the classical design technique is almost impossible.
Thus, an automated design technique is necessary in the
LSI/VLSI circuit. Simulation is an automated design tech­
nique widely used in a variety of engineering disciplines.
When it is too difficult to verify the correctness of the
design by inspection, by proof, or by test, simulation may
help. Simulation allows the designers to test a design
before building it by modeling in detail the components from
which the design is built and by computing their interac­
tions under various conditions. Simulation has been used in
different levels of LSI/VLSI circuit design; behavioral.

- 108 -

register-transfer, functional, gate, circuit, etc. Unfor­
tunately, these simulators do not really work for the whole
design process because of the difficulty in preparing the
data inputs in a form suitable for the simulator to simu­
late. For example, to write a program for a register-
transfer simulator is very simple but to write the design
language as the input of simulator is much more difficult to
implement. The lack of commonality of design methods in the
digital system design field have resulted in a delay in the
availability of such programs.

The objective of this chapter is to develop a design
aid which is called the HV Algorithmic State Machine (ASM)
chart that may solve the problem of translating the data
part of a design from a functional (behavioral) level to a
structural and logical level through the specification of
information.

The general design of the MV digital circuit
represented in Chapter 3 was strictly in MV combinational
circuits. In this chapter, an MVASM chart technique is
introduced to be used as a design aid for the MV sequential
logic circuit. This technique is an extension from the
binary ASM chart which was introduced by Dines Biorner in
1970 [19], C.R. Clare in 1973 [30], and S.C. Lee in 1976
[96]. This new technique of designing MV sequential logic
circuits using the MVASM chart allows the designers to real­
ize a tree-structured MVMUX directly from the MVASM chart.

- 109 -

The steps of designing MV logic circuits using the MVASM
chart are given in Fig, 5.4.

Tree-structured
MVMUX network

Verbal
description
of a design

problem

Synthesis
Tree-structured
MVMUX network

algorithmic
state machine

chart

Fig. 5.4 Flow Diagram for Sequential Circuit Design.

A. MVASM Chart Description of Logic

The MVASM chart is a state diagram that describes the
overall behavior of the MV sequential machine. It can be
described in terms of the three basic building blocks of
Table 5.1.

- 110 -

Table 5.1 Basic Building Blocks of an MVASM Chart.

Name Symbol
State name

State
box i

**
State code

t:

State output
list

State exit path

Decision
box

Condition
(MV expression)

Conditional exit
path

Conditional
output box Conditional output

list
Exit path

Multi-Valued State Box

The MV state box is used to represent a single state of
the MV sequential machine. The letter or number or name of
the state is encircled on the left or right of the MV state
box; the m-ary code for the state is written along the upper
edge of the box. If there are state outputs of the state,
they are listed in MV state box. If the output is to become
active immediately, an I precedes the output name. Delayed
outputs have no prefix. The MV state box has a single exit
path which may lead to multi-valued decision boxes, multi­
valued conditional output boxes, or other MV state boxes.

— Ill ”

Multi-Valued Decision Box

The MV decision box describes the inputs or qualifiers
to the MV sequential machine. Each MV decision box has m
exit paths (ro is a number of the levels of the logic), one
of these is taken when its condition is active. Arrows are
used to indicate a conditional exit path. It should be noted
that the exit paths do not indicate any time dependence.
Only the MV state box represents functions of time.

Multi-Valued Conditional Output Box

The MV conditional output box is used to describe out­
puts that are dependent on one or more inputs as well as the
state of the machine. The conditional outputs are listed in
the box with immediate and delay operations permitted. The
input to the box must be a conditional exit path and there
must be only a single exit path.

MVASM Block

An MVASM block is a structure consisting of an MV state
box and a network of MV decision boxes and MV conditional
output boxes. An MVASM block is denoted by a dashed line as
illustrated in Fig. 5.5. There is only one entrance to a
block and any number of exit paths depends on the network
structure of the MV decision boxes within the block. Each
MVASM block exit path must connect to a state, and each pos­
sible path from one state to the next is called a LINK PATH.
Therefore, each exit path is a link path. Note that in

- 112 -

practice the dashed line is often omitted as a shortcut, but
the block structures are still evident since they consist of
a network of the MV conditional output boxes and the MV
decision boxes between the MV state box and the next.

One state

•F

n - exit paths
Fig. 5.5 An MVASM Block.

One MVASM block describes the state machine operation
during one state at a time. Each MVASM block represents the
present state, Q[t]; the state outputs, f[Q(t)]; the condi­
tional outputs, f[Q(t),I], and the next state,
Q(t+1)IQ(t),I], for a set of inputs. I, of the general state
machine.

- 113 -

5.3 MVMUX Sequential Logic Design Using MVASM Chart

An MVMUX sequential logic design using the MVASM chart
starts with describing the design using an MVASM chart of
Fig. 5.6 which is to be realized by tree-structured HVMUX/D
m-flop networks of Fig. 5.7. From these two diagrams we see
that the input values of the MVMUXs of the network in Fig.
5.7 can be found directly from the MVASM chart of Fig. 5.6
and thus this design process can be automated by a computer.
The procedure of the MV sequential machine design using the
MVASM chart may be outlined as follows:

1. Define the inputs, outputs, and states of the MY logic
circuit to be designed.

2. Draw state boxes in the first row of the diagram in
Fig. 5.6 to represent the states of the machine. Each
state is then described by a set of values of the state
variables q^Qg' " % ' where n = llog^sl and s represents
the number of states. In other words, each state is
coded by an n-tuple of m-valued numbers.

3. Indicate the state output of each state in its state
box.

4. For each state box, connect a series of decision boxes
to realize the verbal statements described by the prob­
lem. Output condition boxes are inserted in the paths
whenever needed. An MVASM block is formed.

- 114 -

5. From each exit path of an MVASM block, draw the transi­
tion line to its next state. Now the MVASM chart to
describe the system is completed.

6. Each m-valued state variable of the MVASM chart is
realized by a tree-structured MVMUX network in cascade
with a D m-flop as shown in Fig. 5.7. The data-select
lines of MVMUX network are the state variables and
input variables.

7. The data inputs of the MVMUX network are the next state
code values.

This design procedure is best illustrated by an exam­
ple. Without loss of generality, consider the MVASM chart of
nine states shown in Fig. 5.8 where the 3-valued logic is
used. The tree-structured MVMUX/D 3-flop network realization
of this chart is shown in Fig. 5.9. The input values to the
MVMUXs of Fig. 5.9 are obtained from the state variables and
the transition paths from one state to another indicated on
the MVASM chart. For example, the values of 1 and 2 at the
inputs of the first MVMUXs of the two blocks are obtained
from the state variable values q^ = 1 and qg = 2 of the
final state 6 of the transition path from state 1 to state 6
as indicated in dark line. The rest of input values to the
MVMUXs are found in a similar manner.

- 115 -

CMûi ©

I

L TO NEXT STATE

M g. 5.6 An MVASM Chart to Describe

Incuts

a System.

fH

Fig. 5.7 A Tree-Structured MVMUX/D m-Flop.

- 116 -

® V 220

Fig. 5.8 An Example of 3-Valued ASM Chart.

cS

O -> _ —N -.MO OMO N — » —N — fsi r^o — - N

CT

H

Fig. 5.9 The Tree-Structured MVMUX/D 3-flops Circuit
Realization of the 3-Valued ASM Chart of Fig. 5.8.

- 117 -

To this point, we have presented several general and
practical procedures for designing both combinational and
sequential LSI/VLSI, Because of their high complexity and to
ensure these circuits are fault-free after fabrication, any
external test technique used will be extremely costly and
almost impossible. The design of HV LSI/VLSI with built-in
test circuits, hence, becomes necessary. The design of HV
LSI/VLSI with built-in test circuits hence becomes neces­
sary. Several state-of-the-art techniques for binary
LSI/VLSI design are presented in the next chapter.

CHAPTER VI

STRUCTURED DESIGN FOR TESTABILITY OF BINARY LSI/VLSI

The rapid evolution of the semiconductor technology
towards an ability to put hundreds of logic gates on a sin­
gle chip of silicon offers a great potential for reducing
power, increasing speed, and reducing cost. Unfortunately,
several problems must first be solved in order to fully
exploit these advantages of the LSI/VLSI. Testing of the
system is one of those problems that needs to be solved
before realizing this system.

Testing must be done throughout the life of a system
[22] since faults may occur or be introduced into a circuit
during manufacturing, assembly, storage and service. During
each of these periods, the nature of the faults introduced,
and consequently the type of testing which must be per­
formed, is different. During manufacturing, typical faults
which may exist are open bonds, open interconnections, bulk
shorts, shorts due to scratches, shorts through dielectric,
pin shorts, cracks, etc. Hence, a newly manufactured circuit
may contain multiple faults, some permanent and some inter­
mittent faults, such as the shorting of two leads due to
mechanical or voltage stressing. Some of these faults can be

- 118 -

- 119 -

modeled as logical faults while others cannot. Faults may
also be introduced during assembly and testing. In addition,
faulty elements may not be discovered until after assembly.
During storage new faults may occur in a circuit due to fac­
tors such as temperature, humidity, leakage of sealed ele­
ment, and aging. These factors usually cause parametric
rather than logical faults in a circuit. Finally, in ser­
vice, these same factors occur as well as others caused by
heat dissipation, vibration, and voltage and current stress.

The purpose of this chapter is to present the basic
concepts in the testing of two-valued LSI/VLSI system which
will be developed in multi-valued logic in the next chapter.
This chapter begins with the logical fault models, followed
by the traditional function and logical test techniques,
design techniques for testability, and structured design for
testability.

6.1 Logical Fault Models

In this section, the definitions of tests for logical
faults and developed logical fault models for the most com­
mon faults which occur in the current technologies are
presented.

Definition 6.1; A single application of values to the input
terminals is called a fault-detection test.

Definition 6.2; A set of tests, which leads to a definite
conclusion as to whether or not the circuit operates

- 120 -

correctly for all input combinations is called a fault-
detection experiment.

Definition 6.3; A set of inputs which detects all possible
(detectable) faults is called a complete detection test set.

Definition 6.4: A set of tests which distinguishes all pairs
of possible faults is called a complete location test set.

Definition 6.5; A minimal complete test set of a circuit is
a complete test set that contains a minimum number of tests.

Definition 6.6; An intermittent fault is, or appears to be
present at some times but not at others.

Definition 6.7: A permanent fault is a fault always being
present.

Definition 6.8; Exhaustive testing is a testing technique
that uses all possible input combinations to generate test
patterns (no fault model is used).

Definition 6.9; A random test or probabilistic test is a
testing technique that uses some input combinations to gen­
erate test patterns (the fault model may be used).

Traditionally, faults have been modeled as a single
permanent stuck-at fault model [22]. This model assumes
that an input or output of a circuit element is fixed to
either a logic 0 (stuck-at-0) or a logic 1 (stuck-at-1).
However, such an assumption does not generally cover the

— 121 —

bridging faults [121] that may occur. Usually, the bridging
faults have been detected by having a high level that is in
the high 90% of the single stuck-at fault coverage where the
single stuck-at fault coverage is defined to be the number
of faults that are tested and divided by the number of
faults that are assumed [205].

The other important fault models are multiple stuck-at
faults and bridging faults. The multiple stuck-at faults is
a fault which is composed of several single stuck-at faults
that occur simultaneously.

A bridging or short circuit fault [22,121,213] is a
fault which causes two or more lines in a network to connect
together. In general, the stuck-at faults can be considered
as a special case of the bridging faults, but some kinds of
the bridging faults (for instance, a feedback bridging fault
which occurs between two lines and forms a loop) cannot be
modeled as a stuck-at fault. Since increasing numbers of
components are being fabricated into an IC chip, the possi­
bility of bridging faults increases.

It is known [205] that there are two major facets of
the functional testing problem: test generation and test
verification. Test generation is the process of enumerating
stimuli for a circuit which will demonstrate its correct
operation. Test verification is the process of proving that
a set of tests are effective toward the end.

- 122 -

6.2 Types of Tests Used in Testing ICs

In general, there are three types of test which are
usually performed on the digital integrated circuits: DC
parametric, AC parametric, and functional tests [62].

a. The DC parametric tests

The electrical DC parametric tests verify specific
parameters specified in terms of voltage or current, A DC
test is performed by forcing a current and measuring a
resultant voltage or by forcing a voltage and measuring the
resultant current. A pure voltage measurement would assume a
forced current of zero. A differential voltage measurement
measures the voltage difference between two floating points.
The most common DC parameters measured are continuity, leak­
age, power consumption, voltage high/low levels, drive capa­
bility, and noise. The important characteristics to be con­
sidered when performing a DC parametric test are the accu­
racy and test time per parameter per device pin.

b. The AC parametric tests

The AC parametric tests verify time-related parameters
specified in terms of seconds. The basic characteristic of
the AC parametric tests is the measurement of the time rela­
tionships at which a device operates, for example, the time
it takes the output of a device to switch from 10% of its
output level to 90%. The AC tests also measure the delay
until the device output is produced after an input is

- 123 -

applied. Varying input timing relationships for an accept­
able output is also an AC test. The most common AC parame­
ters measured are rise and fall time, propagation delay,
set-up and release times, and access time.

c. The functional or logical tests

The functional or clock rate tests are the tests
required to verify that the device performs its operations
or its function as the design intended. Logical zeros and
ones are propagated through the device in such a manner that
each device internal node is verified to operate properly.
Functional testing is sometimes referred to as a clock rate,
node or truth table testing. The basic characteristics of a
functional test are the application of parallel and random
data and the comparison of the device output to a predicted
data pattern. The data is applied at rates specified for the
device. The most significant testing considerations include
the efficiency of pattern generation, edge-to-edge timing
control, and input/output and mask switching.

The functional test may be divided into two classes:
traditional test techniques and design for testability tech­
niques.

6.3 The traditional functional and logical test techniques

The traditional test techniques are usually suitable
for small scale integrated circuits (SSI) and medium scale
integrated circuits (MSI). This class of tests [22] is the

- 124 -

tests that applied to the circuit (unit) under the test
(ÜÜT) using automatic test equipment (ATE). In one class of
such systems, binary patterns are applied to the UUT and
also to a reference unit realizing the same function as the
UUT, and the outputs are compared. In more sophisticated
computer controlled testing systems, test programs are
automatically translated to the appropriate input stimuli,
and the output signals are automatically interpreted and
processed by the computer. A typical configuration for such
a test system is shown in Fig. 6.1. Here X is the applied
test stimuli, and Z' is the observed response from the UUT.
The processor compares Z ' with Z which is the known good
response from the UUT. Based upon this information the ATE
can determine whether or not the UUT is faulty (fault detec­
tion) , and if so, where is the site of the fault (fault
location). Often, more accurate fault location information
can only be obtained by probing signals internal to the UUT.
A sophisticated ATE would instruct the test operator, via
the display, as to exactly which signals should be probed.
The central problem in test generation is creating the input
X and computing the normal response Z and the responses due
to each fault of interest such that fault detection and
location can be efficiently carried out.

- 125 -

Applied
test pattern — >> X DUT response

probe

ATE

Test
Program
Library

X,Z

DOT

DISPLAY

ADAPTOR

SWITCHING MEASURE
RESPONSE

STIMULUS
SET UP

PROCESSOR

Fig. 6.1 Store Program Automatic Test Equipment System.

The generation of test patterns to be applied by the
digital tester to the UUT is an important and difficult
problem. Such test patterns are sometimes computer gen­
erated. Fig. 6.2 shows a block diagram for the typical
automatic test pattern generation system. The inputs to the
system are a description of the circuit for which test pat­
terns are to be generated including the faults to be tested
and the initial state information. Test patterns are then
generated, simulated, and the circuit response is analyzed
to produce dictionaries which specify circuit response to

- 126 -

tests under various fault conditions in a format which is
easily utilized for repair. This is repeated for each test
pattern until the pattern generation is concluded.

iCIRCUITDESCRIPTION
Faults

±
PATTI
GENEI

]RN
lATOR

N f
FAUL:
SIMUI

V
jATOR

inadequate EVALUATE
TEST COVERAGE

\
adequate

/
BUILD DETECTION
AND LOCATION
DICTIONARIES

\ !
TRANSI
ATE Li

,ATE TO
\NGUAGE

\/a

INITIAL STATE
INFORMATION

TEST
PROGRAM

Fig. 6.2 Automatic Test Pattern Generator System.

