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Abstract 

 The increased frequency of antibiotic resistant bacterial isolates is of great 

concern for public health. It is currently estimated that infections caused by multidrug 

resistant pathogens will surpass cancer as a leading cause of death by 2050 (1). Of 

particular concern are gram-negative bacteria, due to their robust intrinsic resistance 

provided by a low permeability outer membrane barrier in combination with active 

efflux. Active efflux is mainly mediated by Resistance-Nodulation cell Division (RND) 

transporters, which associate as tripartite complexes that facilitate the export of 

substrates across the outer membrane. These two mechanisms of resistance work in 

synergy to efficiently limit intracellular accumulation of antibiotics. This directly results 

in very low hit rates during antimicrobial screenings and presents unique challenges in 

the development of antibiotics. 

 In addition to providing resistance, RND transporters are also involved in the 

physiology of bacteria. Pseudomonas aeruginosa possesses twelve RND transporters of 

which three are indicated to be involved in its quorum sensing networks. 

Overexpressing or deleting the genes of these transporters has a great physiological 

impact and can result in a loss of virulence or extended lag phases during growth. In 

many cases, the endogenous substrates of these transporters are not known and their 

impact on the physiology of the cell is not well understood. 

 This dissertation focuses on the interplay between the low permeability outer 

membrane and active efflux in drug resistance and their contribution to physiology of P. 

aeruginosa. Current methods to investigate the contributions of the outer membrane 

barrier in drug resistance, like the use of polymyxins to permeabilize the outer 



xiv 

membrane, have many disadvantages. Here, we developed a novel approach to separate 

the contributions of efflux and the outer membrane in antimicrobial susceptibility by 

introducing a genetically modified pore that non-selectively increases the permeability 

of the outer membrane. In combination with the removal of efflux transporters, this 

hyperporination approach highlights the synergy of the outer membrane and efflux, and 

has potential implications for the development of new antibiotics. It could provide the 

means to discover new rules in drug design that predict the uptake of a compound into 

the gram-negative cell according to its structural features. 

 Furthermore, this dissertation will characterize the contributions of the RND 

transporter MexGHI-OpmD from P. aeruginosa in the physiology and antimicrobial 

resistance of the bacterium. Our results suggest that the transporter is involved in 

establishing the steady-state concentrations of the important virulence factor pyocyanin. 

In addition, we showed that the unusual fourth component MexG physically interacts 

with the transporter and that its presence results in inhibition of the efflux activity 

towards certain substrates. Our results suggest that the activity of RND transporters are 

masked by the presence of the outer membrane and that hyperporination highlights the 

actual transport efficiencies of these pumps. RND transporters heavily rely on the outer 

membrane barrier, and this hyperporination approach could be used to re-evaluate their 

substrate specificities. 
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I: Introduction 

 Bacterial infections are as old as mankind itself. From the bubonic plaque, to 

leprosy, to malaria, and tuberculosis bad bugs have been the cause of many epidemics 

and millions of lives lost. Alexander Fleming discovered penicillin in the mid-1900s 

and with it the ultimate weapon to fight bacteria. As antibiotic discovery accelerated it 

seemed like only a matter of time until these diseases would disappear forever. With the 

onset of antibiotic resistance, however the idea of eradicating these pathogens has 

become less likely. Decades of misuse of antibiotics in farming and overprescribing by 

doctors constantly put selective pressure on bacteria to develop sophisticated resistance 

mechanisms. Today, the threat of multidrug resistant (MDR) superbugs is more real 

than ever. A recent discovery in a US hospital of a Escherichia coli strain resistant to 

carbapenems as well as the last resort antibiotic colistin shows how close we are to 

bacteria that are completely resistant to all conventionally used antimicrobials (2). In 

the US alone, current estimates range from a $21 to $34 million in health care costs, and 

even a decrease in the GDP by 0.4% to 1.6% due to the increased recovery time of 

patients (3). A report by the UK government estimated that by 2050 as many as 10 

million people will die from diseases caused by multidrug resistant bacteria, passing 

even cancer with a projected 8.1 million deaths (1).  To make matters worse, current 

antibiotic discovery has slowed down dramatically with the last class of antibiotics, the 

cyclic lipopeptides, discovered in the late 1980s (3). It has become clear that we will 

lose the race against fast evolving superbugs without any significant innovations in the 

field. 
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 There are several mechanisms by which cells can become drug resistant. 

Bacteria can modify the target of a particular antimicrobial through a single point 

mutation and this way reduce binding of the drug to its target (4). In addition to 

mutations of the target, bacteria also modify them by, for example, methylation which 

can prevent binding of the drug (4). Another clinically relevant mechanism of drug 

resistance is modification of the antibiotic itself (4). Bacteria express enzymes that can 

hydrolyze or acetylate antibiotics rendering them ineffective. Genes expressing these 

enzymes are often rapidly spread to entire populations through horizontal gene transfer 

and are a major area of research. However, arguably the most effective way for cells to 

become resistant against multiple classes of antibiotics is by decreasing the permeability 

of the cell envelope by modifying the cell membrane in combination with active drug 

efflux.  

 This is especially true for gram-negative bacteria and their highly impermeable 

outer membranes (5). In contrast to gram-positive bacteria, the cell envelope of gram-

negatives is made up of two distinct membranes. The inner membrane and the inner 

leaflet of the outer membrane are mainly made up of phospholipids that provide good 

protection for hydrophilic molecules to enter the cell. The outer leaflet of the outer 

membrane consists of lipopolysaccharides (LPS), which due to the presence of large 

polar sugar groups is highly hydrophilic. LPS reduces the permeation of hydrophobic 

molecules, which encompasses a large part of antibiotics. This combination makes it 

incredibly difficult for drugs to reach their target and carry out their activity.  

 In addition to this low permeability of the outer membrane, gram-negative 

bacteria also have several efflux transporters. The class of transporters that is most 
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commonly associated with antibiotic resistance in bacteria are RND type transporters. 

They are tripartite protein complexes that span the entire cell envelope, allowing them 

to export substrates across the outer membrane and out of the cell. This feature leads to 

a synergistic effect with the low permeability barrier of the outer membrane and makes 

infections of gram-negative bacteria incredibly hard to treat.  

 It is no surprise that the three bacterial species that make up the priority one 

group for the development of new antibiotics of the World Health Organization are 

highly resistant gram-negative bacteria (6). The most critical species are Acinetobacter 

baumannii, Pseudomonas aeruginosa, and some carbapenem resistant 

Enterobacteriaceae (6). Drug development for gram-negatives specifically also 

provides extra challenges. The low permeability of these bacteria poses a big challenge 

in drug screening, decreasing the hit rate of compounds by up to a staggering 1,000-fold 

(7). Taken together, multidrug resistant gram-negative pathogens represent a 

tremendous challenge for the scientific community, and new ways to treat such 

infections are desperately needed. 

This dissertation will focus on understanding the interplay of outer membrane 

permeability and active efflux of the gram-negative, opportunistic pathogen P. 

aeruginosa, and on characterization of the P. aeruginosa RND transporter MexGHI-

OpmD and its impact on drug resistance and physiology. P. aeruginosa most infamous 

for nosocomial diseases and lung infections in cystic fibrosis patients (8). Infections can 

be acute or chronic and are difficult to treat due to the high intrinsic resistance of the 

bacterium. Acute infections are caused by planktonic cells, which typically invoke a 

severe immune response in the patient (9). The most effective class of antibiotics used 
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against these infections are fluoroquinolones (10, 11). In cases of multidrug resistant 

strains, patients undergo either a continuous infusion of meropenem, treatment with 

colistin, or polymixin B (12), all of which are considered last resort antibiotics. Chronic 

infections are caused by colonization of P. aeruginosa grown as biofilms, which are 

made up of exopolysaccharides, extracellular DNA, and proteins (9, 13). This structure 

provides an additional layer of resistance for the pathogen due to the high rate of 

persister cells and the slow mode of growth (14). The increased frequency of multidrug 

resistant isolates of P. aeruginosa is of great concern and necessitates the discovery of 

new approaches to combat the pathogen (6, 15-17).  

 

I.1: Structure and properties of the bacterial outer membrane 

Intrinsic resistance in gram-negative pathogens is mainly mediated by the 

structure and composition of the outer membrane and active efflux. The bacterial outer 

membrane is quite different from the inner membrane (Fig. I.1). The inner leaflet of the 

outer membrane, like the bacterial inner membrane, consists mainly of phospholipids. 

What makes the outer membrane distinctly different is the outer leaflet, which is made 

up of lipopolysaccharides (LPS). LPS is well known for its toxic effects, as it is 

sometimes referred to as endotoxin. It can invoke severe immune responses in 

mammalian hosts and lead to septic shock (18). However, it also plays a big role in the 

structure of the cell envelop of gram-negative bacteria. The asymmetric bilayer of LPS 

and phospholipids makes gram-negative bacteria uniquely impermeable (5). The 

structure of LPS has been studied extensively (19-28). LPS consists of lipid A, an inner 

and an outer core, as well as a large stretch of polysaccharides referred to as O-antigen.  
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Lipid A typically consists of two phosphorylated glucosamine moieties that are 

N- and O-acylated (26). The exact structure of lipid A can vary between bacterial 

species. In P. aeruginosa, the major forms are hexa- and penta-acylated lipid A (19, 

21). Variations in the acylation occurs as a result of different growth conditions, such as 

the amount of available Mg2+ in the environment (19). The acyl chains are either 10 or 

12 carbons in length and form the hydrophobic portion of the molecule (26). The 

acylation pattern and length of the acyl tails differ in other species. E. coli, for example, 

utilizes 12 to 14 carbon acyl chains and is typically hexa-acylated (25). 

The inner core of LPS is generally comprised of two ⍺-3-deoxy-D-manno-oct-2-

ulosonic acid (Kdo) and two L-glycero-D-manno-heptose (Hep) residues covalently 

linked to the glucosamine residues of lipid A (26). The second Hep residue of the inner 

core of P. aeruginosa has a carbamoyl group attached at the O-7 position, which 

appears to be unique to pseudomonads (24). In addition, the Hep residues are 

extensively phosphorylated by mono-, di-, and even triphosphate groups, which have 

been implicated in intrinsic resistance of P. aeruginosa (27, 28). The outer core consists 

mainly of D-galactosamine, D-glucose, and L-rhamnose residues with a characteristic 

L-alanyl group acylation at the D-galactosamine for P. aeruginosa (26).  

The O-antigen is a relatively large structure of different amino saccharides and 

can vary significantly between different isolates of P. aeruginosa. There are currently 

20 accepted serotypes of P. aeruginosa strains based on variability of the O-antigen (22, 

23). Notably, P. aeruginosa isolates found in cystic fibrosis lungs largely lack the O-

antigen altogether (20). LPS lacking the O-antigen are commonly referred to as “rough” 

LPS. 
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Figure I.1 - The gram-negative cell envelope.  

Illustration of the cell envelope of gram-negative bacteria. Transmembrane structures in 

grey represent integral membrane proteins. Figure modified from Metzger et al., 2012 

(29). 
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 Taken together, LPS is a large and mostly polar structure that provides 

significant protection from hydrophobic molecules, which are thought to enter the cell 

through passive diffusion across the cell envelope. The outer membrane, with its 

asymmetric arrangement of LPS on the outer leaflet and phospholipids on the inner 

leaflet, forms a formidable barrier for a wide range of compounds and is one of the 

main reasons why gram-negative bacteria possess such high levels of intrinsic 

resistance. 

 

I.2 Outer membrane porins of gram-negative bacteria 

Despite this low permeability of the outer membrane, gram-negative cells are 

still able to take up nutrients for their metabolism. This is mainly achieved through 

passive diffusion through outer membrane porins (30). These porins can be specific, 

like the maltoporin LamB from E. coli, or general porins that have no substrate binding 

site (31). Specific porins usually have a binding site for their respective substrate 

whereas general porins do not (30). The most well-known general porins are OmpF and 

OmpC from E. coli. Their exclusion size largely dictates the permeability of the cell 

envelope for hydrophilic molecules and for OmpF is estimated to be about 600 Da (5, 

31).  In contrast to E. coli, P. aeruginosa largely lacks general porins. It expresses so-

called “slow porins” that are non-specific but with much smaller exclusion limits (5, 

30). The main slow porin in P. aeruginosa is OprF with an estimated exclusion size of 

about 200 Da (5, 30). The differences in outer membrane porins has a dramatic effect 

on permeability. It is estimated that the relative permeability of the cell envelope of P. 
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aeruginosa is only 1-8% when compared to E. coli (32). This underlines the stark 

differences between these bacteria and highlights the difficulties in designing 

antipseudomonal drugs. 

 

I.3 MDR transporters in bacteria 

 In bacteria, multidrug resistance transporters generally belong to one of five 

superfamilies of proteins: the Major Facilitator Superfamily (MFS), the Multidrug 

Toxic Compound Extrusion (MATE) superfamily, the Small Multidrug Resistance 

(SMR) superfamily, the ATP-Binding Cassette (ABC) superfamily, and the Resistance 

Nodulation cell Division (RND) superfamily (33). These transporters differ in their 

structure, energy dependence, composition, and substrate specificities (34-38). They are 

all located in the inner membrane and generally follow the same mechanistic principles 

of substrate binding, reorienting of the substrate towards the periplasm, and releasing 

the substrate based on reduced affinity to the transporter after the conformational 

change. The families are broken down into primary and secondary transporters. ABC 

transporters are the only primary transporters and utilize ATP to facilitate efflux (34). 

MFS, SMR, MATE, and RND transporters all use a chemical gradient, mostly protons 

and sodium ions, to drive their conformational changes (33). In gram-negative bacteria, 

MDR transporters can associate with so called membrane fusion proteins (MFP) and 

outer membrane factors (OMF) to form a complex that spans the entire cell envelope.  

 RND transporters are the most commonly associated with clinical drug 

resistance in gram-negative bacteria. This is mostly due to their very broad substrate 

specificity and because they are almost always found in complexes with MFPs and 
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OMFs, allowing them to translocate substrates across the outer membrane into the 

extracellular space (33, 38). Transport across the outer membrane coupled with its low 

permeability leads to powerful and synergistic resistance mechanism.  

 The chromosome of P. aeruginosa specifically encodes for at least twelve RND 

transporters, many of which are constitutively expressed (39). The most clinically 

relevant transporters are MexAB-OprM(40), MexCD-OprJ (41), MexEF-OprN (42, 43), 

and MexXY (43). They generally have a very broad substrate specificity and are 

frequently found to be overexpressed in clinical isolates (43). MDR transporters 

contribute tremendously to the resistance of P. aeruginosa and, consequently, 

considerable effort is dedicated to finding inhibitors of efflux pumps (44). Some efflux 

pump inhibitors (EPIs) like PAβN have already been described and show promising 

results (45). However, EPIs are not available in clinical settings yet and more work is 

necessary to discover new targets and mechanisms of EPIs. 
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Figure I.2 - Types of bacterial MDR transporters. 

