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Abstract 

Nanoparticle applications in the petroleum industry have grown recently especially in 

EOR and well stimulation. Transport of nanoparticles in porous media involves different 

interaction mechanisms either between nanoparticles and porous media (adsorption and 

release from pore surface, single-particle plugging, and multi-particles plugging) or inter-

nanoparticle (aggregation and gelation). This dissertation aims to provide mathematical 

and numerical framework for multiscale modeling of nanoparticles transport in porous 

media including all these different interaction mechanisms for the first time. 

First, mechanistic model based on Extended DLVO theory is developed to study the rate 

of deposition and release of nanoparticles in porous media at different temperature, ionic 

strength, and pH. Empirical equation has been derived to calculate zeta potential at 

different conditions. The effect of surface roughness has been included in the model using 

the effective height and density of the surface roughness distribution. Numerical model 

has been used to compare the theoretically calculated rates with several experimental 

data. The model shows good fitting with different experimental results. 

Secondly, although the nanoparticles are small, they can be retained in the porous media 

by three different damage mechanisms i.e. surface deposition, mono-particle plugging, 

and multi-particles plugging. We have developed a mathematical model that captures 

these different damage mechanisms. The model is validated with experimental data to 

obtain the model parameters. Sensitivity analysis is presented using the proposed 

numerical model. The preliminary numerical results demonstrate that nanoparticle size, 
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concentration, injection rate and permeability are the dominant factors that control the 

degree of formation damage.  

Thirdly, Population Balance Equation (PBE) is used to model the kinetics of aggregation 

and gelation of nanoparticles in batch. Quadrature Method of Moments (QMOM) is used 

to convert the PBE with continuous distribution of nanoparticle size into a set moment 

equations for efficient computation. The modeled developed in this study is used to 

compare between the kinetics of aggregation and gelation of fumed silica and colloidal 

silica nanoparticles at the same conditions. The case studies presented show a unique 

behavior of fumed silica over colloidal silica nanoparticles for forming a gel network at 

significantly low concentration.  

Finally, QMOM-PBE is coupled with fluid flow model to predict the nanoparticles 

aggregation and interactions in porous media. Changes in nanoparticle size and shape due 

to inter–particle interactions (i.e. aggregation) may significantly affect particle mobility 

and retention in porous media. Model sensitivity analysis shows the influence of particle 

concentration and interstitial velocity gradient on inter–particle, and, consequently, 

particle–collector interactions. Also, filtration prevents the buildup of viscosity of the 

fluid in porous media compared to batch. However, in free media where filtration is 

negligible like fractures, viscous fluid or soft gel can be formed. 

This dissertation attempts to answer the critical questions pertaining the coupling of 

aggregation and in situ gelation on the nanoparticles transport in porous media. The 

model can be further extended to simulate different nanoparticles-based applications in 
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oil and gas reservoirs such as acid diversion, water shutoff, conformance control, and 

hydraulic fracturing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



1 

Chapter 1 Introduction 

1.1.Background 

Nanotechnology has gained a wide interest in the oil and gas industry during the past 

decade. Nanotechnology is the science and engineering of particles at the nanoscale 

(nanoparticles), which are about 1 to 100 nanometers in size. Nanoparticles have been 

applied in many aspects of the upstream petroleum industry such as enhanced oil recovery 

(Ogolo et al. 2012, Fletcher and Davis 2010), well stimulation (McElfresh et al. 2012a), 

drilling fluids (Mahmoud et al. 2016) , hydraulic fracturing fluids (Fakoya and Shah 2014, 

2016), well cementing (Omosebi et al. 2017), formation softening in shale (Mehana et al. 

2017), and fines fixation (Huang et al. 2008). Different types of nanoparticles has been 

used such as silica nanoparticles, alumina nanoparticles, and carbon nanotubes (Pham et 

al. 2016, Chen et al. 2016, Kadhum et al. 2015, Weston et al. 2014).  

Transport of nanoparticles in porous media involves different interaction mechanisms 

either between nanoparticles and porous media or between inter-nanoparticles (Fig. 1-1). 

The interaction between nanoparticles and porous media involves three different 

mechanisms; adsorption and release from pore surface, single-particle plugging, and 

multi-particles plugging (Abdelfatah et al. 2017a, Abdelfatah et al. 2017b, Abdelfatah et 

al. 2017d, Abdelfatah et al. 2017c). The effect of these different mechanisms depends on 

nanoparticle size, concentration, injection rate, salinity, temperature, and permeability of 

the porous media as explained in chapter 2 and chapter 3. 
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Figure 1-1—Schematic ilustration of nanoparticles interaction mechanisms in 

porous media. 

 

Inter-nanoparticles interaction is significantly effective when the nanoparticles and salt 

concentrations are high enough to promote aggregations of nanoparticles (Chen et al. 

2005). The aggregation of nanoparticles is due to particles brought close together via two 

main mechanisms; perikinetic (diffusion-induced) and orthokinetic (shear-induced). The 

sticking efficiency of nanoparticles depends on the energy barrier between the particles. 

The height of the energy barrier depends on the salt concentration, temperature, and pH 

of the solution. Aggregate size distribution evolves as aggregation continues, and once it 

spans the space, it forms a gel (Metin et al. 2014, Weston et al. 2014). Aggregation and 

gelation of nanoparticles have significant effect on the transport of nanoparticles in 

porous media. The kinetics of aggregation and gelation of nanoparticles and coupled 

transport and aggregation will be discussed further in details in chapter 4 and chapter 5. 
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1.2.Outlines of dissertation 

The dissertation consists of a set of papers that has been published in, submitted to or 

prepared for submission to scholarly journals. 

Chapter 2 is the paper titled Mechanistic Study of Nanoparticles Deposition and Release 

in Porous Media. This paper is submitted to Journal of Petroleum Science and 

Engineering. 

Chapter 3 is the paper titled Mathematical Modeling and Simulation of Nanoparticles 

Transport in Heterogeneous Porous Media. This paper is published in Journal of Natural 

Gas Science and Engineering. 

Chapter 4 is the paper titled Modeling of Aggregation and Gelation of Nanoparticles 

Using Quadrature Method of Moments. This paper will be submitted soon. 

Chapter 5 is the paper titled Modeling Coupled Transport, Aggregation and In Situ 

Gelation of Nanoparticles in Porous Media. This paper will be submitted soon. 

Chapter 6 summarizes the general conclusions from the current research study. 
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Chapter 2 Mechanistic Study of Nanoparticles Deposition and Release 

in Porous Media 
 

Abstract 

Physicochemical interaction between the nanoparticles and the pore walls can cause 

significant retention of nanoparticles in porous media. The objective here is to provide 

mechanistic model based on Extended DLVO theory to study the rate of deposition and 

release of nanoparticles in porous media at different temperature, ionic strength, and pH. 

Empirical equation has been derived to calculate zeta potential at different temperature, 

ionic strength, and pH. The interaction energy can be with/without energy barrier between 

the nanoparticles and the pore surface. The rate of deposition and release of nanoparticles 

in each case has been derived. Numerical model has been used to compare the 

theoretically calculated rates with several experimental data. Increasing the temperature 

decreases the energy barrier height and increases the rate of deposition. With increasing 

the ionic strength, the thickness of the electrostatic double layer decreases and hence the 

rate of deposition increases. The effect of pH on the rate of deposition depends on the 

location of environment pH with respect to the isoelectric point of the nanoparticles and 

rock. For the extreme values of pH, energy barrier exists and rate of deposition is low. 

However, when the pH of the solution is between the isoelectric points of the 

nanoparticles and rock, the energy barrier decreases and the rate of deposition increases. 

The rate of deposition is time dependent as it decreases with increasing the covered rock 

surface. The effect of surface roughness has been included in the model using the 

effective height and density of the surface roughness distribution. Finally, these 

theoretically calculated rate values are used in a numerical model of the advection-
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dispersion equation with source/sink term. Several experimental results have been 

perfectly matched that validate the theoretical calculations of the rate of deposition. The 

new mechanistic model for nanoparticles can be used to determine the fate of 

nanoparticles in porous media under different conditions of temperature, ionic strength, 

concentration, and pH. This model can help to understand the nanoparticles transport in 

porous media and effectively design nanoparticles fluid for injection into oil and gas 

reservoirs.  

Keywords: 

Extended DLVO theory; Zeta Potential; Nanoparticles; Deposition; Release; Porous 

media 

2.1. Introduction 

In the past decade, the applications of nanotechnology in the oil and gas industry have 

attracted many researchers (Mahmoud et al. 2016, Esfandyari Bayat et al. 2015, 

Abdelfatah et al. 2014, Hendraningrat and Torsæter 2014, McElfresh et al. 2012a, 

Caldelas et al. 2011, Ju and Fan 2009, Binks et al. 2008, Huang et al. 2008). However, 

the injection of nanofluid into reservoir may cause formation damage by the retention of 

nanoparticles (NPs) in porous medium (Ju and Fan 2009). Both experimental and 

modeling investigations were carried out to study the transport and retention of 

nanoparticle in reservoir rocks (Rahman et al. 2014, Yu et al. 2012, Zhang 2012). The 

mechanism of nanoparticle retention at the pore scale is a complex phenomenon. 

McCarthy et al. (1989) introduced two main types of retention in saturated granular 

medium, deposition and straining. Deposition and release of nanoparticles to the rock 

pore surface is mainly due to the physicochemical interactions, while straining is the 

file:///C:/Users/Elsayed%20Abdelfatah/OneDrive%20-%20University%20of%20Oklahoma/00Research/00My%20Work/3.Publications/2.1D%20Nanofluid%20Model/1.JPSE/Submitted/JPSE%20Manuscript.docx%23_ENREF_25
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mechanical entrapment of single or multiple nanoparticle plugging at pore throat which 

are too small to allow nanoparticles to pass. When the size of nanoparticle is several 

orders of magnitude smaller than the rock grains or the rock pore space, all retention of 

nanoparticles is contributed by deposition (Zhang 2012, Yao et al. 1971).  Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory can be used to evaluate the physicochemical 

interactions between the nanoparticles and rock pore surface, where van der Waals 

attraction and electrical double layer interaction are the two major interactions (Derjaguin 

and Landau 1993, Verwey and Overbeek 1948). DLVO theory has been successfully 

employed to analyze colloid stability in aqueous suspensions assuming the total DLVO 

interaction energy is the sum of van der Waals energy and electrostatic double layer 

energy (Adamczyk and Weroński 1999). When the separation distance between two 

surfaces are less than a few nanometers, short-range repulsions such as Born repulsion 

and hydration repulsion present (Hoek and Agarwal 2006). Adding these repulsions, 

which are called non-DLVO forces, into the classical DLVO theory more accurate total 

DLVO interaction energy is obtained (Ghosh 2009). Particle size, separation distance, 

surface charge, ionic strength, pH, temperature, and surface roughness of the rock are the 

main factors that control the total DLVO interaction energy (Yu et al. 2012). Rate of 

deposition of different nanoparticles (NPs) through different reservoir rocks varies widely 

and was found to be strongly dependent on nanoparticle and rock grain surface charge. 

Many researches indicated the significant effect of ionic strength on deposition of 

nanoparticles, because the electrical double layer interaction is highly dependent on ionic 

strength. Rahman et al. (2014) showed that alumina nanoparticle deposition increased 

with increasing ionic strength. Caldelas (2010) found a noticeable increase of surface-
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coated silica nanoparticles deposition on Boise sandstone at higher ionic strengths. Brant 

et al. (2005) indicated that zeta potential as a function of pH and ionic strength, affects 

the deposition rate. Reyes Bahena et al. (2002) showed zeta potential of alumina 

nanoparticle decreases as pH increases at constant ionic strength, and decreases as ionic 

strength increase at the same pH. Zeta potential of nanoparticles and rock grain surface 

charge control the double layer interaction which governs the total DLVO interaction. 

Caldelas et al. (2011) studied the effect of temperature on deposition of silica nanoparticle 

through sandpack with crushed Boise sandstone. They found a slight increase of 

deposition when the temperature was raised from 55oC to 80oC. Besides, several 

experimental investigations on colloids transport through porous media suggested that 

rate of deposition is affected by the surface roughness of porous media. It is observed 

consistently that higher rate of deposition occurs on rougher surfaces, where the 

roughness is generally recognized by average height and density of protrusions 

(Shellenberger and Logan 2002, Hoek et al. 2003). 

The goal of this paper is to provide a mechanistic model for nanoparticle deposition in 

porous media. First, the modified equation for zeta potential is presented in section 2.2. 

This equation accounts for the effect of the environment variables i.e.  pH, ionic strength, 

nanoparticle size, and temperature. In section 2.3, DLVO theory considering non-DLVO 

forces is used to analyze the interaction between nanoparticles and rock surface at 

different conditions. Equations for rate of deposition and release are presented based on 

the DLVO theory in section 2.4. Then, a numerical solution of the convection-diffusion 

equation with source/sink term accounting for nanoparticles retention in porous media is 

presented in section 2.5. This numerical model is used to validate the theoretical equations 
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for rate of deposition and release, by comparing the model results with the data in 

literature (section 2.6.1). The numerical model is also used for sensitivity analysis of the 

different environmental conditions on nanoparticles interaction in porous media (section 

2.6.2). In section 2.7, the summary and conclusion are presented.  

 

2.2. Zeta Potential 

Zeta potential is the key parameter that controls the electrostatic interaction between 

dispersed nanoparticles and the rock surface. Zeta potential (휁) cannot be measured 

directly but can be calculated from Henry’s equation (Kim and Lawler 2005). However, 

as long as the absolute value of Zeta potential is less than 40 𝑚𝑣 in 1:1 electrolyte 

solution at room temperature, Henry’s equation is the best approximation for zeta 

potential (Ohshima 1994). Henry’s equation can be rearranged to calculate the zeta 

potential as the following, 

휁 =
 3𝑈𝐸𝜇

2𝜖𝑓(𝜅𝑎𝑝)
 (1) 

𝑈𝐸 is electrophoretic mobility of a nanoparticle measured from electrokinetics 

experiment, 𝜖 is dielectric constant; 𝜇 is viscosity, kg.m-1s-1; 𝜅 is the inverse Debye 

length, m-1; 𝑎𝑝 is nanoparticle radius, m. 𝑓(𝜅𝑎𝑝) is the Henry’s function. A simpler form 

of Henry’s equation in which 𝑓(𝜅𝑎𝑝) = 1.5 is known as the Smoluchowski equation 

(Kaszuba et al. 2010), and applies for large particle (𝜅𝑎𝑝~100) in high ionic strength 

with thin double layer. However, for small particle in low ionic strength with thick double 

layer another simplification can be used that 𝑓(𝜅𝑎𝑝) = 1.   (Eq. 2).  



9 

𝜅−1 = √
𝜖𝑘𝐵𝑇

2000𝑒2𝑁𝐴𝐼
 (2) 

𝐼 =
1

2
∑𝑧𝑖

2

𝑖

𝑀𝑖 (3) 

where 𝑀𝑖 is the molar concentration of the symmetric (𝑧: 𝑧) electrolyte of ith ion, in the 

unit of 
𝑚𝑜𝑙𝑒

𝑑𝑚3 ; 𝐼 is ionic strength, 𝑀; 𝑁𝐴 is the Avogadro number; 𝑘𝐵  is the Boltzmann 

constant; 𝑇 is the temperature, K; 𝑒 is the elementary charge, 𝐶.  

To analyze DLVO interaction energy at various conditions, an empirical correlation is 

modified to estimate zeta potential of nanoparticle and rock grain at different pH, ionic 

strength and temperature based on experimental measurements reported in literatures. 

The effect of  ionic strength is corrected by Henry’s function through the Debye length. 

Ohshima (1994) presented a simple approximate expression for Henry’s function which 

is applicable for any value of 𝜅𝑎𝑝  

𝑓(𝜅𝑎𝑝) = 1 +
  1

2[1 +
2.5

𝜅𝑎𝑝(1 + 𝑒
−𝜅𝑎𝑝)

]
 

(4) 

Based on the treatment of double layer at a solid particle/electrolyte solution interface by 

Gouy–Chapman–Stern model, the electrical potential measured at the shear plane can be 

referred to as the zeta potential (Oldham 2008). Fig. 2-1 shows potential (𝜓𝑥) at a distance 

𝑥 from colloid surface decreases exponentially from surface potential. Ding et al. (2014) 

indicated that the shear plane is far away from the stern plane and very close to the Gouy 

plane, which locates at the characteristic thickness of electrical double layer (𝑥𝑠 ≈ 𝜅
−1). 

Accordingly, the following expression can be used to related zeta potential and the surface 

potential. 
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휁 = 𝜓𝑠 exp(−𝜅𝑥𝑠) = 𝜓𝑠 exp(−1) (5) 

  

 

Figure 2-1—Position of shear plane and corresponding zeta potential in electrical 

double layer. 

 

Counterions binding reactions can change the charge of the surface significantly. Hence, 

the 𝑝𝐻 of the solution has an important role on the interaction between nanoparticles and 

the rock surface (Bousse et al. 1983). According to Pfeiffer et al. (2014), the influence of 

pH of colloidal nanoparticles is affected by oxidation of surface atoms and a pH-

dependent equilibrium between AO-/AOH and AOH/AOH2
+ species. van den Vlekkert et 

al. (1988) developed a theoretical model to determine the surface potential depending on 

𝑝𝐻 of the environment: 

2.303(𝑝𝐻𝐼𝐸𝑃 − 𝑝𝐻) =  −
𝑒𝜓𝑠
𝑘𝐵𝑇

+ 𝑠𝑖𝑛ℎ−1(
𝑒𝜓𝑠
𝛽𝑘𝐵𝑇

) (6) 

Where 𝑝𝐻𝐼𝐸𝑃 is the isoelectric point of the surface. 𝜓𝑠 is the surface potential, mV. 𝛽 is 

a parameter that characterize the sensitivity of the surface that is nearly equal 0.4 for 𝑆𝑖𝑂2 

and 4.8 for 𝐴𝑙2𝑂3 (Bousse and Meindl 1987, Bousse et al. 1983). The model can be 

linearly approximated around the isoelectric point (IEP). 
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𝜓𝑠 =
𝛽

𝛽 + 1

2.3𝑘𝐵𝑇

𝑒
(𝑝𝐻𝐼𝐸𝑃 − 𝑝𝐻) = 𝑚1

2.3𝑘𝐵𝑇

𝑒
(𝑝𝐻𝐼𝐸𝑃 − 𝑝𝐻) (7) 

Bousse and Meindl (1987) and Reyes Bahena et al. (2002) discussed the surface reactions 

of oxide particles in aqueous electrolyte. At low 𝑝𝐻, the surface will be charged positively 

by the adsorption of 𝐴𝑂𝐻2
+, while it will be negatively charged by 𝐴𝑂− at high 𝑝𝐻. For 

the oxide, whose surface 𝑂𝐻 sites only undergo amphoteric acid /base reactions, the two-

surface acidic and basic reaction for surface site 𝐴𝑂𝐻 are:   

Acidic reaction: 𝐴𝑂𝐻 + 𝐻+ ⇌ 𝐴𝑂𝐻2
+;   𝐾𝑎1 =

[𝐴𝑂𝐻2
+]

[𝐻+][𝐴𝑂𝐻]
 

(8) 

Basic reaction:  𝐴𝑂𝐻 + 𝑂𝐻− ⇌ 𝐴𝑂− +𝐻2𝑂;   𝐾𝑎2 =
[𝐻2𝑂][𝐴𝑂

−]

[𝐴𝑂𝐻][𝑂𝐻−]
 

Where 𝐾𝑎1 and 𝐾𝑎2 are the equilibrium constant of acidic and basic reaction. Pfeiffer et 

al. (2014) discussed the buffer effect away from IEP which leads to zeta potential 

changing at a lower rate within a region determined by the surface dominated acidic/basic 

reaction. The dominated reaction prevents the gain of negative/positive charges at the 

surface. The zeta potential can then be interpreted by two linear lines with a greater slope  

𝑚1 inside the fast change region and a smaller slope 𝑚2 inside the slow change region. 

These two regions are divided by a cut-off point fitted from experiment measurements 

(Fig. 2-2).  

휁 =

{
 
 

 
 𝑚1

0.85𝑘𝐵𝑇

𝑓(𝜅𝑎𝑝)𝑒
(𝑝𝐻𝐼𝐸𝑃 − 𝑝𝐻),                         𝑓𝑎𝑠𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 

휁𝑐𝑢𝑡−𝑜𝑓𝑓 +
𝑚2

𝑓(𝜅𝑎𝑝)
 (𝑝𝐻𝑐𝑢𝑡−𝑜𝑓𝑓 − 𝑝𝐻) ,  𝑠𝑙𝑜𝑤 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑒𝑔𝑖𝑜𝑛

 (9) 

 



12 

    

(a)                                                            (b) 

Figure 2-2—Calculated zeta potential comparing with (a) zeta potential of silica 

nanoparticle(Antonio Alves Júnior and Baptista Baldo 2014, Fisher et al. 2001, 

Mandel et al. 2015) (b) Zeta potential of Calcite limestone grain or powder 

(Amankonah and Somasundaran 1985, Ersoy 2005, Alshakhs and Kovscek 2015) 

 

Revil et al. (1999) proposed a linear relationship between zeta potential of silica 

nanoparticle and temperature at pH of 7:   

휁(𝑇) = 휁(𝑇0) ∗ [1 + 𝑣𝜁(𝑇 − 𝑇0)] (10) 

Where, 𝑣𝜁 is temperature sensitivity coefficient and is fitted from experimental data for 

different particles; 𝑇0 is reference temperature and always taken as 25oC. The final 

equation of zeta potential can be expressed as Eq. 11 with empirical parameters shown in 

Table 2-1: 

휁 =

{
 
 

 
 𝑚1

0.85𝑘𝐵𝑇

𝑓(𝜅𝑎𝑝)𝑒
(𝑝𝐻𝐼𝐸𝑃 − 𝑝𝐻)[1 + 𝑣𝜁(𝑇 − 𝑇0)]

휁𝑐𝑢𝑡−𝑜𝑓𝑓 +
𝑚2

𝑓(𝜅𝑎𝑝)
 (𝑝𝐻𝑐𝑢𝑡−𝑜𝑓𝑓 − 𝑝𝐻)[1 + 𝑣𝜁(𝑇 − 𝑇0)]

 (11) 
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Table 2-1—Empirical parameters for zeta potential calculation 

 
Limestone 

grain 

Silica 

nanoparticle 

Alumina 

nanoparticle 

𝑝𝐻𝐼𝐸𝑃 10.5 3 9.5 

Cut-off point 9 5 6 

m1 0.6 0.6 0.8 

m2 (𝑉/𝑝𝐻) 0.001 0.003 0.002 

𝑣𝜁 (1/oC) 0.02 0.008 0.01 

 

2.3. DLVO theory 

The effect of ionic strength, pH, and temperature on DLVO interaction can be introduced 

in terms of zeta potential of nanoparticles and rock as explained in section 2.2. The 

classical DLVO theory only includes Van der Waals and electrical double layer 

interaction. Extended DLVO theory also includes the short-range Born and hydration 

repulsions to obtain more accurate DLVO energy profile. Nevertheless, a quantitative 

model considering surface roughness of porous media is provided to yield a more realistic 

DLVO energy profile.  

2.3.1. Extended DLVO theory 

For the interaction energy between a sphere and a flat plate, Derjaguin’s approximation 

is usually employed to derive linear equations when the separation distance between the 

two surfaces is less than 100 nanometers (Zhang 2012). The van der Waals interaction 

energy between a spherical particle and flat surface is (Gregory 1981): 

∅𝑉𝐷𝑊 = −
𝐴𝐻 ∗ 𝑎𝑝

6𝑦(1 +
14𝑦
𝜆
)
 (12) 
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Where 𝐴𝐻 is Hamaker constant, J; 𝑦 is separation distance, m;  𝜆 is characteristic London 

wavelength, has a value of 100 nm.  

Verwey and Overbeek (1948) gave the expression of electrical double layer interaction 

energy between a spherical particle and flat surface through linear superposition 

approximation: 

∅𝐸𝐷𝐿 = 64𝜋𝜖𝑎𝑝 ∗ (
𝑘𝐵𝑇

𝑍𝑒
)
2

∗ tanh (
𝑍𝑒𝜓𝑠,1
4𝑘𝐵𝑇

) ∗ tanh (
𝑍𝑒𝜓𝑠,2
4𝑘𝐵𝑇

) ∗ exp(−𝜅𝑦) (13) 

Where, 𝑍 is of the valence of the electrolyte, 𝜓𝑠,1 and 𝜓𝑠,2 are the surface potential of 

nanoparticles and rock grain, respectively, V. Zeta potential 휁, can be used as 

approximation to the surface potential. This equation is valid when the zeta potential of 

both nanoparticle and the rock grain is less than 60 mV.  

The short-range non-DLVO forces considered to be included in the model are Born 

repulsion and hydration repulsion. For colloidal particles in aqueous fluid, the Born  

repulsion originates due to the overlap of electron clouds (Adamczyk and Weroński 

1999).Ruckenstein and Prieve (1976) first published a formula obtained in the same 

manner as Van der Waals attraction for the sphere-plate Born repulsion: 

∅𝐵𝑂𝑅𝑁 =
𝐴𝐻 ∗ 𝑦𝐵𝑂𝑅𝑁
7560

∗ [
8𝑎 + 𝑦

(2𝑎 + 𝑦)7
+
6𝑎 − 𝑦

𝑦7
] (14) 

Where 𝑦𝐵𝑂𝑅𝑁 is the minimum separation distance caused by Born repulsion, which is 

typically taken to be the Lennard–Jones separation distance of 0.4 nm (Elimelech et al. 

1995, Visser 1995). Hydration repulsion originates from the overlap of structured layer 

of water molecules at the surfaces of hydrophilic nanoparticles (Pashley and Israelachvili 

1984). Eq. 15 has been successfully used to fit the experimental results of hydration force 

between hydrophilic surfaces because it decays exponentially over the separation distance 
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(Pashley 1982, Churaev and Derjaguin 1985). Eq. 16 is the expression of hydration 

interaction energy between a spherical particle and flat surface derived from Eq. 15: 

𝐹𝐻𝑌𝐷 = 𝑎𝑝[𝐶1 𝑒𝑥𝑝 (−
𝑦

𝜆1
) + 𝐶2 𝑒𝑥𝑝 (−

𝑦

𝜆2
)] (15) 

∅𝐻𝑌𝐷 = 𝑎𝑝[𝐶1 𝜆1𝑒𝑥𝑝 (−
𝑦

𝜆1
) + 𝐶2 𝜆2𝑒𝑥𝑝 (−

𝑦

𝜆2
)] (16) 

Where 𝐶1 and 𝐶2 are hydration force constants, N/m. 𝜆1 and 𝜆2 are decay lengths, m. Eq. 

15 is a fully empirical equation. For 1:1 electrolytes such as NaCl and KCl, Ghosh (2009) 

suggested the values of 𝐶1 lie between 0.017 and 0.025 N/m, values of 𝐶2 lie between 

0.014 and 0.06 N/m, values of 𝜆1 lie between 0.17 and 0.3 nm and values of 𝜆2 lie between 

0.6 and 1.1 nm. 

The total DLVO interaction energy and the total DLVO force are: 

∅𝐷𝐿𝑉𝑂 = ∅𝑉𝐷𝑊 + ∅𝐸𝐷𝐿 + ∅𝐵𝑂𝑅𝑁 + ∅𝐻𝑌𝐷 (17) 

𝐹𝐷𝐿𝑉𝑂 =
𝑑∅𝐷𝐿𝑉𝑂
𝑑𝑦

 (18) 

It is noticed that Born and hydration interaction energy only act within a few nanometers 

of separation distance. Over a wide range of separation distance, van der Waals and 

electrical double layer interactions are analyzed first and then short-range interaction 

energy is corrected by including Born and hydration repulsions. For a given 

nanoparticle/rock system in certain electrolyte solution, Eq. 12, 14 and 16 illustrates the 

dependence of van der Waals, Born, and hydration interaction on nanoparticle size and 

Eq. 13 illustrates the dependence of electrical double layer interaction on zeta potential. 

Trefalt et al. (2016) indicated that pH and ionic strength are the critical parameters 

affecting zeta potential. Therefore, pH and ionic strength are considered in analyzing 

DLVO energy profile. Fig. 2-3 shows an energy barrier presents when the silica 
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nanoparticle and sandstone rock grain are likely charged. Conversely, Fig. 2-4 shows that 

the energy barrier vanishes as the silica nanoparticle and limestone rock grain are 

oppositely charged. The effect of ionic strength and pH on surface charge, or zeta 

potential are then shown in Fig 2-5 and 2-6, respectively. Fig. 2-5 shows the high 

dependence of DLVO energy profile on ionic strength. At low ionic strength, an energy 

barrier presents due to strong electrical double layer repulsion.  Increasing ionic strength 

weakens the double layer repulsion and lowers the height of energy barrier. At high ionic 

strength, the energy barrier vanishes because the electrical double layer repulsion is less 

than the van der Waals attraction. Fig. 2-6 shows the dependence of DLVO energy profile 

on pH at low ionic strength. The height of energy barrier increases as pH increases 

because the magnitude of zeta potential and electrical double layer repulsion increases. 

Moreover, pH does not affect DLVO energy profile very much at high ionic strength. The 

reason is electrical double layer interaction has little contribution to total DLVO 

interaction and thus van der Waals attraction dominants at high ionic strength (Zhang 

2012). Fig. 2-7 and 2-8 show the comparison between the classical DLVO theory and the 

extended DLVO theory considering Born and hydration repulsion. Hydration repulsion 

has a slightly wider effective range (3 nm) than Born repulsion (0.4 nm). Compared to 

the classical DLVO energy, the short-range repulsions raise energy barrier and results in 

a shallower primary minimum.  
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Figure 2-3—Classical DLVO interaction energy profile between a 100-nm silica 

nanoparticle (-30 mV) and sandstone grain (-30mV) in 0.001M NaCl at pH of 6 and 

25oC. 

 

 

Figure 2-4— Classical DLVO interaction energy profile between a 100-nm silica 

nanoparticle (-30 mV) and limestone grain (16 mV) in 0.001M NaCl at pH of 6 and 

25oC 
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Figure 2-5— Classical DLVO interaction energy profile between a 100-nm silica 

nanoparticle (-30 mV) and sandstone grain (-30 mV) at 25oC at different ionic 

strength. 

 

 

Figure 2-6— Classical DLVO interaction energy profile between a 100-nm silica 

nanoparticle and sandstone grain in 0.001M NaCl at 25oC at different pH. 
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Figure 2-7— Classical DLVO interaction energy profile between a 10-nm silica 

nanoparticle (-30 mV) and sandstone grain (-30 mV) in 0.001M NaCl at 25oC. 

     

 

Figure 2-8— Extended DLVO interaction energy profile considering Born and 

hydration repulsion between a 10-nm silica nanoparticle and sandstone grain in 

0.001M NaCl at 25oC. 
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(Bhattacharjee et al. 1998). Based on DLVO theory, varying surface roughness result in 

different DLVO energy profile, and therefore result in different rate of deposition and 

release. Surface roughness is included in the model using the height and the density of 

roughness (Hoek et al. 2003, Hoek and Agarwal 2006). In this study, a DLVO energy 

profile was generated by a representative height of surface roughness obtained from 

laboratory measurements with certain roughness density. The overall rate of deposition 

and release then will be calculated based on the DLVO energy profile considering surface 

roughness. 

There are many parameters that could represent surface roughness on the surface of 

martial. The two popular statistical characterizations of the roughness height are: 

arithmetic average of the absolute height deviation (ℎ𝑎𝑏𝑠) and the root mean square 

average of height deviation (ℎ𝑟𝑚𝑠) measured from the mean plane. Root-mean-square 

roughness, ℎ𝑟𝑚𝑠 effectively describes the standard deviation of an entire distribution of 

values for a large sample size and is more sensitive to topography changes of grain surface 

(Lieu 2014). Therefore, the root mean square average is always been used to express the 

surface roughness of glass beads, membranes, and rock grains. In this study, the 

representative surface roughness height of sandstone is assumed to be equal to the root 

mean square average of quartz obtained from Lieu’s experiments.  

ℎ𝑟𝑚𝑠 = √
1

𝑁
∑𝑍𝑛2
𝑁

𝑛=1

 (19) 

ℎ𝑎𝑏𝑠 =
1

𝑁
∑𝑍𝑛

𝑁

𝑛=1

 (20) 
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Where 𝑍𝑛 indicates the height of each roughness on the surface. 𝑁 is the number of 

roughness. Lieu (2014) measured the surface roughness of Rotliegend sandstone samples 

taken from the Lower Saxony Basin in northern Germany with a digital Confocal Laser 

Scanning Microscope (CLSM). The root mean square of roughness height for quartz 

mineral is about 14 nm. As DLVO interaction energy varies between rough and smooth 

surface, the density of roughness determines the fraction of roughness on smooth surface. 