- 127 -

Therefore, it is evident that in order to test the
LSI/VLSI systems, this class encounters many difficult prob­
lems as follows [118,119,]:

(1) A fault model is required. In the LSI/VLSI circuits,
the classical assumption that only single stuck-at-
faults need to be modeled may no longer be valid. More
complex models are possible, but they substantially
increase the difficulty of test pattern generation.

(2) Test pattern generation is required. Automatic test
pattern generation is very costly and typically does
not provide sufficiently high fault coverage. Manual
test pattern generation has the added disadvantage of a
long delay inserting into the production cycle. For
sequential circuits, automatic generation may be broken
down completely, and manual generation can be very
lengthy and produce poor results.

(3) An expensive tester is required. When test generation
produces many patterns, the tester is tied up for a
long time so that many testers may be needed.

(4) Fault coverage is too low. Because of the expense of
running test generation programs, it is necessary to
stop before tests for all of the stuck faults have been
determined. In fact, it may not be practical to obtain
tests which detect more than 80% of the single stuck
faults. Low fault coverage does not really eliminate

- 128 -

costs, but shifts the cost from test generation to
repair of systems with defective parts.

6.4 Design Techniques for Testability

The design techniques for testability are techniques
that allow the IC tester to be controllable and observable
so that the IC chip can be tested economically and within a
reasonable time. This class of test is usually applicable
for the LSI/VLSI systems. In order to enhance the testabil­
ity of the IC, the following may be required.

1. Partitioning of the circuit into manageable subunits.

2. Improving the controllability of the circuit

3. Improving the observability of the circuit

The latter is the most effective means as it is evident from
the fact that most test procedures are either exponential­
time algorithms or at least proportional in time to the
number of gates to the power of n with n > 2.

Almost any implementation of the above enhancements
will be in conflict with the LSI/VLSI design objectives;
improving the observability and controllability will require
additional pins and silicon area, and the partitioning for
testability may not be in accordance with normal functional
partitioning. Thus, there will always be a trade-off between
the testability and overhead.

- 129 -

The design for testability techniques to alleviate
testing problems are divided into two categories [205,119].
The first category is that of the ad hoc technique for solv­
ing the testing problem. These techniques solve a problem
only for a given design and are not generally applicable to
all designs. This is contrasted with the second category of
structured approaches. These techniques are generally appli­
cable and usually involve a set of design rules by which
designs are implemented. The objective of a structured
approach is to reduce the sequential complexity of a network
to aid test generation and test verification.

6.5 Structured Design for Testability

A considerable number of papers on the structured
design for testability of LSI/VLSI have been published in
the literature [8,46,55,89,119,165,178,184]. Among these
publications the Level Sensitive Scan Design (LSSD) [46],
Scan path [55], Built-In Logic Block Observation (BILBO)
[89], Syndrome Testing [165], and Autonomous Testing [119]
have received the most attention.

A. Level Sensitive Scan Design (LSSD)

The basic idea of the LSSD approach (as shown in Fig.
6.3) is to transform the difficult task of testing a sequen­
tial circuit into a simple task of testing a combinational
circuit. This approach uses the concept that the memory ele­
ments in the IC can be threaded together into a shift regis-

- 130 -

ter; the memory elements values can be both controlled and
observed. This technique enhances both controllability and
observability, allowing us to augment testing by controlling
inputs and internal states and to easily examine internal
state behavior. However, there are some disadvantages in
this approach:

1. The LSSD is a passive test aid in the sense that exter­
nal devices are required for generating test patterns
and evaluating test answers. This is not a drawback as
long as the system is large enough to justify an exter­
nal test or maintenance processor. But, in smaller and
distributed systems, the LSSD is less useful.

2. The LSSD process is the serialization of the test; it
potentially costing more time for actually running a
test. It follows the idea that the increasing chip com­
plexity will lead to longer scan paths and test times
and thus cancel a certain degree gained by transforming
the test problem into a combinational one.

3. In considering the cost performance impacts, there are
a number of negative impacts associated with the LSSD
philosophy. First of all, the shift register latches in
the shift register are, logically, two or three times
as complex as simple latches. Dp to four additional
primary inputs/outputs are required at each package
level for control of the shift registers. External
asynchronous input signals must not change more than

- 131 -

once every clock cycle. Finally, all timing within the
subsystem is controlled by externally generated clock
signals.

Output

XI

VI
X?

Xn
Vo

Fig. 6.3 General Structure of an LSSD Subsystem with Two
System Clocks.

B. Scan Path

The basic idea of the scan path approach [55] is the
same as that of LSSD approach. This approach used raceless
D-flip flop as a memory element in the scan path circuit as
shown in Fig. 6.4. The difference between the scan path and
the LSSD approach is that the LSSD is a level-sensitive
operation- the ability to operate the clocks in such a
fashion that no races will exist. The LSSD used a separate
clock to operate latch 1 and latch 2, while the scan path
used both clocks to operate latch 1 and latch 2.

- 132 -

In the system operation (normal mode operation), only
clock 1 is used to operate the D-flip flop by keeping clock
2 at logic 1 for the entire operation. When clock 1 is Or
the data can be loaded into latch 1. As long as clock 1 is 0
for sufficient time to latch up the data, it can then turn
off. As it turns off, the result data in latch 1 will be
loaded in latch 2. This assumes that as long as the output
of latch 2 does not come around and feed the system data
input to latch Ir latch 2 is active. The period of time that
occurs is related to the delay of the inverter block for
clock 1, This race condition is exposed to the use of only
one system clock.

In the scanning operation (testing mode operation], the
D-flip flop with scan path has its own scan input called
test input. It operates by clock 2; for example, when clock
2 is 0, the data is loaded into latch 1, and the result in
latch 1 is loaded into latch 2 when clock 2 is 1. The delays
to avoid the race problem are the same as in the above dis­
cussion.

- 133 -

Tew
Output

Test
Input O - (Scenm)

FF3
dod

Fig. 6.4 Configuration of Scan Path on Card.

C. Built-In Logic Block Observation (BILBO)

The BILBO technique [89,139] combines the LSSD, scan
path, and signature analysis [1,143] techniques together.
The basic concepts of BILBO are based on the following prin­
ciples:

1. All the test patterns are generated in the IC chip.

2. The test results for ÜÜT are evaluated on the IC chip.

3. The overhead (additional pins and silicon area) is kept
minimal.

4. The external testing equipment is reduced to a minimum;
the only action from outside the IC chip is initializ­
ing the test and reading the go/no go information from
the IC chip.

In general, the BILBO technique operates almost the

- 134 -

same as the LSSD and the scan path techniques, except that
the BILBO technique has the circuit or memory storage to
generate the test patterns within itself. Usually, the test
patterns can be generated by the following methods:

1. Derive a minimum complete test patterns set and store
it in the memory storage of that chip. This method uses
greater amount silicon area when the number of test
patterns increases.

2. Design a combinational circuit or linear feedback shift
register which can generate a minimum complete test
patterns set. This method is often difficult to design
to match all those sets, and the circuit may be very
complicated.

3. Design a counter or linear feedback shift register to
generate all possible test patterns), which is
called an exhaustive test. This method is only good
for the small numbers of input, and no fault model is
needed.

There are four basic operation modes in the BILBO tech­
nique [89]: basic system operation, linear shift register or
LSSD operation, signature analysis operation, and reset mode
operation.

1. Basic system operation mode (Cĵ Cg) = 11. When 11,
the BILBO of Fig, 6.5(a) will be reduced to the circuit
shown in Fig. 6.5(b). Under this operation, the

- 135 -

values are loaded into , and the outputs are avail­
able on for system operation. This would be a normal
register function.

2. LSSD operation mode {,Ĉ C2~ 00). When Cĵ C2= 00, the
BILBO register takes on the form of a linear shift
register as shown in Fig. 6.5(c). Data scan-in is
input to the left through some NOT gates, and it basi­
cally lines up the registers into a single scan path
until the data scan-out is reached.

3. Signature analysis operation mode (Cĵ C2= 10). When C1C2
= 10 in this mode as shown in Fig. 6.5(d), the BILBO
register takes on the attributes of a linear feedback
shift register of a maximum length with multiple linear
inputs. If there are inputs to the BILBO registers,
can be controlled with fixed values in this mode opera­
tion; the BILBO will output a sequence of patterns
which are very close to random patterns.

4. Reset mode (Cĵ C2= 01). When Cĵ C2= 01 in this mode, it
would force a reset on the register.

- 136 -

«J ÔJ 0, 6, H i à,

tb)

(e)
*» *t *4 *• *• *1 *•

(d)

Fig. 6.5 BILBO and Its Different Modes.
(a) General Form of BILBO Register
(b) CfCp = 11 System Orientation Mode
(c) C.Cp = 00 Linear Shift Register Mode
(d) C.Cp = 10 Signature Analysis Register

with m Multiple Inputs (Z^, Z2,...,Zg)

D. Syndrome Testing

The syndrome testing technique [165,166] is used to
test the permanent stuck-at faults in the combinational sys­
tem. This technique is based on the number of minterme real­
ized by switching function and requires all the test pat­
terns (2^) be applied to the input of the circuit (each
input combination is applied exactly once) and count the
number of ones appearing at its output. Therefore, the only
difference between the syndrome and the ones-count is the
location of the binary point. Thus, there is no essential
difference between the syndrome and the ones-count, and a
binary counter can serve the purpose of measuring the

- 137 -

syndrome. If the syndrome stored in the counter by the time
the test has been completed is equal to the fault-free syn­
drome, the circuit is declared fault-free; otherwise the
circuit is faulty. It should be noted that in order to make
the syndrome-test procedure of acceptable length, large cir­
cuits with many inputs must be partitioned to subcircuits so
that each subcircuit will have no more than 20-25 inputs.
Each subcircuit then is designed to be syndrome-testable.

Pattern
Generator

Compare
Register

COUNTERCut

Fault
Signal

Fig. 6.6 Syndrome Test Structure.

In order to design testable combinational circuits,
some extra I/O pins have to be inserted so that the final
circuit will be syndrome-testable. The advantage of the
syndrome testing technique is a very low storage requirement
for implementation; therefore, the expensive stage of test
generation can be avoided. Fig. 6.6 shows the syndrome
testing system structure procedure where the syndrome-
testable circuit does not include the pattern generator,
counter, or compare register.

- 138 -

E. Autonomous Testing

The autonomous testing technique [119] is similar to
the syndrome testing technique in that they both require the
all possible patterns be applied to the system inputs. How­
ever, with the autonomous testing, the outputs of the system
must be checked for each pattern against the value for the
good machine. Consequently, irrespective of the fault model
autonomous testing will detect the faults by assuming that
the faulty machine does not turn into the sequential machine
from the combinational machine. In order to help the system
apply its own patterns and accumulate the results of the
tests rather than observing every pattern for 2^ input pat­
terns, a structure similar to the BILBO register is used.
This register has some unique attributes and is shown in
Figs. 6.7-6.10. If a combinational system has 100 inputs,
the system must be modified so that the subsystem can be
verified and, thus, the whole system will be tested.

In order to exhaustively test each subsystem, all the
subsystem inputs must be controllable at the input of the
system, and all subsystem outputs must be observable at the
system outputs. This can be achieved in two ways: hardware
partitioning and sensitized partitioning. The hardware par­
titioning technique is performed by inserting multiplexers
and connecting the embedded inputs and outputs of each sub­
system to those primary inputs and outputs that are not used
by the subsystem under the test mode operation. The sensi­

- 139 -

tized partitioning technique can be done by applying the
appropriate input pattern to some of the input lines. The
effect achieved is similar to that of the hardware parti­
tioning technique. The paths from the primary inputs to the
subsystem inputs and the paths from the subsystem output to
the primary output can be sensitized. Using these paths,
each subsystem can be tested exhaustively.

The autonomous testing technique has improved the tes­
tability of the system as follows:

1. It is not required to have the fault model for testing
since all possible test patterns are used.

2. Memory storage for the test patterns is not required
since all the possible test patterns can be generated
by counter circuit or feedback shift register circuit.

3. It is not required to have an expensive external test­
ing equipment.

4. There is no serial scan in and scan out of the test
pattern to the system; therefore, the testing time is
reduced.

However, there are some disadvantages to the autonomous
testing technique in which partitioning a system into sub­
systems is needed to add some components in order to be con­
trollable for the testing and system operation mode. This
adding component also reduces the speed operation of the

system.

— 140 —

M =

N S Mode
1
0
0

X
G
1

Normal Operation
Input Generator
Signature Analyzer

Fig. 6.7 Reconfiguration of 3-Bit LFSR Module.

N = 1: Normal operation
Fig. 6.8 Reconfiguration of 3-Bit LFSR Module.

“ 141 -

X3

O — 1

>E>€> IL >

h h

N = 0, S = 1; Signature Analyzer
Fig. 6.9 Reconfiguration of 3-Bit LFSR Module,

N = Of S = 0: Input Generator
Fig. 6.10 Reconfiguration of 3-Bit LFSR Module.

In conclusion, several design-for-testability tech­
niques for the two-valued LSI/VLSI and their advantages and
disadvantages have been presented. Some of these techniques
may be implemented in a new design for testability with the
built-in testing capability of the HV LSI/VLSI tree-
structured MVMUX network. This new design technique is
intended to avoid the use of any expensive external testing
devices and yet is still able to thoroughly test the chip
within a reasonable test time. Moreover, such a test may be

— 142 —

conducted at any time during the lifetime of the chip. A
detailed discussion of this new design technique is
presented in the next chapter.

CHAPTER VII

HIERARCHICAL DESIGN OF MV LSI/VLSI
WITH BUILT-IN PARALLEL TESTING CAPABILITY

In this chapter, the concept of a hierarchical design
process which handles the complexity problem of the HV
LSI/VLSI will be introduced. The tree-structured modular
HVMUX network discussed in Chapter 5 will be used here to
design the testability of MV LSI/VLSI systems with parallel
built-in test capability. With the help of the MVASH chart
introduced in Chapter 4 as a design tool, it will be shown
that the design process is very efficient and easy to imple­
ment.

7.1 The Need for MV LSI/VLSI Design for Testability

It is known that MV LSI/VLSI ICs offer even more advan­
tages over the discrete component circuits than the two­
valued ICs which were discussed in chapter 2. However, the
trade-off is that in the design of MV LSI/VLSI ICs, the
problem of testing becomes an even more complicated one.
This is because the chip density due to the use of MV logic
is increased, and the components in MV LSI/VLSI chip are
also increased, and hence the complexity of the chip. As

- 143 -

- 144 -

mentioned in Chapters 2 and 6, testing is one of the most
important problems in two-valued LSI/VLSI circuits and also
is in MV LSI/VLSI. The problem of testing in LSI/VLSI cir­
cuits is a problem of complexity with the well-known ten­
dency towards exponentially increasing expenditure in both
test time and test equipment (conventional test). In MV
LSI/VLSI, the test time increases exponentially (m^) with
m-valued logic and n variables. Therefore, conventional
testing for HV LSI/VLSI circuits is almost impossible. One
way to solve this MV LSI/VLSI chip test problem is to
integrate the testability of the circuit as a part of the
design. As discussed in chapter 6, this approach allows us
to test the MV LSI/VLSI chip, not only to eliminate expen­
sive external test equipment, but also to shorten the test
time.

The design for testability in MV LSI/VLSI uses the same
fundamental approach as in the two-valued LSI/VLSI which is
controllable and observable. In order to avoid expensive
external testing devices and be able to test the chip at any
time, the built-in test capability technique could be used.
Because of the complexity of MV LSI/VLSI increasing exponen­
tially with respect to m valued logic and n variables, the
hierarchical approach could be used to reduce the complexity
problem of the system. Because the networks are tree-
structured and have identical subunits at each level, one
can reduce the complexity of the network by applying the
parallel testing technique which will be presented in this

- 145 -

chapter. Instead of using fault models which are very com­
plicated, especially for MV LSI/VLSI circuits, exhaustive
tests will be applied; this ensures that the network is
fault-free once it passes the tests. It is worth noting that
because of the absolute reliability feature of this
approach, the designer should consider the trade-off between
the amount and cost of the built-in hardware and the testing
time savings.

As discussed in Chapter 1, a hierarchical design pro­
cess of MV LSI/VLSI consists of three levels (see Fig. 1.4).

(1) Behavioral level

(2) Structural and logical level

(3) Physical level

Here only the structural and logical level design will be
discussed. In this method, this level consists of five
steps as shown in Fig. 7.1.