Representatives of the five MDR superfamilies from gram-negative bacteria. Although 

only AcrB is shown in complex with MFP and OMF, MFS and ABC transporters can 

also form tripartite complexes (46, 47). MFS transporters are thought to act as 

monomers, however are sometimes found as dimers (48). Areas shaded in blue indicate 

the inner and outer membrane, and substrates are indicated as orange hexagons. 

Structures modified from PDB files 4HUK (NorM, Lu et al. (49)), 2GFP (EmrD, Yin, et 

al. (50)), 5O66 (AcrAB-TolC, Wang, et al. (51)), 5NIK (MacB, Fitzpatrick, et al. (52)), 

and 2I68 (EmrE, Fleishman, et al. (53)). 
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I.4 Mechanism of RND transporters 

RND transporters work in concert with membrane fusion proteins (MFPs) and 

outer membrane channels (OMFs) to expel their substrates out of the cell. This tripartite 

complex is critical to provide efflux across the bacterial outer membrane. Every part of 

the complex is essential, and a deletion of one component completely abolishes the 

activity of the transporter (54, 55). Interactions between the transporter, the MFP, and 

the OMF are strong, so that the components are frequently co-purified together (56, 57). 

The fully assembled complex spans the entire cell envelope, allowing it to expel 

substrates from the inner membrane, or the interphase between the periplasm and the 

inner membrane, across the outer membrane (58). This is cause for significant synergy 

between the efflux pump and the low permeability outer membrane. RND transporters 

are secondary transporters and use the proton motive force to supply the energy needed 

to translocate substrates (38). The most well-known members of this family are AcrAB-

TolC from E. coli and MexAB-OprM from P. aeruginosa. They share a high sequence 

homology and both provide resistance to a broad spectrum of antibiotics (59).  

The RND component of the complex is located in the inner membrane. It 

associates as a trimer, with each monomer containing 12 transmembrane ɑ-helices (TM) 

and two large periplasmic loops (38). The RND protein is usually divided into the 

transmembrane domain, the porter domain, and the docking domain (Fig. I.3) (60). The 

transmembrane domain anchors the transporter into the inner membrane and contains 

the residues needed for the proton relay network. There are typically two highly 

conserved aspartic acid residues and one lysine residue on TM4 and TM10, which 

facilitate the movement of protons from the periplasm to the cytoplasm (38). This 
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results in a conformational change in the transmembrane domain, which ultimately 

facilitates the transport reaction. The porter domain is subdivided into PN1, PN2, PC1, 

and PC2 domains, each of which contains four to five β-strands forming an antiparallel 

β-sheet and two ⍺-helices (60). It contains the proximal and the distal binding pockets 

that are separated by a switch-loop (61). Both pockets are typically rich in 

phenylalanines and other hydrophobic residues, making them ideal to non-specifically 

bind many different hydrophobic antibiotics and other compounds (62). The docking 

domain forms a funnel like structure which guides the substrates towards the OMF for 

transport out of the cell (60). 
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Figure I.3 - Structure of RND transporters. 
 

Side view of the RND transporter AcrB from E. coli. Each monomer is shown in a 

different color. Dotted lines separate the three different domains. Inner membrane is 

indicated by the blue shaded area. Residues of the substrate binding pocket are shown in 

magenta and circled. Modified from PDB 2GIF (Seeger, et al. (63)). 
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RND transporters facilitate the transport reaction through an asymmetric 

functional rotating mechanism (60). Each protomer is generally present in one of three 

conformations and will switch between the “loose” or “access” form, the “tight” or 

“binding” conformation, or the “open” or “extrusion” form (38). Each conformer differs 

slightly in the structure of the binding pockets and the protonation state of the proton 

relay network in the transmembrane domain. The changes in the binding pockets 

effectively guide the substrate from the proximal pocket to the distal pocket and 

ultimately out of the transporter through the docking domain (62). Substrates are 

thought to enter the binding pockets close to or at the interphase between the periplasm 

and the inner membrane via an access tunnel and are moved through the transporter by 

a peristaltic pump like mechanism, which is energized by the movement of protons in 

the transmembrane domain (60). 

 

I.5 Membrane fusion proteins connect the RND transporter to the OMF 

MFPs, also sometimes called periplasmic adaptor proteins, form a link between 

the RND transporter and the OMF. They consist of four distinct domains and like RND 

transporters are a peptide strand folded onto itself, which is likely the result of a gene 

duplication event. MFPs consist of a membrane proximal domain, a β-barrel domain, a 

lipoyl domain, and a ɑ-hairpin domain (Fig. I.4) (64). Additionally, some MFPs, like 

MexH of MexGHI-OpmD, possess a lipid modification at the membrane proximal 

domain embedding the peptide into the inner membrane (65). The membrane proximal 

domain and the β-barrel domain are thought to interact with the RND transporter, 

whereas the ɑ-hairpin domain binds to the OMF (64). Between domains is a stretch of 
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unstructured amino acids, making the overall structure of MFPs highly flexible (66). It 

is thought that they transfer the energy from conformational changes in the RND 

transporter during transport to the OMF (67). This ultimately causes the OMF to open, 

allowing for substrates to leave the cell (68). There was much debate on whether MFPs 

associate as timers or hexamers. To date, the most widely accepted quaternary structure 

is a trimer of dimers or a hexamer (69-71). In the oligomeric state, MFPs are thought to 

form a funnel like structure that surrounds the docking domain of RND transporters and 

parts of the OMF (70). 
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Figure I.4 - Four domains of membrane fusion proteins (MFPs). 

Crystal structure of the membrane fusion protein AcrA from E. coli. Each domain is 

shown in a different color. Unstructured stretches of amino acids between the four 

domains result in a highly flexible structure. Structure modified from PDB 5O66 

(Wang, et al. (51)) 
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I.6 Outer membrane factors guide substrates out of the cell 

OMFs are channel proteins that are inserted into the outer membrane of gram-

negative bacteria. They are typically promiscuous and can interact with different types 

of transporters. E. coli’s main OMF TolC, for example, interacts with at least nine 

transporters, making a tolC mutant highly susceptible to many different antibiotics (72). 

OMFs are not unique to RND transporters. They can also be found in transporters from 

the major facilitator and ATP binding cassette families, usually accompanied by MFPs 

to facilitate the interaction (72). OMFs consist of three domains and associate as a 

homotrimer (Fig. I.5) (70). The β-barrel domain is embedded into the outer membrane 

and forms the pore that allows substrates to leave the cell (73). This directly follows the 

ɑ-barrel domain, which stretches far into the periplasm (70). Each protomer forms four 

large ɑ-helices that are interrupted briefly by short β-strands that make up the equatorial 

domain in the center of the ɑ-barrel domain (70). The end of the ɑ-barrel domain forms 

a type of iris that is closed when the OMF is not engaged by a transporter (73). It is 

thought that interaction of the docking domain of RND transporter engages and opens 

the channel, allowing for substrates to be expelled (55, 73). However, other studies 

suggest that the RND transporter and the OMF do not directly contact each other (74). 

Furthermore, ABC and MFS transporter lack large periplasmic domains that could 

contact the OMF, suggesting that the opening of the OMF is mediated by the MFP (75). 
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Figure I.5 - Structural features of outer membrane factors. 

Outer membrane factors associate as trimers and consist of three different domains. 

Each monomer is shown in a different color. TolC is shown in the open conformation. 

Outer membrane is indicated by the blue shaded area. Structure modified from PDB 

5O66 (Wang, et al. (51)). 
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I.7 Quorum sensing and the role of efflux pumps in virulence of P. aeruginosa 

 In P. aeruginosa, genes responsible for virulence and biofilm formation are 

tightly regulated by a complex network of transcription factors and transcriptional 

activators that are activated once a certain cell density is reached (Fig. I.6) (76). This 

type of cell-to-cell communication, which is commonly referred to as quorum sensing, 

is critical to orchestrate gene expression across a cell population and to initiate the 

production of virulence factors like pyocyanin, rhamnolipids, and elastase (13, 76). 

Quorum sensing signaling pathways are hierarchically ordered and start with the las and 

rhl systems, which are homologous to the LuxI/LuxR signaling mechanism in Vibrio 

fischeri (Fig. I.6) (76, 77). The family of LuxI type proteins are acyl homoserine lactone 

(AHL) synthases, which synthesize AHLs by catalyzing the acylation of S-

adenosylmethionine via an acyl carrier protein (76, 77). The synthesized AHLs are 

typically excreted into the extracellular space and serve as signaling molecules (76). 

Once the extracellular concentration is high enough, they will bind to their respective 

cytoplasmic LuxR type receptors which, in turn, upregulate expression of certain genes 

(78). In P. aeruginosa, the las and rhl system synthesize the signaling molecules N-(3-

oxododecanoyl)-L-homoserine lactone (3OC12-HSL) and N-butanoyl-L-homoserine 

lactone (C4-HSL) respectively (76). The other major signaling pathway of P. 

aeruginosa is through the Pseudomonas Quinolone Signal (PQS). PQS is synthesized 

by pqsABCDH and its corresponding receptor is PqsR (77). The las system upregulates 

PQS synthesis, whereas the rhl pathway downregulates it (Fig. I.6) (77). This highlights 

the complexity and the way these pathways are interconnected. Activation of PqsR 

results in the expression of many virulence factors including pyocyanin (76). 
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Figure I.6 - Quorum sensing network in P. aeruginosa. 

The major quorum sensing pathways in P. aeruginosa and their corresponding signaling 

molecules. Arrows in red indicate upregulation and black lines repression. 
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 Quorum signaling molecules are of great importance for virulence and biofilm 

formation, and cells require careful regulation of these molecules. Some RND 

transporters were found to be involved in excretion of these molecules, highlighting the 

importance of these efflux pumps outside of the removal of toxic compounds. So far, 

MexAB-OprM (79, 80), MexEF-OprN (81, 82), and MexGHI-OpmD (83, 84) are 

indicated to be involved in maintaining quorum sensing signal homeostasis. 

Overexpression of MexAB-OprM, for example, was found to result in a dramatic 

decrease of the production of the important virulence factors elastase, casein protease, 

and pyocyanin (79), as well as a loss of virulence in a mouse infection model (85). It 

was found that MexAB-OprM transports 3OC12-HSL and is, thus, involved in the las 

signaling pathway (80). The loss of virulence in MexAB-OprM overproducers is 

explained by the decreased intracellular concentration of 3OC12-HSL due to excessive 

efflux (80). Since 3OC12-HSL is no longer able to reach its receptor at high enough 

concentrations, the las pathway is essentially turned off and virulence factors are no 

longer produced (86). This also means that P. aeruginosa strains that acquired 

multidrug resistance through overexpression of MexAB-OprM are deficient in the 

production of virulence factors (79). Hence, MexAB-OprM expression is carefully 

regulated by the rhl signaling pathway, which shows the interconnectedness of quorum 

sensing pathways (87).  

 Another important RND transporter that is involved in signaling is MexEF-

OprN. It was found to transport the PQS precursor HHQ and kynurenine (81, 82). Since 

PQS is required for the expression of several virulence factors (76), overexpression of 

MexEF-OprN was found to result in the loss of virulence, presumably due to the low 
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intracellular concentrations of these PQS precursors (82). Interestingly, this transporter 

was also found to be upregulated in drug resistant clinical isolates of P. aeruginosa 

(42). 

 Lastly, MexGHI-OpmD is also indicated to translocate quorum sensing related 

molecules. Aendekerk et al. found that a disruption in either mexI or opmD resulted in 

reduced levels of key virulence factors like pyocyanin, rhamnolipids, and elastase, as 

well as reduced virulence in a mouse infection model (83, 88). The authors attributed 

these effects to the transporter’s involvement in efflux of the PQS precursor anthranilate 

(83). Another group found that MexGHI-OpmD transports the phenazine 5-

methylphenazine-1-carboxylate (5-Me-PCA), a direct precursor of pyocyanin and 

indicated to be involved in biofilm formation (84). Although RND transporters are most 

notorious for their involvement in multidrug resistance, they play key roles in 

establishing homeostasis of several important molecules. More research has to be 

dedicated to elucidate the involvement of the twelve RND transporters of P. aeruginosa 

in the physiology of the cell and the establishment of virulence. 
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Transporters in P. aeruginosa 
RND 
Transporter Substrates References 

MexAB-OprM FQ, ML, TET, LM, CF, NB, PEN, 3O12-HSL (QS) (89, 90) 

MexXY-OprM FQ, ML, TET, LM, CF, AG (89) 

MexCD-OprJ FQ, ML, TET, LM, CF, NB, PEN, CEF (89) 

MexEF-OprN FQ, CF, TMP, TET, HHQ (QS), KY (QS) (81, 82, 91, 
92) 

MexGHI-OpmD FQ, EtBr, ACR, Va2+, AN (QS), 5-Me-PCA (QS) (83, 88, 93) 
MexJK-
OprM/OpmH FQ, ML, TET, TRI (94, 95) 

MexMN-OprM CF, TML (96) 

MexPQ-OpmE FQ, ML (96) 

MexVW-OprM ACR, CF, EtBr, ML, FQ, TET (97) 
MuxABC-
OpmB NB, ATM (98) 

TriABC-OpmH TRI, SDS (68, 99) 

CzcCBA Cd2+, Zn2+ (100, 101) 
 

Table I.1 - Substrate specificities of RND transporters in P. aeruginosa. 

3OC12-HSL N-(3-oxododecanoyl)-L-homoserine lactone (QS), 5-Me-PCA 5-

methylphenazine-1-carboxylate (QS), ACR acriflavine, AG aminoglycosides, AN 

anthranilate (QS), ATM aztreonam, CEF cephalosporins, CF chloramphenicol, FQ 

fluoroquinolones, KY kynurenine, LM lincomycin, ML macrolides, NB novobiocin, 

PEN penicillins, SDS sodium dodecyl sulfate, TET tetracycline, TML thiamphenicol, 

TMP trimethoprim, TRI triclosan 
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I.8 Specific aims and goals of this dissertation 

 Outer membrane permeability represents one of the biggest hurdles in the drug 

screening process (5). Potential hits are often overlooked due to their inability to cross 

the cell envelope. This results in a dramatically reduced amount of chemical structures 

with potentially good antibiotic activity that could be refined to improve their 

permeability. Some methods exist to permeabilize the outer membrane, for example, the 

use of polymyxins. Polymyxins are cyclic peptides attached to a fatty acid chain (102). 

The peptides are basic and, under physiological conditions, carry a positive charge 

(103). This allows them to intercalate into the outer membrane, thereby replacing 

calcium and magnesium ions, disrupting and, effectively, permeabilizing the outer 

membrane (103). At higher concentrations, polymyxins further insert themselves into 

the inner membrane, which results in leakage of essential cytoplasmic components 

leading to cell death (102). Polymyxins were found to potentiate the activity of some 

antibiotics, although this effect is mostly seen in hydrophobic antimicrobials (102). In 

addition to only selectively increasing permeability, they also change the physical 

properties of the outer membrane through their high charge density (102). This makes 

them less ideal in a drug screening approach, where non-selective permeability with an 

intact outer membrane is required. 

