
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE CONTEXT-AWARE LEARNING MODEL

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

JOOHEE SUH
Norman, Oklahoma

2017

THE CONTEXT-AWARE LEARNING MODEL

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Dean F. Hougen, Chair

Dr. Ingo Schlupp

Dr. Sridhar Radhakrishnan

Dr. S. Lakshmivarahan

Dr. John Antonio

© Copyright by JOOHEE SUH 2017
All rights reserved.

DEDICATION

to

My dog, Heemang

A Korean Female Dog Named Heemang

For

Being with me under all circumstances since born in 2006.

Acknowledgments

I would like to send my deep gratitude to my Ph.D. advisor, Professor Dean F.

Hougen. I could learn from him how to do research in a more precise way and how

to organize extensive information related to the research work in a professional

and efficient way. Especially, I could learn what kind of preliminary research

steps should be preceded in a very concrete way; and thus I could broaden my

perspectives in data handling, research analysis, and technical writing. All of

his feedback (not only on my research work but also on my homeworks from

his classes that I took) are valuable for me as I could realize the followings: (1)

what I should improve, (2) what I missed, and (3) what I did well. Moreover,

I appreciate his consistent encouragement and patience whenever the visible

research results were not as I expected or research progress was not moving as

fast as I planned.

I would like to send my appreciation to Professor Chong-Woo Woo who was

my Master advisor in Seoul, South Korea. The first time I started to have my

interests in artificial intelligence (AI) and smart robotics was when I took his

undergraduate AI course at Kookmin University in 2006. I could step into the

research world since I wrote my first conference paper with him under his great

advising. Also, he was the person who strongly recommended for me to study

abroad especially in the USA and thus I could take my courage to move to the

USA.

I would like to send my appreciation to all the professors who gave me

iv

research assistant positions during my doctoral career so that I could broaden

my academic experiences and personal connections. I could survive financially

and thus could finalize this dissertation thanks to Dr. Andrew H. Fagg, Dr.

Joseph P. Havlicek, Dr. Ronald D. Barnes, and Dr. Chris Weaver.

Finally, I would like to show my sincere appreciation to all the Professors

who are in my Ph.D. committee: Dr. Dean F. Hougen, Dr. Ingo Schlupp, Dr.

Sridhar Radhakrishnan, Dr. S. Lakshmivarahan, and Dr. John Antonio. I

could finally accomplish my doctoral degree with the great support from my

committee. Thank you.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 3
1.3 The Overview of the Context-Aware Learning Model (CALM) . 4
1.4 CALM Concepts and Algorithms 6
1.5 CALM Characteristics . 8
1.6 Organization of the Dissertation 11

2 Essential Neuroscience 13
2.1 A Neuron . 13
2.2 The Electrical Signals of Neurons 14
2.3 The Communications of Neurons 15
2.4 Neurotransmitters . 17
2.5 Neural Systems . 17
2.6 Animal Behavioral Neurobiology 18

3 Artificial Neural Networks 24
3.1 Overview of Artificial Neural Networks 24
3.2 Supervised Neural Learning Model 27

3.2.1 A Perceptron ANN with Logistic Regression 28
3.2.2 2-Layered ANN with Logistic Regression 51
3.2.3 Generalized Arbitrary-Depth ANN with Logistic Regression 74

3.3 Reward-based Neural Model . 95
3.3.1 Hebbian Plasticity . 95
3.3.2 Reward-based Hebbian Plasticity 103
3.3.3 Reward-based Hyperbolic Hebbian Plasticity 109

4 Related Works 112
4.1 Reward-based Learning . 112
4.2 Neurorobotics Learning . 115
4.3 Context-based Robot Learning 120

5 The Context-Aware Learning Model (CALM) 124
5.1 System Architecture . 124
5.2 CALM-rLRB . 132

vi

5.2.1 CALM-rLRB Features 132
5.2.2 CALM-rLRB-ANN . 139
5.2.3 CALM-rLRB Learning 139
5.2.4 The Role of the Cost Function in CALM-rLRB 147
5.2.5 The Role of Weight Update Rule in CALM-rLRB 150

5.3 CALM-eLRB . 152
5.3.1 CALM-eLRB Features 152
5.3.2 CALM-eLRB-ANN . 160
5.3.3 CALM-eLRB Learning 160

5.4 CALM-epLRB . 167
5.4.1 CALM-epLRB Features 168
5.4.2 CALM-epLRB-ANN . 174
5.4.3 CALM-epLRB Learning 174

5.5 CALM-nepLRB . 177
5.5.1 CALM-nepLRB Features 178
5.5.2 CALM-nepLRB-ANN . 184
5.5.3 CALM-nepLRB Learning 187

6 CALM Experiments and Results 192
6.1 Experimental Setup . 192

6.1.1 CALM-ANNs . 192
6.1.2 Synthetic Data Sets . 194
6.1.3 Evaluation Methods . 197

6.2 Experimental Results on Synthetic Data Sets 199
6.2.1 Accuracy Analysis . 200
6.2.2 Cost Function Values Analysis 222
6.2.3 Accumulated Rewards Analysis 231
6.2.4 Dynamics Analysis . 240

7 Discussions 269
7.1 Issue 1: The Meaning of Accumulated Rewards 269
7.2 Issue 2: The Role of Depth . 270
7.3 Issue 3: The Magic Number 3 270
7.4 Issue 4: CALM-eLRB vs CALM-epLRB 271
7.5 Issue 5: When to Use CALM-rLRB 272

8 Conclusions 274
8.1 Conclusions . 274
8.2 Contributions . 275

9 Future Work 277
9.1 Increasing Feasibility . 277
9.2 Increasing Reliability . 277
9.3 Performance Analysis . 278

vii

Bibliography 280

viii

List of Figures

1.1 CALM Algorithm Venn Diagram 5

3.1 Perceptron ANN Architecture 28
3.2 Perceptron ANN Data Table . 30
3.3 Perceptron ANN Data Space . 31
3.4 Perceptron ANN Net Process 34
3.5 Perceptron ANN Activation Process 35
3.6 Perceptron ANN Role of Cost Function 38
3.7 Perceptron ANN Role of Weight Update when δ(i) > 0 43
3.8 Perceptron ANN Role of Weight Update when δ(i) < 0 45
3.9 2-Layered ANN Architecture . 52
3.10 2-Layered ANN Data Table . 53
3.11 2-Layered ANN Data Space . 54
3.12 2-Layered ANN Net Process . 57
3.13 2-Layered ANN Activation Process 58
3.14 2-Layered ANN Role of Cost Function 61
3.15 2-Layered ANN Role of Weight Update when δk(i) > 0 65
3.16 2-Layered ANN Role of Weight Update when δk(i) < 0 67
3.17 Generalized Arbitrary-Depth ANN Architecture 75
3.18 Generalized Arbitrary-Depth ANN Data Table 76
3.19 Generalized Arbitrary-Depth ANN Data Space 77
3.20 Generalized Arbitrary-Depth ANN Role of Cost Function 84

5.1 CALM System Architecture . 126
5.2 CALM-rLRB Algorithm Diagram 134
5.3 CALM-rLRB Role of the Cost Function 149
5.4 CALM-eLRB Algorithm Diagram 153
5.5 CALM-epLRB Algorithm Diagram 169
5.6 CALM-nepLRB Algorithm Diagram 180
5.7 CALM-nepLRB-ANN . 185

6.1 Synthetic Data Sets . 195
6.2 Accuracy on Data 1 - Training Fold 1 207
6.3 Accuracy on Data 1 - Testing Fold 1 208
6.4 Accuracy on Data 2 - Training Fold 1 209
6.5 Accuracy on Data 2 - Testing Fold 1 210
6.6 Accuracy on Data 3 - Training Fold 1 211
6.7 Accuracy on Data 3 - Testing Fold 1 212
6.8 Accuracy on Data 4 - Training Fold 1 213

ix

6.9 Accuracy on Data 4 - Testing Fold 1 214
6.10 Accuracy on Data 5 - Training Fold 1 215
6.11 Accuracy on Data 5 - Testing Fold 1 216
6.12 Cost Function Values on Data 1 (Fold 1) 224
6.13 Cost Function Values on Data 2 (Fold 1) 225
6.14 Cost Function Values on Data 3 (Fold 1) 226
6.15 Cost Function Values on Data 4 (Fold 1) 227
6.16 Cost Function Values on Data 5 (Fold 1) 228
6.17 Accumulated Rewards on Data 1 (Fold 1) 232
6.18 Accumulated Rewards on Data 2 (Fold 1) 233
6.19 Accumulated Rewards on Data 3 (Fold 1) 234
6.20 Accumulated Rewards on Data 4 (Fold 1) 235
6.21 Accumulated Rewards on Data 5 (Fold 1) 236
6.22 Actual Accumulated Rewards in CALM-nepLRB on DATA1 (Fold

1) . 237
6.23 Actual Accumulated Rewards in CALM-nepLRB on DATA2 (Fold

1) . 237
6.24 Actual Accumulated Rewards in CALM-nepLRB on DATA3 (Fold

1) . 237
6.25 Actual Accumulated Rewards in CALM-nepLRB on DATA4 (Fold

1) . 238
6.26 Actual Accumulated Rewards in CALM-nepLRB on DATA5 (Fold

1) . 238
6.27 Dynamic Data Sets . 241
6.28 Dynamic Accuracy on Data 6 242
6.29 Dynamic Accuracy on Data 6 Comparison 243
6.30 CALM-eLRB EKB Transition on Data 6 (L = 2) 251
6.31 CALM-eLRB EKB Transition on Data 6 (L = 3) 252
6.32 CALM-eLRB EKB Transition on Data 6 (L = 4) 253
6.33 CALM-eLRB EKB Transition on Data 6 (L = 5) 254
6.34 CALM-eLRB EKB Transition on Data 6 (L = 6) 255
6.35 CALM-epLRB EKB Transition on Data 6 (L = 2) 256
6.36 CALM-epLRB EKB Transition on Data 6 (L = 3) 257
6.37 CALM-epLRB EKB Transition on Data 6 (L = 4) 258
6.38 CALM-epLRB EKB Transition on Data 6 (L = 5) 259
6.39 CALM-epLRB EKB Transition on Data 6 (L = 6) 260
6.40 CALM-nepLRB EKB Transition on Data 6 (L = 2) 261
6.41 CALM-nepLRB EKB Transition on Data 6 (L = 3) 262
6.42 CALM-nepLRB EKB Transition on Data 6 (L = 4) 263
6.43 CALM-nepLRB EKB Transition on Data 6 (L = 5) 264
6.44 CALM-nepLRB EKB Transition on Data 6 (L = 6) 265

x

List of Tables

1.1 CALM Characteristics . 11

5.1 CALM Symbols . 125
5.2 CALM-rLRB Learning Example 137
5.3 CALM-eLRB Learning Example 155
5.4 CALM-eLRB EKB Status at Learning Step t Before Saving Cur-

rent Experience . 156
5.5 CALM-eLRB EKB Status at Learning Step t After Saving Current

Experience . 156
5.6 CALM-eLRB EKB Status at Learning Step t+1 Before Saving

Current Experience . 157
5.7 CALM-eLRB EKB Status at Learning Step t+1 After Saving

Current Experience . 157
5.8 CALM-eLRB EKB Status at Learning Step t+2 Before Saving

Current Experience . 158
5.9 CALM-eLRB EKB Status at Learning Step t+2 After Saving

Current Experience . 158
5.10 CALM-eLRB EKB Status at Learning Step t+3 Before Saving

Current Experience . 159
5.11 CALM-eLRB EKB Status at Learning Step t+3 After Saving

Current Experience . 159
5.12 CALM-epLRB Learning Example Before Selective-Power-Update 171
5.13 CALM-epLRB EKB Status at Learning Step t+4 Before and

After Saving Current Experience 172
5.14 CALM-epLRB Learning Example After Selective-Power-Update 172

6.1 5-Fold Cross Validation for Each Data Set 198
6.2 CALM Accuracy (%) on Data 1 (ITR = 200) 202
6.3 CALM Accuracy (%) on Data 2 (ITR = 200) 203
6.4 CALM Accuracy (%) on Data 3 (ITR = 200) 204
6.5 CALM Accuracy (%) on Data 4 (ITR = 200) 205
6.6 CALM Accuracy (%) on Data 5 (ITR = 200) 206

xi

List of Algorithms

1 Perceptron ANN Batch Learning Vectorwise Pseudocode 32
2 Perceptron ANN Batch Learning Matrixwise Pseudocode 46
3 2-Layered ANN Batch Learning Vectorwise Pseudocode 55
4 2-Layered ANN Batch Learning Matrixwise Pseudocode 69
5 Generalized Arbitrary-depth ANN Batch Learning Vectorwise

Pseudocode . 79
6 Generalized Arbitrary-depth ANN Batch Learning Matrixwise

Pseudocode . 87
7 Iterative Hebbian Learning Pseudocode 97
8 Iterative Reward-based Hebbian Learning Pseudocode 104
9 Iterative Reward-based Hyperbolic Hebbian Learning Pseudocode 110
10 CALM-rLRB-MAIN Pseudocode 140
11 CALM-LRB-CORE Pseudocode 145
12 CALM-eLRB-MAIN Pseudocode 161
13 CALM-LRB-CORE-GEN Pseudocode 163
14 CALM-epLRB-MAIN Pseudocode 175
15 CALM-SELECTIVE-POWER-LEARNING Pseudocode 176
16 CALM-nepLRB-MAIN Pseudocode 188

xii

Abstract

The ultimate goal of this research is to build a novel, generalized, arbitrary-

depth, neural controller that performs reward- and experience-based neuromod-

ulatory learning, which is online, bootstrapping, interactive, incremental, and

dynamic. Autonomous agents, such as robots, maybe able to adapt to uncertain

environments if they use reward-based, interactive learning. Unfortunately, typi-

cal reward-based models are based on discrete state and action spaces whereas

many interesting applications contain continuous spaces. This suggests the

use of an artificial neural controller with continuous weights. Adapting the

neuromodulatory features of biological brains into a robot controller plays an

important role in building more biological robots; however, a biologically feasible

learning model does not necessarily promote increased learning efficiency or

optimizing the neural networks in a generalized way. For these reasons, this

research introduces the Context-Aware Learning Model (CALM) and four differ-

ent learning algorithms that operate within this model, all of which use logistic

regression backpropagation and hyperbolic, reward-based learning. This research

introduces a novel way of combining reward- and experience-based learning with

an arbitrary-depth artificial neural network and shows how specific behavioral

neurobiological features are applied in building a novel neuromodulatory learning

mechanism. CALM is evaluated with five metrics on six synthetic data sets and

shows promising performances.

xiii

Chapter 1

Introduction

This chapter provides the overall motivation for the research in this disserta-

tion, lists and explains the research questions that drive the approach, introduces

concepts and characteristics of the CALM, and finally outlines the rest of this

dissertation.

1.1 Motivation

There have been increasing numbers of investigations on building novel

bio-inspired learning models, especially in the neurorobotics area. In the neu-

rorobotics area, most robot behavioral control research focuses on adapting

biological neuromodulatory processes into robot behavior decisions following

biologically demonstrated concepts of vertebrate brains [15] [50] [23]. These

learning models show successful performances application to specific domain

problems and open more possibilities of building more biologically intelligent

and practical robots. Some of this research focuses on simulating brain dynamics

that mimic certain parts of vertebrate brains. However, most neurorobotics re-

search has not been as generalized as the typical machine learning approach and

usually focused on how to graft neurobiological features onto a computational

system with domain-specific data and fixed neural framework. In this regard,

this dissertation introduces a novel, generalized, arbitrary-depth, neural network

inspired by four features of behavioral neurobiology: (1) combination-sensitive

1

neurons, (2) recurrent inhibition, (3) appetitive learning with serotonergic neu-

romodulation, and (4) aversive learning with dopaminergic neuromodulation.

There are limitations for an agent to adapt to an unknown or changing

environment if the agent is only designed to use a supervised learning model.

A supervised learning model, such as a typical neural network that uses an

optimization method such as logistic regression backpropagation (LRB) or least

mean square optimization (LMS or delta rule), is based on a fixed set of training

data with a static optimization method [11] [43]. Therefore, if, after deployment,

there is new input data that was not covered by the original training data or if

the desired output changes in a dynamic environment, an agent with a supervised

learning model might have some limitations on its decision making since the new

information had not been trained before exploring the world. In other words, a

supervised learning is not designed to be applied to dynamic or online learning

problems since it depends on being given correct answers about a static world.

However, it can be a powerful learning method in handling complex and sophis-

ticated classification problems under the two conditions: (1) it has appropriate

training data which is sufficient to cover the given input problem space and (2)

it is applied to static data. CALM embraces the sound computational process of

logistic regression optimization (as described in Section 3.2) and thus its benefits

CALM adapts this supervised optimization method to dynamically changing

environments without target outputs by using rewards.

Reward-based learning exploits feedback information from an environment

for its decision making. The reward-based learning types can be classified

depending on the way they use the feedback information. If the learning sys-

tem has a state transition model and predicts which would be the next state

2

based on a reward value, it is generally called reinforcement learning [57] [64].

On the other hand, if a model directly utilizes reward for updating its neural

weights, it is generally called reward-based neural learning. Both types have

been investigated and applied to various learning domains and have shown good

performance [30] [11]. However, the both learning types may not be designed for

a generalized optimization process. CALM introduces how reward information

is applied into a generalized, arbitrary-depth, neural optimization process and

shows its performance based on several sets of generalized synthetic data.

In summary, this research is motivated by three different areas: (1) bio-

inspired learning, especially based on behavioral neurobiology, (2) supervised

learning, and (3) reward-based learning. Each area has its own learning benefits

and CALM aims to be a novel learning model which is able to have the benefits

of each learning method. The details of CALM are fully described in Chapter 5.

1.2 Research Questions

The motivation and enthusiasm for this dissertation comes from two per-

spectives: (1) general machine learning and (2) bio-inspired learning. Based on

this, the research questions are described from each perspective. Note that the

following questions are not intended to cover the detailed topics of this research

but are intended to give general cues for outlining this research.

First, in terms of general machine learning: Is there a generalized, arbitrary-

depth, neural learning model that provides the following abilities simultaneously?

(1) is able to recognize the similarities and differences between contexts based

3

on rewards from its environment, (2) can learn without a pre-defined world

model or pre-structured knowledge-base, (3) can learn from both the current

situation and past learning experiences, and (4) is able to adapt to a dynamically

changed environment. This multi-part question represents a big motivation for

CALM followed by sub questions: Will using memorized experiences improve its

learning ability? And if so, what is an appropriate computational process for

that and is the model generalizable with sound mathematical derivations?

Second, in from the bio-inspired learning perspective, there is one more

important question in addition to the above research questions: Is there a gen-

eralized, bio-inspired, model that is able to demonstrate benefits compared to

non-bio-inspired learning model?

With the above conceptual questions, the ultimate goal of this research is to

build a novel, bio-inspired, arbitrary-depth, neural learning model that is online,

bootstrapping, interactive, incremental, and dynamic. The intention is to be

able to apply CALM to robotics as well as to non-robotics domains.

1.3 The Overview of the Context-Aware Learn-

ing Model (CALM)

This dissertation introduces the Context-Aware Learning Model (CALM).

This dissertation also introduces four implementations of CALM: (1) CALM

reward-based Logistic Regression Backpropagation (CALM-rLRB), (2) CALM

experience-based Logistic Regression Backpropagation (CALM-eLRB), (3) CALM

4

experience-powered Logistic Regression Backpropagation (CALM-epLRB), and

(4) CALM neuromodulatory experience-powered Logistic Regression Backpropa-

gation (CALM-nepLRB). The first three algorithms, CALM-rLRB, CALM-eLRB,

and CALM-epLRB, use the novel, arbitrary-depth, neural learning model pro-

posed herein and the last one, CALM-nepLRB, adds additional novel, bio-inspired

mechanisms. CALM-nepLRB is inspired by four features of neurobiology: (1)

combination-sensitive neurons, (2) recurrent inhibition, (3) appetitive learning

with serotonergic neuromodulation, and (4) aversive learning with dopaminergic

neuromodulation.

Figure 1.1: CALM Algorithm Venn Diagram

The Figure 1.1 conceptually specifies how four different CALM algorithms

are classified in the form of Venn diagram. All of the algorithms are reward-

based, so this is the outer ring within which they all belong. CALM-rLRB is

5

the simplest of these algorithms, using only reward as the basis of its learning,

so it belongs only in the outer ring. Moving in one ring, the concept of an

experience is introduced. An experience is synthetic information which includes

a context, a corresponding output, and a corresponding reward. Algorithms

that are experience-based use these experiences to optimize its artificial neural

connections. CALM-eLRB falls into this category. Moving in another ring,

we find experience-powered algorithms. An experience-powered algorithm is

one that uses extended experiences, which utilizes a past successful neural con-

nection as well as past experiences; CALM-epLRB falls into the category of

experience-powered learning algorithms. In the inner ring, neuromodulation

is added to provide additional behavioral and learning features. Embracing

all of these features, CALM-nepLRB, is most novel and sophisticated of the

algorithms proposed herein. The Table 1.1 clarifies the different learning features

of each algorithm. The detail principles and specifications of each algorithms

are described in Chapter 5 and the performances comparison are shown and

discussed in Chapter 6. Note that, in the Table 1.1, ‘CALM’ is omitted in each

algorithm name in order to reduce the table size.

1.4 CALM Concepts and Algorithms

Based on the concept of CALM, a brief explanation of each algorithm and

definitions of terminologies used in this dissertation are described as follows.

Context awareness originates from ubiquitous computing [65] [66].

In ubiquitous computing, “context is any information about the

circumstances, objects, or conditions by which a user is surrounded

that is considered relevant to the interaction between the user and

6

the ubiquitous computing environment [49] [48].”

“Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that

is considered relevant to the interaction between a user and an

application, including the user and applications themselves [1] [10].”

“Context-Aware Computing is the use of context to provide relevant

information and/or services to the user, where relevancy depends on

the particular task of the user. A System is context-aware if it uses

context to provide relevant information and/or services to the user,

where relevancy depends on the user’s task [1] [10].”

Context in CALM is defined as any combined, compressed, or encoded

information which can be reasonably used as input to an artificial neural network.

Therefore each context can be considered to be an input vector for the network.

Context-awareness, then, is defined in this dissertation as learning an appro-

priate action to take in a given context through inference from a well-structured

knowledge based.

CALM-rLRB uses reward-based learning through logistic regression back-

propagation using feedback from its environment.

CALM-eLRB uses a knowledge base of experiences to ensure that adjustments

to its neural weights to accommodate each new experience do not obscure what

it has already learned. An experience refers to integrated synthetic information

indicating (1) a given context, (2) the output the system selected in response to

the context, (3) the feedback value received as a result of the selection made,

and (4) neural strength between the context and the selected output.

CALM-epLRB uses an additional mechanism called the selective power

7

update to adjust the current weights of the network based on weights saved in

the knowledge base from a prior extended experience.

CALM-nepLRB adds additional neurobiological features: (1) combination-

sensitive neurons, (2) recurrent inhibition, (3) appetitive learning with seroton-

ergic neuromodulation, and (4) aversive learning with dopaminergic neuromodu-

lation.

1.5 CALM Characteristics

In this section, terms used to describe CALM characteristics are defined and

the algorithms are mapped to the characteristics.

ONLINE Online indicates that the learning model continually takes in new

data as it learns, rather than needing its entire data set to be provided before

learning begins. Online learning helps a learning model to be adaptive in an

uncertain environment. All CALM algorithms are online learning models that

explore environments by getting new input data. For example, if selecting output

1 gets reward in context A, CALM considers the situation as a positive experience

and memorizes the experience to exploit them in next learning iteration. On the

other hand, if selecting output 1 gets negative feedback in context A, it keeps

exploring the environment without memorizing it since it is considered as an

error.

INCREMENTAL Incremental learning is a special type of online learning.

Incremental learning indicates that the amount of data used in a single learning

step increases over learning steps by including newly added data. In other words,

while online learning might update its learned representation (e.g., the weights

8

of its neural network) at time t based only on new data received at time t,

incremental learning updates its learned representation based on all accumulated

data up to and including that from time t. Therefore, all incremental learning is

online learning but not vise versa. CALM-eLRB, CALM-epLRB, and CALM-

nepLRB processes different number of input data at each learning step. For

example, the number of empirical experiences are incrementally building up

over learning steps and thus the increased number of experiences are applied to

optimization process in each learning step. Note that only CALM-rLRB is not

incremental learning since it utilizes only current input in its learning process,

which is not experience-based.

ARBITRARY DEPTH Arbitrary depth means that a learning model can

have more or fewer layers in its neural network. CALM supports learning that

can be considered shallow, moderate, or deep. Note that, in this dissertation, the

number of layers of an ANN refers to the total number of layers including input,

output, and hidden layers. For example, if there is a neural network with having

no hidden layer, it is considered as 2-layered neural network. In this regard,

arbitrary-depth neural learning means that an artificial neural network has at

least greater than or equals to four layers in optimizing its neural connections.

CALM shows its learning benefits depending on the depth; therefore, it is notable

that CALM does not have to use a fixed depth of neural network since it is

general neural network. The number of layers of an artificial neural network in

CALM depends on a system designer’s intention. The experimental results of

shallow, moderate, and deep learning are addressed in Chapter 6.

BOOTSTRAPPING Bootstrapping means that the model learns an envi-

ronment without needing prior knowledge or a pre-defined world model. In

9

other words, bootstrapping refers that a learning model starts from scratch to

understand an environment while adaptive learning means it exploits ‘try and

errors’ to get better understanding over time. In a broader sense, CALM has

several assumptions for learning from zero knowledge about any environment

it might encounter: (1) there is exactly one correct response for each context,

(2) responses are limited to a fixed number of discrete alternatives, (3) contexts

can be described by vectors, and (4) similar contexts can be determined by

looking at the Euclidean distance between context vectors. If any (or all) of

these assumptions are violated, CALM will not learn appropriately. Based on

this assumptions, all of CALM algorithms are bootstrapping and especially

CALM-eLRB, CALM-epLRB, and CALM-nepLRB build up its own knowledge

base and exploits them over learning process.

INTERACTIVE Interactive means that the learning model uses feedback

information which is either rewards (positive feedback) or punishments (negative

feedback) from a responsive process (e.g., sensing the world or from a trainer).

DYNAMIC Dynamic means that a learning model can handle environments

that change during the learning process. When learned associations between

input and output (or rewards) are changed, a dynamic model should be able to

adapt to the changed situations. In this case, CALM-rLRB and CALM-nepLRB

are dynamic learning algorithms in that they can adapt to newly changed

environment. Briefly, CALM-rLRB always uses only current context and thus it

is dynamic. CLAM-nepLRB can change associations based on negative feedback

from the environment. Therefore, CALM-nepLRB is able to learn not only

environments which has not encountered before but also changed environments.

10

Index Learning Features -rLRB -eLRB -epLRB -nepLRB
1 Online x x x x
2 Arbitrary Depth x x x x
3 Bootstrapping x x x x
4 Interactive x x x x
5 Incremental x x x
6 Dynamic x x

Table 1.1: CALM Characteristics

1.6 Organization of the Dissertation

The rest of this dissertation is organized as follows. Essential neuroscience,

which are necessary knowledge for building a machine brain algorithm, CALM-

nepLRB, and understanding the related preceding research works in bio-inspired

learning area, are explained in Chapter 2. The overview of artificial neural net-

works including a reward-based neural model are briefly covered and the logistic

regression neural networks which are the key background knowledge for CALM

are fully described in Chapter 3. It also provides sound mathematical derivations

for the learning methods, which supports the computational solidity of CALM

algorithms. Related research works regarding to CALM with three sections:

(1) reward-based learning, (2) neurorobotics learning, and (3) context-based

robot learning are introduced in Chapter 4. The overview of CALM is intro-

duced and the details for the four different learning algorithms: CALM-rLRB,

CALM-eLRB, CALM-epLRB, and CALM-nepLRB are explained in Chapter 5.

In the section, we can see the differences among the four algorithms and how

CALM-nepLRB is incrementally designed from the basic algorithm CALM-rLRB.

The experimental setup for evaluating CALM are described and its promising

results based on several synthetic data sets are showed in Chapter 6. Several

discussions regarding to build each learning model of CALM are described in

11

Chapter 7 and the conclusion and the contributions of this research work are

explained in Chapter 8. Finally, future work of this dissertation is described in

Chapter 9.

12

Chapter 2

Essential Neuroscience

This chapter provides basic knowledge of neuroscience which are essential to

build the CALM. Especially, this chapter focuses on describing the definition of

neurons and neural system, two types of neural communication, several basic

neurotransmitters, and four features of animal behavioral neurobiology.

2.1 A Neuron

Nervous system comprise nerve cells and supporting cells. Neurons refer to

nerve cells. Supporting cells are also called the neuroglia cells or glia cells. The

big difference from the two types of cell is that neurons have good structures

for electrical signaling but glia cells are not able to perform electrical signaling

by themselves. A neuron consists of 5 components: (1) cell body(soma), (2)

axon hillock, (3) axon, (4) axon terminal(s), and (5) dendrite(s). Each neuron

has one soma and one axon; but the axon can branch out as many as it needs

so the neuron can have several axon terminals which can make contacts to the

other neurons. Axon hillock is the initial point of sending electrical signal from

the cell body. Dendrites can be considered as dendritic tree which receives and

integrates information from the other neurons. Therefore, in a computational

aspect, neurons are units which can takes and transfer information from the

other different neurons. Dendritic tree functions as taking input from the other

neurons and axon terminals perform sending output to the others, which is the

13

basic system for neural communication [13] [15].

2.2 The Electrical Signals of Neurons

Electric signals are generated by voltage difference between inside and out-

side membrane of cells. Potential indicates the voltage difference, which is also

called activation level. There are 3 types of potential: (1) equilibrium potential,

(2) resting potential, and (3) action potential. Equilibrium potential indicates

the static voltage difference value when there are no ionic movements or flows

across the cell. Each different type of ions takes different value of equilibrium

potential so a cell’s equilibrium potential depends on by what kind of ions the

cell is surrounded. Resting potential refers to the static voltage difference value

when there are stable ionic movements in and out of the cell, meaning the total

potential is stable although different ions keep moving across the cell [13].

Regarding to dynamics of the potential, there are three states that a cell

can have: (1) depolarization, (2) hyperpolarization, (3) repolarization. Depo-

larization refers to the state where voltage value of inside cell is less negative

than the resting potential. Hyperpolarization means the value of inside cell is

more negative than the resting potential. And Repolarization refers to the state

where the cell recovers its potential toward the original resting potential after

having hyperpolarization. In depolarization, if the potential goes positive over a

certain threshold, a cell causes sharp electrical discharge and that is the action

potential which is so-called a spike or pulse. When a neuron shows spike, it is

usually said that “neuron is fired” [13] [16].

14

More specifically, an action potential occurs with having a period of four

successive phases of a cell: (1) depolarization, (2) action potential, (3) hyperpo-

larization, and (4) repolarization. The action potential starts from depolarization;

and if it goes over a certain threshold, it shows electrical discharge then it is

followed by hyperpolarization and repolarization. In this way, a cell generates

electrical signals through the active voltage difference between in and out of

its membrane and this signals are used to transmit/communicate information

between neurons [13].

2.3 The Communications of Neurons

The key role of the neural communication is synaptic transmissions among

neurons. For the simplicity, if we focus on just two neurons, the one neuron

sending signals is called presynaptic neuron and the other neuron receiving

the signals is called postsynaptic neuron. The signal transmissions among the

two neurons are performed at synaptic contact point(s). A synaptic contact

point is the specific area between a presynaptic axon terminal and a postsy-

naptic dendrite. The specialized synaptic contacting process at a synaptic

contact point is called a synapse. In other words, a synaptic contact point is

where the information is transmitted and a synapse refers to the process of trans-

mitting the information; so a synapse is also referred to as a synaptic contact [13].

Generally, the synapses are divided into two types: (1) electrical synapses

and (2) chemical synapses [25]. Electrical synaptic contacts happen when neu-

rons communicate through electrical synapses and chemical synaptic contacts

occur when neurons communicate through chemical synapses. For the electrical

15

synaptic contacts, action potential, which is electrical event generated from

presynaptic axon hillock, is flew to the presynaptic axon terminals; then it

moves on to the postsynaptic dendrites through gap junctions which are the

specialized proteins on dendrites. For the chemical synaptic contacts, the most

communications are made in synaptic cleft which is extracellular space between

a presynaptic axon terminal and a postsynaptic dendrite. When an action

potential is arrived at presynaptic axon terminal, unlike the electrical synapses,

neurotransmitter molecules are diffused from the terminal into the synaptic cleft;

then the molecules binds to receptors at the postsynaptic specialization. In other

words, chemical synapse needs neurotransmitters from a presynaptic neuron and

it needs to bind a certain type of receptors which stay at postsynaptic dendrites

correspond to the neurotransmitters. In this way, a presynaptic neurons can

pass the signal, an action potential, to a postsynaptic neuron through electrical

or chemical synapses [13].

After receiving the action potential, there are two types of response that the

postsynaptic neuron can show: (1) Excitatory Postsynaptic Potential (EPSP)

and (2) Inhibitory Postsynaptic Potential (IPSP). If a postsynaptic neuron

shows EPSP, it means the neuron probably increases its own action potential.

Otherwise, if a neuron shows IPSP, it means the neuron probably decreases its

own action potential due to the effects of the received signals from the presy-

naptic neuron; therefore, IPSP acts as blocking the signal transmission from the

presynaptic neuron and EPSP serves as enhancing the signal transmission [13].

16

2.4 Neurotransmitters

There are several well-known neurotransmitters related to EPSP or IPSP.

Glutamate is the standard neurotransmitter showing EPSP and it takes effects

when binding to two types of receptor: AMPA and NMDA. On the other hand

GABA is the typical example of IPSP type neurotransmitter and it binds to

GABA receptor. Serotonin also shows EPSP with the 5-HT receptor [13]. Dopa-

mine is kind of special type of neurotransmitter because it triggers EPSP when

binding to the receptors: INDR and D1-like receptors, but causes IPSP when

binding to D2-like receptors [4] [33].

2.5 Neural Systems

It is already very well known that all neural systems are not same. Neural

systems can be divided into several types by functionally or anatomically. By

functionality, there are three neural systems: (1) sensory system, (2) motor

system, and (3) associational system. Sensory system gets information from

the environment. Motor system shows appropriate output responding to the

sensory input in the form of actions or behaviors. Associational system make

a connection between two neural systems and perform complex functions. By

anatomically, neural systems are divided into central nervous system (CNS) and

peripheral nervous system (PNS). CNS comprises the brain and spinal cord; and

PNS includes the sensory division and motor division [13] [15].

17

2.6 Animal Behavioral Neurobiology

This section introduces essential background of each animal behavioral neu-

robiological concept: (1) combination-sensitive neurons, (2) recurrent inhibition,

(3) appetitive learning with serotonergic neuromodulation, and (4) aversive

learning with dopaminergic neuromodulation.

Combination-Sensitive Neurons Some animals have combination-sensitive

neurons such as bat, owl, and electric eel. A combination-sensitive neuron means

that it shows its responses when at least 2 different types of input neuron are

given to them. The first example of the combination-sensitive neurons is the

AC (Auditory Cortex) area of a bat brain which includes briefly two types of

combination-sensitive neurons in two sub areas: FM (Frequency Modulated)-FM

and CF-CF (Constant-Frequency) area [60] [47]. A bat performs echolocation

behavior in order to find the location of a target object. In a bat’s echolocation

behavior, the bat generates two types of information such as relative velocity

and distance information from different type of combination sensitive sensory

neurons. The combination-sensitive neurons for gathering distance information

are distributed in FM-FM area in AC. Those neurons are selectively responsive

to the particular combination of pulse-echo time delay. In other words, some

neurons are active when echo sound takes long time to arrive while the other neu-

rons are only active when the echo sound comes in a short time based on a same

pulse signal. In this way, the neurons in FM-FM area takes charge in generating

distance information with the FM pulse and FM echo combination-sensitive

neurons. On the other hand, CF-CF area includes the combination-sensitive

neurons for encoding relative velocity information. A bat uses Doppler shift

frequency by checking the difference between pulse CF and echo CF values. In

18

other words, the neurons in CF-CF area of a bat brain shows their different

responses with the different combination of pulse CF and echo CF values. In

this way, a bat can generate frequency map and distance map from AC where

each neuron in each different place of the brain responses to each desired pulse

and echo time delay.

The second example is ICX (external nucleus of the inferior colliculus) area

of an owl’s brain [37] [29] [18] [20]. An owl performs sound localization behavior

to find a target location. In an owl’s sound localization, the owl needs two types

of information such as ITD (interaural Time Difference) and IID (Interaural

Intensity Difference). From a sound source, neurons in Nucleus magnocellularis

encodes azimuth information where the neurons shows different responses to

different value of ITD between left and right ear. On the other hand, neurons

in Nucleus angularis encodes elevation information by checking the sound level

differences from left to right ear. With these two types of information, each

neuron in ICX shows its activity based on different combination of ITD and IID.

In this way, the owl can localize a target object’s location form a sound source

with the combination-sensitive neurons in ICX.

The third example of the combination-sensitive neurons is TS (Torus Semi-

circularis) in the brain of a weakly electric fish. A weakly electric fish shows

JAR (Jamming Avoidance Response) behavior which is literally to avoid elec-

tric jamming between same species. It is known that electric fishes generates

electric signals in order to communicate or detect objects and they have their

own level of electric frequency so that they can avoid their interference. In an

electric fish’s JAR behavior, two type of sensory information are needed such as

AM (Amplitude Modulation) and PM (Phase Modulation) [68] [6]. AM refers

19

to the intensity difference of EOD (Electric Organ Discharge) between own

body and the other’s body and it is received from the P type electroreceptor

of an electric fish. This AM information can be the source for an electric fish

to make a decision whether to increase or decrease its EOD. PM refers the

phase difference between itself and the other and it is given from the T type

electroreceptor of an electric fish. This PM information is necessary to know

whose EOD is first recognized. With those two types of information, an weakly

electric fish can adjust its frequency discharge by calculating the frequency

differences based on the combination-sensitive neurons in TS. For example, if

its own EOD occurs advanced compared to the other one and AM decreases

then some neurons in TS are activated which indicates the other one has higher

frequency which is denoted as +Df; in this case, the electric fish decrease its EOD.

Recurrent Inhibition CALM-nepLRB also has unique characteristic com-

pared to the other three CALM algorithms, which is inspired escape behavior of

a crayfish. It is known that a crayfish performs tail-flip escape behavior when

having three types of stimulation from (1) LGs (Lateral Giant neurons), (2)

MGs (Medial Giant neurons), and (3) non-giant neurons [41] [67]. First of all,

LGs are activated when the caudal tactile is stimulated and the activation causes

upward tail-flip escape, which is called LG-mediated tail flip. On the other

hand, MGs shows responses when the rostral tactile is stimulated and it triggers

backward tail-flip escape, which is called MG-mediated tail flip. In this regard, it

is known that the activation of those giant neurons are necessary for the escape

behavior. In here, there is interesting question: what if the caudal or rostral

tactile is stimulated continuously?. The answer is that a crayfish will not show

the corresponding reactions continuously like an electrically energized robot. LGs

20

and MGs shows recurrent inhibition which prevents its activation for a certain

amount of the time when the stimulations are occurs successively. In other words,

a neural circuit of a crayfish is designed that if the same stimulation occurs

continuously in a certain duration then inhibition process for the corresponding

neurons arises with releasing GABA neurotransmitter which causes IPSP. In

this way, a crayfish can avoid repeating the same behavior all the time.

Appetitive Learning with Serotonin vs Aversive Learning with Do-

pamine There are preceding researches on effects of some neuromodulators

regarding to appetitive learning and aversive learning from natural animals.

CALM-nepLRB is inspired from the neurobiological behavioral learning pro-

cesses with specific neuromodulators of moth, honeybee, and drosophila. For

moth, it is known that the neuromodulator, serotonin, is released in greater

amounts in the antennal lobes (ALs) at the specific times when the Datura flower

opens. This implies two things: (1) the moths exhibit more response when their

host plants open the flowers and (2) the increasing release of serotonin make the

AL neurons more sensitive [2]. Also, serotonin gives the moths a periodic sensory

cues for their olfactory coding [35]. Therefore, the release of serotonin plays a

role in triggering appetitive behavior for moth and it is natually correleated to

the environmental contexts such as flowering.

On the other hand, it is known that the release of dopamine in anten-

nal lobe cell bodies is important to the aversive learning for honeybees and

drosophila [31] [63] [40]. Specifically, the effects of octopamine and dopamine on

the olfactory responses of drosophila were tested early. In Schwaerzel et al.’s

experiments, they used sugar learning as an appetitive learning and electric

21

shock learning as an aversive learning for flies. For the training of sugar learning,

they first let the flies have first type of odor (CS+) via vertical tube and then

gave them a sucrose filter paper as a reward. After this, they gave second type

of odor (CS-) with a water filter paper so that the flies can learn which scent is

matched with appetitive food. Similarly, for the training of electric shock, they

gave CS+ to flies with electric shock as a punishment and then gave CS- without

electric shock in order to make them memorize which scent is not good to eat.

After these training processes, as a tool of checking their responses, they counted

how many flies touched the sucrose filter paper for appetitive learning results

and how many flies avoided the tube with CS+ as aversive learning performance

results. Based on this experimental setup, first they blocked the octopamine

synapses of the flies and observed how the flies responded differently in both

aversive and appetitive learning. The results was that the flies barely changed

their responsiveness to the CS+ odor in an aversive learning but showed big

changes in their responsiveness to the sugar filter in an appetitive learning. More

specifically, they did not show response to the sugar filter without octopamine

in appetitive learning while still showed similar avoidance in aversive learning.

They also tested the effects of dopamine on olfactory responsiveness by blocking

dopaminergic chemical synapses of the other group of flies. The result was the

flies showed fewer avoidance responses to the CS+ odor in an aversive learning

but still showed appetitive responses to the sucrose filter. This experimental re-

sults imply that octopamine plays an important role in appetitive learning while

the dopamine affects an aversive learning of olfactory system of the drosophila.

Dacks et al. explored the morphology of dopaminergic neurons in ALs

of Manduca sexta and studied the effects of DA both on the odor-evoked

responsiveness of AL neurons and on the aversive behavior learning process,

22

which are supported by well-designed and reasonable experiments [9]. As results,

the dopaminergic neurons, DA-ir/TH-ir neurons, are spread in overall glomeruli of

the ALs in the form of arch-like shape, which turns out to be important to improve

the odor-evoked responses of AL neurons and to decreases the postexcitatory

inhibition phase after the excitation. Moreover, DA plays a significant role in

the building of aversive olfactory memory on a feeding behavioral level.