— 146 —

Test procedure

Built-in testing
circuit

Partitioning
tree-structured
HVMUX network

Each subsystem
description
transform to
ASM chart

Transform
ASM chart to
tree-structured
MVMUX network

Fig. 7.1 Structural and Logical Level of an MV LSI/VLSI
Design Process.

The first two steps have been discussed in Chapter 4. The
last three steps will be discussed in the next three sec­
tions.

7.2 Partitioning for Testability Circuit

It is evident that the larger and more the complicated
the circuit is, the longer it will take to test it. It is
desirable to partition a large circuit into smaller subcir­
cuits and to test them simultaneously. In doing so, not

- 147 -

only may the subcircuit testing process in general be great­
ly simplified, but also the total testing time may be shor­
tened. However, the size of the subcircuits of the parti­
tion decided upon should be based on the trade-off between
the desirable or required testing time for the chip and the
total amount of built-in test circuit hardware needed for
conducting the parallel test.

In Section 4.3, a general design procedure presented
can transform any sequential logic into a tree-structured
MVMUX network composed of nearly identical sections, such as
the one shown in Fig. 7.2 (see the network of Fig. 4.9).
Such a section of the network will be referred to as a Basic
Modular Network (BMN). Since all the BMN of a tree-
structured MVMUX network are of the same structure, one can
apply the built-in parallel testing technique to test this
type of network. Note that in applying such a test, further
partitioning of the BMNs may be needed as shown in the exam­
ple of Fig. 7.2. It should also be noted that with only
slight modification, the test procedure described below may
be applied to any BMNs with missing tree branches. Such BMNs
may result from a minimization process during the synthesis
of the network. The two BMNs of the network of Figs. 5.20
and 5.23 are examples of such cases.

“ 148 —

I#

•nr

0»

data-selector
outputs
subunit

Fig. 7.2 Tree-Structured MVMUX Network with D 3-Flop,

- 149 -

7.3 Built-in Test Circuits for BMN

There are three functional circuits that will be built
inside an MV LSI/VLSI chip. One is the test data input gen­
erator which will generate all the possible signal levels
(i.e. m = 3, the signal levels are 0,1, and 2) to the
inputs. The second is the data-selector generator which
will generate all possible m" patterns (i.e. for m = 3 and

4n = 4, a total of 3 = 8 1 patterns will be generated). The
last one is the test verification circuit which will iden­
tify a fault in each partition subunit. In designing these
circuits, the following requirements must be considered.

1. The built-in circuit must be much simpler than the main
circuit itself.

2. In order to ensure that the built-in test circuit is
initially fault-free, one should be able to check it by
using an external probe before packaging. After pack­
aging, the circuit should have a high probability of
fault-free maintainance throughout the lifetime of the
chip.

3. The number of IC pins used for the built-in tests
should be less than 10% of the total IC pins.

4. The circuit should be able to test the system at any
time.

After a tree-structured MVMUX network is partitioned.

— 150 —

the designer will insert the three types of circuits in it
for the purpose of parallel testing. They are;

(1) Test data-input generator: It is an m-valued generator
which furnishes input data to the input leads of each
partition block. This unit is controlled by a synchro­
nous clock and by control line C. The unit is inactive
when C = 0 (see Fig. 7.3). The symbol — —| ~y* in Fig.
7.3 denotes the cycling gate whose output is determined
by (y + 1) mod 3.

r\L> _ >
U

D
CLK cz C

CLKl
Fig. 7.3 Test Data-Input Generator Circuit.

(2) Test data-selector generator: It is a modular
counter when h is the number of selectors of the parti­
tion block. It is also controlled by the synchronous
clock and by control line C. It becomes inactive when C
= 0. It is used to select one of the m^ inputs of the
partition block, (see Fig. 7.4)

- 151 -

ï
CLK

CLK
CLK2

Fig. 7.4 Test Data-Selector Generator Circuit

(3) Test verification circuit: It is a multi-bus comparator
circuit. (see Fig, 7.5)

- 152 -

Output of data-input
generator

4 >

Outputs
of each
partition
subunit

Fig. 7.5 Test Verification Circuit.

It should be noted that during the normal operation,
these testing circuits can be completely isolated from the
main circuit by the switches , x, with the control line, C
0, as shown in Fig. 7.2.

7.4 Test Procedure

The built-in test capability for the MV LSI/VLSI cir­
cuit consists of two basic operation modes, normal mode and

- 153 -

test mode. These two modes are controlled by the signal that
apply to a control IC pin which is called the test control
terminal.

1. Normal mode; In this mode, the built-in test units are
isolated from the main circuit.

2. Test mode; In this mode, the MV LSI/VLSI circuit is
connected to the built-in test units. The values of
data inputs and data selectors are supplied by the
data-input generator and data-selector generator
respectively. Each 5MN is tested exhaustively by a
parallel process. The output response of each subcir­
cuit is verified by the verification unit.

After the test circuits are in place as shown in Fig.
7.6, the following test procedure will be in order.

Step 1: Set C = 1 to isolate the inputs and outputs of all
the partitioned blocks and also to reset all the test cir­
cuits.

Step 2: Test data-input generator which generates a zero and
sends it to all partitioned block inputs. The test data-
selector will generate 0 and send it to the data-selector
lines of all the partitioned blocks. The outputs of the
partitioned blocks are compared with the inputs at the
verification circuit. If any of the two sets of data are
different, a fault is detected; this process will be
repeated for test data-selector values 1, 2 ...m.

- 154 -

Step 3: Repeat Step 2 for data-input values 1, 2, . p.
The process, however, will be terminated whenever a fault is
detected by the verification circuit.

- 155 -

DATA-
SELECTOR
GENERATOR

DATA-INPUT
GENERATOR

TEST
VERIFICATION

BASIC MODULAR NETWORK

CLKl CLK2 DISPLAY

Fig. 7.6 BMN with Testing Circuit.

In order to ensure that all operations of the testing
are synchronized, two clock generators are employed: a test
data-selector generator clock and a test data-input genera­
tor clock. Their timing diagrams and the outputs of their
respective units are shown in Fig. 7.7.

- 156 -

__njTJTTiruiJxrinruijxnxinJinjmr^
data-selector generator clock

—rarnrTjnJ-^LrararOrn.
output a from data-selector generator

I
output b from data-selector generator

J -
data-input generator clock

T
output of data-input generator

L
S L

Fault-free output from verification circuit

Fig. 7.7 Timing Diagrams of Testing Circuit.

As a final note, the definition of BMN was rather
loose; it could be defined, for example, by a network with
twice (or larger) the size of the network in Fig. 7.2. How­
ever, this will not effect the basic test procedure outlined
above.

In summary, an easy-to-apply hierarchical MV LSI/VLSI
design technique with built-in test circuits to provide

- 157 -

highly efficient parallel testing capability has been
presented. The synthesis method included in this technique
is completely general and is applicable to any sequential
logic design; including the binary as a special case. More­
over, unlike most of the known techniques for the binary
LSI/VLSI circuits, this technique requires only two extra
pins (the control pin and the verification pin), very simple
built-in test circuits, and virtually no external test
equipment; yet it provides a thorough and exhaustive test
for the entire circuit-both its combinational and D m-flop
parts. The test may be conducted at any time during the
lifetime of the chip. If a chip passes this test, the chip
is guaranteed to be fault-free.

CHAPTER VIII

CONCLUSION

Four major considerations in the design of binary
LSI/VLSI are functional complexity, chip density, pin limi­
tation, and chip testability. It has been shown that MV
logic offers many advantages over binary logic especially in
the areas of reducing functional variables and therefore
pins; this increases the information per unit area and
thereby reducing the hardware components. Consequently, a MV
logic system provides a solution which not only reduces the
complexity of the system but also increases the chip den­
sity.

Due to the complexity and size of LSI/VLSI, any attempt
to test these circuits using external testing means is
almost impossible, especially when an exhaustive test is
desired. It is therefore suggested that a built-in circuit
test technique be used. A set of requirements for the
built-in test circuits has been given. A new hierarchical
design procedure using the ASM chart as a design tool has
been presented. This design procedure can be used for syn­
thesizing any combinational and sequential logic with a
tree-structured MVMUX network plus D m-flops. It has been

— 158 —

- 159 -

shown that the use of the tree-structured MVMUX network in
the design of LSI/VLSI offers the following advantages:

1. It makes the synthesis procedure simple and systematic,
especially for designing complex function circuits.

2. One can insert simple built-in test circuits in the
network for conducting exhaustive tests at any time.

3. The network can be partitioned into nearly identical
subnetworks, each of which is connected to a built-in
test circuit and can be tested simultaneously.

Finally, it should be noted that the technique for
designing MV LSI/VLSI presented in this dissertation
includes the technique for designing binary LSI/VLSI as a
special case. It should also be noted that the process of
designing MV LSI/VLSI can be adapted to automation.

BIBLIOGRAPHY

1. "A Design's Guide to Signature Analysis," Hewlett-
Packard Application Note 222, Hewlett Packard, 5301
Stevens Creek Blvd., Santa Clara, CA 95050.

2. Again, J., "Setun, Nauchno-Tekh.," Obshchestva SSSR,
2(3), 25, March, 1960.

3. Akins, D., "A Suggested Approach to Computer Arithmetic
for Designers of Multi-valued Logic Processors," Proc.
Eight Int., Symp. on Multiple-valued Logic, Rosemont,
ILL, 1978, pp. 33-46.

4. Allen, C.M. and Givone, D.D. "A Minimization Technique
for Multiple-valued Logic Systems," IEEE Trans, on Com­
puters, Vol. C-17, February, 1968, pp. 182-184.

5. Allen, C.M. and Givone, D.D.,"The Allen-Givone Imple­
mentation Oriented Algebra," Computer Science and
Multiple-valued Logic, Chapter 9, Rine, D.C. (Editor),
North Holland, 1977.

6. Allen, C.M., "A Switching Algebra and Associated Minim­
ization Techniques Applicable to the Design of
Multiple-Valued Logic Systems," Ph.D. Thesis, Univer­
sity of New York at Buffalo, June, 1968.

7. Anderson, D.J., and Dietmayer, D.L., "A Magnetic Ter­
nary Device," IEEE Trans, on Computers, December, 1963,
pp. 911-914.

8. Ando, H., "Testing VLSI with Random Access Scan," in
Dig. Papers COMPCON 80, IEEE Pub. 80CH1491-0C, Feb.
1980, pp. 50-52.

9. Armstrong, J.R., Singh, A.D., and Gray, F.G., "Combina­
tional and Sequential Multivalued Logic Design Using
Iterative Tree Structures," Proc. the ninth Int. Symp.
on Multiple-Valued Logic, Bath, England, 1979, pp.
182-189.

10. Ashenhurst, R.L., "The Decomposition of Switching Func­
tions," Proc. of an Int. Symp. on Theory and Switching,
April 2-5, 1957, Ann. Computation Lab., Harvard
University, Vol. 29, 1959, pp.74-116.

11. Ballew, W.D.,p"B(2):P(m) Dual Radix Systems- Theory,
Design, and I L Implementation," Ph.D. Thesis, Univer­
sity of Oklahoma, 1981.

— 160 —

- 161 -

12. Barbe, D.F., Very Large Scale Integration (VLSI) Funda­
mentals and Applications, Springer-Verlag Berlin
Heidelberg New York, 1981.

13. Baskin, H.B., "Design of N-valued Logic Network," AIEE
Conf. 1962, Paper CP-62-500.

14. Baskin, H.B., "N-valued Logic Circuit," IBM Technical
Disclosure Bull., 3, 81, March 1961.

15. Beach, A., and Armstrong, J.R., "Results of a Chip Lay­
out Study for Multivalued I L," Proc. Twelfth Int.
Symp. on Multiple-Valued Logic, Paris, France, 1982,
pp. 55-68.

16. Berlin, R.D., Synthesis of N-valued Switching Cir­
cuits," IRE Trans, on Electronic Computers, 7, 1958,
pp. 52-56.

17. Bernstien, B.A., "Representation of Three-element Alge­
bras," Amer. Jour. Math., 46, 1924, pp. 110.

18. Birk, J., and Farmer, D., "An Algebraic Method for
Designing Multi-Valued Logic Circuits using Principally
Binary Components," IEEE Trans, on Computers, Vol. c-
24, November 1975, pp. 1101-1104.

19. Bjorner, D., "Flowchart Machines," IBM Research Labora­
tory, San Jose, Calif., RJ-685 (No. 13346), April 7,
1970.

20. Booth, A.D., and Ringrose, J., "A Three-state Flip-
flop," Electronic Engng., 23, 1951, pp. 133.

21. Braddock, R., Epstein, G., and Yamanaka, H.,
"Multiple-Valued Logic Design and Applications in
Binary Computers," Conf. Rec. of the 1971 Symp. on the
Theory and Applications of Multiple-valued Logic
Design, New York, 1971, pp. 13-25.

22. Breuer, M.A., and Friedman, M.D., Diagnosis and reli­
able Design of Digital Systems. Woodland Hills, CA:
Computer Science Press, 1976.

23. Brusentsov, N.P., "Development of Ternary Computer,"
Vestnik Mosk. Univ. Math. Mech., 2, 1965, pp. 39-48.

24. Butler, J.T., "Enumeration of Functions Realized by
Fanout-Free Networks of General Multi-Valued Gates,"
Proc. the Ninth Int. Symp. on Multiple-Valued Logic,
Bath, England, 1979, pp. 94-103.

- 162 -

25. Butler, J.T., "Fanout-Free Networks of Multivalued
Gates," Proc, the seventh Int. Symp. on Multiple-Valued
Logic, North Carolina, 1977, pp. 39-46.

26. Capece, R.P., "Tackling the Very Large-Scale Problems
of VLSI: a Special Report," Electronics, November 23,
1978, PP. 111-125.

27. Carnes, J.E., "Fundamental Packing Density Limitations
of CCD and RAM Memories," Electro 1977, Sec. 19, April
1977, pp. 19.4-1/9.

28. Cheung, P.T., and Purvis, D.M., "A Computer-Oriented
Heuristic Minimization Algorithm for Multiple-output
Multi-valued Switching Functions," Proc. 1975 Int.
Symp. on Multiple-valued Logic, Indiana, 1975, pp.
112-120.

29. Chiang, K.W., and Vranesic, Z.G., "Fault Detection in
Ternary NMOS and CMOS Circuits," Proc, twelfth on
Multiple-Valued Logic, Paris, France, 1982, pp. 129-
138.

30. Clare, C.R., Designing Logic Systems Using State
Machines, McGraw-Hill, New York, 1973.

31. Coy, W., "A Common Approach to the Description Imple­
mentation and Test Generation of Multi-Valued Func­
tions, " Proc. Eleventh Int. Symp. on Multiple-valued
Logic, Oklahoma, 1981, pp. 90-94.

32. Current, K.W., "Quaternary-to-Analog Converters," Proc.
twelfth Int. Symp. on Multiple-valued Logic, France,
1982, pp. 4-7.

33. Current, K.W., Wheaton, L.B., Luich, T.M., and How,
D.A., "Characteristics of Integrated Quaternary Thres­
hold Logic Full Adders," Proc. Tenth Int. Symp. on
Multiple-Valued Logic, Evanston, ILL, 1980, pp. 24-30.

34. Current, K.W., and Mow, D.A., "Four-Valued Threshold
Logic Full Adder Circuit Implementation," Proc. Eight
Int. Symp. on Multiple-Valued Logic, Rosemont, ILL,
1978, pp. 95-100.

35. Current, K.W., and Mow, D.A., "Implementing Parallel
Counters with Four-Valued Threshold Logic," IEEE Trans,
on Computers, Vol. c-28. No. 3, March 1979, pp. 200-
204.

36. Current, K.W., and Mow, D.A., "Proposed Digital Corre­
lator Design with Four-Valued Threshold Logic," IEEE J.
on Electronic Circuits and Systems, Vol. 2, No. 4, July
1978, pp. 115-120.

- 163 -

37. Curtis, H.L., A New Approach to the Design of Switching
Circuits, D.Van Nostrand Company, Inc., Princeton, New
Jersey, 1962.

38. Dahl, V., "A Three-valued Logic for Natural Language
Computer Applications,” Proc. tenth Int. Symp. on
Multiple-valued Logic, ILL, 1980, pp.102-107.

39. Daniel, M.E., and Gwyn, C.W., "CAD Systems for IC
Design,” IEEE Trans, on Computer-Aided Design of
Integrated Circuits and Systems, Vol. CAD-1, No, 1,
January 1982, pp. 2-12.