 One aim of this dissertation is to describe and characterize a new approach to 

permeabilize the outer membrane using a genetically engineered outer membrane pore 

from E. coli. The gene expressing this pore was inserted into the chromosome of E. coli 

and P. aeruginosa strains and leads to non-selective increase in the permeability of the 

outer membrane. Expression of the pore does affect some of the phenotypes controlled 
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by quorum sensing in P. aeruginosa and increases the uptake of several compounds and 

antibiotics. Furthermore, this dissertation aims to classify groups of antibiotics by 

whether their accumulation into the cell is limited by active efflux, outer membrane 

permeability, or a combination of both. To achieve this, antibiotic susceptibilities were 

tested in strains expressing the pore, lacking efflux, or both and are compared to wild 

type strains. This approach highlights the differences in outer membrane permeability of 

E. coli and P. aeruginosa and defines antimicrobial characteristics that lead to better 

uptake into cells. 

 Furthermore, this dissertation aims to characterize the RND transporter 

MexGHI-OpmD from P. aeruginosa on its contribution to antibiotic resistance and 

physiology. MexGHI-OpmD is an unusual transporter due to its fourth component 

MexG. MexG is a small about 16 kDa protein that is proposed to be located in the inner 

membrane. The function of MexG and whether or not it physically associates with the 

transporter is unknown. MexGHI-OpmD has been indicated to be involved in the 

transport of quorum sensing molecules, and was also found to export the toxic 

pyocyanin precursor 5-methylphenazine-1-carboxylate (5-Me-PCA) (83, 84, 88). 

Pyocyanin is one of the most important virulence factors in P. aeruginosa and is 

responsible for the characteristic blue-green color of P. aeruginosa cultures. A 

disruption in mexI or opmD was also shown to result in a complete loss of virulence in 

PA14; however the mechanism by which MexGHI-OpmD is involved in virulence is 

not known (83). This dissertation aims to elucidate whether MexG is part of the MexHI-

OpmD complex and to understand the transporters role in physiology of P. aeruginosa. 
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II. Materials and Methods 

Table II.1 - List of bacterial strains used in these studies 

Escherichia coli 

Strains Description Source 

BW 25113 
Wild-type strain Δ(araD-araB)567 Δ(rhaD-rhaB)568 

ΔlacZ4787 (::rrnB-3) hsdR514 rph-1 
(104) 

GD102 BW25113 ΔtolC-ygiBC (105) 

GKCW101 

(WT) 

BW25113 attTn7::mini-Tn7T -Kmr -araC-ParaBAD-

MCS 
(106) 

GKCW102 

(WT-Pore) 

BW25113 attTn7::mini-Tn7T-Kmrr -araC-ParaBAD-

fhuAΔC/Δ4L 
(106) 

GKCW103 

(ΔTolC) 
GD102 attTn7::mini-Tn7T-Kmr-araC-ParaBAD-MCS (106) 

GKCW104 

(ΔTolC-

Pore) 

GD102 attTn7::mini-Tn7T-Kmr-araC-ParaBAD-

fhuAΔC/Δ4L 
(106) 

GKCW111 
BW25113 attTn7::mini-Tn7T-Kmr - lacIq-pLAC -

MCS 
(106) 

GKCW112 
BW25113 attTn7::mini-Tn7T-Kmr-lacIq-pLAC-

fhuAΔC/Δ4L 
(106) 

GKCW113 GD102 attTn7::mini-Tn7T-Kmr - lacIq-pLAC -MCS (106) 

GKCW114 
GD102 attTn7::mini-Tn7T-Kmr-lacIq-pLAC-

fhuAΔC/Δ4L 
(106) 



27 

Pseudomonas aeruginosa 

Strains Description Source 

PAO1 Wild type 
Gift from O. 

Lomovskaya 

PAO1Δ3 PAO1 ΔmexAB ΔmexCD ΔmexXY 
Gift from O. 

Lomovskaya 

PAO314 PAO1 ΔmexAB-oprM ΔmexCD-oprJ ΔmexJKL (95) 

PAO325 
PAO1 ΔmexAB-oprM ΔmexCD-oprJ ΔmexJKL 

ΔmexXY 
(95) 

PAO509 

(PΔ5S) 

PAO1 ΔmexAB-oprM ΔmexCD-oprJ ΔmexEF-oprN 

ΔmexJKL ΔmexXY 
(99) 

PAO1116 
PAO1 ΔmexAB-oprM ΔmexCD-oprJ ΔmexEF-oprN 

ΔmexJKL ΔmexXY ΔtriABC 
(99) 

GKCW111 

(PAO1) 
PAO1 attTn7::mini-Tn7T-Gm-lacIq-pLAC-MCS (107) 

GKCW112 

(PΔ3) 
PAO1Δ3 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-MCS (107) 

GKCW113 

(PΔ4) 
PAO325 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-MCS (107) 

GKCW114 

(PΔ6) 
PAO1116 attTn7::mini-Tn7T-Gm-lacIq-pLAC-MCS (107) 

GKCW127 

(P∆3S) 
PAO314 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-MCS (107) 
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GKCW119 

(PAO1-

Pore) 

PAO1 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-

fhuAΔC/Δ4L 
(107) 

GKCW 

116 (P∆3-

Pore) 

PAO1Δ3 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-

fhuAΔC/Δ4L 
(107) 

GKCW121 

(P∆4-Pore) 

PAO325 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-

fhuAΔC/Δ4L 
(107) 

GKCW122 

(P∆6-Pore) 

PAO1116 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-

fhuAΔC/Δ4L 
(107) 

GKCW 

128 

(P∆3S-

Pore) 

PAO314 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-

fhuAΔC/Δ4L 
(107) 

DW101 

(PAO1∆G) 
PAO1 ΔmexGHI-opmD-scar This study. 

DW102 

(P∆3∆G) 
PAO1Δ3 ΔmexGHI-opmD-scar This study. 

DW103 

(P∆4∆G) 
PAO325 ΔmexGHI-opmD-scar This study. 

DW104 

(P∆6∆G) 
PAO1116 ΔmexGHI-opmD-scar This study. 

DWBN110 DW104 attTn7::mini-Tn7T- Gmr-lacIq-pLAC- This study. 
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(PΔ6ΔG-

Pore) 

fhuAΔC/Δ4L 

DW111 

(PΔ4ΔG-

Pore) 

DW103 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-

fhuAΔC/Δ4L 
This study. 

DW112 

(PΔ5S-

Pore) 

PAO509 attTn7::mini-Tn7T- Gmr-lacIq-pLAC-

fhuAΔC/Δ4L 
This study. 

 

 

 

Table II.2 - List of plasmids used in these studies 

Plasmids Description Source 

pBSPII (SK-) Cbr; broad-host-range cloning vector (108) 

pMexEF-OprN  Cbr; pBSPII mexEF-oprN; Blar; expresses MexEF-

OprNHis 

This 

study. 

pMexHI-OpmD  Cbr; pBSPII mexHI-opmD; Blar; expresses MexHI-

OpmDHis 

This 

study. 

pMexGHI-OpmD Cbr; pBSPII mexGHI-opmD; Blar; expresses 

MexGHI-OpmDHis 

This 

study. 

pMexG Cbr; pBSPII mexG; Blar; expresses MexGHis This 

study. 
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pMexGH Cbr; pBSPII mexG; Blar; expresses MexGHis This 

study. 

pMexGHI Cbr; pBSPII mexGHI; Blar; expresses MexGHIHis This 

study. 

pMexGHI-flag pMexGHI with additional FLAG tag on N-terminus 

of mexG 

This 

study. 

pMexGH-flag pMexGH with additional FLAG tag on N-terminus 

of mexG 

This 

study. 

pMexGΔHW Cbr; pBSPII mexG; Blar; expresses MexGΔHWHis This 

study. 

pEX18Ap Apr; oriT+ sacB+, gene replacement vector (109) 

pUC18-mini-

Tn7T-LAC 

Gmr; mini-Tn7T based suicide vector (110) 

pEX18Ap-Gm pEX18Ap with FRT-Gmr-FRT fragment from 

pUC18-mini-Tn7T-LAC 

This 

study. 

pEXdGHI-D pEX18Ap-Gm with upstream and downstream 

fragment of mexGHI-opmD flanking FRT-Gmr-FRT 

This 

study. 

pFLP2 Cbr; sacB+ Plasmid carrying FLP recombinase (109) 

pGK-LAC-

FhuAΔC/Δ4L 

pUC18-mini-Tn7T-Gmr-lacIq-pLAC vector 

containing fhuA ∆C/∆4L gene 

(106) 

pTNS2 Helper plasmid containing transposase complex (111) 
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Growth Conditions 

 Unless otherwise indicated, bacterial cultures were grown in Luria-Bertani (LB) 

broth (10 g Tryptone, 5 g Yeast Extract, and 5 g NaCl per liter at pH 7.0) at 37°C and 

shaking at 200 RPM. Optical densities were measured utilizing a UV-1601 (Shimadzu). 

Cultures with OD600 above 1.0 were diluted down before the final OD was determined. 

 

Plasmid construction 

 Sequences of all primers can be found in Appendix A. Plasmid constructs for the 

expression of MexEF-OprN and MexGHI-OpmD were constructed using the broad-

host-range vector pBSPII (SK-) (108). Genes were PCR amplified from PAO1 genomic 

DNA, extracted using the GenElute Bacterial Genomic DNA Kit (Sigma Aldrich), and 

amplified using the primers EFNpbspFWD and EFNpbspREV, or GHIDpbspFWD and 

GHIDpbspREVhis. PCR fragments and the vector pBSPII were digested with KpnI-HF 

and HindIII-HF for MexEF-OprN, or HindIII-HF and BamHI-HF for MexGHI-OpmD 

using the conditions recommended by the manufacturer of the restriction enzymes 

(NEB), and ligated into the digested vector using T4-Ligase (NEB). Ligation of the 

vector with PCR fragments was done following the manufactures protocol. The 

constructs were confirmed by restriction analysis and expression was validated using 

the methods described below.  

 Other parts of the MexGHI-OpmD transporter were cloned into pBSPII (SK-) 

utilizing similar methods utilizing the restriction enzymes HindIII-HF and BamHI-HF 

(NEB). pMexG, pMexGH, and pMexGHI were constructed using the primers 

GHIDpbspFWD and GpbspREVhis, GHpbspREVhis, and GHIpbspREVhis 
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respectively. pMexHI-OpmD was cloned using the primers HIDpbspFWDhis and 

GHIDpbspREVhis. Constructs containing a N-terminal FLAG tag of mexG were 

created using the forward primer GpbspFWDflag and the reverse primer 

GHpbspREVhis for MexGH and GHIpbspREVhis for MexGHI. The MexG mutant 

MexGΔHW was created by site-directed mutagenesis using the QuikChange Lightning 

Kit (Agilent) and the primers GdHWfwd and GdHWrev as per the instructions given by 

the manufacturer. 

 The plasmid pEXdGHI-D was constructed in order to remove mexGHI-opmD 

from the chromosome of P. aeruginosa. pEX18Ap was used as the backbone for the 

construction of the plasmid. The FRT-GMR-FRT cassette from pUC18-mini-Tn7T-LAC 

plasmid was amplified using the primers SalIfrtGMfrtFWD and SalIfrtGMfrtREV, and 

inserted into the multiple-cloning site of pEX18Ap using the SalI restriction site. Next, 

we amplified 500 base pairs directly upstream of MexG using the the primers 

GHIDupFWD and GHIDupREV from PAO1 genomic DNA, and inserted the resulting 

PCR fragment into the created pEX18Ap-GM plasmid using the EcoRI and KpnI 

restriction sites. Similarly, we amplified the last 508 base-pairs of opmD using 

GHIDdownFWD and GHIDdownREV primers and ligated the fragment into the PstI 

and HindIII sites in the pEX18Ap-GM plasmid containing the upstream fragment. The 

result is the pEXdGHI-D P. aeruginosa suicide vector. 

 

Manipulation of chromosomal DNA 

 Gene deletion was carried out using established methods (109). Suicide plasmid 

pEXdGHI-D was transformed into conjugation proficient E. coli SM10 ƛpir donor cells, 
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and cell cultures of SM10 and P. aeruginosa strains were grown overnight to stationary 

phase in Luria-Bertani (LB) broth (10 g Tryptone, 5 g Yeast Extract, and 5 g NaCl per 

liter at pH 7.0). Cells were subcultured 1:100 into fresh LB Media. The media for SM10 

cells harboring the pEXdGHI-D plasmid was supplemented with 10µg/ml gentamicin. 

Both cultures were grown to OD600 of 1.0 and 1ml of each was centrifuged. The pellets 

were resuspended in 50 µl LB media and spotted onto a LB Agar plate. Plates were 

incubated at 37°C overnight to allow for conjugation. Cells were collected, resuspended 

in a 10 mM MgSO4 solution, and plated onto selective Vogel-Bonner minimal media 

agar plates (0.2 g/L MgSO4, 2 g/L citric acid, 10 g/L K2HPO4, 3.5 g/L NaNH4HPO4, 

and 15 g/L agar) (112) supplemented with 15 or 30 µg/ml and 10% sucrose. Colonies 

resistant to gentamicin and sensitive to carbenicillin were further analyzed by PCR to 

confirm successful deletion. To remove the gentamicin resistance cassette, cells were 

transformed with pFLP2 (109) and plated onto 10% sucrose. Colonies were tested for 

carbenicillin and gentamicin susceptibility, and excision was confirmed by PCR. 

 Insertion of the pore was carried out using previously published methods (110). 

P. aeruginosa suicide vector pGK-LAC-FhuAΔC/Δ4L(106) and pTNS2 (111) were 

electroporated into DW104 cells and integration was selected for by plating onto LB 

Agar plates supplemented with 10 µg/m gentamicin. Colonies were confirmed by PCR 

and by vancomycin spot assays as described below. 

 

Minimum Inhibitory Concentration (MIC) Testing 

 MIC determinations were carried out as previously described (113, 114) using 

the 2-fold broth dilution method. Indicated cells were grown with or without plasmids 
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in LB media supplemented with 200 µg/ml carbenicillin at 37°C with shaking at 200 

RPM. Overnight cultures were subcultured 1:100 into fresh media, with antibiotic 

where appropriated, and grown to an OD600 of 1.0 at 37°C with shaking. If protein 

expression is under the control of an inducible promoter, cells were induced at OD600 of 

0.3 with 0.1% L-Arabinose, 0.1 mM, or 2 mM Isopropyl ß-D-1-thiogalactopyranoside 

(IPTG). Cells were subsequently diluted to OD600 of 0.001 into a petri dish containing 

10mL of LB broth. A multichannel pipette was used to inoculate 5x104 cells per 100 µL 

well of a 96-well plate (assuming OD600 of 1.0 equals 109 cells). The plates themselves 

were set up by 2-fold broth dilution using a multichannel pipette to a final volume of 

100 µL of media with antimicrobial at different concentrations. When induction of 

protein expression was required, the media was supplemented with inducer. The last 

row in each plate was left without antibiotic as a control. Once cells were inoculated, 

the plates were left in the incubator at 37°C for 18 hours. The MIC was read by visual 

inspection of the wells and, were indicated, OD600 was read using a 10M Spark 

microplate reader (Tecan).  