If surface roughness is approximated as hemispherical protrusions on smooth surface 

(Fig. 2-9), the relationship between rough and smooth surface area is: 

𝑆𝑟𝑜𝑢𝑔ℎ = 𝑆𝑠𝑚𝑜𝑜𝑡ℎ + 𝜌𝑟 ∗ 𝑆𝑠𝑚𝑜𝑜𝑡ℎ ∗ 𝜋ℎ𝑟𝑚𝑠
2  (21) 

Where 𝑆𝑟𝑜𝑢𝑔ℎ is rough surface area, m2. 𝑆𝑠𝑚𝑜𝑜𝑡ℎ is smooth surface area, m2. 𝜌𝑟 is density 

of roughness, which is number of roughness per unit smooth surface area, 1/m2. The 

fraction of roughness presenting on smooth surface (휂𝑟) is: 

휂𝑟 =
𝜌𝑟 ∗ 𝑆𝑠𝑚𝑜𝑜𝑡ℎ ∗ 2𝜋ℎ𝑟𝑚𝑠

2

𝑆𝑟𝑜𝑢𝑔ℎ
=

𝜌𝑟 ∗ 2𝜋ℎ𝑟𝑚𝑠
2

1 + 𝜌𝑟 ∗ 𝜋ℎ𝑟𝑚𝑠2
 (22) 

Where the maximum density can be derived from 휂𝑟 ≤ 1:  

𝜌𝑟𝑚𝑎𝑥 =
1

𝜋ℎ𝑟𝑚𝑠2
 (23) 
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Figure 2-9— Hemispherical surface roughness on smooth surface (Bhattacharjee et 

al. 1998). 

 

Bhattacharjee et al. (1998) indicated that the DLVO energy profile varies when 

considering the surfaces of particles and solids are rough instead of smooth. Elimelech 

and O'Melia (1990) approximated the surface roughness as hemispherical protrusions on 

the surface. Then the total DLVO interaction energy is calculated as a linear superposition 

of energy associated with hemispherical protrusion top and the underlying smooth 

surface. The calculation of nanoparticle-roughness energy uses equations of sphere-

sphere DLVO energy, and calculation of nanoparticle-smooth surface energy uses 

equations of sphere-flat surface DLVO energy. The sphere-sphere energy is calculated 

by replacing 𝑎𝑝 in sphere-flat surface equation (Eq. 12, 13 and 16) by (
𝑎𝑝∗ℎ𝑟𝑚𝑠

𝑎𝑝+ℎ𝑟𝑚𝑠
), where 

ℎ𝑟𝑚𝑠 is the representative height of roughness, or the representative radius of 

hemispherical protrusions.   

∅𝐷𝐿𝑉𝑂𝑓𝑙𝑎𝑡 = ∅𝑉𝐷𝑊 + ∅𝐸𝐷𝐿 + ∅𝐻𝑌𝐷 (24) 
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∅𝐷𝐿𝑉𝑂𝑠𝑝ℎ𝑒𝑟𝑒 = ∅𝐷𝐿𝑉𝑂𝑓𝑙𝑎𝑡 ∗ (
ℎ𝑟𝑚𝑠

𝑎𝑝 + ℎ𝑟𝑚𝑠
) 

(25) 

∅𝐷𝐿𝑉𝑂𝑟𝑜𝑢𝑔ℎ(𝑦) = ∅𝐷𝐿𝑉𝑂𝑓𝑙𝑎𝑡(𝑦 + ℎ𝑟𝑚𝑠) + ∅𝐷𝐿𝑉𝑂𝑠𝑝ℎ𝑒𝑟𝑒(𝑦) + ∅𝐵𝑂𝑅𝑁(𝑦) (26) 

 

The representative DLVO energy by Extended DLVO theory can be calculated by 

introducing fraction of roughness on total surface area (Hoek and Agarwal 2006). 

 ∅𝐷𝐿𝑉𝑂 = 휂𝑟 ∗ ∅𝐷𝐿𝑉𝑂𝑟𝑜𝑢𝑔ℎ(𝑦) + (1 − 휂𝑟) ∗ ∅𝐷𝐿𝑉𝑂(𝑦) (27) 

  

2.4. Rate of deposition and rate of release  

Spielman and Friedlander (1974) and Ruckenstein and Prieve (1976) divided nanoparticle 

deposition and release into two cases based on the DLVO-energy profile: case 1 with the 

presence of energy barrier and case 2 without energy barrier. The dominant mechanism 

of nanoparticle deposition and release of two cases varies due to the strong resistance on 

the nanoparticle deposition to and release from the surface brought by the energy barrier. 

Ryan and Elimelech (1996) described the colloid deposition and release as two-step 

processes: the colloid diffusion from bulk fluid to surface and deposition on surface, and 

colloid detachment from surface and diffusion back to the bulk fluid. For case 1, repulsive 

DLVO force are applied to nanoparticle as it approaches the pore surface, and 

nanoparticles must overcome the energy barrier to be adsorbed on the surface or to release 

from the surface. Therefore, the rate of deposition and release depend on the magnitude 

or height of energy barrier. However, for case 2 every nanoparticle approaching to the 

surface will be attracted due to the attractive DLVO force. The rate of deposition and 

release are then controlled by the diffusion process.  

file:///C:/Users/Elsayed%20Abdelfatah/OneDrive%20-%20University%20of%20Oklahoma/00Research/00My%20Work/3.Publications/2.1D%20Nanofluid%20Model/1.JPSE/Submitted/JPSE%20Manuscript.docx%23_ENREF_42


24 

To model the transport of nanoparticle in pore space, the pore is conceptualized as a 

cylindrical flow channel. This cylinder can be divided into two main layers, a convection 

flow layer and a diffusion boundary layer (Fig. 2-10). Inside the diffusion boundary layer, 

the effect of convection is much smaller than diffusion and fluid convection is neglected. 

A DLVO layer is considered close to the surface, inside which the DLVO interactions 

become important. Ryan and Gschwend (1994) reported the thickness of diffusion 

boundary layer (𝛿𝐷𝑖𝑓𝑓) is between 11 to 28 microns for 250-micron quartz grains and the 

thickness of DLVO layer (𝛿𝐷𝐿𝑉𝑂) is between 7 to 110 nm for 150-nm iron oxide 

nanoparticles.   

 

Figure 2-10— Schematic of cylindrical flow channel, which simulates a pore throat 

 

2.4.1. Rate of deposition and release for case 1 

 

Nanoparticles transport through the saturated porous medium is described by the 

convection-diffusion equation lumping with DLVO interaction assuming no source or 

sink Spielman and Friedlander (1974): 

𝜕𝐶

𝜕𝑡
+ 𝑢.𝛻𝐶 = 𝛻 [𝐷.𝛻𝐶 +

𝐷𝐶

𝑘𝐵𝑇
. 𝛻∅𝐷𝐿𝑉𝑂] (28) 
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Where 𝐶 is nanoparticle concentration, 
𝑔

𝑚3
; 𝐷 is diffusion coefficient of nanoparticle, 

𝑚2

𝑠
. 

Nanoparticle deposition occurs at the pore surface, which is inside the diffusion boundary 

layer where convection term is neglected. Assuming 
𝜕2𝐶

𝜕𝑥2
≪

𝜕2𝐶

𝜕𝑦2
, the nanoparticle 

deposition flux perpendicular to the rock surface ( 𝐽𝑦) is controlled by diffusion and 

external DLVO interaction. 

 𝐽𝑦 = −𝐷 [
𝜕𝐶

𝜕𝑦
+

𝐶

𝑘𝐵𝑇
.
𝜕∅𝐷𝐿𝑉𝑂
𝜕𝑦

] (29) 

Spielman and Friedlander (1974) integrated Eq. 29 and reduced the problem of 

nanoparticle deposition with an energy barrier near the surface to the solution of the usual 

convection diffusion equation with a first-order surface reaction. The boundary condition 

becomes:  

At y = 0:                                𝐶 = −
𝐽0

𝐷(𝑦)
[∫ (𝑒

∅𝐷𝐿𝑉𝑂(𝑦)

𝑘𝐵𝑇 − 1)𝑑𝑦]
∞

0
= −

𝐽0

𝐾𝑑𝑒𝑝
  (30) 

Rearrange:                             𝐾𝑑𝑒𝑝 =
𝐷(𝑦)

∫ (𝑒

∅𝐷𝐿𝑉𝑂(𝑦)
𝑘𝐵𝑇 −1)𝑑𝑦

∞
0

 
(31) 

Where 𝐽0 is the nanoparticle deposition flux perpendicular to the rock surface ( 𝐽𝑦) at the 

surface and 𝐾𝑑𝑒𝑝 is the rate coefficient of deposition. The energy decays rapidly as 

|𝑦 − 𝑦𝑚𝑎𝑥|  increases. Expanding ∅𝐷𝐿𝑉𝑂(𝑦) using Taylor series and truncating after 

second-order term gives:  

∅𝐷𝐿𝑉𝑂(𝑦) = ∅𝑚𝑎𝑥 − 0.5𝛾𝑚𝑎𝑥(𝑦 − 𝑦𝑚𝑎𝑥)
2 (32) 

Where 𝑦𝑚𝑎𝑥 is the separation distance at primary maximum and 𝛾𝑚𝑎𝑥 =

−
𝑑2∅𝐷𝐿𝑉𝑂

𝑑𝑦2
|𝑦=𝑦𝑚𝑎𝑥. Substituting the Taylor expansion of DLVO energy into Eq. 31 the 
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rate coefficient of deposition of case 1 is exponentially related to the height of energy 

barrier ∅𝑚𝑎𝑥 by Ruckenstein and Prieve (1976). 

𝐾𝑑𝑒𝑝 = 𝐷(𝑦𝑚𝑎𝑥) ∗ (
𝛾𝑚𝑎𝑥
2𝜋𝑘𝐵𝑇

)
1
2 ∗ exp (

−|∅𝑚𝑎𝑥|

𝑘𝐵𝑇
) (33) 

𝐷(𝑦𝑚𝑎𝑥) =
𝑘𝐵𝑇

6𝜋𝜇𝑎𝑝
*
𝑦𝑚𝑎𝑥

𝑎𝑝
 (34) 

Following Ruckenstein and Prieve (1976), nanoparticles deposited in primary minimum 

must possess sufficient thermal energy to overcome the activation energy of 

(∅𝑚𝑎𝑥 − ∅𝑚𝑖𝑛) to release from primary minimum. The rate of release controlled by 

DLVO energy barrier was derived in the same way as Eq. 33 by Ruckenstein and Prieve 

(1976).  

𝐾𝑟𝑒𝑙,1 = 𝐷(𝑦𝑚𝑎𝑥) ∗
(𝛾𝑚𝑎𝑥𝛾𝑚𝑖𝑛)

2𝜋𝑘𝐵𝑇

1
2

∗ exp (
−|∅𝑚𝑎𝑥 − ∅𝑚𝑖𝑛|

𝑘𝐵𝑇
) (35) 

Where  𝛾𝑚𝑖𝑛 = −
𝑑2∅𝐷𝐿𝑉𝑂

𝑑𝑦2
|𝑦=𝑦𝑚𝑖𝑛. 

2.4.2. Rate of deposition and release for case 2 

Ryan and Elimelech (1996) and Ryan and Gschwend (1994) proposed models of colloid 

deposition and release when energy barrier vanishes. It is assumed for case 2 the 

deposition and release are fast and the diffusion of nanoparticle across the diffusion 

boundary layer to the bulk fluid is the limiting step. The nanoparticle flux from interface 

between convection layer and diffusion boundary layer to the proximity of the pore 

surface is explained as: 

 𝐽𝑦 = −𝐷
𝜕𝐶

𝜕𝑦
= −𝐾𝑑𝑒𝑝 ∗  𝐶𝑏𝑢𝑙𝑘 (36) 
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The perfect sink model assumes deposited nanoparticles are irreversibly consumed by a 

very fast immobilization reaction and disappear from the flowing system (Ryan and 

Elimelech 1996). With the boundary conditions of 𝐶 = 0 𝑎𝑡 𝑦 = 𝛿𝐷𝐿𝑉𝑂 and 𝐶 =

𝐶𝑏𝑢𝑙𝑘 𝑎𝑡 𝑦 = 𝛿𝐷𝑖𝑓𝑓 the rate of deposition for case 2 is: 

𝐾𝑑𝑒𝑝,2 =
𝐷

𝛿𝐷𝑖𝑓𝑓 − 𝛿𝐷𝐿𝑉𝑂
≈ 𝑎𝑔

−
2
3 ∗ 𝐷

2
3 ∗ 𝑢

1
3 (37) 

Where 𝛿𝐷𝑖𝑓𝑓 and 𝛿𝐷𝐿𝑉𝑂 are thickness of diffusion boundary layer and DLVO layer, 

respectively. 𝛿𝐷𝑖𝑓𝑓 = 𝑎𝑔(
𝐷

𝑢∗𝑎𝑔
)
1

3 given by Spielman and Friedlander (1974). The 

diffusion-controlled rate coefficient of release for case 2 given by Ryan and Gschwend 

(1994) is : 

𝐾𝑟𝑒𝑙,2 = 𝑎𝑔
−
4
3 ∗ 𝐷

1
3 ∗ 𝑢

2
3 (38) 

Where 𝑎𝑔 is the radius of rock grain. It is worth mentioning that the height of surface 

roughness is much less than the thickness of diffusion boundary layer. Therefore, the rate 

of deposition is independent of surface roughness. Meanwhile, for case 2 the deposited 

nanoparticles to be released from surface is controlled in the first place by surface 

roughness (Ryan and Elimelech 1996). The kinetics of mobilization has been analyzed 

by balance of torques applied on a nanoparticle adhered to a flat surface in a moving fluid. 

Fig. 2-11 shows the resisting torque, 𝑇𝐷𝐿𝑉𝑂, drag torque, 𝑇𝑑𝑟𝑎𝑔, drag moment by surface 

stress, 𝑀𝑑 on a nanoparticle adhered on surface resisted by a surface roughness of height, 

ℎ. The drag force acting at the center of the nanoparticle is calculated from a modified 

Stokes law (O’Neill 1968) and the corresponded drag torque is the product of drag force 

and drag arm 𝑙𝑑: 

file:///C:/Users/Elsayed%20Abdelfatah/OneDrive%20-%20University%20of%20Oklahoma/00Research/00My%20Work/3.Publications/2.1D%20Nanofluid%20Model/1.JPSE/Submitted/JPSE%20Manuscript.docx%23_ENREF_42
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𝐹𝑑 = 1.7 ∗ 6𝜋𝜇𝑎𝑝𝑢𝑝 (39) 

𝑇𝑑 = 𝐹𝑑𝑙𝑑 (40) 

 

 

Figure 2-11— Schematic of torque balance on a nanoparticle deposited on flat pore 

surface resisted by a surface roughness with a parabolic velocity profile in the flow 

channel. 

 

Assuming laminar flow in pore throat obeys the Poiseuille law and adopts a parabolic 

flow velocity profile, the flow velocity acting at the center of the nanoparticle (𝑢𝑝) is (Bos 

et al. 1999): 

𝑢𝑝 = 4 ∗ 𝑢𝑚𝑎𝑥
𝑎𝑝

𝑑𝑝𝑜𝑟𝑒
(1 −

𝑎𝑝

𝑑𝑝𝑜𝑟𝑒
)                          (41) 

Where 𝑑𝑝𝑜𝑟𝑒 is the diameter of the cylindrical pore throat. 𝑢𝑚𝑎𝑥 is the maximum flow 

velocity along the flow direction in the cylindrical pore throat. The lifting force acting at 

the center of the particle is (Ryan and Elimelech (1996): 

𝐹𝑙 = 𝜒 ∗ 𝑎𝑝
2√𝜌𝑓𝑙𝑢𝑖𝑑 ∗ 𝜇 ∗ 𝑢𝑝

3                        (42) 

where the lifting force coefficient 𝜒 is 81.2. When the separation distance between the 

nanoparticle and pore surface is less than 1 nm, strong repulsive interactions become 
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significant to prevent surfaces of nanoparticles and pore wall from contacting each other. 

The existence of this short-range Born repulsion causes a minimum separation distance 

between deposited nanoparticle and pore surface , which is typically taken to be the 

Lennard–Jones separation distance of 0.4 nm (Elimelech et al. 1995, Visser 1995). 

Therefore, it determines the separation distance of the primary minimum, where the 

strongest DLVO attractive interaction presents. The net attractive DLVO force between 

the deposited nanoparticle and pore surface then is calculated at this separation distance: 

𝐹𝐷𝐿𝑉𝑂 =
𝜕∅𝐷𝐿𝑉𝑂

𝜕𝑦
|𝑦𝑚𝑖𝑛=0.4𝑛𝑚                        (43) 

and the corresponded DLVO torque is the product of DLVO force and DLVO arm 𝑙𝐷𝐿𝑉𝑂: 

𝑇𝐷𝐿𝑉𝑂 = 𝐹𝐷𝐿𝑉𝑂𝑙𝐷𝐿𝑉𝑂 (44) 

From Fig.8 the relationship between the arms and roughness height can be obtained as: 

𝑙𝑑 = √𝑎𝑝2 − 𝑙𝐷𝐿𝑉𝑂
2  (45) 

ℎ = 0.4 + 𝑎𝑝 − 𝑙𝑑 (46) 

The moment of surface stresses given by O'Neill (1968) is: 

𝑀𝑑 = 0.944 ∗ 8𝜋𝜇𝑎𝑝
2 ∗ 𝑢𝑝                        (47) 

Burdick (2001) discussed three mechanisms of particle release from surface 

hydrodynamically: lifting, sliding and rolling. Lifting occurs when lifting force is greater 

than adhesive DLVO force (Eq. 36) while sliding occurs when hydrodynamic drag force 

overcomes the static friction between the nanoparticle and surface (Eq. 37). Rolling 

occurs when the drag torque exceeds the adhesive torque acting on the nanoparticle (Eq. 

38). 

Lifting criteria: 𝐹𝑙 > 𝐹𝐷𝐿𝑉𝑂                             (48) 
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Sliding criteria: 𝐹𝑑 > 𝜇𝑓 ∗ |𝐹𝐷𝐿𝑉𝑂−𝐹𝑙|      (49) 

Rolling criteria: 𝑀𝑑 + 𝐹𝑑𝑙𝑑+𝐹𝑙𝑙𝐷𝐿𝑉𝑂 > 𝐹𝐷𝐿𝑉𝑂𝑙𝐷𝐿𝑉𝑂      (50) 

Where 𝜇𝑓 is the static friction coefficient and assumed to be unity (Burdick et al. 2001). 

The parameters (Table 2-2) are used for a sample calculation of force and torque balance 

(Table 2-3) using Eq. 39 through Eq. 43.  It is found that in similar chemical environment, 

for nanoparticles with the size of 10 nm, the drag force is several orders of magnitude 

less than the DLVO attraction, and the lifting force is several orders of magnitude less 

than drag force (Table 2-3). Hence, the criteria of lifting and sliding are neglected and 

rolling becomes the dominant mechanism of hydrodynamic release. Substitute Eq. 39 

through Eq. 47 into Eq. 50 with neglecting lifting torque, a critical velocity for release 

acting at the center of nanoparticle can be identified as: 

𝑢𝑝,𝑐𝑟 =
𝐹𝐷𝐿𝑉𝑂𝑙𝐷𝐿𝑉𝑂

0.944∗8𝜋𝜇𝑎𝑝
2+1.7∗6𝜋𝜇𝑎𝑝∗√𝑎𝑝

2−𝑙𝐷𝐿𝑉𝑂
2

                      
(51) 

Surface roughness is an important parameter in initiating particle to release from rock 

surface by affecting the length of arms 𝑙𝐷𝐿𝑉𝑂 and  𝑙𝑑 (Burdick et al. 2001). Hubbe (1984) 

proposed a relationship between the height of roughness, ℎ, and 𝑙𝐷𝐿𝑉𝑂 considering the 

minimum separation distance 𝑦𝑚𝑖𝑛: 

𝑙𝐷𝐿𝑉𝑂 = 𝑎𝑝√
2(ℎ−𝑦𝑚𝑖𝑛)

𝑎𝑝
−
(ℎ−𝑦𝑚𝑖𝑛)

2

𝑎𝑝
2                 (52) 

Through the SEM analysis, the surface of sandstone is smooth while the surface of 

limestone and sandstone is rough and full of dents and bumps (Esfandyari Bayat et al. 

2015). For hard and relatively smooth surface Hubbe (1984) mentioned height of 

roughness is so small relative to radius of nanoparticle that the term  
(ℎ−𝑦𝑚𝑖𝑛)

2

𝑎𝑝
2  can be 

neglected. It is then assumed that ℎ = 0.5 𝑛𝑚 for small surface roughness that prevent 
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nanoparticles from sliding. The results of torque balance and rate of release are shown in 

Table 2-3.  

Table 2-2― Variables and parameters used in sample torque calculation 

Injection rate (ml/min) 1 

Flow velocity (m/s) 4.24E-4 

Flow velocity on center of nanoparticle (m/s) 8.06E-5 

Height of small surface roughness (Ding et al.) 0.5 

Minimum separation distance (Ding et al.) 0.4 

Nanoparticle radius (Ding et al.) 5 

Sandstone grain radius (Zhang (2012) (Ding et al.) 75000 

Diffusion Coefficient (m2/s) 4.37E-11 

Fluid viscosity (cp) 1 

Solution pH 6 

Ionic strength (M) 0.0001 

Temperature (K) 298 

Zeta potential of nanoparticle (mV) -20 

Zeta potential of rock grain (mV) -22 

Hamaker constant (J) 6E-20 

Boltzmann constant (J/K) 1.38E-23 

Dielectric constant 6.94E-10 

Elementary charge (C) 1.60E-19 

Avogadro number 6.02E+23 
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Table 2-3― Results from sample torque calculation. 

DLVO force (kg.m/s) 3.12E-10 

Hydrodynamic drag force (kg.m/s) 1.35E-15 

Lifting force (kg.m/s) 4.98E-23 

Surface stress moment (kg.m2/s) 5.10E-21 

DLVO arm (Ding et al.) 0.99 

Critical velocity on nanoparticle (m/s) 0.22 

Rate coefficient of diffusion-controlled release if 

Critical injection rate is reached (1/s) 
3.34E-3 

Rate coefficient of energy-controlled release (1/s) 2.60E-14 

 

According to results shown in Table 2-3, it is concluded that for case 1 with energy 

barrier, the energy-barrier-controlled rate of release is quite small, which is consistent 

with literatures which treat the deposition in this case as irreversible deposition 

(Ruckenstein and Prieve 1976, Ryan and Elimelech 1996). Moreover, for case 2 where 

energy barrier vanishes, the hydrodynamic drag force which is proportional to the flow 

velocity acting on the nanoparticle is much less than the attractive DLVO force. For small 

nanoparticle with radius of 5 nm, the injection flow velocity on nanoparticle of 

2.61 ∗ 10−6
𝑚

𝑠
 is too small to meet the critical value of 0.22 

𝑚

𝑠
 to initiate the release 

hydrodynamically. The calculated critical velocity and the finding of no hydrodynamic 

release are consistent with Zhang (2012). Therefore, in the following simulations 

diffusion-controlled rate of release is neglected for case 2.  

The mass balance of net nanoparticle deposition per unit time is expressed as the 

concentration of deposition minus the concentration of release from the nanoparticle 

already deposited. The rate of release for case 2 will be neglected if the injection velocity 

is less than the critical value.  
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Case 1:                        𝑅 =
𝜕𝐶𝑑𝑒𝑝

𝜕𝑡
= (𝐾𝑑𝑒𝑝,1 ∗  𝑆𝑆𝐴) ∗  𝐶𝑏𝑢𝑙𝑘 − 𝐾𝑟𝑒𝑙,1 ∗  𝐶𝑑𝑒𝑝   

Case 2:                        𝑅 =
𝜕𝐶𝑑𝑒𝑝

𝜕𝑡
= (𝐾𝑑𝑒𝑝,2 ∗  𝑆𝑆𝐴) ∗  𝐶𝑏𝑢𝑙𝑘 − 𝐾𝑟𝑒𝑙,2 ∗  𝐶𝑑𝑒𝑝   

(53) 

Where 𝑅 is the rate of changing in concentration of retained nanoparticle in the porous 

medium. The diffusion-controlled release is always neglected in following simulations 

because the critical injection rate is too high to reach.  𝑆𝑆𝐴 is the specific surface area of 

sandpack, 5.83 ∗ 105
1

𝑚
 for Boise sandstone and 2 ∗ 106

1

𝑚
 for Texas Cream limestone 

measured by Zhang (2012). 

𝑆𝑆𝐴 =
𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
         (54) 

2.4.3. Long-time deposition 

The rate of deposition calculated above assumed all the rock pore surface is available to 

interact with nanoparticle. However, with the nanoparticle deposited on the pore surface, 

the available surface for interaction with nanoparticles decreases. Nanoparticles 

deposited on the surface form monolayer or multilayer which cover the surface and 

change the surface properties. The covering layer prevents the nanoparticle in bulk fluid 

from interacting with the rock pore surface. Then the rate of deposition is determined by 

the particle-particle interactions (Ryan and Elimelech 1996). In this model, monolayer 

coverage is assumed because the particle-particle interaction is assumed to be repulsive 

and no aggregation occurs. The accumulation of nanoparticle on the pore surface will 

decrease the rate of deposition. Johnson and Elimelech (1995) proposed a linear 

relationship of the deposition rate correction 𝐵(휃) as a function of fractional surface 

coverage. 
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𝐵(휃) = 1 −
휃

휃𝑚𝑎𝑥
= 1 −

𝐶𝑑𝑒𝑝 ∗ 𝑉𝑝𝑜𝑟𝑒 ∗ 𝐴𝑝

휂𝑝𝑎𝑐𝑘𝑖𝑛𝑔 ∗ 𝑆𝑆𝐴 ∗ 𝑉𝑝𝑜𝑟𝑒
= 1 −

𝐶𝑑𝑒𝑝 ∗ 𝐴𝑝

휂𝑝𝑎𝑐𝑘𝑖𝑛𝑔 ∗ 𝑆𝑆𝐴
 (55) 

Where, 𝐴𝑝 is the projected cross-section area of a spherical nanoparticle; 𝐶𝑑𝑒𝑝 is net 

concentration of nanoparticle deposited on rock surface; 𝑉𝑝𝑜𝑟𝑒 is pore volume; 휂𝑝𝑎𝑐𝑘𝑖𝑛𝑔 

is the hexagonal packing efficiency, 90.69%. The time-dependent rate of deposition is: 

𝐾𝑑𝑒𝑝(𝑡) = 𝐾𝑑ep(t = 0) ∗ 𝐵(휃) (56) 

2.5. Numerical Model:  

To validate the theoretical calculations of rate of deposition and release of nanoparticles 

in porous media, numerical simulation has been conducted to compare the model results 

with the experimental data in the literature at the same conditions. One-dimensional 

advection-dispersion equation with a sink/source term is solved using explicit finite 

difference method (Thongmoon and McKibbin 2006). The model assumed a piston like 

displacement, that the velocity is constant as the injection velocity.  

𝜕(𝜙𝐶)

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
= 𝐷𝜙

𝜕2𝐶

𝜕𝑥2
+ 𝑅 (57) 

Here, 𝐶(𝑥, 𝑡) is the concentration of nanoparticles at any point 𝑥 (0 < 𝑥 < 𝐿)and time 

𝑡.𝑢 is the constant injection velocity in the 𝑥 direction and 𝐷 is the diffusion coefficient. 

𝜙 is the porosity of the porous medium. 𝑅 is the sink/source term that accounts for 

deposition and/or release of nanoparticles on/from the rock pore surface. The following 

boundary and initial conditions are used to close the system: 

𝐶(𝑥, 0) = 0, 

𝐶(0, 𝑡) = 𝐶𝑖𝑛𝑗 , 
(58) 
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𝜕𝐶(𝐿, 𝑡)

𝜕𝑥
= 0 

Forward time-centralspace (FTCS) method (Zhang 2012) is used to discretize the 

advection-dispersion equation. This method is a second order in space and first order in 

time. The equation is discretized on finite mesh points.  The grid points are 0 = 𝑥1 <

𝑥𝑖 < 𝑥𝑁 = 𝐿. The approximate solution on these grid points is 

𝐶𝑖
𝑛+1 − 𝐶𝑖

𝑛

Δ𝑡
+
𝑢

𝜙

𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

Δ𝑥
= 𝐷

𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(Δ𝑥)2
+ 𝑅𝑛 + 𝜊(Δ𝑡, (Δ𝑥)2) (59) 

for 𝑖 =  2, 3, . . . , 𝑁 − 1. While for 𝑖 = 1, the boundary condition is applied. For 𝑖 = 𝑁, 

one-sided finite difference scheme is used 

𝐶𝑖
𝑛+1 − 𝐶𝑖

𝑛

Δ𝑡
+
𝑢

𝜙

3𝐶𝑁
𝑛 − 4𝐶𝑁−1

𝑛 + 𝐶𝑁−2
𝑛

Δ𝑥

= 𝐷
2𝐶𝑁

𝑛 − 5𝐶𝑁−1
𝑛 + 4𝐶𝑁−2

𝑛 + 𝐶𝑁−3
𝑛

(Δ𝑥)2
+ 𝑅𝑛 + 𝜊(Δ𝑡, (Δ𝑥)2) 

(60) 

2.6. Results and Discussion 

2.6.1. Model validation 

Several simulations were run to compare the model results with existing experimental 

data in literature for injection of different kinds of silica nanoparticles into Boise 

sandstone and Texas Cream limestone. The deposition of silica nanoparticles onto rock 

pore surface were divided into three different categories: high, moderate, and low rate of 

deposition based on DLVO energy profile. Each category has a characteristic DLVO 

energy profile. Table 2-4 shows the parameters used in the experiments and simulations, 

related to DLVO profile characteristic and rate of deposition. As discussed before, higher 
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energy barrier means stronger repulsion between the nanoparticle and pore surface, thus 

the lower rate of deposition. 

Table 2-4― Input parameters for the three categories of DLVO energy profile 

nanoparticle type Nexsil 20K 

Silica 

3M Fluorescent 

Silica 

3M Silica with 

PEG coating 

Nanoparticle radius (Ding et al.) 10 5 5 

rock type Boise Sandstone Boise Sandstone Boise Sandstone 

Solution 
D.I. water D.I. water 

0.5M NaCl and 

API brine 

Zeta potential of rock grain 

(mV) 

-22 - 22 -22 

Zeta potential of nanoparticle 

(mV) 

-50 -20 3 

Reference Caldelas (2010) Zhang (2012) Caldelas (2010) 

DLVO profile character high barrier, 

case 1 

low barrier,  

case 1 

no barrier,  

case 2 

rate of deposition low moderate high 

2.6.1.1.Low rate of deposition by high energy barrier 

Caldelas (2010) used Nexsil 20K silica nanoparticle without surface coating and Boise 

sandstone. Zeta potential of Nexsil 20K silica nanoparticle was measured as -50 mV. In 

low salinity environment (D.I.Water), electric double layer repulsion is strong because 

magnitude of zeta potential of Nexsil 20K silica nanoparticle is high. Fig. 2-12 shows the 

total DLVO energy profile with a high primary maximum, or energy barrier of 10 kB*T 

and a low primary minimum over -30 kB*T, resulting in low rate of deposition and 

release. Wang et al. (2012) indicated the secondary minimum does not present and the 

deposition in secondary minimum is neglected in this study. 
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Fig. 2-13a and b show good matches between simulation and experimental breakthrough 

curves, which plot the ratio of nanoparticle effluent concentration (𝐶) to injection 

concentration (𝐶0) against pore volume injected (𝑃𝑉𝐼). Calculated rate of deposition 

keeps the same because the chemical environment and physical properties of 

nanoparticles and grains do not change. With low rate of deposition the injection rate and 

concentration does not affect the breakthrough curves very much. The delay of 

breakthrough and long tail of breakthrough curve shown in Fig. 2-13c may be caused by 

highly viscous nanoparticle dispersion as a 40 wt%, or equivalently 15 vol% nanofluid is 

used. Caldelas (2010) indicated the post flush fingered through the more viscous 

nanofluid and the nanoparticle released from pore surface retained in the porous medium 

instead of flowing out of sandpack with post flush fluid. Therefore, many pore volumes 

of post flush are needed to sweep the retained nanoparticles.   