40. Dao, T.T., "Recent Multi-Valued Circuits,” Dig. of
Papers VLSI, C0MPC0N81, February 1981, pp. 194-203.

41. Dao, T.T., McCluskey, E.J., and Russell, L.K., "Mul­
tivalued Integrated Injection Logic," IEEE Trans, on
Computers, Vol. c-26. No. 12, Dec 1977, pp. 1233-1241.

42. Deschamps, J.P., and Thayse, A., "The Module Structure
of Discrete Functions," Proc. Seventh Int. Symp. on
Multiple-valued Logic, North Carolina, 1977, pp. 14-19.

43. Druzeta, A., Vranesic, Z.G., and Sedra, A.S., "Applica­
tion of Multi-Threshold Elements in the Realization of
Many-Valued Logic Networks," IEEE Trans, on Computers,
Vol. c-23, 1974, pp. 1194-1198.

44. Dussault, J., Metze, G., and Krieger, H., "A Multi­
valued Switching Algebra with Boolean Properties,"
Proc. Sixth Int. Symp. on Multiple-valued Logic, Utah,
1976, pp. 68-74.

45. Economou, N.P., "Developing a Technology Base for
Advanced Devices and Circuits," Proceedings of the
IEEE, Vol. 71, NO. 5, May 1983, PP. 601-611.

46. Eichelberger, E.B., and Williams, T.W., "A Logic Design
Structure for LSI Testability," 14th Design Automation
Conf., 1977, pp. 462-468.

47. Epstein, G., "The Lattice Theory of Post Algebras,"
Trans. Amer, Math. Soc., 95, 1960, pp. 300-317.

48. Etiemble, D., "TTL Circuits for Four Valued Bus," Proc.
Eighth Int. Symp. on Multiple-valued Logic, ILL., 1978,
pp. 7-13.

49. Etiemble, D., and Israel, M., "A New Concept for Ter­
nary Logic Elements," in Proc. 1974 Int. Symp.
Multiple-Valued Logic, May 1974, pp.437-455.

- 164 -

50. Etiemble, D., and Israel, M., "Implementation of Ter­
nary Circuits with Binary Integrated Circuits," IEEE
Trans, on Computers, Vol. c-26. No. 12, December 1977,
pp. 1222-1233.

51. Etiemble, D., and Israel, M., "Some New Results for
Ternary Circuits," Proc, Ninth Int. Symp. on Multiple-
Valued Logic, Bath, England, 1979, pp. 167-169.

52. Etiemble, D., and Israel, M., "T.S.C. Multivalued TTL
Circuits," Proc. Tenth Int. Symp. on Multiple-Valued
Logic, Evanston, ILL, 1980, pp. 31-35.

53. Fang, K.Y., and Wojcik, A.S., "An Approach to the Modu­
lar Design of Multiple-Valued logic Functions," Proc.
the Twelfth Int. Symp. on Multiple-Valued Logic, Paris,
France, 1982, pp. 260-266.

54. Frieder, G., Fong, A., and Chao, C.Y., "A Balanced Ter­
nary Computer," Conf. Rec. of the 1973 Int. Symp. on
Multiple-valued Logic, Canada, 1973, pp. 68-88.

55. Funatsu, S., Wakatsuki, N., and Arima, T., "Test Gen­
eration Systems in Japan," in Proc. 12th Design Automa­
tion Symp., June 1975, pp. 114-122.

56. Greniewski, M., "The Use of Trivalent Logics in the
Theory of Automatic Mechnisms: Realization of the Fun­
damental Functions by Circuits," Com. Acad. R.P. Rom-
ine, 6, 1956, pp. 225-229.

57. Grosh, H.R.J., "Signed Ternary Arithmetic," Memorandum
M-1496, Digital Computer Lab., MIT Cambridge, 1952.

58. Hallworth, R., and Heath, G., "Semiconductor Circuits
for Ternary Logic," Proc. Inst. Elec. Engrs., November,
1961.

59. Harnacher, V.C., and Vranesic, Z, "Multivalued Versus
Binary High Speed Multipliers," Conf. Rec. of the 1971
Symp. on the Theory and Applications of Multiple-valued
Logic Design, New York, 1971, pp. 42-53.

60. Hanson, W.H., "Ternary Threshold Logic," IRE. Trans, on
Electronic Computers, Vol. EC-12, June, 1963, pp. 191-
197.

61. Hatzakis, M., "Resists for Fine-Line Lithography,"
Proceedings of the IEEE, Vol. 71, No.5, May 1983, PP.
570-574.

62. Healy, J.T., "Automatic Testing and Evaluation of Digi­
tal Integrated Circuits, Reston Publishing Company,
Inc, Reston, Virginia, 1981.

- 165 -

63. Henle, R.A., "Multistable Transistor Circuit," Trans.
A.I.E.E., November, 1955, pp. 568-570.

64. Herriott, D.R., "The Development of Device Lithogra­
phy," Proceedings of the IEEE, Vol. 71, No. 5, May
1983, PP. 566-570.

65. Higuchi, T., and Hoshi, H., "Special Propose Ternary
Computer for Digital Filtering," Proc. Eighth Int.
Symp. on Multiple-valued Logic, ILL., 1978, pp. 47-54.

66. Higuchi, T., and Kameyama, M., "Static-Hazard-Free T-
Gate for Ternary Memory Element and its Application to
Ternary Counters," Proc. of the sixth Int., Symp. on
Multiple-Valued Logic, Utah 1976, pp. 127-134.

67. Higuchi, T., and Kameyama, M., "Synthesis of Multiple-
Valued Logic Networks Based on Tree-Type Universal
Logic Modules," Proc. of the 1975 Int. Symp. on
Multiple-Valued Logic, Bloomington, 1975, pp. 121-130.

68. Higuchi, T., and Kameyama, M., "Ternary Logic System
Based on T-Gate," Proc. of the 1975 Int. Symp. on
Multiple-Valued Logic, Bloomington, 1975, pp. 290-304.

69. Hirata, K., Ozaki, Y., Oda, M. and Kimizuka, M., "Dry
Etching Technology for 1-um VLSI Fabrication," IEEE
Trans, on Electron Devices, Vol. ED-28, No. 11,
November 1981, PP 1323-1331.

70. Hobson, G.S., Charge -Transfer Devices, John Wiley &
Sons, New York, 1978.

71. Hu, M., and Smith, K.C., "A New Type of Self-Checking
Synchronous Sequential Machine Based on 2-of-3-valued
Logic Circuits," Proc. Twelfth Int. Symp. on Multiple­
valued Logic, France, pp. 139-145.

72. Huertas, J.L., and Carmona, J.M. "Low-Power Ternary C-
MOS Circuits," Proc. Ninth Int. Symp. on Multiple-
Valued Logic, Bath, England, 1979, pp. 170-174.

73. Hurst, S.L., "The Harr Transform in Digital Network
Synthesis," Proc. Eleventh Int. Symp. on Multiple­
valued Logic, Oklahoma, 1981, pp. 10-18.

74. Irving, T.A., Jr., "Memory Elements for Multiple Valued
Sequential Circuits," Ph.D. Dissertation, Auburn
University, Alabama, August 24, 1973.

75. Janczewski, L.J., "Geometrical Approach to Multi-valued
Logic Function Synthesis," Conf. Rec. of the 1973 Int.
Symp. on Multiple-valued Logic, Canada, 1973, pp. 106-
118.

- 166 -

76. Johnson, K.C., "A three-state Flip-flop," Electronic
Engng., 23, 1951.

77. Rabat, C.W., and Wojcik, A.S., "On the Design of 4-
valued Digital Systems," Proc. the tenth Int. Symp. on
Multiple-Valued Logic, Evanston, 111, 1980, pp. 153-
170.

78. Kallmann, H.E., "Resistors Having Stair-shaped Charac­
teristics," Trans, on Computers, July, 1965, p. 763.

79. Kallmann, H.E., "Zero Loop Resistance Circuitry Includ­
ing Multistate Memory Circuits," Trans, on Computers,
July, 1963, p. 762.

80. Kameyama, M., and Higuchi, T., "A New Digital Image
Processor Using Multiple-Valued Logic, " Proc. Twelfth
Int. Symp. on Multiple-valued Logic, France, 1982, pp.
8-16.

81. Kameyama, M., and Higuchi, T., "Design of Radix 4
Signed-Digit Arithmetic Circuits for Digital Filter,"
Proc. Tenth Int. Symp. on Multiple-valued Logic, ILL,
1980, pp. 272-277.

82. Kameyama, M., and Higuchi, T., "Practical State Assign­
ment for Multiple-Valued Synchronous Sequential Cir­
cuits," Proc, Seventh Int. Symp. on Multiple-valued
Logic, North Carolina, 1977, pp. 70-76.

83. Kameyama, M., and Higuchi, T., "Synthesis of Optimal
T-Gate Networks in Multiple-Valued Logic," Proc, the
Ninth Int. Symp. on Multiple-Valued Logic, Bath, Eng­
land, 1979, pp. 190-195.

84. Karp, J.M., "Functional Decomposition and Switching
Circuit Design," J. Soc. Indust. Appl. Hath II (2),
June, 1963.

85. Karpovsky, M., "Spectral Methods for Decomposition,
Design anf Testing of Multiple-Valued Logical Net­
works," Proc. Eleventh Int. Symp. on Multiple-value
Logic, Oklahoma, 1981, pp. 1-9.

86. Karpovski, M., "Testing for Multiple-Valued Computa­
tions, " Proc. Twelfth Int. Symp. on Multiple-valued
Logic, France, 1982, pp. 77-80.

87. Kerkhoff, H.G., and Tervoert, M.L., "The Implementation
of Multiple-Valued Functions Using Charge-Coupled Dev­
ices," Proc. Tenth Int. Symp. on Multiple-Valued Logic,
Evanston, ILL, 1980, pp. 6-15.

- 167 -

88. Knudsen, M.S., "A Nine-Valued Logic Simulator for Digi­
tal NMOS Circuits," Proc. Twelfth Int. Symp. on
Multiple-valued Logic, France, 1982, pp. 293-297.

89. Koenemann, B., Mucha, J., and Zwiehoff, G., "Built-In
Logic Block Observation Techniques," in Dig. Papers,
1979 Test Conf., IEEE Pub. 79CH1509-9C, Oct. 1979, pp.
37-41.

90. Kohout, L., "Application of Multi-valued Logics to the
Study of Human Movement Control and of Movement Disord­
ers," Proc. Sixth Int. Symp. on Multiple-valued Logic,
Utah, 1976, pp. 224-232.

91. Kool, C.F., and Weaver, J.L., "Nonlinear Hall Effect
Ternary Logic Element," Solid-state Electronics, Per-
gamon Process, Vol. 7, 1964, pp. 311-321.

92. Lam, C.L., and Vranesic, Z.G., "A Hashing Method Using
Multi-Valued Feedback Shift Registers," Proc. Seventh
Int. Symp. on Multiple-valued Logic, North Carolina,
pp. 116-119.

93. Ledley, R.S., and Huang, H.K., "Multivalued Logic
Design and Postian Matrices," Proc. 1975 Int. Symp. on
Multiple-valued Logic, Indiana, 1975, pp. 67-75.

94. Lee, C.Y., and Chen, W.H., "Several-valued Combina­
torial Switching Circuits," Trans. Amer. Inst. Electr.
Eng. 75 (AI) (25), July, 1956, pp. 278-283.

95. Lee, S.C., "Vector Boolean Algebra and Calculus,"IEEE
Trans, on Computers, Vol. C-25, Sep., 1976, pp. 865-
874.

96. Lee, S.C., Digital Circuits and Logic Design. Englewood
Cliffs, N.J.: Prentice-Hall, 1976.

97. Lee, S.C., and Tull, M.P.,"A New Method For Realizing
Parallel Processing Machines Using Multiple-valued
Logic," Proc. Tenth Int. Symp. on Multiple-valued
Logic, ILL., 1980, pp. 36-44.

98. Lee, S.C., and Ajabnoor, Y.M., "Digital Calculus,"
Proc. Eighth Int. Symp. on Multiple-valued Logic, ILL.,
1978, pp.128-139.

99. Lee, S.C., and Ajabnoor, Y.M., "Static Hazard Detection
and Elimination in Multi-Level Combinational Circuits,"
Proc. Tenth Int. Symp. on Multiple-valued Logic, ILL,
1980, pp. 187-194.

- 168 -

100. Lee, S.C., and Ballew, W.D., "P(m) Dual Radix Logic and
Xts I L Implementation," Proc. Eleventh Int. Symp. on
Multiple-valued Logic, Oklahoma, 1981, pp. 290-298.

101. Lee, S.C., and Keren-Zvi, y., "A Generalized Boolean
Algebra and Its Application to Logic Design," Proc.
1975 Int. Symp. on Multiple-valued Logic, Indiana,
1975, pp. 88-98.

102. Lee, S.C., and Lee, E.T., "On Multivalued Symmetric
Functions," IEEE Trans, on Computers, March, 1972.

103. Lee, S.C., and Lo, Hao-Yung, "A Map-partition Method
for the Fault Detection on Multi-level Combinational
Logic Circuits," Proc. Eleventh Int. Symp. on
Multiple-valued Logic, Oklahoma, 1981, pp. 283-289.

104. Lepselter, M.P., Allés, D.S., Levinstein, B.J., Smith,
G.E., and Watson, H.A., "A System Approach to 1-^m
NMOS," Proceedings of the IEEE, Vol. 71, No. 5, May
1983, PP. 640-656.

105. Liebler, M., and Roesser, R., "Multiple-Real-Valued
Walsh Functions," Conf. Rec. of the 1971 Symp. on the
Theory and Applications of Multiple-valued Logic
Design, New York, 1971, pp. 84-102.

106. Linear and Digital Semi-Custom IC Design Programs, EXAR
Integrated Systems, Inc., Sunnyvale, CA., 1980.

107. Lo, H.Y., "Generalized Fault Detection for Multivalued
Logic systems," Proc. Tenth Int. Symp. on Multiple­
valued Logic, ILL, 1980, pp. 178-186.

108. Lukasiewicz, J., and Tarski, A, "Untersuchungen uber
den Aussagenkalkul," C.R. Soc. Sci. Lett. Varsovie,
Classe III, vol. 23, 1930, pp. 1-21.

109. Lukasiewicz, J. "0 Logice Trojwartosciocvej (On 3-
valued logic)," Ruch Filosoficzny 5, 1920, pp. 169-171.

110. MCS-85 User's Manual, Intel Corporation, 1977.
111. Mackay, R.S., and McIntyre, R., "Ternary Counters,"

Trans. IRE, Vol. EC-4, December, 1955, pp. 144-149.
112. Maitra, "Cascaded Switching Networks of Two-input Flex­

ible Cells," IRE Trans, on Electronic Computers, Vol.
EC-11 42, April, 1962, pp. 136-143.

113. Mattrey. R.F., Givone, D.D., and Allen, C.M., "Applying
Multiple-valued algebra Concepts to Neural Modeling,"
Conf. Rec. of the 1973 Int. Symp. on Multiple-valued
Logic, Canada, 1973, pp. 127-136.

— 169 —

114. McCluskey, E.J., "A Discussion of Multiple-Valued Logic
Circuits," Proc. Twelfth Int. Symp. on Multiple-Valued
Logic, Paris, France, 1982, pp. 200-205.

115. McCluskey, E.J., "Logic Design of MOS Ternary Logic,"
Proc. Tenth Int. Symp. on Multiple-Valued Logic, Evans­
ton, ILL, 1980, pp. 1-5.

116. McCluskey, E.J., "Logic Design of Multi-Valued I^L
Logic Circuits," Proc. the Eight Int. Symp. on
Multiple-Valued Logic, Rosemont, 111, 1978, pp. 14-22.

117. McCluskey, E.J., "Logic Design of Multivalued I^L Logic
Circuits," IEEE Trans, on Computers, C-28, No.8, Aug.
1979, pp. 546-559.

118. McCluskey, E.J., "Verification Testing," ACM IEEE
Nineteenth Design Automation Conf. Proceedings, Las
Vegas, Nevada, June 14-16, 1982, pp. 495-500.

119. McCluskey, E.J., and Bonzorgui-Nesbat, S., "Design for
Autonomous Test," IEEE Trans, on Computers, Vol. C-30,
No. 11, November 1981, pp. 866-875.