 

Spot Assays 

 The spot assays to determine zone of clearance for antimicrobials were carried 

out as previously published (106). Cells were grown to stationary phase in LB media at 

37°C with shaking at 200 RPM and subcultured 1 to 100 into fresh media. The media 

was supplemented with antibiotic where appropriate to ensure that plasmids were 

maintained. Soft agar if prepared by mixing 2 mL of LB with 2 mL of LB Agar (10 g 

Tryptone, 5 g Yeast Extract, 5 g NaCl, and 15 g Agar per liter at pH 7.0) and kept at 
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55°C to prevent the agar from solidifying. IPTG was added to the soft agar at a 

concentration of 0.1mM as necessary for protein expression. Where appropriate, cells 

were induced at OD600 of 0.3 with 0.1 mM IPTG and grown to OD600 of 1.0. 300 µL of 

cultures were taken and mixed with the soft agar. The mixture was poured over LB agar 

plates and allowed to solidify at room temperature. Sterilized filter disks were added to 

the plates and the antimicrobial was spotted onto the disks. The plates were stored 

upside down at 37°C for 18 hours. After this time, the plates were taken out and the 

zones of clearance determined. To confirm the expression of the pore 100 µg of 

vancomycin was spotted onto the disk. For PMS and pyocyanin assays 0.5 and 0.05 

µmoles were spotted respectively. 

 

Determination of Growth Curves and Growth Rates 

 Stationary phase cells were subcultured 1:100 and grown in LB media with 

antibiotic to maintain plasmids were required at 37°C with shaking at 200 RPM. When 

protein induction was necessary, the cultures were induced at OD600 of 0.3 with 0.1% L-

Arabinose or 0.1mM IPTG. Once cells reached OD600 of 1.0 they were diluted to OD600 

of 0.001 into a petri dish containing 10 mL of LB media. Growth was measured in a 96-

well plate by inoculating 105 cells (assuming 109 cells in 1 ml of OD600 of 1.0) into each 

well containing 200µL of media supplemented with inducer where appropriate. When 

growth curves were desired in the presence of antimicrobial, the drug was added in 2-

fold broth dilution. The plates were read in a Spark 10M microplate reader. The heating 

unit in the reader was set to 37°C and it was programmed to read OD600 every 30 



36 

minutes for 18 or 24 hours. Before each reading the plate was shaken for 10 seconds in 

orbital mode. 

 The data was imported into Microsoft Excel and each well was normalized to its 

OD600 at time zero hours. Triplicates of each strain were averaged and plotted against 

time in hours. Growth rates were calculated by taking LN(OD600) and plotting it against 

time. Plots can be found in Appendix D. Six time points were selected for the 

determination of the rates based on the coefficient of determination (r2) from the 

steepest part of the graph. 

 

Quantification of Pyocyanin 

Extracellular pyocyanin was quantified using previously published 

spectroscopic methods with the following modifications (115). Cultures were grown in 

LB broth supplemented with 50mM HEPES-KOH buffer pH 7.0 to stationary phase. A 

1 mL aliquot was taken and cells were removed through ultracentrifugation at 

100,000xg at 4°C. 500 µL of chloroform was added to the supernatant and samples 

were vortexed for 1 min. The two phases were separated by centrifugation and the blue 

organic phase was transferred to a new tube. Chloroform was evaporated under nitrogen 

and samples were resuspended in 250 µL LB broth with 50 mM HEPES-KOH pH 7.0. 

The absorbance was read at 690 nm and the concentration of pyocyanin was calculated 

using the extinction coefficient (4,310 M-1 cm-1).  

 



37 

Quantification of Pyoverdine 

 Quantification was done using previously described methods (116). Indicated 

cultures were inoculated into glucose succinate minimal media (GSM) (10mM slucose, 

10 mM succinate, 40 mM NH4Cl, 0.5 mM K2SO4 and 0.4 mM MgSO4) buffered with 

5mM K3PO4 at pH 7.4) and grown overnight at 37°C with shaking. Cells were 

subcultured 1:50 into fresh GSM and grown for 5 hours, after which time the OD600 was 

determined every 30 min. Pyoverdine was determined by removing cells through 

centrifugation and reading the OD400 of the supernatant. The concentration of 

pyoverdine was calculated using the extinction coefficient of 20,000 M-1 cm-1. The data 

was divided by the OD600 and normalized to PAO1. 

 

Quantification of Biofilm 

 Biofilm accumulation of cells grown for several days was quantified as 

previously described (117). Strains were inoculated into LB media and grown overnight 

to stationary phase. Cells were washed twice with M9 minimal media supplemented 

with 0.4% glycerol, 0.4% casamino acid, and 0.1 mM IPTG to induce expression of the 

pore, and subsequently subcultured 1:100 using the same media into a 96-well PVC 

plate. Plates were incubated at 37°C for 3 days. 20µl of a 0.1% crystal violet was added 

to each well to stain the biofilms and incubated for 15 minutes. Wells were 

subsequently washed rigorously with PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2PO4, 1.8 mM KH2PO4) and allowed to dry. 200 µl of 95% ethanol was added and 

the OD600 was determined. The data was normalized to PAO1. 
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Uptake of Radiolabeled Compounds 

 Cells grown to stationary phase were subcultured 1:100 into fresh LB media and 

incubated at 37°C with shaking at 200 RPM. Expression of the pore was induced with 

0.1% L-arabinose in E. coli and 0.1 mM IPTG in P. aeruginosa strains at OD600 of 0.3. 

Cultures were subsequently grown to OD600 of 1.0 and collected by centrifugation at 

3,220xg for 10 minutes at room temperature. Cells were washed twice in PMG buffer 

(50 mM potassium phosphate, 1 mM magnesium sulfate, and 0.4% glucose at pH 7.0) 

and finally resuspended in PMG buffer of one tenth of the original culture volume. 

 Radiolabeled [14C]-erythromycin was diluted and mixed with cold stock of the 

antibiotic to achieve the desired stock concentration and specific activity of 0.025 

Ci/mmol. The stock was diluted to different concentrations with PMG buffer at 10X the 

final concentration. 100 µL of each concentration was added to 1mL of cells and 

aliquots of this reaction mixture was taken at the indicated time points. The aliquots 

were added to 96-well MultiScreenHTS FB filter plates with 1.0 and 0.65 µm pore sizes 

(EDM Millipore) that were attached to a MultiScreen HTS vacuum manifold (EDM 

Millipore) under vacuum. Before cells were added each filter was treated with PMG 

buffer. The plates were dried overnight and subsequently added to scintillation vials 

each with 2mL scintillation fluid. Radioactivity was determined with a Tri-Carb 

2810TR scintillation counter (PerkinElmer). The samples were normalized to the 0.5-

minute time point and intracellular concentration was calculated assuming OD600 equals 

1 x 109 cells per milliliter and each cell having an average volume of 1µm3. 

 



39 

Uptake of Hoechst33342 into Gram-Negative Bacteria 

 Stationary phase cells were subcultured 1 to 100 and grown at 37°C with 

shaking at 200 RPM with antibiotic if appropriate. At OD600 of 0.3 cells were induced 

and grown to and OD600 of 1.0, at which time they were collected by centrifugation at 

3,220xg and room temperature. Pellets were washed twice with HMG buffer (50 mM 

Hepes-KOH, 1 mM MgSO4, and 0.4% Glucose at pH 7.0). Cells were resuspended in 

HMG buffer to an OD600 of 2.0 equivalent for E. coli and 1.0 for P. aeruginosa. 

 The uptake experiment was carried out in a 10M Spark microplate reader 

(Tecan). For this purpose, 100 µL of Hoechst33342 (HT) was distributed into a low 

binding F-bottom 96-well plate (Greiner Bio-One, inc) at 2-fold increasing 

concentrations. The temperature in the plate reader was kept constant at 25°C and 100 

µL of cells were injected into each well. The final concentration of cells in the wells 

were OD600 of 1.0 for E. coli or 0.5 for P. aeruginosa. Fluorescence was measured for 

HT at 460 nm (excitation at 355 nm) every 20 seconds for 10 minutes. The plates were 

shaken briefly before each reading in orbital mode. 

 

Analysis of Fluorescence Uptake Data 

 The data was first plotted in Microsoft Excel and duplicates of an experiment 

were averaged. Fluorescence was normalized to the last time point before cells were 

added and the data was inspected for outliers. To calculate initial rates and steady states 

of fluorophore uptake, the time courses were imported into MATLAB (MathWorks). 

The fittype function was used to fit the data to an exponential equation in the form of: y 

= A1 + A2 * (1 – exp(-k2 * t)). The following constraints were used: For A1 the lower 
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and upper bounds were set to be within 5% of the first point after addition of cells, for 

A2 the lower bound was set to zero and the upper bound to 10% of the last time point 

taken, for k2 the lower bound was set to zero and the upper bound set to one. The start 

point for A1 was equal to the first time point after injection of cells, for A2 was set to the 

last time point, and for k2 was set to 0.01. The fitted lines were plotted in MATLAB and 

the quality of the fit was determined by visual inspection and analysis of the confidence 

intervals as well as the R-squared value of the calculated parameters. 

 To calculate the concentration of intracellular HT a conversion factor was 

determined using the fluorophore binding to salmon sperm DNA or phospholipids. 

These emission coefficients were determined by linear regression of emission of the 

fluorophore plotted against its total concentration. The experiments were carried out 

assuming that 1mL of OD600 1.0 cells contain about 17 µg of DNA and 27 µg of total 

lipids. Once relative fluorescent units (RFU) were converted to the intracellular 

concentration of fluorophore in µM the steady states were determined by simple 

addition of A1 and A2. The initial rates of uptake were determined by multiplying A2 by 

k2. This is justified according to this simple derivation: 

𝑦 = 𝐴$ + 𝐴& ∗ 1 − 𝑒+,-∗.  

𝑑𝑦
𝑑𝑡 = 𝐴& ∗ 𝑘& ∗ 𝑒+,-∗. 

Since the initial rate is at t = 0: 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝑅𝑎𝑡𝑒 = 𝐴& ∗ 𝑘& 

Unless otherwise indicated, three independent experiments were averaged and the 

standard deviation calculated per fluorophore and strain. 

 



41 

Protein Expression and Determination of Concentration of HIS-tagged Membrane 

Proteins 

 Expression of membrane proteins was verified by previously published methods 

(57) with subsequent immunoblotting. Cells grown to stationary phase were subcultured 

1:100 into fresh media supplemented with antibiotic where necessary and grown at 

37°C with shaking at 200 RPM. When induction of proteins was required, cells were 

induced at OD600 of 0.3 with 0.1 mM or 2.0 mM IPTG and grown for 3.5 hours after 

induction. If no induction was necessary, cells were grown for 6 hours after 

subculturing. Cells were collected by centrifugation at 3,220xg and 4°C and pellets 

were stored at -80°C overnight. 

 The pellets were thawed on ice and resuspended in lysis buffer (10 mM Tris-Cl, 

5 mM EDTA, and 100 µg/mL Lysozyme at pH 8.0). The mixture was incubated on ice 

for 1 hours. Cells were further lysed by sonication on ice until the solution became 

clear. Broken cells were separated from whole cells by centrifugation at 3,220xg for 10 

minutes. The supernatant was transferred to a new tube and membrane fractions were 

isolated by ultracentrifugation at 100,000xg for 1 hour at 4°C. The pellet was 

resuspended in resuspension buffer (10 mM Tris-Cl, 150 mM NaCl, and 1 mM PMSF at 

pH 8.0). Protein concentration was determined using a Bradford Protein Assay (Bio-

Rad). Samples were prepared for SDS-PAGE and subsequent immunoblotting by 

normalizing the amount of protein loaded into each lane (either 7.5, 15, or 22.5 µg of 

total protein) of the gel.  
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Purification of FhuAΔC/Δ4LHIS from P. aeruginosa and Determination of Copy 

Number 

 Cells with fhuAΔC/Δ4L chromosomal integrations were grown to stationary 

phase and subcultured 1 to 100 into 1 L of fresh LB broth at 37°C with shaking at 200 

RPM. Cultures were induced at OD600 of 0.3 with 0.1 mM IPTG and grown for 3.5 

hours after induction, after which time the OD600 was recorded. Cells were collected at 

3,220xg at 4°C and washed once in 40 mL of 10 mM Tris-Cl pH 8.0. Cell pellets were 

stored at -80°C until the next day. Samples were thawed on ice and subsequently 

resuspended in 50 mM Tris-Cl, 1 mM MgCl2, 100 µg/mL lysozyme, and 100 µg/mL 

DNaseI. The lysis mixture was incubated on ice for 30 minutes before adding 5 mM 

EDTA at pH 8.0 and an additional incubation for 30 minutes on ice. Samples were 

sonicated until the solution became clear and unbroken cells were separated from lysed 

cells by centrifugation at 3,220xg for 20 minutes at 4°C. Membrane fractions were 

isolated from the supernatant by ultracentrifugation at 100,000xg for 1 hours at 4°C. To 

enrich the outer membrane fraction, the membrane pellet was resuspended in 50 mM 

Tris-Cl, 150 mM NaCl, 1 mM PMSF, 5 mM Imidazole, and 0.2% Triton X-100 at pH 

8.0 and incubated at 4°C overnight while rotating. Outer membranes were isolated by 

centrifugation at 100,000xG and the pellet was solubilized again in 50 mM Tris-Cl, 150 

mM NaCl, 1 mM PMSF, 5 mM Imidazole, and 5% Triton X-100 at pH 8.0 overnight 

with rotating. Insoluble cell debris and proteins were separated from soluble outer 

membrane fractions by ultracentrifugation at 100,000xG for 1 hour at 4°C.  

 The supernatant was incubated for 2 hours with His•Bind Resin (Novagen) at 

4°C with rotating. The resin was previously charged with 50 mM CuSO4 and 
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equilibrated with binding buffer (20 mM Tris-Cl, 500 mM NaCl, 1 mM PMSF, 0.2% 

Triton X-100, and 5 mM Imidazole at pH 8.0). The samples were transferred to a mini 

gravity flow column and washed with 10 column volumes of binding buffer with 5 mM 

and 20 mM Imidazole. FhuAΔCΔ4L was eluted with binding buffer containing 400 mM 

Imidazole at pH 8.0 into 5 fractions of 1 column volume. Elution fractions were 

concentrated with a Microcon-30 kDa (EMD Millipore) and loaded onto a SDS-Page 

gel with subsequent immunoblotting. For detection of FhuAΔCΔ4L a primary 

monoclonal anti-6xHIS antibody (Fisher Scientific) and a secondary anti-Mouse 

alkaline phosphatase conjugated antibody (Sigma Aldrich) was used. 