Two Effects of Dopamine Previously, we simply concluded dopamine is

related to the aversive learning; however, interestingly dopaminergic neurons

can show different behaviors when it binds to different type of receptors. There

are two types of dopaminergic receptor: D1-like and D2-like receptors. If the

dopamine binds to the D1-like receptor, it makes essential effects on reward-based

learning with showing EPSP; or if it binds to the D2-like receptor, it involves

aversive learning as we discovered [4] [33]. Also, it is known that the dopaminergic

path with D1-like receptors are essential for instrumental learning [51].

23

Chapter 3

Artificial Neural Networks

This chapter provides the basic knowledge of supervised and and reward-based

neural learning models. This chapter also describes full derivation for the gener-

alized logistic regression arbitrary-depth learning and reward-based Hyperbolic

Hebbian plasticity, which are the basic of building the CALM algorithms.

3.1 Overview of Artificial Neural Networks

Artificial neural networks (ANNs) is sophisticated computational learning

method which mimics biological neural system which briefly covered in previ-

ous section. It is also referred to as connectionist system, parallel distributed

processing, or neural computing [15]. In ANNs, each component name of a

neuron introduced in Chapter 2.1 has different computational name. In this

dissertation, each computational component name of a biological neuron is

defined as follows. First, a neuron is called a node in ANNs. The synaptic

strength between a presynaptic and postsynaptic neuron is called neural weight

or simply weight; and a neural path from a presynaptic and post synaptic

neuron is called a node link or simple link; and each link represents its neural

weight. Note that weight has numerical values so it can be also named as weight

parameter. Presynaptic action potential is called input value and postsynaptic

action potential is called actual output value. Activation level (potential) in

biology is referred to as net value which is through the computational process

24

between input values and neural weights. Actual output value is given through

the activation function or step function which takes net value as function input.

Note that a net node represents the net value and an actual output node has

activated value which is actual output value through the activation function;

therefore each net node links to each corresponding actual output node. The

detailed computational process of an ANN is different based on different learning

types. We will see several different learning processes in the following subsections.

An activation function defines the way of generating action potential for

an actual output node and each node can be through each different activation

function if it is necessary. Briefly, there are three types of activation func-

tions: (1) step function (e.g., binary function, bipolar function, etc.), (2) linear

function, (3) non-linear function (e.g., logistic (sigmoid), hyperbolic tangent,

Gaussian function, etc.). For an instance, if an output node takes the activa-

tion function as bipolar, it shows spike when the net value is +1, which can

be regarded as EPSP in biology neural system, otherwise it will have −1 as IPSP.

Typically, input data into ANNs is given and weights are initially set with

random values. The goal of ANNs is to find most appropriate weight parameter(s)

based on given data and network topology. In other words, the learning process

is about how to adjust the neural weights until the ultimate learning result is

satisfied by a learning designer; therefore so-called ‘learning rule’ indicates ‘how

to update/adjust the weights of ANNs’, which is the core of categorizing learning

types. Different learning methods are depending on which kind of weight update

learning rule is used; so the way of adjusting weight parameters decides ANN

learning type such as supervised learning, unsupervised learning, reinforcement

learning, or hybrid learning.

25

If not only input but also output are given to an ANN, the way of adjusting

weights follows supervised learning. Supervised learning in an ANN is, briefly, the

computing process by which the weights of the ANN are adjusted by decreasing

the error between the actual output of the network and the desired output of

given training data [11]. This means that, for supervised learning, we must have

a training set for which we have a known desired output, target output, or label,

for each input. The idea is that the trained ANN can then be used to label new

data (for generalization). An arbitrary-depth neural networks refers to an ANN

through at least three layers in computing the final actual output [5].

On the other hand, if only inputs are given to a network, the way of adjusting

weights follows unsupervised learning. Unsupervised learning in ANNs is the

process by which weights are learned by finding patterns or regularities between

unlabeled input data. A typical application of unsupervised learning in ANNs is

to group “similar” data points together into clusters, the number of which is

typically small relative to the number of data points in the data set.

Unlike both supervised and unsupervised learning, reinforcement learning

requires feedback (reward/punishment) as an evaluative signal from an envi-

ronment, which says how appropriate the output was for given input. This

signal allows a reinforcement learner to learn by trying various outputs and

seeing which results in the greatest reward. Especially reinforcement learning

has static state model and predict which sate should be next state based on

current state by using a reward policy such as Sarsa, Q-learning, etc [64] [57].

Reward-based learning in an ANN is the computing process by applying the

reward value directly to the weight update learning rule like modulatory Hebbian

26

learning. Note that reward-based neural learning is not based on the prediction

model [38] [53].

It can not be said that which one is best among the various kinds of learning

model. They have each different learning characteristics and different advantages

on different type of domains therefore selecting a learning model depends on

what kind of problem tasks are given. For example, a classification problem is

better to be solved by supervised learning; and a problems of finding similarities

among input fits to unsupervised learning such as k-means clustering. CALM is

motivated from a supervised learning, reward-based learning, and several natural

animal biological features, which aims to build a novel learning model towards a

robot brain. CALM introduces how to take advantages of each learning method

and shows how to overcome the limitations of each learning method with sound

mathematical derivation and generalized synthetic experimental results.

3.2 Supervised Neural Learning Model

In order to build a novel learning model based on a existing model, it is

important to understand the latter’s principles in depth. An ANN can be

classified according to a type of cost function and weight update rule. Cost

function is defined for evaluating the learning status of an ANN (e.g., least mean

squared (LMS) error or delta rule, logistic regression, etc.). Weight update rule

is an optimization process based on the defined cost function (e.g., gradient

descent (GD), conjugate gradient descent (CGD), etc.). In this dissertation, an

arbitrary-depth neural learning with logistic regression backpropagation and

gradient descent optimization is covered thoroughly. It is explained step by

27

step with three sub categories for incremental understanding of its profound

computational process and principles: (1) A perceptron, (2) 2-layered, and

(3) generalized, arbitrary-depth, ANN with logistic regression backpropagation

(LRB). This section takes a bulk of this dissertation because CALM is based

on the underlying principles of the arbitrary-depth neural learning with logistic

regression.

3.2.1 A Perceptron ANN with Logistic Regression

In this section, we will see a simple ANN from the basics to its computational

process in depth.

Figure 3.1: Perceptron ANN Architecture

28

A Perceptron ANN Architecture The Figure 3.1 shows a perceptron ANN

architecture. A perceptron consists of nodes and links and each link has weight

parameter representing the synaptic strength between two nodes. Nodes are

classified into four types: (1) bias (+1), (2) input (xj), (3) net (z), and (4)

actual output node (a). Each weight is denoted as θj . As shown in Figure 3.1, a

perceptron takes n + 1 number of input values including bias value and gives

out one actual output after activating one net node value. In this dissertation,

we will call the n + 1 number of input values as one input vector, input data

example, or simply one input data. Similarly, we will call the n + 1 number

of weights as the weight vector, which is from all input nodes toward the net

node. The goal of a perceptron ANN is binary classification. In other words, a

perceptron aims to make itself give appropriate actual output value (0 or 1) for

each input data example so that all given input data examples could be classified

into either 0 or 1. The way of classifying each input data into either 0 or 1 is to

adjust or update the weight vector based on the error between a given target

output and processed actual output value. Thus it can be said that a perceptron

is to optimize the weight vector based on given input vectors and target output

values. The detail computational process is described in the learning paragraph.

A Perceptron ANN Data Table The Figure 3.2 shows a possible form of

a perceptron ANN data table which can be used for understanding a perceptron

ANN learning process. Also, this data table can be used for a developer to come

up with how to log the ANN learning process or how to prepare a training data

including input and target output. Also, the EKB (Experience-based Knowledge

Base) is based on this data table, which is a component of CALM explained in

Chapter 5.

29

Figure 3.2: Perceptron ANN Data Table

For the notation in a perceptron ANN learning, m is the total number of

given input data examples (input size), n is the number of given input features

or attributes (input dimension), i indicates index of each input data example

which can be up to m, and j is the index of each input feature (input node)

which can be up to n. θ indicates the weight vector which represent the links

from all input nodes toward the one net node. Based on this, xj(i) is jth input

node value on ith input data, y(i) is target output value on ith input data, z(i)

is the net node value of ith input data, a(i) is the processed actual output value

of ith input data, δ(i) is the error value between the actual output value and

target output value of ith input data.

30

Figure 3.3: Perceptron ANN Data Space

The most interesting part of ANN computation is revealed when it is compared

to general scientific computation. Figure 3.3 shows how a perceptron ANN can

be interpreted in a different view. In n+ 1 dimensional space, each input vector

can be represented as X(i) and weight vector θ will be optimized over the

learning process based on each input vector and target output value. This is

important point of view in understanding the following learning process in depth.

Batch Learning - Vectorwise The Algorithm 1 shows pseudocode for a

perceptron ANN with logistic regression and gradient descent optimization on

vectorwise batch learning. Note that the term ‘vectorwise’ means the ANN

compute the learning process by taking each input vector, X(i), sequentially; on

the other hand, ‘matrixwise’ means the ANN compute the learning process by

taking all m number of input vectors at once. In this paragraph, we will first

see The detailed process of vectorwise learning by looking into the Algorithm 1.

31

Algorithm 1 Perceptron ANN Batch Learning Vectorwise Pseudocode

Get X ∈ Rm×n, y ∈ Rm×1, T,m, n, η, λ.
Add ∀i, X0(i) = +1 for bias → X ∈ Rm×(n+1)

Init θ ∈ R(n+1)×1

for t = 1 to T do
for i = 1 to m do
z(i) = θ>(t)X(i)
a(i) = f(z(i))
δ(i) = a(i)− y(i)
Cost(i) = −y(i)ln(a(i))− (1− y(i))ln(1− a(i))
Cost(t) = Cost(t) + Cost(i)
∆θ(i) = δ(i)X(i)
∆θ(t) = ∆θ(t) + ∆θ(i)

end for

R(t) = λ
2m

n∑
j=1

(θj(t))
2

J(t) = 1
m
Cost(t) +R(t)

θ(t+ 1) = θ(t)− η
(

1
m

∆θ(t) + λ
m
θ̄(t)

)
end for

� Input vector X(i) represents each input data example which is each row of

given data in the Figure 3.2. Note that the first element of a input vector is

always 1 since it represents a bias node.

X(i) =

x0(i)

x1(i)

...

xj(i)

...

xn(i)

(n+1)×1

where x0(i) = 1 for the bias.

xj(i) = jth input feature value(node value) on ith example.

� Weight vector θ is as follows. Note that there is another form of weight vector

32

θ̄ is defined as follows which will be used in computing regularization term. θ̄ is

same as θ except for the first element.

θ =

θ0

θ1
...

θj
...

θn

(n+1)×1

; θ̄ =

0

θ1
...

θj
...

θn

(n+1)×1

where θ0 = 0

� Net value z(i) is calculated by multiplying each element of input vector and

weight vector as follows; and the computing process is named as net process in

this dissertation.

z(i) = θ>X(i)

= θ0x0(i) + θ1x1(i) + · · ·+ θnxn(i)

= θ0 + θ1x1(i) + · · ·+ θnxn(i)

=
n∑
j=0

θjxj(i) ∈ (−∞,∞)

Note that the net process is inner product which is linear computation so it

can be described as shown in Figure 3.4 on a general scientific computational

view. It can be also said that a perceptron is same as linear regression model if

it only considers net process.

33

Figure 3.4: Perceptron ANN Net Process

� Actual output value a(i) is an activated value of a(i) and computed as follows.

It is calculated by applying a certain type of activation function into the net

node value, which is called activation process in this dissertation. In this logistic

regression neural model, the activation function is logistic function which is

also called sigmoid function. Figure 3.5 shows a graph of logistic regression

activation function which explains the relationship between each net value and

actual output value.

a(i) = f(z(i)) ∈ (0, 1) where f(z(i)) = 1
1+ez(i)

34

Figure 3.5: Perceptron ANN Activation Process

Note that if a net value is zero, the actual output value through the activation

process is 0.5; and the possible output value of the activation function is between

0 and 1. This is very important feature of the logistic regression function since

an actual output value can be fairly compared to the target output value which

has either 0 or 1; if the range of a(i) is out of between 0 and 1, it is hard to

compare the meaning of actual output and target output. Also it is important

that relationship between net node and actual output is monotonic increasing or

decreasing; if z(i) increases a(i) also increases monotonically. Likewise, if z(i)

decreases, a(i) also decreases.

� Target output y(i) is a numerical value corresponding to a input vector X(i),

which is either 0 or 1. In a perceptron ANN, if a target output value is 1, this

35

means the corresponding input data X(i) is classified into the target; or if the

target output is 0, the input data is non-classified into a target, which represent

binary classification. Note that this target output is also given as well as the

input data as shown in the Figure 3.2.

y(i) ∈ {0, 1}

� Error value δ(i) represents the difference between the actual output value a(i)

and the target output value y(i), which is between −1 and 1.

δ(i) = a(i)− y(i) ∈ (−1, 1)

Note that there are three possible cases of an error value δ(i) since y(i) has

either 0 or 1 and the cases are organized as follows. First, if the error value is

zero then it means the actual and target output values are exactly same which

is the ultimate goal of ANN learning. Second, if the error is positive then it

means the actual output is greater than target output value and thus the the

goal of learning is to make the actual value decreased. Third, if the error value

is negative then it means the actual output is smaller than the target output

value and thus the goal of learning is to increase the actual output value.

δ(i) = 0 ⇐⇒ a(i) = y(i)

δ(i) > 0 ⇐⇒ a(i) > y(i) =⇒ a(i) > 0 & y(i) = 0

δ(i) < 0 ⇐⇒ a(i) < y(i) =⇒ a(i) < 1 & y(i) = 1

36

� The cost function J(θ) gives a way of measuring learning results or learning

effects based on errors between actual and target output values. The role of

the cost function is to give smaller value when the actual and target output

have similar value or gives larger value when the error is large so that a learner

can recognize current learning status. In other words, cost function shows

correlation between actual output and target output in current learning step

and the ultimate goal of a learning is to have smaller cost value over learning

steps. Equation (3.1) is the cost function defined for a perceptron ANN with

logistic regression.

J(θ) =
1

m

m∑
i=1

(−y(i)ln(a(i))− (1− y(i))ln(1− a(i))) +
λ

2m

n∑
j=1

(θj)
2

︸ ︷︷ ︸
Regularization Term

(3.1)

=
1

m

m∑
i=1

Cost(i) +R

where

Cost(i) = −y(i)ln(a(i))− (1− y(i))ln(1− a(i))

R = λ
2m

n∑
j=1

(θj)
2

Looking deep into Equation (3.1), Cost(i) in the equation can be divided as

two cases depending on a target output value as follows. When a target output

y(i) is 1, Cost(i) gives out smaller value when the actual output a(i) is closer to

y(i) which is 1. Otherwise, if the target output y(i) is 0, Cost(i) gives smaller

value when a(i) is closer to 0. In this way, J(θ) can be the indicator representing

learning effects, which is the average of all Cost(i) for each input vector and

target output value. Figure 3.6 helps us to visually understand how a perceptron

evaluates its cost depending on a given input and target output.

37

Cost(i) = −y(i)ln(a(i))− (1− y(i))ln(1− a(i))

If y(i) = 1

Cost(i) = −ln(a(i))

y(i) = 1, a(i) = 1→ δ(i) = 0→ Cost(i) = 0

y(i) = 1, a(i) < 1→ δ(i) < 0→ Cost(i) ↑

If y(i) = 0

Cost(i) = −ln(1− a(i))

y(i) = 0, a(i) = 0→ δ(i) = 0→ Cost(i) = 0

y(i) = 0, a(i) > 0→ δ(i) > 0→ Cost(i) ↑

Figure 3.6: Perceptron ANN Role of Cost Function

38

� Weight Update - Elementwise. Based on the cost function J(θ) the weight

update rule for a perceptron ANN is shown in Equation (3.2). The basic idea of

the weight update rule is to find the local minimum, which is the lowest partial

gradient value of the cost function over each weight parameter, and adjust each

weight parameter toward the local minimum. This method is called gradient

descent method.

θj(t+ 1) = θj(t)− η(
∂

∂θj
J(θ))

= θj(t)− η(∆θj) (3.2)

where ∆θj =
1

m

m∑
i=1

δ(i)xj(i) +
λ

m
θj (j≥1)︸ ︷︷ ︸

Regularization Term

=
1

m

m∑
i=1

(a(i)− y(i))xj(i) +
λ

m
θj (j≥1)

Note that ‘update’ is to adjust current weight through a certain type of

weight update rule such as gradient descent, conjugate gradient descent, etc.

The updated weight vector is denoted as θ(t+ 1) which refers to the adjusted

weight vector θ(t) by the weight update rule at learning step t. This updated

weight vector θ(t + 1) will be used in calculating net process and activation

process at next learning step t+ 1. Also, it is notable that there are three way

of updating weight: (1) elementwise, (2) vectorwise, and (3) matrixwise weight

update; ‘elementwise’ refers to update each weight parameter θj, ‘vectorwise’ is

to update weight vector θ at once, and ‘matrixwise’ refers to update θ at once

when θ has matrix form in 2-layered or generalized, arbitrary-depth, ANN.

� Weight Update - Vectorwise. Equation (3.2) can be written in a vectorwise

39

form as following Equation (3.3), which is self-explanatory.

θ(t+ 1) = θ(t)− η(
∆

∆θ
J(θ))

= θ(t)− η(∆θ) (3.3)

where ∆θ =
1

m

m∑
i=1

δ(i)X(i) +
λ

m
θ̄︸︷︷︸

Regularization Term

∆θ =

∆θ0

∆θ1
...

∆θj
...

∆θn

=

1

m

m∑
i=1

δ(i)

x0(i)

x1(i)

...

xj(i)

...

xn(i)

+
λ

m
θ̄

Looking deep into the Equation (3.3), we can understand the role of the

weight update rule, which is the gradient descent optimization. In order to

understand how to adjust the weight vector, we will simplify the Equation (3.3)

by assuming the learning parameters as follows.

Assume: m = 1, λ = 0, and η = 1

Then: θ(t+ 1) = θ(t)− δ(i)X(i)

In the simplified equation, weight update rule is vector sum based on the

error value δ(i), which makes the weight vector θ closer to or farther away from

an input vector X(i). We know there are three possible cases of δ(i) and thus

there are three cases of the weight vector is updated. We will see how the weight

vector is adjusted in each case. First, if δ(i) = 0, then a(i) and y(i) have same

40

value and thus the weight update rule is described as follows. In this case, the

weight vector stays on current position after updating.

δ(i) = 0 (a(i)− y(i) = 0) =⇒ ∆θ = 0

=⇒ θ(t+ 1) = θ(t)

Second, if δ(i) > 0, this means a(i) > y(i) and it implies that y(i) = 0 and

a(i) should be decreased in next learning step in order to have lower and lower

value of cost function over learning steps. In order to decrease the value of a(i),

the weight update rule makes θ farther away from the current input vector, X(i),

so as to make the z(i) value is decreased at next learning step. Consequently, a(i)

will be also decreased at next learning step since the relationship between z(i)

and a(i) is monotonic. This process is well-organized as follows and Figure 3.7

helps us visually understand this process, which is the role of weight update

when the error value is positive.

41

δ(i) > 0 (a(i) > y(i))

=⇒ ∆θ = +δ(i)X(i)

=⇒ θ(t+ 1) = θ(t)− δ(i)X(i)

=⇒ θ(t+ 1) will be farther away from X(i) compared to θ(t)

(refer to the Figure 3.7, blue vector)

=⇒ θ(t+ 1) ·X(i) < θ(t) ·X(i)

=⇒ z(i) will be decreased at next learning step

=⇒ a(i) = f(z(i)) will be decreased at next learning step

=⇒ δ(i) will be decreased at next learning step

=⇒ Cost(i) will be decreased at next learning step

42

Figure 3.7: Perceptron ANN Role of Weight Update when δ(i) > 0

Lastly, if δ(i) < 0, this means a(i) < y(i) and it implies that y(i) = 1 and

a(i) should be increased in next learning step in order to have lower and lower

value of cost function over learning steps. In order to increase the value of a(i),

the weight update rule makes θ closer to the current input vector, X(i), so as to

make the z(i) value is increased at next learning step. Consequently, a(i) will

be also increased at next learning step since the relationship between z(i) and

a(i) is monotonic. This process is well-organized as follows and Figure 3.8 helps

us visually understand this process, which is the role of weight update when the

error value is negative.

43

δ(i) < 0 (a(i) < y(i))

=⇒ ∆θ = −δX(i)

=⇒ θ(t+ 1) = θ(t) + δX(i)

=⇒ θ(t+ 1) will be closer toX(i) compared to θ(t)

(refer to the Figure 3.8, blue vector)

=⇒ θ(t+ 1) ·X(i) > θ(t) ·X(i)

=⇒ z(i) will be increased at next learning step

=⇒ a(i) = f(z(i)) will be increased at next learning step

=⇒ δ(i) will be decreased at next learning step

=⇒ Cost(i) will be decreased at next learning step

44

Figure 3.8: Perceptron ANN Role of Weight Update when δ(i) < 0

In this way, the weight vector θ is updated over learning steps and it can

be considered as a binary classifier. Over the learning process, θ decides which

kind of input vectors, X(i)s, should keep closer or keep away based on the cost

function and the weight update rule.

Batch Learning - Matrixwise The Algorithm 2 shows pseudocode for a

perceptron ANN with logistic regression and gradient descent optimization on

matrixwise batch learning. In this paragraph, we will see how a perceptron ANN

takes the whole input and target output at once, so-called matrixwise batch

learning. Note that it is based on vectorwise batch learning and the learning

results of both are same, but the matrixwise computational speed would be

faster than vectorwise because there are less for loop.

45

Algorithm 2 Perceptron ANN Batch Learning Matrixwise Pseudocode

Get X ∈ Rm×n, y ∈ Rm×1, T,m, n, η, λ.
Add ∀i, X0(i) = +1 for bias → X ∈ Rm×(n+1)

Init θ ∈ R(n+1)×1

for t = 1 to T do
z = Xθ(t)
a = f(z)
δ = a− y
Cost(t) = 1

m

m∑
i=1

(−y(i)ln(a(i))− (1− y(i))ln(1− a(i)))

∆θ(t) = X>δ

R(t) = λ
2m

n∑
j=1

(θj)
2

J(t) = Cost(t) +R(t)
θ(t+ 1) = θ(t)− η

(
1
m

∆θ(t) + λ
m
θ̄(t)

)
end for

� Input X is matrix covering all m number of input vectors as follows.

X =

X(1)> −→

X(2)> −→
...

X(i)> −→
...

X(m)> −→

m×(n+1)

where X(i) =

x0(i)

x1(i)

...

xj(i)

...

xn(i)

(n+1)×1

46

� Weight vector θ is same as in vectorwise batch learning.

θ =

θ0

θ1
...

θj
...

θn

(n+1)×1

; θ̄ =

0

θ1
...

θj
...

θn

(n+1)×1

where θ0 = 0

� Net vector z represents all values of net process as follows.

z =

z(1)

z(2)

...

z(i)

...

z(m)

m×1

=

θ>X(1)

θ>X(2)

...

θ>X(i)

...

θ>X(m)

m×1

= Xθ︸︷︷︸
linear system

where z(i) = θ0x0(i) + θ1x1(i) + · · ·+ θnxn(i)

=
n∑
j=0

θjxj(i) ∈ (−∞,∞)

� Actual output vector a represents all m number fo actual output values as

47

follows. f is the same logistic function as in vectorwise batch learning.

a =

a(1)

a(2)

...

a(i)

...

a(m)

m×1

= f(z)

� Target output vector y represents all m number of target output values as

follows.

y =

y(1)

y(2)

...

y(i)

...

y(m)

m×1

� Error vector δ represents all m number of differences between actual and target

48

output values as follows.

δ =

δ(1)

δ(2)

...

δ(i)

...

δ(m)

m×1

= a− y

� The cost function J(θ) also has exactly same meaning in vectorwise batch

learning but the computational process is changed as follows since it handles

changed mathematical forms.

J(θ) ==
1

m

m∑
i=1

(−y(i)ln(a(i))− (1− y(i))ln(1− a(i))) +
λ

2m

n∑
j=1

(θj)
2 (3.4)

� Weight Update in matrixwise batch learning is also same as vectorwise learning

but the computational process is changed as follows.

θ(t+ 1) = θ(t)− η(
1

m
(X>δ) +

λ

m
θ̄) (3.5)

(= θ(t)− η(
1

m

m∑
i=1

δ(i)X(i) +
λ

m
θ̄))

Derivation of Weight Update Rule This paragraph derives the Equa-

tion (3.2). The mathematical process for the derivation fully described each step

by step to be easily understood as follows.

49

θj(t+ 1) = θj(t)− η(∂
∂θj
J(θ))

= θj(t)− η(∆θj)

∆θj = ∂
∂θj
J(θ)

= ∂
∂θj

(
1
m

m∑
i=1

(−y(i)ln(a(i))− (1− y(i))ln(1− a(i)))

)
+ ∂
∂θj

(
λ
2m

n∑
j=1

(θj)
2

)
= ∂

∂θj

(
1
m

m∑
i=0

Cost(i) +R

)

∂
∂θj
Cost(i) = ∂

∂θj
(−y(i)ln(a(i))− (1− y(i))ln(1− a(i)))

= ∂
∂a(i)

Cost(i) · ∂a(i)
∂z(i)
· ∂z(i)
∂θj

∂
∂a(i)

Cost(i) = −y(i)
a(i)
− 1−y(i)

1−a(i) · (1− a(i))′(∵ ln(x)′ = 1
x
)

= −y(i)
a(i)

+ 1−y(i)
1−a(i)

= a(i)−a(i)·y(i)−y(i)+a(i)·y(i)
a(i)(1−a(i))

= a(i)−y(i)
a(i)(1−a(i))

= δ(i)
a(i)(1−a(i))

∂a(i)
∂z(i)

= ∂f(z(i))
∂z(i)

= f(z(i))(1− f(z(i)))(∵ f(x) = 1
1+e−x , f

′(x) = f(x)(1− f(x)))

= a(i)(1− a(i))

∂z(i)
∂θj

= ∂
∂θj

(
n∑
j=1

θjxj(i))

= xj(i)

50

∴ ∂
∂θj
Cost(i) = δ(i)

a(i)(1−a(i)) ·
a(i)(1−a(i))

1
· xj(i)

= δ(i) · xj(i)
∂
∂θj
R = ∂

∂θj
(λ
2m

n∑
j=1

(θj)
2)

= λ
m
θj (j≥1)

∴ ∆θj = 1
m

m∑
i=1

δ(i) · xj(i) + λ
m
θj (j≥1)

∴ θj(t+ 1) = θj(t)− η(1
m

m∑
i=1

δ(i) · xj(i) + λ
m
θj (j≥1))

3.2.2 2-Layered ANN with Logistic Regression

In this section, we will see from the basic of a 2-layered ANN to its computa-

tional process in depth, which is based on a perceptron ANN.

51

Figure 3.9: 2-Layered ANN Architecture

2-Layered ANN Architecture The Figure 3.9 shows a 2-layered ANN ar-

chitecture, which has multiple output nodes. Similar to a perceptron ANN,

nodes are classified into four types: (1) bias (+1), (2) input (xj), (3) net (zk),

and (4) actual output node (ak). Each weight is denoted as θkj which represent

strength of the link from input node xj to net node zk. The big difference from

a perceptron is there are K number of weight vectors each of which is denoted

as θk covering weight parameters from all input nodes toward each net node

zk. For example, θ3 is the weight vector covering weight parameters from all

inputs toward the net node z3. As shown in Figure 3.9, a 2-layered ANN takes

n+ 1 number of input values including bias and gives out K number of actual

output values through each activation process. The goal of a 2-layered ANN is

multi-class classification, more specifically K-class classification. It aims to make

52

itself select appropriate actual output node for given each input example so that

all given input data examples can be classified one of K actual output nodes.

Note that, given a input data example, the selecting one among K number of

actual output nodes is processed by finding maximum actual output value. The

way of classifying each input data into one of K classes is to adjust or update

K number of weight vectors based on errors between given target and processed

actual output values. The details is described in the learning paragraph.

2-Layered ANN Data Table Compared to the Figure 3.2, the data table for

2-layered ANN has additional columns for covering multiple outputs as shown

in the Figure 3.10.

Figure 3.10: 2-Layered ANN Data Table

For the notation in 2-layered ANN learning, m is the total number of given

input data examples (input size), n is the number of given input features or

attributes (input dimension), i indicates index of each input data example which

can be up to m, and j is the index of each input feature (input node) which

can be up to n. Upper case K refers to the number of actual output nodes and

lower case k is the indicator of each actual output node which can be up to K.

θk indicates the weight vector which represent the links from all input nodes

toward the net node zk. Based on this, xj(i) is jth input node value on ith input

53

data, yk(i) is target output value corresponding to kth actual output node on

ith input data, zk(i) is the kth net node value of ith input data, ak(i) is the kth

processed actual output node value of ith input data, δk(i) is the kth error value

between the actual output node ak(i) and target output value yk(i) of ith input

data.

Figure 3.11: 2-Layered ANN Data Space

Likewise, it is interesting when a 2-layered ANN is compared to general

scientific computation. Figure 3.11 shows how a 2-layered ANN can be described

in a different view. In n + 1 dimensional space, each input vector can be

represented as X(i) and each weight vector θk will be optimized over learning

process based on each input X(i) and target output value yk(i).

Batch Learning - Vectorwise The Algorithm 3 shows pseudocode for a

2-layered ANN with logistic regression and gradient descent optimization on

54

vectorwise batch learning.

Algorithm 3 2-Layered ANN Batch Learning Vectorwise Pseudocode

Get X ∈ Rm×n, y ∈ Rm×K , T,m, n,K, η, λ.
Add ∀i, X0(i) = +1 for bias → X ∈ Rm×(n+1)

Init θ ∈ RK×(n+1)

for t = 1 to T do
for i = 1 to m do
z(i) = θ(t)X(i)
a(i) = f(z(i))
δ(i) = a(i)− y(i)

Cost(i) =
K∑
k=1

(−yk(i)ln(ak(i))− (1− yk(i))ln(1− ak(i)))

Cost(t) = Cost(t) + Cost(i)
∆θ(i) = δ(i)X(i)>

∆θ(t) = ∆θ(t) + ∆θ(i)
end for

R(t) = λ
2m

K∑
k=1

n∑
j=1

(θkj(t))
2

J(t) = 1
m
Cost(t) +R(t)

θ(t+ 1) = θ(t)− η
(

1
m

∆θ(t) + λ
m
θ̄(t)

)
end for

� Input vector X(i) represents each input data.

X(i) =

x0(i)

x1(i)

...

xj(i)

...

xn(i)

(n+1)×1

where x0(i) = 1 for the bias.

� Weight matrix θ and weight vector θk are as follows. Note that θ refers to all

55

neural links in the ANN and θk indicates each weight vector of it.

θ =

θ>1 −→

θ>2 −→
...

θ>k −→
...

θ>K −→

K×(n+1)

; θk =

θk0

θk1
...

θkj
...

θkn

(n+1)×1

; θ̄k =

0

θk1
...

θkj
...

θkn

where θk0 = 0

� Net vector z(i) represents all K number of net values of ith input data and

computed as follows.

z(i) =

z1(i)

z2(i)

...

zk(i)

...

zK(i)

K×1

= θX(i)

zk(i) = θ>k X(i)

= θk0x0(i) + θk1x1(i) + · · ·+ θknxn(i)

=
n∑
j=0

θkjxj(i) ∈ (−∞,∞)

Note that each net process zk(i) is inner product which is linear computation

so it can be said that there are K number of linear processes as shown in

56

Figure 3.4 on a general scientific computational view. Therefore, it is interesting

that a 2-layered ANN can be considered as multivariate linear regression model

if it only has K number of net processes without activation processes.

Figure 3.12: 2-Layered ANN Net Process

� Actual output vector a(i) represents all K number of actual output values of

ith input data and it is computed as follows. Similar to a perceptron, Figure 3.13

shows that there are K number of activation processes each of which is associated

57

with corresponding net process.

a(i) =

a1(i)

a2(i)

...

ak(i)

...

aK(i)

K×1

= f(z(i)) where f(zk(i)) = 1
1+ezk(i)

ak(i) = f(zk(i)) ∈ (0, 1)

Figure 3.13: 2-Layered ANN Activation Process

� Target output vector y(i) represents K number of target output values of ith

input data and it is computed as follows. Note that each target output value

58

has either 0 or 1.

y(i) =

y1(i)

y2(i)

...

yk(i)

...

yK(i)

K×1

yk(i) ∈ {0, 1}

� Error vector δ(i) represents K number of error values and it is computed as

follows.

δ(i) =

δ1(i)

δ2(i)

...

δk(i)

...

δK(i)

K×1

= a(i)− y(i)

δk(i) = ak(i)− yk(i) ∈ (−1, 1)

Likewise, there three possible cases of an each error value δk(i) since yk(i)

has either 0 or 1 as follows.

δk(i) = 0 ⇐⇒ ak(i) = yk(i)

δk(i) > 0 ⇐⇒ ak(i) > yk(i) =⇒ ak(i) > 0 & yk(i) = 0

δk(i) < 0 ⇐⇒ ak(i) < yk(i) =⇒ ak(i) < 1 & yk(i) = 1

59

� The cost function J(θ) in a 2-layered ANN also has same role as one in a

perceptron; the difference is that it considers K number of different errors for a

given one input data and thus the function definition is changed to Equation (3.6)

from Equation (3.1).

J(θ) =
1

m

m∑
i=1

K∑
k=1

(−yk(i)ln(ak(i))− (1− yk(i))ln(1− ak(i))) +
λ

2m

K∑
k=1

n∑
j=1

(θkj)
2

︸ ︷︷ ︸
Regularization Term

(3.6)

=
1

m

m∑
i=1

K∑
k=1

Costk(i) +R

where

Costk(i) = (−yk(i)ln(ak(i))− (1− yk(i))ln(1− ak(i)))

R = λ
2m

(
K∑
k=1

n∑
j=1

(θkj)
2)

Looking deep into Equation (3.6), Costk(i) in the equation can be divided

as two cases as follows. When a target output yk(i) is 1, Costk(i) gives smaller

value when the actual output ak(i) is closer to yk(i). Otherwise, if the target

output y(i)k is 0, Costk(i) gives smaller value when ak(i) is closer to 0. In this

way, J(θ) can be the indicator representing learning effects, which is the average

of all Costk(i) for all input vectors. Figure 3.14 helps us to visually understand

how a 2-layered ANN evaluates its cost depending on a given input and target

output.

Costk(i) = −yk(i)ln(ak(i))− (1− yk(i))ln(1− ak(i))

60

If yk(i) = 1

Costk(i) = −ln(ak(i))

yk(i) = 1, ak(i) = 1→ δk(i) = 0→ Costk(i) = 0

yk(i) = 1, ak(i) < 1→ δk(i) < 0→ Costk(i) ↑

If yk(i) = 0

Costk(i) = −ln(1− ak(i))

yk(i) = 0, ak(i) = 0→ δk(i) = 0→ Costk(i) = 0

yk(i) = 0, ak(i) > 0→ δk(i) > 0→ Costk(i) ↑

Figure 3.14: 2-Layered ANN Role of Cost Function

Note that having K number of Costk(i) is the core principle of the K-class

classification. This implies the important point that if there are K number of

output nodes, there are K number of corresponding Costk(i) which checks the

61

difference between each actual and target output value. And cost function, J(θ),

tells us the overall average value of how different between all actual and target

output through the total number of given input data examples.

� Weight Update - Elementwise. Based on the cost function J(θ) the weight

update rule is shown in Equation (3.7).

θkj(t+ 1) = θkj(t)− η(
∂

∂θkj
J(θ))

= θkj(t)− η(∆θkj) (3.7)

where ∆θkj =
1

m

m∑
i=1

δk(i)xj(i) +
λ

m
θkj (j≥1)︸ ︷︷ ︸

Regularization Term

=
1

m

m∑
i=1

(ak(i)− yk(i))xj(i) +
λ

m
θkj (j≥1)

� Weight Update - Vectorwise. Equation (3.7) can be written in a vectorwise

form as following Equation (3.8), which is self-explanatory.

θk(t+ 1) = θ(t)− η(
∂

∂θk
J(θ))

= θk(t)− η(∆θk) (3.8)

where ∆θk =
1

m

m∑
i=1

δk(i)X(i) +
λ

m
θ̄k

∆θk =

∆θk0

∆θk1
...

∆θkj
...

∆θkn

(n+1)×1

=
1

m

m∑
i=1

δk(i)

x0(i)

x1(i)

...

xj(i)

...

xn(i)

(n+1)×1

+
λ

m
θ̄k

62

Looking deep into the Equation (3.8), we can understand the role of the weight

update rule in a 2-layered ANN. Likewise, we will simplify the Equation (3.8)

by assuming the learning parameters as follows.

Assume: m = 1, λ = 0, and η = 1

Then: θk(t+ 1) = θk(t)− δk(i)X(i)

In this case, we know there are three possible cases of δk(i) and thus there

are three cases of each weight vector θk is updated; We will see how each weight

vector is adjusted by the weight update rule in three cases. First, if δk(i) = 0,

this means ak(i) and yk(i) have same value and thus the weight update rule is

described as follows. In this case, the weight vector θk stay on current position

in next learning step.

δk(i) = 0 (ak(i)− yk(i) = 0) =⇒ ∆θk = 0

=⇒ θk(t+ 1) = θk(t)

Second, if δk(i) > 0, this means ak(i) > yk(i) and it implies that yk(i) = 0

and ak(i) should be decreased in next learning step in order to have lower

and lower value of cost function over learning steps. In order to decrease the

value of ak(i), the weight update rule makes θk farther away from the current

input vector, X(i), so as to make the z(i) value is decreased at next learning

step. Consequently, ak(i) will be also decreased at next learning step since the

relationship between zk(i) and ak(i) is monotonic. This process is well-described

as follows and Figure 3.15 helps us visually understand this process, which is

63

the role of weight update when the error value is positive.

δk(i) > 0 (ak(i) > yk(i))

=⇒ ∆θk = +δk(i)X(i)

=⇒ θk(t+ 1) = θk(t)− δk(i)X(i)

=⇒ θk(t+ 1) will be farther away from X(i) compared to θk(t)

(refer to the Figure 3.7, blue vector)

=⇒ θk(t+ 1) ·X(i) < θk(t) ·X(i)

=⇒ zk(i) will be decreased at next learning step

=⇒ ak(i) = f(zk(i)) will be decreased at next learning step

=⇒ δk(i) will be decreased at next learning step

=⇒ Costk(i) will be decreased at next learning step

64

Figure 3.15: 2-Layered ANN Role of Weight Update when δk(i) > 0

Lastly, if δk(i) < 0, this means ak(i) < yk(i) and it implies that yk(i) = 1 and

ak(i) should be increased in next learning step in order to have lower and lower

value of cost function over learning steps. In order to increase the value of ak(i),

the weight update rule makes θk closer to the current input vector, X(i), so as

to make the zk(i) value is increased at next learning step. Consequently, ak(i)

will be also increased at next learning step since the relationship between zk(i)

and ak(i) is monotonic. This process is well-described as follows and Figure 3.8

helps us visually understand this process, which is the role of weight update

when the error value is negative.

65

δk(i) < 0 (a(i) < y(i))

=⇒ ∆θk = −δX(i)

=⇒ θk(t+ 1) = θk(t) + δkX(i)

=⇒ θk(t+ 1) will be closer toX(i) compared to θk(t)

(refer to the Figure 3.8, blue vector)

=⇒ θk(t+ 1) ·X(i) > θk(t) ·X(i)

=⇒ zk(i) will be increased at next learning step

=⇒ ak(i) = f(zk(i)) will be increased at next learning step

=⇒ δk(i) will be decreased at next learning step

=⇒ Costk(i) will be decreased at next learning step

66

Figure 3.16: 2-Layered ANN Role of Weight Update when δk(i) < 0

Note that if there are K number of target output, there are K number of

classifiers, denoted as θk, and each of which takes charge in classifying each input

data based on each error value, δk(i). In other words, each θk decides which kind

of input vectors, X(i)s, should keep closer or keep away from itself through the

weight update rule. Thus, if input space has more than or equal K number of

cluster groups, then having less than K number of classifiers in 2-layered ANN

is not enough to classify all input. So, the number of Input clusters, CX , should

be less than or equals to K in 2-layered ANN. This limitations is the reason

why arbitrary-depth ANN needs to solve more complex input space, which is

discussed in Chapter 6, 7, and 9.

� Weight Update - matrixwise. Compared to a perceptron ANN, 2-layered has

weight matrix θ which covers all weight vectors in the ANN. The matrixwise

67

weight update rule is shown Equation (3.9), which is based on Equation (3.8).

θ(t+ 1) = θ(t)− η(
∆

∆θ
J(θ))

= θ(t)− η(∆θ) (3.9)

where ∆θ =
1

m

m∑
i=1

δ(i)X(i)> +
λ

m
θ̄

∆θ =

∆θ>1 −→

∆θ>2 −→
...

∆θ>k −→
...

∆θ>K −→

K×(n+1)

=
1

m

m∑
i=1

δ(i)X(i)> +
λ

m
θ̄

Batch Learning - Matrixwise The Algorithm 4 shows pseudocode for a

2-layered ANN with logistic regression and gradient descent optimization on

matrixwise batch learning. In this paragraph, we will see how it takes the whole

input and target output at once, so-called matrixwise batch learning. Likewise,

it is based on vectorwise batch learning and the learning results for both are

same, but the matrixwise computational speed would be faster than vectorwise

because there are less for loop.

68

Algorithm 4 2-Layered ANN Batch Learning Matrixwise Pseudocode

Get X ∈ Rm×n, y ∈ Rm×K , T,m, n,K, η, λ.
Add ∀i, X0(i) = +1 for bias → X ∈ Rm×(n+1)

Init θ ∈ RK×(n+1)

for t = 1 to T do
z = Xθ>(t)
a = f(z)
δ = a− y

Cost(t) = 1
m

m∑
i=1

K∑
k=1

(−yk(i)ln(ak(i))− (1− yk(i))ln(1− ak(i)))

∆θ(t) = δ>X

R(t) = λ
2m

K∑
k=1

n∑
j=1

(θkj(t))
2

J(t) = Cost(t) +R(t)
θ(t+ 1) = θ(t)− η

(
1
m

∆θ(t) + λ
m
θ̄(t)

)
end for

� Input X is matrix covering all m number of input vectors as follows, which is

same as in vectorwise batch learning.

X =

x(1)> −→

x(2)> −→
...

x(i)> −→
...

x(m)> −→

m×(n+1)

; X(i) =

x0(i)

x1(i)

...

xj(i)

...

xn(i)

(n+1)×1

� Weight matrix θ and weight vector θk as follows, which is same as in vectorwise

69

batch learning.

θ =

θ>1 −→

θ>2 −→
...

θ>k −→
...

θ>K −→

K×(n+1)

; θk =

θk0

θk1
...

θkj
...

θkn

(n+1)×1

; θ̄k =

0

θk1
...

θkj
...