120. McDonald, J.F., "Extensions of the Weiner-Smith Algo­
rithm for m-ary Synchronous Sequential Circuit Design,"
Proc. 1974 Int. Symp. on Multiple-valued Logic, Vir­
ginia, 1974, pp. 135-154.

121. Mei, K.C.Y., "Bridging and stuck-at-Faults," IEEE
Trans, on Computers, Vol. C-23, No. 7, July 1974, pp.
720-727.

122. Meo, A.R., "Modular Tree Structures," IEEE Trans on
Computers, Vol. c-17. May 1968, pp. 432-442.

123. Merrill, R.D., "A Tabular Munimising Procedure for Ter­
nary Switching Functions," IEEE Trans, on Computers,
Vol. EC-15, August, 1966, pp. 578-585.

124. Miller, D.M., "Decomposition in Many-Valued Design,”
Ph.D. Thesis, University of Minitoba, March, 1976.

125. Miller, D.M., "Spectral Symmetry Tests," Proc. Eleventh
Int. Symp. on Multiple-valued Logic, Oklahoma, 1981,
pp. 130-134.

126. Miller, D.M., "Spectral Signature Testing for
Multiple-Valued Combinational Networks," Proc. Twelfth
Int. Symp. on Multiple-valued Logic, France, 1982, pp.
152-158.

- 170 -

127. Miller, D.M., "The Fanout-Free Realization of
Multiple-Valued Functions," Proc. The Eleventh Int.
Symp. on Multiple-Valued Logic, University of Oklahoma,
1981, pp. 246-255.

128. Miller, D.M., and Muzio, J.C., "A Ternary Cellular
Array," Proc. 1974 Int. Symp. on Multiple-valued Logic,
Virginia, 1974, pp. 469-482,

129. Miller, D.M., and Muzio, J.C., "On the Minimization of
Many-valued Functions," Proc. Ninth Int. Symp. on
Multiple-valued Logic, England, 1979, pp. 294-299.

130. Moisil, G.C., "The Use of Trivalent Logics in the
Theory of Automatic Mechanisms. II. Characteristic
Equation of a Polarized Relay," Com. Acad. R.P. Romine
6, 1956, pp. 231-234.

131. Moisil, G.C., "The Use of Trivalent Logics in the
Theory of Automatic Mechanisms. III. Circuits with Real
Contacts," Com. Acad. R.P. Romine 6, 1956, pp. 385-386.

132. Moisil, G.C., "The Use of Trivalent Logics in the
Theory of Automatic Mechanisms. IV. Realization of Work
Functions During Real Operation," Com. Acad. R.P. Rom­
ine 6, 1956, pp. 971-973.

133. Moore, G.E., "Are We Really Ready for VLSI," Caltech
Conf. on VLSI, 1979, pp. 3-14.

134. Moraga, C., and Bittner, A., "Ternary Positional
Automatic Control System," Cof. Rec. of the 1973
Multiple-valued Logic, Canada, 1973, pp. 137-155.

135. Moraga, C., "Ternary Spectral Logic," Proc. Seventh
Int. Symp. on Multiple-valued Logic, North Carolina,
1977, pp. 7-12.

136. Morris, D.J., and Alexander, W., "An Introduction to
the Ternary Code Number System," Electronic Engineering
(32), 1960, p. 554.

137. Mouftah, H.T., and Jordan, I.E., "Integrated Circuits
for Ternary Logic," Proc. 1974 Int. Symp. on Multiple-
Valued Logic, West Virginia, May 1974, pp. 285-302.

138. Mouftah, H.T., and Smith, K.C., "Ternary Logic in a
Positional Control System," Proc. Sixth Int. Symp. on
Multiple-valued Logic, Utah, 1976, pp. 135-141.

139. Mucha, J., "Hardware Techniques for Testing VLSI Cir­
cuits Based on Built-In Test," in Dig. of Papers VLSI,
IEEE Pub. 81-CH1626-1, Feb. 1981, pp. 366-369.

- 171 -

140. Muehldorf, E.I., "Circuits for Ternary Switching Vari­
ables," AEÜ 12, 1958, pp. 176-182.

141. Mukhopadyay, A., "Symmetric Ternary Switching Func­
tions," IEEE Trans, on Computers, Vol. EC-15 (5),
October, 1966, pp. 731-739.

142. Muzio, J.Z., and Bate, J.A., "Three Cell Structures for
Ternary Cellular Arraya," Proc. Sixth Int. Symp. on
Multiple-valued Logic, Utah, 1976, pp. 55-60.

143. Nadig, H.J., "Signature Analysis-Concepts, Examples,
and Guide-Lines," Hewlett-Packard J., May 1977, pp.
15-21.

144. Niessen, C., "Hierarchical Design Methodologies and
Tools for VLSI Chips," Proceeding of the IEEE, Vol. 71,
No.l, January 1983, pp. 66-75.

145. Pao, Y.H., and Altman, J., "Use of Associative Memory
Techniques in Implementation of Multi-valued Logic Sys­
tem," Proc. Sixth Int. Symp. on Multiple-valued Logic,
Utah, 1976, pp. 93-96.

146. Papachristou, C.A., "Content-Addressable Memory
Requirements for Multivalued Logic," Proc. Eleventh
Int. Symp. on Multiple-valued Logic, Oklahoma, 1981,
pp. 62-72.

147. Pomper, G., and Armstrong, J.R., "An Efficient Multi­
valued Minimization," Proc. Ninth Int. Symp. on
Multiple-valued Logic, England, 1979, pp. 300-304.

148. Porat, D.I., "Three Valued Digital Systems," Proc. lEE.
Vol. 116, No. 6, June, 1969, pp. 947-954.

149. Post, E.L., "Introduction to a General Theory of Ele­
mentary Propositions," American J. of Math., Vol. 43,
1921, pp. 163-185.

150. Pradhan, D.K., "A Multivalued Switching Algebra Based
on Finite Fields," Proc. 1974 Int. Symp. on Multiple-
value Logic, Virginia, 1974, pp. 95-112.

151. Pugsley, J.H., and Silio, C.B., Jr., "Some I^L Circuits
for Multiple-Valued Logic," Proc. Eight Int. Symp. on
Multiple-Valued Logic, Rosemont, ILL, 1978, pp. 23-31.

152. Raymond, T.C., "LSI/VLSI Design Automation," IEEE Com­
puter Tutorial Series 10, July 1981, pp. 89-101.

153. Rideout, V.L., " Limits to Improvement of Silicon
Integrated Circuits," Dig. of Papers VLSI: New Archi­
tectural Horizons, COMPCON 80, IEEE Pub., Catalog No.

- 172 -

80CH1491-OC, Feb. 1980, pp. 2-6.
154. Right, R., "The Switching Algebra of Electrical Cir­

cuits with Multi-position Switch Elements," Ingegneria
Ferroviara, 10, 1958, pp. 881-898; 11, 1958, pp. 1019-
1030.

155. Rine, D.C., "Picture Processing Using Multiple-Valued
Logic," Proc. Eleventh Int. Symp. on Multiple-valued
Logic, Oklahoma, 1981, pp. 73-78.

2156. Romeo, D.E., and Schuegraf, R.K., "I L/LSI for Complex
Logic Arrays," Wescon 77, Section 11.

157. Rosenbloom, P.C., "Past Algebras. I. Postulates and
General Theory," Am. J. Math. 64, 1942, pp. 167-188.

158. Russell, L.K., "Multi-Level NMOS Circuits," Proc. COMP.
Con. 1981.

159. Salter, F., "A Ternary Memory Element Using a Tunnel
Diode," IEEE Trans, on Electronic Computers, April,
1964.

160. Santos, J., Arango, B., and Lorenso, F., "Threshold
Synthesis of Ternary Digital Systems," IEEE Trans, on
Electronic Computers, Vol, EC-15, February, 1966, pp.
105-107.

161. Santos, J., Arango, H., and Pascual, M., "A Ternary
Storage Element Using a Conventional Ferrite Tore,”
Proc. IEEE , Vol. EC-13, October, 1964, pp. 608-609.

162. Santos, J., and Arango, H., "A Fast Carry Propagation
Circuit for Base 3 Signed Non-redundant Arithmetic,"
IEEE Trans, on Electronic Computers, April, 1966, p.
254.

163. Santos, J., and Arango, H., "A Graphic Method for the
Synthesis of Threshold Ternary Functions," IEEE Trans,
on Computers, Oct., 1970, pp. 975-976.

164. Santos, J., and Arango, H., "On the Analysis and Syn­
thesis of 3-valued Digital Systems," AFIPS Conf. Proc.
Vol. 25, 1964, pp. 463-475.

165. Savir, J., "Syndrome- Testable Design of Combinational
Circuits," IEEE Trans, on Computers, Vol. C-29, June
1980, pp. 442-451, (corrections; Nov. 1980).

166. Savir, J., "Syndrome-Testing of "Syndrome-Untestable"
Combinational Circuits," IEEE Trans, on Computers, Vol.
C-30, No. 8, August 1981, pp. 606-608.

- 173 -

167. Sequin, C.H., and Tompsett, M.F., Charge Transfer Dev­
ices, Academic Press, Inc. New York", 1975. *

168. Shannon, G.E., "A Symbolic Analysis of Relay and
Switching Circuits," Trans. AIEE, 57, 1938, pp. 713-
723.

169. Sheppard, D.A., "An Application of Many-valued Logic to
Fault Detection," Conf. Rec. of the 1973 Int. Symp. on
Multiple-valued Logic, Canada, 1973, pp. 192-204.

170. Siegel, B.M., and Hanson, G.R., "Ion Sources and
Lithography," Proceedings of the IEEE, Vol. 71, No. 5,
May 1983, PP. 591-592.

171. Silio, C.B., Pugsley, J.B., and Jeng, B.A., "Control
Memory Reduction Using Multivalued ROM's," Proc. Ninth
Int. Symp. on Multiple-valued Logic, England, 1979, pp.
19-26.

172. Singh, A.D., Armstrong, J.R., and Gray, F.G., "Combina­
tional and Sequential Multivalued Logic Design Using
Universal Iterative Tree Structures," Proc. the Ninth
Int. Symp. on Multiple-Valued Logic, Bath, England,
1979, pp. 182-189.

173. Smith, W.R. III., "Minimization of Multivalued Func­
tions," Computer Science and Multiple-valued Logic,
Chapter 8, Rine, D.C. (Editor), North-Holland, 1977.

174. Smith, W.R. III., "Programs KNPI, PITBL," University
Bridgeport, 1974.

175. Smith, W.R. III., "Some Algebraic Methods and Minimiza­
tion Techniques for Multi-valued Lattice Logics," Proc.
1972 Symp. on Theory and Applications of Multiple­
valued Logic Design, New York, 1972, pp. 163-174.

176. Spillman, R., "Single stuck-type Fault Detection in
Multi-valued Combinational Circuits," Proc. Sixth Int.
Symp. on Multiple-valued Logic, Utah, 1976, pp. 97-101.

177. Stark, M., "Two Bits Per Cell ROM," Dig. of Papers
VLSI, C0MPC0N81, Feb. 1981, pp. 209-212.

178. Stewart, J.H., "Future testing of Large LSI Circuit
Cards," in Dig. Papers 1977 Semiconductor Test Symp.,
IEEE Pub. 77CH1261-7C, Oct. 1977, pp. 6-17.

179. Strasilla, U.J., "A Multiple-valued Memory System Using
Capacitor Storage," Proc. 1974 Int. Symp. on Multiple­
valued Logic, Virginia, 1974, pp. 457-468.

- 174 -

180. Su, S,y.H., and Cheung, P.T., "Computer-oriented Algo­
rithm for Minimizing Multi-Valued Switching Functions,"
Conf. Rec. of the 1971 Symp. on the Theory and Applica­
tions of Multiple-valued Logic Design, New York, 1971,
pp. 140-152.

181. Su, S.Y.H., and Cheung, P.T., "Computer Minimization of
Multi-valued Switching Function," IEEE Trans, on Com­
puters, 21(1972) pp. 995-1003.

182. Su, S.Y.H., and Cheung, P.T., "Computer Simplification
of Multi-Valued Switching Functions," D.C. Rine, Editor
Computer Science and Multiple-Valued Logic, Chapter 7,
1977.

183. Su, S.Y.H., and Sarris, A.A., "The Relationship Between
Multivalued Switching Algebra and Boolean Algebra Under
Different Definitions of Complement," IEEE Trans, on
Computers, Vol. C-21, May, 1972, pp. 479-485.

184. Susskind, A.K., "Testing by Verifying Walsh Coeffi­
cients," in Proc. 11th Ann Symp. on Fault-Tolerant Com­
puting (Portland, MA), June 1981, pp. 206-208.

185. Thelliez, S., "Application of Ternary Logic to Incre­
mental Computation," IFAC Pulse Symp., Budapest, April,
1968.

186. Thelliez, S., "On the Arborescent Complex Disjunctive
Decomposition of a Ternary Function with a View to its
Application to the Synthesis of Ternary Combinatorial
Structures," C.R. Acad. Sci. Paris 264, 27th, February,
1967, pp. 419-421.

187. Thelliez, S., Introduction to the Study of Ternary
Switching Structures, Gordon and Breach Science ^>ub-
iishers, 1973.

188. Thelliez, S.,"Note on the Synthesis of Ternary Combina­
torial Networks Using T-gate Operators," Electronic
Letters, May, 1967.

189. Trampel, K.M., "Two-transistor Ternary Inverter," IBM
Tech. Disclosure Bull., 4, July, 1961, pp. 48-49.

190. Tokmen, V.H., and Hurst, S.L., "A Consideration of
Universal Logic Modules for Ternary Synthesis Based
Upon Reed-Muller," Proc. Ninth Int. Symp. on Multiple­
valued Logic, England, 1979, pp. 248-256.

191. Tomabechi, N., Kameyama, M., and Higuchi, T., "Effi­
cient Residue Arithmetic Circuit Using Multiple-Valued
Ring Counters and Its Application to Digital Signal
Processing," Proc. Twelfth Int, Symp. on Multiple-

- 175

valued Logic, France, 1982, pp. 107-112.
192. Trent, J.G., and Givone, D., "An Implementation of

Multiple-Valued Logic Gates Using MESFET's" Proc. Ninth
Int. Symp. on Multiple-Valued Logic, Bath, England,
1979, pp. 175-181.

193. Tull, P., "A Quaternary Logic Simulator," Proc, Tenth
Int. Symp. on Multiple-valued Logic, ILL, 1980, pp.
171-177.

194. Tyal, R.V., and Liechti, C., "Gallium Arsennide Spawns
Speed," IEEE Spectrum, March 1977, pp. 41-47.

195. Tyal, R.V., and Liechti, C., "High-Speed Integrated
Logic with GaAs MESFET's," IEEE J. of Solid-State Cir­
cuits, Vol. SC-9, No. 5, Oct. 1974, pp. 269-276.

196. Vacca, R., "A Three-valued System of Logic and Its
Applications to Base Three Digital Circuits," Proc.
Int. Conf. on Information Processing, Paris, June 15-
20, 1959. Paris, UNESCO, 1960, pp. 407-414.

197. Varnell, G.L., Shah, P.L., and Havemann, R.H., "MOS and
Bipolar VLSI Technologies Using Electron-Beam Lithogra­
phy," Proceedings of the IEEE, Vol. 71, No. 5, May
1983, PP. 612-639.

198. Voith, R.P., "ULM Implicants for Minimization of
Universal Logic Module Circuits," IEEE Trans, on Com­
puters, Vol. c-26. May 1977, pp. 417-424,

199. Vranesic, Z.G,, "A Multi-Valued Switching Theory,"
Ph.D, Thesis, University of Toronto, April 1968,

200. Vranesic, Z,G,, "Applications and Scope of Multiple-
Valued LSI Technology," Dig, of Papers VLSI, C0MPC0N81,
February 1981, pp, 213-216,

201. Vranesic, Z,G,, Lee, E.S., and Smith, K.C,, "A Many­
valued Algebra for Switching Systems," IEEE Trans, on
Computers, Vol, C-19, October, 1970, pp, 964-971,

202. Vranesic, Z,G,, Smith, K,C,, and Druzeta, A,, "Elec­
tronic Implementation of Multi-valued Logic Networks,"
Proc, 1974 Int, Symp, on Multiple-valued Logic, Vir­
ginia, 1974, pp, 59-78,

203. Waliuzzaman, K,M,, and Vranesic, Z,G,, "On Decomposi­
tion of Multi-Valued Switching Functions," Comp. J.,
Vol. 13, November, 1970, pp. 359-362,

- 176 -

204. Webb, D.L., "Generation of Any n-valued logic by One
Binary Operation," Proc. Nat. Acad. Sci. (U.S.A.) 21,
May, 1935, pp. 252-254.