 To determine the copy number of FhuAΔCΔ4L a protein standard of a P. 

aeruginosa membrane protein (TriCHIS) was loaded onto the same gel at 2-fold 

increasing concentrations. To estimate the amount of FhuAΔCΔ4L the Quantity One 

software (Bio-Rad) was used. After determination of the amount of protein, the copy 

number was calculated under the assumptions that 1mL of cell culture at OD600 contains 

1x109 cells and 100% of the pore bound and eluted from the column.  

 

Protein Crosslinking Experiments 

For chemical crosslinking assays, PΔ3 cells expressing pMexGHI-flag or 

pMexGH-flag were harvested by centrifugation. Pellets were washed twice in PBS 

buffer (8 g/L NaCl, 0.2 g/L KCl, 1.44 g/L Na2HPO4, 0.24 g/L KH2PO4 at pH 7.4) and, 

subsequently, 4 mM DSP (dithiobis(succinimidyl propionate)) or DMSO was added to 

samples and controls respectively. Cells were allowed to incubate for 2 hours at 37°C 

while rotating. The reaction was quenched with 100 mM Tris-Cl pH 8.0. Cells were 
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harvested by centrifugation and resuspended in 50 mM Tris-Cl pH 8.0, 1mM MgCl2, 

100 µg/ml DNAseI, and 100 µg/ml Lysozyme. The lysis mixture was incubated on ice 

for 30 min. EDTA was added to the samples to a final concentration of 5 mM and cells 

were incubated for an additional 30 min on ice. Lysis was completed by sonication and 

unbroken cells were separated from broken cells by centrifugation. Membrane fractions 

were isolated by ultracentrifugation at 100,000xg at 4°C for 1 hour. Pellets were 

resuspended in 50 mM Tris-Cl, 150 mM NaCl, 5 mM Imidazole, 1 mM PMSF, and 5% 

Triton X-100 at pH 8.0 and incubated at 4°C overnight while rotating. Soluble 

compounds were separated from insoluble ones by centrifugation at 100,000xg at 4°C 

for 1 hour. His-tagged proteins were purified with His•Bind Resin (Novagen), 

previously charged with 50mM CuSO4. Samples were eluted from the column with 20 

mM Tris-Cl, 500 mM NaCl, 1 mM PMSF, 0.2% Triton X-100, and 500 mM Imidazole 

at pH 8.0. Samples were subsequently analyzed by SDS-PAGE and immunoblotting 

onto polyvinylidene fluoride membranes (Santa Crux Biotechnology) with Anti-His 

(Invitrogen) or Anti-FLAG (Agilent) primary antibodies followed by secondary Anti-

Mouse antibody (Sigma Aldrich) conjugated with alkaline phosphatase. The membranes 

were developed with 5-bromo-4-chloro-3-indoyl phosphate (BCIP) and nitroblue 

tetrazolium (NBT). 

 

Purification of MexGHIS from P. aeruginosa 

 PΔ3 cells carrying the pMexG plasmid were grown to stationary phase at 37°C 

with 200 µg/ml carbenicillin and subsequently subcultured 1:100 into fresh media 

supplemented with drug. Cultures were grown for 18 hours at 37°C with shaking at 200 
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RPM and collected by centrifugation at 3,220xg at 4°C for 40 minutes. Pellets were 

washed once in 10 mM Tris-Cl pH 8.0 and stored at -80°C until the next day. Cells 

were allowed to thaw on ice and resuspended in lysis buffer (50 mM Tris-Cl, 1 mM 

MgCl2, 100 µg/ml lysozyme, and 100 µg/ml DNaseI at pH 8.0). The lysis mixture was 

incubated on ice for 30 minutes, after which time EDTA (pH 8.0) was added to a final 

concentration of 5mM and samples were incubated for another 30 minutes on ice. To 

complete lysis, cells were sonicated until the solution became clear and unbroken cells 

were separated by centrifugation at 3,220xg and 4°C for 10 minutes. Membrane 

fractions were isolated by ultracentrifugation at 100,000xg and the pellet was 

resuspended in solubilization buffer (50 mM Tris-Cl, 150 mM NaCl, 1 mM PMSF, 5 

mM Imidazole, and 2% n-Dodecyl-β-D-maltoside (DDM) at pH 8.0). The solubilization 

mixture was incubated at 4°C with rotating for 18 hours. Insoluble cell debris was 

removed by ultracentrifugation at 100,000xg and 4°C for 1 hour and the supernatant 

was applied to His•Bind Resin (Novagen) of 500 µL. The concentration was determined 

by SDS-PAGE with a BSA protein standard and subsequent analysis with Quantity One 

(Bio-Rad). 

 

Fluorescence Binding Assay 

Fluorescence binding assays were carried out with 1µM purified MexG in 50 

mM Tris-Cl, 500 mM NaCl, 1 mM PMSF, and 0.03% DDM. We used a RF-5301PC 

Spectrofluorophotometer (Shimadzu) and took emission spectra from 300 nm to 550 nm 

with excitation at 290nm. Readings were done in fast mode and excitation and emission 

slits set to 5 nm. All experiments were carried out at 25°C in triplicates. Pyocyanin 
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(Sigma Aldrich) was dissolved in ethanol and titrated into the MexG sample. We 

measured the binding by monitoring the emission at 330 nm. 

Analysis of the fluorescence quenching was done assuming a 1 to 1 binding model as 

described earlier (118, 119). The following sets of equations were used for the fitting: 

 
𝐾: =

𝑃𝐿
𝑃 =>?? ∗ 𝐿 =>??

 (1) 

where 

 𝑃 =>?? = 𝑃 .@.:A − 𝑃𝐿  (2) 

and [𝐿]=>?? = [𝐿].@.:A − [𝑃𝐿]	 (3) 

Substituting Eq. 2 into Eq. 1 yields: 

 
𝐾: =

[𝑃𝐿]
𝑃 .@.:A − 𝑃𝐿 ∗ ( 𝐿 .@.:A − 𝑃𝐿 ) (4) 

Solving for [PL] gives: 

 𝑃𝐿 =
− 𝐾:&[𝐿].& − 2𝐾:&[𝐿].[𝑃]. + 𝐾:&[𝑃].& + 2𝐾:[𝐿]. + 2𝐾:[𝑃]. + 1 + 𝐾:[𝐿]. + 𝐾:[𝑃]. + 1

2𝐾:
	 (5) 

 
𝐹 = 𝐹H − 𝑃𝐿 ∗ Δ𝐹 

	

(6) 

 

where [P]free
 and [L]free are the free protein and ligand concentrations; [PL] is the 

concentration of the protein ligand complex; Ka is the association constant; F0 and F are 

the initial fluorescence and the observed fluorescence after addition of ligand; and ΔF is 

the change of fluorescence upon addition of the ligand. 
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 Fluorescence data was first corrected for dilution and inner filter effects as 

described earlier (119), and subsequently fitted to equation 5 and 6 using OriginPro 

(OriginLabs).  
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Chapter 1.  Permeabilizing the Outer Membrane of Escherichia coli and 

Pseudomonas aeruginosa 

1.1 Abstract 

 Cases of infections caused by multidrug resistant isolates of human 

pathogens are becoming increasingly more frequent. The current drug discovery 

pipeline is unable to keep up with the fast-evolving resistance in bacteria, and new 

ways to improve it are desperately needed. Gram-negative bacteria represent the 

biggest challenge due to their highly impermeable cell envelope, which results in a 

considerably lower hit rate during screening (5). Approaches to permeabilize the 

outer membrane so far have significant disadvantages, including changing the 

physical properties of the outer membrane and providing a permeability 

preference to hydrophobic molecules (102). Here, we are describing strains that 

contain a chromosomally inserted copy of a genetically engineered pore from E. 

coli. The pore is altered to increase its exclusion size and sensitizes the cells to 

antibiotics traditionally reserved for gram-positive bacteria due to their inability 

to penetrate the gram-negative cell envelope. We show that the expression of the 

pore can controllably increase the outer membrane permeability in E. coli and P. 

aeruginosa and is a useful tool to discover new antibiotics for “impermeable” 

gram-negative bacteria. 
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1.2 Introduction 

 Pseudomonas aeruginosa is an opportunistic, gram-negative human pathogen 

that is most commonly associated with nosocomial diseases, especially infections in 

cystic fibrosis patients. Of particular concern is the increased frequency of multidrug 

resistant clinical isolates of this bacterium, placing it on the top of the list of priorities 

for the development of new antibiotics (3, 6). P. aeruginosa, like other gram-negative 

bacteria, possesses high levels of intrinsic resistance through synergistic effects between 

the low permeability cell envelope and active efflux across the outer membrane. In 

order to study this synergism, the contributions of efflux and the outer membrane 

barrier have to be analyzed separately. Chromosomal deletions of RND transporters 

remove the contributions of efflux to resistance, however there is currently no suitable 

way to remove the contribution of the outer membrane barrier.  

 To date, the methods available to permeabilize the outer membrane, including 

polymyxins, are not ideal for screening, due to the fact that they significantly change the 

physical properties of the outer membrane and favor the uptake of hydrophobic 

compounds (102). Polymyxins are acetylated peptides that are highly positively 

charged. This allows them to displace the divalent ions of the outer membrane, 

intercalating into the membrane, and effectively permeabilizing it (103). Polymyxins 

change the physicochemical properties of the membrane and were shown to increase the 

uptake selectively for hydrophobic molecules (102). This make them less ideal for drug 

screening, where an outer membrane with native properties is desired.  

 We developed a novel way to permeabilize the outer membrane of E. coli and P. 

aeruginosa, leading to an increased uptake of compounds non-selectively. Our approach 
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utilizes a genetically modified version of the outer membrane β-barrel protein FhuA 

from E. coli to hyperporinate the cells in an inducer dependent manner. FhuA or ferric 

hydroxamate uptake component A is a siderophore transporter in E. coli involved in 

iron uptake (Fig. 1.1) (120). The crystal structure of FhuA was solved and it was found 

to consist of 22 antiparallel β-strands forming a β-barrel, four extracellular loops and a 

globular N-terminal cork fold (Figure 1.1) (121). Mohammad et al. engineered the pore 

by deleting the four loops and the cork domain to be used as a biosensor (122). The 

result is an open pore with an average diameter of about 2.4 nm (123). 

 Here, we are describing E. coli and P. aeruginosa strains with a chromosomal 

copy of fhuaΔ4L/ΔC under arabinose or IPTG inducible promoter respectively. This 

approach allows us to control the permeability of the outer membrane by changing the 

inducer concentration. Our findings show that the pore non-selectively increases the 

antibacterial activities of several antibiotics, while not impacting cell viability. We 

show that expression of the pore sensitizes both species to vancomycin, a drug that is 

thought to be unable to penetrate the outer membrane, and increases uptake of 

radiolabeled antibiotics. Furthermore, through a combination of strains expressing the 

pore, lacking major RND transporters, or both, we are able to determine the extent to 

which active efflux or outer membrane permeability plays a role in providing antibiotic 

resistance. Traditionally, it has always been a challenge to isolate the contribution of 

efflux on the level of resistance it provides due to the presence of and synergy with the 

outer membrane. Using this approach, we are able to isolate efflux from the outer 

membrane permeability barrier and individually analyze its contribution on resistance. 

The strains described here can provide useful tools for drug screening and provide 
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information needed to help discover molecular characteristics that more easily allow 

molecules to cross the outer membrane. 

 

 

 

 

Figure 1.1 - Crystal structure of the siderophore transporter FhuA from E. coli. 

FhuA crystal structure from PDB: 1BY3 (Locher, et al. (124)). Regions in red show the 

deleted cork domain and the 4 extracellular loops in the mutant pore FhuAΔ4L/ΔC 

(122). The mutant pore has an average diameter of 2.4nm (123). A: Side view and B: 

periplasmic view of FhuA. 
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1.3 Results 

1.3.1 Controlled expression of the pore permeabilizes the cell envelope of E. coli 

and P. aeruginosa  

 The strains described here expressing the E. coli pore mutant FhuaΔ4L/ΔC 

(from here on referred to as “pore”) were cloned as described in the published 

manuscript for E. coli (106) and the submitted manuscript for P. aeruginosa (107). The 

gene fhuaΔ4L/ΔC was inserted into several E. coli and P. aeruginosa strains that differ 

in their efflux proficiency. For E. coli, we used BW25113 as a reference strain and the 

tolC deletion mutant GD102 (105) (referred to as ΔTolC). Deletion of tolC in E. coli 

results in the loss of function of at least nine transporters and renders the strain largely 

efflux deficient (55, 72). For P. aeruginosa, we chose several efflux deficient mutants 

of PAO1 for insertion of the pore. We chose PAO1 as our wild type due to its frequent 

usage in laboratories and its low virulence compared to other P. aeruginosa strains. P. 

aeruginosa contains at least 12 RND transporters on its chromosome and most of them 

are in an operon together with their own OMF. In contrast to E. coli’s TolC, no single 

OMF is exclusively used by several transporters, making it much more challenging to 

create an efflux deficient variant of PAO1. To this end we used PAO1 (Gift from Dr. O. 

Lomovskaya), PΔ3 (ΔmexAB ΔmexCD ΔmexXY) (Gift from Dr. O. Lomovskaya), PΔ4 

(95) (ΔmexAB-oprM ΔmexCD-oprJ ΔmexJKL ΔmexXY), and PΔ6 (99) (same as PΔ4, 

but also ΔmexEF-oprN ΔtriABC). Using this step-wise approach of efflux deficient 

strains, we expect to see the contributions of “minor” efflux pumps on the antibiotic 

resistance profile of P. aeruginosa. In addition, step-wise deletion might also highlight 
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differences in the production of virulence factors and quorum signals in pore strains 

when certain transporters are deleted. 

 We checked the expression of the chromosomal integration in E. coli by 

isolating membrane fractions and subsequent analysis with immunoblotting. The pore 

carries a C-terminal 6xHis tag allowing us to detect it using primary anti-his antibodies 

(Fisher Scientific) and subsequent incubation with secondary anti-mouse (Sigma 

Aldrich) antibodies conjugated with alkaline phosphatase. The immunoblot in Figure 

1.2A shows the expression of the mutant pore in WT (BW25113) and the efflux 

deficient ΔTolC (BW25113 ΔtolC ΔygiBC) strain. Furthermore, hyperporination can be 

controlled by varying the concentration of arabinose as seen in Figure 1.2B and C. We 

are not able to detect the pore at either zero or 0.0001% of the inducer, suggesting that 

the pore is under tight control of the promoter. Increasing the arabinose concentration 

shows a positive correlation with the copy number of the pore. Utilizing the previously 

purified and quantified membrane protein TriCHis as a standard, we were able to 

calculate the expression of the pore to about 150 copies per cell at 0.1% arabinose in 

WT. 

 In the P. aeruginosa strains, quantifying the pore protein was more challenging. 