 
Figure 2-12― DLVO energy profile of Nexsil 20K silica nanoparticle (-50 mV) and 

Boise sandstone (-22 mV) with high energy barrier. 
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Table 2-5 ― Calculated rate of deposition and release of the 

Simulation # Qinj (ml/min) Cinj (wt%) Cinj (vol%) 

1 1 5 2 

2 3 5 2 

3 1 40 15 

Case 1 with energy barrier presents.  

Calculated rate of deposition Kdep,1 is 1.03.10-7 m.s-1. 

Calculated rate of release Krel,1 is 1.0.10-20 s-1. 

Experiment data of effluent concentration in simulation 1, 2 

and 3 are from experiment 33, 35 and 26 by (Caldelas 2010), 

respectively.  

 

2.6.1.1.Moderate rate of deposition with low energy barrier 

Fig. 2-14 shows the DLVO energy curves with the 3M fluorescent silica nanoparticles 

used by Zhang (2012) with Boise sandstone. The zeta potential of nanoparticle was 

measured as -20 mV. Compared to the previous case, a smaller electric double layer 

repulsion presents due to smaller zeta potential of nanoparticle.  A small energy barrier 

of 3.5 kB*T and primary minimum of -10 kB*T leads to lower resistance to deposition 

and higher calculated rate coefficient of deposition (Table 2-6). With higher initial rate 

of deposition the injection rate and concentration significantly affect the breakthrough 

curves. High injection rate and concentration lead to fast coverage of rock surface and 

fast drop of rate of deposition. The faster drop of rate of deposition is reflected by steeper 
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slope of dimensionless concentration curve during the injection shown in Fig. 2-15a, b, c 

and d. 

(a)  

 (b) 

(c) 

Figure 2-13― Experiment and simulated effluent concentration (breakthrough 

curves) of 3 pore volumes of Nexsil 30K silica nanoparticle injected into a 1-ft 

sandpack of Boise sandstone grains: (a) simulation 1; (b) simulation 2 and (c) 

simulation 3. 
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Figure 2-14― DLVO energy profile of silica nanoparticle (-20 mV) and Boise 

sandstone (-22 mV) with low energy barrier 

 

Table 2-6― Calculated rate of deposition and release of the case by low energy 

barrier. 

Simulation # Qinj (ml/min) Cinj (wt%) Cinj (vol%) 

4 1 0.5 0.19 

5 1 1 0.38 

6 1 5 1.89 

7 10 1 0.38 

Case 1 with energy barrier presents.  

Calculated rate of deposition Kdep,1 is 2.08.10-6 m.s-1. 

Calculated rate of release Krel,1 is 1.7.10-6 s-1. 

Experiment data of effluent concentration in simulation 4, 5, 6 and 7 

are from experiment 104, 96, 102 and 107 by (Caldelas 2010), 

respectively.  
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(a)

(b) 

(c) 
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 (d) 

Figure 2-15― Experiment and simulated effluent concentration (breakthrough 

curves) of 3 pore volumes (simulation 4, 5, and 6) and 5 pore volumes (simulation 7) 

of 3M fluorescent silica nanoparticle injected into a 1-ft sandpack of Boise sandstone 

grains: (a) simulation. 

2.6.1.2.High rate of deposition by no energy barrier 

Fig. 2-16 shows the DLVO energy curves with the 3M silica nanoparticles with PEG 

coating and Boise sandstone system (Caldelas 2010). The zeta potential of nanoparticle 

was measured as about 3 mV±6 mV, which means the PEG coating effectively blocked 

the silica surface charge. Solution of high salinity (greater than 0.5 M) was used in the 

experiments. Under high ionic strength, the electrical double layer is highly compressed 

by high concentration of ions in electrolyte. Thus, the magnitude of electrical double layer 

interaction is much smaller than the van der Waals attraction at any separation distance. 

It is then concluded that the electrical double layer energy can be neglected and van der 

Waals energy dominates under high ionic strength condition. Therefore, the total DLVO 

energy is always attraction, resulting in very high rate of deposition when no energy 

barrier presents. Calculated rate coefficient of deposition increases as ionic strength 

increases (Table 2-7).  
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Fig. 2-17a and b show concentration ratio increases slower at higher ionic strength. 

Assuming a monolayer deposition at high ionic strength, the surface of pores will be 

covered by nanoparticle fast. However, high ionic strength may enhance coagulation of 

nanoparticles because attractive van der Waals force dominates the interaction energy 

between nanoparticles (Ryan and Elimelech 1996). Liu (1994) has reported the alumina 

nanoparticle takes more time to break through the quartz sand column at high ionic 

strength due to coagulation. As nanoparticles deposited on and covered the surface, the 

rate of deposition decreases due to the repulsive particle-particle interaction at low ionic 

strength. Whereas, as ionic strength increases, the particle-particle repulsion is weakened 

and coagulation of deposited nanoparticles may lead to multi-layer coverage close to the 

surface. Fig. 2-17c shows the best match to the experiment data with a triple-layer 

coverage.  

 

Figure 2-16― DLVO energy profile of silica nanoparticle with PEG coating (3 mV) 

and Boise sandstone (-22 mV) with no energy barrier, electric double layer energy 

is negligible and thus total DLVO energy equals to the van der Waals energy. 
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Table 2-7― Calculated rate of deposition and release of the case with no energy 

barrier 

Simulation # Qinj (ml/min) Ionic strength (M) 

8 1 0.55 

9 1 1.85 

Case 2 without energy barrier.  

Calculated rate of deposition Kdep,2 is 5.27.10-6 m.s-1. 

Calculated rate of release Krel,2 is 2.74.10-3 s-1 but is neglected because the critical 

velocity on nanoparticle of 0.23 m.s-1 is not reached. 

Experiment data of effluent concentration in simulation 8 and 9 are from experiment 25 

and 45 by (Caldelas 2010), respectively. 

2.6.2. Sensitivity Analysis 

The base case used in the sensitivity analysis is at temperature of 298 K, pH of 7 and 

silica nanoparticle radius of 5 nm. As mentioned in section 2.4, for 5-nm nanoparticles, 

release of both case 1 and case 2 are so small that are neglected. Only deposition is 

simulated in this analysis. 

2.6.2.1. Effect of nanoparticle size 

Table 2-8 shows large nanoparticles have less deposition than small nanoparticles, 

especially for case 1. Rate coefficient of SiO2/Limestone system changes much slower 

than SiO2/Sandstone system because DLVO energy profile of SiO2/Limestone system is 

always case 2. It indicates that the deposition is more sensitive on nanoparticle size for 

case 1 rather than case 2. Fig. 2-18 and 2-19 show the effect of nanoparticle size on the  
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(a)

(b) 

(c)    

Figure 2-17― Experiment and simulated effluent concentration (breakthrough 

curves) of 3 pore volumes of 3M PEG coated silica nanoparticle injected into a 1-ft 

sandpack of Boise sandstone: (a) simulation 8; (b) simulation 9 assuming monolayer 

deposition and (c) simulation 
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simulated breakthrough curves and more deposition is observed for SiO2/Limestone 

system, especially with small nanoparticles. This observation is consistent with the 

experiment results from Caldelas (2010). 

 

Table 2-8― Calculated initial rate of deposition at high ionic strength of 0.001 M 

with different nanoparticle size. 

ap  Case 1, Kdep,1 (m.s-1)  Case 2, Kdep,2 (m.s-1) 

5 2.55E-6 5.26E-6 

10 2.12E-7 3.32E-6 

50 3.62E-13 1.14E-6 

 

 

Figure 2-18― Simulated breakthrough curve of silica nanoparticle with different 

size on sandstone. 

 

Figure 2-19― Simulated breakthrough curve of silica nanoparticle with different 

size on limestone. 
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2.6.2.2. Effect of pH and Temperature 

Ryan and Gschwend (1994) indicates that solution chemistry is the critical to remove the 

energy barrier. Raising pH will lower and even remove the energy barrier. This treatment 

guarantees attractive DLVO interaction with no energy barrier (case 2) presents and high 

rate of deposition is always expected. When the solution salinity is low, the electrical 

double layer interaction plays an important role in determining the total DLVO 

interaction profile. Zeta potential is a function of pH and temperature significantly affects 

the magnitude of electrical double layer interaction, the behavior of deposition is studied 

at different pH and temperature. Table 2-9 shows the threshold of pH that switch the 

character of DLVO interaction profile from one case to another. At low pH, the 

nanoparticles and rock grain are oppositely charged with no energy barrier. Raising pH 

above 12 for SiO2/Limestone system and 4 for SiO2/Sandstone system switches DLVO 

energy profile from case 2 to case 1. Once the pH is adjusted above the threshold value, 

the nanoparticles and rock grain are similarly charged and thus energy barrier presents. 

The electrical double layer interaction and total DLVO interaction are then repulsive and 

results in low rate of deposition. For SiO2/Sandstone system the silica nanoparticle and 

sandstone grain are always similarly charged and electrical double layer interaction is 

always repulsive. However, at low pH which is close to IEP of quartz the electrical double 

layer repulsion is less than the van der Waals attraction, resulting attractive total DLVO 

energy without energy barrier and high rate of deposition. As pH increases, zeta potential 

increases to produce stronger electrical double layer repulsion to turn the DLVO 

interaction profile to case 1. Higher energy barrier is then built up, resulting in lower rate 

of deposition. 
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Table 2-10 shows the rate of deposition of SiO2/Limestone system is independent of 

temperature because its DLVO interaction profile is always case 2 at pH of 7. Whereas, 

the DLVO interaction profile SiO2/Sandstone system is always case 1. Raising 

temperature increases the magnitude of zeta potential, and therefore enhances the 

repulsive DLVO interaction and lowers the rate of deposition.  Fig. 2-20 and 2-21 show 

the simulated breakthrough curves of SiO2/Sandstone system with less deposition at 

higher pH or temperature. Rate of deposition does not change much for SiO2/Limestone 

system so the breakthrough curves are not plotted.  

 

Table 2-9― Calculated initial rate of deposition at ionic strength of 0.0001 M and 

25oC at different pH. 

SiO2/Limestone SiO2/Sandstone 

pH Case 2, Kdep,2 (m.s-1) pH Case 2, Kdep,2 (m.s-1) 

3 5.27E-6 3 3.32E-06 

5 5.27E-6  Case 1, Kdep,1 (m.s-1) 

7 5.27E-6 5 2.61E-06 

9 5.27E-6 7 1.21E-07 

11 5.27E-6 9 3.05E-09 

 Case 1, Kdep,1 (m.s-1) 11 6.08E-11 

13 4.20E-09 13 8.73E-13 
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Table 2-10― Calculated initial rate of deposition at ionic strength of 0.0001 M and 

pH of 7 at different temperature. 

SiO2/Limestone SiO2/Sandstone 

Temperature 

(Pfeiffer et al.) 
Case 2, Kdep,2 (m.s-1) 

Temperature 

(Pfeiffer et al.) 
Case 1, Kdep,1 (m.s-1) 

25 5.27E-6 25 1.21E-07 

50 5.27E-6 50 6.71E-08 

75 5.27E-6 75 1.58E-09 

100 5.27E-6 100 1.50E-11 

 

 

Figure 2-20― Simulated breakthrough curve of silica nanoparticle on sandstone at 

different pH. 
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Figure 2-21― Simulated breakthrough curve of silica nanoparticle on sandstone at 

different temperature. 

2.6.2.3. Effect of ionic strength 

Raising ionic strength will lower and even remove the energy barrier. Once the ionic 

strength is greater than 0.01M, the electrical double layer interaction, no matter attraction 

or repulsion, becomes smaller than the van der Waals attraction (Zhang 2012). Per Eq. 

12 and 13, van der Waals interaction is independent of ionic strength and electrical double 

layer interaction is weakened as ionic strength is increased. Table 2-11 shows the rate of 

deposition of SiO2/Limestone system is independent of ionic strength because its DLVO 

interaction profile is always case 2 at pH of 7. However, raising ionic strength can turn 

the DLVO interaction profile from case 1 to case 2 for SiO2/Sandstone system. The 

electrical double repulsion creates an energy barrier at low ionic strength, resulting in low 

rate of deposition. As ionic strength increases, this repulsion is weakened until it cannot 

balance the van der Waals attraction any more. From this simulation, the energy barrier 
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is removed when the ionic strength is above 0.005M, which is close to the value of 0.01M 

reported by  Zhang (2012)  for the same system. It is then inferred that for similarly-

charged particle-rock system, ionic strength is a key factor on deposition behavior.  

 

Table 2-11― Calculated initial rate of deposition at pH of 7 and 25oC at different 

ionic strength. 

SiO2/Limestone SiO2/Sandstone 

I (M) I (wt%) Case 2, Kdep,2 (m.s-1) 
I 

(M) 
I (wt%) 

Case 1, Kdep,1 (m.s-

1) 

0.000

1  

0.001% 5.27E-6 

0.00

01 

0.001% 1.21E-07 

0.001 0.005% 5.27E-6 

0.00

1 

0.003% 9.03E-07 

0.01 0.054% 5.27E-6   

Case 2, Kdep,2, m.s-

1 

0.1 0.541% 5.27E-6 

0.00

5 

0.015% 3.32E-06 

   0.01 0.054% 3.32E-06 

Energy barrier vanishes for SiO2/Sandstone system when the ionic strength is 

above 0.001M. 

2.6.2.4. Effect of surface roughness 

In this model, surface roughness affects the DLVO energy-controlled deposition and 

release of case 1 but not the diffusion-controlled deposition and rate of release of case 2. 

The two main parameters considering are roughness height-nanoparticle radius ratio 

(ℎ𝑟𝑚𝑠/𝑎𝑝) and roughness density (𝜌𝑟), or roughness fraction (휂𝑟) equivalently. As 
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ℎ𝑟𝑚𝑠/𝑎𝑝 or 휂𝑟 increases, the height of energy barrier decreases, resulting in higher rate of 

deposition and release. It is consistent of experiment observations that more deposition 

will occur on rougher surface or using smaller nanoparticle on the same surface 

(Shellenberger and Logan 2002, Hoek et al. 2003). Table 2-12 and 2-13 show the increase 

of rate of deposition and release with higher roughness density, and more deposition with 

smaller nanoparticles. Table 2-14 show fast decrease of deposition as the size of 

nanoparticle is larger than the height of surface roughness.  

Table 2-12― Calculated initial rate of deposition of SiO2/Sandstone system with 

different surface roughness density, assuming 𝒉𝒓𝒎𝒔 = 𝟏𝟒 𝒏𝒎,𝒂𝒑 = 𝟓 𝒏𝒎. 

𝜌𝑟 (1/m2) 휂𝑟  ∅𝑚𝑎𝑥 (kB*T) Kdep,1 (m.s-1) Krel,1 (m.s-1) 

1.62E+15 1.00 10.5 5.60E-07 3.20E-05 

5.14E+14 0.50 10.9 3.47E-07 7.06E-06 

1.80E+14 0.20 11.2 2.62E-07 2.79E-06 

6.01E+13 0.07 11.4 1.51E-07 1.58E-06 

 

Table 2-13― Calculated initial rate of deposition of SiO2/Sandstone system with 

different surface roughness density, assuming 𝒉𝒓𝒎𝒔 = 𝟏𝟒 𝒏𝒎,𝒂𝒑 = 𝟏𝟎 𝒏𝒎. 

𝜌𝑟 (1/m2) 휂𝑟  ∅𝑚𝑎𝑥 (kB*T) Kdep,1 (m.s-1) Krel,1 (m.s-1) 

1.62E+15 1.00 17.4 1.90E-10 4.24E-07 

5.14E+14 0.50 20.1 1.28E-11 3.56E-09 

1.80E+14 0.20 21.7 2.58E-12 2.08E-10 

6.01E+13 0.07 22.7 9.48E-13 3.68E-11 
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Table 2-14― Calculated initial rate of deposition of SiO2/Sandstone system with 

different roughness height-nanoparticle radius ratio, assuming 𝜼𝒓 = 𝟏 

𝒉𝒓𝒎𝒔
𝒂𝒑

 
∅𝒎𝒂𝒙 (kB*T) Kdep,1 (m.s-1) Krel,1 (m.s-1) 

3 10.2 6.10E-07 2.80E-05 

2 13.5 2.63E-08 5.67E-06 

1 21.7 1.56E-12 5.75E-08 

0.5 32.7 9.18E-18 4.57E-09 

2.7. Summary and Conclusion 

Rate of deposition of silica nanoparticles onto limestone/sandstone surface widely varies 

as physical properties of material and chemical environment change. Our mechanistic 

model well quantifies the rate of deposition and release under various physical and 

chemical conditions. The simulation results demonstrate the dependence of nanoparticle 

deposition on several physical and chemical parameters based on DLVO theory:  

• Small nanoparticles tend to have higher rate of deposition. 

• For silica/Sandstone system, rate of deposition decreases as pH and temperature 

increases.  

• Rate of deposition of silica/Limestone system is almost independent of pH, 

temperature and ionic strength because its DLVO interaction profile is always 

case 2.  

• Rate of deposition of silica/Sandstone system is highly dependent of pH, 

temperature and ionic strength because its DLVO interaction profile is case 1 in 

many conditions. Therefore, rate of deposition is expected to be higher for 

silica/Limestone system than silica/Sandstone system. 
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• Adjusting pH and ionic strength can turn the DLVO interaction profile from one 

case to another, resulting a huge change on rate of deposition. For silica/Sandstone 

system, rising pH above 5 turns case 2 to case 1 and raising ionic strength above 

0.005 M turns case 1 to case 2. Moreover, high ionic strength may lead to more 

accumulative deposition due to multi-layer coverage on rock pore surface.  

• Rough surface of rock grain promotes the nanoparticle deposition and release. 

Acknowledgement 

This work is supported by the Abu Dhabi National Oil Company (ADNOC) [grant 

number 880005]. 

Nomenclature 

𝑎𝑔 Radius of rock grain 

𝑎𝑝 Radius of nanoparticle 

𝐴𝐻 Hamaker constant 

𝐴𝑝 Projected cross-section area of a spherical nanoparticle 

𝐵(휃) Deposition rate correction 

𝐶 Nanoparticle concentration 

𝐶𝑏𝑢𝑙𝑘 Nanoparticle concentration in bulk fluid 

 𝐶𝑑𝑒𝑝 Concentration of deposited nanoparticle on pore surface 

𝐶𝑖𝑛𝑗 Nanoparticle injection concentration 

𝐶0 Nanoparticle injection concentration 

𝑑𝑝𝑜𝑟𝑒 Diameter of the cylindrical pore throat.  

𝐷 Diffusion coefficient of nanoparticles in aqueous suspension 

𝑒 Elementary charge 

𝐹𝑑 Hydrodynamic drag force 

𝐹𝐷𝐿𝑉𝑂 Net DLVO force 

𝐹𝐻𝑌𝐷 Hydration force 

𝐹𝑙 Lifting force 

ℎ Critical height of surface roughness for nanoparticle release 

ℎ𝑟𝑚𝑠 Root mean square of surface roughness height 

ℎ𝑎𝑏𝑠 Absolute mean of surface roughness height 

𝐼 Ionic strength 

𝐽 Nanoparticle deposition flux 

𝐽0 Nanoparticle deposition flux at surface 

𝐾𝑎1 Equilibrium constant of surface acidic reaction 
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𝐾𝑎2 Equilibrium constant of surface basic reaction 

𝐾𝐵 Boltzmann constant 

𝐾𝑑𝑒𝑝 Rate coefficient of deposition 

𝐾𝑟𝑒𝑙 Rate coefficient of release 

𝐾𝑑𝑒𝑝,1 Rate coefficient of deposition for case 1 

𝐾𝑑𝑒𝑝,2 Rate coefficient of deposition for case 2 

𝐾𝑟𝑒𝑙,1 Rate coefficient of release for case 1 

𝐾𝑟𝑒𝑙,2 Rate coefficient of release for case 2 

𝑙𝑑 Arm of hydrodynamic drag torque 

𝑙𝐷𝐿𝑉𝑂 Arm of DLVO torque 

𝑚1 Slope of fast region of zeta potential calculation 

𝑚2 Slope of slow region of zeta potential calculation 

𝑀𝑑 Moment of surface stresses 

𝑀𝑖 Molar concentration of ith ion 

𝑁𝐴 Avogadro number  

𝑝𝐻𝑐𝑢𝑡−𝑜𝑓𝑓 Fitted cut-off point  

𝑝𝐻𝐼𝐸𝑃 Isoelectric point of the surface 

𝑃𝑉𝐼 Pore volume injected 

𝑄𝑖𝑛𝑗 Injection rate 

𝑅 Nanoparticle retention 

𝑆𝑟𝑜𝑢𝑔ℎ Rough surface area 

𝑆𝑠𝑚𝑜𝑜𝑡ℎ Smooth surface area 

 𝑆𝑆𝐴 Specific surface area of rock 

𝑇 Temperature 

𝑇𝑑 Drag torque 

𝑇𝑜 Reference temperature at 25oC 

𝑇𝐷𝐿𝑉𝑂 DLVO torque 

𝑢 Superfacial velocity 

𝑢𝑚𝑎𝑥 Maximum flow velocity  

𝑢𝑝 Flow velocity acting at the center of the nanoparticle 

𝑢𝑝,𝑐𝑟 Critical flow velocity acting on center of nanoparticle for release 

𝑈𝐸 Electrophoretic mobility 

𝑉𝑝𝑜𝑟𝑒 Pore volume 

𝑥𝑠 Distance from surface to shear plane 

𝑦𝑚𝑎𝑥 Separation distance at primary maximum 

𝑦𝑚𝑖𝑛 Separation distance at primary minimum 

y Separation distance between nanoparticle and pore surface 

𝑍 Valence of the electrolyte 

𝛽 Sensitivity parameter of surface for zeta potential 

𝛿𝐷𝐿𝑉𝑂 Thickness of DLVO layer 

𝛿𝐷𝑖𝑓𝑓 Thickness of diffusion boundary layer 

ζ Zeta potential 

휂𝑝𝑎𝑐𝑘𝑖𝑛𝑔 Hexagonal packing efficiency 

휂𝑟 Fraction of rough surface area over total surface area 

https://en.wikipedia.org/wiki/Avogadro_number
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휃 Pore surface coverage area 

𝜅 Inverse Debye length  

𝜆 Characteristic London wavelength 

𝜇 Viscosity of the fluid 

𝜇𝑓 Static friction coefficient  

𝜖 Dielectric constant; 

𝜌𝑓𝑙𝑢𝑖𝑑 Fluid density 

𝜌𝑟 Roughness density 

𝜌𝑟𝑚𝑎𝑥 Maximum roughness density 

𝜓𝑠 Surface potential 

𝑣𝜁 Temperature sensitivity coefficient 

𝜙 Porosity 

∅𝐵𝑂𝑅𝑁 Born interaction energy 

∅𝐷𝐿𝑉𝑂 DLVO interaction energy 

∅𝐷𝐿𝑉𝑂𝑓𝑙𝑎𝑡  DLVO interaction energy between sphere and flat surface  

∅𝐷𝐿𝑉𝑂𝑠𝑝ℎ𝑒𝑟𝑒 DLVO interaction energy between sphere and sphere 

∅𝐷𝐿𝑉𝑂𝑟𝑜𝑢𝑔ℎ  DLVO interaction energy between sphere and rough surface 

∅𝐸𝐷𝐿 Electrical double layer interaction energy 

∅𝐻𝑌𝐷 Hydration interaction energy 

∅𝑚𝑎𝑥 DLVO interaction energy at primary maximum 

∅𝑚𝑖𝑛 DLVO interaction energy at primary minimum 

∅𝑉𝐷𝑊 Van der Waals interaction energy 

𝜒 Lifting force coefficient 

𝜓𝑠 Surface potential 
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Chapter 3 Mathematical Modeling and Simulation of Nanoparticles 

Transport in Heterogeneous Porous Media 
 

Abstract 

Nanoparticle applications in the petroleum industry have grown recently especially in 

EOR and waterflooding. Although the nanoparticles are small, they can be retained in the 

porous media by three different damage mechanisms i.e. surface deposition, mono-

particle plugging, and multi-particles plugging. This could severely decrease the porosity 

and permeability of the porous medium. Consequently, a numerical model that accurately 

describes these damage mechanisms is essential for forecasting and optimization of 

nanoparticles transport in porous media. In this paper, we have developed a mathematical 

model that combines Darcy and convection-diffusion equation to describe fluid flow, 

nanoparticles transport, and interaction in porous media. Pore throat size distribution is 

used to characterize the heterogeneity. Permeability field is generated as a function of the 

pore throat size distribution. Pore throat size and permeability distributions are dynamic 

functions of the nanoparticles deposition and plugging. The mathematical model is solved 

on a two-dimensional domain using alternating direction implicit scheme. The model is 

validated with experimental data to obtain the model parameters. Sensitivity analysis is 

presented using the proposed numerical model. The model shows that each of the three 

damage mechanisms could be dominant at specific conditions. Dimensional analysis is 

then used to derive a correlation that relates the degree of damage to main dimensionless 

numbers that control the efficiency of nanoparticle transport. The preliminary numerical 

results demonstrate that nanoparticle size, concentration, injection rate and permeability 

are the dominant factors that control the degree of formation damage.   
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3.1. Introduction 

Nanotechnology has gained a wide interest in the oil and gas industry during the past 

decade. Nanotechnology is the science and engineering of particles at the nanoscale 

(nanoparticles), which are about 1 to 100 nanometers in size. The applications of 

Nanotechnology in petroleum reservoirs can be categorized into Nanofluid, 

Nanoemulsion, and Nanocatalyst (Abdelfatah et al. 2014). Nanofluid is the dispersion of 

nanoparticle in a solvent fluid (mostly dispersed in a liquid water). Nanofluids have been 

applied in many aspects of the upstream petroleum industry such as enhanced oil recovery 

(Ogolo et al. 2012, Fletcher and Davis 2010), well stimulation (McElfresh et al. 2012a), 

drilling fluids (Mahmoud et al. 2016) , hydraulic fracturing fluids (Fakoya and Shah 2014, 

2016), and fines fixation (Huang et al. 2008). Nanoemulsion is a new version of the 

Pickering emulsions that is stabilized by nanoparticles instead of surfactants. 

Nanoemulsions can maintain stability despite harsh reservoirs conditions due to the 

irreversible adsorption of the nanoparticles on their droplet surface (Zhang et al. 2010). 

Nanoemulsions with a small droplet size (50–500 nm) are small enough to pass through 

rock pores without much retention (Mandal et al. 2012). Nanoemulsions have several 

potential applications in oil and gas upstream industry such as enhanced oil recovery and 

mobility control (Mandal et al. 2012). Nanotechnology has also the potential to improve 

the efficiency of steam injection and heavy oil recovery by working as a Nanocatalyst 

(Shokrlu and Babadagli 2010, Greff and Babadagli 2011). Steam injection does not only 

reduce the viscosity of heavy oil by heat transfer to oil but also, there are chemical 
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reactions that occur between oil and steam, called aquathermolysis reactions (Hyne 

1986). Aquathermolysis reactions in situ upgrade the heavy oil by breaking down the 

carbon-sulfur bond in asphaltene, increasing the saturates and aromatic content and 

Hydrogen-carbon ratio. Nanoparticles of transition metals such as VO2+, Mo3+, Ni 2+ and 

Fe3+ (that are referred as Nanocatalyst)  can catalyze these aquathermosis reactions that 

can further upgrade the heavy oil (Greff and Babadagli 2011). Nanoparticles of transition 

metal can easily transport through the reservoir rock. Nanocatalyst such as Nickel 

nanoparticles can improve the recovery of the steam stimulation process by 10% (Shokrlu 

and Babadagli 2011). 

The stability of the nanoparticles dispersion is a key factor that affects nanoparticles 

transport in porous media. Nanoparticles can easily aggregate since they have a large 

specific surface area to volume ratio (Hendraningrat and Torsæter 2014). The primary 

size of the nanoparticle can be a few nanometers. However, Esfandyari Bayat et al. (2015) 

found that nanoparticles aggregates in D.I.W and that the aggregate size is an order of 

magnitude greater than the original nanoparticle size. Nanoparticles have a surface charge 

such as a negative charge for Silica and positive charge for Alumina. Therefore, the 

nanoparticles can be adversely affected by oppositely charged ions either in the solution 

or on the rock surface. These ions limit the ability of nanoparticles to repel each other and 

shrink the hydrodynamic radius (McElfresh et al. 2012b). The stability of nanofluid can 

be achieved by manipulating the surface charge on the nanoparticles. The common 

techniques to improve nanofluid stability are particle surface modification by coating or 

controlling the ionic strength of the dispersant fluid via stabilizers (Ghadimi et al. 2011). 



60 

Yet, for nanofluid to be applied in the oil and gas field scale, nanoparticles should have 

the ability to be transported long distance in the reservoir rock. Transport of nanoparticles 

in porous media has been studied by many researchers to explore how nanoparticles 

interact inside the porous media and what factors affect this process (Abdelfatah et al. 

2014, Ju and Fan 2009). The nanoparticle concentration, injection rate, salinity, and 

temperature are among several factors that affect nanofluid stability and also the 

efficiency of nanoparticles transport in porous media. There are three mechanisms of 

interaction between particles and porous media that affect the efficiency of nanoparticle 

transport i.e. surface deposition, mono-particle pore throat plugging (screening) and 

multi-particles pore throat plugging (log-jamming) (Herzig et al. 1970, Gruesbeck and 

Collins 1982, Civan 2007, Ju and Fan 2009). Surface deposition is an electrokinetic 

interaction between nanoparticles and the rock surface that can be either attractive or 

repulsive (Alaskar et al. 2012). The salinity of the environment has a major effect on the 

electrokinetic interaction by changing the thickness of the electrostatic double layer. 

Conversely, pore throat plugging is a mechanical process that includes the formation of 

momo-particle or multi-particles plug across the pore throat entry. For mono-particle pore 

throat plugging, nanoparticles’ aggregates larger than the pore throat size are excluded at 

the entry of the pore throat (Hendraningrat and Torsæter 2014, Hendraningrat et al. 2012). 

Mono-particles plugging depends on the nanoparticle size and the stability of the 

nanofluids that controls the aggregate size. Yet, multi-particles plugging (Log-Jamming) 

occurs when several small nanoparticles come together at the pore throat entry to form a 

plug (Skauge et al. 2010). Injection rate, nanoparticles size, and concentration are the 
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critical factors that control the multi-particles plugging. The higher the injection rate and 

the nanoparticle concentration, the more severe is the multi-particle plugging effect. 

Finite difference method is widely  used for solving petroleum reservoir problems (Aziz 

and Settari 1979). Other methods such as Green function, finite volume, and orthogonal 

collocation are used also for solving reservoir fluid flow problems (Vaferi and 

Eslamloueyan 2015, Khadivi and Soltanieh 2014, Vaferi et al. 2012, Ghanaei and 

Rahimpour 2010, Gringarten and Ramey 1973). Herein, finite difference method is used 

to simulate nanoparticles transport in heterogeneous carbonate rock. To account for the 

heterogeneous nature of the carbonate rock, pore size distribution measured from mercury 

injection is included in the model to study the effect of the heterogeneity on the 

nanoparticle transport efficiency. A random permeability distribution is assigned to each 

gridblock. 

The objective of this paper is to introduce a mathematical model that effectively describes 

the formation damage mechanisms associated with nanoparticles transport in porous 

media. Also, we present the numerical solution of the model on a two-dimensional 

domain. The paper is organized as the following. The mathematical model is introduced 

in section 3.2. The geological model constructed to represent the porous medium section 

is in section 3.3. The numerical solution algorithm is presented in section 3.4. Finally, the 

numerical model is validated using experimental data in section 3.5.1. The sensitivity 

analysis of nanoparticle size, concentration, injection rate and permeability is presented 

in section 3.5.2.  Dimensional analysis is presented in section 3.5.3. Conclusions from 

this work are presented in section 3.6. 
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3.2. Mathematical Model 

3.2.1. Transport of the fluid in porous media 

Nanoparticles dispersion in water can be modeled as single phase-two component system 

(water and nanoparticles). Transport of the bulk fluid can be represented by Darcy’s law 

and the continuity equation (Aziz and Settari 1979). The continuity equation represents 

the mass conservation and accounts for the porosity (𝜙) change by nanoparticles 

entrapment in the porous media. 

  𝜕(𝜙)

𝜕𝑡
+ 𝛻.  (𝑢) = 0 

(1) 

where 𝜙 is the porosity of the porous media, and u is the superfacial velocity, m/s. Then 

Darcy’s law can be used to compute the volumetric flux (𝑢).  