205. Williams, T.W., and Parker, K.P., "Design for
Testability- A Survey," Proceeding of the IEEE, Vol.
71, No. 1, January 1983, pp. 98-112.

206. Wills, M.S., "A Study of Multi-Valued Logic R-Flops,"
Master Thesis, Illinois Institute of Technology, Chi­
cago, Illinois, May 1977.

207. Windecker, R.C., "Stochastic Multiple-Valued Combina­
tional Networks," Proc. Ninth Int. Symp. on Multiple­
valued Logic, England, 1979, pp. 222-231.

208. Wojciechowski, W., "Multiple-Valued Combinational Logic
Design Using Theorem Proving," Ph.D. Thesis, Computer
Science Dept. ITT, May 1980.

209. Wojciechowski, W., "structured Digital Design in
Multiple-Valued Logic," Proc. Twelfth Int. Symp, on
Multiple-valued Logic, France, 1982, pp. 206-222.

210. Wojcik, A.S., and Wojciechowski, W., "Multiple-Valued
Logic Design by Theorem Proving," Proc. Ninth Int.
Symp. on Multiple-valued Logic, England, 1979, pp.
196-199.

211. Wojcik, A.S., "Multi-valued Asynchronous Circuits,"
Conf. Rec. of the 1973 Int. Symp. on Multiple-valued
Logic, Canada, 1973, pp. 217-227.

212. Wolf, E.D., Adesida, I., and Chinn, J.D., "Dry Etching
for Submicron Structures," Proceedings of the IEEE,
Vol. 71, No. 5, May 1983.

213. Xu, S., and Su, S.Y.H., "Testing Feedback Bridging
Faults Among Internal Input and Output Lines by Two
Patterns," ICCC 82 Proceedings, New York, Sep. 28-Oct.
1, 1982, pp. 214-217.

214. Yamada, M., "A New Multilevel Storage Structure for
High Density CCD Memory," IEEE J. of Solid State Cir­
cuits, SC-13, Oct. 1978, pp. 688-692.

215. Yang, C.T., and Wojcik, A.S., "A Logic Simulator for
3-Valued Digital Systems," Proc. Seventh Int. Symp. on
Multiple-valued Logic, North Carolina, 1977, pp. 47-50.

216. Yang, C.T., and Wojcik, A.S., "Parallel and Serial
Decompositions of Multi-Valued Sequential Machines,"
Proc. Eighth Int. Symp. on Multiple-valued Logic, ILL,
1978, pp. 179-186.

- 177 -

217. Yau, S.S., and Tang, C.K., "Universal Logic Circuits
and Their Modular Realizations,” 1968 Spring Joint Com­
puter Conference, AFIPS Proc., Vol. 32, Washington,
D.C.; Thompson, 1968, pp. 297-305.

218. Yau, S.S., and Tang, C.K., "Universal Logic Modules and
Their Applications," IEEE Trans, on Computers, Vol. c-
19, February 1970, pp. 141-149.

219. Yoeli, M., and Halpern, I., "Ternary Arithmetic Unit,"
Proc. lEE, Vol. 115, No. 10, October, 1968, pp. 1385-
1388.

220. Yoeli, M., and Rosenfeld, G., "Logic Design of Ternary
Switching Circuits," IEEE Trans, on Electronic Comput­
ers, Vol. EC-14, February, 1965, pp. 19-29.

221. Yoeli, M., and Shlomo, R., "Application of Ternary
Algebra to the Study of Static Hazards," J.A.C.M. 11
(1), January, 1964, pp. 84-97.

222. Zavisca, E.G., and Allen, C., "An Approach to
Multiple-Valued Sequential Circuit Synthesis," Conf.
Rec. of the 1971 Symp. on the Theory and Applications
of Multiple-valued Logic Design, New York, pp. 206-218.

223. Zavisca, E.G., "Synthesis Techniques in Multiple-Valued
Logic Systems," Ph.D. Thesis, University of New York at
Buffalo, 1971.

224. vanCleemput, W.M., "Hierarchical Design for VLSI; Prob­
lems and Advantages," Caltech Conference on VLSI, Janu­
ary 1979, pp. 259-274.

APPENDIX A

RELEVANT PAST WORK

J.Lukasiewicz [109] (1920) was the first pioneer to
publish on three-valued symbolic logic. The next, year E.L.
Post [149] introduced a general theory of elementary propo­
sitions which was one of the first publications on multi­
valued logics. He gave a definition of m-valued logic that
was a generalization of the usual two-valued calculus. He
defined the most important operations and discussed some of
their properties by means of the tables of values.

B.A. Bernstein [17] (1924) presented three-element
algebras. His publication gave a representation of a com­
plete or incomplete truth table by a polynomial defined from
the sum and product of modulo 3 operations.

J. Lukasiewicz and Tarski [108] (1930) introduced m-
valued logics which were included in the Post calculi, but
not conversely. In fact, the Post logics are symbolically
complete, i.e. all operations and relations in these systems
definable by tables of values are definable in terms of the
primitive ideas of these logics; however, the Lukasiewicz-
Tarski system do not share this property.

- 178 -

- 179 -

D.L. Webb [204] (1935-1937) reduced the required number
of undefined ideas to one and proved most of the important
propositions of m-valued logic by numerical interpretation
in term of the congruity. This consists, essentially, in
using tables of values in a general way that eliminates
trial and error.

P.C. Rosenbloom [157] (1941) introduced postulate-set
for Post algebras and proved the fundamental theorems from
the assumptions. The Post algebras are generalized in anal­
ogy to the extension from 2-element Boolean algebras to m-
element Boolean algebras. He proved that two m-valued Post
algebras with the same finite number of elements were simply
isomorphic, and deduced, as a corollary his postulate-set
was completed when a postulate to the number of elements was
added.

A.D. Booth and J. Ringrose [20] (1951) were the first
to publish on the realization of tristable memory using
triode values, then K.C. Johnson [76] noted supplements of
the analysis of tristable memory.

H.R.J. Grosh [57] (1952) studied the properties of the
algebraic ternary representation of numbers applied to the
arithmetic operations.

R.A. Henle [63] (1955) applied the principle of reali­
zation of multi-stable memory using closed loop systems con­
taining nonlinearities to some transistorized circuits. This

— 180 —

was an interesting introduction to the design of different
types of tristable trigger circuits. R.S. Mackay and R.
McIntyre [111] described the design, using triode values, of
a ternary pulse counter based on the use of the nonlineari­
ties inherent in grid current. (A study of the problem of
functional stability and of coupling between the stages has
been completed.)

M. Greniewski [56] (1956) represented the states 0,1,2
by current -i,0,+i and by using three position relays; he
also described the realization of various ternary functions
of one or more variables. C.Y. Lee and W.H. Chen [94] stu­
died the synthesis of combinational structures using opera­
tors with an application to the series of algebraic ternary
adder. G.C. Moisil [130,131,132] applied 3-valued logics to
the design of circuits using contacts and relays.

In 1958, the first full scale 3-valued computer was
completed at Moscow state University in Soviet Union. R.D.
Berlin [16] defined the concept of a functional set, and
examined various functional sets and the corresponding
trivial decompositions with a view of synthesis of m-ary
combinatorial structures. After reviewing m-valued logics
and ternary logics, E. I. Huehldorf [140] described two
methods of synthesis of ternary combinatorial structures
based on the existence of trivial disjunctive decompositions
using the operators J%(x), a £{0,1,2}, and maximum and
minimum functions. He used the semiconductors for the reali-

- 181 -

zation of ternary logic circuits and applied to the ternary
adder. R. Right [154] applied m-valued logic to circuits
containing m-position switches.

After defining an example of complete functional com­
binatorial operators which comprised the maximum, minimum, ^210

(x), fj^oo(x), and f^gofx) functions and which could easily
be realized by means of vacuum tubes, R. Vacca [196] (1959)
examined the problem of realization of a ternary adder con­
sisting of two half-adders. However, the problem of the
representation of the numbers in ternary was not dealt with
in his article; the adder structure described was not very
economical.

J. Again [2] (1960) described the SETUN computer in
which ternary logic was used. G. Epstein [47] used a number
of operators larger than the number of operators chosen by
the Rosenbloom to enable the set of axioms of the Post alge­
bra to be simplified and also to allow this algebra to be
studied with the aid of Boolean algebra and lattices. After
reviewing a representation of numbers by means of a natural
ternary code or an algebraic ternary code and remarking on
algorithms for addition, subtraction and multiplication,
D.J. Morris and W. Alexander [136] proposed the realization
of ternary switching elements by means of magnetic tores.

H.B. Baskin [14] (1961) described a circuit made up
with four tunnel diodes which might enable the realization
of basic structure in a logic of m values. After reviewing

- 182 -

the advantages obtained by the use of m-ary bases in the
digital systems, R, Hallworth and G. Heath [58] described
ternary switching circuits realized by means of semiconduc­
tors. Designed on the basis of the elementary functions pro­
perties of the components, these circuits allow the realiza­
tion of many functions. K.H. Trampel [189] described a logic
circuit comprised of two transistors which realized the com­
binatorial function

H.B. Baskin [13] (1962) studied the problem of the syn­
thesis of the m-ary combinatorial structure by means of the
maximum, minimum and (x) operators. After remarking on
the realization of the operators of the catalogue, two
methods of synthesis were given. The first was based on the
trivial decomposition of the given function and the second
was the result of an examination of the truth table which
represented the function.

D.J. Anderson and D.L. Dietmayer [7] (1963) used a fer­
rite core with two apertures with suitable winding and 3-
phase excitation to obtain a large number of ternary com­
binatorial elements in a 0,1,2 = -v(t), 0, v(t) representa­
tion, where the quantities v(t) are current or voltage
pulse. However, the introduction of combinatorial structures
poses problems of insulation and excitation which did not
seem to had been solved. W.H. Hanson [60] was the first to
publish on the synthesis of ternary combinatorial structures
using ternary threshold operators, but the methods of syn­

- 183 -

thesis were not very convenient. H.E. Kallmann [79] dis­
cussed the possibility of realizing memories with m stable
states by means of nonlinear and negative resistances. J.H.
Karp [84] studied the problem of the disjunctive and non­
disjunctive decomposition of m-ary functions, and applied
the results obtained by taking into account the properties
of the given function to the synthesis of binary structures.

C.F. Kool and J.L. Weaver [91] (1964) studied the non­
linear Hall effect of the ternary logic element using the
0,1,2: -i, 0, +i representation, where i is the current. The
nonlinear magnetoconductive properties of the semimetal of
high mobility (bismuth) and the majority and dual fglO
function ternary operators were realized economically. The
dynamic characteristics of these elements were studied
theoretically and experimentally. F. Salter [159] described
the design of tristable trigger circuit by means of a tunnel
diode. J. Santos, H, Arango and M. Pascual [161] described
the design of a ternary memory by means of ferrite tore. J.
Santos and H. Arango [164] gave an application of ternary
logic to an adder, and studied a method of the synthesis of
2-layer structures. They also described a binary-coded ter­
nary memory and the use of a tore memory in the ternary
logic. H. Yoeli and R. Shlomo [221] described an application
of the ternary logic to the detection of static switching
hazards in the binary combinatorial structures.

N.P. Brusentzov [23] (1965) used fast magnetic amplif-

- 184 -

iers as physical elements and as an algebraic ternary
representation of the numbers, and he also described the
design of an adder in ternary logic. H.E. Kallmann [78]
described the realization of nonlinear resistances having a
staircase characteristic using diodes connected in opposi­
tion and in parallel. M. Yoeli and G. Rosefeld [220]
developed a method for synthesizing the ternary combina­
torial structures using a catalogue of operators made up
from the maximum and minimum functions and the functions J
(x). The structures obtained are of the two-layer type.

R.D. Merrill [123] (1966) gave a practical method of
two-layer synthesis of a ternary function defined by truth
table, and then described the realization by means of ter­
nary threshold logic operators of the corresponding combina­
torial structure. The method described is a generalization
to the ternary case of the simplifying methods suggested by
McClusky. A. Mukhopadyay [141] extended Shannon's work on
the symmetric binary functions. After some definitions con­
cerning the symmetric ternary functions were given, a number
of theorems were stated and demonstrated. These theorem
make it possible to work out methods of identification and
synthesis of the ternary switching structures. J. Santos, H.
Arango and F. Lorenso [160,162] developed the synthesis of
the ternary combinatorial structure by means of threshold
operators of the bivalent type. This method of the synthesis
was an extension of Quine's method and enables a truth table
in a two-layer type of structure to be constructed; the

- 185 -

advanced-carry circuit, which makes it possible to use an
algebraic ternary adder, was also discussed.

S. Thelliez [186,188] (1967) described the operation of
possible realization by means of transistors and diodes of
Lee and Chen's T operator, and constituting with the con­
stant functions |0|, |1|, ||2| as a functional set. An
algorithm for the synthesis of ternary combinatorial struc­
ture based on the functional decomposition was then given.

C.M. Allen and D.D. Givone [4] (1968) offered an algo­
rithm for the synthesis of 2-layer m-ary combinatorial
structure. S. Thelliez [185] introduced the design and the
construction with semiconductors of reliable ternary logical
operators. He also introduced the incremental computation
elements with a view to obtaining specialized calculating
structures. M. Yoeli and I. Halpern [219] proposed a ternary
arithmetic unit which was based on the ternary symmetric
number representation using digit +1, 0, -1. The advantages
of this number representation were given in detail, and full
adder was developed.

D.I. Porat [148] (1969) presented the developments in
algebras and techniques for realization of 3-valued switch­
ing functions. Digital arithmetic, ternary codes, composi­
tion algebras, minimization, circuit and sequential circuit
design were discussed. He then demonstrated the feasibility
of 3-valued digital systems.

— 186 —

Z.G. Vranesic, E.S. Lee and K.C. Smith [201] (1970)
described a many-valued switching function based on a basic
set which was potentially implementable in the economic
sense. They developed an algorithmic simplification tech­
nique to facilitate synthesis of nontrivial many-valued
switching functions. J. Santos and H. Arango [163] described
a graphic method using a modified Veitch diagram for the
calculation of the weighting vector. The method was based on
an algebraic procedure that allows the evaluation of each
coordinate solely in terms of the value of the function and
independently of the other coordinates.

R.C. Braddock, G. Epstein and H. Yamanaka [21] (1971)
presented multi-valued logic design in binary computers
which emphasized three transistor, tri-stable circuits. V.C.
Hamacher and Z.G. Vranesic [59] compared the cost and speed
of 15 digit ternary parallel multiplier and 24 bit binary
parallel multiplier. S.C. Lee and E.T. Lee [102] described
an algorithm for identifying multi-valued symmetric switch­
ing functions using parallel processing and investigated
some general properties of these functions. They also
defined the mixed multi-valued symmetric and algorithm for
identifying. M.E. Liebler and R.P. Roesser [105] introduced
a set of functions that took on a prime number of real
values which was generalized from conventional Walsh func­
tions. S.Y.H. Su and P.T. Cheung [108] presented a cubical
representation for multi-valued switching functions which
was very convenient for digital computer processing. E.G.

- 187 -

Zavisca and C.M. Allen [222] presented an approach to
multi-valued sequential circuit synthesis.

S.Y.H. Su and A.A. Sarris [183] (1972) presented the
relationship between multi-valued switching algebra and
Boolean algebra by introducing different definitions for the
complements of multi-valued variables. S.Y.H. Su and P.T.
Cheung [181] presented a cubical representation for multi­
valued switching functions; they also introduced "compound
literals" which yielded a realization with less hardware
than the existing methoods. W.R. Smith III [175] described
some algebraic properties and minimization techniques for
multi-valued lattice logics.

G. Prieder, A. Fong and C.Y. Chao [54] (1973) completed
the first emulation of a full scale ternary computer. T.A,
Irving [74] presented a new family of multi-valued memory
devices based on a unique set of multi-valued logic opera­
tors. The devices were compared to binary memory elements
(flip-flop). They also demonstrated the synthesis of the
memory devices from the set of operators. L.J. Janczewski
[75] introduced a new method of multi-valued logic function
synthesis based on implementating a simple and practical
realization operator "two side Upper Limiter". The method
was based on an assumption that every m-valued, n-variable
function forms a discrete n-dimension hyper space. R.P. Mat-
trey, D.D.Givone and C.M. Allen [113] applied multi-valued
algebra concepts to neural modeling. C. Moraga and A.