Since we noticed significant leaky expression from the arabinose promoter, we decided 

to use strains with the pore under the control of an IPTG inducible promoter. We were 

unable to detect the FhuA mutant to any significant levels in whole membrane fractions 

or even enriched outer membranes, suggesting that expression is either much lower than 

in E. coli, the pore is not properly inserted into the outer membrane, or the C-terminal 
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sequence of the pore, where the Histidine tag is located, is recognized and cleaved as a 

signal peptide.  

 To test whether the protein is expressed at low levels, we grew larger culture 

volumes and added the isolated outer membrane fractions to metal affinity columns to 

purify and concentrate the pore and remove the bulk of other outer membrane proteins. 

After purification, we concentrated the elution fractions further using mini centricons 

and, subsequently, analyzed the samples by immunoblotting. The results can be seen in 

Figure 1.2D. The immunoblot shows the pore is expressed in PAO1 and all four efflux 

deficient mutants albeit at low amounts. Quantification with the TriCHis standard 

resulted in roughly 5-7 copies per cell in PAO1-Pore, about 2 copies for PΔ3-Pore, 

about 1.5 copies for PΔ4-Pore, and about 1 copy per cell of PΔ6-Pore at 0.1 mM IPTG. 

These calculations were done assuming that the pore binds the affinity resin to 100% 

and that an OD600 of 1.0 equals 109 cells per milliliter. These results of the expression in 

P. aeruginosa are in contrast to the relatively high copy number of the pore in E. coli. 
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Figure 1.2 - Expression of the Pore in E. coli and P. aeruginosa. 

The expression of FhuAΔC/Δ4L is inducer dependent and higher in E. coli than in P. 

aeruginosa. A: Expression in E. coli WT and ΔTolC induced with 0.1% arabinose. C 

shows expression of WT without a chromosomal copy of the pore. B and C: Arabinose 

dependent pore expression in E. coli WT-Pore cells. The pore was quantified using a 

His-tagged protein standard, and copy number estimated by assuming OD600 of 1.0 

equals 109 cells per ml. Expression in E. coli was done by Dr. Ganesh Krishnamoorthy. 

A-C are modified from published figure (106). D: Pore expression is dependent on 

inducer (IPTG) concentration in P. aeruginosa. The pore was purified using metal 

affinity chromatography. 



56 

 To check whether the expression of the pore correlates with increased 

susceptibility and permeability, we tested our constructed strains for vancomycin 

susceptibility using filter disk assays. Vancomycin is a large antibiotic with a molecular 

weight of about 1,449.3 Da that inhibits the synthesis of peptidoglycan, and is widely 

used against infections caused by gram-positive bacteria (Fig. 1.3C). However, its large 

size typically precludes it from activity in gram-negative bacteria, due to its inability to 

permeate the outer membrane. The results of the spot assays can be seen in Figure 1.3A 

and B. As seen by the larger diameters, only pore strains of both E. coli and P. 

aeruginosa that were induced by either arabinose or IPTG showed significant 

susceptibility to vancomycin. The control strains, with insertion of the respective 

promoter and empty multiple cloning site, did not change susceptibilities with addition 

of inducer, and the zones are comparable to the pore strains without inducer. This 

suggests that the pore is functionally expressed and that it sensitizes strains to 

vancomycin that otherwise is not able to cross the outer membrane. Thus, the FhuA 

mutant has a significantly larger exclusion size as the general porins in E. coli and P. 

aeruginosa, increases susceptibility of the strains tested to antibiotics, and its expression 

can be tightly controlled. 
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Figure 1.3 - Expression of the pore sensitizes gram-negative bacteria to 

vancomycin. 

The pore increases the susceptibility of E. coli (A) and P. aeruginosa (B) to 

vancomycin. The drug was spotted onto plates that were seeded with the respective 

strains and incubated for 18 hours at 37°C. Large zones of clearance highlight the 

increase in susceptibility. C: Structure of vancomycin. The susceptibility is controlled 

by 0.1% arabinose or 0.1 mM IPTG respectively. Experiments were carried out by Dr. 

Ganesh Krishnamoorthy. E. coli results are modified from a published figure (106), and 

P. aeruginosa (107). 
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1.3.2 Hyperporination has a limited effect on physiology 

 In order for the constructed strains to be useful tools to study the contribution of 

the outer membrane to resistance, expression of the pore should not affect the 

physiology of the bacterium in a significant manner. To check if the presence of the 

mutant pore has an impact on growth of the strains, we measured growth curves of each 

strain at increasing concentrations of inducer. In E. coli, we compared growth of strains 

grown in the presence of 0.0001% to 0.1% arabinose in strains with and without the 

pore. We noticed that all strains prematurely reached stationary phase at arabinose 

concentrations of 0.001% and higher (Fig. 1.4). Since this effect is also seen in strains 

that do not have a chromosomal copy of the mutant FhuA, it is not specific to the pore 

strains. However, it does seem to be more pronounced in hyperporinated strains. When 

comparing the pore strains to their respective parental strains, we found a slight 

decrease in the optical densities at 600 nm (OD600) of cell cultures at stationary phase in 

the pore strains. The final OD600 of WT-Pore was about 10% lower compared to WT. 

This effect was slightly bigger for the efflux deficient ΔTolC strains with about a 20% 

decrease of the OD600 at stationary phase for ΔTolC-Pore compared to ΔTolC. 

However, we did not find a significant difference in the growth rates, when comparing 

the hyperporinated to their parental strains. Overall, the E. coli pore strains displayed 

comparable growth phenotypes to the WT strains albeit with a slightly lower OD600 at 

stationary phase. 
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Figure 1.4 - Impact of the pore on growth of E. coli. 

Growth curves of WT (A), WT-Pore (B), ΔTolC (C), and ΔTolC (D) at increasing 

concentrations of inducer. E: Comparison of OD600 at stationary phase. Growth rates 

(F) were calculated by plotting ln(OD600) against time and determining the slope of the 

linear portion. These plots can be found in Appendix D. Error bars are SD (n=4) 
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 For P. aeruginosa, we first analyzed at the growth curves of cells without the 

pore at either no inducer or 0.1 mM IPTG (Fig. 1.5A and B). We noticed a difference in 

the growth of the deep efflux deletion mutants PΔ4 and PΔ6. Compared to the wild type 

PAO1 and PΔ3, their OD at stationary phase was significantly lower by about 40%. 

This difference is likely due to the outer membrane factors which are deleted in PΔ4 

and PΔ6 but are still present in PΔ3. Deletion of OMFs were shown to impact the 

integrity of the outer membrane in E. coli, and similar effects could reduce the OD at 

stationary phase in P. aeruginosa (105). Furthermore, deletion of the RND transporters 

did not seem to have an impact on growth phenotypes when comparing PAO1 and PΔ3, 

suggesting that any differences for the deep efflux deficient mutants is likely the result 

of the missing OMFs. IPTG itself did not affect growth of the P. aeruginosa strains. 
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Figure 1.5 - Growth of PAO1 and efflux deficient variants. 

Comparison of the growth of PAO1 and efflux deletion mutants with no inducer (A) 

and 0.1 mM IPTG (B). There is no significant effect of the inducer on the growth of 

strains without the pore. C: Growth rates of strains at increasing concentration of IPTG. 

Error bars are SD (n=3). 
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 Next, we analyzed the growth phenotypes of hyperporinated P. aeruginosa 

strains (Fig. 1.6). First, we noticed the same decrease in the OD600 at stationary phase 

when the OMFs are deleted. When titrating the inducer, we saw no significant effect up 

to a concentration of 0.01 mM IPTG on the OD600 or the growth rates (Fig. 1.6E). At 

higher inducer concentrations, we noticed an effect of hyperporination on the growth of 

the P. aeruginosa. Cells went to stationary phase prematurely and their final OD600 was 

roughly 50% lower when compared to no inducer (Fig. 1.6A-D). However, this did not 

affect the growth rates of the strains, which remained largely unaffected by the pore 

(Fig. 1.6E). The only exception to this seemed to be PΔ3, which had a significant 

decrease in the growth rates at 0.1 mM IPTG. The least affected strain was PAO1 

which, presumably, can complement the decreased permeability of the outer membrane 

with active efflux.  

 In addition, we noticed that cells expressing the pore started to aggregate at this 

inducer concentration, which could be related to cell signaling. Cell-to-cell 

communication requires the presence of a quorum to produce a high enough 

extracellular concentration of signaling molecules to activate their respective receptors 

(78). It is likely that increasing the outer membrane permeability could reduce this 

concentration threshold. This way, a lower cell density could produce enough signaling 

molecules to activate their respective signaling circuit. Since biofilm formation is 

directly linked to quorum sensing, it is possible that hyperporinated cells start to form 

aggregates at lower cell densities (125). This would explain why the pore expressing 

cells go into stationary phase prematurely and start to form biofilms. To test whether the 

reduced OD600 at stationary phase correlates with a lower number of viable cells, we 
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measured the colony forming units (CFU) directly following a growth curve experiment 

(Fig. 1.6F). We normalized the CFUs to the respective OD600 of the culture, and noticed 

no significant difference between the hyperporinated and the parental strain. This 

suggests that although they go into stationary phase prematurely, the pore expressing 

strains are still healthy and the growth phenotype is likely due to the premature 

formation of biofilm. 
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Figure 1.6 - Growth phenotypes of cells expressing the mutant FhuA. 

A-D: Growth curves of PAO1-Pore, PΔ3-Pore, PΔ4-Pore, and PΔ6-Pore respectively at 

increasing concentration of inducer. At 0.1 mM, cells enter into stationary phase 

prematurely. E: Growth rates of P. aeruginosa pore strains at increasing concentration 

of inducer. Plots of LN(OD) vs time can be found in Appendix D. F: Colony forming 

units of pore strains per ml and OD600 with and without inducer. Results suggest no 

significant difference in the number of viable cells when the pore is expressed. Error 

bars are SD (n=3). 
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 To further analyze the physiological effects of hyperporination in P. aeruginosa, 

we measured the production of pyocyanin, pyoverdine, and the formation of biofilms 

and compared them to their respective strain without the pore. Pyocyanin is a virulence 

factor that is responsible for the blue-green color of P. aeruginosa cultures. Its 

production is directly controlled by the rhl and PQS quorum signaling pathways, and by 

itself can act as a signaling molecule (126, 127). Our measurements show that PAO1-

Pore produces pyocyanin to the same levels as the control without inducer (Fig. 1.7A). 

There is a significant difference between the PAO1 strains and the efflux deficient 

mutants. PΔ3 produces about 73% less pyocyanin when compared to PAO1, with PΔ4 

and PΔ6 synthesizing even less of the virulence factor. The difference between PAO1 

and PΔ3 is likely due to the deletion of MexAB, since this transporter was already 

indicated to be involved in quorum sensing (79, 90). Further decrease of the virulence 

factor suggests that the minor efflux pumps that are absent in PΔ4 and PΔ6 may also 

contribute to cell signaling. The difference between the levels of pyocyanin of PΔ4 and 

PΔ6 is likely due to the deletion of MexEF-OprN, since it is also indicated to transport 

signaling molecules (128). In addition, expression of the pore in efflux deficient strains 

resulted in a further decrease of about 50% of the pyocyanin levels. This suggests that 

the presence of the pore does indeed change some of phenotypes controlled by quorum 

sensing. The fact that we do not observe this decrease in PAO1-Pore suggests that the 

major transporters can complement hyperporination with regard to the synthesis of this 

virulence factor.  

 Pyoverdine is another pigment that is controlled by quorum sensing (129). 

Pyoverdines are siderophores that are necessary in maintaining iron homeostasis in P. 
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aeruginosa(130). When measuring pyoverdine in PAO1 and PΔ4, we were unable to 

detect a significant difference in the production of the siderophore between pore 

expressing strains and their respective parental strains (Fig. 1.7B). Interestingly, we 

noticeed that PΔ4 produces about 50% more pyoverdine than PAO1.  

 Lastly, we measured the production of biofilm in PAO1 and PΔ4 strains with 

and without the pore (Fig. 1.7C). Our results show that PΔ4 produces about 30% more 

biofilm when compared to PAO1. However, expression of the pore did not seem to 

affect biofilm formation. This suggests that although the pore variants initially show 

more cell aggregates and enter the stationary phase prematurely, they ultimately 

produce equal amounts of biofilm compared to their non-pore expressing counterparts. 

Overall, it seems that hyperporination affects the quorum sensing signaling pathways of 

P. aeruginosa to an extent, as seen by the differences in pyocyanin production. 

However, the pathways are not inhibited since other quorum sensing phenotypes are 

still seen at levels comparable to non-hyperporinated cells. 
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Figure 1.7 - Effect of pore expression on phenotypes controlled by cell signaling. 

A: Pyocyanin production in P. aeruginosa pore strains with and without 0.1 mM IPTG. 

Hyperporination decreases pyocyanin synthesis by about 50% in the efflux deficient 

strains. Furthermore, all efflux deficient variants produce significantly less of the 

virulence factor. The pore does not affect pyoverdine production (B) or biofilm 

formation (C). Error bars are SD (n=3). 
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 Overall, expression of the pore affects both E. coli and P. aeruginosa in a 

similar way. Both organisms go into stationary phase early, although the effect is much 

more pronounced in P. aeruginosa. However, growth rates in both organisms do not 

change significantly and, in the case of P. aeruginosa, the reduction in the OD at 

stationary phase does not affect cell viability. Thus, hyperporination appears to be a 

much gentler way of increasing the outer membrane permeability when compared to, 

for example, the use of polymyxins. 

 

1.3.3 Hyperporination sensitizes E. coli to antibiotics and increases their 

intracellular concentration. 

 Since the presence of the pore increased the sensitivity of all strains to 

vancomycin, we wanted to see whether it would also potentiate smaller antibiotics. To 

test this, we grew E. coli strains with and without the pore at increasing concentrations 

of ciprofloxacin and erythromycin (Fig. 1.8). Ciprofloxacin is a fluoroquinolone that 

inhibits DNA gyrase and topoisomerase IV. Both enzymes are important for DNA 

replication, by cutting double stranded DNA and relaxing positive supercoils. 

Ciprofloxacin is a polar molecule that is relatively small at a molecular weight of about 

about 330 Da. Generally, small polar molecules enter the cells by passively diffusing 

through general porins. Since the exclusion size of the outer membrane porins OmpF/C 

in E. coli is about 600 Da, it should be able to enter cells readily even without the 

addition of the pore (30). Our results show significant change in the minimum 

inhibitory concentration (MIC) between E. coli WT and the efflux deficient ΔTolC 

mutant (Fig. 1.8A). The MIC is defined as the minimum concentration of a compound 
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required to inhibit visible growth of the bacterium. We determined the MIC of 

ciprofloxacin in the WT to be 8-fold greater than in ΔTolC, suggesting that efflux is a 

major contributor of the accumulation of ciprofloxacin into E. coli. There is also a slight 

drop of the optical densities (OD) of the WT-Pore cultures at ciprofloxacin 

concentrations below the MIC. This decrease is not solely due to the physiological 

impact of the pore, since the OD of cultures without ciprofloxacin resulted in only a 

20% decrease for the pore mutant. However, the actual MIC value only decreased by 

two-fold in the pore variant, suggesting that the activity of ciprofloxacin is not 

significantly limited by diffusion across the outer membrane. Furthermore, there was 

also no significant difference in the efflux deficient ΔTolC strain with and without the 

pore. Hence, active efflux is the major determinant of the activity of ciprofloxacin in E. 

coli and the outer membrane barrier only has a minimal impact on the MIC, which is 

likely due to general porins of E. coli. However, the pore inhibits the growth of the WT 

strain at lower, sub-inhibitory concentrations, suggesting that it does increase the uptake 

of the drug.  