θkn

where θk0 = 0

� Net matrix z represents all m number of net vectors as follows.

z =

z(1)> −→

z(2)> −→
...

z(i)> −→
...

z(m)> −→

m×K

=

X(1)θ>

X(2)θ>

...

X(i)θ>

...

X(m)θ>

m×K

= Xθ>

z(i) =

z1(i)

z2(i)

...

zk(i)

...

zK(i)

K×1

= θX(i)

� Actual output matrix a represents all m number of actual output vectors as

70

follows. f is the same logistic function as in vectorwise batch learning.

a =

a(1)> −→

a(2)> −→
...

a(i)> −→
...

a(m)> −→

m×K

= f(z)

� Target output matrix y represents all m number of target output vectors as

follows.

y =

y(1)> −→

y(2)> −→
...

y(i)> −→
...

y(m)> −→

m×K

71

� Error matrix δ represents all m number of error vectors as follows.

δ =

δ(1)> −→

δ(2)> −→
...

δ(i)> −→
...

δ(m)> −→

m×K

= a− y

� The cost function for a 2-layered ANN on matrixwise batch learning is defined

as follows. The results of this is same as the one in vectorwise learning but the

calculation is different since it handles changed mathematical forms.

J(θ) =
1

m

m∑
i=1

K∑
k=1

(−yk(i)ln(ak(i))− (1− yk(i))ln(1− ak(i)))

+
λ

2m

K∑
k=1

n∑
j=1

(θkj)
2 (3.10)

� Weight Update for matrixwise batch learning is as follows.

θ(t+ 1) = θ(t)− η
(

1

m
(δ>X(i)) +

λ

m
θ̄

)
(3.11)(

= θ(t)− η(
1

m

m∑
i=1

(δ(i)X(i)>) +
λ

m
θ̄)

)

Derivation of Learning Update Rule This paragraph derives the Equa-

tion (3.7). The mathematical process for the derivation fully described each step

by step to be easily understood as follows.

72

θkj(t+ 1) = θkj(t)− η(∂
∂θkj

J(θ))

= θkj(t)− η(∆θkj)

∆θkj = ∂
∂θkj

J(θ)

= ∂
∂θkj

(
1
m

m∑
i=1

K∑
k=1

(−yk(i)ln(ak(i))− (1− yk(i))ln(1− ak(i)))
)

+ ∂
∂θkj

(
λ
2m

K∑
k=1

n∑
j=1

(θkj)
2

)
= ∂

∂θkj

(
1
m

m∑
i=1

K∑
k=1

Costk(i) +R

)

∂
∂θkj

(
K∑
k=1

Costk(i)) = ∂
∂θkj

Costk(i)

∂
∂θkj

Costk(i) = ∂
∂θkj

(−yk(i)ln(ak(i))− (1− yk(i))ln(1− ak(i)))

= ∂
∂ak(i)

Costk(i) · ∂ak(i)∂zk(i)
· ∂zk(i)
∂θkj

∂
∂ak(i)

Costk(i) = −yk(i)
ak(i)

− 1−yk(i)
1−ak(i)

· (1− ak(i))′(∵ ln(x)′ = 1
x
)

= −yk(i)
ak(i)

+ 1−yk(i)
1−ak(i)

= ak(i)−ak(i)·yk(i)−yk(i)+ak(i)·yk(i)
ak(i)(1−ak(i))

= ak(i)−yk(i)
ak(i)(1−ak(i))

= δk(i)
ak(i)(1−ak(i))

73

∂ak(i)
∂zk(i)

= ∂f(zk(i))
∂zk(i)

= f(zk(i))(1− f(zk(i)))(∵ f(x) = 1
1+e−x , f

′(x) = f(x)(1− f(x)))

= ak(i)(1− ak(i))
∂zk(i)
∂θkj

= ∂
∂θkj

n∑
j=1

θkjxj(i)

= xj(i)

∴ ∂
∂θkj

Costk(i) = δk(i)
ak(i)(1−ak(i))

· ak(i)(1−ak(i))
1

· xj(i)

= δk(i) · xj(i)

∂
∂θkj

R = ∂
∂θkj

(λ
2m

K∑
k=1

n∑
j=1

(θkj)
2)

= λ
m
θkj (j≥1)

∴ ∆θkj = 1
m

m∑
i=1

δk(i) · xj(i) + λ
m
θkj (j≥1)

∴ θkj(t+ 1) = θkj(t)− η(1
m

m∑
i=1

δk(i) · xj(i) + λ
m
θkj (j≥1))

3.2.3 Generalized Arbitrary-Depth ANN with Logistic

Regression

In this section, we will see from the basic of a generalized, arbitrary-depth,

ANN to its computational process in depth, which is based on a 2-layered ANN.

74

Figure 3.17: Generalized Arbitrary-Depth ANN Architecture

Generalized Arbitrary-Depth ANN Architecture The Figure 3.17 shows

a generalized, arbitrary-depth, ANN architecture, which has multiple layers and

output nodes. Unlike a 2-layered ANN, a generalized, arbitrary-depth, ANN has

multiple layers where input layer is the first layer and the output layer is the

last layer.

As shown in Figure 3.17, nodes are classified into four types: (1) bias(+1),

(2) input(xj), (3) net(z
(l)
k), and (4) actual output node(a

(l)
k). Each weight in

each layer is denoted as θ
(l)
kj which represent strength of the link from an actual

output node a
(l)
j at current layer to a net node z

(l+1)
k at next layer. θ

(l)
k represents

a weight vector from all actual output nodes ∀ja(l)j at current layer to the net

node z
(l+1)
k at next layer.

Similar to 2-layered ANN, the goal of a generalized, arbitrary-depth, ANN

is multi-class classification, specifically KL-class classification but it is to solve

75

more complex input space where the 2-layered ANN has limitations to solve it,

which is called arbitrary-depth learning. It aims to make itself select appropriate

actual output node for given each input data example so that all given input

data examples can be classified into one of KL possible actual output nodes.

The sound mathematical background for an arbitrary-depth neural learning with

the logistic regression backpropagation is fully described in learning paragraph.

Generalized Arbitrary-Depth ANN Data Table Compared to the Fig-

ure 3.10, the data table for a generalized, arbitrary-depth, ANN has additional

columns for covering multiple layers as shown in the Figure 3.18.

Figure 3.18: Generalized Arbitrary-Depth ANN Data Table

For the notation in a generalized, arbitrary-depth, ANN learning, m, n, i, j

are same as in a 2-layered ANN learning. L is the number of total layers in an

ANN including input and output layers, l refers to each layer which is denoted as

superscript (l) where its value is from 1 to L, KL is the number of actual output

nodes at the last layer, Kl is the number of actual output nodes in each lth layer.

In here, it is notable that in a generalized, arbitrary-depth, ANN actual output

nodes at each layer turns into the input nodes for the next layer. Therefore, for

keeping consistency, n can be also denoted as same as K1 since input layer is the

first layer and thus xj can be referred as a1k where k ∈ [0, K1]. Based on this,

76

xj(i) is jth input node value on ith input data which can be same as a
(1)
k (i), yk(i)

is target output value for a
(L)
k of ith input data, z

(l)
k (i) is the kth net node value

at lth layer of ith input data, a
(l)
k (i) is the the kth processed actual output node

value at lth layer of ith input data, δ
(l)
k (i) is the the kth error value at lth layer of

ith input data; especially, δ
(L)
k (i) is the the kth error value between the actual

output node value a
(L)
k (i) and target output value yk(i). the computational

process calculating δ
(l)
k (i) is covered in the next learning paragraph.

Figure 3.19: Generalized Arbitrary-Depth ANN Data Space

Likewise, it is interesting when a generalized, arbitrary-depth, ANN is com-

pared to general scientific computation. Figure 3.19 shows how a generalized

arbitrary-depth neural network can be described in a different view. Note that

there are L− 1 number of computing spaces each of which represents each layer;

note that last Lth layer only has processed net and actual output values, without

neural weights. At first layer, there is n+ 1 dimensional space where each input

vector can be represented as X(i) and each weight vector θ
(1)
k will be optimized

over the learning process based on error value δ
(1+1)
k . Similarly, lth layer can be

represented as Kl + 1 dimensional space where each input is denoted as a(l)(i)

and each weight vector θ
(l)
k is optimized over the learning process based on error

value δ
(l+1)
k . The detail optimization process is described in the following learning

paragraph.

77

Batch Learning - Vectorwise The Algorithm 3 shows pseudocode for a

generalized, arbitrary-depth, ANN with logistic regression and gradient descent

optimization on vectorwise batch learning.

78

Algorithm 5 Generalized Arbitrary-depth ANN Batch Learning Vectorwise
Pseudocode

Get X ∈ Rm×n, y ∈ Rm×K , T,m, n, L,K1, · · · , Kl, · · · , KL, η, λ,
Add ∀i, X0(i) = +1 for bias → X ∈ Rm×(n+1)

for l = 1 to L− 1 do
Init θ(l) ∈ RKl+1×(Kl+1)

end for
for t = 1 to T do

for i = 1 to m do
FORWARD PROPAGATION
a(1)(i) = X(i)
for l = 2 to L do
z(l)(i) = θ(l−1)(t)a(l−1)(i)
a(l)(i) = f(z(l)(i))

Add a
(l)
0 (i) = +1 for bias at each layer.

end for
BACKWARD PROPAGATION
Remove a

(L)
0 (i) since there is no bias at the last layer.

δ(L)(i) = a(L)(i)− y(i)
∆θ(L−1)(i) = δ(L)(i)(a(L−1)(i))>

∆θ(L−1)(t) = ∆θ(L−1)(t) + ∆θ(L−1)(i)
for l = L− 1 to 2 do
δ(l)(i) = (θ(l))>δ(l+1)(i)

Remove δ
(l)
0

δ(l)(i) = δ(l)(i). ∗ f(z(l)(i))
∆θ(l−1)(i) = δ(l)(i)(a(l−1)(i))>

∆θ(l−1)(t) = ∆θ(l−1)(t) + ∆θ(l−1)(i)
end for

Cost(i) =
KL∑
k=1

(−yk(i)ln(a
(L)
k (i))− (1− yk(i))ln(1− a(L)k (i)))

Cost(t) = Cost(t) + Cost(i)
end for
WEIGHT UPDATE
for l = 1 to L-1 do
θ(l)(t+ 1) = θ(l)(t)− η

(
1
m

∆θ(l)(t) + λ
m
θ̄(l)(t)

)
end for

R(t) = λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj (t)

)2
J(t) = 1

m
Cost(t) +R(t)

end for

79

� Input vector X(i) represents each input vector.

X(i) =

x0(i)

x1(i)

...

xj(i)

...

xn(i)

(n+1)×1

= a(1)(i) =

a
(1)
0 (i)

a
(1)
1 (i)

...

a
(1)
j (i)

...

a
(1)
K1

(i)

(K1+1)×1

where x0(i) = a0(i) = 1 and K1 = n

� Weight matrix θ(l) and weight vector θ
(l)
k at each layer are as follows. Note

that l is from 1 to L− 1 since there is no neural links at the last layer. θ(l) refers

to all weights at lth layer in the ANN and θ
(l)
k indicates each weight vector of it.

θ(l) =

θ
(l)>
1 −→

θ
(l)>
2 −→

...

θ
(l)>
k −→

...

θ
(l)>
Kl+1
−→

Kl+1×(Kl+1)

; θ
(l)
k =

θ
(l)
k0

θ
(l)
k1

...

θ
(l)
kj

...

θ
(l)
kKl

(Kl+1)×1

; θ̄k
(l)

=

0

θ
(l)
k1

...

θ
(l)
kj

...

θ
(l)
kKl

where l is from 1 to L-1.

� Net vector z(l)(i) represents all Kl number of net values of ith input data,

which is calculated as follows. Note that in this calculation l is from 2 to L since

80

there are no net nodes at the first layer.

z(l)(i) =

z
(l)
1 (i)

z
(l)
2 (i)

...

z
(l)
k (i)

...

z
(l)
Kl

(i)

Kl×1

= θ(l−1)a(l−1)(i)

where l is from 2 to L.

z
(l)
k (i) = θ

(l−1)>
k a(l−1)(i)

= θ
(l−1)
k0 a

(l−1)
0 (i) + θ

(l−1)
k1 a

(l−1)
1 (i) + · · ·+ θ

(l−1)
kKl−1

a
(l−1)
Kl−1

(i)

=
Kl−1∑
j=0

θ
(l−1)
kj a

(l−1)
j (i) ∈ (−∞,∞)

� Actual output vector a(l)(i) represents all Kl number of actual output values

of ith input data and it is computed as follows. Note that in this calculation l is

also from 2 to L since the a(1)(i) is same as X(i).

a(l)(i) =

a
(l)
1 (i)

a
(l)
2 (i)

...

a
(l)
k (i)

...

a
(l)
K(l)

(i)

K(l)×1

= f(z(l)(i)) where f(z
(l)
k (i)) = 1

1+e
(z

(l)
k

(i))

where l is from 2 to L.

a
(l)
k (i) = f(z

(l)
k (i)) ∈ (0, 1)

81

� Target output vector y(i) represents all KL number of target output values as

follows. Note that each target output value has either 0 or 1.

y(i) =

y1(i)

y2(i)

...

yk(i)

...

yKL
(i)

KL×1

yk(i) ∈ {0, 1}

� Error value δ
(L)
k (i) represents the difference between actual output value and

target output value at the last layer. Error vector δ(L)(i) represents all the errors

at the last layer and it is computed as follows, which is similar to a 2-layered

ANN. Note that the error vectors at the other layers are computed through error

update rule which is explained and derived in the following paragraphs.

δ
(L)
k (i) = a

(L)
k (i)− yk(i) ∈ (−1, 1)

δ(L)(i) =

δ
(L)
1 (i)

δ
(L)
2 (i)

...

δ
(L)
k (i)

...

δ
(L)
KL

(i)

KL×1

= a(L)(i)− y(i)

82

� Error Update. In arbitrary-depth neural network, each layer has each different

error values as computed as follows. This error update is necessary to proceed

the weight update rule and the Equation (3.12) will be justified in the derivation

paragraph.

l = L− 1 to 2 δ
(l)
k (i) =

Kl+1∑
v=1

θ
(l)
vk · δ

(l+1)
v (i) · f ′(z(l)k (i)) (3.12)

δ(l)(i) = (θ(l))>δ(l+1)(i). ∗ f ′(z(l)(i))

� The cost function J(θ) in a generalized, arbitrary-depth, ANN also has same

role as one in a 2-layered ANN, which gives a way of measuring learning results

or learning effects based on the differences between actual and target output

values. The difference is that it considers the actual output in the last layer thus

the function definition is changed to the Equation (3.13) from Equation (3.6).

J(θ) =
1

m

m∑
i=1

KL∑
k=1

(−yk(i)ln(a
(L)
k (i))− (1− yk(i))ln(1− a(L)k (i)))+

+
λ

2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(θ
(l)
kj)

2

︸ ︷︷ ︸
Regularization Term

(3.13)

=
1

m

m∑
i=1

KL∑
k=1

Costk(i) +R

where

Costk(i) = (−yk(i)ln(a

(L)
k (i))− (1− yk(i))ln(1− a(L)k (i)))

R = λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(θ
(l)
kj)

2

Similar to a 2-layered ANN, Figure 3.14 helps us to visually understand how

83

a generalized, arbitrary-depth, ANN evaluates its cost depending on a given

input and target output.

Figure 3.20: Generalized Arbitrary-Depth ANN Role of Cost Function

� Weight Update - Elementwise. Based on the cost function J(θ) the weight

update rule is shown in Equation (3.14). The role of weight update rule is same

as the 2-layered neural network except that it is applied to the weights in each

layer since it is arbitrary-depth neural network.

a(1)(i) = X(i)

l = 1 to L− 1 θ
(l)
kj (t+ 1) = θ

(l)
kj (t)− η(

∂

∂θ
(l)
kj

J(θ))

= θ
(l)
kj (t)− η(∆θ

(l)
kj) (3.14)

where ∆θ
(l)
kj =

1

m

m∑
i=1

δ
(l+1)
k (i)a

(l)
j (i) +

λ

m
θ
(l)
kj (j≥1)︸ ︷︷ ︸

Regularization Term

84

� Weight Update - Vectorwise. Equation (3.14) can be written in a vectorwise

form as following Equation (3.15), which is self-explanatory.

a(1)(i) = X(i)

l = 1 to L− 1 θ
(l)
k (t+ 1) = θ

(l)
k (t)− η(

∂

∂θ
(l)
k

J(θ))

= θ
(l)
k (t)− η(∆θ

(l)
k) (3.15)

where ∆θ
(l)
k =

1

m

m∑
i=1

δ
(l+1)
k (i)a(l)(i) +

λ

m
θ̄k

(l)

=

∆θ
(l)
k0

∆θ
(l)
k1

...

∆θ
(l)
kj

...

∆θ
(l)
kKl

(Kl+1)×1

=
1

m

m∑
i=1

δ
(l+1)
k (i)

a
(l)
0 (i)

a
(l)
1 (i)

...

a
(l)
j (i)

...

a
(l)
Kl

(i)

(Kl+1)×1

+
λ

m
θ̄k

(l)

� Weight Update - matrixwise. The matrixwise weight update rule is shown

85

Equation (3.16), which is based on Equation (3.15).

a(1)(i) = X(i)

l = 1 to L− 1 θ(l)(t+ 1) = θ(l)(t)− η(
∆

∆θ(l)
J(θ))

= θ(l)(t)− η(∆θ(l)) (3.16)

where ∆θ(l) =
1

m

m∑
i=1

δ(l+1)(i)a(l)(i)> +
λ

m
θ̄

∆θ(l) =

∆θ
(l)>
1 −→

∆θ
(l)>
2 −→

...

∆θ
(l)>
k −→

...

∆θ
(l)>
Kl+1
−→

Kl+1×(Kl+1)

Batch Learning - Matrixwise The Algorithm 6 shows pseudocode for a

generalized, arbitrary-depth, ANN with logistic regression and gradient descent

optimization on matrixwise batch learning. In this paragraph, we will see how it

takes the whole input and target output data at once. Likewise, it is based on

vectorwise batch learning and the learning results are same, but the matrixwise

computational speed would be faster than vectorwise because there are less for

loop.

86

Algorithm 6 Generalized Arbitrary-depth ANN Batch Learning Matrixwise
Pseudocode

Get X ∈ Rm×n, y ∈ Rm×K , T,m, n,K1, · · · , Kl, · · · , KL, η, λ,
Add ∀i, X0(i) = +1 for bias → X ∈ Rm×(n+1)

for l = 1 to L− 1 do
Init θ(l) ∈ RKl+1×(Kl+1)

end for
for t = 1 to T do

FORWARD PROPAGATION
a(1) = X
for l = 2 to L do
z(l) = a(l−1)(θ(l−1))>

a(l) = f(z(l))

Add a
(l)
0 ← +1 for bias at each layer.

end for
BACKWARD PROPAGATION
Remove a

(L)
0

δ(L) = a(L) − y
∆θ(L−1)(t) = (δ(L))>a(L−1)

for l = L− 1 to 2 do
δ(l) = δ(l+1)θ(l)

Remove δ
(l)
0

δ(l) = δ(l). ∗ f ′(z(l))
∆θ(l−1)(t) = (δ(l))>a(l−1)

end for
WEIGHT UPDATE

Cost(t) = 1
m

m∑
i=1

KL∑
k=1

(
−yk(i)ln(a

(L)
k (i))− (1− yk(i))ln(1− a(L)k (i))

)
for l = 1 to L-1 do
θ(l)(t+ 1) = θ(l)(t)− η(1

m
∆θ(l)(t) + θ̄(l)(t))

end for

R(t) = λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj

)2
J(t) = Cost(t) +R(t)

end for

� Input X is matrix represents all m number of input vectors as follows, which

87

is same as in vectorwise batch learning.

X =

x(1)> −→

x(2)> −→
...

x(i)> −→
...

x(m)> −→

m×(n+1)

= a(1) =

a(1)(1)> −→

a(1)(2)> −→
...

a(1)(i)> −→
...

a(1)(m)> −→

m×(K1+1)

X(i) =

x0(i)

x1(i)

...

xj(i)

...

xn(i)

(n+1)×1

= a(1)(i) =

a
(1)
0 (i)

a
(1)
1 (i)

...

a
(1)
j (i)

...

a
(1)
K1

(i)

(K1+1)×1

� Weight matrix θ(l) and weight vector θ
(l)
k are as follows, which is same as in

vectorwise batch learning.

θ(l) =

θ
(l)>
1 −→

θ
(l)>
2 −→

...

θ
(l)>
k −→

...

θ
(l)>
Kl+1
−→

Kl+1×(Kl+1)

; θ
(l)
k =

θ
(l)
k0

θ
(l)
k1

...

θ
(l)
kj

...

θ
(l)
kKl

(Kl+1)×1

; θ̄k
(l)

=

0

θ
(l)
k1

...

θ
(l)
kj

...

θ
(l)
kKl

where l is from 1 to L-1.

88

� Net matrix z(l) represents all m number of net vectors at lth layer as follows.

z(l) =

z(l)(1)> −→

z(l)(2)> −→
...

z(l)(i)> −→
...

z(l)(m)> −→

m×Kl

=

a(l−1)(1)(θ(l−1))>

a(l−1)(2)(θ(l−1))>

...

a(l−1)(i)(θ(l−1))>

...

a(l−1)(m)(θ(l−1))>

m×Kl

= a(l−1)(θ(l−1))>

z(l)(i) =

z
(l)
1 (i)

z
(l)
2 (i)

...

z
(l)
k (i)

...

z
(l)
Kl

(i)

Kl×1

= θ(l−1)a(l−1)(i)

� Actual output matrix a(l) represents all m number of actual output vectors

at lth layer as follows. f is the same logistic function as in vectorwise batch

learning.

a(l) =

a(l)(1)> −→

a(l)(2)> −→
...

a(l)(i)> −→
...

a(l)(m)> −→

m×Kl

= f(z(l))

89

� Target output matrix y represents all m number of given target output vectors

as follows.

y =

y(1)> −→

y(2)> −→
...

y(i)> −→
...

y(m)> −→

m×KL

� Error Update. Error matrix δ(l) represents all m number of error vectors at lth

layer as follows.

l = L δ(L) = a(L) − y(i)

l = L− 1 to 2 δ(l) = δ(l+1)θ(l) (3.17)

=

δ(l+1)(1)>θ(l) −→

δ(l+1)(2)>θ(l) −→
...

δ(l+1)(i)>θ(l) −→
...

δ(l+1)(m)>θ(l) −→

m×Kl

δ(l) =
m∑
i=1

Kl∑
k=1

(
δ
(l)
ik f

′(z
(l)
ik)
)

� The cost function for a generalized, arbitrary-depth, ANN on matrixwise batch

learning is defined as follows. The results of this is same as the one in vectorwise

90

learning but the calculation is different since it handles changed mathematical

forms.

J(θ) =
1

m

m∑
i=1

KL∑
k=1

(
−yikln(a

(L)
ik)− (1− yik)ln(1− a(L)ik)

)
+

λ

2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj

)2
(3.18)

� Weight Update for matrixwise batch learning is as follows.

a(1) = X

l = 1 to L− 1 θ(l)(t+ 1) = θ(l)(t)− η
(

1

m
δ(l+1)>a(l) +

λ

m
θ̄(l)
)

(3.19)(
= θ(l)(t)− η

(
1

m

m∑
i=1

δ(l+1)(i)a(l)(i)> +
λ

m
θ̄(l)

))

Derivation of Weight Update Rule and Error Update Rule This para-

graph derives the Equation (3.14) and 3.12. The mathematical process for the

derivation fully described each step by step to be easily understood as follows.

l = 1toL− 1

θ
(l)
kj (t+ 1) = θ

(l)
kj (t)− η(∂

∂θ
(l)
kj

J(θ))

= θ
(l)
kj (t)− η(∆θ

(l)
kj)

∆θ
(l)
kj = ∂

∂θ
(l)
kj

J(θ)

= ∂

∂θ
(l)
kj

(1
m

m∑
i=1

KL∑
k=1

(−yk(i)ln(a
(L)
k (i))− (1− yk(i))ln(1− a(L)k (i)))

+ λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(θ
(l)
kj)

2)

= ∂

∂θ
(l)
kj

(1
m

m∑
i=1

KL∑
k=1

Costk(i) +R)

91

l = L− 1

∆θ
(L−1)
kj = 1

m

m∑
i=1

∂

∂θ
(L−1)
kj

(
KL∑
k=1

Costk(i)) + ∂

∂θ
(L−1)
kj

R

k = 1toKL;

j = 0toKL−1;

∂

∂θ
(L−1)
kj

(
KL∑
k=1

Costk(i)) = ∂

∂θ
(L−1)
kj

Costk(i)

= ∂

∂θ
(L−1)
kj

(−yk(i)ln(a
(L)
k (i))− (1− yk(i))ln(1− a(L)k (i)))

= ∂

∂a
(L)
k (i)

Costk(i) ·
∂a

(L)
k (i)

∂z
(L)
k (i)

· ∂z
(L)
k (i)

∂θ
(L−1)
kj

∂

∂a
(L)
k (i)

Costk(i) = −yk(i)
a
(L)
k (i)

− 1−yk(i)
1−a(L)

k (i)
· (1− a(L)k (i))′(∵ ln(x)′ = 1

x
)

= −yk(i)
a
(L)
k (i)

+ 1−yk(i)
1−a(L)

k (i)

=
a
(L)
k (i)−a(L)

k (i)·yk(i)−yk(i)+a
(L)
k (i)·yk(i)

a
(L)
k (i)(1−a(L)

k (i))

=
a
(L)
k (i)−yk(i)

a
(L)
k (i)(1−a(L)

k (i))

=
δ
(L)
k (i)

a
(L)
k (i)(1−a(L)

k (i))

∂a
(L)
k (i)

∂z
(L)
k (i)

=
∂f(z

(L)
k (i))

∂z
(L)
k (i)

= f(z
(L)
k (i))(1− f(z

(L)
k (i)))

(∵ f(x) = 1
1+e−x , f

′(x) = f(x)(1− f(x)))

= a
(L)
k (i)(1− a(L)k (i))

∂z
(L)
k (i)

∂θ
(L−1)
kj

= ∂

∂θ
(L−1)
kj

(
KL−1∑
j=1

θ
(L−1)
kj a

(L−1)
j (i))

= a
(L−1)
j (i)

92

∴ ∂

∂θ
(L−1)
kj

Costk(i) =
δ
(L)
k (i)

a
(L)
k (i)(1−a(L)

k (i))
· a

(L)
k (i)(1−a(L)

k (i))

1
· a(L−1)j (i)

= δ
(L)
k (i) · a(L−1)j (i)

∂

∂θ
(L−1)
kj

R = ∂

∂θ
(L−1)
kj

(λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(θ
(l)
kj)

2)

= λ
m
θ
(L−1)
kj (j≥1)

∴ ∆θ
(L−1)
kj = 1

m

m∑
i=1

δ
(L)
k (i) · a(L−1)j (i) + λ

m
θ
(L−1)
kj (j≥1)

∴ θ
(L−1)
kj (t+ 1) = θ

(L−1)
kj (t)− η(1

m

m∑
i=1

δ
(L)
k (i) · a(L−1)j (i) + λ

m
θ
(L−1)
kj (j≥1))

93

l = L− 2

∆θ
(L−2)
kj = 1

m

m∑
i=1

∂

∂θ
(L−2)
kj

(
KL∑
v=1

Costv(i)) + ∂

∂θ
(L−2)
kj

R

v = 1toKL;

k = 1toKL−1;

j = 0toKL−2;

∂

∂θ
(L−2)
kj

(
KL∑
v=1

Costv(i)) =
KL∑
v=1

(∂

∂θ
(L−2)
kj

Costv(i))

=
KL∑
v=1

(∂

∂θ
(L−2)
kj

(−yv(i)ln(a
(L)
v (i))− (1− yv(i))ln(1− a(L)v (i))))

=
KL∑
v=1

(∂

∂a
(L)
v (i)

Costv(i) · ∂a
(L)
v (i)

∂z
(L)
v (i)

· ∂z
(L)
v (i)

∂θ
(L−2)
kj

)

=
KL∑
v=1

((a
(L)
v −yv)

(a
(L)
v (1−(a(L)

v)
· (a

(L)
v (1−(a(L)

v)
1

· ∂

∂θ
(L−2)
kj

(
KL−1∑
k=0

θ
(L−1)
vk a

(L−1)
k))

=
KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk · ∂

∂θ
(L−2)
kj

(
KL−1∑
k=0

a
(L−1)
k))

=
KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk · ∂

∂θ
(L−2)
kj

(
KL−1∑
k=0

f(z
(L−1)
k)))

=
KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk · (

KL−1∑
k=0

f ′(z
(L−1)
k) · ∂

∂θ
(L−2)
kj

z
(L−1)
k))

=
KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk · f ′(z(L−1)k) · ∂

∂θ
(L−2)
kj

z
(L−1)
k)

=
KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk · f ′(z(L−1)k) · ∂

∂θ
(L−2)
kj

(
KL−2∑
j=0

θ
(L−2)
kj a

(L−2)
j))

=
KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk · f ′(z(L−1)k) · a(L−2)j)

= δ
(L−1)
k · a(L−2)j

where δ
(L−1)
k =

KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk) · f ′(z(L−1)k)

94

∂

∂θ
(L−2)
kj

R = ∂

∂θ
(L−2)
kj

(λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(θ
(l)
kj)

2)

= λ
m
θ
(L−2)
kj (j≥1)

∴ ∆θ
(L−2)
kj = δ

(L−1)
k · a(L−2)j

where δ
(L−1)
k =

KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk) · f ′(z(L−1)k)

∴ θ
(L−2)
kj (t+ 1) = θ

(L−2)
kj (t)− η(δ

(L−1)
k · a(L−2)j + λ

m
θ
(L−2)
kj (j≥1))

where δ
(L−1)
k =

KL∑
v=1

(δ
(L)
v (i) · θ(L−1)vk) · f ′(z(L−1)k)

Therefore,

l = L

δ
(L)
k = a

(L)
k − yk

l = (L− 1)to1

δ
(l)
k =

Kl+1∑
v=1

θ
(l)
vk · δ

(l+1)
v (i) · f ′(z(l)k (i))

θ
(l)
kj (t+ 1) = θ

(l)
kj (t)− η(1

m

m∑
i=1

δ
(l+1)
k (i)a

(l)
j (i) + λ

m
θ
(l)
kj (j≥1))

3.3 Reward-based Neural Model

3.3.1 Hebbian Plasticity

In 1949, Donald Hebb introduced the Hebbian plasticity which covers the

relationship between output of presynaptic and postsynaptic neurons [16]. The

Hebbian plasticity is based on the discovery, “when a presynaptic neuron repeat-

edly participates in firing of a postsynaptic neuron, the strength between pre-

and postsynaptic neurons increases”, which can be simply represented by him

as ”neurons fire together wire together”.

95

An example is Pavlov’s famous “conditioned reflexes” experiments with

dogs [36]. A dog salivates when food is presented. The food can be seen as an

unconditioned stimulus for the dog’s response—salivating. The Hebbian learning

rule uses this existing relationship between the unconditioned stimulus and the

dog’s response in the learning process. For example, assume we set all weights

to positive values for the relationship between the stimulus of food and the

response of salivating (that is, the synaptic weights between the pre-synaptic

neurons that respond to the food sensation and the post-synaptic neurons that

generate salivation are greater than zero) and set the weights to neutral values

for the relationship between a new stimulus, such as the sound of ringing a

bell, and the response of salivating. Then, after calculating the output of the

neurons, the response is still positive, which means the dog will salivate and the

relationship between ringing the bell and salivating will be updated according to

Equation (3.20) to positive values from neutral values—that is, the dog will have

learned to salivate at the sound of the bell. The detail computational process is

described in next learning paragraph.

Iterative Hebbian Learning Algorithm 7 shows the pseudocode of iterative

Hebbian learning. Note that iterative learning refers to take one input data

example in one learning process whereas batch learning computes all m number

of input data examples in updating weight vector (s) through one learning

step. Hebbian learning is typically based on 2-layered ANN thus the following

mathematical process in Chapter 3.3 is based on 2-layered ANN. However, in

this dissertation, Hebbian learning does not consider the bias nodes thus the

Hebbian ANN architecture is seen by removing all bias nodes and corresponding

96

links in the Figure 3.9.

Algorithm 7 Iterative Hebbian Learning Pseudocode

Set T, η
Init θ ∈ RK×n

for t = 1 to T do
Get X(t) ∈ Rn

z(t) = θX(t)
a(t) = f(z(t)) ,where f(z) = z
∆θ(t) = η(a(t)X(t)>)
θ(t+ 1) = θ(t) + ∆θ(t)
θ = θ(t+ 1)

end for

� Input vector X(t) represents one input vector at learning step t. Note that

the input dimension is exactly n, not n+ 1, since there is no bias in Hebbian

ANN; also there is no i which was indicator each input data example of all m

number of input since Hebbian learning takes only one input in one learning

process iteratively.

X(t) =

x1(t)

...

xj(t)

...

xn(t)

(n)×1

� Weight matrix θ and weight vector θk as follows. Note that θ refers to all

97

weights in the ANN and θk indicates each weight vector of it.

θ =

θ>1 −→

θ>2 −→
...

θ>k −→
...

θ>K −→

K×(n)

; θk =

θk1
...

θkj
...

θkn

(n)×1

; θ̄k =

0

θk1
...

θkj
...

θkn

where θk0 = 0

� Net vector z(t) represents K number of net values at learning step t, which is

calculated as follows.

z(t) =

z1(t)

z2(t)

...

zk(t)

...

zK(t)

K×1

= θX(t)

zk(t) = θ>k X(t)

= θk1x1(t) + · · ·+ θknxn(t)

=
n∑
j=1

θkjxj(t) ∈ (−∞,∞)

� Actual output vector a(t) represents K number of actual output values at

learning step t, which is computed as follows. Note that the activation function

used in Hebbian learning is simple linear function: f(x) = x. This means that

98

value of an actual output node is same as the corresponding net value.

a(t) =

a1(t)

a2(t)

...

ak(t)

...

aK(t)

K×1

= f(z(t)) where f(zk(t)) = zk(t)

ak(t) = f(zk(t)) ∈ (−∞,∞)

� Weight Update - Elementwise. Equation (3.20) shows how each weight is

updated in Hebbian learning, which is also called Hebb’s rule [16]. In Hebb’s rule,

weight update is computed by simple product of presynaptic and postsynaptic

neuron’s membrane potential like in Equation (3.20). This means the strength

of the input and output potentials are correlated each other in determining the

synaptic connection which is wight.

θkj(t+ 1) = θkj(t) + η(∆θkj) (3.20)

where ∆θkj = η(ak(t) · xj(t))

� Weight Update - Vectorwise. Equation (3.20) can be re-written in a vectorwise

99

form as following Equation (3.21), which is self-explanatory.

θk(t+ 1) = θk(t) + η(∆θk)

where ∆θk = η(ak(t)X(t)) (3.21)

∆θk =

∆θk1
...

∆θkj
...

∆θkn

(n)×1

= ak(t)

x1(t)

...

xj(t)

...

xn(t)

(n)×1

= ak(t)X(t)

Looking deep into the Equation (3.21), we can see the role of Hebbian weight

update. The Equation (3.21) can be simplified as follows by assuming η as 1.

Assume: η = 1 and α = angular distance between θk and X(t)

Then: θk(t+ 1) = θk(t) + ak(t)X(t)

In this simplified equation, θk can be considered as a kth learning vector

corresponding to ak, which decides its behavior based on the current relationship

between θk and input vector X(t). We can understand its behavior by looking

into three possible cases: (1) ak(t) = 0, (2) ak(t) > 0, and (3) ak(t) < 0. First, in

the case of ak(t) = 0, the weight vector θk has no changes in the weight update

as follows.

100

ak(t) = 0 ⇐⇒ θ>k X(t) = 0

⇐⇒ θk ·X(t) = 0 (‖θk‖‖X(t)‖ cos(α) = 0)

=⇒ θk and X(t) are perpendicular or parallel

=⇒ θk(t+ 1) = θk(t)

Second, if ak(t) > 0, we can see it ultimately makes the weight vector θk

closer to the current input vector X(t) as follows.

ak(t) > 0 ⇐⇒ θ>k X(t) > 0

⇐⇒ θk ·X(t) > 0 (‖θk‖‖X(t)‖ cos(α) > 0)

=⇒ 0 < α < (π
2
) or (3π

2
) < α < (4π

2
)

=⇒ θk and X(t) have closer angular distance

=⇒ θk(t+ 1) = θk(t) + ak(t)X(t)

=⇒ θk(t+ 1) will be closer to X(t)

Third, in the case of ak(t) > 0, the weight vector θk is farther away from the

current input vector X(t) as follows.

101

ak(t) < 0 ⇐⇒ θ>k X(t) < 0

⇐⇒ θk ·X(t) < 0 (‖θk‖‖X(t)‖ cos(α) < 0)

=⇒ (π
2
) < α < (3π

2
)

=⇒ θk and X(t) have far angular distance

=⇒ θk(t+ 1) = θk(t)− ak(t)X(t)

=⇒ θk(t+ 1) will be further away from X(t)

Based on the three cases, we can infer the important characteristics of the

Hebbian plasticity: (1) if their angular distance between θk and X(t) is close

enough to have positive inner product value, they will be closer as a result of

learning process, (2) if the relationship is far enough to take negative inner

product value, they will further away, and (3) if the relationship between θk and

input vector X(t) is perpendicular or parallel, θk will be stay on same position

which means there will be no learning effects. This implies that the Hebbian rule

makes each θk will keep moving/adjusting either closer to or farther away from

X(t) based on their relationships until they become perpendicular or parallel.

�Weight Update - matrixwise. Equation (3.21) can be re-written in a matrixwise

102

form as following Equation (3.22).

θ(t+ 1) = θ(t) + η(∆θ)

where ∆θ = η(a(t)X(t)>) (3.22)

∆θ =

∆θ>1 −→

∆θ>2 −→
...

∆θ>k −→
...

∆θ>K −→

K×(n)

= a(t)X(t)>

3.3.2 Reward-based Hebbian Plasticity

Reward-based Hebbian plasticity is based on the Hebbian plasticity, which

adds reward value from outside sources such as an environment, a trainer,

or chemical processes. As covered in Chapter 2, it is known that additional

chemical signals affect synaptic changes, which is the basis of a modulated

Hebbian model [38] [53]. In neurobiological perspective, neurotransmitters play

important role in changing synaptic plasticity and some of them are related to

involving reward information so that the short-lived synaptic association between

presynaptic and postsynaptic neuron can be activated in longer time. In this

case, modulatory Hebbian learning is kind of reward-based Hebbian learning

where reward value is applied in the form of a modulatory signal which turns

into a numerical value either +1 or −1. The computational process is described

in the next learning paragraph.

103

Iterative Reward-based Hebbian Learning Algorithm 8 shows the pseu-

docode for iterative reward-based Hebbian learning. Note that the computational

part for input vector (X(t)), weight matrix (θ), net vector (z(t)), and actual

output vector (a(t)) are exactly same as in Hebbian learning and thus this

paragraph only covers how the reward value is applied in adjusting weights.

Algorithm 8 Iterative Reward-based Hebbian Learning Pseudocode

Set T, η
Init θ ∈ RK×n

for t = 1 to T do
Get X(t) ∈ Rn

z(t) = θX(t)
a(t) = f(z(t)) ,where f(z) = z
Get r(t) ∈ RK

∆θ(t) = η(a(t). ∗ r(t))X(t)>

θ(t+ 1) = θ(t) + ∆θ(t)
θ = θ(t+ 1)

end for

� Reward vector r(t) is generated vector based on reward value reward(t).

Reward-based Hebbian learning is taking reward value at each learning step

which can be acquired from outside of the learning process like a modulatory

signal. In other words, after selecting the actual output node which has maximum

value among all of them, reward-based Hebbian ANN waits for a reward and

the reward is corresponding only to the selected actual output node. This

implies important characteristic that reward-based Hebbian learning is selective

learning, which means it updates only selected weights which are associated with

the selected actual output based on the reward value. Therefore the weights

corresponding to the non-selected actual output nodes should not be affected by

the reward value. In this case, there is new computational component which is

104

called reward vector r(t) and it is set as follows based on a reward value.

reward(t) ∈ {+1, −1} given from outside at learning step t

r(t) =

r1(t)

r2(t)

...

rk(t)

...

rK(t)

K×1

rk(t) = reward(t); if ak is selected output at learning step t

rk(t) = 0; if ak is non-selected output at learning step t

Note that reward value reward(t) has either +1 or −1 and this value is only

set to be rk(t) where k is the selected actual output index; the other elements of

the reward vector is set to zeros so as not to have no learning effects.

� Weight Update - Elementwise. Equation (3.23) shows how each weight is

updated in reward-based Hebbian learning, which is elementwise weight update

rule.

θkj(i+ 1) = θkj(t) + η(∆θkj) (3.23)

where ∆θkj = rk(t) · ak(t) · xj(t)

� Weight Update - Vectorwise. Equation (3.23) can be re-written in a vectorwise

105

form as follows, which is self-explanatory.

θk(i+ 1) = θ(t) + η(∆θk) (3.24)

where ∆θk = (rk(t). ∗ ak(t))X(t)

∆θk =

∆θk1
...

∆θkj
...

∆θkn

(n)×1

= rk(t) · ak(t)

x1(t)

...

xj(t)

...

xn(t)

(n)×1

= rk(t) · ak(t) ·X(t)

Looking deep into the Equation (3.24), we can see the role of reward-based

Hebbian weight update. The Equation (3.24) can be simplified as follows by

assuming η as 1.

Assume: η = 1 and α = angular distance between θk and X(t)

Then: θ(t+ 1)k = θ(t) + ((rk(t) · ak(t))X(t))

In this simplified equation, rk(t) plays an important role in deciding the

behavior of each weight vector. Note that reward value is either +1 or −1 but

rk(t) is one among {−1, 0,+1}. Similar to the role of Hebbian learning, there

are three cases of ak(t): (1) ak(t) = 0, (2) ak(t) > 0, and (3) ak(t) < 0; and we

can see how rk(t) affects the learning results in each case. First, in the case

of ak(t) = 0, the weight vector θk has no changes in the weight update rule as

follows.