𝑢 = −
𝐾

𝜇
 𝛻𝑝 

(2) 

where K is the permeability of the porous media, m2, 𝜇 is the viscosity of the Nanofluid, 

Pa.s and 𝛻𝑝 is the pressure drop across the porous media, Pa. The boundary conditions 

applied to the continuity equation are constant injection rate at the inlet, constant effluent 

pressure at the outlet and no-flow boundary at the peripheral. 

3.2.2. Transport of nanoparticles in porous media 

Convection-diffusion equation with source term representing the nanoparticles retention 

inside the porous media is used to model the transport of nanoparticles in porous media 

(Chang and Civan 1991). However, due to retention of nanoparticles, the structure 

properties of the rock changes and a portion of the pore system can no longer contribute 

to flow due to plugging. The mass balance of the nanoparticles has been derived using 



63 

the fraction of the domain that’s accessible to nanoparticles (flowing fraction f).  The 

adjusted Convection-diffusion equation can be written as the following:  

𝜕(𝜙𝐶)

𝜕𝑡
+ 𝛻(𝑓𝑢𝐶) − 𝛻(𝐷𝜙𝑓. 𝛻𝐶) + 𝑅 = 0 

(3) 

where, C is the volume fraction of the nanoparticles inside the core, R is the net rate of 

nanoparticles entrapment per unit bulk volume of the porous media, and D is the diffusion 

coefficient, m2/s. Nanoparticles are submicron in size, so the Brownian motion is much 

more effective. The diffusion coefficient is inversely proportional to the nanoparticle 

diameter and can be calculated using the Stokes-Einstein equation (Bird et al. 2007). 

𝐷 =
𝐾𝐵𝑇

3𝜋𝜇𝐷𝑝.𝑎𝑣𝑔
, (4) 

where 𝐾𝐵 is the Boltzmann constant, T is the absolute temperature of the environment, 

K, 𝐷𝑝.𝑎𝑣𝑔 is the average nanoparticle diameter, m, and 𝜇 is the fluid viscosity, Pa.s. The 

initial and boundary applied to the Convection-diffusion equation should be defined on 

the computational domain to close the mathematical model. The initial conditions are 

defined as, C = 0 and, R = 0 at   t = 0.  The boundary conditions at the inlet are constant 

injection rate and constant injected concentration of nanoparticles equals the injected 

concentration, C=C𝑖𝑛𝑗. Herein, C𝑖𝑛𝑗 is the injected concentration. At the outlet, there is 

no diffusion that means 
𝜕𝐶

𝜕𝑥
 = 0. At the peripheral, no flow boundary conditions are used. 

The source term represents the net rate of nanoparticles entrapment (R) that is the amount 

of nanoparticle deposited on the pore surface and that plugged the pore throats per unit 

bulk volume of the porous media (Gruesbeck and Collins 1982).  

𝑅 =
𝜕𝜀𝑑

𝜕𝑡
+ 

𝜕𝜀𝑝𝑡

𝜕𝑡
, (5) 
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휀𝑑 is the volume fraction of nanoparticles deposited on the pore surface and 휀𝑝𝑡 is the 

volume fraction of nanoparticles that plugged the pore throat. The rate of nanoparticle 

deposition (
𝜕𝜀𝑑

𝜕𝑡
) and the rate of pore throat plugging (

𝜕𝜀𝑝𝑡

𝜕𝑡
) can be computed using 

Gruesbeck and Collins (1982) model. 

𝜕𝜀𝑑

𝜕𝑡
= {

𝑘𝑑𝑢 𝐶                                    ; 𝑢 ≤ 𝑢𝑐
𝑘𝑑𝑢 𝐶 − 𝑘𝑒휀𝑑  (𝑢 − 𝑢𝑐)      ; 𝑢 >  𝑢𝑐

   and,            

                 
𝜕𝜀𝑝𝑡

𝜕𝑡
= 𝑘𝑝𝑡𝑢 𝐶 

(6) 

where 𝑘𝑑 , 𝑘𝑒 and 𝑘𝑝𝑡  are the rate coefficient for deposition, entrainment and pore throat 

plugging, respectively. 𝑢𝑐 is the critical velocity to release the deposited particles from 

the surface into the bulk fluid. These equations can be solved with the initial 

conditions,   휀𝑑 =  0 and 휀𝑝𝑡 =  0 at 𝑡 =  0. Then the total volume fraction of the 

nanoparticles entrapped in the porous media (휀) can be computed as the summation of 

those deposited at the pore surface (휀𝑑)and those plugged the pore throat (휀𝑝𝑡). 

휀 =  휀𝑑 + 휀𝑝𝑡, (7) 

3.2.3. Pore size distribution 

The interaction between nanoparticles and the porous medium depends on the interplay 

between the nanoparticle size and pore throat size distribution. The bimodal distribution 

function is used to fit the measured pore throat size distribution from mercury injection 

(Popplewell et al. 1989, Chang and Civan 1991). 

𝐹(𝐷𝑝𝑡) = 𝑤𝐹1(𝐷𝑝𝑡) + (1 − 𝑤)𝐹2(𝐷𝑝𝑡), (8) 

where 𝐹1(𝐷𝑝𝑡) is the distribution function for the fine fraction of the pore throats smaller 

than 1 micron, 𝐹2(𝐷𝑝𝑡) is the distribution function for the coarse fraction of the pore 
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throats larger than 1 micron, and w is the weight of the fine fraction of the pore throats. 

𝐹1(𝐷𝑝𝑡) and 𝐹2(𝐷𝑝𝑡) can be written as the following (Popplewell et al. 1989). 

𝐹1(𝐷𝑝𝑡) =
(𝐷𝑝𝑡 − 𝐷𝑝𝑡,𝑚𝑖𝑛 )

𝑎1𝑚1
(𝐷𝑝𝑡,𝑚𝑎𝑥 − 𝐷𝑝𝑡)

𝑚1

∫ (𝐷𝑝𝑡  − 𝐷𝑝𝑡,𝑚𝑖𝑛 )
𝑎1𝑚1

(𝐷𝑝𝑡,𝑚𝑎𝑥 − 𝐷𝑝𝑡)𝑚1𝑑𝐷𝑝𝑡
𝐷𝑝𝑡,𝑚𝑎𝑥 

𝐷𝑝𝑡,𝑚𝑖𝑛 

 
(9) 

𝐹2(𝐷𝑝𝑡) =
(𝐷𝑝𝑡 − 𝐷𝑝𝑡,𝑚𝑖𝑛 )

𝑎2𝑚2
(𝐷𝑝𝑡,𝑚𝑎𝑥 − 𝐷𝑝𝑡)

𝑚2

∫ (𝐷𝑝𝑡 − 𝐷𝑝𝑡,𝑚𝑖𝑛 )
𝑎2𝑚2

(𝐷𝑝𝑡,𝑚𝑎𝑥 − 𝐷𝑝𝑡)𝑚2𝑑𝐷𝑝𝑡
𝐷𝑝𝑡,𝑚𝑎𝑥 

𝐷𝑝𝑡,𝑚𝑖𝑛 

 
(10) 

      

where 𝐷𝑝𝑡,𝑚𝑖𝑛  and  𝐷𝑝𝑡,𝑚𝑎𝑥 are the minimum and maximum pore throat diameters, and 

𝑎1, 𝑚1, 𝑎2 𝑎𝑛𝑑 𝑚2  are empirical parameters that can be matched with the experimental 

data from mercury injection. Unlike pore throat size distribution, nanoparticles 

distribution has a narrow spectrum (Evonik 2016). Based on this, the average 

nanoparticles size is used as an approximation, which simplifies the calculations without 

causing significant error. In this model, the average nanoparticle size for the experimental 

data used in section 5.1 is around 150 nm for hard aggregates. 

3.2.4. Flowing fraction (f): 

Flowing fraction is a fraction of the pores that contributes nanoparticles transport (Chang 

and Civan 1991). The flowing fraction is a dynamic function of the nanoparticles 

entrapment in the porous media. If we only consider mono-particle plugging, the flowing 

fraction can be calculated as the following,  

𝑓 = 1 − ∫ 𝐹(𝐷𝑝𝑡)𝑑𝐷𝑝𝑡

𝐷𝑝,𝑎𝑣𝑒

𝐷𝑝𝑡,𝑚𝑖𝑛

 
(11) 

On the other hand, if both mono-particle and multi-particle plugging are considered, the 

flowing fraction can be calculated as the following (Chang and Civan 1991). 

file:///C:/Users/Elsayed%20Abdelfatah/OneDrive%20-%20University%20of%20Oklahoma/00Research/00My%20Work/3.Publications/3.2D%20Nanofluid%20Model/1.JNGSE/Submission/Revised%20Manuscript%20R3.docx%23_ENREF_33
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𝑓 = 1 − ∫ 𝐹(𝐷𝑝𝑡)𝑑𝐷𝑝𝑡

𝐷𝑝𝑡,𝑐𝑟

𝐷𝑝𝑡,𝑚𝑖𝑛

 
(12) 

For calculating the critical diameter for pore throat plugging, Civan (2007) suggested the 

following equation that is a function of the particle Reynolds number: 

𝐷𝑝𝑡,𝑐𝑟 =  𝐷𝑝.𝑎𝑣𝑔 .  (𝐴(𝑅𝑒𝑝) 
𝐵
+ 𝐺) (13) 

where A, B, and G are empirical parameters. The particle Reynolds number (𝑅𝑒𝑝) can be 

calculated as follows (Civan 2007). 

𝑅𝑒𝑝 =  
𝜌𝑝 𝐶 𝐷𝑝.𝑎𝑣𝑔 𝑢 𝜏

𝜇𝜙
 

(14) 

where 𝜌𝑝 is the density of the nanoparticle, Kg/m3 and  𝜏 is the tortuosity of the porous 

media. Herein, it’s considered that,  𝐷𝑝𝑡,𝑚𝑖𝑛 and 𝐷𝑝𝑡,𝑚𝑎𝑥 are dynamic functions of pore 

surface deposition and pore throat plugging. Assuming that the change in the pore throat 

size is linear function of the net rate of deposition, the mean pore throat diameter (𝐷𝑝𝑡,𝑚) 

can be computed using the following equation (Ohen 1989) if deposition is the only 

considered damage mechanism: 

−
𝜕𝐷𝑝𝑡,𝑚

𝜕𝑡
= 𝛽(휀�̇� − 휀�̇�) 

(15) 

where β is an empirical parameter and (휀𝑑̇ − 휀𝑒)̇  is the net rate of nanoparticle deposition 

on the pore surface. To close the problem, the following integrals can be solved 

simultaneously to calculate  𝐷𝑝𝑡,𝑚𝑖𝑛 and 𝐷𝑝𝑡,𝑚𝑎𝑥. Total probability of the statistical 

sample, 

∫ 𝐹(𝐷𝑝𝑡)𝑑𝐷𝑝𝑡
𝐷𝑝𝑡,𝑚𝑎𝑥

𝐷𝑝𝑡,𝑚𝑖𝑛
 = 1 (16) 

The mean pore throat diameter (Dpt,m) can be calculated as follows (Civan 2007). 
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∫ 𝐷𝑝𝑡. 𝐹(𝐷𝑝𝑡)𝑑𝐷𝑝𝑡 = 𝐷𝑝𝑡,𝑚

𝐷𝑝𝑡,𝑚𝑎𝑥

𝐷𝑝𝑡,𝑚𝑖𝑛

 
(17) 

3.2.5. Instantaneous porosity and permeability 

To compute the instantaneous porosity, the volume fraction of the nanoparticles 

entrapped per unit bulk volume of the porous media is subtracted from the original 

porosity to get the new porosity.  

𝜙 =  𝜙𝑜 − 휀 (18) 

For instantaneous permeability, Chang and Civan (1991) suggested a power relationship 

between the permeability reduction and the pore throat plugging. Herein, an exponential 

relationship has been modified from Civan and Nguyen (2005) as the following, 

𝐾

𝐾𝑜
= 𝑒𝑥𝑝 (−𝛼(1 − 𝑓)𝑛1) ∗ (

𝜙

𝜙𝑜
) 

𝑛2

 
(19) 

where 𝛼, 𝑛1 and 𝑛2 are imperical constants.  

3.3. Geological Model 

Geological model is constructed to represent the heterogeneity of carbonates. The 

geological model involves two scales of heterogeneity i.e. pore scale represented by pore 

size distribution and macroscopic scale represented by permeability distribution. First, 

for the pore scale, mercury injection of Indiana limestone cores used in section 3.5 was 

conducted. Popplewell et al. (1989) and Chang and Civan (1991) used the bimodal 

distribution functions to model the pore throat size distribution of porous media. The pore 

size distribution data from mercury injection (Fig. 3-1a) is fitted with bimodal distribution 

function to determine the empirical parameters of the distribution function (Eqs. 8, 9, 

and10). These parameters determine the shape of the pore throat size distribution curve. 

file:///C:/Users/Elsayed%20Abdelfatah/OneDrive%20-%20University%20of%20Oklahoma/00Research/00My%20Work/3.Publications/3.2D%20Nanofluid%20Model/1.JNGSE/Submission/Revised%20Manuscript%20R3.docx%23_ENREF_22
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Levenberg-Marquardt algorithm (Moré 1978) is used to fit the mercury injection data for 

pore throat size distribution to find the parameters (𝑎1, 𝑚1, 𝑎2 𝑎𝑛𝑑 𝑚2). Fig. 3-1b 

presents the probability distribution function that fitted the mercury injection data. 

Meanwhile, the minimum and maximum pore sizes are dynamic functions of deposition 

and plugging. Hence, the initial minimum and maximum pore size distribution are 

assigned to the computational domain. The whole domain is divided into gridblocks and 

it is assumed that each gridblock has a pore throat size distribution with a specific 

minimum and maximum value. The distribution of the maximum pore throat size is 

assumed to follow a right-skewed distribution while the distribution of the minimum pore 

throat size is assumed to be left-skewed. In this way, the minimum and maximum pore 

throat sizes in each gridblock are determined and restricted within a proper range. This 

could effectively represent Indiana limestone core used in this paper in which the 

dominant porosity is interparticle and well connected (Ziauddin and Bize 2007). The 

continuous probability densities of minimum and maximum pore throat size are generated 

following type I Pearson distribution (Pearson 1895). The parameters used for generating 

Pearson system random numbers are listed in Table 1 with the generated range of 

minimum and maximum size for all gridblocks. According to the pore throat size data of 

Indiana limestone cores from mercury injection experiments, the pore throat size of the 

whole domain is observed to follow a bimodal distribution that skews to the right. It is 

assumed that the pore throat size in each gridblock follows the same distribution of the 

whole domain. For each gridblock, with the randomly assigned minimum and maximum 

pore throat size the bimodal function can be generated using Eqs. 8, 9, and 10. Figs. 3-2, 
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3-3, and 3-4 show the distribution of the minimum, maximum and average pore throat 

size for the whole domain, respectively. 

 

Table 3-1—Parameters for generating Pearson distribution 

Parameter 
Minimum pore throat 

size, micron 

Maximum pore throat 

size, micron 

Mean 0.15 22 

Standard deviation 0.03 4 

Skewness -1 1 

Kurtosis 4 4 

Distribution range [0.05,0.2] [15,40] 

 

 

 
 

 
Figure 3-1—(a) high-pressure mercury injection, (b) pore throat size distribution 

measured by mercury injection fitted with a bimodal distribution function. 
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Figure 3-2—Minimum pore throat diameter (Dpt,min) distribution (a) Probability 

distribution function. (b) Three-dimensional map of minimum pore throat size in 

each gridblock. 

 
Figure 3-3—Maximum pore throat diameter (Dpt,max) distribution (a) Probability 

distribution function. (b) Three-dimensional map of maximum pore throat size in 

each gridblock. 

 
Figure 3-4—Average pore throat diameter (Dpt,ave) distribution (a) Probability 

distribution function. (b) Three-dimensional map of average pore throat size in each 

gridblock 
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Second, for the macroscopic scale, permeability distribution is generated as a function of 

the pore size distribution. The permeability is assumed to follow the same distribution as 

the average pore throat size. Assuming permeability will vary around the average 

permeability of the core measured from brine injection, the random permeability profile 

was generated. The standard deviation of the distribution was determined by the proper 

estimation of the range of distribution data points. For example, for average permeability 

of 10 md, the range of data points was estimated from 8 md to 18 md that matches the 

same shape of pore size distribution. Based on the average permeability and the range, 

the standard deviation is determined as 1.5. Fig. 3-5 shows the probability distribution 

function of permeability in the whole domain with the average permeability of the domain 

around 10 md.  Fig. 3-6 shows the probability distribution function of permeability in one 

row in the domain of average permeability 9 md using a standard deviation of 1.5. Other 

rows are given different average permeability and the permeability is distributed around 

it using the same standard deviation.  

  
Figure 3-5—Distribution of initial permeability in the whole domain. (a) Probability 

distribution function (b) Three-dimensional map of permeability in each gridblock. 
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Figure 3-6—Probability distribution function of initial permeability in one row in 

the domain of average permeability 9 md. 

 

Finally, to validate the geological model, a numerical tracer test is used to calculate the 

flowing fraction. In this case, the flowing fraction definition is how many pore volumes 

injected to produce 50% of the injected nonreactive tracer (Skauge et al. 2006). The 

flowing fraction for Indiana limestone is around 1 (Zakaria et al. 2015). The numerical 

model presented in section 4 is used to simulate the flow of non-reactive tracer. Fig. 3-7 

shows that the computed flowing fraction for the geological model presented here is 

nearly equal to the flowing fraction calculated from the experimental test by Zakaria et 

al. (2015). This means that the geological model could effectively represent the actual 

rock since they have similar hydrodynamic properties.  
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Figure 3-7—Dimensionless effluent concentration for numerical tracer test. The 

flowing fraction is ~1. 

 

3.4. Numerical Model 

The mathematical model presented in section 3.2 is solved using finite difference method 

on a two-dimensional domain using the geological model presented in section 3.3. Fig. 

3-8 presented the two-dimensional computational domain and the applied boundary 

conditions. Alternating direction implicit method (ADI) is widely used for solving 

multidimensional reservoir flow problems (Aziz and Settari 1979).  The alternating 

direction implicit method is a two-step numerical scheme. The first step is to discretize 

the derivatives in x-direction implicitly, while the derivatives in the y-direction are 

discretized explicitly. The system of equations renders a tridiagonal matrix that can be 

solved using Thomas algorithm to produce a provisional solution (Pletcher et al. 2012, 

Aziz and Settari 1979). In the second step, the derivatives in the y-direction are discretized 

implicitly, and the provisional solution is used for the derivatives in the x-direction. The 

resulting tridiagonal system is solved for the final solution at the given timestep.  
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Injection of nanoparticles into porous media that have different scales of heterogeneity 

imposes a direct interaction between the nanoparticle size and pore throats size 

distribution. As mentioned in section 3.2.3, the average particle size (~150 nm) can be 

reasonably used instead of the nanoparticles distribution. Different pore throat size and 

permeability values are imposed for each gridblock as explained in section 3. Pore size 

distribution changes with entrapment of nanoparticles in the porous media, however it’s 

assumed that it maintains the same shape of the distribution curve. When deposition is 

the dominant damage mechanism and mono-particle and multi-particles plugging are 

negligible, Eqs. 15, 16 and 17 are solved simultaneously to compute the new minimum 

and maximum pore throat diameters, 𝐷𝑝𝑡,𝑚𝑖𝑛 and 𝐷𝑝𝑡,𝑚𝑎𝑥.  However, if nanoparticle size 

is larger than the minimum pore throat diameter, the pores that are smaller than the 

nanoparticles will be plugged and the new minimum pore throat size ( 𝐷𝑝𝑡,𝑚𝑖𝑛) is equal 

to the nanoparticle size. Increasing the nanoparticles concentration and/or velocity, 

increases the particle Reynolds number (Eq. 14). The critical pore throat size (Eq. 13) 

increases with increasing the particle Reynolds number. The critical pore throat size is 

the pore throat size required for multi-particles to form a plug at the entry of the pore 

throat. When the critical pore throat size is larger than the nanoparticle size, the critical 

pore throat size is used as the new minimum pore throat size ( 𝐷𝑝𝑡,𝑚𝑖𝑛). As the maximum 

pore throat is much larger than nanoparticles size, the new maximum pore throat size 

(𝐷𝑝𝑡,𝑚𝑎𝑥) is only updated as a function of deposition by integrating Eq. 15 and evaluating 

the right hand-side using Eq. 5.  

The model involves transport and reaction in porous media. The interaction between 

nanoparticles and the porous system results in change in the pore structure such as pore 
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throat size distribution, permeability, and porosity.  The solution algorithm can be 

summarized as the following: 

1. Using Levenberg-Marquardt algorithm to fit the distribution function (Eqs. 8, 9, and 

10) with the mercury injection data. 

2. Initialize the pore throat size and permeability distribution as explained in section 3. 

3. Solve the continuity equation (Eq. 1) for pressure 

4. Use Darcy’s law (Eq. 2) to calculate the velocity in each direction.  

5. Solve the convection-diffusion equation (Eq. 3) to calculate the concentration 

distribution. In this step, the source term is evaluated explicitly from the previous 

timestep. 

6. Then the source term can be calculated from Eqs. 5 and 6 using the velocity and 

concentration calculated from step 4 and 5, respectively. Then it is used in the next 

timestep for calculating the concentration in step 5. 

7. Updating pore throat size distribution as explained earlier in this section, using Eqs. 

13, 14,15,16, and 17. 

8. Using Eqs. 11 and 12 to calculate the new flowing fraction (f) 

9. Updating porosity using Eq. 18. 

10. Updating permeability using Eq. 19. 

11. Repeating step 2 through 10 for all the timesteps.  
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Figure 3-8—Numerical simulation domain representing a core plug of size (1.5x6”). 

Flow is coming from the left to the right with constant injection rate at the inlet and 

constant pressure at the outlet 

 

3.5. Results and discussion 

3.5.1. Model Validation 

Herein, the numerical solution is validated using experimental data at different injection 

rates and concentrations of nanoparticles.  Three coreflood data are used (Done by Sangho 

Bang at University of Oklahoma). The Coreflood experiments have been done using silica 

and alumina nanoparticles (~150 nm in diameter) injected into Indiana limestone core 

plugs at room temperature. The diameter and length of the cores are 3.81 cm and 15 cm, 

respectively. Permeability and porosity of the core plugs are around 10 md and 16%, 

respectively. The pore throat size distribution of the cores used in the experiments is 

presented in Fig. 3-1. Table 3-2 presents the values of the parameters used in the 

simulation that was matched with the experimental data. These values have been adopted 

by matching the simulation results with the Coreflood data. Sensitivity analysis was 

conducted to determine the significance of each parameter on the model results. Also a 

set of experimental results in the literature (Civan 2007) was used, to determine the trend 

of each parameter as a function of concentration, nanoparticle size, and injection rate. 
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Then the experimental data are matched with the model to determine the parameters 

within a specific range that were determined from the sensitivity analysis of the 

parameters. For other simulation conditions where we do not have experimental data, 

extrapolation/interpolation is performed to get the value of each parameter.  

Fig. 3-9 presents the permeability reduction (k/k0) with the pore volume of nanoparticles 

dispersion injected at high injection rate (3.5 cm3/min) and low concentration (0.01 vol 

%) compared with the experimental data. Fig. 3-10 shows that considering the 

permeability distribution is effective to imitate the actual conditions of the porous media. 

This can be helpful in determining the pathways of the nanoparticles in the porous media 

and the interaction of the pore throat size distribution and the particles size. Also, it can 

be noticed that at higher injection rate, there is a fast exponential permeability reduction 

with pore volume injected. Increasing injection rate increases the particle Reynolds 

number. Hence, the critical pore throat size that promotes multi-particles plugging 

increases. This means that a higher fraction of the pore throats is prone to plugging with 

multiple nanoparticles that reach the pore throat simultaneously and jam together. 

Furthermore, the flowing fraction (Eq. 12) decreases rapidly. Eq. 19 shows that 

permeability decreases exponentially with flowing fraction reduction.  
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Figure 3-9—Permeability reduction with pore volume injected at 0.01 vol% 

concentration and different injection rates (0.3 and 3.5 cm3/min). 

 

 

Figure 3-10— Three-dimensional map of permeability after injection of 

nanoparticles for 3.5 cm3/min and 0.01 vol%. 

 

The model is also used at low injection rate (0.3 cm3/min) and different concentrations of 

nanoparticles (0.01 and 0.5 vol %). The simulation results nearly match the experimental 
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data (Fig. 3-11). It can be seen that at low injection rate and low concentration of the 

nanoparticles, the permeability reduction is not significant. This means that the main 

damage mechanism at these conditions is the deposition of the nanoparticles on the pore 

surface. Also, mono-particle can play a major role since the average particle size is greater 

than the minimum pore throat size. The average pore throat diameter is around 340 nm 

(Fig. 3-1b) and the average particle size is 150 nm. This demonstrates that mono-particles 

plugging can occur for pore throats that are smaller than the average particle size. Hence, 

a considerable fraction of the pores can be plugged by the mono-particle mechanism. As 

the concentration of the nanoparticles increases, the degree of permeability reduction 

increases. Since the particle Reynolds number is directly proportional to the concentration 

of the nanoparticles (Eq. 14), at high concentration, the permeability decreases 

exponentially as compared with the previous case of high injection rate and low 

concentration. Multi-particles plugging conditions are promoted when a high 

concentration of nanoparticles reaches the pore throat entry at the same time. This could 

be the case when injection rate is high even if the concentration is very low. Since the 

water molecules are smaller than the nanoparticles size, the nanoparticles cannot 

accelerate as fast as the water molecules and lag behind at the entry of the pore throat 

(Skauge et al. 2010). Likely, higher injected concentration means that a large number of 

nanoparticles can reach the pore throat entry at the same time and jam together there. In 

order to assess the effect of each mechanism on the permeability reduction at different 

injection rates and nanoparticle concentrations, the contribution of each mechanism is 

presented in Table 3-3.  
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Table 3-2—Parameters used in 2D Nanofluid flow simulation. These values have 

been adopted from (Ju and Fan 2009). § These parameters have been calculated by 

matching the bimodal distribution function with the mercury injection data. ͱ These 

parameters have been matched by coreflood data. 

Parameter Symbol Description Value Unit 

Permeability reduction equation 

𝛼ͱ  2 to 7 – 

n1
ͱ  1 to 3 – 

n2
ͱ  3 to 5 – 

Critical pore throat size 

calculation 

Aͱ  5 – 

Bͱ  0.05 – 

Gͱ  1 to 15 – 

D 
Diffusion 

coefficient 
0.0336 cm2/min 

uc
* Critical velocity 0.0276 cm/min 

C-D equation, for particle, 

retained in porous media 

Kd
* Constant of 

deposition rate 
0.16 1/cm 

Ke
* Constant of release 

rate 
0.30 1/cm 

Kpt
* Constant of 

plugging rate 
0.0128 1/cm 

Deposition equation 𝛽 ͱ 

Constant of change 

in pore throat size 

due to deposition 

and release 

20 g/cm3 

Bimodal beta distribution 

function 

w§ Weight factor 0.45 – 

a1
§ parameter 0.0015 – 

m1
§ parameter 130 – 

a2
§ parameter 0.01 – 

m2
§ parameter 5 – 
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Figure 3-11— Permeability reduction with pore volume injected at low injection 

rate (0.3 cm3/min) and different concentrations (0.01 and 0.5 vol%). 

 

Table 3-3—Contribution of each mechanism to permeability reduction 

 

𝑄𝑖𝑛𝑗=0.3 cm3/min 

C=0.01 vol% 

𝑄𝑖𝑛𝑗=3.5cm3/min 

C=0.01 vol% 

𝑄𝑖𝑛𝑗=0.3 cm3/min 

C=0.5 vol% 

Final K/K0 0.76 0.06 0.06 

deposition 32.2% 0.2% 10.4% 

Mono-particle 61.6% 26.1% 23.6% 

Multi-Particle 6.2% 73.8% 66.0% 

      

3.5.2. Sensitivity analysis 

The model was matched with the coreflood data. The three formation damage 

mechanisms as explained earlier, are functions of the nanoparticles concentration, the 

injection rate, permeability and the interplay between particle size and the pore throat 

size. Surface deposition has a little effect on permeability reduction compared to mono-

particle and multi-particle plugging. Surface deposition depends on the interplay between 
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the surface electric charges of the nanoparticles and the porous medium and the salinity 

of the environment. Also, the surface deposition increases proportionally with the 

volumetric flux of the nanoparticles (uC) as shown in Eq. 6. Meanwhile, increasing the 

volumetric flux raises the particle Reynolds number (Eq. 14). The critical pore throat size 

from Eq. 13 increases with increasing the particle Reynolds number. Consequently, 

multi-particles plugging increases with increasing the particle Reynolds number and the 

volumetric flux of the nanoparticles. Fig. 3-12 presents the average critical pore throat 

size for different injection rates and concentrations discussed in section 3.5.1. Increasing 

the concentration for 50 folds from 0.01 to 0.5 vol% is equivalent to increasing the 

injection rate for 12 folds from 0.3 cm3/min to 3.5 cm3/min.  

 

Figure 3-12—the average critical pore throat diameter for different injection rates 

(0.3 and 3.5 cm3/min) and different concentration (0.01 and 0.5 vol%). 
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Several numerical simulations are prsented here to study the effect of injection rate on 
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constant concentration of nanoparticles (0.01 vol%) is simulated. Fig. 3-13a shows that 

with increasing the injection rate, the permeability reduction increases. The critical pore 

throat size increases with increasing the injection rate (Fig. 3-13b). Increasing the 

injection rate means that volumetric flux of nanoparticles that reaches the pore throat 

entry at a given moment increases and hence, the nanoparticles jam together to form a 

multi-particle plug. Here, we can conclude that the injection rate should be optimized to 

prevent the formation damage.  

 

Figure 3-13—Permeability reduction (a) and average critical pore throat size 

(Dptcr, ave) (b) for a constant concentration of 0.01 vol % at different injection rates 

(0.3, 1, 2, 3, and 3.5 cm3/min). 

3.5.2.2.Nanoparticles concentration 

Similarly, the concentration of nanoparticles is another major parameter to be optimized 

for effective nanofluid treatment (Zhao et al. 2015, Hemmat Esfe et al. 2015). The 

volumetric flux can be also increased by increasing the concentration of nanoparticles. 

Numerical simulations for a wide range of nanoparticles concentrations (0.01 to 1 vol%) 

with a constant injection rate (0.3 cm3/min) were conducted. Fig. 3-14a presents the 

permeability reduction at different concentrations of nanoparticles. Increasing the 

concentration of the nanoparticles causes more damage similar to increasing the injection 
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rate. Increasing the concentration of nanoparticles also causes the critical pore throat 

diameter to increase (Fig. 3-14b). However, the degree of permeability reduction with 

increasing the concentration is much higher than that with increasing the injection rate. 

Comparing Fig. 3-13a and Fig. 3-14a, we can see that for a three-fold increase in 

nanoparticles concentration (from 0.01 to 0.03 vol%), the degree of damage is much 

higher than that obtained by a three-fold increase in injection rate (from 0.3 to 1 cm3/min). 

It can be concluded that increasing the concentration and/or injection rate cause severe 

permeability reduction. However, the concentration of nanoparticles has more severe 

impact on permeability reduction than the injection rate (Fig. 3-15).  

   

Figure 3-14—Permeability reduction (a) and average critical pore throat size (Dptcr, 

ave) (b) for a constant injection rate of 0.3 cm3/min at different concentrations of 

nanoparticles (0.01, 0.03, 0.1, 0.5, and 1 vol%). 
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Figure 3-15— (a) effect of concentration with a constant injection rate of 0.3 

cm3/min and (b) injection rate with a constant concentration of 0.01 vol %, on 

permeability reduction after 6 pore volume injected. 