- 188 -

Bittner [134] showed that ternary driving of a stepping
motor increased the resolution better than the binary driv­
ing with the same motor. A comparative study of parallel and
serial error detectors was represented including comments on
the tolerances allowed for threshold gates. D.A. Sheppard
applied [169] multi-valued logic to fault detection. A.S.
Wojcik [211] applied multi-valued logic to asynchronous cir­
cuits.

Z.G. Vranesic, K.C. Smith and A.Druzeta [202] (1974)
designed R-stable circuits which are the kernel of R-valued
storage elements. D.K. Pradhan [150] showed that for N, a
power of prime number, we could have a N valued algebra
where the defined operations were that of a finite field.
The modular algebra which is complete for N, a prime
number, was included. Furthermore, it was established that
N-valued switching functions for N-power of a prime number
could be expressed in a form similar to Reed-Muller expan­
sion for binary functions. J.F. McDonald [120] extended the
Weiner-Smith Algorithm for m-ary synchronous sequential cir­
cuit design. H.T. Mouftah and I.E. Jordan [137] designed
the basic circuits for ternary operators (Inverters, NAND
and NOR) with the COS/MOS integrated circuits. U.J.
Strasilla [179] discussed a multi-valued memory system using
capacitors as storage elements. D.M. Miller and J.C. Muzio
[128] described a cellular array that could realize any com­
binational ternary switching function.

- 189 -

R.S. Ledley and H.K. Huang [93] (1975) extended the
principles of Boolean matrix methods to Postian matrix
methods and investigated its application in the multi-valued
logic design. S.C. Lee and Y. Keren-Zvi [101] showed that
any multi-valued logic truth table could be represented by a
single (vector) function. They also found a canonical sum-
of-products and product-of-sums form of this function. P.T.
Cheung and D.M. Purvis [28] described a computer-oriented
heuristic algorithm for the minimization of multiple-output
multi-valued switching functions. The positional cubical
representation for multi-valued switching functions was
extended to represent multiple-output functions.

J. Dussault and G. Metze [44] (1976) introduced an m-
valued (m = 2) generalized Boolean algebra obtained by
extending the set of operators of m-valued Boolean algebras.
The additional operators needed for functional completeness
were unary operators and were selected such that the basic
structure and the simplicity of Boolean algebras were
retained. Y.H. Pao and J. Altman [145] introduced the use of
associative memory techniques in the implementation of
multi-valued systems. R. Spillman [176] examined the problem
of detection of single stuck-type faults in multi-valued
combinational circuits. H.T. Mouftah, K.C. Smith and Z.G.
Vranesic [138] presented the application of COS/MOS
integrated circuits in the construction of a three-valued
positional control system. D.M. Miller and J.C. Muzio [124]
considered the two-place decomposition in multi-valued logic

- 190 -

system. L. Kohout [90] applied multi-valued logic to brain
modelling of neuromuscular and to modelling of movement con­
trol.

T.T. Dao, E.J. McCluskey, and L.K. Russell [41] (1977)
introduced multi-valued integrated injection logic. C.
Moraga [135] introduced the spectrum domain to represent the
ternary functions which allowed special transformation pro­
perties of function to be easily detected. J.P. Deschamps
and A. Thayse [42] used a unified theory that yields partic­
ular cases in canonical expansions: Newton expansions, the
Nyguist expansions, the Kodandapani-Setlur expansions, and
the Taylor expansions. J.T. Butler [25] presented the syn­
thesis technique for multi-valued fanout-free networks by
extending the partition matrix technique of Ashenhurst and
Curtis. T.C. Yang and A.S. Wojcik [215] presented the
results of simulating the ternary asynchronous logic net­
works at the gate level by using a FORTRAN simulator. M.
Kameyeiroa and T. Higuchi [82] described the practical state
assignment for the multi-valued synchronous sequential cir­
cuits. C.L. Lam and Z.G. Vranesic [92] described a method
for hashing keys in file addressing applications using the
multi-valued nonlinear feedback shift registers which
allowed the implementation of the hardware in a very simple
way.

D. Etiemble [48] (1978) presented two different ver­
sions of voltage mode multi-valued circuits to define a 4-

- 191 -

valued bus: TTL circuits for a 4-valued open collector bus,
and TTL circuits for a 4-valued + high impedance bus. E.J.
McCluskey [1161 introduced logic design of multi-valued with

PI L logic circuits. D. Akins [3] suggested an approach to
computer arithmetic for designers of multi-valued logic pro­
cessor. T. Higuchi and H. Hoshi [65] offered the design
features of a special-propose microprogram-controlled ter­
nary computer suited for realizing the real-time digital
filters by programming. S.C. Lee and Y.M. Ajabnoor [98]
extended the concept of Boolean difference (Boolean deriva­
tive) to multi-valued switching algebra, and showed that
every multi-valued switching function of these algebras has
a Maclaurin series expansion, and the derivation of tests
for fault detection of stuck-type faults of multi-valued
combinational circuits was prssented. T.C. Yang and A.S.
Wojcik [216] described the parallel and serial decomposi­
tions of multi-valued sequential machines. K.W. Current and
D.A. Now [34] applied the multi-valued threshold logic in
large scale integrated circuits for digital signal process­
ing circuits.

C.B. Silio, Jr., J.H. Pugsley and B.A. Jeng [171]
(1979) used multi-valued read only memory to reduce the con­
trol memory. E.J. McCluskey [117] presented an algebraic

2method for designing multi-input, multi-valued I L circuits.
J.L. Huertas and J.H. Carmona [72] presented a new family of
ternary C-MOS circuits whose principal advantage lies in the
avoidance of resistors for generating the logic levels. J.G.

- 192 -

Tront and D.D. Givone [192] introduced GaAs MESFETs to use
as a basic circuit elements in multi-valued circuits. A.D.
Singh, J.R. Armstrong and P.G. Gray [172] used universal
iterative tree structures to design multi-valued combina­
tional and sequential circuits. H. Karoeyama and T. Higuchi
[83] described a synthesis of multi-valued logic networks
with the minimum number of T-gates by considering the
universal logic module implicant and equal residue function
in a tree-structured network. W. Wojciechowski and A.S.
Wojcik [210] presented an approach to the design of multi­
valued combinational logic using an automatic theorem prover
as a design tool. R.C. Windecker [207] extended the theory
of stochastic combinational networks of two-valued to
multi-valued logic. V.H. Tokmen and S.L. Hurst [190]
described the ternary switching functions which may be real­
ized by the use of universal logic modules; the specifica­
tion and use of such modules are based upon the canonic
Reed-Muller ternary expansion.

H.G. Kerkhoff and M.L. Tervoert [87] (1980) introduced
the charge-coupled device to implement multi-valued logic in
large scale integrated circuits. S.C. Lee and M.P. Tull
[97] introduced a method for realizing parallel processing
machines using multi-valued logic. V. Dahl [38] introduced a
three-valued logic for natural language computer applica­
tion. S.L. Hurst suggested that optical signals may well be
eminently suitable for conveying ternary and higher-valued
data due to the absence of cross-talk between optical

- 193 -

frequencies and other factors. M.P. Tull [193] presented
four-valued gate-level logic simulator which was programmed
in FORTRAN and operated in a timesharing environment. H.Y.
Lo [107] introduced two methods of deriving fault detection
tests in algebraic and map forms of multi-valued combina­
tional logic. S.C. Lee and Y.M. Ajabnoor [99] presented
static hazard detection and static hazard elimination after
they are detected in multi-level multi-valued combinational
circuits. M. Kameyama and T. Higuchi [81] studied radix 4
signed-digit arithmetic circuits for high-speed digital
filtering.

M. Karpovsky [85] (1981) surveyed some new theoretical
results on spectral methods for functional decomposition,
synthesis and testing of multi-valued logical networks with
many inputs and many outputs. S.L. Hurst [73] used Harr
transformation to synthesize the multi-valued networks. A.
Papachristou [146] investigated the implementation of
multi-valued logic by content-addressable memory processing.
D.C. Rine [155] introduced picture processing using multi­
valued logic. H. Coy [31] investigated the description of
multi-valued functions by the use of decision diagrams which
allowed a straightforward implementation of functions by
either MAX- and MIN-gates (and some unary operators) or by a
single gate type, the T-gate (or multiplexer). Functional
tests for these implementations are easily derived from the
diagrams. D.M. Miller [125] examined the spectral methods
for the detection of a broad class of function symmetries.

- 194 -

S.C. Lee and Hao-Yung Lo [103] introduced a map partition
method for fault detection in an multi-valued logic system
which was simpler than the conventional map method. S.C. Lee
and W.D. Ballew [100] examined the upward compatibility of
binary Boolean algebras with Post algebras.

K.W. Current [32] (1982) presented the active and pas­
sive circuits for conversion of quaternary logic signals to
analog waveforms by using the standard bipolar integrated
circuit technology. M. Kameyama and T. Higuchi [80] proposed
a digital processor called multiple-valued array processor.
A. Beach and J.R. Armstrong [15] studied a chip layout for

2multi-valued I L. M. Karpovsky [86] considered methods for
testing (error detection, correction, and location) in
multi-valued computations which are based on systems of
linear equality and inequality checks and on analysis of the
corresponding syndromes. N. Tomabechi, M. Kameyama and T.
Higuchi [191] proposed the residue arithmetic circuit using
multi-valued ring counters which provided the capability of
counting the multi-valued simultaneously. M. Hu and K.C.
Smith [71] proposed a self-checking synchronous sequential
machine based on a 2-of-3 valued logic circuit. D.M. Miller
[126] presented the application of spectral techniques to
fault detection which allowed the use of a weaker condition
in the selection of constrained syndrome tests than is pos­
sible in the conventional function domain. W.S.
Wojciechowski [209] presented a methodology for structured
design of digital systems in multi-valued logic. K.Y. Fang

- 195 -

and A.S, Wojcik [53] presented an approach to systematic
design of multi-valued logic functions using a decomposition
technique that used a small number of modules to implement
the functions. M.S. Knudsen [88] presented a nine-valued
logic simulation algorithm especially suitable for a fast
and accurate analysis of digital NMOS-circuit.

APPENDIX B

MULTI-VÀLÜED CIRCUIT TECHNOLOGY

Recently, the HV circuits may be divided into three
classes according to the semiconductor technology [40]:
bipolar, MOS/MESFET and CCD devices. The bipolar is the
current mode operation device and is not limited to any
logic value. The MOS/MESFET is the voltage mode operation
device, where active devices are used as voltage switches
and signals are voltage level; its practical purposes is
confined to the ternary logic only. The CCD is the charge
operation mode device and can be used with any logic value.

B.l MV Bipolar Device Technology

Recently, the bipolar device technology TTL, ECL and Î
L are investigated by several researchers. The I^L is
received the most attention in the MV circuits because its
circuit structure is highly suitable for the implementation
of "threshold" type of functions [200] which are particu­
larly useful in the MV arithmetic circuits. It also can be
fabricated in the higher MV LSI/VLSI circuits package den-

2sity due to the fact that I L contains only active transis­
tor components (no resistors). On the other hand, the pack­

- 196 -

- 197 -

age density of bipolar LSI/VLSI logic such as TTL and ECL
are limited primarily by the area occupied by resistors and
wiring. Due to practical photoetching limitations, resistor

2area will not easily be reduced by the same factor as I L
2transistor areas [156]. The other advantages of I L over

the TTL and ECL are as follows [156]:
2(a) Low power consumption; therefore, I L gate power dissi­

pation is much lower than the equivalent TTL function
(a factor of 10 to 100) and it also has higher IC pack­
age density.

2(b) I L wafer processing is much simpler than TTL and ECL
(4-5 masks as compared to 7-9).

2However, to this date I L is not likely to directly
replace high speed logic, such as ECL because the increased

2processing difficulty necessary for I L to achieve ECL per-
2formance would largely nullify the yielded advantage. But I

L has a significant advantage over the MOS technologies in
2that I L can easily be combined with TTL and ECL on the same

LSI/VLSI chip to achieve additional speed.

B.2 A MV Circuits
2I L devices functioning as current amplifiers are suit­

able for multi-threshold logic circuit implementation and
2multi-valued logic primitive gates realization. The MV I L

devices design rules are given by Dao [40] and have been
fabricated according to these rules and have proven to be

- 198 -

reliable and reproducible.

There are three fundamental circuit operations in
2current mode MV I L which has been introduced by Dao [41]:

Input replication, weighted sums, and threshold detection.

a. Input replication

This operation replicates the input signal by using
current-mirror imaging or the folded-collector method. The
method used to control the saturation of the n-p-n transis­
tors is based on adding an extra "dummy collector" to the
multicollector n-p-n transistor and folding this back to the
base. Fig B.l shows the basic current-mirror circuit opera­
tion, it is assumed that the dummy collector area (DA) is
smaller than the other collector areas (CA) by factor of x,
and assuming the same current density in each collector.

Eg. B.l

‘•cl
c2

c3

Pig. B.l L Current-Mirror Circuit.

b. Weighted sums or linear summation

This operation forms the arithmetic sum of several

- 199 -

weighted replicas by varying the size of the output collec­
tors. Collectors of different sizes and from different
current mirrors are connected together to form a weighted
sum. For example, the weight sum in Fig. B.2 is equal to 3x
+ y.

3x + y

Fig. B.2 I^L Weight Sum Circuit,

c. Threshold detection

This operation determines if the sum exceeds a deter­
mined threshold value by setting thresholds. The attractive­
ness of lies in the ease with which constant current
sources can be integrated into the gate structure. Fig. B.3
shows this circuit configuration; for input x < T the output
y will be 0, for x > T the output will be p.

- 200 -

C) T

X T-xN Si

Fig. B.3 I L Threshold Detection Circuit.

With these three basic operations of the I^L circuit,
it is possible to generate any MV elements. The following
five MV element [41,151] circuit and their relative cost are
given. The relative cost is considered from the number of
transistors in the circuit. These MV I^L elements can be
implemented in any m-valued.

MAX Gate Element

X

1 C)

MAX(x,y)

î = r i iy I . f "
1 (x-y if X

I, “ p-MAX(x,y

if x ^ y

y)

Fig. B.4 I L MAX Gate Circuit.

Fig. B.4 shows the circuit of this gate; x and y are
m-valued input variables, two constant current sources are
(p, p, where p = m-1), the output MAX(x,y) is equal to x if

- 201 -

X > y and is equal to y if y > x. The relative cost (number
of transistors) of this gate is 3.

MIN Gate Element

MIN(x.y)

Fig. B.5 I^L MIN Gate Circuit

Pig. B.5 shows the circuit of this gate; x and y are
m-valued input variables, three constant current sources are
(p, p, p), the output MIN(x,y) is equal to x if x < y and is
equal to y if y < x. The relative cost of this gate is 4.

COMPLEMENT Gate Element

Fig. B.6 I L COMPLEMENT Gate Circuit.

Fig. B.6 shows the circuit of this gate; x is a m-
valued input variable, one constant current source is (p),

- 202 -

the output X = p - X. The relative cost of this gate is 1

LITERAL Gate Element

a-h
x(a,b)

Fig. B.7 I^L LITERAL Gate Circuit,

Fig. B.7 shows the circuit of this gate; x is an m-
valued input variable, the four constant current sources are
(a-1/2, b+1/2, 1, p), the output x(a,b) is the values of x
between a and b when a < b. The relative cost of this gate
is 4.

CYCLE Gate Element

P - 1

p-

Fig. B.8 I^L CYCLE Gate Circuit

- 203 -

Fig. B.8 shows the circuit of this gate; x is an un­
valued input variable, a is a m-valued constant, four con­
stant current sources are (p+1/2, 2p, p-1, 2p), the output x
= (x plus a) mod m. The relative cost of this gate is 5.

2Several I L HV circuits have been designed with these
operators, such as multiplexer, universal quad logic gate,
quaternary adder, quaternary full product, quaternary ROM,
quaternary quantizer, quaternary D latch. Quaternary D
flip-flop, master-slave RS m-flop, quaternary-coded decimal
counter, ternary to binary decoder, etc. The layout of some
of these circuits has been developed by Beach and Armstrong
[15]. Table B.l illustrates the truth table for the quater­
nary full adder and Fig. B.9 shows the quaternary full adder

2(QFA) circuit implemented by the I L technology.