106

ak(t) = 0 ⇐⇒ θ>k X(t) = 0

⇐⇒ θk ·X(t) = 0 (‖θk‖‖X(t)‖ cos(α) = 0)

=⇒ ∆θk = 0

=⇒ θk(t+ 1) = θk(t)

Second, in the case of ak(t) > 0 or ak(t) < 0, the weight vector θk is updated

based on rk(t) as follows.

ak(t) > 0 ⇐⇒ θ>k X(t) > 0

⇐⇒ θk ·X(t) > 0(‖θk‖‖X(t)‖ cos(α) > 0)

=⇒ 0 < α < (π
2
) or (3π

2
) < α < (4π

2
)

=⇒ θk and X(t) have closer angular distance

=⇒ ∆θk = +(rk(t)βX(t)for some positive β

If rk(t) = 0

=⇒ θk(t+ 1) = θk(t)

If rk(t) = +1

=⇒ θk(i+ 1) = θk(t) + βX(t)

=⇒ θk(i+ 1) will be closer to X(t)

If rk(t) = −1

=⇒ θk(i+ 1) = θk(t)− βX(t)

=⇒ θk(i+ 1) will be are away from X(t)

107

ak(t) < 0 ⇐⇒ θ>k X(t) < 0

⇐⇒ θk ·X(t) < 0(‖θk‖‖X(t)‖ cos(α) < 0)

=⇒ (π
2
) < α < (3π

2
)

=⇒ θk and X(t) have far angular distance

=⇒ ∆θk = −(rk(t)βX(t)for some positive β

If rk(t) = 0

=⇒ θk(t+ 1) = θk(t)

If rk(t) = +1

=⇒ θk(i+ 1) = θk(t)− βX(t)

=⇒ θk(i+ 1) will be are away from X(t)

If rk(t) = −1

=⇒ θk(i+ 1) = θk(t) + βX(t)

=⇒ θk(i+ 1) will be closer to X(t)

Based on the three cases, we can infer important characteristics of the reward-

based Hebbian plasticity: (1) if positive reward value, the associated weight

vector reinforces the current relationship between itself and input vector by

either increasing or decreasing its angular distance, (2) if negative reward value

is assigned, the associated weight vector weaken its original relationship between

itself and the input vector, and (3) if a weight vector is not associated with the

selected actual output node, it is not subject to be learned.

108

�Weight Update - matrixwise. Equation (3.24) can be re-written in a matrixwise

form as following Equation (3.25).

θ(i+ 1) = θ(t) + η(∆θ) (3.25)

where ∆θ = (r(t). ∗ a(t))X(t)>

∆θ =

∆θ>1 −→

∆θ>2 −→
...

∆θ>k −→
...

∆θ>K −→

K×(n)

= (r(t). ∗ a(t))X(t)>

3.3.3 Reward-based Hyperbolic Hebbian Plasticity

Reward-based hyperbolic Hebbian Learning is mostly similar to the reward-

based Hebbian learning except that the actual output is given through the

hyperbolic tangent activation function. In Hebbian and reward-based Hebbian

learning, the value of each actual output node can be increased or decreased

infinitely; reward-based hyperbolic Hebbian learning can avoid this infinite

boundaries by having the hyperbolic activation function. This idea is introduced

first by Soltoggio and Stanley and the computational process is described in a

sound way with 2 layered domain-specific neural networks [53]. Based on their

work, this section introduced the generalized version of reward-based Hyperbolic

Hebbian learning.

109

Iterative Reward-based Hyperbolic Hebbian Learning Algorithm 9 is

the pseudocode for iterative reward-based hyperbolic Hebbian learning. The

general computational process including weight update rules and the role of

the weight update are same as the reward-based Hebbian learning; thus this

paragraph covers how the actual output is calculated.

Algorithm 9 Iterative Reward-based Hyperbolic Hebbian Learning Pseudocode

Set T, η
No bias in Hebbian Plasticity.
Init θ ∈ RK×n

for t = 1 to T do
Get X(t) ∈ Rn

z(t) = θX(t)
a(t) = f(z(t)) ,where f(z) = tanh(z)
Get r(t) ∈ RK

∆θ(t) = η(a(t). ∗ r(t))X(t)>

θ(i+ 1) = θ(t) + ∆θ(t)
θ = θ(i+ 1)

end for

� Actual output vector a(t) represents K number of actual output nodes at

learning step t, which is computed as follows. Note that the activation function

is hyperbolic tangent function. By introducing this hyperbolic tangent function,

the actual output can have its maximum and minimum boundary and thus it

can avoid indefinite growth of weights and actual output value in the learning

110

process. Also note that the result of hyperbolic function is between −1 and 1.

a(t) =

a1(t)

a2(t)

...

ak(t)

...

aK(t)

K×1

= f(z(t)) where f(zk(t)) = tanh(zk(t))

ak(t) = f(zk(t)) ∈ (−1, 1)

111

Chapter 4

Related Works

This chapter provides the preceding works related to this research, which are

categorized into reward-based, neurorobotics, and context-based robot learning.

This related works are also based on the background knowledge introduced in

the Chapter 2 and Chapter 3.

4.1 Reward-based Learning

Reward-based learning models have been investigated through several ap-

proaches such as Hebbian plasticity or Spike Timing-Dependent Plasticity

(STDP). First, as we discovered in Chapter 3.3, Hebbian learning is based

on the simple correlation of input and output signals. The learning process is

usually performed in 2-layered neural network and directly applies reward value

from an environment into adjusting the neural weights, which is either increasing

or decreasing an selective weight strength. Based on this simple correlation,

there have been noticed several limitations of the basic Hebbian plasticity. First,

if input signal is strong, it causes output to be strong and the increased output

also makes the synaptic connection strengthen; thus in the simple neural model,

firing from pre-synapse and post-synapse can cause indefinite weight growth.

Once the weight growth exceeds a maximum boundary, this can make it hard

to understand the further connections between the over-calculated synaptic

strength and the output. The second limitation is that there is no long-term

112

potentiation (LTP) in simple Hebbian learning. This means calculating output

is based on a short-lived response so the learning can be only performed in a

short time without considering the long-term relationship between the wired

two neurons. The third limitation is there is no way to decrease the strength-

ened weight value. In this regards, this section introduces several preceding

research works on building novel learning models which are inspired by the

basic Hebbian learning. Pennartz develops the Hebbian synapses with adaptive

thresholds (HSAT) model by combining supervised and Hebbian learning [38].

The main difference between this model and simple Hebbian learning is to make

the model affected by modulatory learning with a reward-processing module

(RPM) and using errors between input and output from 3-layered neural network.

RPM is considered as one special neural node in the network, which regulates

the release of calcium (Ca+2) based on reward value; increased amount of the

calcium strengthens the neural weights or the decreased one weakens the weights.

Pennartz used three types of experiment to demonstrate performance. The

first explores how this learning model can work for its own task. The second

is a comparison of results among three types of learning algorithm. The third

explores how multiple types of sensory input can be used to learn. This achieves

the goal showing HSAT can reinforce the stimuli based on reward information

from an environment in real time. Soltoggio and Stanley investigated how to

build an ANN learning model based on Hebbian plasticity and rewards [53].

They suggested a modulatory rule, named reconfigure-and-saturate modulated

Hebbian plasticity, which utilizes neural noise and synaptic weight saturation in

order to overcome the limitations of the basic Hebbian learning. The connection

between local synaptic plasticity and behavior learning is modulated by two

neurotransmitters. They adapted GABAergic neuromodulation for inhibiting

selective neural weights and glutamatergic neuromodulation for increasing the

113

strength of the weights. Their work is actually the basis of the reward-based

Hyperbolic Hebbian plasticity in Chapter 3.3 and it is organized in a gener-

alized way in this dissertation. Suh and Hougen designed and constructed

Context-based Adaptive Robot Behavior-Learning Model (CARB-LM) which is

conceptually inspired by Hebbian, anti-Hebbian learning, and selective weight

update in neural networks [56]. CARB-LM has two types of learning process:

(1) context-based learning and (2) reward-based learning. The former uses past

accumulated positive experiences as analogies to current conditions, allowing the

robot to infer likely rewarding behaviors, and the latter exploits current reward

information so the robot can refine its behaviors based on current experience.

They showed its performance by simulating the open environment using ROS

and a Gazebo, TurtleBot, where the robot showed substantial learning and

greatly outperformed both a hand-coded controller and a randomly wandering

robot.

On the other hand, Spike Timing Dependent Plasticity (STDP) refers to the

synaptic plasticity which is based on the potentiated timing difference between

presynaptic and postsynaptic neuron [61]. STDP uses the timing difference

between presynaptic and postsynaptic action potentials. The basic idea of

STDP is to strengthen the synaptic weight if presynaptic spike occurs first then

postsynaptic spike does later with slight timing difference and is to weaken

the synaptic weight if the postsynaptic spike occurs after presynaptic spike.

Similar to reward-based Hebbian plasticity, if STDP is learned based on reward

information, it is called reward-modulated STDP. However, the reward signal is

not just given from an environment but generated by the spike timing difference

between actual output and target output spike. This means a given learning

model can have maximum reward value when the actual and target output spike

114

occurs almost simultaneously and will have no reward when they are activated

in different timing. van Rossum et al. suggested a stable STDP learning rule

and showed that the synaptic weights can evolve with changes of input data [62].

It is also inspired by Hebbian learning; however the difference is considering

timing difference between a pre-synapse event and a post-synapse event. For

example, if a synaptic event arises before a post-synapse event, the link between

them is potentiated; and if the former event occurs after the latter event, the

relationship of them is depressed. To demonstrate this model, they showed

a stable distribution of the probability of weights. Also, they explained how

correlations between input data affect weight changes, especially for potentiation.

4.2 Neurorobotics Learning

There have been vigorous researches on neurorobotics area that typically

applies value and reward based neuromodulatory learning into an adaptive and

autonomous robot system [23]. Many researchers investigated the role of neuro-

modulation of a mammal brain and designed their own neural models inspired

by the biologically revealed relationship between several neuromodulations and

related behaviors. The newly designed neural frameworks are tested for deriving

the performance on a mobile robot which can gather the sensory information

from the environment and navigate in a given area. In this section, the preceding

research works regarding to neurorobotics are categorized into two parts: (1)

building biologically plausible learning model by adapting most well-known

neuromodulations into a robot behavioral control and (2) building a learning

model inspired from both supervised and reward-based learning.

First, Fleisher and Edelman built a synthetic neural model which provides a

115

tool for analyzing a mammal neural system [14], which is biologically feasible.

They defined a neural model as a brain-based device (BBD) if it has following

features: (1) a behavioral task is controlled by a synthetic neural process, (2)

neural dynamics is biologically plausible, and (3) a BBD includes 104 to 106

simulated neuronal units and 106 to 109 synapses similar to a vertebrate brain.

The BBD applies value systems to generalize given input signals into perceptual

categories based on experience without prior knowledge, which is similar to the

way of context-awareness in CALM. They implemented neural function of hip-

pocampus, which is highly related to the navigation ability in a rat, and showed

that mobile robots (Darwin X and Darwin XI) can find hidden target location

in a maze by using experience-dependent plasticity from the value-dependent

learning. In their neural model, dopaminergic neuromodulation plays a role as

a positive value responding to currently selected action so that it strengthens

the synaptic connection from the input and the selected output which is called

episodic memory formation. There are typically used neurotransmitters in mod-

ulatory robotics control: (1) dopamine, (2) serotonin, (3) acetylcholine, and (4)

noradrenalin. Sporns and Alxeander designed sophisticated neural networks for

appetitive learning following rewarded stimuli and aversive learning avoiding

punishment, based on EPSP and IPSP neuromodulatory connections [55] [54].

They applied dopaminergic neuromodulation by strengthening neural paths to

motor neurons for rewarding stimuli such as red objects and by inhibiting the

neural paths for aversive stimuli such as facing blue objects. They showed a

mobile robot, called ‘Monad’, can have biologically plausible neural responses

according to each appetitive, aversive, and compounded environment. Cox and

Krichmar designed a phasic neuromodulatory neural model for robot control

which can sharpen neural pathways which is related to a certain environmental

event to select an appropriate behavior [8]. In their neural framework, each

116

different environmental stimuli activates each different neural modulatory sys-

tem in different area of a brain and then it causes desired behaviors. The

neuromodulatory systems and the corresponding area of a vertebrate brain

are connected with the following behaviors: (1) dopamine neuromodulation in

ventral tegmental area(VTA) with ‘find’ behavior, (2) serotonergic neuromodu-

lation in raphe nucleus with ‘flee’ behavior, and (3) cholinergic neuromodulation

in basal forebrain with ‘exploration’ behavior. They trained a mobile robot,

CARL-1, to pick one of three behaviors based on given vision sensory informa-

tion then showed the robot can activate each different type of neurons to cause

appropriate behavior in an open environmental space. Also, Krichmar showed

a mobile robot, iRobot Create, can select an appropriate behavior by its own

designed neuromodulatory system where each neuromodulation corresponds to

a possible unexpected event occurred in an open environment [24] [21] [22]. He

suggested a neural network for robot action selection which is motivated from

the principles of neuromodulatory systems: (1) dopaminergic, (2) serotonergic,

(3) cholinergic, and (4) noradrenergic neuromodulation. The neural network

exploits the neuromodulations for a robot decision making process by setting

input events neurons and output behavioral neurons. The input events are

categorized into two groups: stressful and interesting one. The stressful events

connect to the serotonergic neuromodulation, which is in charge of controlling

risk-taking(harmful) or withdrawn behaviors, and the interesting one is asso-

ciated with the dopaminergic neuromodulation, which takes charge of altering

curiosity-taking(reward-seeking) or exploratory behaviors. Avery et al. built a

neural model for an attention behavior by focusing on the correlation between

the cholinergic neuromodulation in the basal forebrain and noradrenergic neu-

romodulation in locus coeruleus area of a vertebrate brain [7]. In an uncertain

decision making process, they verified a simulated rodent robot can pay attention

117

to expected uncertain light events by picking its head direction; and it can be

aware of unexpected uncertain light events by not moving in current position

based on the combination of cholinergic and noradrenergic neuromodulation. In

their experiments, they put more light events for expected uncertain events and

less lights for unexpected one. Based on the research works of Krichmar, Prince

and Samanta showed how a mobile robot can select an appropriate behavior by

context-based neuromodulation [39]. They designed 3-layered neural network

where first layer presents 4 possible events as contexts (BUMP, BEAM, OBJECT,

BATTERY), second layer takes neuromodulatory controls for robot behaviors,

and third layer indicates 4 possible behavioral states (WallFollow, OpenField,

ExploreObject, Home). In neuromodulatory layers, they used dopaminergic

and serotonergic synaptic connections to risk-taking and risk-aversive behaviors

respectively. With this neural network, a robot can make association between

a given context and exploratory or exploitative behaviors from the designed

neuromodulations by taking one event at a learning time step.

Second, there are preceding resesarch works on building a novel learning

model inspired by both supervised and reward-based learning. Uchibe and

Doya used reinforcement learning with gradient projection for finding opti-

mized learning parameters [59]. They used the gradient of average reward at a

learning step and calculated gradient projection onto current constraints space.

This research work is part of the Cyber Rodent Project which shows cyber

agents can increase the average of reward by appropriately selecting one of

two behaviors: (1) foraging and (2) mating. Noda et al. introduced a novel

arbitrary-depth neural network for generalizing robot behaviors based on multi-

modal temporal sequence integration learning [34]. They applied Hessian-free

neural optimization for tuning the learning weights and used time-delay neural

118

networks for recognizing robot motion and temporal sequence learning. With

12-layered neural network, they showed a robot NAO could generalize 6 kinds of

behavior from 3 different type of inputs: joint angular, image, and sound features.

The previously mentioned research works showed the promising experimental

results with their newly designed neural models. Seth et al. organized the effects

of the neurorobotics researches as follows: (1) a chance of understanding of a

mammal brain’s behavior selection, (2) an opportunity of comparing the imple-

mented empirical data and a mammal’s data, (3) providing a testing framework

for discovered brain theories, and (4) giving a foundation for a better robotics [3].

Therefore, the neurorobotics approach aims to provide more flexible, efficient,

and autonomous robot controllers. However, most of the novel neural models

are based on simulating or mimicking the specific functions of neuromodulations

or neural dynamics; and they are tested on their own target specific domains.

Based on the above research works, CALM aims to introduce a robot brain

by endowing with a generalized arbitrary-depth neural optimization process

based on reward and experience-based knowledge base which serves as a memory.

Moreover, CALM-nepLRB adapts specific neurobiological features of several

natural animal behaviors (bat, moth, ell, honeybee, crayfish, and drosophila) as

well as the well-know features of neuromodulation (serotonin and dopamine).

Especially, in designing dopaminergic neurons, more detail role of dopamine with

two different type of dopaminergic receptors are investigated, which is described

in Chapter 5.5. With those unique features, the outperforming performance of

CALM-nepLRB is described in Chapter 6.

Note that CALM is not for generating a certain animal’s neural dynamics

nor for showing that a computational model serves as the same functions of

119

a certain animal. It is rather for introducing a novel way of building a robot

brain and for showing its flexible features and promising results which provides

a generalized neural framework.

4.3 Context-based Robot Learning

In the area of cognitive robotics, there are memory-related research works

for an adaptive and autonomous learning which is considered as necessary part

of a robot brain. The memory-related investigations can be classified into 3

approaches: (1) animal behavioral learning, (2) hippocampal learning, and (3)

knowledge-based learning. First, animal behavioral learning is embodied based

on instrumental learning or conditioning learning in animal behaviors [45]. In

neurobiological approach, the memory in a learning model is designed and imple-

mented based on an hippocampus neurophysiological structure of a vertebrate

brain, especially from a rat [14]. In knowledge-based approach, a memory has

certain type of structure such as a frame or ontology so that a main controller

can infer an appropriate behavior [52] [17] [46] [32].

First, Saksida et al introduced a computational robot behavior shaping learn-

ing model for generating an appropriate behavior [45] based in instrumental

learning. This model generates a target behavior based on behavior editing

technique, which can produce a new behavior, modify an existing behavior, or ex-

terminate a behavior from the pre-existing ones (originally hard-wired behaviors).

As a results of learning, this approach gives a behavioral topology with behavior

sequences which is a computational model of animal behavior in a certain domain.

Second, some research works are inspired by a vertebrate memory learning

120

process based on hippocampus. Thomas et al. applied the probabilistic learning

model, called HyGene, to generalize hypotheses from a memory which is pack of

all possible events from a world [58]. The HyGene mimics human judgement

process and includes three types of memory component: (1) working memory for

saving possible hypotheses, (2) episodic memory for comparing which hypothesis

has high probability given an event data, (3) semantic memory for saving general-

ized hypotheses. They showed this probabilistic learning model can theoretically

produce the semantic memory structure and thus can make judgment through

3 types of simulation. Salado et al. designed and implemented a high-level

robot memory architecture, called evolutionary-based MDB(Multilevel Darwinist

Brain), including STM(Short-Term Memory) and LTM(Long-Term Memory)

based on context detection in an dynamic environment [46]. MDB optimizes

its neural networks based on the model errors which are calculated from the

differences between current and pre-defined satisfactory world model and then

it saves the successful model status in to LTM per one context. In this case,

if the context is changed in an dynamic environment in future learning step,

MDB performs model recovery for stable LTM. By having this LTM, a robot

with AIBO model could reduce its number of iterations in performing desired

behavior when repeated changed contexts occurred; this is because the LTM

stores a successful learning model per one context from the previous experiences.

In this regard, the basic idea of storing the past successful learning model status

is similar to EKB of CALM but CALM; thus the EKB can be also considered

as LTM which includes contextual information including the neural connection

information. For optimizing the neural network, it is also notable that MDB

used a Differential Evolution algorithm to adjust the learning parameters while

CALM exploits reward- and experience-based logistic regression for generalized

arbitrary-depth neural networks which is not based on pre-defined satisfactory

121

world model.

Third, in the knowledge-based learning, there are vital research works on

building a robot controller based on ontology or contextual information. on

building an robot memory by separating long-term and short-term memory.

Suh et al. designed and implemented memory of a mobile service robot for its

behavioral controller, which is called OMRKF(Ontology-based Multi-layered

Robot Knowledge Framework) [12]. OMRKF includes 4-layered knowledges

from low-level knowledge such as input sensory information and high-level one

such as behavioral tasks and the final behavior is inferred from the lowest layer

with each inference rules based on logic-based language. They showed a mobile

robot with OMRKF can perform a cup delivery service in a real environment.

Furthermore, Lim et al. also introduced a weighted Action-coupled Semantic

Network(wASN) based on the OMRKF which supports a robot select an appro-

priate action through rule-based neural node selection [26] [27] [28]. They showed

The detailed process of inferencing the robot behavior from the ontology-based

knowledge base and showed how a robot completed its high-level service only

from a well-designed memory structure.

Moore and Pham proposed a learning model for Tunnel Boring Machine(TBM)

performance to predict contexts including machine performance and disaster risk

in tunneling project [32]. They used contextual information, knowledgebase, and

Hybrid Artificial Neural Networks to find most appropriate parameters of TBM

performance based on a feedforward artificial neural network as a supervised

learning and a fuzzy reasoning evaluation with SOM as an unsupervised learning.

In evaluating Root Mean Square Error(RMSE), they showed this context-based

approach is better than existing statistical model in terms of PR(Penetration

Rate) prediction. Rocket et al. also introduced experience-based robot learning

122

model which is a part of the project RACE(Robustness by Autonomous Compe-

tence Enhancement) [42]. They build an ontology-based robot knowledge base

which supports a robot behavioral inference mechanism through OWL-based

domain-specific rules. The experiences in this model are formed by logical expres-

sion such as the sequential events; and an similar experience is extracted by the

inference rules while CALM retrieves the experience-based on most similar con-

text without inferences. Saeedi et al. introduced context-aware brain-computer

interface for developing shared control system which makes decision from the

cognitive process based on internal contexts and from the manual control of the

user [44].

The previously mentioned research works in cognitive robotics show how

a robot can be successfully controlled by inferring or shaping its own type of

memory formation. However, the evaluations of the memory formation are

based on a domain-specific knowledge and most importantly most of the robots

started its learning process with the prior-knowledge of the world, which is not

bootstrapping. In this regard, CALM shows how a learning model shapes its

own experience-based knowledge based(EKB), which serves as a hippocampus

in a vertebrate animal, from the scratch and evaluated its performance based on

several generalized synthetic data sets.

123

Chapter 5

The Context-Aware Learning Model (CALM)

As briefly introduced in Chapter 1, CALM includes four different types of

algorithms, each of which has different learning principles and effects. In this

chapter, the overall CALM architecture is described, then each algorithm is

covered in its own section.

5.1 System Architecture

CALM is a hybrid learning model since it does not belong to one specific

classical learning model; it takes advantage of different learning approaches.

However, it is not limited to having combinations of good features from different

existing machine learning methodologies, it is a novel learning model utilizing

existing well demonstrated features and new learning features.

Also, CALM is intended to be used in various domains including but not

limited to robotics. The system structure and computational learning process

are generalized thus all the algorithms of CALM can be applied to domains

with different input sizes, output sizes, neural network arbitrary depths, and

learning parameters: learning rate, regularization rate, number of iterations, sim-

ilarity rate, and experience-power rate. Before getting into the details of CALM,

Table 5.1 shows the symbols that are used in CALM and their corresponding

meanings.

124

Index Symbol Meaning
1 T Maximum discrete learning step
2 t Discrete learning step, t ∈ [1, T]
3 n Total number of context features/attributes
4 j Context feature (input node) indicator, j ∈ [1, n]
5 m Total number of experiences in EKB (size of EKB)
6 i Experience indicator in EKB, i ∈ [1,m]
7 ITR Total number of iterations in a learning step
8 L Total number of layers of an ANN including input layer
9 l Layer indicator, l ∈ [1, L]
10 Kl Total number of nodes at lth layer, K1 = n
11 k Node indicator in each layer, k ∈ [1, Kl]
12 X(t) Context vector at tth learning step
13 xj(t) jth context feature at tth learning step

14 θ(l) Weight vector or matrix on lth layer of a CALM-ANN

15 z
(l)
k (t) kth net value on lth layer at tth learning step

16 a
(l)
k (t) kth actual output value on lth layer at tth learning step

17 δ
(l)
k (t) kth error value on lth layer at tth learning step

18 son(t) Selected actual output node at tth learning step
19 η Learning rate
20 λ Regularization rate
22 ε Similarity rate
22 γ Experience power rate
23 J(t) The value of cost function at tth learning step
24 r(t) Reward value at tth learning step, r(t) ∈ {0, 1}
25 R(t) Quasi-target output vector at tth learning step based on r(t)
26 Rk(t) kth quasi-target output value at tth learning step based on r(t)
27 LRBX Learning input for arbitrary-depth optimization
28 LRBY learning output for arbitrary-depth optimization
29 IHV Inhibition value

Table 5.1: CALM Symbols

CALM consists of 10 components: (1) Sensory System, (2) Context Supplier,

(3) CALM-ANN, (4) Motor System (Actuator), (5) Observer, (6) Reward Policy

Storage, (7) CALM-Learner, (8) Learning Rule Storage, (9) EKB, and (10)

Experience-based Knowledge Base (EKB) Manager. Figure 5.1 gives the overall

system structural flow and shows how the components are intertwined in CALM.

125

Note that Figure 5.1 represents both essential and optional components. The

EKB and EKB Manager are optional components since they are not used in

CALM-rLRB; those components and the corresponding path flows are denoted

with dashed lines, rather than solid lines.

Figure 5.1: CALM System Architecture

Sensory System The Sensory System is in charge of gathering input data

directly from sensory device(s) such as lasers, image sensors, etc. CALM is

intended for use in non-robotics applications as well as in robotics applications so

it is not necessarily the case that input will always be sensory data. The Sensory

System is symbolically named in that it takes raw data directly from other

objects without internal processing. In non-robotics applications, for example,

the input data could be also a binary file or a user-defined file format as needed.

Context Supplier The Context Supplier is devised for efficient data handling

where the data is given from the Sensory System. It is in charge of processing the

given data before feeding it into input nodes of the CALM-ANN. Since the data

can be from one or various input types, possible data processes can be feature

126

scaling, input encoding, and/or data compression. As a simple example, if it is

assumed that a raw data transaction from a laser sensor at one time is a binary

array with the length of 500, then it can be compressed into an array with the

length of 10 by taking the average value each 50 element values sequentially; or,

it can be compressed by using principle component analysis. Input encoding or

feature scaling helps reduce computational complexity and leads to more efficient

learning [19] and thus the Context Supplier aims to support multi-modal input

system by generating more appropriate inputs for the CALM-ANN based on the

low-level data from the Sensory System. Each vector of processed data from the

Context Supplier is called a context.

CALM-ANN The CALM-ANN is an artificial neural network in CALM that

interacts with the Context Supplier, CALM-Learner, and Motor System. There

are two types of CALM-ANN; any given CALM system will have an ANN of

one type or the other. The first type is a generalized, arbitrary-depth, neural

network as shown in Figure 3.17 in Section 3.2, which is used for CALM-rLRB,

CALM-eLRB, and CALM-epLRB algorithms. The second type of CALM-ANN

is called CALM-nepLRB-ANN which is a novel, bio-inspired variant of the neural

network designed specifically for use with the CALM-nepLRB algorithm. For

either type of ANN, the CALM-ANN takes input signals as a context vector from

Context Supplier, propagates the signals forward from the input layer to the

output layer of the CALM-ANN, and selects the output node with the highest

activation value, which is considered to be the most appropriate output at the

current learning step. Note that CALM-ANN is a generalized neural network

and thus a user can select the depth of the ANN, the number of input nodes,

and/or the number of output nodes appropriate.

127

Motor System (Actuator) The Motor System is in charge of taking the

selected output from the CALM-ANN and carrying out the corresponding action

in the environment in which the agent is found. The actions can be either virtual

or physical depending on the domain. In robotics, CALM considers that each

action or behavior corresponds to one output node in the CALM-ANN. For

example, each output node in the ANN may refer to a different robot behavior

and if one of them is selected and sent to the Motor System, the robot carries

out the corresponding behavior. In this case, it is expected that executing the

behavior will affect the environment in either a positive or negative way. On

the other hand, in non-robotics applications, we can consider that each action

is virtual and thus the Motor System does not cause any physical movement

but lets the environment know which neural output is selected. For example, if

CALM is used to recognize human faces, the Motor System will announce which

output is selected to get a feedback value from the environment. In this regard,

the Motor System, like the Sensory System, is also named symbolically so as to

provide CALM with the flexibility to be applied in various domains.

Observer The Observer acquires feedback from the environment after the

action is carried out by the Motor System. The Observer checks the effect of

selecting an output node based on the reward policy saved in Reward Policy

Storage. The way of checking the effect is based on comparing the environmental

status before and after selecting the output node; environmental changes are com-

pared with criteria from Reward Policy Storage. If it decides the selected output

node causes positive effects in the environment, it gives out reward; if it recog-

nizes negative effects, it sends a punishment signal instead of reward. In this way,

the Observer plays an important role in deciding whether the performed behavior

from the Motor System is good or bad through interactions with the environment.

128

Note that it is also possible for the Observer to get feedback by directly

interacting with the other sources, such as a trainer. For example, if an output

node is selected in CALM-ANN, then the Motor System sends the information

to a trainer who can give the Observer the feedback value directly.

Reward Policy Storage Reward Policy Storage holds the expected effects of

selecting each output node or of executing each behavior. For a simple example

in robotics, consider a case which each behavior has its own goal in affecting

the environment. If a robot executes a behavior called ‘GO FORWARD’, it

is expected that the position of the robot is changed after going forward. In

this case, reward policy rule for ‘GO FORWARD’ would be: if the position is

changed after executing ‘GO FORWARD’, the effect is positive; or if the position

is not changed at all, the effect is negative. In this way, Reward Policy Storage

provides the Observer with appropriate criteria of checking how a robot is doing

so that Observer can decide whether a robot gets a reward or not. Note that

the reward policy depends on the user’s design and a target domain.

CALM-Learner The CALM-Learner embraces all the CALM algorithms:

CALM-rLRB, CALM-eLRB, CALM-epLRB, and CALM-nepLRB; each algo-

rithm exploits its own CALM-Learner. Basically, the CALM-Learner adjusts

the CALM-ANN based on weight update rule(s) found in Learning Rule Storage.

Also, it utilizes the EKB if its algorithm utilizes experiences. Each CALM

algorithm is described in detail in its own section.

Learning Rule Storage Learning Rule Storage has all of the weight update

rules which may be used by the CALM-Learner. The reason for separating the

CALM-Learner and Learning Rule Storage is to give flexibility in designing

129

CALM learning systems so that the CALM-Learner can select learning rule(s)

based on its algorithm. For example, if a new algorithm and new learning rule

are added to CALM and it utilizes two learning rules, where the one is an

existing weight update rule and the other is a newly added one, then it can

select the existing learning rule which is also used in another CALM-Learner

and the newly added learning rule from Learning Rule Storage, when each is

appropriate.

Note that CALM-rLRB and CALM-eLRB both use Logistic Regression

Backpropagation (LRB) based on gradient descent optimization. The difference

between the way LRB is used in CALM-rLRB and in CALM-eLRB is based

on the EKB; CALM-rLRB only uses the current context while CALM-eLRB

also uses stored past rewarding experiences from the EKB for updating weights.

CALM-epLRB exploits two weight update rules where the one is LRB and

the other is a novel weight update rule called Selective-Power-Update (SPU).

Therefore, the CALM-epLRB learning rule encompasses CALM-eLRB and SPU.

On the other hand, the CALM-nepLRB learning rule encompasses CALM-rLRB,

CALM-eLRB, and CALM-epLRB by incorporating additional neurobiological

features into them. It is notable that only CALM-nepLRB is able to choose

if it will use the EKB or only use the current context like CALM-rLRB. More

specifically, the CALM-nepLRB Learner selects one of the learning rules between

CALM-rLRB, CALM-eLRB, and CALM-epLRB with the additional features,

which gives it flexibility in choosing the most appropriate algorithm based on the

current learning status. Each algorithm is described in detail in its own section.

Experience-based Knowledge Base (EKB) The EKB stores past positive

experiences. The EKB serves the same functions as the Empirical Context-based

130

Knowledge Base (ECKB) in our previous research [56]. Positive experience

means that a selected output in a certain context triggered positive effects and

thus received reward. This is saved into the EKB before a new context is given

so that it can be used by the CALM-Learner. Note that CALM-rLRB is not

experience-based, thus it does not use the EKB; the other three algorithms do

use the EKB. The details of the EKB are described in Section 5.3.

EKB Manager The EKB Manager is an interface to the EKB which carries

out three major tasks: (1) storing the current experience into the EKB if it is

rewarding, (2) retrieving necessary information from EKB, and (3) performing

knowledge optimization. In order to retrieve appropriate information from the

EKB, the EKB Manager searches in order to find an experience in the EKB

and then transfers the search results to the CALM-Learner. The search criteria

is based on the Euclidean distance between a stored context. To be selected,

the distance must be less than the similarity rate ε. Note that in this case

the current context is not given from the Context Supplier but given from the

CALM-Learner the CALM-Learner already possesses the current context vector

from the CALM-ANN and the Context Supplier.

Knowledge optimization can be considered as a knowledge base mechanism

that aims to increase memory efficiency by reducing knowledge redundancy and

correcting knowledge inconsistency. Knowledge redundancy occurs when there

are similar experiences that are almost alike. This redundancy can be avoided

by making one composite experience which represents all the most similar expe-

riences. Knowledge inconsistency happens when the positive experiences stored

in the past are no longer reliable due to changed environment. In other words,

inconsistency refers to the case when past experiences are no longer accurate

131

reflections of how to get positive reward values in the changed environment. In

this case, the EKB Manager should resolve this issue by removing old experiences

and updating the knowledge base with more recent experiences. In this way, the

EKB Manager supports time-sensitive learning through knowledge optimization.

5.2 CALM-rLRB

In this section, the concept of CALM-rLRB is explained including its motiva-

tion, the detailed algorithm, its learning effects, and its fundamental mathemati-

cal principles. Of particular importance is the method by which reward-based

logistic regression neural optimization is performed as it is also used in CALM-

eLRB, CALM-epLRB, and CALM-nepLRB.

5.2.1 CALM-rLRB Features

CALM-rLRB performs reward-based learning. In reward-based learning,

there is no target output (vector of desired responses) for a given input. In-

stead, it supports interactive online learning by obtaining evaluative feedback

from the environment and applying that to its learning process. In contrast,

supervised neural learning with logistic regression backpropagation (LRB) or

least mean squares (LMS or delta rule) has a target output for each input and

uses them to optimize its neural weights by reducing the errors between the

computed actual outputs from the system and the provided target output. In

this case, it is important to point out that supervised learning usually shows its

advantages in offline batch learning with appropriate amounts of given training

data including target output. Therefore it can be considered that (1) supervised

learning is not designed to be used for dynamic adaptive learning in unknown

132

environments, but it is beneficial for optimization based on given target outputs;

(2) reward-based learning is not devised for optimization but it is a powerful

way to explore uncertain environments interactively. Based on this, the central

question of CALM-rLRB is how to optimize an arbitrary-depth neural network

without target outputs and how to meld reward information appropriately into

the optimization process.

The basic idea of CALM-rLRB is to generate “quasi-target output” based

on reward and exploit the generated quasi-target output in optimizing its neural

weights, instead of depending on a teacher saying which output is correct for a

given input. In this dissertation, quasi-target output is newly defined as follows.

Quasi-target output is similar to target output in that both of them are

used in the optimization; the learning equations are intended to adjust the

weights to produce the desired outputs. However, there are major distinctions

between them. First, in general supervised learning, target output is given from

outside the learning process as labeled training data (that is, the ”right answer”

for each input vector). In CALM learning, quasi-target output is inferred by

the learning model during the learning process. Second, in general supervised

learning, target output can have any combination of values while quasi-target

output in CALM has restrictions based on the inference method used. The

method for inferring quasi-target output is described with each CALM algorithm.

General supervised ANN learning has the following step. (1) Take input,

(2) do forward propagation, (3) select the output node that has the maximum

output value, (4) calculate errors between actual and target output, and (5)

optimize neural network weights depending on the cost function (LMS, LRB,

etc.) and weight update types (GD, CGD, etc.). Note that, in this research,

133

optimization involves two processes: (1) calculating the cost function based on

the errors and (2) performing weight updates.

In contrast, reward-based Hebbian learning has the following step. (1) Take

input, (2) do forward propagation, (3) select the output node that has the maxi-

mum output value, (4) perform the behavioral task corresponding to the selected

output node, (5) get feedback from the environment through an interaction

process (e.g., sensing the world or getting feedback from a trainer), (6) perform

weight updates based on reward information. Note that often it is assumed that

there are two values of feedback: the first is positive and the second is negative.

In CALM, the feedback value can be either 0 or 1; a reward of 0 is used for

negative feedback (incorrect behavior) and a reward of 1 is used for positive

feedback (correct behavior).

Figure 5.2: CALM-rLRB Algorithm Diagram

134

CALM-rLRB has more steps since it generates quasi-target output based on

reward and utilizes it in its optimization. Figure 5.2 shows how CALM-rLRB

performs reward-based neural learning. The steps of CALM-rLRB are as follows.

(1) Take contextual input context(t), (2) do forward propagation, (3) select the

output node that has the maximum output value; this is denoted as the selected

output node son(t), (4) perform the behavioral task corresponding to the selected

output node, (5) get the reward value r(t) from the environment, (6) generate

quasi-target output R(t) based on reward value r(t), (7) set learning input

LRBX(t) and learning output LRBY (t) for the logistic regression optimization

which performs logistic regression optimization with gradient descent by taking

LRBX(t), LRBY (t), and the current neural weights θ(t) as inputs. In this last

step, the output is the updated neural weights θ(t + 1) and the cost function

value J(t), which are calculated at the end of the certain number of iterations

ITR in the CALM-LRB-CORE optimization process. θ(t + 1) is used in the

next learning step with the new context context(t+ 1) and J(t) is used for only

evaluation (and thus looks like dead end in Figure 5.2); cost function values are

analyzed in Section 6.2.2. The detailed computational process of these steps are

explained in Section 5.2.3.

In CALM, input is considered as a low-level data while context refers to

high-level data. It is also possible that input data and context have exactly same

values in the same form; but ultimately context implies contextual information

which can be integrated from several types of input with/without input encoding,

feature scaling, and/or data compression.

LRBX(t) and LRBY (t) are the names for the input vector (or matrix)

and desired output vector (or matrix), respectively, used for logistic regression

optimization. These are generated by CALM-rLRB based on current context

135

context(t) and quasi-target output R(t) during the learning process; in other

words, it is the LRBX(t) and LRBY (t) that are generated by CALM-Learner

and are fed into logistic regression optimization process whereas context(t) is.

In CALM-rLRB, the quasi-target output R(t) is generated in one of two

ways depending on the reward value. First, if the reward value is 1 (r(t) = 1),

this means the selected output node at learning step t is good choice for the

current context, context(t). In this case, the quasi-target output value, which

corresponds to the selected output node, is set to be 1 (Rson(t)(t)← 1); and the

quasi-target outputs corresponding to the other nodes are set to 0 (Rk(t) ←

0 where k 6= son(t)). In this way, the quasi-target output implies that the

selected output node is expected to be the right answer if the agent faces to a

similar context in a future learning step and, moreover, that none of the other

outputs are expected to be the right answer in that context.

Second, if the reward value is 0 (r(t) = 0), the quasi-target output value

corresponding to the selected actual output is set to be 0 (Rson(t)(t)← 0) while

the other quasi-target values are set to 1 (Rk(t)← 1 where k 6= son(t)). In this

way, the quasi-target output implies that the currently selected output node is

a bad choice for the current context so it should have its weights adjusted so

that it becomes less likely to be selected in a similar context in the future, and,

moreover, that one of the other output nodes is likely to be the correct choice so

the other output nodes will have increased opportunities to be selected in the

future by setting their target values to 1.

After setting the quasi-target output R(t) based on the reward value r(t) as

above, CALM-rLRB is ready to generate learning input LRBX(t) and learning

output LRBY (t) to optimize CALM-ANN with logistic regression backpropaga-

136

tion. Note that each algorithm in CALM has its own way of generating LRBX(t)

and LRBY (t). In CALM-rLRB, LRBX(t) is simply set from context(t) and

LRBY (t) is set to be R(t). With this setting, CALM-rLRB learns by trial and

error which output node should be selected in each context based on the reward

information.

Step context(t) son(t) r(t) R(t) LRBX(t) LRBY (t) sw(t)
t [1, 1, 1] 3 1 [0, 0, 1] [1, 1, 1] [0, 0, 1] θ3
t+ 1 [1, 2, 2] 3 0 [1, 1, 0] [1, 2, 2] [1, 1, 0] θ3
t+ 2 [1, 3, 3] 2 1 [0, 1, 0] [1, 3, 3] [0, 1, 0] θ2
t+ 3 [1, 4, 4] 2 1 [0, 1, 0] [1, 3, 3] [0, 1, 0] θ2

Table 5.2: CALM-rLRB Learning Example

To clarify the learning process, this section introduces a simple learning

example as shown in Table 5.2. The learning example shows the necessary

information for learning: (1) the contexts given, (2) the outputs selected, and

(3) the feedbacks received for each selected output. Also, the example includes

the following assumptions: (1) CALM-ANN is a 2-layered neural network, (2)

the context input dimension is three including a bias value, (3) and the number

of possible outputs is three.

This simple example does not include all elements of the learning process but

does explain how to set the quasi-target output R(t) based on reward and how to

set the learning input LRBX(t) and learning output LRBY (t) for optimization.

Note that sw(t) refers to selected weight vector(t), which is the weight vector

corresponding to the selected actual output node son(t) at learning step t.

In the first row of the table, when the learning step is t and the context

is [1, 1, 1], the selected output node is 3 and it is assumed that the selected

137

output node acquires a reward value of 1 from the environment. Given that

r(t) = 1 and son(t) = 3, the quasi-target output R(t) generated is [0, 0, 1]. At

this point, CALM is ready to set LRBX(t) and LRBY (t), which will be feed

to the logistic regression optimization. In CALM-rLRB, LRBX(t) is simply set

equal to context(t) and LRBY (t) is set equal to R(t). The expectation of this

approach is that this will reduce errors between the current actual output and

the generated quasi-target output for the current context. Considering the role

of weight updates as given in Section 3.2, with this approach, CALM-rLRB is

expected to have two effects in the logistic-regression learning process. The first

effect is that θ3 will be updated based on the quasi-target output value of 1 for

the output node 3 and thus it will increases the value of that output node in

the feedforward process in subsequent learning steps if the same (or a similar)

context is given. the second effect is that the other neural weights θ1 and θ2 will

be updated based on the quasi-target outputs of 0 and and thus the values of

these non-selected actual output nodes will be reduced in subsequent learning

steps if same (or a similar) context is given.

However, in row two of the table, when the learning step is t + 1 and the

context is [1, 2, 2], the reward is 0 and son(t) is 3. In this case, the quasi-target

output R(t) is set to be [1, 1, 0], and LRBX(t) and LRBY (t) are set to be

the new context and the new quasi-target output, as shown in the table. This

also has two learning effects on the neural weights. First, it will cause θ3 to be

updated such that it will give decreased actual output value for output node 3

at subsequent learning steps if the same (or a similar) situation occurs. Second,

θ1 and θ2 will be adjusted so as to have greater opportunities to be selected at

subsequent learning steps if the same (or a similar) context occurs.

In this way, CALM-rLRB provides reward-based neural context-awareness,

138

which incorporates advantages from both supervised and reward-based learning;

this is the basic principle of CALM. The mathematical processes are explained

in Section 5.2.3, 5.2.4, and 5.2.5.