3.5.2.3.Nanoparticle size 

Nanoparticle size is also a major player that affects the functionality of nanoparticles in 

porous media (Ariana et al. 2015). Several numerical simulations are presented here to 

study the effect of nanoparticles size on the degree of permeability impairment at different 

injection rates and concentration of nanoparticles. Fig. 3-16a shows that at low injection 

rate (0.3 cm3/min) and low concentration (0.01 vol%), permeability impairment is not 

severe as discussed earlier. However, with decreasing nanoparticles diameter the 

permeability impairment becomes negligible due to the reduction of critical pore throat 

diameter (Fig. 3-16b). Eqs. 13 and 14 demonstrate that the critical pore throat diameter 

directly depends on the nanoparticle diameter.  Fig. 3-17a shows the similar behavior at 

high concentration (0.5 vol%) and low injection rate (0.3 cm3/min). Fig. 3-17b shows that 

the critical pore throat diameter can be reduced significantly by reducing the 

nanoparticles diameter even if the concentration is high. Fig. 3-18a shows the effect of 

nanoparticles diameter at high injection rate (3.5 cm3/min) and low concentration (0.01 

vol%). As discussed earlier, the higher the injection rate, the more prone the nanoparticles 
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to be entrapped by multi-particles plugging mechanisms. However, Fig. 3-18b shows that 

the critical pore throat diameter could be decreased much further by reducing nanoparticle 

diameter. We can conclude that for injecting nanoparticles into petroleum reservoirs with 

negligible effect on permeability, the nanoparticles size should be as small as possible. 

However, the diameter of nanoparticles depends on the stability of nanoparticle 

dispersion at the reservoir conditions as discussed in section 3.1. 

 

Figure 3-16—effect of nanoparticles size (10, 75, and 150 nm) with a constant 

concentration of 0.01 vol %, and injection rate of 0.3 cm3/min on permeability 

reduction after 6 pore volume injected. 
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Figure 3-17—effect of nanoparticles size (10, 75, and 150 nm) with a constant 

concentration of 0.5 vol %, and injection rate of 0.3 cm3/min on permeability 

reduction after 6 pore volume injected. 
 

 

Figure 3-18—effect of nanoparticles size (10, 75, and 150 nm) with a constant 

concentration of 0.01 vol %, and injection rate of 3.5 cm3/min on permeability 

reduction after 6 pore volume injected. 
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𝑃𝑐 =
2𝜎cos (휃)

𝑟
 

(20) 

where r is pore throat radius. Swanson (1981) provided a correlation for permeability 

from capillary pressure: 

𝐾 = 𝑎(
𝑆𝑏
𝑃𝑐
)𝑐 

(21) 

Where 𝑆𝑏 is mercury saturation, and c = 2 for carbonates and 𝑎 is a constant. Therefore, 

combining Eqs. 20 and 21 indicates the dependence of permeability on the square of pore 

throat size. Table 3 shows the minimum, maximum and average pore throat sizes 

calculated for different permeability based on the mercury injection data for 10 md. These 

values have been used in the model to study the effect of permeability and pore throat 

size on the permeability reduction by nanoparticles. Fig. 3-19a shows that at higher 

injection rate (3.5 cm3/min) and high concentration of nanoparticles (0.1 vol %), the 

permeability reduction is steep and close for the three-different permeability used. This 

could be explained as discussed earlier, that at high injection rate and concentration of 

nanoparticles, the multi-particle plugging mechanism is the major player and causes steep 

permeability reduction. When decreasing the concentration of nanoparticles to (0.01 vol 

%), and keep the same injection rate (3.5 cm3/min), Fig. 3-19b shows that the higher the 

permeability the lower the permeability reduction. As discussed earlier in section 3.5.2.2 

that the concentration has greater impact on permeability reduction than the injection rate 

(Fig. 3-15). Decreasing the concentration of nanoparticles decreases the effect of multi-

particles damage mechanism. This is also promoted by increasing the pore throat diameter 

with increasing the permeability (Table 3-4). 
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Table 3-4—Pore throat diameter in microns used for various permeability cases. 

K, md Minimum Pore 

Throat Diameter, 

microns 

Average Pore 

Throat Diameter, 

microns 

Maximum Pore 

Throat Diameter, 

microns 

10 0.01 0.316 40 

50 0.022 0.75 90 

100 0.033 1 130 

 

  

Figure 3-19—Permeability reduction with a constant injection rate of 3.5 cm3/min 

for various permeability (10, 50, and 100 md) at low concentration of 0.01 vol% (a) 

and high concentration of 0.1 vol% (b). 

 

3.5.3. Dimensional Analysis 
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 (𝐾
𝑜 
−𝐾)/𝐾𝑜  and the key Dimensionless numbers. Table 3-5 presents the main 

parameters that controls the degree of damage and the dimensionless groups that combine 

these parameters.  
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π′ = 
π9

π8

1

π2
= 

𝑢 𝑡

Dp,ave

Dp,ave
2

𝐷 𝑡

1

ϕ
=
𝑢 Dp,ave

𝐷 ϕ 
= 𝑃𝑒 

(22) 

 

𝜋′′ = 
𝜋7
𝜋6

𝜋9
𝜋2
= 
𝜌𝐷𝑝,𝑎𝑣𝑒

2

𝜇𝑡

𝑢 𝑡

𝐷𝑝,𝑎𝑣𝑒

𝐶 

𝜙
=  
𝜌 𝐶 𝑢 𝐷𝑝,𝑎𝑣𝑒

𝜇 𝜙
= 𝑅𝑒𝑝 

(23) 

𝜋′′′ = 
𝜋9
′

𝜋2
=
𝑢 𝑡

𝐿 𝜙
= 𝑃𝑉𝐼 

(24) 

𝜋′′′′ = 𝜋3 =
𝐷𝑝𝑡,𝑚

𝐷𝑝,𝑎𝑣𝑒
= 𝜛  (25) 

 

Table 3-5—Dimensional analysis to determine the dimensionless groups controlling 

the damage ratio. 
Parameters Dimensions Scaling 

variables 

Dimensionless 

Groups 

𝝅 

𝐊 L2  (𝐾
𝑜 
− 𝐾)/𝐾𝑜  π1 

𝛟 L3/L3  ϕ π2 

𝐃𝐩𝐭,𝐚𝐯𝐞 L  Dpt,m/Dp,ave π3 

𝐀 L2  A/Dp,ave
2  π4 

𝐋 L  L/Dp,ave π5 

𝛍 ML/T  μt/ρDp,ave
2  π6 

𝛒 M/L3 Scaling variable — — 

𝐃𝐩,𝐚𝐯𝐞 L Scaling variable — — 

𝐂 L3/L3  C π7 

𝐃 L2/T  D t/Dp,ave
2  π8 

𝐮 L/T  u t/Dp,ave π9 

u t/𝐿 π9
′  

𝐭 T Scaling variable — — 
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Fig. 3-20 shows the relationship between particle Reynolds number and the Damage ratio 

at different pore volume injected of nanofluid. It can be noticed that the Damage Ratio 

increases with particle Reynolds number. This indicates that to minimize the degree of 

damage, the particle Reynolds number can be minimized either by decreasing either the 

concentration or injection rate or both.  

 

Figure 3-20—The relationship between Damage ratio and particle Reynolds 

number at different pore volume injected (PVI) 
 

Buckingham 𝝅 theorem (Churchill 1997) suggests that the damage ratio is a function of 

the combination of the main dimensionless numbers as the following. 
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𝑥2 𝜛𝑥3  𝑃𝑉𝐼𝑥4 (27) 
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and numerical data presented in the previous sections. Then we can apply the logarithm 

to both sides of Eq. 27 to get the linear form of the equation. 
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𝐷𝑅 = log(𝜉) + 𝑥1 log(𝑃𝑒) + 𝑥2 log (𝑅𝑒𝑝) + 𝑥3 log(𝜛) + 𝑥4 log (𝑃𝑉𝐼) (28) 

The exponents can be found using the experimental and simulated results presented in the 

previous sections.  

𝐷𝑅 = 56.5713 𝑃𝑒0.0267 𝑅𝑒𝑝
0.493 𝜛0.9818  𝑃𝑉𝐼0.781 (29) 

However, it can be seen that 𝑃𝑒 does not have a significant effect on the correlation. 

Thereafter, we omitted the 𝑃𝑒, and used regression for the remaining dimensionless 

numbers.  

𝐷𝑅 = 64.219  𝑅𝑒𝑝
0.505 𝜛0.994  𝑃𝑉𝐼0.783 (30) 

Fig. 3-21 presents the comparison between the Damage ratio of three numerical 

simulations that were presented in the previous section and the predicted Damage ratio 

from Eq. 30. Table 3-6 shows the values of 𝑅𝑒𝑝, 𝜛 , and 𝑃𝑒  for the presented data. The 

Dimensional analysis correlation shows quite match with the actual data.  

 

Table 3-6— values of 𝑹𝒆𝒑, 𝝕 , and 𝑷𝒆  for the presented data in Fig. 3-21. 

 𝑅𝑒𝑝 𝜛 𝑃𝑒 

DR_1 2.519x10-5 0.4285 1.29 

DR_2 7.557x10-6 0.4285 0.386 

DR_3 3.778x10-6 0.2143 0.193 
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Figure 3-21—Comparison between the damage ratio (DR) from the numerical 

model and the Damage ratio predicted from the dimensional analysis correlation. 
 

3.6. Conclusions 

Nanotechnology has a broad application in oil and gas reservoirs. However, the 

interaction between nanoparticles and the porous media can cause formation damage. 

There are three mechanisms that can cause formation damage. The simulation tool 

presented here aids in the qualitative and quantitative understanding of the interaction 

between the nanoparticles and the porous media. The three damage mechanisms can 

contribute to the permeability reduction, but each one of them is dominant under certain 

conditions. Injection rate, nanoparticles concentration, nanoparticles size, and 

permeability are the critical parameters that control nanoparticles transport efficiency in 

porous media. Surface deposition causes a gradual permeability reduction. Mono-particle 

plugging is prompted due to poor stability of the suspension that causes the nanoparticles 

to aggregate and become much larger. Increasing the concentration of the nanoparticles, 
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makes the multi-particles damage mechanism to be dominant. Meanwhile, at the high 

injection rate and low concentration the permeability decreases exponentially because of 

higher particle Reynolds number. Therefore, the nanoparticles become more prone to jam 

at the pore throat entry. Meanwhile, reducing the nanoparticles size decreases the degree 

of formation damage significantly even if the injection rate and/or nanoparticles 

concentration are high.  

The proposed model can be used for optimization of nanoparticles application in 

petroleum reservoirs. However, the optimization process depends on the intended 

applications to balance between the positive and negative effects of nanoparticles. For 

example, if the nanoparticles are used for wettability alteration to increase recovery of oil 

(Ju and Fan 2009), the increase of relative permeability should overweight the damage 

caused by nanoparticles entrapment. Hence, the critical parameters can be optimized to 

gain the maximum benefits of nanoparticles.  
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Nomenclatures  

A, B, and G constants for critical pore throat size relationship  

a nd c  constants for permeability-capillary pressure relationship 

𝐶 concentration of the nanoparticles in the domain as a function of space and time, 

fraction 
C𝑖𝑛𝑗 injected concentration of the nanoparticles, fraction 
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C𝑒𝑓𝑓 effluent concentration of the tracer, fraction 

 𝐷 diffusion coefficient of nanoparticles in water, m2/s 
  𝐷𝑝.𝑎𝑣𝑔 average diameter of nanoparticles, m 

 𝐷𝑝𝑡 pore throat diameter, m 

𝐷𝑝𝑡,𝑐𝑟  critical pore throat diameter, m 

  𝐷𝑝𝑡,𝑚𝑖𝑛  minimum pore throat diameter, m 

 𝐷𝑝𝑡,𝑚𝑎𝑥  maximum pore throat diameter, m 

𝐷𝑝𝑡,𝑚  mean pore throat diameter, m 

𝐷𝑅 Damage ratio 

 𝑓 flowing fraction 

 𝐹(𝐷𝑝𝑡) bimodal probability distribution function 

 𝐹1(𝐷𝑝𝑡) fine portion of the bimodal probability distribution function 

 𝐹2(𝐷𝑝𝑡) coarse portion of the bimodal probability distribution function 

 𝑘𝑑 deposition rate coefficient, m-1 

 𝑘𝑒 release rate coefficient, m-1 
 𝑘𝑝𝑡 plugging rate coefficient, m-1 

 𝐾 instantaneous permeability, m2 

 𝐾𝐵 Boltzmann constant 
 𝐾0 initial permeability, m2 

𝑛1𝑎𝑛𝑑 𝑛2 constant for permeability-porosity relationship  
𝑃𝑒 Peclet number 

𝑃𝑐 capillary pressure, Pa.s 
𝑄𝑖𝑛𝑗 injection rate of the fluid, m3/s 

r pore throat radius, m 

 𝑅 source/sink term for nanoparticles  
𝑆𝑏 mercury saturation injected into the core 

 𝑇 Temperature, K 

 𝑢 superficial velocity, m/s 
 𝑢𝑐 critical superficial velocity, m/s 

 𝑤 weight of the fine portion of the bimodal probability distribution function 

 𝛻𝑝 pressure drop across the domain, Pa.s 

Greek letters 

𝜙 instanateous porosity 
 𝜙𝑜 initial porosity 

 𝜇 viscosity of the fluid 

휀 volume fraction of nanoparticles retained per unit bulk volume 
 휀𝑑 volume fraction of nanoparticles retained due to deposition per unit bulk volume 

 휀𝑝𝑡 volume fraction of nanoparticles retained due to plugging per unit bulk volume 

휀�̇� rate of nanoparticle deposition per unit bulk volume 
휀�̇� rate of nanoparticle release per unit bulk volume 

 𝜏 tortuosity of the porous medium 
𝜌𝑝 density of the nanoparticles, g/cm3 

𝛼 constant for permeability-porosity relationship  

𝛽 constant for pore throat size and net rate of deposition. 

휃 contact angle between fluid and rock  
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𝜎 Interfacial tension between the wetting and non-wetting phases, N/m  

𝜛 Ratio of the average nanoparticle diameter to the mean pore throat diameter 
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Chapter 4 Modeling of Aggregation and Gelation of Nanoparticles 

Using Quadrature Method of Moments 
 

Abstract 

Applications of Nanotechnology are growing significantly in the petroleum industry such 

as oil recovery, and well stimulation. In aqueous media, silica nanoparticles aggregate if 

there is sufficient attractive energy between nanoparticles. Aggregate size distribution 

evolves as aggregation continues, and once it spans the space, it forms a gel. The objective 

of this study is to study the aggregation and gelation kinetics in the batch.  

Population Balance equation (PBE) is used to model the kinetics of aggregation. 

Quadrature method of moments (QMOM) is used to convert the PBE with continuous 

distribution of nanoparticle size into a set of moment equations for efficient computation. 

The closure problem for moment transport equation is resolved using Gaussian 

Quadrature that requires estimation of roots orthogonal polynomials. Wheeler algorithm 

is then used for calculation of the coefficients of the recursive formula of the orthogonal 

polynomials.  

This study shows that the PBE and the QMOM along with the effective medium theory 

can be used to model the aggregation and gelation of nanoparticles at different conditions 

of salinity and concentration. The modeled developed in this study is used to compare 

between the kinetics of aggregation and gelation of fumed silica and colloidal silica 

nanoparticles at the same conditions. The case studies presented show the unique 

behavior of fumed silica over colloidal silica nanoparticles for forming a gel network at 

significantly low concentration. This is basically due to the fractal structure of the fumed 

silica nanoparticles that has higher effective volume than the spherical particles of 
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colloidal silica of the same size. The model also shows that there is a critical concentration 

of salt and nanoparticles above which the viscosity increase and the gel network can be 

formed. 

 The model developed in this study can be coupled with a transport model to simulate 

nanoparticles transport aggregation and in situ gelation in porous media. 

Keywords: 

Fumed Silica Nanoparticles; colloidal silica nanoparticles; Population balance equation; 

Quadrature method of moments; Aggregation; Gelation 

 

4.1. Introduction 

Solid suspensions have a wide practical interest in many aspects of daily life such as 

foods, pharmaceuticals, household products, and the environment. Applications of solid 

suspensions in petroleum industry is quite important and widespread such as drilling 

fluids, enhanced oil recovery, water shutoff, etc (Liu et al. 1996, Huang et al. 2017, Metin 

et al. 2014, Jurinak and Summers 1991). Generally, there are two classes of silica 

nanoparticles; colloidal silica, and fumed silica nanoparticles (Iler 1979, Gun'ko et al. 

2001). Colloidal silica nanoparticles are spherical particles formed by precipitation 

method. Fumed silica nanoparticles are composed of primary particles fused by pyrogenic 

process together to form hard aggregates of fractal structure. Fumed silica can display 

rheological properties similar to colloidal silica when scaled with the free volume in the 

suspension (Smith and Zukoski 2006). This means that fumed silica can give similar 

behavior with lower volume fraction in the suspension due to fractal structure that have 

lower packing factor compared to colloidal silica. 
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4.1.1. Principles of Aggregation 

Aggregation of silica nanoparticles can be explained within the framework of DLVO 

(Elimelech et al. 2013, Russel et al. 1989). The most important forces that control the 

kinetics of aggregation and the properties of dispersion are dispersion and electrostatic 

forces. For silica dispersion in polar solvents, solvation forces due to the hydrogen 

bonding of the solvent to the surface silanol groups play a key role (Raghavan et al. 2000, 

Smith and Zukoski 2006). Theoretically, the kinetics of aggregation depends on the 

magnitude of energy barrier between nanoparticles. Nanoparticle that overcome the 

energy barrier will aggregate with another particle in the deep primary energy minimum. 

Smith and Zukoski (2006) studied the aggregation and gelation of fumed silica 

nanoparticles dispersed in ethanol. Ethanol is a very polar solvent due to the presence of 

hydroxyl group. They showed that at low concentration, gelation is arising from 

aggregation into a primary minimum due to hydrogen bonding and dispersion forces. The 

gelation is extremely slow due to an energetic barrier (∼ 25kT) in the inter-particle 

potential associated with solvation forces. The solvation forces also contribute to the 

formation of a secondary minimum in the interparticle potential. The depth of this 

minimum (∼ 3kT) is sufficient that, at a critical particle concentration, long-range 

diffusion is arrested due to the short-range attractions and the cooperative nature of 

particle interactions, as described by mode coupling theory. 

Aggregation causes the particle size distribution (PSD) to change with time. Many 

evidences show that particle aggregates from natural waters and engineered systems have 

fractal structures. Lee et al. (2000) developed an innovative approach that models change 
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in PSD by incorporating recently proposed fractal mathematics and introduced a new 

conceptual framework called the coalesced fractal sphere (CFS) assumption. The 

rheological behavior of fumed silica suspensions depends on the structure of the 

aggregates formed in the suspension (Kawaguchi 2017). The mechanism of aggregation 

of fumed silica nanoparticles depends on the polarity of the solvent (Kawaguchi 2017, 

Kawaguchi et al. 1996a, Kawaguchi et al. 1996b). Primary hydrophilic fumed silica 

particles usually form chain-type aggregates of sub-micron size in air, with a density of 

~3 surface silanol groups per nm2, due to hydrogen bonding between the silanol groups 

on the particle surfaces. For fumed silica dispersed in nonpolar solvent, fumed silica 

nanoparticles attach through hydrogen bonding between the silanol groups on the surface 

of fumed silica nanoparticles. On the other hand, fumed silica nanoparticles dispersed in 

polar solvents like water that hydrogen bonding ability could retain a stable dispersion 

with limited or no aggregation due to preferential hydrogen bonding of surface silanol 

groups with the corresponding dispersing liquids (Kawaguchi et al. 1996b). Water for 

example, can form a structured layers of water molecules on the surface of fumed silica 

nanoparticles through hydrogen bonding. These structured layers of water molecules 

produce a steric repulsion between the fumed silica nanoparticles and prevent their 

aggregation.  

Environmental conditions can promote silica inter-nanoparticle interaction to form larger 

fractal structures (Lee et al. 2000). There are many different parameters that control the 

aggregation and gelation of fumed silica nanoparticles in aqueous solvents such as 

concentration of nanoparticles, temperature, pH, and ionic strength (Amiri et al. 2011, 

2009, Smith and Zukoski 2006, Russel et al. 1989). Aqueous suspensions of fumed silica 
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of concentration lower than a critical concentration are stable. However, above the critical 

particles concentration, aqueous suspensions of the fumed silica particles form gel-like 

structures, and the higher concentration the stronger the gel structure. This critical 

concentration marks the transition from Newtonian to shear thinning flow (Amiri et al. 

2009).  

Alternatively, salt can be added, which at high enough concentration, collapses the diffuse 

electrostatic double layer so that particles can approach closely enough to be drawn into 

near contact by van der Waals forces. The time required for particles to diffuse into their 

attractive minima scales to the exponential of height of energy barrier (Russel et al. 1989). 

Because of this exponential dependence, even small 100-nm-diameter particles in a low-

viscosity solvent take months or even years to aggregate if the potential barrier is high. 

Aggregation could dramatically become faster at the electrolyte concentration at which 

the potential barrier is eliminated (critical coagulation concentration). Critical 

coagulation concentration (ccc) is the electrolyte concentration at which the transition 

from a slow to rapid aggregation regime occurs for a given suspension i.e. the electrostatic 

repulsion vanishes (Hiemenz 1986). Amiri et al. (2009) shows that in the absence of salt 

in dispersing water, fumed silica demonstrates negligible changes in viscosity at different 

pH of the solution. Increasing the salt concentration at any pH had increasing effect on 

viscosities of the fumed silica dispersions.  

Oxides such as SiO2, contain hydroxyl groups at their surfaces that can be hydrolyzed in 

aqueous media to form negative charges (Israelachvili 2011, Iler 1979, Adamson and 
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Gast 1967). Addition of an acid or base tends to neutralize these groups, and enhancing 

the interaction between particles. 

Acidic: SiOH + H3O
+ → SiOH2

+ + H2O (a) 

Basic:   SiOH + OH−   → SiO− + H2O (b) 

Primary hydrophilic fumed silica particles usually form chain-type aggregates of sub-

micron size in air, with a density of ~3 surface silanol groups per nm2, due to hydrogen 

bonding between the silanol groups on the particle surfaces. Hydrophilic fumed silica 

powders are well dispersed at  𝜙 < 0.01 in polar dispersing fluids or polar polymer  melts, 

and their phase states change from sol to gel  with increasing 𝜙 (Kawaguchi 2017). 

However, when fumed silica powders are dispersed in polar dispersing liquids, 

agglomerate formation is often suppressed, owing to preferential hydrogen bonding of 

surface silanol groups with the corresponding dispersing liquids. Below pH 2, the zeta 

potential of fumed silica is slightly positive and the values approach the isoelectric points, 

which are located in the range of pH 3–3.5. Amiri et al. (2009) found that at acidic pH of 

2 and up to 4.5, increasing salt concentration did not change the viscosities effectively 

from that of water. This abnormal stability of fumed silica dispersion at acidic pH is 

related to the structural repulsion of the hydrated layers of water molecules (Yotsumoto 

and Yoon 1993). At acidic conditions, reaction (a) is dominant due to surplus of protons 

in the solution. This indicates higher ability of water to structure at the surface of fumed 

silica by hydrogen bonding with surface silanol groups. This structured layer of water 

molecules induces electrostatic repulsion that prevents bridging of nanoparticles. At basic 

pH, the zeta potentials of the suspensions in these ranges varied between 23-27 mV, 
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which is low enough to electrostatically stabilize the systems. However, Amiri et al. 

(2009) found that addition of salt to fumed silica dispersion at pH far enough from i.e.p 

produced stronger networks than that at i.e.p. Pronounced instability of fumed silica 

dispersion at basic pH is due dominance of reaction (b) that ion-exchange between the 

cations in the electrolyte and protons of the silanol groups that prevents water molecules 

binding to silica. Then coagulation occurs by the interaction of associated and 

disassociated silanol (SiO− 𝑎𝑛𝑑 SiOH).  

It is assumed that there is a rather higher ability of water to form hydrated layer as 

discussed above for fumed silica (SiOH) surface compared to the colloidal silica (SiO2). 

This is due to existence of OH bound to the silanol groups of fumed silicas. Such hydrated 

layer between the particles keeps particle surfaces apart from each other and prevents 

their bridging. On addition of electrolyte to the above system, the electrolyte cation ions 

can extract water from the silica surface and decrease the thickness of the hydration layer 

formed by water and reduce the extent of short-range repulsion. According to this 

hypothesis, the size of the cations and its affinity to the water are essentially important. 

van der Linden et al. (2015) shows that Hofmeister Series can explain the effect of 

different monovalent ions on the rheological properties of colloidal silica dispersions. 

Monovalent alkali ions are divided into two classes according to their ability to structure 

water molecules in their vicinity: smaller highly hydrated cations (known as structure 

maker); larger poorly hydrated cations (known as structure breaker). At basic pH (~9.8), 

less hydrated ions such as K+ can adsorb easily on the silica surface to create bridging 

effect (Okazaki and Kawaguchi 2008).  
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The aggregation of nanoparticles is a function of the Brownian motion of the particle 

which increase significantly with increasing temperature. Amiri et al. (2011) shows that 

increasing the temperature increases the aggregation kinetics and reduced the gelation 

time. Also, the fractal dimension of the aggregates decreases with increasing the 

temperature. This means a more open gel network is formed at higher temperature. Once 

the aggregates form a network structure that spans the whole space to form infinite 

network, i.e. effective volume fraction of nanoparticles equals one, a pseudo-solid called 

gel is formed (Weston et al. 2014, Amiri et al. 2009, Smith and Zukoski 2006, Dickinson 

2000, Family and Landau 2012, Almdal et al. 1993). This pseudo-solid gel exhibits a 

shear thinning behavior that applying stress could break the aggregates and destroying 

the structure (Raghavan and Khan 1995, Dolz et al. 2000). However, when the stress is 

ceased, the restoration of the network is instantaneous and the gel forms.  

4.1.2. Models of Aggregation and Gelation 

Inter–particle interactions can be described by the second order theoretical formulation 

proposed by Elimelech et al. (2013) based on Smoluchowski approach. Aggregation is 

the result of two events: the collision of particles, which is characterized by a collision 

frequency induced by hydrodynamics, and the attachment of particles which is 

represented by the collision efficiency because not all encountered collisions are 

necessarily successful. The efficiency is controlled by both the hydrodynamics and 

physiochemistry. In shear flow, larger aggregates can break down into smaller ones. 

There are different expressions for aggregation and breakage kernels in the literature. 

Population balance equation (PBE) that is the integral form of Smoluchowski equation 
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can efficiently model the aggregation and breakage of nanoparticles (Marchisio and Fox 

2013, Ramkrishna 2000). PBE is essentially a transport equation that tracks number 

density of aggregates of certain size at any location and at any time in a system. There 

are different methods can be applied for solving PBE such as discretization methods 

(Raychoudhury et al. 2012, Chatterjee and Gupta 2009, Lee et al. 2000, Andrew et al. 

1995), Lagrangian method (Taghavy et al. 2015), and quadrature method of moments 

(QMOM) (Vlieghe et al. 2016, Marchisio and Fox 2013, Yuan and Fox 2011, Su et al. 

2008, Su et al. 2007). 

Among all the available methods for solving PBE, the Quadrature Method of Moments 

(QMOM) is the most efficient one. QMOM transfers PBE into a set of moment equations. 

So that the lower-order moments of PSD are tracked with high accuracy with a low 

computational cost. QMOM was first proposed by McGraw (1997) for the description of 

aerosol dynamics by tracking the evolution of lower order moments of an unknown 

aerosol distribution. Moment methods are an important class of approximate models 

derived from kinetic equations, but require closure to truncate the moment set. In QMOM, 

closure is achieved by inverting a finite set of moments to reconstruct a point distribution 

from which all unclosed moments that can be related to the finite moment set. QMOM 

are widely used for modeling aggregation-breakage of particulate systems (Grosch et al. 

2007, Marchisio et al. 2003b, Marchisio et al. 2003a, L. Marchisio et al. 2003). QMOM 

is also used for solving the kinetic equation arising in a wide variety of physical systems 

(Yuan and Fox 2011). Conventional QMOM usually fails when tracking more than four 

size classes, and thus, it is difficult to construct the PSD from the conventional QMOM. 

Also, numerical difficulties may arise in case of large variations of moments. Su et al. 
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(2007) and Su et al. (2008) employed adjustable factors assigned to different processes 

to track the moments of PSD with lower computational demands than that from the 

standard QMOM. This adjustable factor allows the moments of size distribution to be 

adjusted to improve the accuracy or reduce the computation time. QMOM with adjustable 

factor was used to model the evolution of floc size distribution (FSD) of kaolinite 

suspension and colloidal montmorillonite (Shen and Maa 2016, 2015). 

This paper is divided into three main parts. In the first part, we provided an extensive 

literature review of the fundamentals of aggregations and gelation of nanoparticles. In the 

second part, a mechanistic model based on PBE and QMOM will be presented that can 

model the aggregation and gelation kinetics at different conditions. In the last part, some 

case studies of the kinetics of aggregation and gelation of fumed silica compared to 

colloidal silica will presented to show the capability of the mechanistic model presented 

in this paper. However, these case studies do not show all the capabilities of the model. 

Further discussion of the model will be presented in future papers. 

4.2. Population Balance Model 

Population balance equation (PBE) is a continuity statement that describes the evolution 

of a number density function (NDF) of particle volume dispersed in the system 

(Marchisio and Fox 2013). The particle size distribution (PSD) is a NDF representing the 

number concentration of particles with volumes between 𝑣 𝑎𝑛𝑑 𝑣 + 𝑑𝑣. PSD evolved 

with time due to particles aggregation. Under shear flow, large aggregate can break into 

smaller one that may aggregate with other particles again. The volume based PBE 

(Vlieghe et al. 2016) can be written as in Eqs. 1 through 5, where 𝑛(𝑣; 𝑡) is the NDF of 
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aggregates of volume 𝑣, 𝐵𝑎(𝑣; 𝑡) 𝑎𝑛𝑑 𝐷𝑎(𝑣; 𝑡) are birth and death of aggregates of 

volume 𝑣 due to aggregation, and 𝐵𝑏(𝑣; 𝑡) 𝑎𝑛𝑑 𝐷𝑏(𝑣; 𝑡) are birth and death of aggregates 

of volume 𝑣 due to breakage. 

𝝏(𝒏(𝒗; 𝒕))

𝝏𝒕
= 𝑩𝒂(𝒗; 𝒕) − 𝑫𝒂(𝒗; 𝒕) + 𝑩𝒃(𝒗; 𝒕) − 𝑫𝒃(𝒗; 𝒕) 

(1) 

𝑩𝒂(𝒗; 𝒕) =
𝟏

𝟐
∫𝜶(𝒗 − 𝒖, 𝒖)𝜷(𝒗 − 𝒖, 𝒖)𝒏(𝒗 − 𝒖; 𝒕)𝒏(𝒖; 𝒕)𝒅𝒖

𝒗

𝟎

 

(2) 

𝑫𝒂(𝒗; 𝒕) = 𝒏(𝒗; 𝒕)∫ 𝜶(𝒗, 𝒖)𝜷(𝒗, 𝒖)𝒏(𝒖; 𝒕)𝒅𝒖

∞

𝟎

 

(3) 

𝑩𝒃(𝒗; 𝒕) = ∫ 𝒂(𝒗, 𝒖)𝒃(𝒖)𝒏(𝒖; 𝒕)𝒅𝒖

∞

𝒗

 

(4) 

𝑫𝒃(𝒗; 𝒕) = 𝒃(𝒗)𝒏(𝒗; 𝒕) (5) 

In these equation, 𝛽(𝑣, 𝑢) is the collision frequency of particles of volume 𝑣 𝑎𝑛𝑑 𝑢, 

𝛼(𝑣, 𝑢) is the collision efficiency of particles of volume 𝑣 𝑎𝑛𝑑 𝑢, 𝑏(𝑣) is the breakage 

kernel that represents the break frequency of aggregates of volume 𝑣, and 𝑎(𝑣, 𝑢) is the 

fragment distribution function that represent the number density function of aggregates 

of volume 𝑣 produced by breakage of aggregates of volume 𝑢.  

To involve the fractal dimension into the PBE, Vlieghe et al. (2016) proposed the 

following relationship between volume based NDF (𝑛(𝑣; 𝑡)) and length based NDF 

(𝑛(𝐿; 𝑡)).  

𝑛(𝑣; 𝑡) =
𝑛(𝐿; 𝑡)

𝛷𝐷𝑓𝐿
𝐷𝑓−1

 
(6) 

𝛷 = 𝛷𝑜𝐿𝑜
3−𝐷𝑓 (7) 



108 

𝛷𝑜 =
𝜋

6
 (8) 

where 𝐷𝑓 is the fractal dimension of the aggregates, 𝐿 is the length of aggregates and 𝐿𝑜 

is the initial length of the particles assumed that the aggregates composed of identical 

particles. 