Table B.l Quaternary Full Adder Truth Table.
CARRYSUM

- 204 —

X o-

y o-

c± o-

-ÇZT

Ci

x+y+c

ij

I

“X

^ 8

Fig. B.9 I L Circuit Implemented in QFA.

The actual construction of each of the operator cir­
cuits designed above has been done by Ballew [11]. This
actual construction has been done with integrated circuits
offered by EXAR integrated systems in their custom IC
design kit [106]. Figures B.IO (a), (b), and (c) illustrate
COMP gate, MAX gate, and CYCLE gate respectively.

— 205 —

5.0V

2.3Smi2

2.4V

267KA7
X ----

(a) COMP gate construction

1. 6mn

(b) MAX gate construction

- 206 -

X+a
mod 4

(c) CYCLE gate construction
Fig. B.IO The Actual I L Circuit Gate Construction.

B.3 TTL MV Circuits

The TTL MV circuits have been studied by Etiemble and
Israel 148,49,50,51,52]. Their method is based on Birk and
Farmer's method [18] which implemented ternary circuits with
the current technologies of the TTL binary integrated cir­
cuits. A general scheme to realize the function f(x,y) is
given in Fig. B.ll. The ternary to binary conversion is
realized with threshold detectors (decoder circuit) and the
binary to ternary conversion is realized by encoder the cir­
cuit.

207

CIRCUITS
2-VALUED

Fig. B.ll Implementation of Function f(x,y).

B.4 ECL MV Circuits

The ECL MV circuits are used to implement a multi­
threshold element which was originally proposed by Druzeta
[43]. The quaternary threshold logic full adder (QFA)
[33,34], four-valued threshold logic digital correlator [36]
and four-valued threshold logic counter [35] have been
reported by Current and How. The ECL is the fastest standard
logic family due to its nonsaturating operation [34]. The
ECL threshold is not purely a current mode technique; input
signals are voltage levels which are converted into current
levels inside the circuits by differential pairs, currents
are then linearly combined and results are converted back
into voltage levels before any threshold detections which
are performed by differential voltage comparators. Conven­
tionally, fixed voltage references are created for the
thresholds which raises the problem of sensitivity of the
detectors with bias voltage and fabrication [40].

Several ECL MV circuits have been simulated and/or
breadboarded with discrete devices. One of these is the

- 208 -

quaternary threshold logic full adder circuit [33,34]. The
QFA is implemented by either using the current steering pro­
perties of ECL based, current-mode threshold logic circuits

2or the current steering capabilities of I L. Logical vari­
ables are developed as integer multiples of an easily dupli­
cated reference amount of current. These currents are then
summed and differentiated to produce the desired logical
results. The QFA accepts two four-valued input currents A
and B and a binary carry input current C, and produces a
two-quaternary-digit, four-valued output word CS that
represents the sum of the inputs, where C is the most signi­
ficant digit. The transfer characteristics for this function
are shown in Fig. B.12. The circuit realization to be
described makes use of a set of switching thresholds illus­
trated in Fig. B.12(a). Figures B.12(b) and (c) show the
SUM and CARRY outputs. Fig. B.13 shows ECL-based QFA [34].

- 209 -

Ref. Voltage

Carry
1
0
3
2
1

Sum

0

Fig. B.12 QFA Transfer Characteristic.
(a) Switching Thresholds
(b) CARRY Output
(c) SUM Output.

cc

800
•<— O SUM

OCARRY
EE

Ô VEE
Fig. 3.13 Quaternary Threshold Logic Full Adder Circuit.

- 210 -

B.5 HOS/MESFET MV Devices Technology

The MOS/MESFET devices technologies received particular
interest in the HV LSI/VLSI due to the considerations of
functional density, power consumption, high speed (MESFET
only) and interfacing with the existing binary circuits.
These devices are operated with voltage mode; therefore the
circuit use voltage levels to represent the HV logic values.

a. HOS HV Circuits

Recently, two types of HOS circuit has been considered
for use in the HV LSI/VLSI; CHOS (COSHOS) and NHOS. The
CHOS HV circuits were first proposed by Houftah and Jordan
[137] who designed the basic ternary operators with the Com­
plementary Symmetry Hetal Oxide Semiconductors (COSHOS).
There are two basic types of ternary operators that they
considered: unary operators and binary operators. The unary
operators consist of simple ternary inverter (STI), positive
ternary inverter (PTI), negative ternary inverter (NTI),
forward diode (FD) and reverse diode (RD). Their truth
table and circuits are illustrated by Table B.2 and Fig.
B.14 respectively.

- 211 -

Table B.2 Truth Table of Unary Basic Ternary Operators.

X STI(x) PTI(x) NTI(x) FD(x) RD(x)
+ - - - + 0

0 0 + — 0 0

- + + + 0 —

INPUT

j o OUTPUT (PTI)
12Kf

_ 0 OUTPUT (STI)

INPUT <o~

Ü
12k | input

f o OUTPUT (NTI)

T^S(-4V)

20K

I
OUTPUT

FD

..OUTPUT

RD

Fig. B.14 Unary Basic Ternary Operator COSMOS Circuits.

The binary operators consist of ternary NOR and ternary
NAND and their truth table and circuits are illustrated by
Table B.3 and Fig. B.15 respectively.

- 212 -

Table B.3 Truth Table of Binary Basic Ternary Operators,

X y TOR TAND TNOR TNAND

+ + + + - -

+ 0 + 0 - 0

+ - + - - +

0 + + 0 - 0

0 0 0 0 0 0

0 - 0 - 0 +

- + + — +

- 0 0 - 0 +

- - - — + +

- 213 -

INPUT 1

INPUT 2

12K

OUTPUT
I2K

H-

NOR

V (4V) DD

12K
OUTPUT

12K

INPUT 1 o

INPUT 2 O

NAND

Fig. B.15 Binary Basic Ternary Operator COSMOS Circuits.

With these basic COSMOS ternary operators, several fun­
damental ternary circuits, such as CYCLE gate, J%(x) arith­
metic circuits , T-gate or multiplexer and ternary flip-flop
or memory (D-flip flop, T-flip flop) have been constructed.
However, the Mouftah and Jordan design approaches [137] were
mainly restricted to ternary logic exclusively. Huertas and
Carmona [72] presented the C-MOS which may be extended to
the four-valued logic system.

Recently, the development of CMOS and NMOS ternary
logic circuits are based on the design technique depicted in
Fig. B.16 [29], where a circuit is composed of three stages:

- 214 -

(1) The first stage consists of input decoders which con­
vert input ternary signals into binary signals
representing literal two-valued functions of single
ternary variables.

(2) The second stage consists of literal logic which com­
bines literals by means of binary logic circuits.

(3) The third stage consists of an output encoder which
converts binary signals from the second stage into the
correct ternary output.

Binary •
Signals

Binary
SignalsTernary

Input
Signals.».

Ternary
Output
Signals

Literal
Logic

Fig. B.16 A Block Diagram for a Ternary Circuit Based on
Binary Logic.

The NMOS ternary was introduced by Russell [158]. Sup­
pose a standard NMOS depletion load technology with a sin­
gle supply voltage V is considered. The built-in threshold
Vrp of an enhancement switch device provides an obvious way
to use the standard inverter as a voltage detector of level
Vt as shown in Fig. B.17(a). In order to implement the ter­
nary logic, a second level detector with threshold set at
midway between and has to be devised. Russell pro­
posed a totem pole structure of the switch device of the

- 215 -

inverter, whereby the source of normal switch is connected
to another enhancement device with a shorter gate to source
(Vqs=0) and the threshold voltage . Fig. B.17(b) shows the
total circuit which operates as a source follower as soon as
the input level exceeds the compound threshold (Vj + V-t).
The result of this is that = 1/4 Vcc and V t + Vt = 3/4 Vcc

LEVEL 2-e»-

OUT <012>

Fig. B.17 (a) Two Level Detector
(b) Output circuit.

HcCluskey [115] presented a method for designing ter­
nary NMOS logic circuits which is based on a circuit family
invented by Russell [158]. The circuits are fabricated by
using standard silicon gate enhancement/depletion technology
which is suitable for MV LSI/VLSI implementation. The fabri-

— 216 —

cated circuits operate with three signal voltages; <0, 2.5,
5> volts equivalent to the logic symbol <0, 1, 2> respec­
tively. Table B.4 shows the maps for a modulo 3 full adder
and the NMOS circuit implementation of this table is shown
in Fig. B.18.

217 -

Table B.4 A Modulo 3 Full Adder Truth Table.
SUM

CIN = 0 CIN = 1

A = CIN-P CIN -Q

C = 0

B = CIN-Q

0 0 2 1
C = 0

1 2P = *0* Y2 + *1' Yl + %2' YO Q = x . y + x . y + x , y

CIN-P

218 -

CARRY
CIN = 0 CIN = 1

X 0 1 2 X 0 1 2

0 1 1 1 0 1 1 0
1 1 1 0 1 1 0 0
2 1 0 0 2 0 0 0
A = CIN'T CIN-T-Q

IX 0 1 2 X 0 1 2

0 d d d 0 d d 1
1 d d 1 1 d 1 1
2 d 1 1 2 1 1 1
B = 1 B =1

0 C = 0
0 0 1 1 X + y + X - y

- 219 -

 ̂suu
BmHI Jt- »«

I
IHv»

PH 5m

Æ L c O ' i T J ° r n

JV O O I w o

- - Ẑ:: d H 4 r?:
I 4

Fig. B.18 NMOS Circuits for a Modulo 3 Full Adder,

b. MESFET MV Circuits

MV GaAs MESFET device was introduced by Trent [192] in
1979. The GaAs appears superior to silicon for high fre­
quency and high-speed devices because of its higher electron
mobility and energy-band gap. The FETs are used to take
advantage of the higher electron mobility. The GaAs MESFETs
are majority carrier devices and are basically junction
field-effect transistors, and they exhibit no charge-storage
effects. They have no insulating metal oxide layer, and

— 220 —

their relatively simple geometry may permit easier fabrica­
tion of narrow channel lengths. The GaAs MESFET may be used
when speed is the primary requirement, and silicon can still
be used for low-speed less costly circuits.

Fig. B.19 shows the basic structure of a GaAs MESFET
device; the device has three terminals, source, gate, and
drain. In order for the GaAs MESFET device to be useful in
the MV logic, the pinch off voltage Vp of the transistor
must be variable. The pinch off voltage is given as

-qNd 2
Vp = — * a

26
where Nd is the channel doping concentration, a is the chan­
nel thickness, q is the electron charge, and 6 is the sem­
iconductor permittivity. The detail of physical operation of
the MV GaAs MESFET can be found in Tyal and Liechti's work
[194,195]. The MV GaAs MESFET 5-valued MAX, MÎN, COMP, LIT
and their relative cost (number of MESFET in the circuit)
are shown in Figs. B.20, B.21, B.22, B.23 respectively.

Source Drain

Ohmic contac

Ohmic contact

n-api layer

Depletion region

Fig. B.19 A Basic Structure of a GaAS MESFET.

221 -

%

Fig. B.20 A GaAs MESFET 5-Valued MAX Gate.

Fig. B.21 A GaAs MESFET 5-Valued MIN Gate.

- 222 -

Voltaic level
Shifter

Fig. B.22 A GaAs MESFET 5-Valued COMP Gate.

Fig. B.23 A GaAS MESFET 5-Valued LIT Gate,

C, Charge Couple Device MV Technology

CCD was introduced for MV logic by Kerkhoff and Dijks-
tra [87]. This device is very well suited for the MV
LSI/VLSI logic design because of its high packing density,
low power consumption , and ease of fabrication. It has been
predicted [27] that a four-valued CCD memory will have a

- 223 -

higher information density; and therefore, a lower cost per
bit when compared with a binary RAM having the same minimum
geometry. This fundamental idea has been put into practice
by workers of Mitsubishi, who have doubled the storage capa­
bility of a binary 65 k bit CCD memory by packing two bits
of memory into each storage site [214].

The basis of the CCD is the Metal-Oxide-Silicon (MOS)
capacitor. Fig. B.24(a) [167] shows an isolated MOS capaci­
tor formed by a metal electrode deposited on a thermally
oxidized p-type silicon substrate . Fig. 8.24(b) shows a 4-
valued potential well (bucket) [87] which can store a cer­
tain amount of electron charge, where s is storage gate, Vg
is a voltage apply to the storage gate, is the interface
potential, and is the unity charge packet. Fig. 8.24(c)
shows the basic structure of a charge couple device which
consists of an input section, a transfer section and an out­
put section, where t is the transfer gates. The detail of
the physical operation of the CCD is given by Sequin and
Hobson [167,70]. Fig. 8.25 [87] shows the symbols using in
the CCD MV.

- 224 -

M E T A L
O X I D E ,ÿ-v-

eoee eoe ee oo eo e7chan>/elÎ
M I N O R I T Y C A R R I E R S : S T 0 P ^ ; 1

V !
D E P L E T E D A R E A \ ;

p - SILICON

T
(a) An Isolated HOS capacitor

d'.

'1
o'

(b) A Four-valued potential well

(c) A CCD structure
Fig. B.24 The Basic Structure of CCD.

- 225

ID□

B T O f t A O C O A T C . W E L L C A P A C I T Y O V *

3 O . . C O N T A I N I U O 1 Q .

C L O C K E D T R A N S F E R D A T E I C M A R O E

P U M P I

U N C L O C K E O B A R B I E R O A T S

<o>

H U Z]

B R E M O V A B L E B A R R I E R O A T S

Fig. B.25 The CCD Symbolics.

There are three basic operations to design the CCD MV
circuits which will be discussed as follows:

a. Charge addition

This operation can add the charge packets in different
storage wells and transfer them into a common storage well.
The example is illustrated in Fig. B.26.

- 226 -

■’0 I
a \

o >
\ /

3
o >

\ /

Fig. B.26 The CCD Charge Addition,

b. Charge subtraction

This operation uses the charge overflow principle. The
maximum charge handling capacity of a well is proportional
to its gate area and the voltage differential between the
gate and its adjacent one. If the source provides a charge
in excess of the capacity of the sink, then the excess
charge is transferred to the subsequent sink given a proper
bias of the sinks and the barrier gates. This operation is
shown in Fig. B.27.

\ ■ a \ a \
o> <i> <»>■ \ /

0 ”=

Fig. B.27 The CCD Charge Overflow Principle

- 227 -

B.6 Charge follower/complement

A very important structure in the CCD MV logic is the
floating gate shown in Fig. B.28. It is able to detect a
charge pocket non-destructively under the floating sense
gate 1, and control the transfer of another charge pocket by
means of the floating barrier gate. An amount of charge
under the floating sense gate in this structure is converted
into a certain voltage on the barrier gate. This barrier
gate control propriety has been judiciously put into use by
Kerkhoff et al. [87] to perform charge threshold detection,
charge complementation, charge regeneration, and charge
redistribution (or well extension).

y<o.i>

<i,o>

Fig. B.28 CCD Charge Control with Floating Gates.

Several CCD HV circuits have been designed [87], such
as literal gate, four-valued full adder, quaternary-to-
binary-converter, binary-to-quaternary-converter, successor,
complement, etc. An example of the four-valued full adder
is shown in Fig. B.29. The four-valued full adder performs

- 228 -

the addition of two four-valued inputs X and Y and a two­
valued carry input Cin, resulting in four-valued sum output
S and two-valued carry output Cout. in the behavior of the
full adder circuit, two situations can be distinguished:

1. The total input charge (Cin + X + Y) does not exceed
three unity charge packets. In this case all the input
charges are transferred to the sum output.

2. The total input charge exceeds three unity charge pack­
ets. The above mentioned transfer path is now blocked.
The sum and the required carry output signal are now
obtained by the charge transfer via a parallel path.

The CCD four-valued full adder static operation has
been simulated by Kerkhoff and is shown in Fig. B.30. All
the data for calculations were derived from their design
lay-out.

- 229 -

‘0

'O’

, - s ■ - \
 1\ _ / ■ <3>» \ ■o> 1■ » \

o> 1/ our

I Ç Z Z 3
7 \

< S i>

/

Fig. B.29 The Schematic Diagram of Four-Valued Full Adder.

/I/1/lr
- 230 -

w /i/
t

L

JVI
c

TiV
t

n_nr-L__n_nj
Fig. B.30 The Static Simulation of the Operation of the

Four-Valued Full Adder.