5.2.2 CALM-rLRB-ANN

The neural network for CALM-rLRB is same as the generalized, arbitrary-

depth, ANN shown in Figure 3.17 in Section 3.2.

5.2.3 CALM-rLRB Learning

In this section, we will see how CALM-rLRB performs reward-based learning

iteratively. In CALM-rLRB, there are two primary functions: (1) CALM-

rLRB-MAIN and (2) CALM-LRB-CORE. Algorithm 10 shows the main flow

of CALM-rLRB and Algorithm 11 shows how to perform logistic regression

optimization with the learning input and learning output which are generated

based on the current context and reward. In other words, CALM-LRB-CORE

refers to the logistic regression optimization algorithm in CALM which is based

on a generalized, arbitrary-depth, ANN as shown in Algorithm 6.

139

Algorithm 10 CALM-rLRB-MAIN Pseudocode

Given T , ITR, n, L, K1, · · · , Kl, · · · , KL, η, λ, ε, γ
for l = 1 to L− 1 do

Init θ(l) ∈ RKl+1×(Kl+1), θ(l)(1)← θ(l)

end for
for t = 1 to T do

(1) CONTEXT ACQUISITION
context(t) ∈ Rn×1

Add bias for a context → context(t) ∈ R(n+1)×1

(2) FORWARD PROPAGATION
a(1)(t)← context(t)
for l = 2 to L do
z(l)(t)← θ(l−1)(t)a(l−1)(t)
a(l)(t)← f(z(l)(t))

Add a
(l)
0 (t)← +1 for bias at each layer.

end for
(3) OUTPUT SELECTION

son(t)← maxk{a(L)k }
(4) BEHAVIORAL TASK
(5) REWARD ACQUISITION
Get r(t) ∈ {0, 1} from environment
(6) SET UP R(t) ∈ RK×1 based on r(t)
if r(t) = 1 then
Rk(t)← 1, if k = son(t)
Rk(t)← 0, if k 6= son(t)

else if r(t) = 0 then
Rk(t)← 0, if k = son(t)
Rk(t)← 1, if k 6= son(t)

end if
(7) SET UP LRBX(t) AND LRBY (t)
LRBX(t)← context(t)> ∈ R1×(n+1)

LRBY (t)← R(t)> ∈ R1×K

(8) CALL CALM-LRB-CORE OPTIMIZATION
[J(t), θ(t+ 1)] ← CALM-LRB-CORE (LRBX(t), LRBY (t), θ(t))

end for

In CALM-rLRB-MAIN, it first sets the learning parameters and initializes

the neural weights for each layer. After the initialization, it performs the eight

steps iteratively as shown in the Figure 5.2 at each learning step t: (1) Take

contextual input context(t), (2) do forward propagation, (3) select maximum

140

output node son(t) at the last layer, (4) perform the behavioral task correspond-

ing to the selected output node, (5) get reward r(t), (6) generate the quasi-target

output R(t) based on the reward, (7) set the LRBX(t) and LRBY (t) based on

the context(t) and R(t), respectively, then (8) optimize by calling the function

CALM-LRB-CORE, which performs logistic regression optimization by taking

LRBX(t), LRBY (t), and the current neural weights θ(t) as inputs. The output

of LRB-CORE is the value of the cost function J(t) and the newly updated

neural weights θ(t+ 1).

Note that CALM-LRB-CORE also takes all the learning parameters: T ,

ITR, n, L, K1, · · · , Kl, · · · , KL, η, λ, ε, γ as well as LRBX(t), LRBY (t), and

θ(t); for simplicity, all parameters are omitted on the pseudocode Algorithm 10.

� The context input vector context(t) represents all n CALM-ANN input values

and the bias node at learning step t. Note that context(t) is the same as a(1)(t)

for the consistency of the computational notation as explained in Section 3.2.

context(t) =

x0(t)

x1(t)

...

xj(t)

...

xn(t)

(n+1)×1

; a(1)(t) =

a
(1)
0 (t)

a
(1)
1 (t)

...

a
(1)
j (t)

...

a
(1)
K1

(t)

(K1+1)×1

= context(t)

where x0(t) = a0(t) = 1 for the bias.

� Weight matrix θ(l)(t) represents all weights on the lth layer at learning step t.

141

Note that θ(t) refers to all weight matrices over all layers.

θ(l)(t) =

θ
(l)>
1 (t)

θ
(l)>
2 (t)

...

θ
(l)>
k (t)

...

θ
(l)>
Kl+1

(t)

Kl+1×(Kl+1)

; θ
(l)
k (t) =

θ
(l)
k0(t)

θ
(l)
k1(t)

...

θ
(l)
kj (t)

...

θ
(l)
kKl

(t)

(Kl+1)×1

; θ̄k
(l)

(t) =

0

θ
(l)
k1(t)

...

θ
(l)
kj (t)

...

θ
(l)
kKl

(t)

where l is from 1 to L-1.

� Net vector z(l)(t) represents all net values on the lth layer at learning step t.

z(l)(t) =

z
(l)
1 (t)

z
(l)
2 (t)

...

z
(l)
k (t)

...

z
(l)
Kl

(t)

Kl×1

= θ(l−1)(t)a(l−1)(t)

where l is from 2 to L.

z
(l)
k (t) = θ

(l−1)>
k (t)a(l−1)(t)

= θ
(l−1)
k0 (t)a

(l−1)
0 (t) + θ

(l−1)
k1 (t)a

(l−1)
1 (t) + · · ·+ θ

(l−1)
kKl−1

(t)a
(l−1)
Kl−1

(t)

=
Kl−1∑
j=0

θ
(l−1)
kj (t)a

(l−1)
j (t) ∈ (−∞,∞)

� The actual output vector a(l)(t) represents all actual output values on the lth

142

layer at learning step t.

a(l)(t) =

a
(l)
1 (t)

a
(l)
2 (t)

...

a
(l)
k (t)

...

a
(l)
K(l)

(t)

K(l)×1

= f(z(l)(t)) where f(z
(l)
k (t)) = 1

1+e(z
(l)
k

(t))

where l is from 2 to L.

a
(l)
k (t) = f(z

(l)
k (t)) ∈ (0, 1)

� The selected actual output node is denoted son(t) and refers to the actual

output node which has the maximum actual output value among all actual

output nodes on the last Lth layer.

son(t) = maxk{a(L)k }

� The reward value is denoted reward(t) and it is given from the Observer. Note

that reward(t) with the value of 0 refers to punishment while reward(t) with

the value of 1 means literally reward.

reward(t) ∈ {0, 1}

143

� The quasi-target output vector R(t) is generated based on reward value r(t)

as follows.

R(t) =

R1(t)

R2(t)

...

Rk(t)

...

RKL
(t)

KL×1

Rk(t)← 1 if k = son(t) and r(t) = 1

Rk(t)← 0 if k 6= son(t) and r(t) = 1

Rk(t)← 0 if k = son(t) and r(t) = 0

Rk(t)← 1 if k 6= son(t) and r(t) = 0

� Learning input LRBX(t) and learning output LRBY (t) are generated as

follows based on context and reward value.

LRBX = context(t)> ∈ R1×(n+1)

LRBY = R(t)> ∈ R1×KL

Note that context vector context(t) and quasi-target output vector R(t) are

column vectors whereas LRBX(t) and LRBY (t) are row vectors in CALM-

rLRB. This is because CALM-LRB-CORE shown in Algorithm 11 is based on a

generalized matrixwise batch learning algorithm as shown in Algorithm 6. By

having this matrixwise batch mode, CALM-LRB-CORE can take multiple input

144

and quasi-target output vectors in the form of a matrix in the other algorithms:

CALM-eLRB, CALM-epLRB, and CALM-nepLRB. In CALM-rLRB, however,

the size of LRBX(t) is 1× (n+ 1) and the size of LRBY (t) is 1×KL, which is

one row vector each.

Algorithm 11 CALM-LRB-CORE Pseudocode

Given T , ITR, n, L, K1, · · · , KL, η, λ, ε, γ, LRBX(t), LRBY (t), θ(t)
a(1) = LRBX(t), y = LRBY (t), θ(1) = θ(t), m = 1
for itr = 1 to ITR do

(1) FORWARD PROPAGATION
for l = 2 to L do
z(l) ← a(l−1)(θ(l−1))>(itr)
a(l) ← f(z(l))

Add a
(l)
0 ← +1 for bias at each layer.

end for
(2) BACKPROPAGATION: ERROR UPDATE

Remove a
(L)
0

δ(L) ← a(L) − y
∆θ(L−1)(itr)← (δ(L))>a(L−1)

for l = L− 1 to 2 do
δ(l)(itr)← δ(l+1)(itr)θ(l)(itr)

Remove δ
(l)
0 (itr)

δ(l) ← δ(l). ∗ f ′(z(l))
∆θ(l−1)(itr)← (δ(l))>a(l−1)

end for

Cost(itr)←
KL∑
k=1

(
−ykln(a

(L)
k)− (1− yk)ln(1− a(L)k)

)
(3) WEIGHT UPDATE
for l = 1 to L− 1 do
θ(l)(itr + 1)← θ(l)(itr)− η

(
1
m

∆θ(l)(itr) + λ
m
θ̄(l)(itr)

)
end for

Reg(itr)← λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj (itr)

)2
J(itr)← Cost(itr) +Reg(itr)

end for
Return θ(ITR)

In CALM-LRB-CORE, it takes learning input, learning output, and neural

weights from CALM-rLRB-MAIN function and computes weigh updates through

145

the given number of iterations. At each iteration, the optimization process

is roughly divided into three phases: (1) forward propagation, (2) backward

propagation (backpropagation) by doing error updates, and (3) optimization

by doing weight update and calculating cost values with regularization value

Reg. After repeating this optimization process through the given number of

iterations, ITR, it returns the updated weights after the last iteration to the

main function.

Note that CALM-LRB-CORE is based on a generalized, logistic regression,

matrixwise, batch learning algorithm the detailed computing processes of which

are fully explained and mathematically demonstrated in Section 3.2; therefore

the following paragraphs focus on how CALM-rLRB data gets through the ma-

trixwise optimization process in each iteration rather than focusing on describing

detailed computing process. Also, the notation (itr) is omitted in following

mathematical steps for simplicity.

� Learning input LRBX(t) and learning output LRBY (t) are set as input

matrix a(1) and quasi-target output matrix y, respectively. Then net matrix z(l)

and actual output matrix a(l) at each layer are computed as follows, which is

called forward propagation.

a(1) = LRBX(t);

y = LRBY (t);

z(l) = a(l−1)(θ(l−1))> where l is from 2 to L.

a(l) = f(z(l)) where l is from 2 to L.

m = 1; m is always 1 in CALM-rLRB

146

Note that, in CALM-rLRB, m is always 1 since it is does not use saved

experiences, therefore a(1) and y are row vectors as described previously.

� The cost function J(θ) is calculated based on the value of m as follows. a(1)

and y are row vectors thus only one summation is needed for cost value after

doing elementwise multiplication of each element of a(1) and y.

J(θ) =
1

m

KL∑
k=1

(
−ykln(a

(L)
k)− (1− yk)ln(1− a(L)k)

)
+

λ

2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj

)2
(5.1)

� The error update is computed as follows, which is fully derived in Section 3.2.

l = L δ(L) = a(L) − y

l = L− 1 to 2 δ(l) = δ(l+1)θ(l). ∗ f ′(z(l)) (5.2)

(5.3)

� The weight update - matrixwise is computed as follows, which is fully derived

in Section 3.2.

l = 1 to L− 1 θ(l)(t+ 1) = θ(l)(t)− η
(
δ(l+1)>a(l) + λθ̄(l)

)
(5.4)

5.2.4 The Role of the Cost Function in CALM-rLRB

Similar to the role of the cost function in generalized, arbitrary-depth, ANN

with logistic regression as shown in Section 3.2, J(θ) in CALM-LRB-CORE, is

to provide a way of evaluating the learning effects based on the size of the error

between the actual output at the last layer, a(L), and the quasi-target output,

147

y = LRBY (t) which is generated by CALM-rLRB. In here, it is important to

point out that LRBY (t) is set by the quasi-target output R(t) and R(t) is based

on the reward value r(t); thus we can see the behavior of the cost function

is based on the value of LRBYk(t) which is same as Rk(t) in CALM-rLRB.

Therefore, Equation (5.1) can be expanded as follows.

J(θ) =
1

m

KL∑
k=1

(
−ykln(a

(L)
k)− (1− yk)ln(1− a(L)k)

)
+

λ

2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj

)2
=

1

m

KL∑
k=1

(
−LRBYk(t)ln(a

(L)
k)− (1− LRBYk(t))ln(1− a(L)k)

)
+

λ

2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj

)2
=

1

m

KL∑
k=1

(Costk) +Reg (5.5)

where

Costk = −Rk(t)ln(a

(L)
k)− (1−Rk(t))ln(1− a(L)k)

Reg = λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(θ
(l)
kj)

2

148

Figure 5.3: CALM-rLRB Role of the Cost Function

Figure 5.3 helps us to visually understand how the cost function evaluates

its learning effects depending on its generated quasi-target output. First of all,

when LRBYk(t) is 1, Costk decreases as a
(L)
k approaches 1; otherwise, Costk

increases since the corresponding error value increases as a
(L)
k approaches 0. This

process is described as follows.

If LRBYk(t) = 1

Costk = −ln(a
(L)
k)

LRBYk(t) = 1, a
(L)
k = 1 =⇒ δ

(L)
k = 0 =⇒ Costk = 0

LRBYk(t) = 1, a
(L)
k < 1 =⇒ δ

(L)
k < 0 =⇒ Costk ↑

On the other hand, when LRBYk(t) is 0, Costk decreases as a
(L)
k approaches

0; otherwise, Costk increases since the corresponding error value increases as

149

a
(L)
k approaches 1. This process is described as follows.

If LRBYk(t) = 0

Costk = −ln(1− a(L)k)

LRBYk(t) = 0, a
(L)
k = 0 =⇒ δ

(L)
k = 0 =⇒ Costk = 0

LRBYk(t) = 0, a
(L)
k > 0 =⇒ δ

(L)
k > 0 =⇒ Costk ↑

In conclusion, the cost function gives smaller values if the ANN has smaller

error and larger values if the ANN has larger errors. Therefore, each Costk(i)

corresponding to each quasi-target output LRBYk(t) tells us whether each actual

output matches with the quasi-target output or not based on reward value.

5.2.5 The Role of Weight Update Rule in CALM-rLRB

Similar to the role of weight update in a generalized, arbitrary-depth, ANN

with logistic regression as shown in Section 3.2, the weight update rule adjusts

each the weight vector on each layer θ
(l)
k either closer to or further away from

its corresponding input vector a
(l)
k . Therefore, each weight vector θ

(l)
k can be

considered as a reward-based classifier corresponding to each actual output on

the last layer a
(l+1)
k based on LRBYk(t), which eventually decides which kind of

contexts it should move closer to or move away from for each weight vector θ
(1)
k

in the first layer. In order to look into the role of weight update in depth, we

will simplify the Equation (5.4) by assuming the learning parameters as follows,

150

which can be divided as three possible learning cases.

Assume: m = 1, λ = 0, and η = 1

Then: ∀k, θ(l)k (t+ 1)← θ
(l)
k (t)− δ(l+1)

k a(l)>

First, in the case of δ
(l+1)
k = 0, which means a

(l+1)
k is same as Rk and thus

there will be no changes in updating θk as follows.

δ
(l+1)
k = 0; (a

(l+1)
k = Rk) =⇒ θ

(l)
k (t+ 1) = θ

(l)
k (t)

In the cases of δ
(l+1)
k > 0 or δ

(l+1)
k < 0, the weight vector θ

(l)
k will be adjusted

by moving itself closer to a(l) or farther away as follows.

δ
(l+1)
k > 0; (a

(l+1)
k > Rk)

=⇒ θ
(l)
k (t+ 1) = θk(t)− δka(l)

=⇒ θ
(l)
k (t+ 1) will be farther away from a(l)

=⇒ θ
(l)
k (t+ 1)>a(l) = zk will be decreased

=⇒ a
(l+1)
k = f(zk) will be also decreased

=⇒ δ
(l+1)
k will be also decreased

=⇒ Costk will be also decreased

151

δ
(l+1)
k < 0; (a

(l+1)
k < Rk)

=⇒ θ
(l)
k (t+ 1) = θk(t) + δka

(l)

=⇒ θ
(l)
k (t+ 1) will be closer to a(l)

=⇒ θ
(l)
k (t+ 1)>a(l) = zk will be increased

=⇒ a
(l+1)
k = f(zk) will be also increased

=⇒ δ
(l+1)
k will be decreased

=⇒ Costk will be also decreased

5.3 CALM-eLRB

In this section, we will see how CALM-eLRB performs experience-based

logistic regression neural optimization. CALM-eLRB is based on CALM-rLRB

and it learns by utilizing both reward and experiences. An experience refers

to synthetic information consisting of: (1) a context context(t), (2) the corre-

sponding selected output node son(t), and (3) the reward value r(t) received as

a consequence of making that selection in that context. The detailed algorithm

and learning process are described in their own subsections.

5.3.1 CALM-eLRB Features

The basic idea of CALM-eLRB is to utilize past positive experiences in

its optimization process as well as utilizing reward information. Recall that

CALM-rLRB uses context(t) to set learning input LRBX(t) and generates

quasi-target output R(t) based on reward value r(t) and uses that to set learning

152

output LRBY (t) for optimization. Building on this, CALM-eLRB saves its

current experience into the Experience-based Knowledge Base (EKB) if the

experience is positive. Then, during learning, not only context(t) and R(t) but

also the saved experiences are used to generate LRBX(t) and LRBY (t). The

concept is that even though the agent should learn based on the feedback it is

receiving in its current situation, it shouldn’t forget what worked for it in the past.

It is notable that there are two implications on using the phrase “past positive

empirical experiences”: (1) an experience is saved in the EKB only when it gets a

reward value of 1 and thus (2) the number of experiences used in the optimization

process can be different during each learning step, which supports incremental

learning. We will first look through the overall process of CALM-eLRB and

see how to save and exploit the past positive experiences for logistic regression

optimization.

Figure 5.4: CALM-eLRB Algorithm Diagram

153

Figure 5.4 helps us to visually understand overall steps of CALM-eLRB; the

difference from CALM-rLRB is that there is an EKB which saves rewarding

experiences. Based on the CALM-rLRB learning process, CALM-eLRB has one

more step since it exploits past positive experiences. The steps are as follows.

(1) Take contextual input context(t), (2) do forward propagation, (3) select the

output node that has the maximum output value; this is denoted as the selected

output node son(t), (4) perform the behavioral task corresponding to the selected

output node, (5) get the reward value r(t) from the environment, (6) generate

quasi-target output R(t) based on reward value r(t), (7) set learning input

LRBX(t) and learning output LRBY (t) for the logistic regression optimization

based on the contextual input context(t), quasi-target output R(t), and the

saved experiences in the EKB, (8) optimize its current neural weights by calling

the function CALM-LRB-CORE-GEN, which performs logistic regression opti-

mization with gradient descent weight update by taking LRBX(t), LRBY (t),

and current neural weights θ(t) as inputs, and (9) save the current experience if

its reward value is positive. More specifically, in this last step, the EKB Manager

takes the necessary values to generate synthetic information (context(t), son(t),

r(t)) as per the definition of experience. Figure 5.4 only shows how the CALM-

eLRB learning process works thus the other CALM components are omitted;

however, the EKB is shown to indicate that CALM-eLRB utilizes not only the

current context and reward but also saved experiences from the EKB.

Note that, compared to CALM-rLRB, only Step 7 and Step 9 are different

whereas the other steps are the same.

154

Step context(t) son(t) r(t) R(t) LRBX(t) LRBY (t) sw(t)
t [1, 1, 1] 3 1 [0, 0, 1] [1, 1, 1] [0, 0, 1] θ3

t+ 1 [1, 2, 2] 3 0 [1, 1, 0]

[
1 1 1
1 2 2

] [
0 0 1
1 1 0

]
θ3

t+ 2 [1, 3, 3] 2 1 [0, 1, 0]

[
1 1 1
1 3 3

] [
0 0 1
0 1 0

]
θ2

t+ 3 [1, 4, 4] 2 1 [0, 1, 0]

1 1 1
1 3 3
1 4 4

 0 0 1
0 1 0
0 1 0

 θ2

Table 5.3: CALM-eLRB Learning Example

For better understanding of Step 7 and Step 9, we will use the same learning

used in the explanation of CALM-rLRB. Table 5.3 shows how CALM-eLRB

differently generates LRBX(t) and LRBY (t) based on both context/reward

and saved experiences.

Besides the learning example, this section introduces a new type of table

named EKB Status Table which represents the status of the EKB during learning.

An EKB status table shows how experiences are saved and accumulated over

learning steps and thus each row of the table represents an experience which

contains context(t), son(t), r(t). However, note that we know r(t) is always 1

in the EKB for CALM-eLRB since it only stores past rewarding experiences.

Therefore, in the EKB status tables, R(t) is represented instead of r(t) for better

understanding of the learning process. Table 5.4 and Table 5.5 show the status

of the EKB at learning step t; in particular, Table 5.4 shows the EKB status

before saving the current experience and Table 5.5 shows the EKB status after

saving the experience at learning step t.

155

past context(i) past son(i) past R(i)
∅ ∅ ∅

Table 5.4: CALM-eLRB EKB Status at Learning Step t Before Saving Current
Experience

past context(i) past son(i) past R(i)
EKBX(i) = context(t) 3 [0, 0, 1]

Table 5.5: CALM-eLRB EKB Status at Learning Step t After Saving Current
Experience

We will see the process of CALM-eLRB staring from the first row of Table 5.3.

At learning step t, the given context(t) is [1, 1, 1] and the selected output nodes

is 3; also, it is assumed that the selected output 3 acquires positive feedback thus

r(t) is set to 1. Based on this, the quasi-target output R(t) corresponding to the

context(t) is generated as [0, 0, 1] as explained in CALM-rLRB. After generating

the quasi-target output, it sets learning input LRBX(t) and learning output

LRBY (t) for the optimization based on context(t), R(t), and past positive

experiences. However, in the learning step t, there is no past saved experiences

as seen in the Table 5.4; so LRBX(t) is set to be the current context [1, 1, 1]

and LRBY (t) is assigned from the quasi-target output R(t), which is same as

in CALM-rLRB. After optimization, CALM-eLRB saves the current experience

into the EKB since it received a positive reward; consequently, the EKB status

is changed from Table 5.4 to Table 5.5.

Note that the indicator of each experience in the EKB is denoted i and the

number of experiences in the EKB is denoted m; thus i can be from 0 up to m

since it can happen that the EKB has no experiences. This implies that the total

number of saved experiences (m) are less than or equal to the total number of

156

learning steps (T) because the EKB only stores successful experiences. Similarly,

i is always less than or equal to the value of t at learning step t since it takes

context input iteratively.

past context(i) past son(i) past R(i)
EKBX(i) = context(t) 3 [0, 0, 1]

Table 5.6: CALM-eLRB EKB Status at Learning Step t+1 Before Saving Current
Experience

past context(i) past son(i) past R(i)
EKBX(i) = context(t) 3 [0, 0, 1]

Table 5.7: CALM-eLRB EKB Status at Learning Step t+1 After Saving Current
Experience

In learning step t+ 1 in Table 5.3, the given context(t+ 1) is [1, 2, 2] with

the selected output node as 3 again, but it is assumed that it gets a reward

of 0 and thus the quasi-target output R(t) corresponding to the context(t+ 1)

is set to [1, 1, 0]. In this case, the goal of CALM-eLRB is to make the neural

network able to learn that the selected output node 3 is not good for the current

context [1, 2, 2], but good for the past context [1, 1, 1]. In order to achieve this

goal, CALM-eLRB applies both current experience and the past experience from

the EKB in setting LRBX(t) and LRBY (t). If we look at Table 5.6, there is

one saved past positive experience. In generating LRBX(t+ 1), CALM-eLRB

places all past contexts first and then adds the current context last; similarly,

it takes all past quasi-target output and the current quasi-target output in

generating LRBY (t+ 1). The generated LRBX(t+ 1) and LRBY (t+ 1), are

shown in Table 5.3 when the learning step is t + 1. By having this learning

input and output in the optimization process, CALM-eLRB learns that when it

157

encounters the context [1, 1, 1] the appropriate corresponding output is 3; but for

the context [1, 2, 2] the desired output should be 2 or 1, definitely not 3. After

finishing the optimization process, it saves the current experience if it received

a positive reward; however for the current context context(t + 1), it did not

acquire the positive reward so the EKB before and after saving the current experi-

ence at learning step t+1 are exactly same as shown in Figure 5.6 and Figure 5.7.

past context(i) past son(i) past R(i)
EKBX(i) = context(t) 3 [0, 0, 1]

Table 5.8: CALM-eLRB EKB Status at Learning Step t+2 Before Saving Current
Experience

past context(i) past son(i) past R(i)
EKBX(i) = context(t) 3 [0, 0, 1]
EKBX(i+ 1) = context(t+ 2) 2 [0, 1, 0]

Table 5.9: CALM-eLRB EKB Status at Learning Step t+2 After Saving Current
Experience

In learning step t+2 in Table 5.3, the given current context is [1, 3, 3] and the

selected output node is 2 with a positive reward. In this case, the quasi-target

output R(t) is set to [0, 1, 0]. CALM-eLRB looks up the EKB as shown Table 5.8

and checks if there are saved past experiences. A in learning step t+ 1, there

is one saved experience so it brings it together with the current information

to generate LRBX(t + 2) and LRBY (t + 2). The generated LRBX(t + 2)

and LRBY (t+ 2) are as shown in Table 5.3 at learning step t+ 2. With this,

CALM-eLRB optimizes its neural weights based on two experiences, one previous

and one current: (1) context [1, 1, 1] with desired output node 3 and (2) context

[1, 3, 3] with desired output 2. After this, it saves the current experience into

158

EKB since it received a positive reward at learning step t+ 2 so the EKB status

is changed from Table 5.8 to Table 5.9.

past context(i) past son(i) past R(i)
EKBX(i) = context(t) 3 [0, 0, 1]
EKBX(i+ 1) = context(t+ 2) 2 [0, 1, 0]

Table 5.10: CALM-eLRB EKB Status at Learning Step t+3 Before Saving
Current Experience

past context(i) past son(i) past R(i)
EKBX(i) = context(t) 3 [0, 0, 1]
EKBX(i+ 1) = context(t+ 2) 2 [0, 1, 0]
EKBX(i+ 2) = context(t+ 3) 2 [0, 1, 0]

Table 5.11: CALM-eLRB EKB Status at Learning Step t+3 After Saving Current
Experience

Finally, in learning step t+ 3 in Table 5.3, the given context is [1, 4, 4] and

the selected output node is 2 with positive reward. In this case, the EKB has

two saved experiences as shown Table 5.10, thus LRBX(t+ 3) and LRBY (t+ 3)

are set as shown in Table 5.3. Similarly, in the optimization process, having

these inputs and outputs implies that: (1) when it encounters a context such as

[1, 1, 1] the desired output is 3, (2) when it encounters a context such as [1, 3, 3]

or [1, 4, 4] the desired output node is 2. In other words, we can expect that

context [1, 1, 1] is classified to output node 3 and the others are classified to 2

based on the generated quasi-target output. This is the principle of CALM-eLRB

which performs experience-based classification. After the optimization process,

the current experience is saved as shown Table 5.11 which will be used in next

learning step.

159

In summary, CALM-eLRB is based on CALM-rLRB, which exploits not

only current reward information but also past positive experiences in generating

learning input and learning output for the optimization. Therefore, it is expected

that the neural network will adapt to its environment faster and better using

CALM-eLRB with its EKB than using CALM-rLRB which only looks at its

current experience; this is the reason why CALM-eLRB is considered a more

advanced algorithm than CALM-rLRB. The performances of each are evaluated

and discussed in Chapter 6.

5.3.2 CALM-eLRB-ANN

Like that CALM-ANN in CALM-rLRB, the neural network for CALM-eLRB

is the same as the generalized, arbitrary-depth, ANN shown in Figure 3.17 in

Section 3.2.

5.3.3 CALM-eLRB Learning

In this section, we will see how CALM-eLRB performs experience-based

learning iteratively. There are two primary functions named: (1) CALM-eLRB-

MAIN and (2) CALM-LRB-CORE-GEN where CALM-LRB-CORE-GEN is

similar to CALM-LRB-CORE in CALM-rLRB; CALM-LRB-CORE-GEN is a

generalized version of CALM-LRB-CORE since the number rows of LRBX(t)

is no longer always 1 in CALM-eLRB; the detail difference is described in the

following paragraphs. Algorithm 12 shows the main flow of CALM-eLRB and

Algorithm 13 shows the generalized version of CALM-LRB-CORE.

160

Algorithm 12 CALM-eLRB-MAIN Pseudocode

Given T, ITR, n, L,K1, · · · , Kl, · · · , KL, η, λ, ε, γ
for l = 1 to L− 1 do

Init θ(l) ∈ RKl+1×(Kl+1), θ(l)(1)← θ(l)

end for
for t = 1 to T do

(1) CONTEXT ACQUISITION
context(t) ∈ Rn×1

Add bias for a context, context(t) ∈ R(n+1)×1

(2) FORWARD PROPAGATION
a(1)(t)← context(t)
for l = 2 to L do
z(l)(t)← θ(l−1)(t)a(l−1)(t)
a(l)(t)← f(z(l)(t))

Add a
(l)
0 (t)← +1 for bias at each layer.

end for
(3) OUTPUT SELECTION

son(t)← maxk{a(L)k }
selected weight(t)← θ

(L)
son(t)(t)

(4) BEHAVIORAL TASK
(5) REWARD ACQUISITION
Get r(t) ∈ {0, 1} from environment
(6) SET UP R(t) ∈ RK×1 based on r(t)
if r(t) = 1 then
Rk(t)← 1, if k = son(t)
Rk(t)← 0, if k 6= son(t)

else if r(t) = 0 then
Rk(t)← 0, if k = son(t)
Rk(t)← 1, if k 6= son(t)

end if
(7) SET UP LRBX(t) AND LRBY (t)
m← sizeof(EKB, 1); number of rows of EKB
LRBX(t)← [EKBX ; context(t)>] ∈ R(m+1)×(n+1)

LRBY (t)← [EKBR; R(t)>] ∈ R(m+1)×K

(8) CALL CALM-LRB-CORE-GEN OPTIMIZATION
[J(t), θ(t+ 1)] ← CALM-LRB-CORE-GEN (LRBX(t), LRBY (t), θ(t))
(9) SAVE CURRENT EXPERIENCE INTO EKB
if r(t) = 1 then
EKB ← add(context(t), son(t), r(t), selected weight(t))

end if
end for

161

CALM-eLRB-MAIN has one more step than CALM-rLRB-MAIN: (9) save

current experience into EKB if it acquired positive reward. Note that the com-

putations for forward propagation, output selection, reward acquisition, and

generating output are the same as for CALM-rLRB; thus we will see how learning

input LRBX(t) and learning output LRBY (t) are generated in CALM-eLRB.

� Learning input LRBX(t) and learning output LRBY (t) are generated as

follows based on past positive experiences, as well as the current context, and

reward value.

m← sizeof(EKB, 1); number of rows of EKB

EKBX ∈ R(m)×(n+1)

EKBR ∈ R(m)×K

LRBX(t)← [EKBX ; context(t)>] =⇒ LRBX(t) ∈ R(m+1)×(n+1)

LRBY (t)← [EKBR; R(t)>] =⇒ LRBY (t) ∈ R(m+1)×K

162

Algorithm 13 CALM-LRB-CORE-GEN Pseudocode

Given T , ITR, n, L, K1, · · · , KL, η, λ, ε, γ, LRBX(t), LRBY (t), θ(t)
a(1) = LRBX(t), y = LRBY (t), θ(1) = θ(t), m = sizeof(y)
for itr = 1 to ITR do

(1) FORWARD PROPAGATION
for l = 2 to L do
z(l) ← a(l−1)(θ(l−1))>(itr)
a(l) ← f(z(l))

Add a
(l)
0 ← +1 for bias at each layer.

end for
(2) BACKPROPAGATION: ERROR UPDATE

Remove a
(L)
0

δ(L) ← a(L) − y
∆θ(L−1)(itr)← (δ(L))>a(L−1)

for l = L− 1 to 2 do
δ(l) ← δ(l+1)θ(l)(itr)

Remove δ
(l)
0

δ(l) ← δ(l). ∗ f ′(z(l))
∆θ(l−1)(itr)← (δ(l))>a(l−1)

end for
if m = 1 then

Cost(itr)←
KL∑
k=1

(
−ykln(a

(L)
k)− (1− yk)ln(1− a(L)k)

)
else

Cost(itr)← 1
m

m∑
i=1

KL∑
k=1

(
−yk(i)ln(a

(L)
k (i))− (1− yk(i))ln(1− a(L)k (i))

)
end if
(3) WEIGHT UPDATE
for l = 1 to L− 1 do
θ(l)(itr + 1)← θ(l)(itr)− η

(
1
m

∆θ(l)(itr) + λ
m
θ̄(l)(itr)

)
end for

Reg(itr)← λ
2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj (itr)

)2
J(itr)← Cost(itr) +Reg(itr)

end for
Return θ(ITR)

Similar to CALM-LRB-CORE, CALM-LRB-CORE-GEN also takes learning

input, learning output, and neural weights from CALM-eLRB-MAIN and does

weigh updates through the given number of iterations. The difference is that

m is not always 1 while it was always 1 in CALM-LRB-CORE. This is because

163

LRBX(t) and LRBY (t) are generated based not only on the current context and

reward but also on experiences in the EKB. These are generated in CALM-eLRB-

MAIN and are passed to CALM-LRB-CORE-GEN. CALM-LRB-CORE-GEN is

used by CALM-eLRB, CALM-epLRB, and CALM-nepLRB, all of which use the

EKB, while CALM-LRB-CORE is used only by CALM-rLRB.

Note that CALM-LRB-CORE-GEN also takes all the learning parameters:

T , ITR, n, L, K1, · · · , Kl, · · · , KL, η, λ, ε, γ as well as LRBX(t), LRBY (t),

and θ(t); for simplicity, all parameters are omitted from the pseudocode of

Algorithm 12.

CALM-LRB-CORE-GEN is also a generalized logistic regression matrixwise

batch learning algorithm and the detailed computing processes of it are fully

explained and mathematically demonstrated in Section 3.2; therefore the follow-

ing paragraphs focus on how CALM-eLRB data gets through the matrixwise

optimization process rather than focusing on describing the detailed computing

processes.

� Learning input LRBX(t) and learning output LRBY (t) are set as input

matrix a(1) and quasi-target output matrix y. Then net matrix z(l) and actual

output matrix a(l) at each layer are computed as follows, which is called forward

164

propagation.

a(1) = LRBX(t) ∈ R(m+1)×(n+1)

a(1) =

a(1)(1)> −→

a(1)(2)> −→
...

a(1)(i)> −→
...

a(1)(m+ 1)> −→

(m+1)×(K1+1)

=

LRBX(1)> −→

LRBX(2)> −→
...

LRBX(i)> −→
...

LRBX(m+ 1)> −→

(m+1)×(K1+1)

z(l) = a(l−1)(θ(l−1))> where l is from 2 to L.

z(l) =

z(l)(1)> −→

z(l)(2)> −→
...

z(l)(i)> −→
...

z(l)(m+ 1)> −→

(m+1)×Kl

=

a(l−1)(1)(θ(l−1))>

a(l−1)(2)(θ(l−1))>

...

a(l−1)(i)(θ(l−1))>

...

a(l−1)(m+ 1)(θ(l−1))>

(m+1)×Kl

= a(l−1)(θ(l−1))>

a(l) = f(z(l)) where l is from 2 to L.

a(l) =

a(l)(1)> −→

a(l)(2)> −→
...

a(l)(i)> −→
...

a(l)(m+ 1)> −→

(m+1)×(Kl+1)

m = size(y, 1); number of rows of y

165

� The cost function J(θ) is calculated as follows. Note that LRBX and LRBY

are no longer row vectors; they represent m + 1 learning inputs and learning

outputs and thus the computation for the cost function is specified in the

following form. If m is 1, the computation is the same as in Equation (5.1). On

the other hand, if m is greater than 1, a(1) and y are matrices thus one more

summation is needed in order to sum each cost value of each element in each

matrix.

J(θ) =
1

m

m∑
i=1

KL∑
k=1

(
−yk(i)ln(a

(L)
k (i))− (1− yk(i))ln(1− a(L)k (i))

)
+

λ

2m

L−1∑
l=1

Kl+1∑
k=1

Kl∑
j=1

(
θ
(l)
kj

)2
(5.6)

� Error Update - matrixwise.

l = L δ(L) = a(L) − LRBY

l = L− 1 to 2 δ(l) = δ(l+1)θ(l)

=

δ(l+1)(1)>θ(l) −→

δ(l+1)(2)>θ(l) −→
...

δ(l+1)(i)>θ(l) −→
...

δ(l+1)(m)>θ(l) −→

m×Kl

δ(l) =
m∑
i=1

Kl∑
k=1

(
δ
(l)
ik f

′(z
(l)
ik)
)

(5.7)

166

� Weight Update - matrixwise.

a(1) = LRBX

l = 1 to L− 1 θ(l)(t+ 1) = θ(l)(t)− η
(

1

m
δ(l+1)>a(l) +

λ

m
θ̄(l)
)

(5.8)

5.4 CALM-epLRB

In this section, the concept of CALM-epLRB is explained including its mo-

tivation, the detailed algorithm, and the learning effects. CALM-epLRB is

based on CALM-eLRB and it learns by using rewards, extended experiences,

and a new concept for a learning rule named Selective-Power-Update (SPU). In

naming of CALM-epLRB, “experience-powered (ep)” itself is named to indicate

CALM-epLRB utilizes these extended experiences and applies the Selective-

Power-Update in its learning process.

Selective-Power-Update is a newly added weight update rule which adjusts

current neural connection weights using connection weights stored in the EKB

as part of an extended experience. The selection of an appropriate extended

experience is independent of the currently selected output node son(t) and

reward r(t), but is dependent on a selected output node son(i) in the EKB

relevant to the current context context(t).

Recall that CALM-rLRB only uses current context and reward information

and CALM-eLRB uses both current information and experiences from the EKB.

Compared to CALM-eLRB, CALM-epLRB not only uses current and past expe-

riences but also uses extended experiences through the Selective-Power-Update

167

rule in order to improve the learning effects from its own experiences. CALM-

epLRB has two types of weight update rule where the first is experience-based

neural optimization, the same as in CALM-epLRB and the second is Selective-

Power-Update. In each learning step, CALM-epLRB performs experience-based

neural optimization first and then applies Selective-Power-Update. However,

Selective-Power-Update can be performed only when there is a context in the

EKB that is similar (or identical) to the current context. If there is no similar

(or identical) context in the EKB, CALM-epLRB applies only experience-based

optimization. In this way, CALM-epLRB supports experience-powered learning

optimization.

5.4.1 CALM-epLRB Features

The basic idea of Selective-Power-Update is to find a rewarding neural

connection related to a past context that is similar to the current context and

to use the connection weights stored for it in order to update the current neural

network. Selective-Power-Update is named because it updates current neural

network selectively using the “power” of past rewarding weights. For example,

in context A, if the current neural network set son(t) to be output 1 but in the

EKB the stored selected output node is output 2 for the stored context most

similar to context A; then Selective-Power-Update retrieves the corresponding

saved weights from the EKB and uses them to update the current neural weights.

In this way, it is expected that output 2 will have a greater chance to be selected

in the future if a similar context occurs. To briefly summarize, Selective-Power-

Update (1) finds the most similar context in the EKB based on the current

context, (2) retrieves the rewarding neural connection between the similar context

and the corresponding selected output node in the EKB, and (3) adjusts the

168

current neural weight based on the retrieved neural connection.

The goal of applying Selective-Power-Update is to increase the learning speed

by utilizing the past successful neural connections when the past context is

similar to the current context. Therefore, the bottom line of CALM-epLRB is

how to modify the current neural weight based on the past neural weight. The

detailed process of Selective-Power-Update is described in Section 5.4.3.

Figure 5.5: CALM-epLRB Algorithm Diagram

Figure 5.5 helps us to visually understand the overall steps of CALM-epLRB;

compared to CALM-eLRB, CALM-epLRB has one more step for doing Selective-

Power-Update. In addition, the experiences saved are extended experiences.

The steps are as follows. (1) Take contextual input context(t), (2) do forward

propagation, (3) select the output node that has the maximum output value;

this is denoted as the selected output node son(t), (4) perform the behavioral

task corresponding to the selected output node, (5) get the reward value r(t)

169

from the environment, (6) generate quasi-target output R(t) based on reward

value r(t), (7) set learning input LRBX(t) and learning output LRBY (t) for

the logistic regression optimization based on the contextual input context(t),

quasi-target output R(t), and the saved experiences in the EKB, (8) optimize its

current neural weights by calling the function CALM-LRB-CORE-GEN, which

performs logistic regression optimization by taking LRBX(t), LRBY (t), and

current neural weights θ(t) as inputs, (9) save the current experience if the

reward value is positive, and (10) perform Selective-Power-Update.

More specifically, after finishing the experience-based optimization for given

a current context, Selective-Power-Update has the following specific step. (1)

Check if there is a sufficiently similar past context in the EKB compared to

the current context, (2) if there is a sufficiently similar context, chose the most

similar such context, (3) retrieve the past selected output node corresponding to

the chosen past context, (4) retrieve the past selected weights associated with

the chosen past context, and then (5) apply the past selected weights to the

current neural network by adding them and the current neural weights which

are related to the past selected output node.

Note that it is always possible that the past selected output node from the

EKB is different from the currently selected output node. This means that,

although the past context and the current context are similar, the output for

each is different; in this case, Selective-Power-Update adjusts the current neural

network such that it will be more likely to select the past selected output node

by modifying the current neural weights to be more similar corresponding to

those that selected the past selected output node. In other words, Selective-

Power-Update is a vector summation of the past weight vector and the current

170

weight vector where both of them are related to the past selected output node.

The big difference from CALM-eLRB is that CALM-epLRB uses not only

past positive experiences but also past neural connections between the past

context (which is similar to current context) and the past selected output. The

Selective-Power-Update is motivated from the CARB-LM [56].

It is important to mention that the phrase “the most similar” implies there

might be several past contexts which are similar to the current context. In

this regard, CALM-epLRB utilizes a new learning parameter, a similarity rate

denoted as ε, which is used to compute similarity between two contexts; it acts as

a threshold in finding similar contexts in the EKB. The metric used for measuring

the similarity between two contexts is a simple Euclidean distance. Also, there

is another learning parameter, denoted as γ, which is the selective power rate

deciding how much to apply the past neural weight to the current neural weight

when merging two weights. The equation is described in Section 5.4.3.