Applying Eq. (6) into Eqs. (1)–(5), the length-based PBE can be derived as the following 

as a function of aggregate sizes (𝐿 𝑎𝑛𝑑 𝜆) 

𝝏(𝒏(𝑳; 𝒕))

𝝏𝒕
= 𝑩𝒂(𝑳; 𝒕) − 𝑫𝒂(𝑳; 𝒕) + 𝑩𝒃(𝑳; 𝒕) − 𝑫𝒃(𝑳; 𝒕) 

(9) 

𝑩𝒂(𝑳; 𝒕) =
𝑳𝑫𝒇−𝟏

𝟐
∫𝜶(( 𝑳𝑫𝒇 − 𝝀𝑫𝒇)

𝟏
𝑫𝒇 , 𝝀) . 𝜷 (( 𝑳𝑫𝒇 − 𝝀𝑫𝒇)

𝟏
𝑫𝒇 , 𝝀) . 𝒏 (( 𝑳𝑫𝒇

𝑳

𝟎

− 𝝀𝑫𝒇)
𝟏
𝑫𝒇; 𝒙, 𝒕) . 𝒏(𝝀; 𝒙, 𝒕). (( 𝑳𝑫𝒇 − 𝝀𝑫𝒇)

𝟏
𝑫𝒇
−𝟏
)𝒅𝝀 

(10) 

𝑫𝒂(𝑳; 𝒕) = 𝒏(𝑳; 𝒕)∫ 𝜶(𝑳, 𝝀)𝜷(𝑳, 𝝀)𝒏(𝝀; 𝒕)𝒅𝝀

∞

𝟎

 

(11) 

𝑩𝒃(𝑳; 𝒕) = ∫ 𝒂(𝑳, 𝝀)𝒃(𝝀)𝒏(𝝀; 𝒕)𝒅𝝀

∞

𝒗

 

(12) 

𝑫𝒃(𝑳; 𝒕) = 𝒃(𝑳)𝒏(𝑳; 𝒕) (13) 

𝜷(𝒗,𝒖) =
𝜷(𝑳, 𝝀)

𝜱𝑫𝒇𝑳
𝑫𝒇−𝟏

 
(14) 

 



109 

4.3. Moment Transformation 

Moment transform (McGraw 1997, McGraw and Saunders 1984, Hulburt and Katz 1964) 

can be applied to Eq. (9) using the following definition:    

𝑚𝑘 = ∫ 𝐿𝑘𝑛(𝐿; 𝑡)𝑑𝐿

∞

0

 

(15) 

in which 𝑚𝑘 is the 𝑘𝑡ℎ order moment and the size class L varies from zero to infinity in 

the transformation. McGraw (1997) proposed applying Gaussian quadrature 

approximation to replace the integration terms by a set of weight and abscissas of the 

NDF.  

𝑚𝑘 = ∫ 𝐿𝑘𝑛(𝐿; 𝑡)𝑑𝐿

∞

0

=∑𝜔𝑖𝐿𝑖
𝑘

𝑁𝑞

𝑖=1

= 𝛺×(𝛤𝑘)𝑇 (𝑘 = 0,1, … ,2𝑁𝑞 − 1) 

(16) 

𝛤 = [𝐿1, 𝐿2, . . , 𝐿𝑁𝑞] is a vector with each component representing a node in the Gaussian 

quadrature approximation. 𝛺 = [𝜔1, 𝜔2, . . , 𝜔𝑁𝑞] is also a vector in which each 

component is the weight (also the characteristic number density) corresponding to 𝐿𝑖 . The 

superscript T stands for the transpose of a vector. 𝑁𝑞 is the number of quadrature that 

represents the number of size classes of the aggregates. 

Using this transformation, Eq. (16) can only allow to track three or four size classes that 

would be sufficient to track the lower order moments. To reasonably produce the PSD 

curve higher order moments are required. However, tracking higher order moments could 

produce ill-conditioned problem due to the higher difference between 𝐿1 𝑎𝑛𝑑 𝐿𝑁𝑞 with 

larger 𝑘, i.e., (𝐿1 )
1 ≪ (𝐿𝑘 )

𝑘(Gautschi 1968). This would produce unreliable results i.e. 
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negative weights and/or size that do not have physical meaning. To relax the severity of 

ill-condition by reducing the difference between (𝐿1 )
1𝑎𝑛𝑑(𝐿𝑘 )

𝑘, Su et al. (2007) added 

an adjustable factor, 𝑝 in QMOM and re-defined the adjustable moments as 

𝑚𝑘/𝑝 = ∫ 𝐿𝑘 𝑝⁄ 𝑛(𝐿; 𝑡)𝑑𝐿

∞

0

=∑𝜔𝑖𝐿𝑖
𝑘 𝑝⁄

𝑁𝑞

𝑖=1

= 𝛺×(𝛤𝑘 𝑝⁄ )𝑇 (𝑘 = 0,1, … ,2𝑁𝑞 − 1) 

(17) 

In case of 𝑝 = 1, this could be reduced back to the conventual QMOM as in Eq. (16). 

Applying the transformation in Eq. (17), the PBE in Eq. (9) is transformed into a set of 

moment equations (𝑘 = 0,1, . . , 𝑀) that are a system of non-linear integro-differential 

equations (Eq. (18)). Applying the quadrature approach transform the integrals into 

simple summations (Eq. (19)).  

𝜕(𝑚𝑘/𝑝)

𝜕𝑡
=  
1

2
∫ 𝑛(𝜆; 𝑡)

∞

0

∫ 𝛼(𝐿, 𝜆)

∞

0

. 𝛽(𝐿, 𝜆)( 𝐿𝐷𝑓 + 𝜆𝐷𝑓)
𝑘/𝑝
𝐷𝑓 . 𝑛(𝐿; 𝑡)𝑑𝐿𝑑𝜆

− ∫ 𝐿𝑘/𝑝𝑛(𝐿; 𝑡)

∞

0

∫ 𝛼(𝐿, 𝜆)

∞

0

. 𝛽(𝐿, 𝜆)𝑛(𝜆; 𝑡)𝑑𝜆𝑑𝐿

+ ∫ 𝐿𝑘/𝑝∫ 𝑎(𝐿, 𝜆)𝑏(𝜆)𝑛(𝜆; 𝑡)𝑑𝜆𝑑𝐿

∞

0

∞

0

−∫ 𝐿𝑘/𝑝𝑏(𝐿)𝑛(𝐿; 𝑡)𝑑𝐿

∞

0

 

(18) 

𝜕(𝑚𝑘)

𝜕𝑡
=
1

2
∑𝜔𝑖∑𝛼(𝐿𝑖, 𝐿𝑗)𝛽(𝐿𝑖, 𝐿𝑗)𝜔𝑗(𝐿𝑖

𝐷𝑓 + 𝐿𝑗
𝐷𝑓)

𝑘
𝑝𝐷𝑓

𝑁𝑞

𝑗=1

𝑁𝑞

𝑖=1

−∑𝜔𝑖𝐿𝑖
𝑘 𝑝⁄

𝑁𝑞

𝑖=1

∑𝛼(𝐿𝑖, 𝐿𝑗)𝛽(𝐿𝑖 , 𝐿𝑗)𝜔𝑗

𝑁𝑞

𝑗=1

−∑�̅�(𝐿𝑖, 𝐿𝑗)
𝑘/𝑝
𝑏(𝐿𝑖)𝜔𝑖 −∑𝐿𝑖

𝑘 𝑝⁄ 𝑏(𝐿𝑖)𝜔𝑖

𝑁𝑞

𝑖=1

𝑁𝑞

𝑖=1

 

(19) 
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�̅�(𝐿𝑖, 𝐿𝑗)
(𝑘/𝑝)

= ∫ 𝐿𝑘 𝑝⁄

∞

0

𝑎(𝐿𝑖, 𝐿𝑗)dL 

(20) 

Additionally, PSD can be estimated from moments is inverse problem. PSD, which is 

number density function can be estimated by using the following relationship (McGraw 

1997): 

𝑛(𝐿; 𝑡) ≈∑𝜔𝑖(𝑡)𝛿[𝐿 − 𝐿𝑖(𝑡)]

𝑁𝑞

𝑖=1

 

(21) 

where δ is the Dirac delta function which means at any time t, δ is zero except at 𝐿 =

𝐿𝑖(𝑡).  

4.4. Breakage and Aggregation Kernels 

4.4.1. Collision frequency, β 

Collision frequency represents the two number of collisions between two particles of 

given sizes 𝐿 and 𝜆. There are several expressions for collision frequency in the literature. 

Basically, collisions result from Brownian diffusion, differential sedimentation or shear 

flow. However, when particle size is submicron, Brownian diffusion is the dominant 

mechanism of collision (Elimelech et al. 2013, Thomas et al. 1999). With aggregation 

and increase of effective size of aggregates shear flow becomes more significant. For 

submicron particles, differential sedimentation can be neglected.  

𝑃𝑒𝑟𝑘𝑖𝑛𝑒𝑡𝑖𝑐: 𝛽𝑝𝑒𝑟(𝐿𝑖, 𝐿𝑗) =
2

3

𝑘𝐵𝑇

𝜇

(𝐿𝑖 + 𝐿𝑗)
2

𝐿𝑖𝐿𝑗
 

(22) 
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𝑂𝑟𝑡ℎ𝑜𝑘𝑖𝑛𝑒𝑡𝑖𝑐:  𝛽𝑜𝑟𝑡ℎ(𝐿𝑖, 𝐿𝑗) =
𝐺

6
(𝐿𝑖 + 𝐿𝑗)

3 
(23) 

Where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature of the dispersion, 𝜇 is the 

viscosity of the dispersion, and 𝐺 is the shear rate. 

4.4.2. Collision efficiency, 𝜶 

The effect of energy barrier on aggregation is to reduce the rate of aggregation due to 

electrostatic repulsion. Stability ratio (𝑊), the reciprocal of the collision efficiency is 

simply the ratio of the aggregation rate in the absence of energy barrier to that with energy 

barrier (Elimelech et al. 2013). The stability ratio and collision efficiency can be 

calculated using the following: 

𝑊 = 2∫ 𝜒(𝜎)
exp (

𝜙𝑇
𝑘𝐵𝑇

)

(𝜎 + 2)2
𝑑𝜎

∞

0

 

(24) 

𝛼(𝐿𝑖, 𝐿𝑗) = 1/𝑊  

Where 𝜙𝑇 is the total electrostatic interaction between particles at separation distance ℎ, 

and 𝜎 is a function of ℎ and particle size.  

𝜎 =  
2ℎ

𝐿𝑖 + 𝐿𝑗
 

(25) 

𝜒(𝜎) is the hydrodynamic effect. As the particles approach close, it becomes increasingly 

difficult for liquid between them to be drained out the gap and this tends to slow the 

aggregation process.  

𝜒(𝜎) =
6𝜎2 + 13𝜎 + 2

6𝜎2 + 4𝜎
 

(26) 

The total electrostatic interaction (𝜙𝑇) is the summation of electric double layer repulsion, 

van der Walls attraction, and in case of silica nanoparticles solvation force can be added 
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to accurately predict the interaction energy. Zeta potential is the main factor that controls 

the electrostatic interaction (Abdelfatah et al. 2017b).  

𝜻 =

{
 
 

 
 𝒔𝟏

𝟎. 𝟖𝟓𝒌𝑩𝑻

𝒇(𝜿𝒂𝒑)𝒆
(𝒑𝑯𝑰𝑬𝑷 − 𝒑𝑯)[𝟏 + 𝒗𝜻(𝑻 − 𝑻𝟎)] 

𝜻𝒄𝒖𝒕−𝒐𝒇𝒇 +
𝒔𝟐

𝒇(𝜿𝑳𝒊)
 (𝒑𝑯𝒄𝒖𝒕−𝒐𝒇𝒇 − 𝒑𝑯)[𝟏 + 𝒗𝜻(𝑻 − 𝑻𝟎)]

 

(27) 

Ohshima (1994) presented a simple approximate expression for Henry’s function which 

is applicable for any value of 𝜅𝑳𝒊. 

𝒇(𝜿𝑳𝒊) = 𝟏 +
  𝟏

𝟐[𝟏 +
𝟐. 𝟓

𝜿𝑳𝒊(𝟏 + 𝒆𝒙𝒑−𝜿𝑳𝒊)
]
 

(28) 

 

Van der Waals interactions (Berg 2010) 

𝝓𝒗𝒅𝒘 = −
𝑨𝑯
𝟔
[

𝟐𝑳𝒊𝑳𝒋

𝒉𝟐 + 𝟐𝑳𝒊𝒉
+

𝟐𝑳𝒊𝑳𝒋

𝒉𝟐 + 𝟐𝑳𝒊𝒉 + 𝟐𝑳𝒋𝒉 + 𝟒𝑳𝒊𝑳𝒋

+ 𝐥𝐧(
𝒉𝟐 + 𝟐𝑳𝒊𝒉 + 𝟐𝑳𝒋𝒉

𝒉𝟐 + 𝟐𝑳𝒊𝒉 + 𝟐𝑳𝒋𝒉 + 𝟒𝑳𝒊𝑳𝒋
)] 

(29) 

 

Where 𝐴𝐻  is the Hamaker constant(Russel et al. 1989) 

𝑨𝑯 =
𝟑

𝟒
𝒌𝑩𝑻(

𝜺𝒑 − 𝜺𝒄

𝜺𝒑 + 𝜺𝒄
)

𝟐

+
𝟑𝒉𝐏𝝊𝒆

𝟏𝟔√𝟐

(𝒏𝒑
𝟐 − 𝒏𝒄

𝟐)
𝟐

(𝒏𝒑𝟐 + 𝒏𝒄𝟐)
𝟑/𝟐

 

(30) 

휀 is the dielectric constant, 𝑛 is the refractive index, the subscripts 𝑝 𝑎𝑛𝑑 𝑐 correspond to 

the properties of the particle and continuous phase, respectively, ℎP is the Planck constant, 

and 𝜐𝑒 is the characteristic adsorption frequency. Electric double layer repulsion using 

linearized Poisson-Boltzmann equation(Hogg et al. 1966).  
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𝝓𝑬𝑫𝑳 =
𝜺𝟎𝑳𝒊𝑳𝒋(𝜻𝒊

𝟐 + 𝜻𝒋
𝟐)

𝟒(𝑳𝒊 + 𝑳𝒋)
[

𝟐𝜻𝒊𝜻𝒋

(𝜻𝒊
𝟐 + 𝜻𝒋

𝟐)
𝐥𝐧 (

𝟏 + 𝒆𝒙𝒑(−𝜿𝒉)

𝟏 − 𝒆𝒙𝒑(−𝜿𝒉)
) + 𝐥𝐧 (𝟏

− 𝐞𝐱𝐩 (−𝟐𝜿𝒉)] 

(31) 

Debye length  

𝜿 = (
𝒆𝟐∑ 𝒛𝒊

𝟐𝒄𝒊𝟎𝒊

𝜺𝒄𝜺𝟎𝒌𝑩𝑻
)

𝟏/𝟐

 
(32) 

Where  휀0 is the vacuum permittivity, z is the valence number of the ion, e is the charge 

of an electron, 휁𝑖𝑎𝑛𝑑 휁𝑗  are the zeta potentials of aggregates of size 𝐿𝑖  𝑎𝑛𝑑 𝐿𝑗, 

respectively. 𝜅−1 is the Debye length, and 𝑐𝑖0 is the bulk concentration of ion species i. 

Hydration repulsion originates from the overlap of structured layer of water molecules at 

the surfaces of hydrophilic nanoparticles (Pashley and Israelachvili 1984). Hydration 

force can be expressed by (P. Binks and O. Lumsdon 1999, Chapel 1994) 

𝝓𝑯𝒀𝑫 = 𝝅𝑳𝒊𝑵𝑨𝑪𝒉𝒄𝒊𝟎𝓵
𝟐𝐞𝐱𝐩 (−𝒉𝓵) (33) 

Where 𝐶ℎ is hydration constant, ℓ is the decay length. 

4.4.3. Breakup frequency 

The breakup frequency including the fractal dimension can expressed by Eq. (34) 

(Vlieghe et al. 2016) 

𝑏(𝐿𝑖) = 𝑐𝐺
5/2(

𝐿𝑖
𝐿0
)3−2𝐷𝑓/3 

(34) 

Where G is the shear rate, c is a fitting parameter that depends on the strength of the 

aggregate. 
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4.4.4. Fragment distribution 

Uniform fragmentation distribution is used in this  work, meaning that  all  possibilities  

are  equally  probable (Vlieghe et al. 2016). 

𝑎(𝐿𝑖 , 𝐿𝑗) =
2𝐷𝑓𝐿𝑖

𝐷𝑓−1

𝐿𝑗
𝐷𝑓

,    𝐿𝑖 < 𝐿𝑗 
(35) 

and the integrated adjustable daughter distribution function can be written as 

�̅�(𝐿𝑖, 𝐿𝑗)
(𝑘/𝑝)

= 𝐿𝑖
𝑘/𝑝 2𝐷𝑓
𝑘/𝑝 + 𝐷𝑓

,    𝐿𝑖 < 𝐿𝑗 
(36) 

4.5. Viscosity model 

Modified effective-medium theory (Lattuada et al. 2016, Takamura and Ven 2010) can 

be effectively used to model the viscosity evolution of aggregating dispersions and 

predicts the initiation of gelation.  

𝜇 = 𝜇0 [
1 −

𝜑
𝜑𝑚

1 −
(𝑘0𝜑𝑚 − 1)𝜑

𝜑𝑚

]

−𝜑𝑚[𝜇]
2−𝑘0𝜑𝑚

 

(37) 

Where 𝜑 is the particles/aggregates volume fraction and 𝜑𝑚 is the maximum packing 

factor. Intrinsic viscosity [𝜇] = 2.5. For 𝐷𝑓 = 3, 𝜑 = 𝑘𝑉𝑚3. Where 𝑘𝑉 is the volumetric 

shape factor. Crowding factor 𝑘0 =
2𝑘2

[𝜇]
− [𝜇]. 𝑘0 is a function of shear rate (𝐺), and the 

exact relationship between 𝑘0 and 𝐺 is a function of the surface properties of the colloidal 

particles and the electrolyte concertation. However, in this study 𝑘2 is assumed between 

 5.2 − 6.2 from low to high shear rate. Hence 𝑘0
0 = 3.05 at low shear rate and 𝑘0

∞ = 1.7 
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at high shear limit. The effect of shear rate can be calculated as the following: 𝑘0 = 𝑘0
∞ +

𝑘0
0−𝑘0

∞

1+𝑃𝑒0.35
. Where 𝑃𝑒 =

3𝜋𝜇𝐺𝑅𝐻,𝑖𝑅𝐻,𝑗(𝑅𝐻,𝑖+𝑅𝐻,𝑗)

2𝑘𝐵𝑇
 and Hydrodynamic radius, 𝑅𝐻,𝑖 =

𝑚3

𝑚2
 

4.6. Numerical Solution  

The mathematical model presented in the previous sections is solved numerically to find 

the evolution of the moments and the viscosity as the following: 

1. Knowing the volume fraction of the particles in the initial dispersion and 

assuming the initial particles has an average size of 150 nm, we can calculate the 

number of the particles and number density function at the initial conditions. 

2. Using wheeler algorithm  (Wheeler 1974), the weight and abscissas of the initial 

moments can be calculated. For more details about wheeler algorithm, readers are 

referred to Marchisio and Fox (2013) 

3. Using the weight and abscissas of the initial moments, the initial source/sink term 

is then calculated. 

4. Sweeping the time steps  

4.1.Using initial source/sink term, the moments can be updated using backward Euler 

time discretization scheme. 

4.2.Feeding the updated moments into wheeler algorithm, the updated weights and 

abscissae’s can be calculated. 

4.3.Using the updated the weights and abscissae’s, the source/sink term for the next 

time step is calculated. 

4.4.Using the updated moments, the new viscosity can be calculated. 

5. Repeat step 4 and end the simulation when the total time of simulation is reached. 
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4.7. Results and Discussion 

The mathematical model presented in this paper is used to study the aggregation and 

gelation of fumed silica nanoparticles compared to colloidal silica nanoparticles. Several 

hypothetical cases were run to compare the kinetics of aggregation of both silica 

nanoparticles at comparable conditions. Modified effective-medium theory is used for 

calculation of viscosity evolution with aggregation. Several experimental studies show 

that the maximum packing factor (𝜑𝑚) for fumed silica is ~0.20-0.3 while for colloidal 

silica it’s ~ 0.7 (Smith and Zukoski 2004, Chen et al. 2005). For colloidal silica, the value 

of the maximum packing factor (𝜑𝑚) is close to the theoretical value of 0.74 for a close 

packed array of same size spheres. While for fumed silica, 𝜑𝑚 is much smaller due to the 

fractal structures that prevent tight packing of the primary particles. Two different 

regimes of aggregation are identified; diffusion limited aggregation (DLCA), and reaction 

limited aggregation (RLCA) (Sefcik et al. 2005). The network structure of DLCA is more 

open (𝐷𝑓 = 1.8) while that for RLCA is more close and compact (𝐷𝑓 = 2.2) (Russel et 

al. 1989). However, in this study, the fractal dimension is assumed to be 3. In this case, 

the conservation of mass per unit volume can be verified for 𝑘 = 𝐷𝑓 = 3. In this section, 

the simulation results for fumed silica and colloidal silica nanoparticles are presented at 

different electrolyte concentration represented by the collision efficiency as calculated 

from Eq. (24).  

4.7.1. Fumed silica 

Fumed silica is aggregates of spherical particles fused together on the flame (Smith and 

Zukoski 2004). In this study, it’s assumed that the maximum packing factor (𝜑𝑚) for 

fumed silica is ~0.3 that is close to the value calculated from aggregation experiments of 
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fumed silica by Smith and Zukoski (2004). The effect of collision efficiency representing 

different salt concentration is presented in Fig. 4-1 for 𝐷𝑓 = 3 and 1.25 vol% of fumed 

silica nanoparticles dispersion. With increasing the salt concentration (i.e. increasing 

collision efficiency), the gelation time (represented by sharp increase in viscosity) 

decreases significantly. At low collision efficiency, the gel cannot be formed. This can 

be explained that at low electrolyte concentration, the electrostatic repulsion between 

particles is significantly high (Abdelfatah et al. 2017a, Abdelfatah et al. 2017b). This high 

repulsion forces between particles can prevent the particles approaching each other and 

maintain the dispersion stability. Fig. 4-2 shows the evolution of aggregate size with time. 

The aggregate size reaches a stable plateau once gelation is triggered. According to Eq. 

(22), collision frequency depends on the aggregate size and viscosity. Once the effective 

volume fraction of aggregates reaches 𝜑𝑚, the gel network spans the whole space and the 

viscosity increases sharply. Hence, the collision frequency will be reduced significantly 

and no further aggregation would occur. Fig. 4-2 also shows that at low collision 

efficiency, the aggregate size does not change indicating that the dispersion is highly 

stable against aggregation. Fig. 4-3 shows that volume fraction of the aggregates grows 

monotonically till it reaches the maximum packing factor beyond which there is no 

further aggregation and no further increase in volume of the aggregates. The increase of 

the volume with time is due to the fractal nature of the aggregates. However, the total 

mass of the aggregates is conserved. This can be checked that the moment at 𝑘 = 𝐷𝑓 

representing the total mass of the aggregates is constant.  

Initial concentration of nanoparticles in the dispersion is one of the key factors that control 

aggregation and gelation. Smith and Zukoski (2006) shows that there is a critical 
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concentration of fumed silica nanoparticles below which the gel network cannot be 

formed. Herein, the study of aggregation and viscosity evolution with time is presented 

at different concentrations of fumed silica nanoparticles. Fig. 4-4 shows that at 

concentration as low as 0.5 vol% the gel cannot be formed. Also, Figs. 4-5 and 4-6 shows 

that there is a slight increase in the mean aggregate size and the volume fraction at low 

concentration, respectively. With increasing the concentration of nanoparticles, the gel 

network starts to form at 0.8 vol% of fumed silica nanoparticles. Above this critical 

concentration, the viscosity increases much further and the gelation decreases 

significantly with increasing the concentration of fumed silica (Fig. 4-4). However, Fig 

4-5 shows that with increasing the concentration above the critical point, the aggregates 

size decreases significantly. This can be explained that at low concentration the 

aggregates size needs to grow greatly before it could form the gel network. While at high 

concentration, the particles are much closer together that larger number of moderate 

aggregate size can be formed initially before they can interconnect together to form the 

gel network. This explanation is supported by Fig. 4-6 which shows that high 

concentration of silica nanoparticles, the volume of aggregates reaches the maximum 

packing factor at significantly shorter time. 
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Figure 4-1—Viscosity evolution with time for fumed silica suspension with 𝑫𝒇 =

𝟑 at different collision efficiency 

 

 

Figure 4-2—Aggregate size evolution with time for fumed silica suspension with 

𝑫𝒇 = 𝟑 at different collision efficiency 
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Figure 4-3—Aggregate volume fraction evolution with time for fumed silica 

suspension with 𝑫𝒇 = 𝟑 at different collision efficiency 

 

 

Figure 4-4—Viscosity evolution with time for fumed silica suspension with 𝑫𝒇 = 𝟑 

at different initial concentration 
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Figure 4-5—Aggregate size evolution with time for fumed silica suspension with 

𝑫𝒇 = 𝟑 at different initial concentration 

 

 

Figure 4-6—Aggregate volume fraction evolution with time for fumed silica 

suspension 𝑫𝒇 = 𝟑 at different initial concentration 
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4.7.2. Colloidal silica 

Unlike fumed silica, colloidal silica is a single spherical particle (Chen et al. 2005). In 

this study, it’s assumed that the maximum packing factor (𝜑𝑚) for colloidal silica is ~0.7. 

This value is close to the theoretically calculated value for packing of spheres ~ 0.74. 

Here, we modeled the aggregation and gelation of colloidal silica at similar conditions 

that presented in the previous section for fumed silica nanoparticles. The fractal 

dimension of the aggregates is also assumed to be constant and equal to 3. The effect of 

collision efficiency representing different salt concentration is presented in Fig. 4-7 for 

colloidal silica nanoparticles concentration of 1.25 vol%. With increasing the salt 

concentration (i.e. increasing collision efficiency), the viscosity of the dispersion 

increases significantly. Fig. 4-6 shows the evolution of aggregate size with time. At very 

low collision efficiency, the viscosity does have much increase beyond the initial 

viscosity of the stable dispersion. Comparing Fig. 4-7 to Fig. 4-1, colloidal silica does not 

form the gel network as in the case of fumed silica at 1.25 vol%. The aggregation and the 

crowing of the dispersion increases the viscosity slowly. However, this low concentration 

is not enough to form the gel network. Chen et al. (2005) shows that colloidal silica can 

form the gel network at concentration as high as 30 vol%. Fig. 4-8 shows that with 

increasing the collision frequency the aggregates size increases significantly. However, 

due to low concentration to form the gel network, the aggregate increases significantly as 

compared to the fumed silica nanoparticles in Fig. 4-2. The aggregate size plateau 

explains that there is not further aggregation due to large size of the aggregates and hence 

the lower the collision frequency. This is also affirmed by Fig. 4-9 that shows that the 

volume fraction of the aggregates no longer increases after a certain time.  
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Figure 4-7—Viscosity evolution with time for colloidal silica suspension with 𝑫𝒇 =

𝟑 at different collision efficiency 

 

 

Figure 4-8—Aggregate size evolution with time for colloidal silica suspension with 

𝑫𝒇 = 𝟑 at different collision efficiency 
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Figure 4-9—Aggregate volume fraction evolution with time for colloidal silica 

suspension with 𝑫𝒇 = 𝟑 at different collision efficiency 
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would have larger number of aggregates with smaller size than in the case of low 

concentration.  

 

Figure 4-10—Viscosity evolution with time for colloidal silica suspension with 𝑫𝒇 =

𝟑 at different initial concentration 

 

 

Figure 4-11—Aggregate size evolution with time for colloidal silica suspension with 

𝑫𝒇 = 𝟑 at different initial concentration 
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Figure 4-12—Aggregate volume fraction evolution with time for colloidal silica 

suspension with 𝑫𝒇 = 𝟑 at different initial concentration 
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The model developed in this study can be coupled with a transport model to simulate 

nanoparticles transport aggregation and sin-situ gelation in porous media. 
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Nomenclature 

𝐴𝐻  Hamaker constant 

𝑎(𝐿, 𝜆) fragment distribution function for the diameter-based PBE 

𝑎(𝑣, 𝑢) fragment distribution function for the volume-based PBE 

𝑏(𝐿) diameter based breakage kernel 

𝑏(𝑢) volume-based breakage kernel 

𝑐 adjustable parameter in the breakage kernel model 

𝐵𝑎(𝐿; 𝑡) birth term due to aggregation in the diameter-based PBE 

𝐵𝑏(𝐿; 𝑡) birth term due to breakage in the diameter-based PBE 

𝐵𝑎(𝑣; 𝑡) birth term due to aggregation in the volume-based PBE 

𝐵𝑎(𝑣; 𝑡) birth term due to aggregation in the volume-based PBE 

𝐷𝑎(𝐿; 𝑡) death term due to aggregation in the diameter -based PBE 

𝐷𝑏(𝐿; 𝑡) death term due to breakage in the diameter -based PBE 

𝐷𝑎(𝑣; 𝑡) death term due to aggregation in the volume-based PBE 

𝐷𝑏(𝑣; 𝑡) death term due to breakage in the volume-based PBE 

𝐷𝑓 fractal dimension of the aggregates 

𝑒 Electronic charge 
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𝑓(𝜅𝑳𝒊) Henry’s function 

𝐺 Shear rate 

𝑘𝐵 Boltzmann constant 

ℎ Separation distance between particles 

𝐿𝑖 nodes in the Gaussian quadrature approximation 

𝐿0 Initial size of the nanoparticles 

𝑚𝑘 the kth order moment 

𝑁𝑞 number of quadrature that represent the number of size classes of the 

aggregates 

𝑛(𝐿; 𝑡) diameter-based number density function 

𝑛(𝑣; 𝑡) volume-based number density function 

𝑝𝐻 pH of the solution  

𝑝𝐻𝐼𝐸𝑃 isoelectric point of the nanoparticles 

𝑠1, 𝑠2 slopes for the zeta potential function of pH and temperature 

𝑇 temperature of the dispersion 

𝑇0 initial temperature of the dispersion 

𝑊 stability ratio 

𝛼(𝐿, 𝜆) collision efficiency of particles of diameter 𝐿 𝑎𝑛𝑑 𝜆 

𝛽(𝐿, 𝜆) collision frequency of particles of diameter 𝐿 𝑎𝑛𝑑 𝜆 

𝜔𝑖 weight (also the characteristic number density) corresponding to 𝐿𝑖 

𝜒(𝜎) hydrodynamic effect 

𝜙𝑇 total electrostatic interaction between particles at separation distance ℎ 

𝜙𝑣𝑑𝑤 Van der Waals interactions 
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𝜙𝐸𝐷𝐿 Electric double layer repulsion 

𝜙𝐻𝑌𝐷 Hydration force 

𝜎 function of separation distance and particle size 

휁 zeta potential 

𝜅 Debye length  

𝑧𝑖 valence number of the ion 

𝑣𝜁 Constant for temperature effect on zeta potential 

휀0 vacuum permittivity 

휀𝑝 dielectric constant of the particles 

휀𝑐 dielectric constant of the continuous phase 

ℎP Planck constant 

𝜐𝑒 characteristic adsorption frequency 

𝑛𝑝 refractive index of the particles 

𝑛𝑐 refractive index of the continuous phase 

𝑐𝑖0 bulk concentration of ion species i 

𝑁𝐴 Avogadro number 

𝐶ℎ hydration constant 

ℓ decay length of the hydration force 

𝜇 viscosity of aggregating dispersions 

𝜇0 Initial viscosity of the continuous phase 

[𝜇] intrinsic viscosity 

𝜑 particles/aggregates volume fraction 
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𝜑𝑚 maximum packing fraction 

𝑘0 Crowding factor 

𝑘2 second virial coefficient 

𝑘0
0 Crowding factor at low shear rate 

𝑘0
∞ Crowding factor at high shear rate 

𝑃𝑒 Peclet number of the aggregates 

𝑅𝐻,𝑖 Hydrodynamic radius of the aggregates 
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Chapter 5 Modeling Coupled Transport, Aggregation and In Situ 

Gelation of Nanoparticles in Porous Media  
 

Abstract 

Applications of Nanotechnology are growing significantly in the petroleum industry such 

as oil recovery, and well stimulation. In aqueous media, fumed silica nanoparticles 

aggregate if there is sufficient attractive energy between nanoparticles. Aggregate size 

distribution evolves as aggregation continues, and once it spans the space, it forms a gel. 