 Erythromycin is a large, relatively polar antibiotic with a molecular weight of 

about 700 Da that belongs to the class of macrolides, which bind to the 50S subunit of 

the ribosome and inhibit protein synthesis. Thus, like fluoroquinolones, macrolides need 

to penetrate the outer and inner membrane, but, unlike ciprofloxacin, erythromycin is 

much larger and exceeds the 600 Da cutoff of E. coli’s general porins (30). The 

inhibition curves with erythromycin show a 32-fold change in the MIC when comparing 

WT to ΔTolC, which highlights that efflux transporters are proficient in transporting 

this relatively large antibiotic (Fig. 1.8B). When comparing the WT to the WT-Pore 
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mutant, the MIC decreased from 64µg/ml to 4µg/ml, thus resulting in another 16-fold 

change. This shows that both the outer membrane barrier and active efflux work in 

synergy to provide resistance to this antibiotic. Surprisingly, when comparing the efflux 

deficient ΔTolC to the pore expressing ΔTolC-Pore, we noticed another 4-fold 

reduction of the MIC. A change in the MIC of ΔTolC strains when hyperporinated 

suggests that there is still some efflux present in ΔTolC. Since TolC largely controls 

efflux across the outer membrane, this efflux likely occurs through the inner membrane. 

When comparing the MIC of WT to ΔTolC-Pore, we measured the most significant 

change of 128-fold. Overall, hyperporination and the depletion of efflux affect both 

antibiotics differently. Ciprofloxacin is small and can diffuse trough general porins, thus 

its activity is only limited by efflux and not the outer membrane permeability. On the 

other hand, efflux works synergistically with the outer membrane barrier to limit the 

activity of erythromycin.  
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Figure 1.8 - Growth inhibition of antibiotics in E. coli pore strains. 

Indicated cells were grown in the presence of different concentrations of ciprofloxacin 

(A) or erythromycin (B) for 18 hours in LB media at 37°C. Data is representative of 3 

repetitions. 

 

 

MIC in µg/ml Ciprofloxacin Erythromycin 
WT 7.8 64 

WT-Pore 3.9 4 

ΔTolC 0.96 2 

ΔTolC-Pore 0.96 0.5 
Table 1.1 - Susceptibilities of pore strains to ciprofloxacin and erythromycin. 
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 To test whether the increased sensitivity of the pore expressing strains correlates 

with a higher drug uptake, we measured accumulation of [14C]-erythromycin in our 

constructed E. coli strains. For this, we grew cells to early stationary phase with 0.1% 

arabinose to induce expression of the pore, washed them twice with buffer containing 

0.4% glucose to energize the transporters, and incubated them with radiolabeled 

erythromycin at a specific activity of 25 mCi/mmol. From this mixture, we took 

aliquots at different time points and added them to filter disks that were attached to a 

vacuum manifold. The filters were subsequently dried and the radioactivity measured 

using a scintillation counter. The steady state accumulation of the antibiotic was 

estimated by using the intracellular concentration reached after 32 minutes of 

incubation. We noticed that the antibiotic was binding to the filter disks, thus the 

measured absolute values of intracellular antibiotic do not necessarily reflect the actual 

concentration inside the cell. However, comparing relative amounts of uptake still 

yields information about the differences of the strains (Fig. 1.9). 

 Comparing the accumulation of erythromycin in WT and WT-Pore, the 

hyperporination clearly increases the uptake of the drug as seen by a greater 

intracellular concentration of erythromycin (Fig. 1.9A and B). When looking at the 

steady state accumulation plotted against the extracellular erythromycin concentration 

(Fig. 1.9E), the WT strain follows a linear trend with a shallow slope at lower 

concentrations. Once the extracellular concentration is increased beyond 10 µM, we 

begin to see an increase in the slope and a hyperbolic relationship. A hyperbolic pattern 

indicates that at lower concentrations efflux transporters are able to keep the 

intracellular concentrations low. However, once we increase the extracellular 
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erythromycin concentration, high levels of the substrate overwhelm the transporters and 

efflux is becoming less efficient. Thus, the slope increases at higher concentrations of 

the drug. Overall uptake of erythromycin is the lowest in WT, which correlates well 

with the measured MICs of 64 µg/ml. The WT-Pore and ΔTolC showed comparable 

levels of erythromycin accumulation with a linear relationship, which is also reflected 

in a similar MIC value of 2-4 µg/ml. This suggests that hyperporination increases 

periplasmic concentrations of the drug beyond the capacities of the transporters, 

resulting in a similar accumulation of erythromycin in WT-Pore as in the efflux 

deficient strain. Hyperporinating the ΔTolC strain further increases the uptake, 

highlighting that there is significant efflux across the inner membrane (Fig. 1.9C and 

D). This is also in agreement with the overall lowest MIC of 0.5 µg/ml. In addition, the 

data also shows that the intracellular concentration was calculated to be higher than the 

extracellular concentration. This suggests that erythromycin is concentrated inside the 

cell likely due to binding to its target. 
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Figure 1.9 - Uptake of radiolabeled [14C]-Erythromycin in E. coli strains. 

A-D: Time course of accumulation of the drug in WT, WT-Pore, ΔTolC, and ΔTolC-

Pore respectively. Data shown is representative of 3 replicates. E: Steady state 

concentrations of intracellular erythromycin plotted against extracellular concentrations 

of the antibiotic. Steady states were estimated by the uptake after 32 minutes of 

incubation. Error bars are SD (n=3). 
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 Overall, the growth inhibition results for erythromycin agree with the uptake 

experiments. The WT had the lowest uptake and correspondingly the highest MIC with 

64 µg/ml. WT-Pore and ΔTolC both had comparable levels of uptake and also have 

similar MICs at 2-4 µg/ml. Growth inhibition and the uptake experiment showed that 

hyperporination of the TolC mutant potentiates the activity of erythromycin by an 

additional 4-fold and also further increased its uptake. These results show that the 

decrease in the MIC in hyperporinated cells directly correlates with increased uptake of 

the antibiotic. Thus, the pore potentiates large antibiotics by increasing their 

intracellular accumulation.  

 

1.3.4 Hyperporination sensitizes P. aeruginosa to small and large antibiotics. 

 To study the effects of hyperporination on drug susceptibility in P. aeruginosa, 

we grew cells in the presence of azithromycin and carbenicillin and monitored the 

optical densities of the cultures. Azithromycin is a macrolide, similar to erythromycin, 

however with somewhat higher potency in P. aeruginosa. It is slightly larger with a 

molecular weight of about 750 Da and more polar, but kills with a similar, bacteriostatic 

mechanism of action. The experiment was carried out with PAO1, all efflux deficient 

mutants, and their respective pore variants. Since in P. aeruginosa, MexAB-OprM and 

MexXY-OprM are the most clinically relevant transporters, due to their broad 

specificities and high levels of expression, we expect to see a significant contribution of 

efflux in the PAO1 strain (89, 131). All efflux deficient strains are lacking these two 

efflux pumps, leading to significantly reduced efflux capacities even in PΔ3. Hence, 

when comparing the deep efflux deletion strains, we are able to see the contribution of 
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“minor” or “silent” transporters. In addition to the RND transporters and their 

respective MFP, PΔ4 and PΔ6 are also lacking the OMFs. Since these proteins are 

usually promiscuous, the difference between PΔ3 and PΔ4 highlights the contribution of 

all transporters that depend on the outer membrane factors OprM and OprJ as well as 

the transporter MexJK. Furthermore, MexJK has been reported to be at least partially 

reliant on OprM to facilitate efflux (95). Consequently, any changes in antibiotic 

susceptibility between PΔ4 and PΔ6 can be attributed to either the transporters MexEF 

and TriABC, or the outer membrane factor OprN. 

 Looking at the growth inhibition with azithromycin for non-hyperporinated 

strains (Figure 1.10A), we see the contribution of efflux towards resistance to this 

antibiotic. There is a 16-fold difference between in the MIC of azithromycin of PAO1 

and PΔ3, indicating that azithromycin is recognized as a substrate by the major 

transporters. In addition, we measured a two-fold MIC difference between PΔ3 and the 

two deep efflux deficient strains PΔ4 and PΔ6, suggesting that some efflux pumps 

expressed at lower levels contribute to resistance of this macrolide. We also noticed 

reduced optical densities for PAO1 at higher, but not fully inhibiting concentrations of 

azithromycin. Possibly indicating that at these concentrations some transporters may 

already be exhausted in their capacities, allowing for a higher intracellular concentration 

of the drug. The exclusion size for the general porins in P. aeruginosa is estimated to be 

three fold lower than for E. coli, suggesting that overexpression of our mutant pore 

might have a more significant impact on susceptibility (30). Indeed, comparing the MIC 

of PAO1 and PAO1-Pore, we measured a 64-fold difference. This highlights that there 

is significant synergy between the outer membrane barrier and active efflux for 
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azithromycin (Fig. 1.10B and Table 1.2). Surprisingly, the contribution of the pore had 

a similar effect in PAO1 than it had in our efflux deficient strains. Hyperporination 

resulted in a similar 64 to 128-fold decrease in the MIC of all strains. Since the pore 

essentially increases the periplasmic concentration of the drug and the transporters 

translocate substrates from the periplasm, potentiation indicates that the high 

periplasmic concentration saturates the capacities of some transporters resulting in 

inefficient efflux. The fact that we see this potentiation even in the mutants, suggests 

that there is still significant efflux present. The deletion of efflux in conjunction with 

hyperporination shows a staggering 4,000-fold difference on susceptibility. 

Furthermore, the deletion of transporters and the expression of the pore individually 

potentiated the activity of azithromycin, which shows that there is significant synergy of 

the two in the efflux of this compound. Overall, macrolides in P. aeruginosa and E. coli 

showed a synergistic effect of the outer membrane and efflux. 

 Next, we tested the growth inhibiting effects of carbenicillin on the constructed 

P. aeruginosa strains (Fig. 1.10C and D). Carbenicillin is a beta-lactam with a 

molecular weight of about 380 Da and is also highly polar. Beta-lactams are considered 

bactericidal and inhibit transpeptidases that are required for the proper synthesis of 

peptidoglycan. In contrast to the previous antibiotics, the target of carbenicillin is in the 

periplasm, which could significantly affect the susceptibility of our pore strains to the 

drug. Since the mutant pore permeabilizes the outer membrane, the antibiotic would 

have direct access to its target without being limited by slow diffusion through general 

porins. Looking at our results, we measured a 16-fold difference in the MIC between 

the pore strains and their non-hyperporinated counterparts. This suggests that diffusion 
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through the pore is still somewhat of a limiting factor and does not give unrestricted 

access to the periplasm. The major efflux transporters of P. aeruginosa also contribute 

to resistance of this antibiotic. We measured a 32-fold decrease in the MIC of 

carbenicillin between PAO1 and PΔ3 (Fig. 1.10C and Table 1.2). We did not measure a 

difference between PΔ3 and PΔ4, and a 2-fold MIC reduction between PΔ4 and PΔ6. 

Surprisingly, when comparing efflux in the pore producing strains, we were still able to 

measure a 32-fold difference between PAO1-Pore and the efflux deficient pore strains 

(Fig. 1.10D and Table 1.2). If diffusion to the periplasm was unrestricted in pore strains, 

active efflux across the outer membrane should only have a minimal impact on 

susceptibility. This highlights that, although the pore drastically increases the outer 

membrane permeability, diffusion through the pore is still a limiting factor. In addition, 

our results also highlight that there is synergy between the outer membrane and efflux 

in limiting the activity of carbenicillin in P. aeruginosa. 
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Figure 1.10 - Growth inhibiting effects of azithromycin and carbenicillin in P. 

aeruginosa. 

Hyperporination in P. aeruginosa affects the activity of the two antibiotics in efflux 

proficient and deficient strains. Growth inhibition of azithromycin (A and B) and 

carbenicillin (C and D) with and without the pore as indicated. Indicated strains were 

induced with 0.1 mM IPTG and grown for 18 hours. After incubation, the optical 

densities were determined utilizing a microplate reader. Error bars are SD (n=2). 
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MICs in µg/ml Azithromycin Carbenicillin 
PAO1 64 32 
PΔ3 4 1 
PΔ4 2 1 
PΔ6 2 0.5 
PAO1-Pore 1 2 
PΔ3-Pore 0.031 0.063 
PΔ4-Pore 0.031 0.063 
PΔ6-Pore 0.016 0.063 

Table 1.2 - Minimal inhibitory concentrations (MICs) of azithromycin and 

carbenicillin in hyperporinated or efflux deficient P. aeruginosa strains. 

 

 Overall, the pore increases susceptibilities in P. aeruginosa in much the same 

way it does in E. coli. Differences between the permeabilities of the cell envelopes of 

the two species are readily visible. Smaller antibiotics are not potentiated in E. coli by 

the pore, likely due to the large exclusion size of its general porins. In contrast, the pore 

significantly increases the susceptibilities of small antibiotics in P. aeruginosa, 

presumably because of a lack of general porins with large exclusion sizes in the 

bacterium. However, for large antibiotics that exceed the exclusion size of the porins of 

both organisms, hyperporination has a significant effect on susceptibility in both 

species.  

  

1.3.5 Hyperporination increases the uptake of the fluorescent dye Hoechst 33342.  

 To measure the kinetic uptake of compounds in the pore strains, we decided to 

utilize environment-sensitive fluorescent probes. The approach of using radiolabeled 

antibiotics did not yield high enough resolution to accurately analyze accumulation and 

resulted in significant error in P. aeruginosa, presumably due to the differences of the 
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outer membrane and its tendency to form aggregates. Fluorescent dyes like Nile red, 1-

N-phenylnaphthylamine (NPN), or Hoechst 33342 (HT) have been used in the past to 

assess the activity of efflux transporters and yield better time resolution (132-135). The 

method relies on the fact that the probes shift their emission spectra when they enter a 

hydrophobic environment, like binding the cell membrane or engaging in π-stacking 

interactions with DNA. For this experiment, we grew and washed cells in the same 

manner as for the radioactivity assay and, using a microplate reader with an injector 

system attached, added them to a 96-well plate that contained different concentrations 

of the fluorescent dye. Subsequently the fluorescence emission was read for 10 minutes 

every 20 seconds. The data output resembles that of a signal exponential function, thus 

we decided to fit the uptake kinetics to an equation in the form of: 

    𝐅 = 𝐀𝟏 + 𝐀𝟐 𝟏 − 𝐞+𝐤𝟐∗𝐭     ( 1 ) 

Thus, the rate of uptake is given by: 

    𝐅 = 𝐀𝟏 + 𝐀𝟐 − 𝐀𝟐𝐞+𝐤𝟐∗𝐭    ( 2 ) 
 
    𝐝𝐅

𝐝𝐭
= 𝐀𝟐 ∗ 𝐤𝟐𝐞+𝐤𝟐∗𝐭     ( 3 ) 

Since at the initial rate of uptake t = 0, the rate can be described as: 

    𝐢𝐧𝐢𝐭𝐢𝐚𝐥	𝐫𝐚𝐭𝐞 = 𝐀𝟐 ∗ 𝐤𝟐    ( 4 ) 
 

In addition, the amplitudes A1 and A2 can provide information about the total 

accumulation of fluorophore inside the cell.  