Step context(t) son(t) r(t) R(t) LRBX(t) LRBY (t) sw(t)
t [1, 1, 1] 3 1 [0, 0, 1] [1, 1, 1] [0, 0, 1] θ3

t+ 1 [1, 2, 2] 3 0 [1, 1, 0]

[
1 1 1
1 2 2

] [
0 0 1
1 1 0

]
θ3

t+ 2 [1, 3, 3] 2 1 [0, 1, 0]

[
1 1 1
1 3 3

] [
0 0 1
0 1 0

]
θ2

t+ 3 [1, 4, 4] 2 1 [0, 1, 0]

1 1 1
1 3 3
1 4 4

 0 0 1
0 1 0
0 1 0

 θ2

t+ 4 [1, 0, 1] 2 0 [1, 0, 1]

1 1 1
1 3 3
1 4 4
1 0 1

0 0 1
0 1 0
0 1 0
1 0 1

 θ2

Table 5.12: CALM-epLRB Learning Example Before Selective-Power-Update

171

past context(i) past son(i) past R(i) past sw(i)
EKBX(i) = context(t) 3 [0, 0, 1] EKBθ(i)
EKBX(i+ 1) = context(t+ 2) 2 [0, 1, 0] EKBθ(i+ 1)
EKBX(i+ 2) = context(t+ 3) 2 [0, 1, 0] EKBθ(i+ 2)

Table 5.13: CALM-epLRB EKB Status at Learning Step t+4 Before and After
Saving Current Experience

For better understanding, we will use same simple learning example in CALM-

eLRB with one more example as shown on learning step t+ 4 in Table 5.12. It

shows how CALM-epLRB generates its learning input and output based on the

given contexts and rewards; and those are same process in CALM-eLRB. Note

that Table 5.12 shows CALM-epLRB learning example before performing SPU

while Table 5.14 shows CALM-epLRB learning example after performing SPU.

Table 5.13 shows the EKB status when learning step is t+4 along with Table 5.12.

Step context(t) son(t) r(t) R(t) LRBX(t) LRBY (t) sw(t)
t [1, 1, 1] 3 1 [0, 0, 1] [1, 1, 1] [0, 0, 1] θ3

t+ 1 [1, 2, 2] 3 0 [1, 1, 0]

[
1 1 1
1 2 2

] [
0 0 1
1 1 0

]
θ3

t+ 2 [1, 3, 3] 2 1 [0, 1, 0]

[
1 1 1
1 3 3

] [
0 0 1
0 1 0

]
θ2

t+ 3 [1, 4, 4] 2 1 [0, 1, 0]

1 1 1
1 3 3
1 4 4

 0 0 1
0 1 0
0 1 0

 θ2

t+ 4 [1, 0, 1] 3 0 [1, 0, 1]

1 1 1
1 3 3
1 4 4
1 0 1

0 0 1
0 1 0
0 1 0
1 0 1

 θ3

Table 5.14: CALM-epLRB Learning Example After Selective-Power-Update

In the learning step t+4 in Table 5.12, we can see the current selected output

node at learning step t + 4 is 2 and it gets zero reward; thus the experience-

based optimization makes θ2 farther away from context(t + 4), which is same

172

process as in CALM-eLRB. After the optimization, CALM-epLRB performs

Selective-Power-Update by looking for past positive experiences in the EKB. In

this case, it important to point out that the context(t+4) is similar to context(t)

which is saved as EKBX(i) as shown Table 5.13. CALM-epLRB finds EKBX(i)

which is similar to context(t+ 4) and retrieves both past successfully selected

output node 3 and the corresponding selected neural weight EKBθ(i); then it

modifies current neural weight vector which is corresponding to actual output 3

as follows: θ3(t+ 5) = (1− γ)θ3(t+ 5) + (γ)EKBθ(i). Note that in the equation

the learning step is t+ 5, not t+ 4. This is because θ is already updated from

θ(t+ 4) to θ(t+ 5) in experience-based optimization as shown in Figure 5.5 and

Selective-Power-Update is performed after that. This Selective-Power-Update

expects to lead current neural network to power selecting the past successful

output node 3, instead of current false selected output node 2.

More specifically, Table 5.14 shows the expected learning table after the

Selective-Power-Update of CALM-epLRB based on the assumption: γ is 1. We

can expect son(t + 4) is changed from 2 to 3 and sw(t + 4) is changed from

θ2 to θ3. This can be expected by two factors: (1) θ2 made farther away from

context(t+ 4) in experience-based optimization due to the zero reward and (2)

Selective-Power-Update made θ3 closer to context(t+ 4) since the γ is assumed

as 1. In this way, if context(t+5) occurs which is similar to context(t+4) at next

learning step, θ3 will be selected with positive reward based on expected learning

table as shown Table 5.14. Note that Table 5.14 is expected learning example

results after performing Selective-Power-Update and thus there are no changes

except for son(t + 4) and sw(t + 4). This is because Selective-Power-Update

does not affect the rewards, learning input, and learning output which were

already generated after forward propagation. It is performed at the end of the

learning process as shown in Figure 5.5 and thus it only have impact on chang-

173

ing selected neural connections. The detailed process is described in Section 5.4.3.

In summary, CALM-epLRB selectively gives the power to current neural

weight by utilizing the past successful neural weight based on the similar context.

This expect to increase the learning speed than only using the typical logistic

regression optimization.

5.4.2 CALM-epLRB-ANN

Like that CALM-ANN in CALM-rLRB and CALM-eLRB, the neural network

for CALM-epLRB is also same as the generalized, arbitrary-depth, ANN shown

in Figure 3.17 in Section 3.2.

5.4.3 CALM-epLRB Learning

In this section, we will see how CALM-epLRB performs experience-based

neural context-awareness iteratively. There are three primary functions named:

(1) CALM-epLRB-MAIN, (2) CALM-LRB-CORE-GEN where CALM-LRB-

CORE-GEN is same as in CALM-eLRB, and (3) CALM-SELECTIVE-POWER-

LEARNING. Algorithm 14 shows the main flow of CALM-epLRB.

174

Algorithm 14 CALM-epLRB-MAIN Pseudocode

Given T, ITR, n, L,K1, · · · , Kl, · · · , KL, η, λ, ε, γ
for l = 1 to L− 1 do

Init θ(l) ∈ RKl+1×(Kl+1), θ(l)(1)← θ(l)

end for
for t = 1 to T do

(1) CONTEXT ACQUISITION
context(t) ∈ Rn×1

Add bias for a context, context(t) ∈ R(n+1)×1

(2) FORWARD PROPAGATION
a(1)(t)← context(t)
for l = 2 to L do
z(l)(t)← θ(l−1)(t)a(l−1)(t)
a(l)(t)← f(z(l)(t))

Add a
(l)
0 (t)← +1 for bias at each layer.

end for
(3) OUTPUT SELECTION

son(t)← maxk{a(L)k }
selected weight(t)← θ

(L)
son(t)(t)

(4) BEHAVIORAL TASK
(5) REWARD ACQUISITION
Get r(t) ∈ {0, 1} from environment
(6) SET UP R(t) ∈ RK×1 based on r(t)
if r(t) = 1 then
Rk(t)← 1, if k = son(t);Rk(t)← 0, if k 6= son(t)

else if r(t) = 0 then
Rk(t)← 0, if k = son(t);Rk(t)← 1, if k 6= son(t)

end if
(7) SET UP LRBX(t) AND LRBY (t)
m← sizeof(EKB, 1); number of rows of EKB
LRBX(t)← [EKBX ; context(t)>] ∈ R(m+1)×(n+1)

LRBY (t)← [EKBR; R(t)>] ∈ R(m+1)×K

(8) CALL CALM-LRB-CORE-GEN OPTIMIZATION
[J(t), θ(t+ 1)] ← CALM-LRB-CORE-GEN (LRBX(t), LRBY (t), θ(t))
(9) SAVE CURRENT EXPERIENCE INTO EKB
if r(t) = 1 then
EKB ← add(context(t), son(t), r(t), selected weight(t))

end if
(10) SELECTIVE POWER UPDATE
if m > 0 then

[θ(t+ 1)] = CALM-SELECTIVE-POWER-LEARNING(θ(t+ 1), EKB)
end if

end for

175

In CALM-epLRB-MAIN, it has one more step based on CALM-eLRB at

each learning step t: (10)it performs Selective-Power-Update rule. Note that all

the computations from step (1) to (9) are same as in CALM-eLRB; thus this

section only focuses on the Selective-Power-Update learning, which is shown in

Algorithm 15.

Algorithm 15 CALM-SELECTIVE-POWER-LEARNING Pseudocode

C = {EKBX(i) | i ∈ [1,m], ‖context(t)− EKBX(i)‖ < ε}
if C 6= ∅ then

Find p where ‖context(t)− EKBX(p)‖ = min{∀v∈C , ‖context(t)− v‖ }
pson = EKBson(p)

θ
(L−1)
pson (t+ 1) = (1− γ)θ

(L−1)
pson (t+ 1) + (γ)EKBθ(p)

end if
return θ(t+ 1)

� Context pool C refers to a set which has similar contexts in the EKB to the

current context context(t). In order to calculate the similarity, CALM-epLRB

checks if the Euclidean distance between two nodes is less than the similarity

rate ε as follows. Note that EKBX(i) is ith saved context in the EKB.

C = {EKBX(i) | i ∈ [1,m], ‖context(t)− EKBX(i)‖ < ε}

� EKBX(p) refers to past context which is the same or most similar vector

to the current context which has smallest Euclidean distance value among all

the vectors in the context pool C. Also the corresponding past selected output

node is denoted as EKBson(p) and the past selected weight vector EKBθ(p).

Note that knowledge redundancy and knowledge inconsistency are checked by

Knowledge Manager in every learning step; thus if there are exact two same

contexts with different selected actual output, EKB Manager will remain most

176

recent context in the EKB.

Find p where ‖context(t)− EKBX(p)‖ = min{∀v∈C , ‖context(t)− v‖ }

� Selective-Power-Update rule is defined as follows. Recall that this second type

of weight update rule is proceed after the experience-based, arbitrary-depth,

neural optimization; thus Selective-Power-Update learning takes the updated

weights θ(t+1) from the optimization and returns the selectively updated weights

with same learning step index θ(t+ 1), which will be used in next learning step

t + 1 in the main process. Note that pson refers to the past selected output

node.

θ
(L−1)
pson (t+ 1) = (1− γ)θ

(L−1)
pson (t+ 1) + (γ)EKBθ(p)

This equation implies important feature of Selective-Power-Update: Selective-

Power-Update only updates the weights in the last layer if CALM-ANN has

hidden layers. This means the retrieved past selected weight in the EKB is also

weight vector which is associated with the past selected output node at the last

layer.

5.5 CALM-nepLRB

Finally, this section introduces the principles of a novel, bio-inspired, arbitrary-

depth, neural learning model including: (1) the concept of CALM-nepLRB,

(2) the CALM-nep-ANN, and (3) the CALM-nepLRB algorithm and learning

process.

177

5.5.1 CALM-nepLRB Features

CALM-nepLRB is the key algorithm for building a novel, bio-inspired,

arbitrary-depth, neural learning model. The basic idea of CALM-nepLRB

is to extract some feasible features of behavioral neurobiology and utilize

them to improve CALM-epLRB. CALM-nepLRB is designed based on CALM-

rLRB, CALM-eLRB, CALM-epLRB, and additional neurobiological features: (1)

combination-sensitive neurons, (2) recurrent inhibition, (3) appetitive learning

with serotonergic neuromodulation, and (4) aversive learning with dopaminergic

neuromodulation. CALM-nepLRB most advanced algorithm in CALM and it

outperforms the other algorithms, as demonstrated and discussed in Chapter 6.

CALM-nepLRB has flexibility in selecting a learning algorithm between those

used by CALM-rLRB and CALM-epLRB depending on current learning sta-

tus, which allows it to outperform the other three algorithms. Each unique

bio-inspired feature of CALM-nepLRB is described in depth the following para-

graphs and the learning process for CALM-nepLRB is described in Section 5.5.3.

Note that CALM-nepLRB has its own novel neural network, CALM-nepLRB-

ANN, which provides the features mentioned above. This neural network is

described in Section 5.5.2.

Combination-Sensitive Neurons As introduced in Section 2.6, combination-

sensitive neurons play important roles in triggering more complex behaviors

by behaving in fundamentally different ways depending on the combination of

inputs they receive. CALM-nepLRB is inspired by the combination-sensitive

neurons from several sources: (1) the auditory cortex of bats, (2) the external

nucleus of the inferior colliculus of owls, and (3) the torus semicircularis of

electric fish. A combination-sensitive neuron in CALM-nepLRB-ANN shows its

178

responses only when it receives two types of input signals where one is from

the output nodes in the last layer (the output layer) and the other one is from

the Observer with a reward value. If the reward is positive, the combination

sensitive neuron shows its response by discharging serotonin; if the reward is zero,

it releases dopamine. In this way, the role of combination-sensitive neurons is to

provide two different ways of reacting based on reward value; this is biologically

supported by the above three animal examples.

Recurrent Inhibition CALM-nepLRB uses this recurrent inhibition to set

the maximum number of times that an agent will repeat the same learning

behavior which resulted in consecutive zero rewards. The maximum number

may be set by the system user based on the application. The learning parameter

for the maximum number is denoted as IHV meaning inhibition value. See

Section 5.1 for learning parameters used in this dissertation; IHV is set to be 3,

meaning the robot can not repeat the same incorrect behavior over three times.

Appetitive Learning with Serotonin vs Aversive Learning with Do-

pamine The CALM-nepLRB neural network performs reward-based neuro-

modulation based on a biological model: serotonin used in appetitive learning

while dopamine is used in aversive learning. In CALM-nepLRB, a combination-

sensitive neuron releases serotonin when it gets positive reward but it releases

dopamine when it gets zero reward. Note that the combination-sensitive neurons

only release neurotransmitters when the reward input is combined with output

from the neurons in last layer. This neural design is described in Section 5.5.2.

Two Effects of Dopamine CALM-nepLRB uses dopaminergic neuromod-

ulation which was introduced in Section 2.6. Recall that Dopamine shows its

effects on both appetitive learning and aversive learning depending on two types

179

of dopaminergic receptor. The details of applying this biological feature in

CALM-nepLRB is described in Section 5.5.2.

Figure 5.6: CALM-nepLRB Algorithm Diagram

Figure 5.6 helps us to visually understand the overall steps of CALM-nepLRB;

compared to CALM-rLRB, CALM-eLRB, and CALM-epLRB, it is more ad-

vanced and sophisticated algorithm by having additional biological step, as

follows. (1) Take context context(t), (2) do forward propagation, (3) select

maximum output node son(t) at the last layer, (4) perform the behavioral task

corresponding to the selected output node, (5) get reward r(t), (6) generate the

quasi-target output R(t) and MASK based on the reward, (7) based on r(t),

do neuromodulation and check recurrent inhibition for each output node, (8)

set the learning input LRBX(t) and output LRBY (t) for the logistic regression

optimization depending on the recurrent inhibition status, (9) optimize by call-

ing the function CALM-LRB-CORE-GEN, which performs logistic regression

180

optimization by taking LRBX(t), LRBY (t), and current neural weights θ(t) as

inputs, (10) save the current experience if the reward value is positive, and (11)

do Selective-Power-Update if there is no recurrent inhibition.

The algorithm steps from (1) to (5) are the same as in CALM-epLRB. In

CALM-nepLRB, quasi-target output R(t) is generated in a more advanced way

than in the other algorithms by applying another array, called MASK , which

is same size as R(t). MASK keeps track of which selected output nodes have

received rewards with a value of zero since the agent started to get zero rewards

for its actions. The values from MASK are then directly assigned to R(t) so

that R(t) can have multiple zero elements when r(t) is zero. This mechanism

helps the agent to choose other behaviors that have not received zero reward for

the current context. On the other hand, if the agent gets a positive reward, all

the elements of MASK are set to be 1 so that it can refresh previously checked

zero rewards. Note that if a reward is zero, all elements of R(t) except for the

currently selected output are set to zero in CALM-rLRB, CALM-eLRB, and

CALM-epLRB; thus the three algorithms are not able to track which output

nodes have already been tried, and which have not, for this context. In this

way, CALM-nepLRB is expected to find an appropriate behavior faster than the

others.

After generating quasi-target output R(t) with MASK based on reward

value, CALM-nepLRB performs neuromodulation and checks recurrent inhibi-

tion, also based on reward value, which is possible since CALM-nepLRB has a

novel neural network, CALM-nepLRB-ANN, introduced in Section 5.5.2. To

briefly summarize note that each output node is connected its corresponding

combination-sensitive neuron in CALM-nepLRB-ANN. Neuromodulation indi-

181

cates two features based on reward value: (1) serotonergic neuromodulation

and (2) dopaminergic neuromodulation. After selecting one output node, the

selected output node sends its signal to the corresponding combination-sensitive

neuron and it waits until the reward value is received from Observer. In this

case, if the reward value is positive, the combination-sensitive neuron releases

serotonin; however if the reward is zero, it discharges dopamine. By having

these two neurotransmitters, CALM-nepLRB can undo an incorrect behavior

which received zero reward; this provides an agent with more opportunities to

explore the same context with different behaviors. For example, if an agent

executes ‘GO FORWARD’ and it acquires zero reward, dopamine is released

from the corresponding combination-sensitive neuron and it will directly cause

the behavior ‘GO BACKWARD’ which is opposite behavior of ‘GO FORWARD’.

More details of this are described in Section 5.5.2 and Section 5.5.3.

Recurrent inhibition also occurs based on the pattern of reward values; more

precisely, CALM-nepLRB checks the accumulated zero rewards for each output

since this context became active. This tells the agent how many times it has

failed with each action since it entered its current circumstances. If the number

of failures is above a specificed threshold, known as the recurrent threshold, the

corresponding behavior is target to be recurrent inhibition. Note that when

the agent changes context, the number of failures corresponding to each output

node is reset to zero. Also, when the agent gets a positive reward, the count of

failures is reset to zero for all output nodes. This is a tool for avoiding infinite

repetition of the same behaviors that keep receiving zero reward over time. It

should be noted, what is inhibited in not the repetition of the behavior itself.

Instead, it is the default learning method of CALM-nepLRB that is inhibited,

causing the agent to switch to a backup learning method. The idea is that if the

182

agent continues to fail, it is likely that its learning method isn’t helping it to

learn correct behavior in this circumstance, so it should try to learn differently,

rather than just try to get out of the circumstance (change behavior) without

actually learning a better response.

After performing neuromodulation and checking the recurrent inhibition

status, CALM-nepLRB selects an appropriate algorithm between CALM-epLRB

(its default learning algorithm) and CALM-rLRB (its backup), which affects the

way of setting learning input LRBX(t) and output LRBY (t) for the logistic

regression optimization. This mechanism provides an important feature of

CALM-nepLRB: theoretically, CALM-nepLRB, in the end, will have received

positive reward in every encountered context.

At algorithm Step 7 in Figure 5.6, if there is no recurrent inhibition, the

method of setting LRBX(t) and LRBY (t) follows as in CALM-eLRB. Also,

at learning step (10), CALM-nepLRB performs Selective-Power-Update, the

same as in CALM-epLRB, if it is not in recurrent inhibition status. On the

other hand, if an output node is subject to recurrent inhibition, CALM-nepLRB

sets the learning input and output in the same way as CALM-rLRB. This is

because recurrent inhibition implies that experience-powered learning has not

been effective in the current context, therefore it is may be more effective to apply

only the current context and reward to the optimization process rather than

relying on the past positive experiences. Given this shift from learning based on

prior and current experiences to learning only based on the current situation, it

should eventually find the rewarding behavior, at least in current context, after

optimization. In this way, CALM-nepLRB does not skip zero rewarded context

by performing opposite behavior with dopaminergic neuromodulation and selects

an appropriate algorithm depending on learning status with recurrent inhibition

183

biological tools.

In summary, the reasons why CALM-nepLRB is expected to outperform the

other algorithms in CALM for many data sets are as follows. First, CALM-

nepLRB controls its behavior through neuromodulation of combination-sensitive

neurons based on reward value, which gives an agent opportunities to try other

behaviors in the same context when the selected behavior is zero rewarded.

Second, CALM-nepLRB generates the quasi-target output R(t) in a more so-

phisticated way with MASK so that the ANN can find the appropriate behavior

faster and more precisely. Third, CALM-nepLRB has a mechanism, called

recurrent inhibition, for avoiding infinite loops of repeating the same behavior

with zero reward. Fourth, CALM-nepLRB is able to chooses an appropriate

algorithm, either CALM-rLRB or CALM-epLRB, depending on the learning

status. Fifth, CALM-nepLRB guarantees that an agent will always find the

correct behavior in a given context due to the effects of neuromodulation and

recurrent inhibition. This is demonstrated based on the synthetic experimental

results in Chapter 6.

5.5.2 CALM-nepLRB-ANN

This section introduces a novel, bio-inspired, generalized, arbitrary-depth,

neural network, CALM-nepLRB-ANN, which is designed especially for the

CALM-nepLRB algorithm. Figure 5.7 shows CALM-nepLRB-ANN.

184

Figure 5.7: CALM-nepLRB-ANN

Compared to a generalized, arbitrary-depth, neural network shown in Fig-

ure 3.17, there are five additional novel features in CALM-nepLRB-ANN. First,

there is an extra layer named CALM-nepLayer which has combination-sensitive

neurons and “back neurons”. A combination-sensitive neuron is denoted as ck

and a back neurons is represented as bk where k is between 1 and KL. Note

that it is assumed that a combination-sensitive neuron is activated only when

two combined input signals are received where one is from output node and

the other one is from Observer with reward. Therefore, at a learning step, only

one combination-sensitive neuron is activated since only one output node is

selected and the reward value is given to the corresponding combination-sensitive

neuron. A back neuron refers to an opposite motor neuron of an output node.

For example, if a1 is associated with the ‘GO FORWARD’ behavioral task, b1 is

related to ‘GO BACKWARD’.

Second, for each output node, there are three additional neural paths: (1) an

electrical synapse from the output node to a combination-sensitive neurons, (2)

185

a chemical synapse from a combination-sensitive neuron to the output node, and

(3) a chemical synapse from a combination-sensitive neuron to a back neuron.

Note that each output neuron has a link to a combination-sensitive neuron;

and each combination-sensitive neuron has two links; one is connected to the

corresponding output node and the other one is linked to a back node.

Third, the chemical synapses of combination-sensitive neurons behave in two

different ways based on the reward value form the Observer. If the reward value

is positive, a combination-sensitive neuron releases serotonin neurotransmitter;

if the reward is zero, it discharges dopamine.

Fourth, each output node has two types of receptor: (1) a 5-HT receptor and

(2) a D2-like receptor. If an output node receives serotonin due to a positive

reward, it binds to the 5-HT receptor which causes EPSP. On the other hand, if

dopamine is released to an output node, it binds to D2-like receptor and causes

IPSP.

Fifth, each back neuron has a D1-like receptor which plays a key role in

improving the accuracy of CALM-nepLRB. When a combination-sensitive neu-

ron discharges dopamine due to a zero reward, the dopaminergic synapse is

activated at the corresponding output node with IPSP and the back neuron

node with EPSP. This implies that an agent can undo the incorrect behavior

by performing the opposite behavior. For example, if the agent takes an action

‘GO FORWARD’ and receives zero reward, the dopaminergic synapse fires the

connected back neuron which makes the agent perform ‘GO BACKWARD’. In

this case, by performing the opposite behavior via the dopaminergic neuromodu-

lation, a agent can again face the previous context when the previously selected

186

output was not a good choice.

5.5.3 CALM-nepLRB Learning

In this section, we will see how CALM-nepLRB learns. Algorithm 16 shows

the main flow of CALM-nepLRB. Compared to CALM-epLRB-MAIN, in CALM-

nepLRB-MAIN, there is one more step at each learning step t for neuromodulation

and recurrent inhibition. Note that all the computations steps except for Steps

6, 7, and 8 are same as in CALM-epLRB; thus in this section, we will focus

only on the different learning steps: how to generate output, how to set learning

input and quasi-target output flexibly, and how to perform neuromodulation

and recurrent inhibition.

187

Algorithm 16 CALM-nepLRB-MAIN Pseudocode

Given T, ITR, n, L,K1, · · · , Kl, · · · , KL, η, λ, ε, γ
for l = 1 to L− 1 do

Init θ(l) ∈ RKl+1×(Kl+1), θ(l)(1)← θ(l)

end for
for t = 1 to T do

(1) CONTEXT ACQUISITION
(2) FORWARD PROPAGATION
(3) OUTPUT SELECTION
(4) BEHAVIORAL TASK
(5) REWARD ACQUISITION
(6) SET UP R(t) ∈ RK×1 based on r(t)
if r(t) = 1 then
∀k∈{1,KL}, MASKk = 1
Rk(t)← 1, if k = son(t)
Rk(t)← 0, if k 6= son(t)

else if r(t) = 0 then
MASKson = 0 and R(t) = MASK

end if
(7) NEUROMODULATION and RECURRENT INHIBITION
(8) SET UP LRBX(t) AND LRBY (t)
if RECURRENT INHIBITION then

Set as CALM-rLRB Algorithm
LRBX(t)← context(t)> ∈ R1×(n+1)

LRBY (t)← R(t)> ∈ R1×K

else
Set as CALM-epLRB Algorithm
m← sizeof(EKB, 1); number of rows of EKB
LRBX(t)← [EKBX ; context(t)>] ∈ R(m+1)×(n+1)

LRBY (t)← [EKBR; R(t)>] ∈ R(m+1)×K

end if
(9) CALL CALM-LRB-CORE-GEN OPTIMIZATION
[J(t), θ(t+ 1)] ← CALM-LRB-CORE-GEN (LRBX(t), LRBY (t), θ(t))
(10) SELECTIVE POWER UPDATE
if m > 0 and NO RECURRENT INHIBITION then

[θ(t+ 1)] = CALM-SELECTIVE-POWER-LEARNING(θ(t+ 1), EKB)
end if
(11) SAVE CURRENT EXPERIENCE INTO EKB
if r(t) = 1 then
EKB ← add(context(t), son(t), r(t), selected weight(t))

end if
end for

188

� Quasi-target output vector R(t) and MASK are generated based on reward

value r(t) as follows. Note that the size of R(t), MASK , and a(L) are the same

as KL.

MASK = R(t) =

R1(t)

R2(t)

...

Rk(t)

...

RKL
(t)

KL×1

If (r(t) = 1)

∀k∈{1,KL}, MASKk = 1

Rk(t)← 1 if k = son(t) and r(t) = 1

Rk(t)← 0 if k 6= son(t) and r(t) = 1

Rk(t)← 0 if k = son(t) and r(t) = 0

Rk(t)← 1 if k 6= son(t) and r(t) = 0

If (r(t) = 0)

MASKson = 0

Rk(t) = MASK

� Neuromodulation is processed in two paths depending on the reward value as

covered in CALM-nepLRB-ANN in Section 5.5.2. In the computational process,

this neuromodulation is mostly related to setting target values as described

above. After the reward acquisition, only the combination-sensitive neuron cor-

responding to the selected output nodes is activated with the reward signal and

189

then it releases serotonin when there is positive reward and dopamine when there

is zero reward. In this case, the neural pathways of serotonin and dopamine from

the combination-sensitive neuron toward the output node are computationally

covered by the quasi-target output Rson(t). For example, in the case where the

value of the selected output node is 1, if the reward is zero, Rson(t) would be zero

and this serves as the IPSP effect of the dopamine with the D2-like receptor on

the output node; or, if reward is positive, Rson(t) is set to be 1 as described above,

and this serves as the EPSP effects of serotonin with binding 5-HT receptor

on the output node. On the other hand, the dopaminergic pathway towards

the back node is activated by performing the opposite behavior of the original

behavior corresponding to the selected output node. In this way, the processes

involving two types of neuromodulation of serotonin and dopamine is embodied

with setting the quasi-target output R(t), which supports a bio-inspired learning

mechanism.

� Recurrent inhibition uses the simple calculation of counting the number of

accumulated zero rewards for each output node since it started to receive zero

rewards. If the number of accumulated zero rewards is over the recurrent thresh-

old, the learning status is one of recurrent inhibition so that an agent can avoid

infinite repetition of incorrect behavior. The count of these accumulated zero

rewards is reset to zero when the agent receives positive reward.

� Learning input LRBX(t) and learning output LRBY (t) is generated as

follows based on context and reward value. Note that when recurrent inhibition

is necessary due to the number of incorrect behavior is exceeding the recurrent

threshold, CALM-nepLRB sets the learning input and output in the same way

as in CALM-rLRB; otherwise it uses the same method as CALM-eLRB with

190

additional Selective-Power-Update, which is same as for CALM-epLRB.

If (recurrent inhibition)

LRBX = context(t)> ∈ R1×(n+1)

LRBY = R(t)> ∈ R1×KL

If (no recurrent inhibition)

m← sizeof(EKB, 1); number of rows of EKB

EKBX ∈ R(m)×(n+1)

EKBR ∈ R(m)×K

LRBX(t) = [EKBX ; context(t)>] → LRBX(t) ∈ R(m+1)×(n+1)

LRBY (t) = [EKBR; R(t)>] → LRBY (t) ∈ R(m+1)×K

191

Chapter 6

CALM Experiments and Results

This chapter describes the experiments designed for evaluating CALM algo-

rithms and shows the experimental results. In this dissertation, five synthetic

data sets are generated to give CALM different environmental complexities and

on each data set four different CALM learning algorithms are evaluated with five

depths of CALM-ANN to check its performance on different neural complexities.

Section 6.1 explains experimental setup and evaluation methods. Section 6.2

shows experimental results of four different CALM algorithms where each of

which runs with five depths of CALM-ANN on five different synthetic data sets.

6.1 Experimental Setup

This section explains experimental designs including neural network topolo-

gies, learning parameter values, synthetic data sets, and evaluation methods.

6.1.1 CALM-ANNs

In the experiments of this dissertation, five different depths of CALM-ANN

are used in evaluating CALM, where each ANN has different number of neural

layers: CALM-ANN1 (L = 2), CALM-ANN2 (L = 3), CALM-ANN3 (L = 4),

CALM-ANN4 (L = 5), and CALM-ANN5 (L = 6). CALM-ANN1 has only

one layer of weights connecting inputs to the output nodes and thus it has no

hidden layer. Recall that, in this dissertation, the number of layers of an ANN

192

refers to the total number of layers including input, output, and hidden layers

as described in Section 1. Therefore CALM-ANN1 has two number of layers in

total and thus the learning parameter L is set to be 2 when an CALM algorithm

uses it. CALM-ANN2 has two layers of weights and it has one hidden layer.

CALM-ANN3 has three layers of weights and it has two hidden layers. CALM-

ANN4 has four layers of weights and it has three hidden layers. CALM-ANN5

has five layers of weights and it has four hidden layers.

In each CALM-ANN, the number of input nodes is 3 including bias nodes

(n = 2, n+1 = 3) and the number of output nodes at the last layer is 7 (KL = 7).

The total number of each hidden layer is 26 as each hidden layer includes a

bias node (Kl = 26 where l ∈ (1, L)); however, the number of net nodes in each

hidden layer is 25 (Kl = 25 where l ∈ (1, L)) since there are two types of node

in each hidden layer of an ANN in this dissertation as shown in Figure 3.17 in

Section 3.2. Note that l is in open interval (1, L), not close interval [1, L], which

excludes input and output layer. For example, CALM-ANN5 has 3 input nodes,

7 actual output nodes, and 25 hidden net and 26 actual output nodes at each

second, third, fourth, and fifth hidden layer.

Each CALM-ANN has different initial weight values as each one has different

number of layers of weights. CALM-ANN1 has only one layer of weights, so the

number of weights are 3× 7 = 21 and they are randomly distributed between

−0.1 and +0.1. CALM-ANN2 has two layers of weights, so the number of

weights are 3× 25 + 26× 7 = 257 and they are randomly distributed between

−0.1 and +0.1. CALM-ANN3 has three layers of weights, so the number of

weights are 3× 25 + 26× 25 + 26× 7 = 907 and they are randomly distributed

between −0.1 and +0.1. CALM-ANN4 has four layers of weights, so the number

of weights are 3× 25 + 26× 25 + 26× 25 + 26× 7 = 1, 557 and they are randomly

193

distributed between −0.1 and +0.1. CALM-ANN5 has five layers of weights, so

the number of weights are 3× 25 + 26× 25 + 26× 25 + 26× 25 + 26× 7 = 2, 207

and they are randomly distributed between −0.1 and +0.1.

In each experiment on each different data set with each different CALM

learning algorithm, all CALM-ANNs used with the same initial weight distri-

bution as described above so as to compare its performances under the same

condition of initial weights.

6.1.2 Synthetic Data Sets

There are five synthetic data sets used in the experiments which are shown

as Figure 6.1: DATA1, DATA2, DATA3, DATA4, and DATA5. Each data set

has different form of data distribution. Having different synthetic data set is for

evaluating CALM algorithms in different input complexities in a general way

before applying them to real domain. Synthetic data means that it includes

virtual input and virtual target output for each virtual input. Each data point in

a data set represents both virtual input and corresponding virtual target output

which will be used for checking reward value. Virtual input data is encoded with

the 2D Cartesian value and the virtual target output is represented with different

color. As the number of input nodes are 3 and the number of output nodes at

the last layer in each CALM-ANN is 7, the dimensionality of each data set is

2D which will be 3D after including bias features in CALM learning process.

The 7 target outputs are represented with each different corresponding color:

green-OUTPUT1, blue-OUTPUT2, yellow-OUTPUT3, magenta-OUTPUT4,

cyan-OUTPUT5, black-OUTPUT6, red-OUTPUT7.

194

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) Data1

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) Data2

(c) Data3 (d) Data4

(e) Data5

Figure 6.1: Synthetic Data Sets

In terms of feeding a synthetic data set into CALM learning process, each

195

data point is assumed as sensory data. Specifically, in each discrete learning step

t, the Sensory System iteratively takes a data point as an input data example

and Context Supplier gets the data point as a context which is in the form

of Cartesian value; and then this context is directly feed into a CALM-ANN.

Therefore, the number of data points in a synthetic data set signifies the max-

imum discrete learning step T . Note that all the synthetic data sets in this

dissertation are randomly shuffled. This means Context Supplier does not get a

context cluster by cluster, but gets in a random way. Specifically, a synthetic

data is not sequentially ordered by virtual target output so that it can support

unpredictable environment.

In terms of getting reward values based on a synthetic data set, in each learn-

ing step, the Observer will check if a selected output node from a CALM-ANN

is same as the given virtual target output of the data point. If the selected

output node is same as the given virtual target output, Observer gets reward

r(t) as 1; or if it is not same, r(t) is set to be 0. In this way, CALM is able

to simulate its reward-based learning algorithms based on the synthetic data sets.

DATA1 includes 10 data clusters where each cluster has 20 data points thus

the total number of data points in DATA1 are 200. Each cluster represents one

of possible target outputs; we can see DATA1 has 2 clusters for OUTPUT3, 2

clusters for OUTPUT2, 2 clusters for OUTPUT7, and one cluster for the rest.

DATA2 includes 7 data clusters each with 70 data points thus the total number

of data points are 490. Likewise, each cluster represents one of possible target

outputs thus DATA2 has one cluster for each of the 7 outputs. DATA3 includes

10 data clusters each with 70 data points thus the total number of data points

are 700. DATA3 has two clusters for OUTPUT2, two clusters for OUTPUT3,

196

two clusters for OUTPUT4, and one cluster for the rest. DATA4 includes 14

clusters each with 70 data points thus the total number of data points are 980.

DATA4 has exactly 2 clusters for each target output. DATA5 has 700 randomly

generated data points between −3 and 3 where there is no data clusters. Each

data point is targeting one of seven possible target output randomly.

In generating and understanding the above data sets, there are four differ-

ent factors which affects learning performance: (1) number of data points, (2)

number of clusters, (3) the level of overlap areas of clusters, and (4) distribution

of clustered target outputs. DATA1 and DATA3 each has 10 clusters but the

number of data points per cluster is different; DATA1 has 20 data points per

cluster while DATA3 has 70 data points per cluster. Also, DATA1 has only one

overlapped data cluster while DATA3 has two overlapped data clusters. DATA2

has 7 clusters, exactly one for each different target output, and there are no

overlapped clusters. DATA4 has 2 clusters, exactly one for each output, and

it has more overlapped data clusters points compared to DATA1 and DATA3.

DATA5 is highly non-structured, non-linear, complex data set and it is to evalu-

ate how each CALM algorithm adapts to unpredictable environment. Based on

this synthetic data sets, the experimental results are described in Section 6.2.

6.1.3 Evaluation Methods

In order to increase the reliability of experimental results, each algorithm of

CALM is evaluated by 5-fold cross-validation with the ratio of 80% of training

and 20% of testing data from a synthetic data set. Training data refers to the

data which is given to CALM learning process and testing data is the data which

197

is used only to evaluate its performance by using the learned CALM-ANNs. In

5-fold cross-validation, a data set is re-represented by five folds and each fold

contains different combination of testing and training data. Note that in this

dissertation each different combination is denoted as a fold. Table 6.1 shows how

a data set can be represented with five folds. In each fold, only training data

is used to train CALM-ANNs and testing data is used to evaluate the learning

model with the trained neural weights as a learning results; in this way, we can

also compare the learning results of training and testing data.

Sub Sets Fold1 Fold2 Fold3 Fold4 Fold5
20%DATA Testing Training Training Training Training
20%DATA Training Testing Training Training Training
20%DATA Training Training Testing Training Training
20%DATA Training Training Training Testing Training
20%DATA Training Training Training Training Testing

Table 6.1: 5-Fold Cross Validation for Each Data Set

In extracting testing data from a synthetic data set for generating a fold,

a data set is simply divided into five different data subsets and each of them

is used for testing data for each fold. Recall that a synthetic data set itself is

randomly shuffled data as described in Section 6.1.2. In this case, each testing

data in each fold has different set of randomly selected data points from a

synthetic data set; and of course all of the testing data sets from all folds is

same as the synthetic data set. In other words, each testing data set does

not include same number of data points from each cluster. For example, the

number of training data points in DATA1 is 160 and the number of testing

data points is 40 which is 20% of DATA1. In this case, the 40 data points in

fold1 are randomly selected from the entire set of 200 data points. Likewise,

198

40 data points in fold2 are also randomly selected but among 160 data points

which exclude the 40 data points in fold1. Likewise, each training data in each

fold is also randomly selected data as the corresponding synthetic data set

itself is randomly shuffled; this implies that Context Supplier takes each context

in a random way, not cluster by cluster, which mimics unpredictable environment.

On each fold from each synthetic data set, four different CALM algo-

rithms are evaluated with the five different depths of CALM-ANN. The per-

formance of each algorithm of CALM is evaluated in five types of measure-

ment: (1) accuracy, (2) cost function, (3) accumulated rewards, (4) dynamic

accuracy, and (5) dynamic EKB transition. The learning parameters are set:

η = 1.0, λ = 0.0, ε = 0.3, γ = 0.5, and ITR ∈ {1, 200}. Note that only the

number of iterations, ITR, has two different experimental values and the others

has no variance in this dissertation.

6.2 Experimental Results on Synthetic Data

Sets

This section shows experimental results on the five evaluation methods: (1)

accuracy, (2) cost function, (3) accumulated rewards, (4) dynamic accuracy, and

(5) dynamic EKB transition. Based on five synthetic data sets, four different

CALM learning algorithms with five depths of CALM-ANN are evaluated and

the results are described in each sub evaluation section.

199

6.2.1 Accuracy Analysis

The first measurement of CALM performance is accuracy. Accuracy is for

testing how a learning algorithm can correctly classify given contexts through

the learning process. In accuracy analysis, there are two types of learning result

where one is from training data and the other one is from testing data. Training

accuracy is measured in each learning step by calculating percentage of the num-

ber of successfully classified contexts in a incremental way. Note that over the

learning steps, the number of processed contexts increases since CALM iteratively

takes one context at each learning step. For example, if current learning step

is 10 (t = 10), this means CALM processed 10 contexts and training accuracy

at this learning step is checking how many of the past 10 contexts the current

CALM-ANN can correctly classify; therefore if current learned CALM-ANN at

learning step 10 can successfully classify 8 past contexts, the accuracy is 80%

at that learning step. On the other hand, the testing accuracy is acquired by

applying current CALM-ANN, which learned from the 10 contexts of training

data, into the whole testing data in each learning step. For example, on fold1 of

DATA1, if current learning step is 10, testing accuracy is acquired by applying

current CALM-ANN into the whole testing data which is 40 context points for

DATA1 while the training accuracy is acquired by applying current CALM-ANN

into the 10 passed data; In this way, accuracy analysis gives us an indicator of

the level of precise context-awareness over the learning steps by comparing the

results from training and testing data.

Figure 6.2 and Figure 6.3 shows the training and testing accuracy of all

CALM algorithms with five depths of CALM-ANN on fold1 of DATA1 through

the incremental learning step. In the figures, left columns are when the number

200

of iteration is 1 (ITR = 1) and the right columns are when it is 200 (ITR = 200).

Each data point in Figure 6.2 refers to a percentage of a learning algorithm

correctly classifying the given incremental input contexts from training data.

On the other hand, each data point in Figure 6.3 means the ability of a learning

algorithm classifying a fixed number of testing data after learning the currently

given incremental input contexts from the training data. Likewise, Figure 6.4

and Figure 6.5 are the accuracy of all CALM algorithms on both fold1 train-

ing and testing data of DATA2. Figure 6.6 and Figure 6.7 are the accuracy

of all CALM algorithms on both fold1 training and testing data of DATA3.

Figure 6.8 and Figure 6.9 are the accuracy of all CALM algorithms on both fold1

training and testing data of DATA4. Figure 6.10 and Figure 6.11 are the ac-

curacy of all CALM algorithms on both fold1 training and testing data of DATA5.

Table 6.2 shows both training and testing accuracy of all of CALM algorithms

with five depths of CALM-ANN on each fold of DATA1; specifically, the training

accuracy on the table is when the number of iterations is 200 (ITR = 200) at

the end of learning step (t = 160) and the testing accuracy is when the number

of iterations is 200 and the learning step is 40. Likewise, Table 6.3, Table 6.4,

Table 6.5, and Table 6.6 shows both training and testing accuracy of all of CALM

algorithms with five different depths of CALM-ANN on each fold of DATA2,

DATA3, DATA4, and DATA5 respectively when ITR = 200 and t is at the end

of learning step.