The objective of this study is to study evolution of nanoparticle size distribution during 

transport in porous media, including the aggregation, deposition, straining and initiation 

of gelation.   

Population Balance equation (PBE) was used to model the growth of aggregates and the 

interaction between aggregates and porous media. Quadrature method of moments 

(QMOM) was used to convert the PBE with continuous distribution of nanoparticle size 

into moment transport equations for efficient computation. The closure problem for 

moment transport equation was resolved using Gaussian Quadrature that requires 

estimation of roots orthogonal polynomials. Wheeler algorithm was used for calculation 

of the coefficients of the recursive formula of the orthogonal polynomials. Finite volume 

method was used for discretization of mass transport equations, continuity equation and 

Darcy law.   

Changes in nanoparticle size and shape due to inter–particle interactions (i.e., 

aggregation) can significantly affect particle mobility and retention in porous media. To 

date, however, few modeling studies have considered the coupling of transport and 

particle aggregation processes. Model sensitivity analysis explained the influence of 
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particle concentration, and interstitial velocity gradient on particle–particle, and, 

consequently, particle–collector interactions. Model simulations demonstrate that, when 

environmental conditions can promote inter–particle interactions, neglecting aggregation 

effects can lead to over-estimation of nanoparticle mobility. Results also suggest that the 

extent to which higher order inter–particle collisions influence aggregation kinetics will 

increase with the volume fraction of primary particles. The model shows that when 

nanoparticles dispersions are injected into free media like large pores or fractures that the 

effect of filtration is negligible, the gelation can be achieved but after longer time 

compared to the batch experiments. However, when including the effect of filtration, the 

viscosity of the does not increase due to exclusion of larger aggregates once they are 

formed. This prevents the growth of the gel network. 

The model developed in this work accurately captures aggregation and initiation of 

gelation of silica in porous media. This work demonstrates the potential importance of 

time-dependent aggregation processes on nanoparticle mobility and provides a numerical 

model capable of capturing/describing these interactions in water-saturated porous media. 

This modeling study attempts to answer the critical questions pertaining the coupling of 

aggregation and in situ gelation on the nanoparticles transport in porous media.   

Keywords:  

Fumed Silica Nanoparticles; Population balance equation; Quadrature method of 

moments; In Situ Gelation; Aggregation; Deposition, Straining; Porous Media  
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5.1.Introduction  

Nanotechnology recently gained a wide interest for different applications in oil and gas 

industry especially for upstream technologies such as hydraulic fracturing, drilling fluids, 

fines migration, and enhanced oil recovery (Fakoya and Shah 2017, Abdelfatah et al. 

2014). There are two main classes of silica nanoparticles that are widely used in 

dispersions; fumed silica and colloidal silica nanoparticles (Gun'ko et al. 2001, Iler 1979). 

Transport of silica Nanoparticles in porous media can encounter several mechanisms of 

interactions either inter-nanoparticle or nanoparticles-porous medium interactions. In our 

previous papers, we discussed the different mechanisms of nanoparticles-porous medium 

interactions (Abdelfatah et al. 2017c, Abdelfatah et al. 2017d, Abdelfatah et al. 

2017b). Assuming inter-nanoparticle interaction is negligible, there are basically three 

mechanisms of interaction between nanoparticles and porous media; surface 

deposition, single particle plugging, multi-particle plugging. The intense of these 

mechanisms depends on injection rate, nanoparticle concentration, size of nanoparticles 

and pore throat size.   

Aggregation of fumed silica nanoparticles can be explained within the framework of 

DLVO (Elimelech et al. 2013, Russel et al. 1989). The most important forces that control 

the kinetics of aggregation and the properties of dispersion are dispersion and electrostatic 

forces. for Fumed silica dispersion in polar solvents solvation forces due to the hydrogen 

bonding of the solvent to the surface silanol groups can play a major role (Smith and 

Zukoski 2006, Raghavan et al. 2000). Theoretically, the kinetics of aggregation depends 

on the magnitude of energy barrier between nanoparticles. Nanoparticles that overcome 

the energy barrier will aggregate with another particle in 
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deep primary energy minimum. Smith and Zukoski (2006) studied the aggregation and 

gelation of fumed silica nanoparticles dispersed in ethanol. Ethanol is a very polar solvent 

due to the presence of hydroxyl group. They showed that at low concentration, gelation 

is arising from aggregation into a primary minimum due to hydrogen bonding and 

dispersion forces. The gelation is extremely slow due to an energetic barrier (∼ 25kT) in 

the interparticle potential associated with solvation forces. The solvation forces also 

contribute to the formation of a secondary minimum in the interparticle potential. The 

depth of this minimum (∼ 3kT) is sufficient that, at a critical particle concentration, long-

range diffusion is arrested due to the short-range attractions and the cooperative nature of 

particle interactions, as described by mode coupling theory.  

In the previous paper, the aggregation and gelation of fumed silica nanoparticles in batch 

experiments was discussed. Quadrature method of moments was used to solve the 

population balance equation for the evolution of particles size distribution due to 

aggregation. The model successfully can trigger the initiation of gelation and the viscosity 

increase of the dispersion. Particle aggregation has a significant effect on nanoparticle 

transport in porous media (Kim et al. 2015). The objective of this paper is to couple the 

QMOM model developed in the previous paper with a fluid flow model to simulate 

coupled nanoparticles transport, aggregation, and in situ gelation in porous media.  

5.2.Mathematical Model  

5.2.1. Continuity and Momentum Equation 

Pressure gradient in the computational domain is governed by the continuity equation for 

linear flow under conditions of variable porosity 

𝜕ϕ

𝜕𝑡
+ 𝛻. 𝑈 = 0 

(1) 
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Once the gelation state is triggered the fluid will be non-Newtonian and shear-thinning. 

Modified Darcy law would be use with an apparent viscosity.   

𝑈 = −
𝑘

𝜇
𝛻𝑃 

(2) 

𝜕ϕ

𝜕𝑡
− 𝛻. (

𝑘

𝜇
𝛻𝑃) = 0 

(3) 

Where ϕ is the porosity of the porous medium, 𝜇 is the apparent viscosity of the 

dispersion, and 𝛻𝑃 is the pressure gradient, and U is the Darcy velocity.  

5.2.2. Salt Transport Equations 

In this model, the salt is assumed to work as a catalyst and does not get involved in any 

reaction. Hence, the convection-dispersion equation is used to model the salt distribution 

in the computational domain. 

𝜕ϕ𝐶𝑠𝑎𝑙𝑡
𝜕𝑡

+ 𝛻. 𝑈𝐶𝑠𝑎𝑙𝑡 − 𝛻. (ϕ𝐷𝑠𝑎𝑙𝑡
∗ 𝛻𝐶𝑠𝑎𝑙𝑡) = 0 

(4) 

Where 𝐶𝑠𝑎𝑙𝑡 is the concentration of the salt, and 𝐷𝑠𝑎𝑙𝑡
∗  is the dispersion coefficient of the 

salt. 

5.2.3. Nanoparticles Transport Equations 

5.2.3.1. Population Balance Equation 

Population balance equation (PBE) is a continuity statement that describes the evolution 

of a number density function (NDF) of particle volume dispersed in the system 

(Marchisio and Fox 2013). The particle size distribution (PSD) is a NDF representing the 

number concentration of particles with volumes between 𝑣 𝑎𝑛𝑑 𝑣 + 𝑑𝑣. PSD evolved 

with time due to particles aggregation. Under shear flow, large aggregate can break into 

smaller one that may aggregate with other particles again. The volume based PBE 
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(Vlieghe et al. 2016) can be written as in Eqs. (5)–(11), where 𝑛(𝑣; 𝑥, 𝑡) is the NDF of 

aggregates of volume 𝑣, 𝐵𝑎(𝑣; 𝑥, 𝑡) 𝑎𝑛𝑑 𝐷𝑎(𝑣; 𝑥, 𝑡) are birth and death of aggregates of 

volume 𝑣 due to aggregation, 𝐵𝑏(𝑣; 𝑥, 𝑡) 𝑎𝑛𝑑 𝐷𝑏(𝑣; 𝑥, 𝑡) are birth and death of 

aggregates of volume 𝑣 due to breakage, 𝐷𝑑(𝑣; 𝑥, 𝑡) is the death of aggregates of volume 

𝑣 due to deposition on the rock surface, and 𝐷𝑠(𝑣; 𝑥, 𝑡) is the death of aggregates of 

volume 𝑣 due to straining at small pore throats. 

 

𝜕(ϕ. 𝑛(𝑣; 𝑥, 𝑡))

𝜕𝑡
+ 𝛻. (𝑈. 𝑛(𝑣; 𝑥, 𝑡)) − 𝛻. (ϕ𝐷𝑎𝑔𝑔

∗ 𝛻. (𝑛(𝑣; 𝑥, 𝑡)))

= ϕ[𝐵𝑎(𝑣; 𝑥, 𝑡) − 𝐷𝑎(𝑣; 𝑥, 𝑡) + 𝐵𝑏(𝑣; 𝑥, 𝑡) − 𝐷𝑏(𝑣; 𝑥, 𝑡)

− 𝐷𝑑(𝑣; 𝑥, 𝑡) − 𝐷𝑠(𝑣; 𝑥, 𝑡)]  

(5) 

𝐵𝑎(𝑣; 𝑥, 𝑡) =
1

2
∫𝛼(𝑣 − 𝑢, 𝑢)𝛽(𝑣 − 𝑢, 𝑢)𝑛(𝑣 − 𝑢; 𝑥, 𝑡)𝑛(𝑢; 𝑥, 𝑡)𝑑𝑢

𝑣

0

 

(6) 

𝐷𝑎(𝑣; 𝑥, 𝑡) = 𝑛(𝑣; 𝑥, 𝑡)∫ 𝛼(𝑣, 𝑢)𝛽(𝑣, 𝑢)𝑛(𝑢; 𝑥, 𝑡)𝑑𝑢

∞

0

 

(7) 

𝐵𝑏(𝑣; 𝑡) = ∫ 𝑎(𝑣, 𝑢)𝑏(𝑢)𝑛(𝑢; 𝑡)𝑑𝑢

∞

𝑣

 

(8) 

𝐷𝑏(𝑣; 𝑡) = 𝑏(𝑣)𝑛(𝑣; 𝑡) (9) 

𝐷𝑑(𝑣; 𝑥, 𝑡) = ∫ 𝑘𝑑(𝑣)𝑛(𝑣; 𝑥, 𝑡)𝑑𝑣

∞

0

 

(10) 

𝐷𝑠(𝑣; 𝑥, 𝑡) = ∫ 𝑘𝑠(𝑣)𝑛(𝑣; 𝑥, 𝑡)𝑑𝑣

∞

0

 

(11) 

 In these equation 𝛽(𝑣, 𝑢) is the collision frequency of particles of volume 𝑣 𝑎𝑛𝑑 𝑢, 

𝛼(𝑣, 𝑢) is the collision efficiency of particles of volume 𝑣 𝑎𝑛𝑑 𝑢, 𝑏(𝑣) is the breakage 
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kernel that represents the break frequency of aggregates of volume 𝑣, 𝑎(𝑣, 𝑢) is the 

fragment distribution function that represent the number density function of aggregates 

of volume 𝑣 produced by breakage of aggregates of volume 𝑢, 𝑘𝑑(𝑣) is the deposition 

kernel of aggregates of volume 𝑣, and 𝑘𝑠(𝑣) is the straining kernel of aggregates of 

volume 𝑣. 𝐷𝑎𝑔𝑔
∗  is the dispersion coefficient of the aggregates.  

To involve the fractal dimension into the PBE, Vlieghe et al. (2016) proposed the 

following relationship between volume based NDF (𝑛(𝑣; 𝑡)) and length based NDF 

(𝑛(𝐿; 𝑡)). 

𝑣

𝑣𝑜
= (

𝐿

𝐿𝑜
)
𝐷𝑓

 
(12) 

𝑛(𝑣; 𝑥, 𝑡) =
𝑛(𝐿; 𝑥, 𝑡)

𝛷𝐷𝑓𝐿
𝐷𝑓−1

 
(13) 

𝛷 = 𝛷𝑜𝐿𝑜
3−𝐷𝑓 (14) 

𝛷𝑜 =
𝜋

6
 (15) 

where 𝐷𝑓 is the fractal dimension of the aggregates, 𝐿 is the length of aggregates and 𝐿𝑜 

is the initial length of the particles assumed that the aggregates composed of identical 

particles. 

Applying Eq. (13) into Eqs. (5)–(11), the diameter-based PBE can be derived as the 

following as a function of aggregate sizes (𝐿 𝑎𝑛𝑑 𝜆) 
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𝜕(𝜙. 𝑛(𝐿; 𝑥, 𝑡))

𝜕𝑡
+ 𝛻. (𝑈. 𝑛(𝐿; 𝑥, 𝑡)) − 𝛻. (ϕ𝐷𝑎𝑔𝑔

∗ 𝛻. (𝑛(𝐿; 𝑥, 𝑡)))

= ϕ[𝐵𝑎(𝐿; 𝑥, 𝑡) − 𝐷𝑎(𝐿; 𝑥, 𝑡) + 𝐵𝑏(𝐿; 𝑥, 𝑡) − 𝐷𝑏(𝐿; 𝑥, 𝑡)

− 𝐷𝑑(𝐿; 𝑥, 𝑡) − 𝐷𝑠(𝐿; 𝑥, 𝑡)] 

(16) 

𝐵𝑎(𝐿; 𝑥, 𝑡) =
𝐿𝐷𝑓−1

2
∫𝛼 (( 𝐿𝐷𝑓 − 𝜆𝐷𝑓)

1
𝐷𝑓 , 𝜆) . 𝛽 (( 𝐿𝐷𝑓 − 𝜆𝐷𝑓)

1
𝐷𝑓 , 𝜆) . 𝑛 (( 𝐿𝐷𝑓

𝐿

0

− 𝜆𝐷𝑓)
1
𝐷𝑓; 𝑥, 𝑡) . 𝑛(𝜆; 𝑥, 𝑡). (( 𝐿𝐷𝑓 − 𝜆𝐷𝑓)

1
𝐷𝑓
−1
)𝑑𝜆 

(17) 

𝐷𝑎(𝐿; 𝑥, 𝑡) = 𝑛(𝐿; 𝑥, 𝑡)∫ 𝛼(𝐿, 𝜆)𝛽(𝐿, 𝜆)𝑛(𝜆; 𝑥, 𝑡)𝑑𝜆

∞

0

 

(18) 

 

 

𝐵𝑏(𝐿; 𝑡) = ∫ 𝑎(𝐿, 𝜆)𝑏(𝜆)𝑛(𝜆; 𝑡)𝑑𝜆

∞

𝜆

 

(19) 

𝐷𝑏(𝐿; 𝑡) = 𝑏(𝐿)𝑛(𝐿; 𝑡) (20) 

𝛽(𝑣, 𝑢) =
𝛽(𝐿, 𝜆)

𝛷𝐷𝑓𝐿
𝐷𝑓−1

 
(21) 

𝐷𝑑(𝐿; 𝑥, 𝑡) = 𝑘𝑑(𝐿)𝑛(𝐿; 𝑥, 𝑡) (22) 

𝐷𝑠(𝐿; 𝑥, 𝑡) = 𝑘𝑠(𝐿)𝑛(𝐿; 𝑥, 𝑡) (23) 

5.2.3.2. Moment Transformation 

Moment transform (McGraw 1997, McGraw and Saunders 1984, Hulburt and Katz 1964) 

can be applied to Eq. (9) using the following definition:   

𝑚𝑘 = ∫ 𝐿𝑘𝑛(𝐿; 𝑡)𝑑𝐿

∞

0

 

(24) 
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in which 𝑚𝑘 is the kth order moment and the size class L varies from zero to infinity in 

the transformation. McGraw (1997) proposed applying Gaussian quadrature 

approximation to replace the integration terms by a set of weight and abscissas of the 

NDF.  

𝑚𝑘 = ∫ 𝐿𝑘𝑛(𝐿; 𝑡)𝑑𝐿

∞

0

=∑𝜔𝑖𝐿𝑖
𝑘

𝑁𝑞

𝑖=1

= 𝛺×(𝛤𝑘)𝑇 (𝑘 = 0,1, … ,2𝑁𝑞 − 1) 

(25) 

𝛤 = [𝐿1, 𝐿2, . . , 𝐿𝑁𝑞] is a vector with each component representing a node in the Gaussian 

quadrature approximation. 𝛺 = [𝜔1, 𝜔2, . . , 𝜔𝑁𝑞] is also a vector in which each 

component is the weight (also the characteristic number density) corresponding to 𝐿𝑖 . The 

superscript T stands for the transpose of a vector. 𝑁𝑞 is the number of quadrature that 

represents the number of size classes of the aggregates. 

Using this transformation, Eq. (25) can only allow to track three or four size classes that 

would be sufficient to track the lower order moments. To reasonably produce the PSD 

curve higher order moments are required. However, tracking higher order moments could 

produce ill-conditioned problem due to the higher difference between 𝐿1 𝑎𝑛𝑑 𝐿𝑁𝑞 with 

larger 𝑘, i.e., (𝐿1 )
1 ≪ (𝐿𝑘 )

𝑘(Gautschi 1968). This would produce unreliable results i.e. 

negative weights and/or size that do not have physical meaning. To relax the severity of 

ill-condition by reducing the difference between (𝐿1 )
1𝑎𝑛𝑑(𝐿𝑘 )

𝑘, Su et al. (2007) added 

an adjustable factor, 𝑝, in QMOM and re-defined the adjustable moments as 

𝑚𝑘/𝑝 = ∫ 𝐿𝑘 𝑝⁄ 𝑛(𝐿; 𝑡)𝑑𝐿

∞

0

=∑𝜔𝑖𝐿𝑖
𝑘 𝑝⁄

𝑁𝑞

𝑖=1

= 𝛺×(𝛤𝑘 𝑝⁄ )𝑇 (𝑘 = 0,1, … ,2𝑁𝑞 − 1) 

(26) 
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In case of 𝑝 = 1, this could be reduced back to the conventual QMOM. Applying the 

transformation in Eq. (26), the PBE in Eq. (16) is transformed into a set of moment 

equations (𝑘 = 0,1, . . , 𝑀) that are a system of non-linear integro-differential equations 

(Eq. (27)). Applying the quadrature approach transform the integrals into simple 

summations (Eq. (28)).  

 

𝜕(ϕ𝑚𝑘/𝑝)

𝜕𝑡
+ 𝛻. (𝑈.𝑚𝑘/𝑝) − 𝛻. (ϕ𝐷𝑎𝑔𝑔

∗ 𝛻.𝑚𝑘/𝑝)

=  ϕ [
1

2
∫ 𝑛(𝜆; 𝑡)

∞

0

∫ 𝛼(𝐿, 𝜆)

∞

0

. 𝛽(𝐿, 𝜆)( 𝐿𝐷𝑓

+ 𝜆𝐷𝑓)

𝑘
𝑝
𝐷𝑓 . 𝑛(𝐿; 𝑡)𝑑𝐿𝑑𝜆

− ∫ 𝐿
𝑘
𝑝𝑛(𝐿; 𝑡)

∞

0

∫ 𝛼(𝐿, 𝜆)

∞

0

. 𝛽(𝐿, 𝜆)𝑛(𝜆; 𝑡)𝑑𝜆𝑑𝐿

+ ∫ 𝐿
𝑘
𝑝∫ 𝑎(𝐿, 𝜆)𝑏(𝜆)𝑛(𝜆; 𝑡)𝑑𝜆𝑑𝐿

∞

0

∞

0

−∫ 𝐿
𝑘
𝑝𝑏(𝐿)𝑛(𝐿; 𝑡)𝑑𝐿

∞

0

−∫ 𝐿𝑘 𝑝⁄

∞

0

𝑘𝑑(𝐿). 𝑛(𝐿; 𝑡)dL − ∫ 𝐿𝑘 𝑝⁄

∞

0

𝑘𝑠(𝐿). 𝑛(𝐿; 𝑡)dL] 

(27) 
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𝜕(ϕ𝑚𝑘/𝑝)

𝜕𝑡
+ 𝛻. (𝑈.𝑚𝑘/𝑝) − 𝛻. (ϕ𝐷𝑎𝑔𝑔

∗ 𝛻.𝑚𝑘/𝑝)  

= ϕ [
1

2
∑𝜔𝑖∑𝛼(𝐿𝑖, 𝐿𝑗)𝛽(𝐿𝑖, 𝐿𝑗)𝜔𝑗(𝐿𝑖

𝐷𝑓 + 𝐿𝑗
𝐷𝑓)

𝑘
𝑝𝐷𝑓

𝑁𝑞

𝑗=1

𝑁𝑞

𝑖=1

−∑𝜔𝑖𝐿𝑖
𝑘 𝑝⁄

𝑁𝑞

𝑖=1

∑𝛼(𝐿𝑖 , 𝐿𝑗)𝛽(𝐿𝑖, 𝐿𝑗)𝜔𝑗

𝑁𝑞

𝑗=1

−∑�̅�(𝐿𝑖, 𝐿𝑗)
𝑘
𝑝𝑏(𝐿𝑖)𝜔𝑖 −∑𝐿𝑖

𝑘 𝑝⁄ 𝑏(𝐿𝑖)𝜔𝑖

𝑁𝑞

𝑖=1

𝑁𝑞

𝑖=1

−∑𝐿𝑘 𝑝⁄ 𝑘𝑑(𝐿𝑖)𝜔𝑖 −∑𝐿𝑘 𝑝⁄ 𝑘𝑠(𝐿𝑖)𝜔𝑖

𝑁𝑞

𝑖=1

𝑁𝑞

𝑖=1

] 

(28) 

�̅�(𝐿𝑖 , 𝐿𝑗)
(𝑘/𝑝)

= ∫ 𝐿𝑘 𝑝⁄

∞

0

𝑎(𝐿𝑖, 𝐿𝑗)dL 

(29) 

Additionally, PSD can be estimated from moments is inverse problem. PSD, which is 

number density function can be estimated by using the following relationship (McGraw 

1997): 

𝑛(𝐿; 𝑡) ≈∑𝜔𝑖(𝑡)𝛿[𝐿 − 𝐿𝑖(𝑡)]

𝑁𝑞

𝑖=1

 

(30) 

where δ is the Dirac delta function which means at any time t, δ is zero except at 𝐿 =

𝐿𝑖(𝑡).  
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5.2.3.3. PBE Kernels 

Collision frequency: 

Collision frequency represents the two number of collisions between two particles of 

given sizes 𝐿 and 𝜆. There are several expressions for collision frequency in the literature. 

Basically, collisions result from Brownian diffusion, differential sedimentation or shear 

flow. However, when particle size is submicron Brownian diffusion is the dominant 

mechanism of collision (Elimelech et al. 2013, Thomas et al. 1999). With aggregation 

and increase of effective size of aggregates shear flow becomes more significant. For 

submicron particles, differential sedimentation can be neglected.  

𝑃𝑒𝑟𝑘𝑖𝑛𝑒𝑡𝑖𝑐: 𝛽𝑎𝑔𝑔(𝐿𝑖, 𝐿𝑗) =
2

3

𝑘𝐵𝑇

𝜇

(𝐿𝑖 + 𝐿𝑗)
2

𝐿𝑖𝐿𝑗
 

(31) 

𝑂𝑟𝑡ℎ𝑜𝑘𝑖𝑛𝑒𝑡𝑖𝑐: 𝛽𝑎𝑔𝑔(𝐿𝑖, 𝐿𝑗) =
𝐺

6
(𝐿𝑖 + 𝐿𝑗)

3 
(32) 

Collision efficiency: 

The effect of energy barrier on perikinetic aggregation is to reduce the rate of aggregation 

due to electrostatic repulsion. Stability ratio (W), the reciprocal of the collision efficiency 

is simply the ratio of the aggregation rate in the absence of energy barrier to that with 

energy barrier. The stability ratio and collision efficiency can be calculated using the 

following  

𝑊 = 2∫ 𝜒(휃)
exp (

𝜙𝑇
𝑘𝐵𝑇

)

(휁 + 2)2
𝑑휃

∞

0

 

 

(33) 

𝛼𝑎𝑔𝑔(𝐿𝑖, 𝐿𝑗) = 1/𝑊 (34) 
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Where 𝜙𝑇 is the total electrostatic interaction between particles at separation distance ℎ, 

and 휃 is a function of ℎ and particle size.  

휃 =  
2ℎ

𝐿𝑖 + 𝐿𝑗
 

(35) 

𝜒(휃) is the hydrodynamic effect. As the particles approach close, it becomes increasingly 

difficult for liquid between them to drain out the gap and this tends to slow the 

aggregation process.  

𝜒(휃) =
6휃2 + 13휃 + 2

6𝜎2 + 4휃
 

(36) 

When two particles encounter each other, hydrodynamic interactions induce trajectory 

modifications. However, the hydrodynamic interaction depends on the aggregates 

structure (porosity) and sizes. Selomulya et al. (2003) proposed a collision efficiency 

model that accounts for aggregates structure (porosity) and the sizes. 

𝛼𝑎𝑔𝑔(𝐿𝑖 , 𝐿𝑗) = 𝛼𝑚𝑎𝑥 .

exp (−𝑥 (1 −
𝑛𝑖
𝑛𝑗
)
2

)

(𝑛𝑖. 𝑛𝑗)𝑦
 

𝑛𝑖 = (
min(𝐿, 𝜆)

𝐿0
)

𝐷𝑓

;  𝑛𝑗 = (
max(𝐿, 𝜆)

𝐿0
)

𝐷𝑓

 

(37) 

Where 𝛼𝑚𝑎𝑥 = 1/𝑊 from Eq. 33 and 34.  

The total electrostatic interaction (𝜙𝑇) is the summation of electric double layer repulsion, 

van der Walls attraction, and in case of silica nanoparticles solvation force can be added 

to accurately predict the interaction energy. Zeta potential is the main factor that controls 

the electrostatic interaction (Abdelfatah et al. 2017b).  
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휁 =

{
 
 

 
 𝑚1

0.85𝑘𝐵𝑇

𝑓(𝜅𝑎𝑝)𝑒
(𝑝𝐻𝐼𝐸𝑃 − 𝑝𝐻)[1 + 𝑣𝜁(𝑇 − 𝑇0)]  

휁𝑐𝑢𝑡−𝑜𝑓𝑓 +
𝑚2

𝑓(𝜅𝑎𝑝)
 (𝑝𝐻𝑐𝑢𝑡−𝑜𝑓𝑓 − 𝑝𝐻)[1 + 𝑣𝜁(𝑇 − 𝑇0)]

 

(38) 

Ohshima (1994) presented a simple approximate expression for Henry’s function which 

is applicable for any value of 𝜅𝑎𝑝. 

𝑓(𝜅𝐿𝑖) = 1 +
  1

2[1 +
2.5

𝜅𝐿𝑖(1 + 𝑒−𝜅𝐿𝑖)
]
 

(39) 

Van der Waals interactions (Berg 2010) 

Φ𝑣𝑑𝑤 = −
𝐴𝐻
6
[
2𝐿𝑖𝐿𝑗

ℎ2 + 2𝐿𝑖ℎ
+

2𝐿𝑖𝐿𝑗

ℎ2 + 2𝐿𝑖ℎ + 2𝐿𝑗ℎ + 4𝐿𝑖𝐿𝑗

+ ln (
ℎ2 + 2𝐿𝑖ℎ + 2𝐿𝑗ℎ

ℎ2 + 2𝐿𝑖ℎ + 2𝐿𝑗ℎ + 4𝐿𝑖𝐿𝑗
)] 

(40) 

 

Where 𝐴𝐻  is the Hamaker constant(Russel et al. 1989) 

𝐴𝐻 =
3

4
𝑘𝐵𝑇 (

휀𝑝 − 휀𝑐

휀𝑝 + 휀𝑐
)

2

+
3ℎP𝜐𝑒

16√2

(𝑛𝑝
2 − 𝑛𝑐

2)
2

(𝑛𝑝2 + 𝑛𝑐2)
3/2

 
(41) 

𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, 휀 is the dielectric constant, 𝑛 is the 

refractive index, the subscripts 𝑝 𝑎𝑛𝑑 𝑐 correspond to the properties of the particle and 

continuous phase, respectively, ℎP is the Planck constant, and 𝜐𝑒 is the characteristic 

adsorption frequency. Electric double layer repulsion using linearized Poisson-

Boltzmann equation(Hogg et al. 1966).  

 (42) 
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Φ𝐸𝐷𝐿 =
휀0𝐿𝑖𝐿𝑗(휁𝑖

2 + 휁𝑗
2)

4(𝐿𝑖 + 𝐿𝑗)
[

2휁𝑖휁𝑗

(휁𝑖
2 + 휁𝑗

2)
ln (

1 + 𝑒𝑥𝑝(−𝜅ℎ)

1 − 𝑒𝑥𝑝(−𝜅ℎ)
) + ln (1

− exp (−2𝜅ℎ)] 

Debye length  

𝜅 = (
𝑒2∑ 𝑧𝑖

2𝑐𝑖0𝑖

휀𝑐휀0𝑘𝐵𝑇
)

1/2

 
(43) 

Where  휀0 is the vacuum permittivity, z is the valence number of the ion, e is the charge 

of an electron, 휁𝑖𝑎𝑛𝑑 휁𝑗  are the zeta potentials of aggregates of size 𝐿𝑖  𝑎𝑛𝑑 𝐿𝑗, 

respectively. 𝜅−1 is the Debye length, and 𝑐𝑖0 is the bulk concentration of ion species i.  

Hydration repulsion originates from the overlap of structured layer of water molecules at 

the surfaces of hydrophilic nanoparticles (Pashley and Israelachvili 1984). Hydration 

force can be expressed by (P. Binks and O. Lumsdon 1999, Chapel 1994) 

Φ𝐻𝑌𝐷 = 𝜋𝐿𝑖𝑁𝐴𝐶ℎ𝑐𝑖0ℓ
2exp (−ℎℓ) (44) 

Where 𝐶ℎ is hydration constant, ℓ is the decay length.  

Breakup frequency: 

The breakup frequency including the fractal dimension can expressed by Eq. 41 (Vlieghe 

et al. 2016) 

𝑏(𝐿𝑖) = 𝑐𝐺
5/2(

𝐿𝑖
𝐿0
)3−2𝐷𝑓/3 

(45) 

Where G is the shear rate, c is a fitting parameter. 

Fragment distribution: 

Uniform fragmentation distribution is used in this  work, meaning that  all  possibilities  

are  equally  probable (Vlieghe et al. 2016). 
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𝑎(𝐿𝑖 , 𝐿𝑗) =
2𝐷𝑓𝐿𝑖

𝐷𝑓−1

𝐿𝑗
𝐷𝑓

,    𝐿𝑖 < 𝐿𝑗 
(46) 

and the integrated adjustable daughter distribution function can be written as 

�̅�(𝐿𝑖 , 𝐿𝑗)
(𝑘/𝑝)

= 𝐿𝑖
𝑘/𝑝 2𝐷𝑓

𝑘/𝑝 + 𝐷𝑓
,    𝐿𝑖 < 𝐿𝑗 

(47) 

Deposition and Straining Frequencies: 

However, the pore size distribution can be used to model the interaction between particles 

aggregate and porous media, this would be highly computation demanded (Abdelfatah et 

al. 2017d, Abdelfatah et al. 2017c). In this paper, two pore model developed by Todd 

(1990) is adopted to divide the pores into two categories; straining bores and deposition 

pores.  

𝑘𝑑(𝐿𝑖) = 𝛼𝑑(𝐿𝑖)𝛽𝑑(𝐿𝑖)𝑈 (48) 

𝑘𝑠(𝐿𝑖) = 𝛼𝑠(𝐿𝑖)𝛽𝑠(𝐿𝑖)𝑈 (49) 

𝜎(𝐿; 𝑥, 𝑡) = 𝜎𝑑(𝐿; 𝑥, 𝑡) + 𝜎𝑠(𝐿; 𝑥, 𝑡) (50) 

𝜕𝜎𝑑
𝜕𝑡

= 𝐷𝑑(𝐿; 𝑥, 𝑡) 
(51) 

𝜕𝜎𝑠
𝜕𝑡

= 𝐷𝑠(𝐿; 𝑥, 𝑡) 
(52) 

Deposition frequency using sphere-in-cell model 

𝛽𝑑(𝐿𝑖) = 𝛽𝑑
𝑑𝑖𝑓𝑓

(𝐿𝑖) + 𝛽𝑑
𝑖𝑛𝑡𝑟(𝐿𝑖) (53) 

𝛽𝑑
𝑑𝑖𝑓𝑓

(𝐿𝑖) = 4.04 [
2(1 − 𝑞5)

𝜛
]

1/3

𝑁𝑃𝑒
−2/3 

(54) 

𝛽𝑑
𝑖𝑛𝑡𝑟(𝐿𝑖) = 1.5𝑞2 [

2(1 − 𝑞5)

𝜛
]𝑁𝑟

2 
(55) 
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Geometry parameters (56) 

𝑞 = (1 − 𝜙)1/3  (57) 

𝜛 = 2 − 3𝑞 + 3𝑞5 − 2𝑞6 (58) 

𝑁𝑟 =
𝐿𝑖
𝑑𝑔

 
(59) 

𝑁𝑃𝑒 =
12𝜋𝜇𝐿𝑖𝑑𝑔u

𝑘𝐵𝑇
 

(60) 

Deposition and Straining Efficiency: 

𝛼𝑑 = 𝛼𝑑,0 (1 −
𝜎𝑑

𝜎𝑑,𝑚𝑎𝑥
) 

(61) 

𝛼𝑑,0 can be calculated from XDLVO and surface roughness of the rock grain surface 

(Abdelfatah et al. 2017b) or used as an adjusted parameter. For straining, it’s assumed 

that strainable aggregates are larger than the straining pores. Hence, for any large pore 

venturing into a small pore throat, the particle aggregates travel no farther than a single 

pore length. So, the frequency and efficiency of straining are one. This leads to the 

straining rate; Γ𝑠 = 1/ℓ𝑝,𝑠. 

5.2.4. Porosity Evolution  

Porosity changes due to the combination effect of dissolution deposition, and straining of 

nanoparticles/aggregates. The change of permeability and pore size as a function of 

porosity can be calculated using modified Carmen-Kozeny relationship proposed by 

Civan (2007) 

𝜕𝜙

𝜕𝑡
= (

𝜕𝜙

𝜕𝑡
)
𝑑
+ (

𝜕𝜙

𝜕𝑡
)
𝑠
 

(62) 
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(
𝜕𝜙

𝜕𝑡
)
𝑑
= −𝜙

𝜕𝜎𝑑
𝜕𝑡

 
(63) 

(
𝜕𝜙

𝜕𝑡
)
𝑠
= −𝜙

𝜕𝜎𝑠
𝜕𝑡

 
(64) 

𝑘

𝑘𝑜
= (

𝜙

𝜙𝑜
)
𝛾

(
𝜙(1 − 𝜙𝑜)

𝜙𝑜(1 − 𝜙)
)

2𝛽

 
(65) 

𝑟𝑝

𝑟𝑜
= √

𝜙𝑜𝑘

𝜙 𝑘𝑜
 

(66) 

𝐷∗

𝐷𝑚
= 𝛼𝑜𝑠 + 𝜆𝐿

2|𝑈|𝑟𝑝

𝜙𝐷𝑚
 

(67) 

Where, (
𝜕𝜙

𝜕𝑡
)
𝑑

is the change of porosity dues to deposition, (
𝜕𝜙

𝜕𝑡
)
𝑠
is the change of porosity 

due to straining, 𝜎𝑑 is the volume of aggregates deposited per unit bulk volume, 𝜎𝑠 the 

volume of aggregates strained per unit bulk volume, 𝜙 and 𝜙𝑜 are the instantaneous and 

initial porosities, respectively, 𝑘 and 𝑘𝑜 are the instantaneous and initial permeabilities, 

respectively, 𝑟𝑝 and 𝑟𝑜 are the instantaneous and initial pore radius, 𝐷∗ is the dispersion 

coefficient, 𝐷𝑚 is the molecular diffusion coefficient, 𝛼𝑜𝑠 is a dispersion constant depends 

on the pore structure, 𝜆𝐿 is the dispersivity of the porous medium, and 𝛾 and 𝛽 are two 

constants control the relationship between porosity and permeability. 

5.2.4. Viscosity model 

Modified effective-medium theory (Takamura and Ven 2010, Lattuada et al. 2016) can 

be effectively used to model the viscosity evolution of aggregating dispersions and 

predicts the initiation of gelation.  
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𝜇 = 𝜇0 [
1 −

𝜑
𝜑𝑚

1 −
(𝐶0𝜑𝑚 − 1)𝜑

𝜑𝑚

]

−𝜑𝑚[𝜇]
2−𝐶0𝜑𝑚

 

(68) 

Where 𝜑 is the particles/aggregates volume fraction and 𝜑𝑚 is the maximum packing 

fraction. Intrinsic viscosity [𝜇] = 2.5. For 𝐷𝑓 = 3, 𝜑 = 𝑘𝑉𝑚3. Where 𝑘𝑉 is the 

volumetric shape factor. Crowding factor 𝐶0 =
2𝐶2

[𝜇]
− [𝜇]. 𝐶0 is a function of shear rate 

(𝐺), and the exact relationship between 𝐶0 and 𝐺 is a function of the surface properties of 

the colloidal particles and the electrolyte concertation. However, in this study 𝐶2 is 

between  5.2 − 6.2 from low to high shear rate. Hence 𝐶0
0 = 3.05 at low shear rate and 

𝐶0
∞ = 1.7 at high shear limit. The effect of shear rate can be calculated as the following: 

𝐶0 = 𝐶0
∞ +

𝐶0
0−𝐶0

∞

1+𝑃𝑒0.35
. Where 𝑃𝑒 =

3𝜋𝜇𝐺𝑅𝐻,𝑖𝑅𝐻,𝑗(𝑅𝐻,𝑖+𝑅𝐻,𝑗)

2𝑘𝐵𝑇
 and Hydrodynamic radius:   

𝑅𝐻,𝑖 =
𝑚3

𝑚2
. Shear rate in porous medium can be calculated using the following equaton 

(Cannella et al. 1988):  

𝐺 = 𝑆𝐹
4|U|

√8𝐾𝜙
 

(69) 

Where shear factor (SF)  𝑆𝐹 = [
3𝑛+1

4𝑛
]

𝑛

𝑛+1
~ 0.8 and n is the power law exponent. 

5.3.Numerical Implementation 

The mathematical model presented in section 5.2 is solved using finite volume method 

on a one-dimensional domain (Versteeg and Malalasekera 2007). Staggered grid method 

is used to avoid any oscillations in the solution by solving for velocity (Eq. 2) on the cell 

faces, and pressure (Eq. 3) on the cell center. Advection-dispersion equations (Eqs. 4) is 

solved for salt distribution within the computation domain. Upwind scheme is used to 
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discretize the advection term and second orders scheme for the dispersion term. For 

moment transport equation (Eq. 28), operator splitting is used to solve the transport in 

one step and the right-hand side representing the source/sink term in a second step. For 

salt the transport equation, implicit scheme is used. However, using implicit scheme for 

the moment transport equation produces unrealizable moments (Marchisio and Fox 

2013). Hence, explicit scheme with operator splitting is used for solving the moment 

transport equation.  

The major point in solving Multiphysics phenomena is how the different physics are 

coupled together and the efficiency of the feedback between them (Zhang and Cen 2015). 

Sequential non-iterative algorithm (SNIA) is used in this study, to couple the 

Multiphysics and ensure efficient feedback between them. The steps followed in solving 

the model are as the following:  

1. Start the model by reading the initial conditions and the input data. 

2. Pressure in calculated by solving Eq. 3 at the center of the gridblocks. 

3. Velocity is the calculated at the faces of the gridblocks using Eq. 2. 

4. Salt concentration is calculated from Eq. 4. 

5. Nanoparticles transport and aggregation is modeled by solving Eq. 28 as the 

following: 

5.1.Knowing the volume fraction of the particles in the injected dispersion and 

assuming the initial particles has an average size of 150 nm, we can calculate the 

number of the particles and number density function at the initial conditions. Then 

use this as a boundary condition for moment transport equation (Eq. 28). 

5.2.Transport moments using convection-dispersion terms in Eq. 28.  
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5.3.Using wheeler algorithm  (Wheeler 1974), the weight and abscissas of the 

transported moments can be  calculated at each node in the domain. For more 

details about wheeler algorithm, readers are referred to Marchisio and Fox (2013). 

5.4.Using the weight and abscissas of the initial moments, the source/sink term in Eq. 

25 is then calculated at each node in the domain. 

5.5.Using source/sink term, the moments can be updated using backward Euler time 

discretization scheme. 

6. Using Eq. 61-66, the new porosity, permeability, and pore size can be updated. 

7. Using the updated moments, the new viscosity can be calculated using Eq. 68. 

8. Then go to the next time step and repeat the steps 2-7. 

9. End the calculation when the total time of simulation is reached. 

5.4. Results and Discussion 

The mathematical model presented in this paper is used to study the aggregation and 

gelation of fumed silica nanoparticles during injection into porous media. Several 

hypothetical cases were run to compare the kinetics of aggregation of fumed silica 

nanoparticles in porous media with and without including the effect of filtration. Modified 

effective-medium theory is used for calculation of viscosity evolution with aggregation. 

Several experimental studies in the literature show that the maximum packing factor (𝜑𝑚) 

for fumed silica is ~0.20-0.3 (Smith and Zukoski 2004, Chen et al. 2005). For fumed 

silica, the 𝜑𝑚 is very small due to the fractal structures that prevent tight packing of the 

primary particles. Two different regimes of aggregation are identified; diffusion limited 

aggregation (DLCA), and reaction limited aggregation (RLCA) (Sefcik et al. 2005). The 

network structure of DLCA is more open (𝐷𝑓 = 1.8) while that for RLCA is more close 
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and compact (𝐷𝑓 = 2.2) (Russel et al. 1989). However, in this study, it’s assumed that 

the fractal dimension 𝐷𝑓 = 3. The conservation of mass per unit volume can be verified 

for 𝑘 = 𝐷𝑓 = 3 (Vlieghe et al. 2016). In this section, the simulation results for fumed 

silica and colloidal silica nanoparticles are presented at high electrolyte concentration that 

the collision efficiency as calculated from Eq. (31) is ~1. The parameters used for the 

model are as presented in table 5-1. 

The model developed in this study can be used for various applications of nanoparticles 

including aggregation and in situ gelation in porous media and fractures. In previous 

work, we have validated the model developed for nanoparticles transport in porous media 

including deposition and straining processes. However, there is no available data in the 

literature about coupled nanoparticles transport, aggregation, and in situ gelation in 

porous media. Hence, there is no available experiments data that can be used to for 

validation of the novel approach presented in this work for coupled nanoparticles 

transport, aggregation, and in situ gelation in porous media. Therefore, in this section a 

sensitivity analysis will be presented for few controlling parameters to show the 

capabilities of the developed model.  

Table 5-1—Parameters used for the simulation 

Parameter Value Unit 

𝑘 2  md 

ϕ 0.2 - 

Core size 3.81x3.81x 10.2  cm 

𝛼𝑜𝑠 0.005  m 

𝜆𝐿 0.001  m 
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𝜇0 0.001 Pa.s 

𝐷𝑓 3 - 

𝑁𝑞 3 - 

𝑝 1 - 

𝐿𝑜 150 nm 

𝛼𝑎𝑔𝑔 1 - 

𝑐 2x10-10 - 

𝛼𝑑 0.5 - 

𝛼𝑠 1 - 

𝛽𝑠 0.1 - 

In our previous work, we showed that nanoparticles concentrations and injection rates are 

parameters that control nanoparticle’s transport and filtration in porous media of a given 

porosity and permeability (Abdelfatah et al. 2017a, Abdelfatah et al. 2017b, Abdelfatah 

et al. 2017d, Abdelfatah et al. 2017c). For aggregation and gelation in the previous 

chapter, we also showed that nanoparticles concentration is a key factor that controls the 

gelation time. Hence, in this section, a sensitivity analysis for injection rate and 

nanoparticles concentration will presented. 

5.4.1. Aggregation and Gelation with no Filtration 

First, we studied the effect of injection rate and nanoparticles concentration on 

aggregation and moment transport in porous media neglecting the effect of filtration on 

aggregation kinetics. This would be like the case of aggregation and in situ gelation in 

free media like fractures or injection downhole the wellbore. In this study, we used the 
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three different concentrations (0.5, 0.8, and 1.25 vol%) used in the previous chapter to 

show the effect of moment transport and accumulation in porous media on the kinetics of 

aggregation. Two different injection rates are used; 0.6 and 1.2 ml/min.  

Fig. 5-1 shows the viscosity contours at different times and locations along the 

computational domain for injection rate of 0.6 ml/min and injected concentration of 0.5 

vol%. Comparing Fig. 5-1 to Fig. 4-4, we can see that in the batch there in no increase in 

the viscosity of fumed silica dispersion of 0.5 vol% at aggregation efficiency of 1. 

However, Fig. 5-1 shows that the gelation initiation can be triggered after ~5 pore volume 

of injection (PVI). This is clearly due to the accumulation of nanoparticles and aggregates 

with injection. That the effective volume fraction of the aggregates increases with 

injection time and hence the viscosity increases. Fig. 5-2 shows the mean aggregates size 

in porous media is growing with time at different locations in the computation domain 

unlike the case in the batch (Fig. 4-5). Fig. 5-3 shows the aggregate volume fraction 

contours. It shows that aggregate volume fraction starts to increase till it reach the 

maximum packing factor where gelation initiates. Fig. 5-4 shows that increasing the 

injection rate to 1.2 ml/min for the same nanoparticles concentration of 0.5 vol%, 

enhances the aggregation kinetics as orthokinetic aggregation increases with increasing 

the shear rate. The aggregate size is higher for high injection rate (Fig. 5-5) compared to 

low injection rate (Fig. 5-2) due to enahced aggregation by shear. Fig. 5-6 is comparable 

to Fig 5-3. However, the maximum packing factor for high injection rate is reached at 

lower PVI compared to low injection rates.  
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Figure 5-1—Viscosity contours for Injection rate =0.6 ml/min and Injected 

concentration = 0.5 vol% 

 

 

Figure 5-2—Aggregate size contours for Injection rate =0.6 ml/min and Injected 

concentration = 0.5 vol%. 
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Figure 5-3— Aggregates volume fraction contours for Injection rate =0.6 ml/min 

and Injected concentration = 0.5 vol%. 

 

 

Figure 5-4—Viscosity contours for Injection rate =1.2 ml/min and Injected 

concentration = 0.5 vol%. 
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Figure 5-5—Aggregate size contours for Injection rate =1.2 ml/min and Injected 

concentration = 0.5 vol%. 

 

Figure 5-6— Aggregates volume fraction contours for Injection rate =1.2 ml/min 

and Injected concentration = 0.5 vol%. 

 



159 

Increasing the concentration of injected nanoparticles to 0.8 vol% and keeping all other 

parameters the same, Fig. 5-7 shows that the high viscosity front is formed earlier than 

the previous case for 0.5 vol% of nanoparticles. This is consisted with the results 

presented in the previous chapter (Fig. 4-4) that increasing the concentration would 

enhance the aggregation and gelation kinetics. However, Fig. 4-4 that shows sharp 

increase in viscosity after ~ 300 seconds. While Fig 5-7 shows that gelation initiates after 

~4 PVI. This is expected because of the effect of moment transport in porous media that 

would need higher time for the effective volume of aggregates to grow by accumulation 

at certain node in the computational domain. Comparing Fig. 4-5 and Fig. 5-8, supports 

this analysis. Fig. 4-5 shows that the aggregates size increases very fast. While Fig. 5-8 

shows that aggregates size reaches similar values of Fig. 4-5 after long time of injection 

and nearly at the exit of the computation domain. Fig. 5-9 shows the aggregate volume 

fraction contours. Fig. 5-10 shows that increasing the injection rate to 1.2 ml/min for the 

same nanoparticles concentration of 0.8 vol%, enhances the aggregation kinetics as 

orthokinetic aggregation increases with increasing the shear rate. This is clear that the 

aggregate size is much higher for high injection rate (Fig. 5-11) compared to low injection 

rate (Fig. 5-8). Fig. 5-12 shows the aggregate volume fraction contours. 
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Figure 5-7—Viscosity contours for Injection rate =0.6 ml/min and Injected 

concentration = 0.8 vol%. 

 
Figure 5-8—Aggregate size contours for Injection rate =0.6 ml/min and Injected 

concentration = 0.8 vol%. 
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Figure 5-9—Aggregates volume fraction contours for Injection rate =0.6 ml/min 

and Injected concentration = 0.8 vol%. 
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Figure 5-10—Viscosity contours for Injection rate =1.2 ml/min and Injected 

concentration = 0.8 vol%. 

 

 
Figure 5-11—Aggregate size contours for Injection rate =1.2 ml/min and Injected 

concentration = 0.8 vol%. 
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Figure 5-12—Aggregate volume fraction contours for Injection rate =1.2 ml/min 

and Injected concentration = 0.8 vol%. 

 

Fig. 5-13 shows that increasing the concentration of injected nanoparticles to 1.25 vol% 

decreases the time required for building up the high viscosity front. However, it’s still 

much higher than this predicted in the batch (Fig. 4-4). This affirms that the effect of 

moment transport is reducing the aggregation and gelation kinetics even for concentration 

as high as 1.25 vol%. Fig. 5-14 also shows that the aggregation and breakage is enhanced 

because of the shear in the porous media compared to batch (Fig. 4-5). Fig. 5-15 shows 

the aggregate volume fraction contours. Fig. 5-16 shows that increasing the injection rate 

to 1.2 ml/min for the same nanoparticles concentration of 1.25 vol%, enhances the 

aggregation kinetics as orthokinetic aggregation increases with increasing the shear rate. 

This is clear that the aggregate size is much higher for high injection rate (Fig. 5-17) 
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compared to low injection rate (Fig. 5-14). Fig. 5-18 shows the aggregate volume fraction 

contours. 

 
Figure 5-13—Viscosity contours for Injection rate =0.6 ml/min and Injected 

concentration = 1.25 vol%. 

 
Figure 5-14—Aggregate size contours for Injection rate =0.6 ml/min and Injected 

concentration = 1.25 vol%. 
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Figure 5-15—Aggregate volume fraction contours for Injection rate =0.6 ml/min 

and Injected concentration = 1.25 vol%. 

 

 
Figure 5-16—Viscosity contours for Injection rate =1.2 ml/min and Injected 

concentration = 1.25 vol%. 
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Figure 5-17—Aggregate size contours for Injection rate =1.2 ml/min and Injected 

concentration = 1.25 vol%. 

 

Figure 5-18—Aggregate volume fraction contours for Injection rate =1.2 ml/min 

and Injected concentration = 1.25 vol%. 
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5.4.2. Aggregation and Gelation with Filtration 

The aggregation kinetics were studied ignoring the effect of filtration basically by 

deposition and straining of nanoparticles/aggregates in the porous media. Herein, the 

effect of filtration is included to the cases studied in the previous section.  

It’s clear that the filtration by deposition and straining excludes the large aggregates 

immediately. This is clearly indicated in Fig. 5-19 that there is no significant increase in 

viscosity when filtration is included. Fig. 5-20 also shows the aggregates size does not 

increase much further beyond the initial particle size. As presented in our previous work 

(Abdelfatah et al. 2017d), the increase in concentration and/or injection rate make the 

filtration more severe. Fig. 5-21 through 5-24, clearly shows that increasing the 

concentration of nanoparticles would not even help to enhance the aggregation kinetics 

due to dominant effect of filtration in this case.  

 

Figure 5-19—Viscosity contours for Injection rate =0.6 ml/min and Injected 

concentration = 0.5 vol% including filtration effect. 
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Figure 5-20—Aggregate size contours for Injection rate =0.6 ml/min and Injected 

concentration = 0.5 vol% including filtration effect. 

 

 

Figure 5-21—Viscosity contours for Injection rate =0.6 ml/min and Injected 

concentration = 0.8 vol% including filtration effect. 
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Figure 5-22—Aggregate size contours for Injection rate =0.6 ml/min and Injected 

concentration = 0.8 vol% including filtration effect. 

 

 

Figure 5-23—Viscosity contours for Injection rate =0.6 ml/min and Injected 

concentration = 1.25 vol% including filtration effect. 
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Figure 5-24—Aggregate size contours for Injection rate = 0.6 ml/min and Injected 

concentration = 1.25 vol% including filtration effect. 

 

5.5. Conclusion 

The model developed in this study can simulate coupled transport, aggregation, and in-

situ gelation of nanoparticles in porous media. The cases presented in the previous section 

shows the capability of the model. The model shows that when nanoparticles dispersions 

are injected into free media like large pores or fractures that the effect of filtration is 

negligible, the gelation can be achieved but after longer time compared to the batch 

experiments. Increasing the concentration and/or injection rate decreases the gelation 

time significanetly. However, when including the effect of filtration, the viscosity of the 

does not increase due to exclusion of larger aggregates once they are formed. This 

prevents the growth of the gel network. 
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The model can also be coupled with acidizing model to simulate acidizing and acid 

diversion in carbonate reservoirs with nanoparticles-based in-situ gelled acid. This be 

addressed in future work. Also, the model can be coupled discrete fracture network (DFN) 

to simulate water shutoff and conformance control with fumed silica gel. 
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Nomenclature 

𝐴𝐻 Hamaker constant 

𝑎(𝐿, 𝜆) fragment distribution function for the diameter-based PBE 

𝑎(𝑣, 𝑢) fragment distribution function for the volume-based PBE 

𝑏(𝐿) diameter based breakage kernel 

𝑏(𝑢) volume-based breakage kernel 

𝑐 adjustable parameter in the breakage kernel model 

𝐵𝑎(𝐿; 𝑡) birth term due to aggregation in the diameter-based PBE 

𝐵𝑏(𝐿; 𝑡) birth term due to breakage in the diameter-based PBE 

𝐵𝑎(𝑣; 𝑡) birth term due to aggregation in the volume-based PBE 

𝐵𝑎(𝑣; 𝑡) birth term due to aggregation in the volume-based PBE 

𝐶𝑠𝑎𝑙𝑡 Concentration of the salt per unit pore volume 

𝐷𝑎(𝐿; 𝑡) death term due to aggregation in the diameter -based PBE 

𝐷𝑏(𝐿; 𝑡) death term due to breakage in the diameter -based PBE 

𝐷𝑎(𝑣; 𝑡) death term due to aggregation in the volume-based PBE 
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𝐷𝑏(𝑣; 𝑡) death term due to breakage in the volume-based PBE 

𝐷𝑓 fractal dimension of the aggregates 

𝐷𝑠𝑎𝑙𝑡
∗  dispersion coefficient of the salt 

𝐷𝑎𝑔𝑔
∗  dispersion coefficient of the aggregates 

𝐷𝑚 Molecular diffusion of the species 

𝑒 Electronic charge 

𝑓(𝜅𝑳𝒊) Henry’s function 

𝐺 Shear rate 

𝑘 permeability of the porous medium 

𝑘𝐵 Boltzmann constant 

𝑘𝑑(𝐿) deposition kernel of aggregates of volume 𝐿 

𝑘𝑠(𝐿) straining kernel of aggregates of volume 𝐿 

𝑘𝑑(𝑣) deposition kernel of aggregates of volume 𝑣 

𝑘𝑠(𝑣) straining kernel of aggregates of volume 𝑣 

ℎ Separation distance between particles 

𝐿𝑖 nodes in the Gaussian quadrature approximation 

𝐿0 Initial size of the nanoparticles 

𝑚𝑘 the kth order moment 

𝑁𝑞 number of quadrature that represent the number of size classes of the 

aggregates 

𝑛(𝐿; 𝑡) diameter-based number density function 

𝑛(𝑣; 𝑡) volume-based number density function 



173 

𝑝𝐻 pH of the solution  

𝑝𝐻𝐼𝐸𝑃 isoelectric point of the nanoparticles 

𝑠1, 𝑠2 slopes for the zeta potential function of pH and temperature 

𝑇 temperature of the dispersion 

𝑇0 initial temperature of the dispersion 

𝑈 Darcy’s velcoity 

𝑊 stability ratio 

𝛼𝑎𝑔𝑔(𝐿, 𝜆) collision efficiency of particles of diameter 𝐿 𝑎𝑛𝑑 𝜆  

𝛽𝑎𝑔𝑔(𝐿, 𝜆) collision frequency of particles of diameter 𝐿 𝑎𝑛𝑑 𝜆 

𝛼𝑑(𝐿𝑖) collision efficiency of particles of diameter 𝐿 with the rock surface 

𝛽𝑑(𝐿𝑖) collision frequency of particles of diameter 𝐿 with the rock surface 

𝛼𝑠(𝐿𝑖) collision efficiency of particles of diameter 𝐿 with the pore throats 

𝛽𝑠(𝐿𝑖) collision frequency of particles of diameter 𝐿 with the pore throats 

𝜔𝑖 weight (also the characteristic number density) corresponding to 𝐿𝑖 

𝜒(𝜎) hydrodynamic effect 

Φ𝑇 total electrostatic interaction between particles at separation distance ℎ 

Φ𝑣𝑑𝑤 Van der Waals interactions 

Φ𝐸𝐷𝐿 Electric double layer repulsion 

Φ𝐻𝑌𝐷 Hydration force 

휃 function of separation distance and particle size 

휁 zeta potential 

𝜅 Debye length  
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𝑧𝑖 valence number of the ion 

𝑣𝜁 Constant for temperature effect on zeta potential 

휀0 vacuum permittivity 

휀𝑝 dielectric constant of the particles 

휀𝑐 dielectric constant of the continuous phase 

ℎP Planck constant 

𝜐𝑒 characteristic adsorption frequency 

𝑛𝑝 refractive index of the particles 

𝑛𝑐 refractive index of the continuous phase 

𝑐𝑖0 bulk concentration of ion species i 

𝑁𝐴 Avogadro number 

𝐶ℎ hydration constant 

ℓ decay length of the hydration force 

𝜇 viscosity of aggregating dispersions 

𝜇0 Initial viscosity of the continuous phase 

[𝜇] intrinsic viscosity 

𝜙 Instantaneous porosity of the porous medium 

𝜙𝑜 Initial porosity of the porous medium 

𝜑 particles/aggregates volume fraction 

𝜑𝑚 maximum packing fraction 

𝐶0 crowding factor 

𝐶2 second virial coefficient 
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𝐶0
0 crowding factor at low shear rate 

𝐶0
∞ crowding factor at high shear rate 

𝑃𝑒 Peclet number of the aggregates 

𝑅𝐻,𝑖 hydrodynamic radius of the aggregates 

𝛾, 𝛽 coefficients for modified Kozeny-Carmen equation 

𝑟𝑝 Instantaneous pore radius 

𝑟𝑜 Initial pore radius 

𝜎 Total retained volume of nanoparticles aggregates per unit pore volume 

𝜎𝑑 Deposited volume of nanoparticles aggregates per unit pore volume 

𝜎𝑠 Strained volume of nanoparticles aggregates per unit pore volume 
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Chapter 6 Conclusions and Recommendations 

6.1. Summary and Conclusions 

This chapter summarizes the conclusion and remarks of the previous chapters in this 

dissertation. Overall, this work focuses on nanoparticles transport in porous media, 

including inter-nanoparticle and nanoparticle-porous media interactions.   

In Chapter 2, mechanistic model based on Extended DLVO theory was developed to 

study the rate of deposition and release of nanoparticles in porous media at different 

temperature, ionic strength, and pH. Empirical equation has been derived to calculate zeta 

potential at different temperature, ionic strength, and pH. The interaction energy can be 

with/without energy barrier between the nanoparticles and the pore surface. The rate of 

deposition and release of nanoparticles in each case has been derived. Numerical model 

has been used to compare the theoretically calculated rates with several experimental 

data. Increasing the temperature decreases the energy barrier height and increases the rate 

of deposition. With increasing the ionic strength, the thickness of the electrostatic double 

layer decreases and hence the rate of deposition increases. The effect of pH on the rate of 

deposition depends on the location of environment pH with respect to the isoelectric point 

of the nanoparticles and rock. For the extreme values of pH, energy barrier exists and rate 

of deposition is low. However, when the pH of the solution is between the isoelectric 

points of the nanoparticles and rock, the energy barrier decreases and the rate of 

deposition increases. The rate of deposition is time dependent as it decreases with 

increasing the covered rock surface. The effect of surface roughness has been included in 

the model using the effective height and density of the surface roughness distribution. 

Finally, these theoretically calculated rate values are used in a numerical model of the 
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advection-dispersion equation with source/sink term. Several experimental results have 

been perfectly matched that validate the theoretical calculations of the rate of deposition. 

The new mechanistic model for nanoparticles can be used to determine the fate of 

nanoparticles in porous media under different conditions of temperature, ionic strength, 

concentration, and pH. This model can help to understand the nanoparticles transport in 

porous media and effectively design nanoparticles fluid for injection into oil and gas 

reservoirs.  

In Chapter 3, a numerical model that accurately describes different damage mechanisms 

associated with nanoparticles transport in porous media. This model is essential for 

forecasting and optimization of nanoparticles transport in porous media. In this paper, we 

have developed a mathematical model that combines Darcy and convection-diffusion 

equation to describe fluid flow, nanoparticles transport, and interaction in porous media. 

Pore throat size distribution is used to characterize the heterogeneity. Permeability field 

is generated as a function of the pore throat size distribution. Pore throat size and 

permeability distributions are dynamic functions of the nanoparticles deposition and 

plugging. The mathematical model is solved on a two-dimensional domain using 

alternating direction implicit scheme. The model is validated with experimental data to 

obtain the model parameters. Sensitivity analysis is presented using the proposed 

numerical model. The model shows that each of the three damage mechanisms could be 

dominant at specific conditions. Dimensional analysis is then used to derive a correlation 

that relates the degree of damage to main dimensionless numbers that control the 

efficiency of nanoparticle transport. The preliminary numerical results demonstrate that 
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nanoparticle size, concentration, injection rate and permeability are the dominant factors 

that control the degree of formation damage.   

In Chapter 4, Population Balance equation (PBE) was used to model the kinetics of 

aggregation. Quadrature method of moments (QMOM) was used to convert the PBE with 

continuous distribution of nanoparticle size into moment transport equations for efficient 

computation. This study shows that the population balance equation and the quadrature 

method of moments along with the effective medium theory can be used to model the 

aggregation and insitu at different conditions of salinity and concentration. The modeled 

developed in this study is used to compare between the kinetics of aggregation and 

gelation of fumed silica and colloidal silica nanoparticles at the same conditions. The case 

studies presented show that unique behavior of fumed silica over colloidal silica 

nanoparticles for forming a gel network a significantly low concentration. This is 

basically due to the fractal structure of the fumed silica nanoparticles that has higher 

effective volume than the spherical particles of colloidal silica of the same size. The 

model also shows that there is a critical concentration of salt and nanoparticles above 

which the viscosity increase and the gel network can be formed. The model developed in 

this study can be coupled with a transport model to simulate nanoparticles transport 

aggregation and sin-situ gelation in porous media. 

In Chapter 5, model is developed to simulate coupled transport, aggregation, and in situ 

gelation of nanoparticles in porous media. The model coupled fluid transport model with 

population balance equation solved with the Quadrature method of moments. Several 

cases were presented that shows the capability of the model. The model shows that when 

nanoparticles dispersions are injected into free media like large pores or fractures that the 
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effect of filtration is negligible, the gelation can be achieved but after longer time 

compared to the batch experiments. However, when including the effect of filtration, the 

viscosity of the does not increase due to exclusion of larger aggregates once they are 

formed. This prevents the growth of the gel network. The model can also be coupled with 

acidizing model to simulate acidizing and acid diversion in carbonate reservoirs with 

nanoparticles-based in-situ gelled acid. This be addressed in future work. Also, the model 

can be coupled discrete fracture network (DFN) to simulate water shutoff and 

conformance control with fumed silica gel. 

 

6.2. Recommendations and Future Plan 

This dissertation provided a framework for modeling nanoparticles transport in porous 

media including different interaction mechanisms. The applications of silica gel in water 

shutoff and conformance control have not been explored yet using the model framework 

developed in this dissertation. Here I list some recommendations future plan that needs 

to be further studied: 

1. Experimental study will be conducted using micromodels and microscopy images 

to validate the model by matching the simulation moments with experimental 

moments derived from image analysis of the dispersion at different time step. 

2. Expand the model to 2D and 3D to simulate actual reservoirs conditions coupled 

with geostatistical model for porosity and permeability distributions. 

3. Couple the model with matrix acidizing model, to simulate matrix acidizing and 

acid diversion with nanoparticles-based in situ gelled acids. 
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4. Couple the model with discrete fracture network, to simulate water shutoff and 

conformance control in fractured reservoirs nanoparticles-based in situ gelled 

solutions. 
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