201

Fold1 Fold2 Fold3 Fold4 Fold5
CALM- L Tr Te Tr Te Tr Te Tr Te Tr Te

rLRB

2 9.4 12.5 10.6 20 16.9 22.5 10.6 7.5 19.4 22.5
3 9.4 5 43.1 30 33.8 17.5 11.9 17.5 35.6 25
4 36.9 40 20 20 10.6 7.5 16.9 5 9.4 12.5
5 9.4 12.5 20 20 17.5 30 10.6 7.5 8.8 15
6 10 10 11.3 5 11.3 5 8.1 17.5 10 10

eLRB

2 40.6 42.5 33.1 17.5 28.1 37.5 30.6 27.5 30.6 27.5
3 67.5 57.5 60 50 79.4 77.5 77.5 82.5 71.3 62.5
4 68.8 65 20 20 20.6 17.5 18.8 25 20 20
5 48.8 35 70.6 60 71.3 62.5 73.8 65 77.5 80
6 21.3 15 58.8 32.5 50 50 48.8 55 57.5 70

epLRB

2 40 40 38.1 22.5 28.1 37.5 30.6 27.5 31.3 27.5
3 65.6 65 45 20 66.3 52.5 68.1 67.5 62.5 55
4 67.5 70 20 20 20.6 17.5 18.8 25 20 20
5 68.1 72.5 69.4 70 74.4 65 70 70 66.9 72.5
6 21.3 15 46.9 20 48.8 37.5 37.5 37.5 38.8 45

nepLRB

2 55 47.5 63.1 42.5 54.4 40 50 62.5 51.9 62.5
3 99.4 97.5 100 95 98.1 97.5 98.1 100 98.1 97.5
4 99.4 97.5 100 95 99.4 100 99.4 100 100 97.5
5 98.8 97.5 100 95 53.1 37.5 35.6 57.5 51.3 45
6 98.8 100 100 90 98.1 97.5 97.5 100 98.8 100

Table 6.2: CALM Accuracy (%) on Data 1 (ITR = 200)

202

Fold1 Fold2 Fold3 Fold4 Fold5
CALM- L Tr Te Tr Te Tr Te Tr Te Tr Te

rLRB

2 16.1 18.4 43.6 39.8 14 14.3 18.1 13.3 22.2 18.4
3 76.8 70.4 58.4 54.1 65.6 66.3 67.9 67.3 77.3 74.5
4 29.6 24.5 15.6 9.2 15.1 11.2 13.5 17.3 14.5 14.3
5 15.1 11.2 14 15.3 12.5 21.4 0 0 14.8 12.2
6 15.1 11.2 15.6 9.2 17.3 23.5 15.1 11.2 14.8 12.2

eLRB

2 42.1 45.9 40.8 51 44.6 35.7 45.2 33.7 42.3 44.9
3 100 100 100 100 100 100 100 100 100 100
4 85.7 85.7 99.7 100 100 100 86.2 82.7 84.9 87.8
5 100 100 98.7 99 58.4 52 69.9 77.6 72.4 67.3
6 85.2 85.7 85.7 83.7 84.9 82.7 84.4 87.8 73.2 67.3

epLRB

2 42.1 45.9 40.8 51 44.6 35.7 45.2 33.7 42.3 44.9
3 100 100 100 100 100 100 100 100 100 100
4 85.7 85.7 99.7 100 87.5 78.6 86.5 82.7 85.2 87.8
5 100 100 100 100 100 100 100 100 100 100
6 43.1 41.8 86 84.7 86 84.7 84.7 87.8 85.2 85.7

nepLRB

2 99.5 99 100 100 100 100 99.7 100 96.7 93.9
3 100 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100 100 100 100

Table 6.3: CALM Accuracy (%) on Data 2 (ITR = 200)

203

Fold1 Fold2 Fold3 Fold4 Fold5
CALM- L Tr Te Tr Te Tr Te Tr Te Tr Te

rLRB

2 19.1 20.7 20.4 18.6 9.6 11.4 11.8 15.7 32.1 21.4
3 41.3 45.7 67 69.3 49.3 48.6 40.5 37.1 43.6 40.7
4 13.4 15.7 20.4 18.6 14.8 13.6 10 10 9.8 10.7
5 9.5 12.1 10.5 7.9 9.6 11.4 10 10 10.4 8.6
6 10.4 8.6 10.4 8.6 10.4 8.6 10 10 21.4 14.3

eLRB

2 51.6 43.6 39.6 41.4 39.1 43.6 40.9 36.4 41.1 35.7
3 97.9 95.7 97.9 98.6 97.3 95 98 96.4 88.9 91.4
4 58.9 64.3 97.9 97.9 96.6 99.3 97.5 95 96.6 99.3
5 97.3 92.9 87 84.3 68.9 61.4 68.4 67.9 61.1 47.9
6 78.8 75.7 90.2 93.6 95.5 96.4 85.9 92.1 87.7 84.3

epLRB

2 51.6 43.6 49.5 52.1 51.6 43.6 49.6 51.4 51.3 45
3 97 93.6 95.7 95.7 97 97.1 97.3 97.9 96.4 99.3
4 86.3 88.6 87 90 96.4 95 97.9 97.9 97 100
5 87 87.9 78.9 76.4 77.3 74.3 87.1 88.6 88 87.1
6 67 71.4 96.8 97.1 76.6 75.7 76.4 77.1 78.2 69.3

nepLRB

2 76.8 75 57.7 51.4 30.2 37.9 87.3 82.1 84.8 82.1
3 99.3 95 98.4 97.1 98.4 97.9 98.2 97.9 97.5 98.6
4 99.8 94.3 99.3 96.4 98.9 97.1 98.9 97.9 97.7 98.6
5 99.8 93.6 99.5 98.6 99.5 96.4 99.1 96.4 99.6 100
6 99.8 94.3 99.5 97.9 99.8 94.3 100 96.4 99.1 100

Table 6.4: CALM Accuracy (%) on Data 3 (ITR = 200)

204

Fold1 Fold2 Fold3 Fold4 Fold5
CALM- L Tr Te Tr Te Tr Te Tr Te Tr Te

rLRB

2 22.4 11.7 13.1 10.7 7.9 4.1 20.7 22.4 28.4 25
3 11.5 6.1 22.7 16.8 27.2 33.7 13.5 17.3 9.1 8.2
4 20.7 16.3 21.3 21.4 26.5 32.1 17.5 16.8 9.2 10.2
5 0 0 21.9 19.4 13.6 16.8 16.8 17.9 14.3 14.3
6 14.5 13.3 15.4 9.7 15.7 8.7 13.5 17.3 17.6 20.4

eLRB

2 34.8 38.8 29.6 24.5 30.9 19.4 27.9 31.1 28.8 27.6
3 81.3 76 77.8 78.1 84.7 79.6 84.6 86.2 84.8 82.7
4 85.1 82.1 85.3 83.2 95.9 98 95.9 94.4 96.8 96.4
5 69.8 73.5 89 92.9 79.6 78.6 70.4 64.8 69.6 70.4
6 69.1 68.9 57.4 55.6 60.7 51.5 56.4 57.7 43.2 41.3

epLRB

2 34.7 38.8 36 34.7 36.7 31.6 35.2 37.8 36.1 34.2
3 73.3 67.3 78.1 79.1 70.8 74 78.7 77 79.1 75.5
4 91.5 88.3 88.9 88.3 83.5 82.1 90.6 86.7 90.4 88.8
5 77.3 73.5 34.3 30.1 57.7 54.1 43 41.8 50.5 48
6 80.6 84.7 44.8 38.8 37.4 29.1 35.5 36.7 35.6 36.2

nepLRB

2 50.6 51.5 37.2 35.2 56.6 49 37.2 38.8 57.3 52
3 98.9 96.4 98.2 98 98.3 97.4 98.3 96.9 98 95.9
4 98.9 96.4 98.7 96.4 98.7 96.9 98.7 96.9 98.5 96.4
5 99.2 96.4 99.1 97.4 98.9 97.4 99.1 98 99 96.4
6 99.5 95.9 98.5 98 98.6 97.4 98.9 98.5 99.2 96.4

Table 6.5: CALM Accuracy (%) on Data 4 (ITR = 200)

205

Fold1 Fold2 Fold3 Fold4 Fold5
CALM- L Tr Te Tr Te Tr Te Tr Te Tr Te

rLRB

2 14.8 17.1 15.2 12.1 15.2 10.7 14.1 13.6 16.3 15
3 16.1 19.3 11.6 15 14.3 11.4 14.3 13.6 15.5 20
4 14.1 16.4 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
5 14.3 14.3 16.8 12.9 14.3 14.3 14.3 14.3 13.2 14.3
6 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3

eLRB

2 16.3 15 15.5 16.4 15.7 17.9 16.1 14.3 15.9 17.1
3 20.7 12.9 18.6 13.6 18.8 12.1 18.6 9.3 17.1 15.7
4 20.7 15 17.9 8.6 17.9 20 17.5 16.4 17.7 8.6
5 16.1 11.4 18 13.6 18.4 20 18 16.4 18 15
6 17.9 13.6 16.8 13.6 16.6 15.7 16.4 16.4 17.3 15.7

epLRB

2 16.3 15 15.5 16.4 15.7 17.9 16.1 14.3 15.9 17.1
3 20.7 10.7 17.7 11.4 17.5 16.4 18.4 15 17.5 15.7
4 20.2 13.6 17.7 12.1 17.1 13.6 18 18.6 20.9 15
5 14.5 10.7 17 14.3 17.3 14.3 17.5 15 17 15
6 14.8 12.9 18 15 16.4 17.1 17.5 17.9 16.4 17.1

nepLRB

2 18.4 16.4 19.1 14.3 18.9 17.1 17.9 17.9 18 21.4
3 22.7 17.1 15.4 14.3 26.6 10 17.5 15 24.5 20
4 22.5 12.1 32.5 12.9 29.6 13.6 23.6 15 17.3 15
5 14.8 13.6 20 12.9 16.3 14.3 20.7 12.1 22.7 12.1
6 23.6 12.9 14.3 14.3 19.6 13.6 23.4 15.7 18.6 14.3

Table 6.6: CALM Accuracy (%) on Data 5 (ITR = 200)

206

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.2: Accuracy on Data 1 - Training Fold 1

207

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.3: Accuracy on Data 1 - Testing Fold 1

208

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.4: Accuracy on Data 2 - Training Fold 1

209

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.5: Accuracy on Data 2 - Testing Fold 1

210

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.6: Accuracy on Data 3 - Training Fold 1

211

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.7: Accuracy on Data 3 - Testing Fold 1

212

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.8: Accuracy on Data 4 - Training Fold 1

213

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.9: Accuracy on Data 4 - Testing Fold 1

214

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

ra
in

in
g

A
cc

ur
ac

y

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

ra
in

in
g

A
cc

ur
ac

y

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

ra
in

in
g

A
cc

ur
ac

y

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

ra
in

in
g

A
cc

ur
ac

y

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

ra
in

in
g

A
cc

ur
ac

y

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

ra
in

in
g

A
cc

ur
ac

y

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

ra
in

in
g

A
cc

ur
ac

y

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

ra
in

in
g

A
cc

ur
ac

y

(h) CALM-nepLRB (ITR = 200)

Figure 6.10: Accuracy on Data 5 - Training Fold 1

215

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

es
tin

g
A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

es
tin

g
A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

es
tin

g
A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

es
tin

g
A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

es
tin

g
A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

es
tin

g
A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

es
tin

g
A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l T

es
tin

g
A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.11: Accuracy on Data 5 - Testing Fold 1

216

We will first look through the accuracy results from DATA1 to DATA4 and

will see DATA5 in the last paragraph of this section since DATA5 is completely

randomly distributed data.

According to the accuracies from Figure 6.2 to Figure 6.9, which corresponds

from DATA1 to DATA4 respectively, we can see the accuracy of experience-based

learning tends to gradually increase over learning steps when the number of

iteration is 200 compared to the results when the iteration is 1. For example,

the Figure 6.2d, Figure 6.2f, and Figure 6.2h shows more incremental increases

on graphs than Figure 6.2c, Figure 6.2e, and Figure 6.2g. Moreover, those

phenomenon similarly occurs on both training and testing data over all of the

four data sets. This supports that using past positive experiences shows effective

learning results with a certain number of iterations.

On the other hand, according to the figures from Figure 6.2 to Figure 6.9,

we can see the number of iterations is not significantly important learning factor

for CALM-rLRB since there are no striking accuracy growth. Moreover, there is

no steady gradual growth in CALM-rLRB accuracy over learning steps. This

means the optimization process with applying only current context is not enough

to understand a given world and thus high accuracy is hard to be expected.

However, it is notable that that CALM-rLRB with 3-layered CALM-ANN and

4-layered CALM-ANN shows improved accuracy with 200 iterations on DATA2

and DATA3. Especially, compared to the other CALM-ANNs, 3-layered CALM-

ANN is exceptionally highly affected by the increased number of iteration on

the data sets. Also, the accuracy is increased over learning steps as shown

Figure 6.4b and Figure 6.6b. This is seen more clearly through the numerical

values in Table 6.3 and Table 6.4. On Table 6.3, the accuracy of the CALM-rLRB

with 3-layered CALM-ANN at the end of the learning step shows highest values

217

compared to the other different number of layered CALM-ANNs. This refers

that DATA2, which has no overlapped clusters and exactly one cluster for 7

kinds of output, is appropriate input space for CALM-rLRB with 3-layered

CALM-ANN to represent up to 76.8% accuracy. Similarly, in Table 6.4, we

can see CALM-rLRB with 3-layered CALM-ANN also shows highest accuracy

compared to the others. The accuracy for DATA3, which has 3 more clusters

and overlapped clusters than DATA2, ranges from 37.1% to 69.3% while DATA2

varies from 54.1% to 76.8%. In this regard, we can infer that if the input data is

clearly clustered and the distribution of clusters is not complex, CALM-rLRB,

which only learn current context at each learning step, can understand a given

world with a certain number of iterations. In other words, the performance of

CALM-rLRB is highly depending on the given input problem. Except for this,

the overall accuracy distributions of CALM-rLRB between one iterations and

200 iterations for all data sets are not strikingly different and thus it can be said

that CALM-rLRB is less affected by the optimization regardless of the number

of iterations since it only applies current context and reward information to the

optimization process at each learning step.

Along with the same figures which used in second analytic conclusion, it

is evident that using past positive experiences with a certain number of it-

erations overcomes the simple reward-based learning algorithm CALM-rLRB.

More specifically, experience-based learning (CALM-eLRB, CALM-epLRB, and

CALM-nepLRB) surpasses CALM-rLRB with a certain number of iterations.

According to Table 6.2 through Table 6.5, all of the accuracies of experience-

based learning are higher than the accuracies of CALM-rLRB in each different

number of layered CALM-ANN in each fold.

218

Especially, above all, we can CALM-nepLRB outperforms both CALM-eLRB

and CALM-epLRB with no regard to the number of iterations and depth of

CALM-ANN. On figures from Figure 6.2 to Figure 6.9, when the number of

iteration is 200, the increasing slope of the CALM-nepLRB accuracies is sharp

than CALM-eLRB and CALM-epLRB. Also, when the number of iteration is

1, CALM-nepLRB shows relatively high accuracy while the others struggles

for understanding a given world. On DATA2 and DATA3, 3-layered CALM-

ANN of CALM-nepLRB shows over 90% accuracy while 3-layered CALM-ANN

of others stays between 35% and 45%. This is seen more clearly in numer-

ical values the tables from Table 6.2 to Table 6.5. Especially, in Table 6.3,

CALM-nepLRB mostly shows 100% accuracy across the all number of layers

and folds while CALM-epLRB and CALM-eLRB shows its 100% accuracy only

with 3-layered and 5-layered CALM ANN; and CALM-rLRB shows its best

performance, ranged from 54.1% to 76.8%, with its 3-layered CALM-ANN on

DATA2. This phenomenon is similarly found on the other tables: Table 6.2,

Table 6.4, and Table 6.5. In this regard, it is obvious that CALM-nepLRB is

most accurate and CALM-rLRB is most basic algorithm while CALM-eLRB and

CALM-epLRB shows comparable outcomes. Thus the algorithm effectiveness

on accuracy analysis can be organized: CALM-rLRB < CALM-eLRB, CALM-

epLRB < CALM-nepLRB.

In order to support the power of CALM-nepLRB, the reasons why CALM-

nepLRB is most advanced algorithm can be organized with 3 experimental

evidents; note that the following three facts are still based on DATA1, DATA2,

DATA3, and DATA4. First, CALM-nepLRB shows more steep incremental

accuracy compared to CALM-eLRB and CALM-epLRB. This means that it is

aware of contexts faster than the others given same conditional variables. For

219

example, as shown figures from Figure 6.2 to Figure 6.9, CALM-nepLRB reaches

80% accuracy before learning step 50 across all of data sets and all kinds number

of layers except for 2-layered CALM-nepLRB-ANN. On the other hand, CALM-

eLRB and CALM-epLRB can not their performance over 80% accuracy within 50

number of learning steps. Moreover, the final highest accuracy at the end of the

learning step of CALM-nepLRB for all data sets is always greater than or equals

to 95% based in Table 6.2, Table 6.3, Table 6.4, Table 6.5, and Table 6.6. For

example, on DATA2 as shown Table 6.3, CALM-nepLRB shows 100% accuracy

for all folds except for 2-layered CALM-nepLRB-ANN, which means it can

completely recognize given input space, DATA2, with networks over two layers.

Second, CALM-nepLRB can make relatively higher performance even with only

one iteration compared to the others. For example, on DATA2, 2-layered and

3-layered CALM-nepLRB-ANN shows over 90% accuracy with only one iteration.

Also, on DATA3, 3-layered CALM-nepLRB-ANN also shows over 90% accuracy

when the number of iteration is 1. On both DATA1 and DATA4, the accuracy

does not reach 90% but still shows higher figures compared to the other threes.

Therefore, CALM-nepLRB needs less number of iterations which can reduce the

computational complexity of the learning process. Third, in CALM-nepLRB

algorithm, even the simplest network, 2-layered CALM-nepLRB-ANN, show less

limitations on representing the input space compared to the other algorithms.

It is very notable that the 2-layered neural network shows the limitations on

classifying all the data sets, meaning having only input and output layer is not

enough to represent all the given input space. This can be supported by the

numerical values through the same tables; we can see the accuracy of 2-layered

CALM-nepLRB-ANN outperforms the 2-layered CALM-ANNs of all the other

three algorithms. From these reasons, CALM-nepLRB is outperforming algo-

rithm relative to the other algorithms; also it generally gives high-performance

220

which is supported by the figures and numerical values on the tables.

Note that the accuracy results form both training data and testing data

are similar across all the data sets and all different number of layered neural

networks. This supports the reliability of the learning process of CALM.

DATA5 is special data set as it is highly random distributed. In other words,

it represents extremely unstructured and non-predictive contexts in the world.

As a results, Figure 6.11 shows that none of CALM algorithms can give plausible

accuracy on testing data set of DATA5 through the all learning steps. However,

on training process as shown Figure 6.10, we can see in the early learning

steps the algorithms shows better performance than the end of learning steps;

especially, CALM-nepLRB shows very high performance in the beginning of

the learning process but gets confused over the learning steps like the others.

But note that CALM-nepLRB shows slow decreasing of the accuracy than the

others; this means CALM-nepLRB learns faster and get confused slower than

the others.

From the experimental results of the accuracy measurement from both train-

ing and testing data, five overall analytic conclusions can be summarized as

follows. First, in terms of experience-based learning (CALM-eLRB, CALM-

epLRB, CALM-nepLRB), them number of iterations are an important factor for

highly accurate context-awareness since the experience-based learning can more

optimize its CALM-ANN with the given number of iterations at each learning

step. Second, CALM-rLRB is barely affected by the change of the number

of iteration since it only focuses on current context and current reward value

without any past experiences. Third, the experience-based learning (CALM-

221

eLRB, CALM-epLRB, CALM-nepLRB) overcomes the reward-based learning

(CALM-rLRB) as more past positive experiences are memorized over time with

a certain number of iteration. Fourth, CALM-nepLRB outperforms the other

algorithms with highest accuracy and it shows relatively high accuracy even

when the number of iteration is 1, which supports the benefits of additional

natural animal neurobiological features. Fifth, it can be considered that the

accuracy analysis is reliable since there is little differences between training and

testing accuracies as shown in Table 6.2, Table 6.3, Table 6.4, Table 6.5, and

Table 6.6.

6.2.2 Cost Function Values Analysis

The second measurement of CALM performance is checking cost values over

learning steps. By looking into cost function values at each learning step, we

can see how each learning algorithm optimizes its neural networks effectively.

As we discussed the role of cost function of supervised neural learning model in

Section 3.2, if the learning process is to be successful, the cost function values

should be decreased over learning steps since the errors between actual output

and quasi-target output are expected to be decreased as a learning effect. In

this section, we will see how each learning algorithm of CALM learns a given

world by analyzing its cost function values over learning steps in each data set.

Note that this cost values are calculated during the learning process thus the

results of costs values are based on training data, not testing data. Likewise, the

training data includes the 80% of the original data set so the number of input

data is different from the original data points.

222

Figure 6.12, Figure 6.13, Figure 6.14, Figure 6.15, and Figure 6.16 show the

cost function values of CALM algorithms with five different depths of CALM-

ANN on fold1 of DATA1, DATA2, DATA3, DATA4, and DATA5 respectively.

Each data point refers to the cost function value of a learning algorithm over the

incremental input contexts from training data at each learning step. Specifically,

each data point refers to the value of J(t) which is the result of CALM-LRB-

CORE or CALM-LRB-CORE-GEN in Algorithm 10, Algorithm 12, Algorithm 14,

and Algorithm 16. Note that the range of y-axis for each graph is set differently;

this is because the maximum cost value for each algorithm on each data is not

consistency and thus having different y-axis range helps to probe each graph.

For example, In Figure 6.12a, y-axis for CALM-rLRB without iteration is from

0 to 40 while y-axis for both CALM-rLRB with 200 number of iterations ranges

from 0 to 0.04 as shown in Figure 6.12b. In this case, if the y-axis ranges are

set from 0 to 40 for both of them, the graph for CALM-rLRB with 200 is hard

to visually analyze its changes of cost values over learning steps since its actual

ranges are all below 0.05.

Note that with the 200 number of iterations CALM-rLRB shows very tiny

cost function value (under 0.05) through all data sets: DATA1, DATA2, DATA3,

DATA4, and DATA5; this is because CALM-rLRB optimizes only current context

in CALM-LRB-CORE and thus, in each learning step, it can highly reduce

its errors between the current context and corresponding quasi-target output

compared to the other algorithms which optimize their accumulated experiences.

Similarly, with the same reason, CALM-rLRB can not gradually decrease its cost

value over the learning steps as it utilizes only current context in its optimization

process.

223

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

5

10

15

20

25

30

35

40

C
os

t V
al

ue
 J

(a) CALM-rLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
os

t V
al

ue
 J

(b) CALM-rLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

2

4

6

8

10

12

14

C
os

t V
al

ue
 J

(c) CALM-eLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t V
al

ue
 J

(d) CALM-eLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

2

4

6

8

10

12

14

C
os

t V
al

ue
 J

(e) CALM-epLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t V
al

ue
 J

(f) CALM-epLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

2

4

6

8

10

12

14

C
os

t V
al

ue
 J

(g) CALM-nepLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

C
os

t V
al

ue
 J

(h) CALM-nepLRB (ITR = 200)

Figure 6.12: Cost Function Values on Data 1 (Fold 1)

224

0 50 100 150 200 250 300 350 400

Number of Data Points Sampled

0

5

10

15

20

25

30

35

40

45

C
os

t V
al

ue
 J

(a) CALM-rLRB (ITR = 1)

0 50 100 150 200 250 300 350 400

Number of Data Points Sampled

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
os

t V
al

ue
 J

(b) CALM-rLRB (ITR = 200)

0 50 100 150 200 250 300 350 400

Number of Data Points Sampled

0

2

4

6

8

10

12

14

16

18

20

C
os

t V
al

ue
 J

(c) CALM-eLRB (ITR = 1)

0 50 100 150 200 250 300 350 400

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t V
al

ue
 J

(d) CALM-eLRB (ITR = 200)

0 50 100 150 200 250 300 350 400

Number of Data Points Sampled

0

2

4

6

8

10

12

14

16

18

20

C
os

t V
al

ue
 J

(e) CALM-epLRB (ITR = 1)

0 50 100 150 200 250 300 350 400

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t V
al

ue
 J

(f) CALM-epLRB (ITR = 200)

0 50 100 150 200 250 300 350 400

Number of Data Points Sampled

0

2

4

6

8

10

12

14

C
os

t V
al

ue
 J

(g) CALM-nepLRB (ITR = 1)

0 50 100 150 200 250 300 350 400

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

C
os

t V
al

ue
 J

(h) CALM-nepLRB (ITR = 200)

Figure 6.13: Cost Function Values on Data 2 (Fold 1)

225

0 100 200 300 400 500 600

Number of Data Points Sampled

0

10

20

30

40

50

60

70

C
os

t V
al

ue
 J

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
os

t V
al

ue
 J

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

2

4

6

8

10

12

14

16

18

20

C
os

t V
al

ue
 J

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

C
os

t V
al

ue
 J

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

2

4

6

8

10

12

14

16

18

20

C
os

t V
al

ue
 J

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

C
os

t V
al

ue
 J

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

2

4

6

8

10

12

14

16

18

20

C
os

t V
al

ue
 J

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
os

t V
al

ue
 J

(h) CALM-nepLRB (ITR = 200)

Figure 6.14: Cost Function Values on Data 3 (Fold 1)

226

0 100 200 300 400 500 600 700 800

Number of Data Points Sampled

0

10

20

30

40

50

60

C
os

t V
al

ue
 J

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500 600 700 800

Number of Data Points Sampled

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
os

t V
al

ue
 J

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600 700 800

Number of Data Points Sampled

0

5

10

15

20

25

C
os

t V
al

ue
 J

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500 600 700 800

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t V
al

ue
 J

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600 700 800

Number of Data Points Sampled

0

5

10

15

20

25

C
os

t V
al

ue
 J

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500 600 700 800

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t V
al

ue
 J

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600 700 800

Number of Data Points Sampled

0

2

4

6

8

10

12

14

16

18

C
os

t V
al

ue
 J

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500 600 700 800

Number of Data Points Sampled

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
os

t V
al

ue
 J

(h) CALM-nepLRB (ITR = 200)

Figure 6.15: Cost Function Values on Data 4 (Fold 1)

227

0 100 200 300 400 500 600

Number of Data Points Sampled

0

5

10

15

20

25

30

35

40

45

50

C
os

t V
al

ue
 J

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

C
os

t V
al

ue
 J

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

2

4

6

8

10

12

14

16

18

20

C
os

t V
al

ue
 J

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t V
al

ue
 J

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

2

4

6

8

10

12

14

16

18

20

C
os

t V
al

ue
 J

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
os

t V
al

ue
 J

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

2

4

6

8

10

12

14

C
os

t V
al

ue
 J

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500 600

Number of Data Points Sampled

0

0.5

1

1.5

2

2.5

3

C
os

t V
al

ue
 J

(h) CALM-nepLRB (ITR = 200)

Figure 6.16: Cost Function Values on Data 5 (Fold 1)

228

The first salient feature on this measurement is that each CALM algorithm

with each different CALM-ANN in each data set evidently reduces its range of

cost values when it has 200 number of iteration. For example, in Figure 6.12,

the cost value range of CALM-eLRB and CALM-epLRB is from 0 to 14 with

only one iteration while it is from from 0 to 5 with 200 number of iteration. This

phenomenon is in common with the other cases over the figures from Figure 6.12

to Figure 6.16. This implies that CALM better optimize its neural networks over

learning process with a certain number of iteration by reducing errors between

actual and quasi-target output. This supports the result from accuracy analysis

such as having a certain number of iterations shows higher accuracy than having

only one iteration.

CALM-eLRB and CALM-epLRB algorithms mostly show monotonic decrease

of the cost function values over the learning steps. This means they reduce errors

between input context and quasi-target over learning steps as a result of learning

process. However, for CALM-rLRB, cost values of each different CALM-ANN is

not one directional and distributed highly unevenly. This means the errors are

not gradually diminished over the learning steps and this supports the reason

why the accuracy of CALM-rLRB on each data set are not steadily increased.

CALM-nepLRB shows interesting form of cost function values where its accuracy

is almost around 99% except for on DATA5 as we covered in Chapter 6.2.1.

First of all, when the number of iteration is 1, interestingly, for all data sets we

can see the cost function graphs of CALM-rLRB and CALM-nepLRB shows

similar patterns in some degree. This is because CALM-nepLRB has flexibility

to switch algorithm between CALM-rLRB and CALM-epLRB based on recurrent

inhibition and neuromodulatory process, especially dopaminergic process. Note

that CALM-nepLRB takes back the currently performed behavior if the reward

229

is negative and exploits CALM-eLRB learning process when the number of

non-rewarding behavior is over the recurrent threshold. We covered how this is

carried out neurobiologically in a newly designed generalized, arbitrary-depth,

neural network, CALM-nepLRB-ANN. In this regard, if CALM-nepLRB takes

CALM-rLRB algorithm more often as the recurrent inhibition arises frequently,

the cost functions for both algorithm can have similar patterns. On the other

hand, when the number of iteration is 200, CALM-nepLRB shows much more

reduced cost values over the learning steps compared when the only one iteration,

which supports the accuracy with 200 iteration is higher than itself with the only

one iteration. Moreover, except for 2-layered CALM-nepLRB-ANN, most of cost

functions keeps very low value, almost closer to zero, on DATA2, DATA3, and

DATA4. On the other hand, the 2-layered CALM-nepLRB-ANN shows higher

cost value than the other layers through all of the data sets, which supports the

accuracy of 2-layered CALM-nepLRB-ANN is generally lower then the other

number of layered CALM-nepLRB-ANNs.

Also there are unique pattern of CALM-nepLRB with 200 iterations, which

shows acute vertical increase at several points of over learning steps. For ex-

ample, in Figure 6.15h, when the learning step is 200, we can see the sharp

increase of cost value. This implies at this learning step, CALM-nepLRB se-

lects CALM-rLRB learning algorithm thus the summation of total number of

errors at the learning step is increased. In other words, when CALM-nepLRB

exploits CALM-rLRB, the error between current input context and quasi-target

output will be reduced but the total errors between all accumulated past con-

texts and quasi-target outputs will be increased. Note that the reason selecting

CALM-rLRB is to avoid currently repeatedly selecting incorrect behavior, not

to optimize current neural network for all input world.

230

In Figure 6.16h, we can see the cost function values for all layers are increasing

instead of decreasing. This means the errors are increasing over learning steps

since the DATA5 feeds highly unstructured incremental data points. This is

supported by the decreasing accuracy of CALM-nepLRB over learning steps as

shown in Figure 6.10h.

6.2.3 Accumulated Rewards Analysis

The third measurement of CALM performance is to check accumulated re-

wards over the learning steps. By reviewing the behavior of accumulated rewards,

we can see how each CALM algorithm seeks the right output corresponding

a given context at each learning step as well as the total number of rewards

over the learning steps. Ideally, if a reward-based learning model is efficient, it

shows increasing accumulated rewards over time which implies the model better

understand a given world over time.

Figure 6.17, Figure 6.18, Figure 6.19, Figure 6.20, and Figure 6.21 show the

accumulated rewards values of each CALM algorithm with five different depths

of CALM-ANN on fold1 of DATA1, DATA2, DATA3, DATA4, and DATA5

respectively. Each data point refers to the number of rewards which has been

accumulated from the initial learning step to the current incremental learning

steps. Note that these results are also from training data since the experiments

for accumulated rewards are to check how CALM utilizes reward value during

the learning progress over time.

231

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

20

40

60

80

100

120

140

160

A
cc

um
ul

at
ed

 R
ew

ar
d

(a) CALM-rLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

20

40

60

80

100

120

140

160

A
cc

um
ul

at
ed

 R
ew

ar
d

(b) CALM-rLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

20

40

60

80

100

120

140

160

A
cc

um
ul

at
ed

 R
ew

ar
d

(c) CALM-eLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

20

40

60

80

100

120

140

160

A
cc

um
ul

at
ed

 R
ew

ar
d

(d) CALM-eLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

20

40

60

80

100

120

140

160

A
cc

um
ul

at
ed

 R
ew

ar
d

(e) CALM-epLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

20

40

60

80

100

120

140

160

A
cc

um
ul

at
ed

 R
ew

ar
d

(f) CALM-epLRB (ITR = 200)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

20

40

60

80

100

120

140

160

A
cc

um
ul

at
ed

 R
ew

ar
d

(g) CALM-nepLRB (ITR = 1)

0 20 40 60 80 100 120 140 160

Number of Data Points Sampled

0

20

40

60

80

100

120

140

160

A
cc

um
ul

at
ed

 R
ew

ar
d

(h) CALM-nepLRB (ITR = 200)

Figure 6.17: Accumulated Rewards on Data 1 (Fold 1)

232

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

50

100

150

200

250

300

350
A

cc
um

ul
at

ed
 R

ew
ar

d

(a) CALM-rLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

50

100

150

200

250

300

350

A
cc

um
ul

at
ed

 R
ew

ar
d

(b) CALM-rLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

50

100

150

200

250

300

350

A
cc

um
ul

at
ed

 R
ew

ar
d

(c) CALM-eLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

50

100

150

200

250

300

350

A
cc

um
ul

at
ed

 R
ew

ar
d

(d) CALM-eLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

50

100

150

200

250

300

350

A
cc

um
ul

at
ed

 R
ew

ar
d

(e) CALM-epLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

50

100

150

200

250

300

350

A
cc

um
ul

at
ed

 R
ew

ar
d

(f) CALM-epLRB (ITR = 200)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

50

100

150

200

250

300

350

A
cc

um
ul

at
ed

 R
ew

ar
d

(g) CALM-nepLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Data Points Sampled

0

50

100

150

200

250

300

350

A
cc

um
ul

at
ed

 R
ew

ar
d

(h) CALM-nepLRB (ITR = 200)

Figure 6.18: Accumulated Rewards on Data 2 (Fold 1)

233

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500
A

cc
um

ul
at

ed
 R

ew
ar

d

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(h) CALM-nepLRB (ITR = 200)

Figure 6.19: Accumulated Rewards on Data 3 (Fold 1)

234

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

100

200

300

400

500

600

700
A

cc
um

ul
at

ed
 R

ew
ar

d

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

100

200

300

400

500

600

700

A
cc

um
ul

at
ed

 R
ew

ar
d

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

100

200

300

400

500

600

700

A
cc

um
ul

at
ed

 R
ew

ar
d

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

100

200

300

400

500

600

700

A
cc

um
ul

at
ed

 R
ew

ar
d

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

100

200

300

400

500

600

700

A
cc

um
ul

at
ed

 R
ew

ar
d

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

100

200

300

400

500

600

700

A
cc

um
ul

at
ed

 R
ew

ar
d

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

100

200

300

400

500

600

700

A
cc

um
ul

at
ed

 R
ew

ar
d

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500 600 700

Number of Data Points Sampled

0

100

200

300

400

500

600

700

A
cc

um
ul

at
ed

 R
ew

ar
d

(h) CALM-nepLRB (ITR = 200)

Figure 6.20: Accumulated Rewards on Data 4 (Fold 1)

235

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500
A

cc
um

ul
at

ed
 R

ew
ar

d

(a) CALM-rLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(c) CALM-eLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(e) CALM-epLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(g) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500

Number of Data Points Sampled

0

100

200

300

400

500

A
cc

um
ul

at
ed

 R
ew

ar
d

(h) CALM-nepLRB (ITR = 200)

Figure 6.21: Accumulated Rewards on Data 5 (Fold 1)

236

0 100 200 300 400 500

Number of Actual Learning Steps

0

20

40

60

80

100

120

140

160

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(a) CALM-nepLRB (ITR = 1)

0 50 100 150 200 250 300 350

Number of Actual Learning Steps

0

20

40

60

80

100

120

140

160

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(b) CALM-nepLRB (ITR = 200)

Figure 6.22: Actual Accumulated Rewards in CALM-nepLRB on DATA1 (Fold
1)

0 200 400 600 800 1000

Number of Actual Learning Steps

0

50

100

150

200

250

300

350

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(a) CALM-nepLRB (ITR = 1)

0 50 100 150 200 250 300 350 400

Number of Actual Learning Steps

0

50

100

150

200

250

300

350

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(b) CALM-nepLRB (ITR = 200)

Figure 6.23: Actual Accumulated Rewards in CALM-nepLRB on DATA2 (Fold
1)

0 200 400 600 800 1000 1200 1400 1600

Number of Actual Learning Steps

0

100

200

300

400

500

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(a) CALM-nepLRB (ITR = 1)

0 100 200 300 400 500 600 700 800

Number of Actual Learning Steps

0

100

200

300

400

500

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(b) CALM-nepLRB (ITR = 200)

Figure 6.24: Actual Accumulated Rewards in CALM-nepLRB on DATA3 (Fold
1)

237

0 500 1000 1500 2000

Number of Actual Learning Steps

0

100

200

300

400

500

600

700

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(a) CALM-nepLRB (ITR = 1)

0 500 1000 1500

Number of Actual Learning Steps

0

100

200

300

400

500

600

700

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(b) CALM-nepLRB (ITR = 200)

Figure 6.25: Actual Accumulated Rewards in CALM-nepLRB on DATA4 (Fold
1)

0 500 1000 1500 2000 2500 3000 3500

Actual Learning Step

0

100

200

300

400

500

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(a) CALM-nepLRB (ITR = 1)

0 500 1000 1500 2000 2500 3000

Actual Learning Step

0

100

200

300

400

500

A
ct

ua
l A

cc
um

ul
at

ed
 R

ew
ar

d
of

 C
A

LM
-n

ep
LR

B

(b) CALM-nepLRB (ITR = 200)

Figure 6.26: Actual Accumulated Rewards in CALM-nepLRB on DATA5 (Fold
1)

238

It is notable that all accumulated rewards are increased over learning steps

for all algorithms on all data sets with regardless of the number of iterations.

This means each learning algorithm adjusts its neural network towards getting

reward from an environment. More strikingly, CALM-nepLRB always gets

reward at each learning step since it takes neuromodulation and recurrent inhi-

bition. For example, at learning step t, if recurrent inhibition is required then

CALM-nepLRB takes back the original behavior so that it can face to same

context again and then performs CALM-rLRB, which guarantees to find right

behavior for the current context eventually. This means, only in CALM-nepLRB,

the total number of actual learning steps including the expanded learning steps

of withdrawing behaviors is larger than the number of data points to be learned.

In this regard, Figure 6.22, Figure 6.23, Figure 6.24, Figure 6.25, and Figure 6.26

shows the actual accumulated rewards over expanded learning steps, which is

feasible only in CALM-nepLRB. In these figures, we can see CALM-nepLRB

guarantee to get a reward at each learning step including the extended repeated

learning steps; thus the actual learning steps are greater than the number of

data points.

Lastly, there is a pattern that if a certain-layered neural network has highest

accumulated rewards, then it tends to also get highest accuracy. For example,

at the right column on Figure 6.18, for all algorithms, yellow line is on the top

of the other colors, which means 3-layered neural network accumulated reward

greater than the others. Along this fact, at the right column on Figure 6.4,

yellow lines of all algorithms also shows high accuracy performance. This can be

more supported by looking in Table 6.3 where 3-layered neural network of each

algorithms shows high performance.

239

6.2.4 Dynamics Analysis

The fourth measurement of CALM performance is dynamic analysis. Dy-

namic analysis is to check how CALM algorithms are able to adapt to dynamically

changed environment. In order to provide dynamic changes in synthetic data,

DATA6 is used as shown in Figure 6.27. DATA6 includes two data subsets: (1)

7 data clusters each with 70 data points (in total 490 data points) and (2) the

same 7 data clusters each with 70 data points (in total 490 data points) in which

each data point has the same input value but different target output values from

the first data subset. Therefore, the total number of data points in DATA6

is 980 and each data subset has half of them with different target output for

each cluster. Note that the first data subset is named unchanged data subset of

DATA6 as shown in Figure 6.27a and the second data subset is named changed

data subset of DATA6 as shown in Figure 6.27b.

Figure 6.27a shows each data cluster has different target output and the 7

target outputs are represented with each different corresponding color: green-

OUTPUT1, blue-OUTPUT2, yellow-OUTPUT3, magenta-OUTPUT4, cyan-

OUTPUT5, black-OUTPUT6, red-OUTPUT7. Figure 6.27b shows how each

clustered target output is switched to representing dynamical environment

changes. This means after 490 learning steps a learning system will have changed

target output: OUTPUT1 (green) to OUTPUT2 (blue), OUTPUT2 to OUT-

PUT3 (yellow), OUTPUT3 to OUTPUT4 (magenta), OUTPUT4 to OUTPUT5

(cyan), OUTPUT5 to OUTPUT6 (black), OUTPUT6 to OUTPUT7 (red), and

OUTPUT7 to OUTPUT1 (green). Note that each context in first and second

data subset has same Cartesian value but only has different target output so

as to provide that the contexts learned earlier are no longer correct after the

240

learning step 490.

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) Data6 Before Dynamic Changes

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) Data6 After Dynamic Changes

Figure 6.27: Dynamic Data Sets

241

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(a) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(c) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(e) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l D

yn
am

ic
 A

cc
ur

ac
y

(g) CALM-nepLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

B
at

ch
 D

yn
am

ic
 A

cc
ur

ac
y

(h) CALM-nepLRB (ITR = 200)

Figure 6.28: Dynamic Accuracy on Data 6

242

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l A

cc
ur

ac
y

B
ef

or
e

D
yn

am
ic

 C
ha

ng
es

(a) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l A

cc
ur

ac
y

A
fte

r
D

yn
am

ic
 C

ha
ng

es

(b) CALM-rLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l A

cc
ur

ac
y

B
ef

or
e

D
yn

am
ic

 C
ha

ng
es

(c) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l A

cc
ur

ac
y

A
fte

r
D

yn
am

ic
 C

ha
ng

es

(d) CALM-eLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l A

cc
ur

ac
y

B
ef

or
e

D
yn

am
ic

 C
ha

ng
es

(e) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l A

cc
ur

ac
y

A
fte

r
D

yn
am

ic
 C

ha
ng

es

(f) CALM-epLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l A

cc
ur

ac
y

B
ef

or
e

D
yn

am
ic

 C
ha

ng
es

(g) CALM-nepLRB (ITR = 200)

0 100 200 300 400 500 600 700 800 900

Number of Data Points Sampled

0

10

20

30

40

50

60

70

80

90

100

In
cr

em
en

ta
l A

cc
ur

ac
y

A
fte

r
D

yn
am

ic
 C

ha
ng

es

(h) CALM-nepLRB (ITR = 200)

Figure 6.29: Dynamic Accuracy on Data 6 Comparison

243

In dynamic analysis, two kinds of evaluation methods are applied: (1) accu-

racy and (2) EKB status transition.

The first evaluation method in dynamic analysis is checking dynamic accuracy.

Four ways of checking accuracy are used for each CALM algorithm with five

depths of CALM-ANNs: (1) incremental dynamic accuracy, (2) batch dynamic

accuracy, (3) incremental dynamic accuracy only on unchanged data subset, and

(4) incremental dynamic accuracy only on changed data subset. Having these

four ways of checking accuracy aims to have different perspectives of analyzing

the results and to provide accuracy validation; With having the ways, we can

have more clear understanding of CALM performance results and eventually

we can see each result supports each others. In this regard, note that the

DATA6 itself is not divided into training and testing data and thus 5-fold cross-

validation is not applied in the experiments on DATA6. The accuracy validation

is evaluated in subsection 6.2.1 thus in this subsection checking accuracy is

focused on looking into the process of responding to changed environment by

measuring four different ways of accuracy.

The second evaluation method in dynamic analysis is checking EKB status

transition. In this method, the experiences stored in KEB at several learning

steps are plotted in order to check how CALM can change the stored experiences

during learning process when an environment changes dynamically.

Figure 6.28 shows incremental accuracy (left column) and batch accuracy

(right column) of each algorithm with five depths of CALM-ANNs. Incremen-

tal accuracy is measured in each learning step by calculating percentage of

the number of successfully classified contexts on DATA6 in a incremental way.

This is exactly same way of measuring training accuracy on from DATA1 to

244

DATA5 in subsection 6.2.1. Note that the maximum accuracy can not be

over 50% at the end of learning since DATA6 has two data subsets where each

cluster has switched to different target output after half of learning the steps, 490.

First, all of CALM algorithms show increasing accuracy up to around learning

step 490 and start to diminish after that. Decreased accuracy after learning

step 490 is expected since the second data subset of DATA6 is used after that

learning step.

In CALM-rLRB as shown in Figure 6.28a, CALM-ANN2 (yellow) shows

best accuracy among the other CALM-ANNs. CALM-ANN2 mostly shows

highest accuracy at overall learning steps. Also, it starts to learn the changed

environment after learning step 490 and shows highest accuracy at the end of

learning compared to the other algorithms. This means CALM-ANN2, which is

3-layered neural network, is most effective neural network for CALM-rLRB on

DATA6.

In CALM-eLRB as shown in Figure 6.28c, CALM-ANN2 and CALM-ANN3

reaches 100% accuracy before the half learning step and shows gradual decreasing

accuracy for the rest of learning period; also CALM-ANN2 reaches full accuracy

before CALM-ANN3 reaches. CALM-ANN4 shows similar pattern in dynamic

changes but less increasing accuracy and more decreasing accuracy compared

to CALM-ANN2 and CALM-ANN3. CALM-ANN1 and CALM-ANN6 have no

learning effects on understanding both unchanged and changed environment. In

this regard, CALM-ANN2 shows best performance for CALM-eLRB on DATA6.

The big difference of CALM-eLRB dynamic accuracy from CALM-rLRB

is that CALM-rLRB shows sporadic accuracy distribution while CALM-eLRB

shows monotonic pattern. This shows how experience-based learning reward

245

learning react to an environment differently. CALM-eLRB uses accumulated past

successive experiences thus when the data is changed it gradually get confused.

On the other hand, CALM-rLRB uses only currently given context in optimizing

its neural network therefore it is affected more dramatically when an environment

changed.

In CALM-epLRB as shown in Figure 6.28e, CALM-ANN2, CALM-ANN3,

and CALM-ANN4 shows excellent performance with reaching 100% accuracy

before dynamic change and shows gradual decrease down to 50% when an environ-

ment is changed, which means all the three algorithms can perfectly understand

at least the unchanged environment. CALM-ANN5 starts to show its learning

effects around learning step 400% and shows gradual decrease when it meets

changed environment. CALM-ANN1 has no learning effects. In this regard, it is

considered that CALM-epLRB shows better performance than CALM-eLRB on

DATA6.

In CALM-nepLRB as shown in Figure 6.28g, all of CALM-nepLRB-ANNs

shows high accuracy before dynamic changes and shows sporadic decreases after

dynamic changes occur. This is because CALM-nepLRB uses a novel neural

networks, CALM-nepLRB-ANNs, and it selects its algorithm in a flexible way

as described in Chapter 5.5. Also, we can see all of CALM-nepLRB-ANNs try

to learn the changed environment. CALM-ANN2, CALM-ANN3, and CALM-

ANN4 shows 50% accuracy at the end of learning.

Batch accuracy is measured in each learning step by applying currently

learned CALM-ANN onto whole data set which has 980 data points. The goal

of this is to check how much a system can adapt to an environment where each

246

context has two conflicting target output values. Therefore, this accuracy is more

like testing CALM in an inconsistent environment. Note that batch accuracy

results at the end of learning should be exactly same as the incremental accuracy

results; this is because each algorithm eventually checking its both incremental

and bath accuracy on the whole number of data points at the last learning step.

In CALM-rLRB as shown in Figure 6.28b, we can see CALM-ANN2 tries

to understand inconsistent environment with highest accuracy overall while the

other CALM-ANNs get confused with showing sporadic accuracy distribution.

In CALM-eLRB as shown in Figure 6.28d, CALM-ANN2 and CALM-ANN3

reaches 50% accuracy at early learning step, which is maximum accuracy on

the fully inconsistent environment, and stayed for the rest of learning period;

this is exactly same as the results of incremental learning. In CALM-epLRB

as shown in Figure 6.28f, CALM-ANN2, CALM-ANN3, and CALM-ANN4

shows excellent performance with reaching 50% accuracy which also supports

the results of incremental accuracy. Like that in the batch dynamic accuracy,

CALM-ANN4 and CALM-ANN5 shows better performance in CALM-epLRB

than CALM-eLRB; also, CALM-ANN2 and CALM-ANN3 of CALM-epLRB

reaches the highest accuracy in earlier learning steps than in CALM-eLRB. This

means the Selective-Power-Update rule had impact on improving the learning

results by powering the use of experiences on DATA6. In CALM-nepLRB as

shown in Figure 6.28h, before dynamic changes most CALM-nepLRB-ANNs

shows 50% accuracy at the very early learning step and tries to understand

dynamically changed environment, which also supports the results of incremental

accuracy.

Figure 6.29 shows incremental dynamic accuracy on both unchanged and

247

changed data; the left column on the figure represents incremental accuracies

of each algorithms with each CALM-ANN which used only unchanged data

set. On the other hand, right column shows incremental dynamic accuracies of

each algorithm with each CALM-ANN which is tested only on changed data

set. More specifically, incremental accuracy before dynamic changes is measured

in each learning step by applying currently learned CALM-ANN onto the first

data subset of DATA6 which has 490 data points. Incremental accuracy after

dynamic changes is measured in each learning step by applying currently learned

CALM-ANN onto the second data subset of DATA6 which has also 490 data

points. The goal of checking the dynamic accuracy by applying two separate

data subsets is to see how each learned CALM-ANN in each algorithm of CALM

can represent the unchanged environment and changed environment respectively.

CALM-rLRB and CALM-nepLRB are dynamic algorithms. CALM-rLRB

and CALM-nepLRB shows decreased accuracy when environment is changed on

unchanged data of DATA6 as shown Figure 6.29a and Figure 6.29g; on the other

hand, they shows increased accuracy on changed data subset after environment is

changed as shown Figure 6.29b and Figure 6.29h. This implies CALM-rLRB and

CALM-nepLRB learn first unchanged environment and then learn the changed

environment.

In Figure 6.29a, CALM-rLRB, especially CALM-ANN2, shows high accuracy

when it is tested its accuracy on unchanged data but gives low accuracy when

it applied on changed data. This means CALM-rLRB started to changed new

environment so it can not give high accuracy on the unchanged old data.

In Figure 6.29b, CALM-rLRB shows low accuracy when it is tested on

unchanged data but gives high accuracy when it is applied on changed data

subset. This means CALM-rLRB could learn the unchanged environment so it

248

cannot give high accuracy on changed environment but could give high accuracy

after learning step 490.

In Figure 6.29g, CALM-nepLRB shows mostly highest accuracy on unchanged

data but the accuracy decreases after learning step around 600 on unchanged data.

This means CALM-nepLRB could successfully learn the changed environment

so it could not show high accuracy on unchanged data set.

In Figure 6.29h, CALM-nepLRB shows low accuracy on changed data subset

but show high accuracy after the learning step around 600, which menas CALM-

nepLRB could learn the changed environment.

It is notable that CALM-nepLRB shows dropping its accuracy and increasing

its accuracy around the learning step 600 which is not 490. This implies that

CALM-nepLRB can remember the previous environment in a longer period than

CALM-rLRB. It is also notable that CALM-nepLRB can survive in dynamic

environment with very high accuracy, especially on DATA6. Especially in un-

changed environment, except for CALM-ANN1, all of CALM-nepLRB shows

100% accuracy at the end of the unchanged environment, 490. In changed envi-

ronment, CALM-ANN2, CALM-ANN3, and CALM-ANN4 show 100% accuracy

while CALM-ANN1 shows around 85% and CALM-ANN5 shows around 25%.

In CALM-nepLRB, even shallow learning shows 85% accuracy.

CALM-eLRB and CALM-epLRB are not dynamic algorithms. CALM-eLRB

and CALM-epLRB show increasing accuracy before environment changes and

stays the increase accuracy even after the environment changed on unchanged

data subset as shown Figure 6.29c and Figure 6.29e. On the other hand,

CALM-eLRB and CALM-epLRB get confused on changed data subset before the

environment changes and then shows no learning effects after the environment

changes on changed data subset. This means CALM-eLRB and CALM-epLRB

249

could successfully learn the unchanged environment but could not adapt to

newly changed environment once it learned a certain environment.

From these experiments, we can conclude the following things. CALM-rLRB

shows lowest accuracy in static environment compared to CALM-eLRB and

CALM-epLRB but can adapt to dynamic environment by re-learning the new

environment. CALM-nepLRB shows highest accuracy and also can survive in

dynamic environment.

250

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.30: CALM-eLRB EKB Transition on Data 6 (L = 2)

251

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.31: CALM-eLRB EKB Transition on Data 6 (L = 3)

252

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.32: CALM-eLRB EKB Transition on Data 6 (L = 4)

253

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.33: CALM-eLRB EKB Transition on Data 6 (L = 5)

254

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.34: CALM-eLRB EKB Transition on Data 6 (L = 6)

255

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.35: CALM-epLRB EKB Transition on Data 6 (L = 2)

256

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.36: CALM-epLRB EKB Transition on Data 6 (L = 3)

257

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.37: CALM-epLRB EKB Transition on Data 6 (L = 4)

258

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.38: CALM-epLRB EKB Transition on Data 6 (L = 5)

259

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.39: CALM-epLRB EKB Transition on Data 6 (L = 6)

260

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.40: CALM-nepLRB EKB Transition on Data 6 (L = 2)

261

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.41: CALM-nepLRB EKB Transition on Data 6 (L = 3)

262

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.42: CALM-nepLRB EKB Transition on Data 6 (L = 4)

263

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.43: CALM-nepLRB EKB Transition on Data 6 (L = 5)

264

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(a) LearningStep = 100

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(b) LearningStep = 200

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(c) LearningStep = 300

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(d) LearningStep = 500

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(e) LearningStep = 600

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(f) LearningStep = 800

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(g) LearningStep = 900

-4 -3 -2 -1 0 1 2 3 4

1D

-4

-3

-2

-1

0

1

2

3

4

2D

(h) LearningStep = 980

Figure 6.44: CALM-nepLRB EKB Transition on Data 6 (L = 6)

265

By looking into the EKB status transition of each algorithm with each

CALM-ANN, we can understand more clearly how the incremental accuracy

comes out from the previous experiments. Figure 6.30, Figure 6.31, Figure 6.32,

Figure 6.33, and Figure 6.34 show EKB status transition of CALM-eLRB with

each CALM-ANN when the learning steps are 100, 200, 300, 500, 600, 800, 900,

and 980. Figure 6.35, Figure 6.36, Figure 6.37, Figure 6.38, and Figure 6.39

show EKB status transition of CALM-epLRB with each CALM-ANN when

the learning steps are 100, 200, 300, 500, 600, 800, 900, and 980. Likewise,

Figure 6.40, Figure 6.41, Figure 6.42, Figure 6.43, and Figure 6.44 show EKB

status transition of CALM-nepLRB with each CALM-ANN when the learning

steps are 100, 200, 300, 500, 600, 800, 900, and 980.

For CALM-eLRB, Figure 6.31d and Figure 6.32d show that CALM-ANN2

and CALM-ANN3 successfully stored its experiences on EKB at learning step

500 which is same as the unchanged data subset as shown Figure 6.27a. This

supports the experimental results of the incremental dynamic accuracy. As

shown on Figure 6.28c and Figure 6.29c, CALM-eLRB with CALM-ANN2

and CALM-ANN3 reached 100% accuracy on unchanged data subset which is

consistent in transition of the EKB.

Figure 6.33d shows that CALM-eLRB with CALM-ANN5 could not fully

stored the unchanged data subset compared to it with CALM-ANN2 and CALM-

ANN3. This also supports the experimental results that CALM-eLRB with

CALM-ANN4 reached around 85% in incremental dynamic accuracy as shown

Figure 6.28c.

Figure 6.30d and Figure 6.34d show very interesting points that CALM-eLRB

with CALM-ANN1 and CALM-ANN5 accumulated mix-matched experiences of

both unchanged and changed environment at the end of learning step, 980. First

266

of all, in Figure 6.30d, we can see CALM-eLRB with CALM-ANN1 could learn

only partial experiences of unchanged data subset at learning step 500. This

means CALM-ANN1 can not achieve high accuracy of unchanged data subset as

shown Figure 6.28c. After learning step 500, CALM-ANN1 starts to learn newly

changed environment and partially adapted changed environment as shown in

Figure 6.30h. This supports that CALM-ANN1 did not dramatically drop its

incremental dynamic accuracy as shown in Figure 6.28c.

Likewise, in Figure 6.34d, we can see CALM-eLRB with CALM-ANN5

learned only partial experiences of unchanged data subset at learning step 500

however it started to learn newly changed environment and accumulated the

new experiences as shown in Figure 6.34h. And actually, CALM-eLRB with

CALM-ANN5 stacked more experiences of changed environment than unchanged

one. This supports the result that CALM-ANN5 shows increasing accuracy after

learning step 500 as shown in Figure 6.28c.

For CALM-epLRB, Figure 6.36d, Figure 6.37d, and Figure 6.37d show that

CALM-epLRB with CALM-ANN2, CALM-ANN3, and CALM-ANN4 could

successfully learn the unchanged environment, which are exactly same as Fig-

ure 6.27a. This supports that CALM-eLRB with CALM-ANN2, CALM-ANN3,

and CALM-ANN4 reached 100% incremental dynamic accuracy at learning step

500.

Figure 6.35d shows that CALM-ANN1 could partially understand the un-

changed environment and also stacked new experiences from changed environment

at the end of learning step. This also supports the incremental dynamic accuracy

of CALM-ANN1 is steady in the Figure 6.28e.

Figure 6.39d shows that CALM-ANN5 could partially understand the un-

changed environment but could less understand about changed environment

267

at the end of the learning step 980. When we compare the Figure 6.39c and

Figure 6.39d, we can see CALM-ANN6 accumulated more successful experiences

between learning step 300 and 500. This supports the dynamic accuracy of

CALM-ANN6 dramatically increased between learning step 400 and 500 as

shown in Figure 6.28e. Also after learning step 500 the dynamic accuracy is

decreased and this is supported that CALM-ANN6 stacked more experiences

from unchanged environment.

For CALM-nepLRB, Figure 6.40d, Figure 6.41d, Figure 6.42d, Figure 6.43d,

and Figure 6.44d show that all CALM-ANNs could successfully learn the un-

changed environment which are mostly same as Figure 6.27a. This supports the

experimental results of the incremental dynamic accuracy that all of CALM-ANN

shows high accuracy at learning step 500 as shown in Figure 6.28g. It is notable

that all CALM-ANNs of CALM-nepLRB started to learn after the environment

is changed by changing old experience with new ones and eventually they could

successfully learn the changed environment by memorizing the changed experi-

ences as shown in the Figure 6.40h, Figure 6.41h, Figure 6.42h, Figure 6.43h, and

Figure 6.44h. This supports the Figure 6.29h which shows most of CALM-ANNs

increased its accuracy on changed data subset.

268

Chapter 7

Discussions

This chapter provides six discussion topics based on the CALM experiments

and results. Especially, this chapter discusses how the different learning results

of each algorithm are related to some specific CALM characteristics.

7.1 Issue 1: The Meaning of Accumulated Re-

wards

First issue is the relationship between accumulated rewards and accuracy.

We note that increasing accumulated rewards does not guarantee the incremental

increasing accuracy. This fact reminds us of two important features of learning

process: (1) getting reward at current learning step is only regarding to current

context; (2) however, evaluating accuracy at each learning step considers all

covered training data up until current step or whole testing data. This means

even if the accumulated reward are increasing, this is not guarantee to successfully

recognize given all contexts at the end of the learning steps. For example, in

Figure 6.21, all of the algorithms with all different neural networks show the

monotonically increasing graph; however all the accuracy at the end of the

learning steps is mostly around 20% as shown in Figure 6.10. Even more, CALM-

nepLRB shows decreasing accuracy while the accumulated reward are growing

as shown in Figure 6.10h. Therefore, in analyzing accumulated rewards, what

we can get from the information is that how many times an algorithm could

269

make good choices through all of the learning steps; but we are not supposed to

overlook the possibility of gradually increasing accumulated rewards with low

accuracy performance.

7.2 Issue 2: The Role of Depth

Second issue is the relationship between the depth of a neural network and

accuracy. We conclude that deepest neural network does not guarantee the

highest performance. Superficially, it can be easily considered that having deeper

layer causes higher performance. However, we should not overlook the fact that

having more layers makes larger search space with more weight vectors. In this

regard, gradient-descent optimization might be stuck in a local optimum, which

is not guarantee to find the global optimum. For example, from Figure 6.2 to

Figure 6.11, it is not black line representing 6-layered neural network that shows

highest accuracy in the experiments of CALM-rLRB, CALM-eLRB, and CALM-

epLRB. CALM-nepLRB is an exception since it has more advanced features

compared to the others. In CALM-nepLRB, black line is also mostly survived

in making high performance as well as the other colors. Therefore, except

for CALM-nepLRB, which is a novel bio-inspired generalized arbitrary-depth

neural controller with additional neurobiological features, setting deeper neural

network does not always come up with high performance in the non-bio-inspired

algorithms.

7.3 Issue 3: The Magic Number 3

Third issue is about magic number three and ambiguous number two. There

are two notable phenomenon from the experiments in Chapter 6: (1) 2-layered

270

neural network has limitations to represent the given input spaces with a certain

number of iterations and (2) 3-layered neural network seems to be generally

enough to solve the given input data sets. For example, from Figure 6.2 to

Figure 6.11, we can see yellow lines representing 3-layered neural networks are

mostly above of the other colored lines through all of the experiments regardless

of number of iterations. On the other hand, there are two ways of interpreting

the role of 2-layered neural network depending on the number of iterations.

First of all, if the number of iteration is 1, the blue lines representing 2-layered

neural networks stays relatively high accuracy compared to the other lines.

However, if it is 200, the blue lines are stays usually lowest level of accuracy

than the others. We suggest three conclusions from these phenomenon: (1) in

low frequency optimization, simplest neural network tends to be less confused in

finding right answers based on experiences, (2) in high frequency optimization

with large number of iteration, the simplest neural network is limited to find

all right answers corresponding to the given input, and (3) usually 3-layered

neural network with 25 hidden nodes are enough to make high accuracy on the

generated synthetic data sets in this dissertation described in Chapter 6.

7.4 Issue 4: CALM-eLRB vs CALM-epLRB

Fourth issue is about the role of Selective-Power-Update. We can see the

performances from CALM-eLRB and CALM-epLRB are comparable. It is

actually hard to tell which one is better than the other one. For example, on

DATA4 with Figure 6.8d, Figure 6.8f, Figure 6.9d, and Figure 6.9f, we can

see magenta lines representing 4-layered networks and black lines show more

consistent accuracy in CALM-epLRB but yellow lines show higher accuracy in

CALM-eLRB. Similarly, on DATA3 with Figure 6.6d, Figure 6.6f, Figure 6.7d,

271

and Figure 6.7f, we can see cyan lines representing 5-layered neural networks and

black lines show better results in CALM-eLRB than CALM-epLRB but yellow

and magenta lines show higher accuracy in CALM-epLRB than CALM-eLRB.

In this regard, we tentatively conclude that the efficacy of the Selective-Power-

Update gives an advantage when CALM-epLRB finds the similar context from

EKB which successfully powers current network with positive reward. In other

words, if CALM-epLRB finds the most similar context from EKB but it actually

has different desired output, it will selectively power anti-desired weight vector

since the similarity is calculated from only Euclidean distance between two data

points. This phenomenon happened when two clusters are overlapped where they

have each different desired output. For example, in the middle of the Figure 6.1c,

we can see black cluster and magenta cluster is overlapped and the data points

withing overlapped area are considered as similar contexts but actually having

different desired output respectively.

7.5 Issue 5: When to Use CALM-rLRB

Fifth issue is about the usage of CALM-rLRB. As we have seen in Chapter 6

CALM-rLRB is not practical algorithm in a long term since it just aims to

overcome current context. However, it is beneficial when the experience-based

optimization can not recognize current context due to the role of back neurons

in CALM-nepLRB. For example, if currently selected output is behavior3 −

GoForward and it gets zero reward, the dopamine will be released and the back

neuron behavior4−GoBackward, which is opposite action of behavior3, then

theoretically the same context will be come up again. In this case, it is possible

for CALM-nepLRB to repeat selecting behavior3−GoForward infinitely since

the optimization process for CALM-eLRB or CALM-epLRB keep are based on

272

the same saved past positive experiences. In other words, if the same context

comes again due to the effect of back neurons, CALM-nepLRB uses the same

learning input and quasi-target output for the optimization and thus it will

cause same behavior which caused zero reward. In this case, CALM-rLRB is the

essential solution because it ignores the past positive experiences but focuses

only on current information in the optimization process. This is the reason

why CALM-nepLRB has an ability to select an appropriate algorithm based

on learning status. In this way, CALM-rLRB is useful when an algorithm is

supposed to ignore the experiences in a short term. Biologically, it can be also

said that CALM-rLRB is an appropriate algorithm for short-term memory while

the others are profitable for long-term memory in a vertebrate brain. This should

be discussed based on more study on memory-related future research works.

273

Chapter 8

Conclusions

8.1 Conclusions

This research introduces CALM (Context-Aware Learning Model) including

four different learning algorithms, which is a novel context-aware learning model

inspired by (1) supervised learning with logistic regression backpropagation,

(2) modulatory hyperbolic reward-based learning, and (3) behavioral neurobi-

ology with OBIBIDEEV features. This research describes detail features and

background knowledge with sound mathematical derivation of each algorithm.

The logistic regression and reward-based learning algorithms are addressed in

depth with the generalized format. The essential study of the basic neurobiology

and behavioral neural circuits are investigated to provide general validity of

building a robot brain CALM-nepLRB with CALM-nepLRB-ANN: bat, owl,

eel, crayfish, honeybee, drosophila, and moth. CALM is evaluated with five

types of measurement on six synthetic data sets, which shows that CALM-eLRB,

CALM-epLRB, and CALM-nepLRB are promising; and, it is demonstrated that

CALM-nepLRB outperforms all of these other algorithms.

274

8.2 Contributions

The research contributions in this dissertation can be roughly summarized

as five parts. First contribution of this research is in building a novel context-

aware learning model with OBIBIDEEV learning features: (1) Online, (2)

Bootstrapping, (3) Interactive, (4) Bio-inspired, (5) Incremental, (6) Dynamic,

(7) Experience-based, (8) Experience-powered, (9) Arbitrary depth which can be

applied in non-robotics, robotics, and neurorobotics areas. Second contribution

is in providing neurobiological backgrounds supporting the robot brain, which

are not usually covered by the preceding research works. Third contribution is

providing solid mathematical derivation and deep understanding for research

background. Fourth contribution is providing appropriate pseudocodes algo-

rithms for each learning type in a generalized format. Fifth contribution is to

evaluate the learning model in a generalized way with several synthetic data sets

so that we can have a chance to compare and discuss its performance simply

and clearly before applying it into a real world.

� CALM serves as a context-aware learning middleware which can be applied

into a general learning areas. The system architecture are designed in

details and the role of each component is clear so that a learner can utilize

it with a little efforts in building one’s own learning model. Providing a

well-designed context-aware neural middleware is a contribution.

� CALM is unique framework in that it has all OBIBIDEEV features based on

reward-based neuromodulatory optimization with promising performance

which is demonstrated on the six synthetic data sets. In other words, CALM

is a novel hybrid learning model which makes promising performance by

275

overcoming the limitations on existing typical machine learning approach.

It is not about just taking several existing features to make a new learning

model, but it is about building a new learning type which is based on

profound understanding of existing approaches and newly investigated

neurobiological features in neurorobotics area. Successfully adhering to the

supervised optimization approach based on reward and experience with a

generalized model is a significant contribution.

� CALM is a generalized brain. This research introduces a novel, bio-inspired,

generalized, arbitrary-depth, neural network, CALM-nepLRB-ANN, and

provides a distinctive neuromodulatory algorithm, CALM-nepLRB, which

has flexibility to select appropriate algorithm based on reward and experi-

ences. This research demonstrates the power of a brain with additional neu-

robiological features: combination-sensitive neurons, recurrent inhibition,

two types of dopaminergic neuromodulation. Successfully incorporating

the features into learning model which eventually causing highly promising

performance in a generalized way is also a significant contribution.

� CALM is based on completely generalized mathematical descriptions with

clear derivations. Especially, this research provides profound understanding

of the logistic regression and reward-based learning with each correspond-

ing clear pseudocode algorithm in a unique way. Describing artificial

neural networks with comparing a general linear algebra and scientific

computations is also fine contribution.

� CALM is evaluated from artificially generated synthetic data sets which

covers different combination of possible input problems. This provides a

chance to easily test and compare its performances on various domains in

a generalized way before applying it into real world.

276

Chapter 9

Future Work

This chapter provides the future works for this research in two perspectives.

9.1 Increasing Feasibility

CALM should be evaluated in a virtual environment with a robot simulation

such as a TurtleBot in Gazebo using ROS (Robot Operating System). In

this dissertation, CALM is only tested with synthetic data sets to show its

performance; therefore, its promising performance and practical usages should

be also demonstrated by applying it into either virtual simulating environment

or a real environment with a real robot.

9.2 Increasing Reliability

CALM should be also tested with more input features with various types of

input in order to verify its ability of multi-modal handling. In this dissertation,

only two input features plus a bias node are used and only one type of input,

Cartesian coordinate information, is used, which is generated artificially. Along

with this, several types of input should be processed as contextual information

from Context Supplier in a more sophisticated way in order to demonstrate

high-quality neural context-awareness. Currently, Context Supplier directly

takes the input from Sensory System as a context, which should be advanced in

277

future works.

CALM should be evaluated with more values of learning parameters. For

example, in this dissertation, there are fixed value of learning parameters:

η = 1.0, λ = 0.0, ε = 0.3, γ = 0.5, and ITR ∈ {1, 200}. Further experiments

on same data but with different values of the parameters can give us best set of

learning parameters which cause best performance of CALM.

Study of neurobiological on hippocampus of a vertebrate brain should be

accomplished to compare the role of EKB (Experience-based Knowledge Base)

with the functions of the hippocampus; this further study can support a robot

brain not only computationally but also neurobiologically. In this dissertation,

EKB has two important roles: (1) retrieving relevant experience-based on current

contextual information with Euclidean distance sequential search engine and

(2) optimizing knowledge base by finding most recent experience instead of old

experience when both of them are mostly similar to the current contextual

information. Also, in the future work, if the search engine is based on more

advanced algorithm with lower computational complexity and if more advanced

knowledge base optimization approaches are studied, the as above CALM would

be increased with high efficiency of using the past positive experiences in CALM.

9.3 Performance Analysis

It is clear that more sophisticated algorithms take more time to learn an

environment. For example, CALM-nepLRB took more time to get the experi-

mental results compared to the other the other algorithms; CALM-eLRB and

CALM-epLRB had more running times than CALM-rLRB; CALM-rLRB had

very short time compared to the other algorithms since it did not use experi-

ences for its optimization. Therefore, it will be worth of investigating algorithm

278

running time of each CALM algorithm for each experiment thus we can compare

each algorithm performance compared to running time in the future.

279

Bibliography

[1] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context and
context-awareness. In Proceedings of the 1st International Symposium on
Handheld and Ubiquitous Computing, pages 304–307. Springer-Verlag, 1999.

[2] Dacks AM, Christensen TA, and Hildebrand JG. Modulation of olfactory
information processing in the antennal lobe of manduca sexta by serotonin.
Neurophysiology, 99:2077–2085, 2008.

[3] Anil K. Seth and Olaf Sporns and Jeffrey L. Krichmar. Neurorobotic
models in neuroscience and neuroinformatics. Neuroinformatics, 3(3):167–
170, September 2005.

[4] Kyle T. Beggs and Alison R. Mercer. Dopamine receptor activation by
honey bee queen pheromone. Current Biology, 19(14):1206–1209, 2009.

[5] Yoshua Bengio. Learning deep architectures for ai. Foundations and
Trends® in Machine Learning, 2(1):1–127, 2009.

[6] Bruce A. Carlson and Masashi Kawasaki. Stimulus selectivity is enhanced
by voltage-dependent conductances in combination-sensitive neurons. Neu-
rophysiology, 96(6):3362–3377, December 2006.

[7] M. C.Avery, D.A. Nitz, A.A.Chiba, and J. L. Krichmar. Simulation of cholin-
ergic and noradrenergic modulation of behavior in uncertain environments.
Frontiers in Computational Neuroscience, 6:1–16, 2012.

[8] Brian R. Cox and Jeffrey L. Krichmar. Neuromodulation as a robot con-
troller: a brain inspired strategy for controlling autonomous robots. IEEE
Robotics and Automation Magazine, 16:72–80, 2009.

[9] A. M. Dacks, J. A. Riffell, J. P. Martin, S. L. Gage, and A. J. Nighorn.
Olfactory modulation by dopamine in the context of aversive learning.
Neurophysiology, 108(2):539–550, July 2012.

[10] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual
framework and a toolkit for supporting the rapid prototyping of context-
aware applications. Human Computer Interaction (HCI), pages 97–166,
2001.

[11] Andries P. Engelbrecht. Computational Intelligence. Wiley, second edition,
2007.

280

[12] I. H. Suh et al. Ontology-based multi-layered robot knowledge framework
(omrkf) for robot intelligence. pages 429—-436. IEEE/RSJ International
Conference on Intelligent Robots and Systems(IROS), 2007.

[13] Purves D. et al. Neuroscience. Sinauer, fifth edition, 2012.

[14] Jason G. Fleischer and Gerald M. Edelman. Brain-based devices: An
embodied approach to linking nervous system structure and function to
behavior. IEEE Robotics and Automation Magazine, 6(3):33–41, September
2009.

[15] Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence:
Theories, Methods, and Technologies. The MIT Press, 2008.

[16] Donald Olding Hebb. The Organization of Behavior: A Neuropsychological
Theory. Wiley, New York, 1949.

[17] Wonil Hwang, Jinyoung Park, Hyowon Suh, Hyungwook Kim, and IlHong
Suh. Ontology-based framework of robot context modeling and reasoning
for object recognition. pages 596–606. Springer Berlin Heidelberg, 2006.

[18] Bergan JF, Ro P, Ro D, and Knudsen EI. Hunting increases adaptive
auditory map plasticity in adult barn owls. Neuroscience, 25(42):9816–9820,
October 2005.

[19] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York,
1986.

[20] Eric I. Knudsen. Instructed learning in the auditory localization pathway
of the barn owl. Nature, 417(6886):322–328, May 2002.

[21] J. L. Krichmar. A biologically inspired action selection algorithm based on
principles of neuromodulation. pages 1–8. International Joint Conference
on Neural Networks (IJCNN), 2012.

[22] J. L. Krichmar. A neurorobotic platform to test the influence of neuromodu-
latory signaling on anxious and curious behavior. Frontiers in Neurorobotics,
7(1):1–17, 2013.

[23] Jeffrey Krichmar and Florian Röhrbein. Value and reward based learning
in neurorobots. Frontiers in Neurorobotics, 7:13, 2013.

[24] Jeffrey L. Krichmar. The neuromodulatory system: A framework for
survival and adaptive behavior in a challenging world. Adaptive Behavior,
16(6):385–399, December 2008.

[25] Irving Kupfermann. Modulatory actions of neurotransmitters. Annual
Review of Neuroscience, 2:447–465, 1979.

281

[26] G. Lim and I. Suh. Weighted action-coupled semantic network (wasn) for
robot intelligence. pages 2035—-2040. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008.

[27] G. H. Lim, I. H. Suh, and H. Suh. Ontology-based unified robot knowledge
for service robots in indoor environments. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 41(3):492–509, May
2011.

[28] Gi Hyun Lim, Il Hong Suh, and Lúıs Seabra Lopes. The representation of
weighted action-coupled semantic network and spreading activation model
for improvisational action. In SMC, pages 4054–4059. IEEE, 2013.

[29] Brie A. Linkenhoker and Eric I. Knudsen. Incremental training increases the
plasticity of the auditory space map in adult barn owls. Nature, 419:293–296,
September 2002.

[30] George F. Luger. Artificial Intelligence: Structures and Strategies for
Complex Problem Solving. Addison-Wesley, fifth edition, 2004.

[31] Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, and
Heisenberg M. Dopamine and octopamine differentiate between aversive and
appetitive olfactory memories in drosophila. Neuroscience, 23:10495–10502,
2003.

[32] Philip Moore and Hai V. Pham. Predicting intelligence using hybrid artificial
neural networks in context-aware tunneling systems under risk and uncertain
geological environment. pages 989–994. Complex, Intelligent, and Software
Intensive Systems (CISIS), July 2012.

[33] S. Nakanishi, T. Hikida, and S. Yawata. Distinct dopaminergic control of
the direct and indirect pathways in reward-based and avoidance learning
behaviors. Neuroscience, 282:49–59, 2014.

[34] Kuniaki Noda, Hiroaki Arie, Yki Suga, and Tetsuya Ogata. Multimodal
integration learning of robot behavior using deep neural networks. Robotics
and Autonomous Systems, 62:721–736, 2014.

[35] Kloppenburg P and Mercer AR. Serotonin modulation of moth central
olfactory neurons. Annu Rev Entomol, 53:179–190, 2008.

[36] Ivan Petrovich Pavlov. Lectures on Conditioned Reflexes. Liveright, New
York, 1928. Translated by W. Horsley Gantt.

[37] Jose L. Pena and Yoram Gutfreund. New perspectives on the owl’s map of
auditory space. Current opinion in neurobiology, pages 55–62, 2014.

282

[38] C.M.A. Pennartz. Reinforcement learning by Hebbian synapses with adap-
tive threshold. Neuroscience, 81(2):303–319, 1997.

[39] Akimul Prince and Biswanath Samanta. Neuromodulation based control
of an autonomous robot. In International Joint Conference on Neural
Networks, pages 1–7. IEEE, 2013.

[40] Menzel R, Heyne A, Kinzel C, Gerber B, and Fiala A. Pharmacological
dissociation between the reinforcing, sensitizing, and response-releasing func-
tions of reward in honeybee classical conditioning. Behavioral Neuroscience,
113(4):744–754, August 1999.

[41] Alan Roberts. Recurrent inhibition in the giant-fibre system of the crayfish
and its effect on the excitability of the escape response. Experimental
Biology, 48:545–567, 1968.

[42] Sebastian Rockel, Bernd Neumann, Jianwei Zhang, Krishna Sandeep Reddy
Dubba, Anthony G. Cohn, Stefan Konecny, Masoumeh Mansouri, Federico
Pecora, Alessandro Saffiotti, Martin Günther, Sebastian Stock, Joachim
Hertzberg, Ana Maria Tomé, Armando J. Pinho, Lúıs Seabra Lopes,
Stephanie von Riegen, and Lothar Hotz. An ontology-based multi-level
robot architecture for learning from experiences. In Designing Intelligent
Robots: Reintegrating AI II, Papers from the 2013 AAAI Spring Symposium,
Palo Alto, California, USA, March 25-27, 2013. AAAI, 2013.

[43] Stuart Russell and Peter Norvig. Artificial Intelligence a Modern approach.
Prentice Hall, second edition, 2002.

[44] Sareh Saeedi, Tom Carlson, Ricardo Chavarriaga, and Jose del R. Millan.
Making the most of context-awareness in brain-computer interfacesd. pages
68–73. IEEE International Conference on Cybernetics, 2013.

[45] Lisa M. Saksida, Scott M. Raymond, and David S. Touretzky. Shaping
robot behavior using principles from instrumental conditioning. Robotics
and Autonomous Systems, 22(3-4):231–249, December 1997.

[46] R. Salgado, F. Bellas, P. Caamaño, B. Santos-Dı́ez, and R. J. Duro. A
procedural long term memory for cognitive robotics. In Evolving and
Adaptive Intelligent Systems (EAIS), 2012 IEEE Conference on, pages
57–62. Evolving and Adaptive Intelligent Systems (EAIS), May 2012.

[47] JT Sanchez, D Gans, and JJ Wenstrup. Glycinergic ”inhibition” mediates
selective excitatory responses to combinations of sounds. Neuroscience,
28(1):80–90, January 2008.

[48] Bill Schilit and Marvin Theimer. Disseminating active map information to
mobile hosts. IEEE Network, 8:22–32, 1994.

283

[49] Bill N. Schilit, Norman Adams, Rich Gold, Michael M. Tso, and Roy
Want. The parctab mobile computing system. In Workshop on Workstation
Operating Systems, pages 34–39, 1993.

[50] Ashvin Shah. Psychological and Neuroscientific Connections with Rein-
forcement Learning, pages 507–537. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[51] M.W. Shiflett and B.W. Balleine. Contributions of erk signaling in the
striatum to instrumental learning and performance. Behavioral Brain
Research, 218(1):240–247, 2011.

[52] L. N. Soldatova, A. Clare, A. Sparkes, and R. D. King. An ontology for a
robot scientist. Bioinformatics, 22(14):e464–e471, July 2006.

[53] Andrea Soltoggio and Kenneth O. Stanley. From modulated Hebbian
plasticity to simple behavior learning through noise and weight saturation.
Neural Networks, 34:28–41, October 2012.

[54] Olaf Sporns and William H. Alexander. Dopamine, reward conditioning,
and robot behavior. In Proceedings of the 2Nd International Conference on
Development and Learning, ICDL ’02, pages 265–, Washington, DC, USA,
2002. IEEE Computer Society.

[55] Olaf Sporns and William H. Alexander. Neuromodulation and plasticity in
an autonomous robot. Neural Network, 15(4):761–774, June 2002.

[56] Joohee Suh and Dean F. Hougen. Context-based adaptive robot behavior
learning model (carb-lm). pages 206–211. IEEE Symposium Series on
Computational Intelligence, December 2014.

[57] RS. Sutton and AG. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, USA, 1998.

[58] Rick P. Thomas, Michael R. Dougherty, Amber M. Sprenger, and Harbison J.
Isaiah. Diagnostic hypothesis generation and human judgment. Psychological
Review, 115(1):155–185, January 2008.

[59] Eiji Uchibe and Kenji Doya. Finding Exploratory Rewards by Embodied
Evolution and Constrained Reinforcement Learning in the Cyber Rodents,
pages 167–176. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[60] Nachum Ulanovsky and Cynthia F. Moss. What the bat’s voice tells the
bat’s brain. pages 8491––8498. Proceedings of the National Academy of
Sciences of the United States of America, 2008.

284

[61] Florian R. V. A reinforcement learning algorithm for spiking neural networks.
pages 299–306. Proceedings of the Seventh International Symposiumon
Symbolic and Numeric Algorithms for Scientific Computing, 2005.

[62] M.C.W. van Rossum, G.Q. Bi, and G.G. Turrigiano. Stable Hebbian learning
from spike timing-dependent plasticity. Neuroscience, 20(23):8812–8821,
2000.

[63] Scott Waddell. Dopamine reveals neural circuit mechanisms of fly memory.
Trends in Neurosciences, 33(10):457–464, October 2010.

[64] C.J.C.H. Watkins. Learning from delayed rewards. PhD thesis, University
of Cambridge, England, 1989.

[65] Mark Weiser. The computer for the 21st century. Scientific American,
265(3):94–104, September 1991.

[66] Mark Weiser. The computer for the 21st century. ACM SIGMOBILE
Mobile Computing and Communications Review, 3(3):3–11, July 1999.

[67] Shin-Rung Yeh, Russell A. Fricke, and Donald H. Edwards. The effect of
social experience on serotonergic modulation of the escape circuit of crayfish.
Science, 271(5247):366, January 1996.

[68] G. Zupanc and T. Bullock. Walter heiligenberg: the jamming avoidance
response and beyond. Comparative Physiology A: Neuroethology, Sensory,
Neural, and Behavioral Physiology, 192(6):561–572, June 2006.

285

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Questions
	The Overview of the Context-Aware Learning Model (CALM)
	CALM Concepts and Algorithms
	CALM Characteristics
	Organization of the Dissertation

	Essential Neuroscience
	A Neuron
	The Electrical Signals of Neurons
	The Communications of Neurons
	Neurotransmitters
	Neural Systems
	Animal Behavioral Neurobiology

	Artificial Neural Networks
	Overview of Artificial Neural Networks
	Supervised Neural Learning Model
	A Perceptron ANN with Logistic Regression
	2-Layered ANN with Logistic Regression
	Generalized Arbitrary-Depth ANN with Logistic Regression

	Reward-based Neural Model
	Hebbian Plasticity
	Reward-based Hebbian Plasticity
	Reward-based Hyperbolic Hebbian Plasticity

	Related Works
	Reward-based Learning
	Neurorobotics Learning
	Context-based Robot Learning

	The Context-Aware Learning Model (CALM)
	System Architecture
	CALM-rLRB
	CALM-rLRB Features
	CALM-rLRB-ANN
	CALM-rLRB Learning
	The Role of the Cost Function in CALM-rLRB
	The Role of Weight Update Rule in CALM-rLRB

	CALM-eLRB
	CALM-eLRB Features
	CALM-eLRB-ANN
	CALM-eLRB Learning

	CALM-epLRB
	CALM-epLRB Features
	CALM-epLRB-ANN
	CALM-epLRB Learning

	CALM-nepLRB
	CALM-nepLRB Features
	CALM-nepLRB-ANN
	CALM-nepLRB Learning

	CALM Experiments and Results
	Experimental Setup
	CALM-ANNs
	Synthetic Data Sets
	Evaluation Methods

	Experimental Results on Synthetic Data Sets
	Accuracy Analysis
	Cost Function Values Analysis
	Accumulated Rewards Analysis
	Dynamics Analysis

	Discussions
	Issue 1: The Meaning of Accumulated Rewards
	Issue 2: The Role of Depth
	Issue 3: The Magic Number 3
	Issue 4: CALM-eLRB vs CALM-epLRB
	Issue 5: When to Use CALM-rLRB

	Conclusions
	Conclusions
	Contributions

	Future Work
	Increasing Feasibility
	Increasing Reliability
	Performance Analysis

	Bibliography