 Here we measured the uptake of Hoechst 33342 into E. coli and P. aeruginosa 

strains. Hoechst 33342 (HT) (Fig. 1.14D) is about 450 Da in size and is frequently used 

to stain DNA. It has an affinity to hydrophobic environments and binds to DNA as well 

as lipids. To relate the fluorescent units of the experiment to actual concentrations, we 
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measured binding of increasing concentrations of HT to either DNA or lipids alone. The 

calibrations were done assuming that 1 ml of cells at OD600 of 1.0 contain 17 µg of 

DNA and 27 µg of lipids (136, 137). We incubated HT with either DNA or lipids and 

measured the emission at 450 nm (excitation at 350 nm). The linear dependence of the 

fluorescent signal to the concentration of HT allowed us to calculate the emission 

coefficient of HT bound to either lipids or DNA.  

 When HT is incubated with cells, there is a very fast initial increase in the 

fluorescent signal (Fit. 1.11). For the purpose of our analysis, this was attributed to HT 

binding to lipids which are readily available on the outer membrane. In our fitting 

routine, this fast step is characterized by the first amplitude A1 (Fig. 1.12B). 

Unfortunately, this step happens too fast for our equipment to measure the 

corresponding rate, since we are unable to accurately determine the exponent k1. 

Following this fast step is a slower increase in fluorescence, which is interpreted as HT 

diffusing into the cell and binding to intracellular DNA. Consequently, the amplitude A1 

is converted to concentration using the lipid emission coefficient and A2 using the DNA 

emission coefficient. Thus, the sum of both amplitudes describes the total accumulation 

of HT in the cell.  

 To fit large sets of uptake data to the equation above, scripts were written in 

Matlab (MathWorks) utilizing the fittype function in loops. This provided a fast way to 

extract the parameters A1, A2, and k2 from uptake experiments with a wide range of 

fluorophore concentrations. Before fitting was performed, the datasets were inspected 

for outliers and the fluorescence signal was normalized to the initial emission of the 

fluorophore. Once the fitted parameters were determined, the initial rates and steady 
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states of fluorophore accumulation were calculated. The reported values are an average 

of at least three experiments. The uptake experiments reported here were carried out by 

Dr. Ganesh Krishnamoorthy, while this author was responsible for the data analysis. 

The E. coli results were further applied to a novel kinetic model of drug accumulation 

inside bacterial cells developed by Dr. Valentin Rybenkov and David Westfall (138). 

The P. aeruginosa data has been submitted as part of a separate manuscript. 

 For the HT uptake in E. coli, we found that the results are similar to what we 

previously measured with the radiolabeled [14C]-erythromycin, albeit with much better 

resolution. Looking at the time courses of HT uptake (Fig. 1.11), WT had the overall 

lowest fluorescent signal. When comparing the WT to ΔTolC, we notice a similar first 

initial increase in fluorescence but the subsequent uptake in the efflux deficient strain is 

much higher. This is reflected in the initial rates (Fig. 1.12A) and values of A1 (Fig. 

1.12B) plotted against the extracellular HT concentration. The parameter A1 represents 

the amount of HT that initially binds to freely accessible lipids, which should be 

comparable between the WT and ΔTolC strains. At higher concentrations, the graph of 

both strains reaches a plateau, which is likely due to saturation of the available binding 

sites of the membrane. Looking at the initial rates of HT uptake for WT and ΔTolC 

(Fig. 1.12A), we see a similar sigmoidal curve for both strains. Here, a sigmoidal trend 

suggests that transporters initially limit the rate of uptake. Once the concentration of HT 

is increased to levels significantly above the Km of a given transporter, its efflux 

capacity is exhausted and it can no longer efficiently reduce the uptake(138). Thus, the 

initial rate of uptake increases faster. Increasing the concentrations further results in a 

plateau, suggesting that the initial rate reaches a maximum and that higher 
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concentrations of the fluorophore won’t increase this rate any more. Active efflux 

provided by TolC dependent transporters significantly lower the rates of uptake at all 

concentrations tested, suggesting that we are not exceeding the Km for at least some of 

the transporters. The fact that we still see sigmoidal behavior in ΔTolC highlights that 

this strain is not completely deficient in efflux. When comparing the WT to WT-Pore, 

we saw a similarly small rate of uptake at very low extracellular concentrations of HT. 

However, the pore significantly increases the uptake at higher concentrations. At very 

high concentrations, the rate of uptake of the WT-Pore strain is similar to ΔTolC-Pore, 

suggesting that TolC dependent transporters are overwhelmed and can no longer 

provide efficient efflux. We noticed a similar trend for the initial binding of lipid in the 

pore strains. This binding is increased in strains expressing our mutant pore, which 

suggests that the pore initially provides more access to membrane binding sites. This 

could likely include binding to the inner membrane and explain the differences in the 

sigmoidal shapes of the WT-Pore and the ΔTolC-Pore strains. TolC dependent 

transporters can capture the dye from the inner membrane and expel them from the cell, 

which could explain the lower initial concentration of HT. The fact that ΔTolC-Pore 

still exhibits sigmoidal behavior suggests that it still has significant efflux, suggesting 

that other non-TolC dependent transporters exist and are able to utilize HT as a 

substrate. Unfortunately, we are unable to reliably estimate the second amplitude A2, 

because the time courses of the uptake experiments did not saturate for all 

concentrations. Thus, we are unable to estimate the total steady state accumulation of 

HT inside each strain. 
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Figure 1.11 - Time courses of HT uptake in E. coli strains. 

HT uptake in WT (A), WT-Pore (B), ΔTolC (C), and ΔTolC-Pore (D) at increasing 

concentrations of HT (0.5-16 µM). Data was fit to an exponential equation and initial 

rates and accumulation of HT was calculated. Lines in red indicate fitted lines. Error 

bars are SD (n=2 for WT and ΔTolC, n=4 for WT-Pore and ΔTolC-Pore). 
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Figure 1.12 - Fitted parameters and growth inhibition of HT. 

A: Initial rates of HT uptake in all four E. coli strains. B: Initial binding of HT to lipids, 

as indicated by the first amplitude. C: Inhibition curves of HT. Error bars are SD (n=2 

for WT and ΔTolC, n=4 for WT-Pore and ΔTolC-Pore). 
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 Since HT binds to DNA, it is toxic to the cell and exhibits antimicrobial 

behavior. To test whether the uptake correlates with MICs for HT, we measured the 

susceptibility of our strains to the dye (Fig. 1.12C). Surprisingly, although the pore 

increased the rate of HT uptake significantly, it almost has no effect on the MIC of the 

fluorophore. We only measured a two-fold reduction of the MIC when the pore is 

expressed. In contrast, efflux had a significant impact on the MIC, resulting in a 32-fold 

difference between WT and ΔTolC. This result shows that our results from the uptake 

experiment do not correlate with the measured MICs and the fluorescent signal is not 

directly related to binding of HT to its target. 

 When looking at the time courses of uptake in P. aeruginosa, we notice some 

similarities with E. coli (Fig. 1.13 and Fig. 1.14). In both bacteria, the pore significantly 

increases the accumulation of HT inside the cell. When comparing the steady state 

accumulation between the strains expressing the pore and not expressing the pore (Fig. 

1.15B and C), we see that the overall uptake of HT is higher in pore strains. This is 

especially true at higher extracellular HT concentrations, where efflux capacities are 

exhausted. Looking at the overall uptake in non-pore expressing strains (Fig. 1.15B), we 

noticed a big difference between PAO1/PΔ3 and PΔ4/PΔ6. This could either point 

towards minor, lower expressed transporters having a bigger effect of uptake of HT or, 

more likely, that the absence of OMFs in PΔ4 and PΔ6 decreases efflux. OMFs in P. 

aeruginosa are promiscuous and can be used by several transporters, thus deleting them 

might also inactivate other efflux pumps (94). Surprisingly, the overall lowest 

accumulation of HT was measured in PΔ3 and not PAO1.  
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 Looking at the uptake in hyperporinated strains (Fig. 1.14C), the contribution of 

the major efflux transporters on accumulation of HT is readily visible. In contrast to the 

non-pore strains, PAO1-Pore showed the lowest total uptake at all concentrations tested. 

Furthermore, we can clearly see that increasing the extracellular concentration of HT 

beyond 6 µM overwhelms the major transporters in P. aeruginosa, allowing for higher 

levels of accumulation. This sigmoidal behavior can also be seen in PΔ3. However, the 

transporters already saturate at about 3 µM, highlighting the difference in efflux 

capacities between the two strains. The difference between PΔ3-Pore and the deeper 

efflux deletion mutants suggests a contribution of minor transporters on HT uptake.  

 When looking at the initial rates (Fig. 1.14A), we also noticed that the pore 

significantly increases the rates of HT uptake. Surprisingly, PAO1 showed a higher rate 

of uptake than the efflux deficient mutants in non-pore strains but not in pore expressing 

strains. 
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Figure 1.13 - HT uptake in PAO1 and PΔ3. 

Time courses of uptake in the indicated P. aeruginosa strains with and without the pore. 

HT concentrations used were from 0.5 to 16 µM. Lines in red indicated fitted lines. 

Error bars are SD (n≥2). 
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Figure 1.14 - HT uptake in PΔ4 and PΔ6. 

Time courses of uptake in the indicated P. aeruginosa strains with and without the pore. 

HT concentrations used were from 0.5 to 16 µM. Lines in red indicated fitted lines. 

Error bars are SD (n≥2). 
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Figure 1.15 - Fitted parameters of HT uptake in P. aeruginosa. 

A: Initial rates of uptake of all P. aeruginosa strains. B and C: Total accumulation of 

HT in P. aeruginosa strains with (C) and without (B) the pore. D) Structure of Hoechst 

33342 (HT). Error bars are SD (n≥2). 
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MIC, µg/ml 
Pore 

- + 

PAO1 64 64 
PΔ3 16 2 
PΔ4 4 1 
PΔ6 2 0.5 

Table 1.3 - Susceptibilities of P. aeruginosa strains to HT. 
 

 Like in E. coli, the MICs of HT do not always correlate with the overall 

accumulation of the fluorophore (Fig. 1.15D). For example, the measured MIC in PAO1 

was 64 µg/ml with and without the pore. This suggests that the major transporters can 

compensate for the increase in outer membrane permeability. However, the pore clearly 

increased the overall accumulation of HT. Furthermore, PΔ3 showed a lower uptake 

than PAO1 but its MIC is below that of PAO1 by 4-fold. Again, this suggests that HT 

might have a different target inside the cell. However, the rest of the MICs generally 

agree with the trends we see in the uptake experiments. The pore decreases the MICs of 

all the efflux deficient strains by 4 to 8-fold, and it also increases the overall HT 

accumulation in those strains. In addition, there is also a 4 to 8-fold difference between 

PΔ3 and PΔ4/PΔ6, suggesting a contribution of minor transporters in resistance. This is 

also in agreement with our uptake experiments, which show higher accumulation of HT 

in the deeper efflux deficient strains. 

 

1.4 Discussion 

 Infections caused by multidrug resistant bacteria are becoming increasingly 

more difficult to treat, which could lead to a time when conventional antibacterial 

therapy will be insufficient to cure these diseases. This has never been as true as it is 
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now with the discovery of resistance to last line of defense antibiotics, like the recent 

finding of colistin resistance in a US hospital (2). Gram-negative bacteria pose a unique 

challenge in the fight against drug resistance due to the synergy of active efflux and low 

outer membrane permeability (5). Slow diffusion across the outer membrane limits the 

concentrations of antibiotics in the periplasm, so that the substrate concentrations of 

efflux transporters are kept low. This allows them to operate efficiently, providing 

robust intrinsic resistance. The study of this synergism requires a detailed analysis of 

the individual contributions of efflux and the outer membrane barrier.  

 RND transporters have been studied extensively and their activity can readily be 

determined by simple chromosomal deletions and the measurement of drug 

susceptibilities. On the contrary, removal of the contribution of the outer membrane 

barrier on drug resistance has been extremely difficult. Current methods to permeabilize 

the outer membrane, like the use of polymyxins, significantly change the properties of 

the outer membrane and disproportionately favor the uptake of hydrophobic compounds 

(102, 103). This makes them inadequate for the study of the outer membrane 

permeability barrier. 

 In this study, we introduce a novel approach at permeabilizing the outer 

membrane without changing its physical properties by the expression of a genetically 

engineered pore protein. This approach does not affect cell viability (Fig. 1.6F) and 

increases the uptake of compounds inside the cell (Fig. 1.9, 1.12, and 1.15). 

Furthermore, the pore sensitizes cells to large antibiotics that are generally thought to be 

unable to cross the outer membrane (Fig. 1.3). 
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 Controlling the outer membrane permeability has significant advantages for the 

development of new antibiotics. Gram-negative bacteria are notorious for their low hit 

rate during drug screening (7), which limits the amount of possible lead compounds. 

Utilizing this hyperporination approach during the screening process would 

significantly increase the number of hits resulting in an increase in the number of lead 

compounds and the discovery of new antibiotics. Furthermore, structural properties that 

allow antibiotics to penetrate the cell envelope are largely unknown. Some antibiotics, 

like the aminoglycosides, are able to promote their own uptake by a mechanism that is 

proposed to be similar to that of polymyxins (139). However, it is still difficult to 

predict the penetration of other compounds through the outer membrane barrier. The 

potentiation of a compound by hyperporination reveals the contribution of the low 

permeability outer membrane and whether diffusion through it limits its activity. This 

could potentially lead to the discovery of the so called “rules of permeation”, an as of 

yet unknown list of structural characteristics that facilitate faster diffusion through the 

barrier. Overall, hyperporination has significant implications for the development of 

new drugs and the study of the outer membrane permeability barrier. 
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Chapter 2.  Differential contribution of active efflux and the outer membrane 

barrier on drug susceptibility 

2.1 Abstract 

 The increased frequency of multidrug resistant isolates of infectious 

pathogens necessitates improvements to the way we discover antibiotics. Current 

efforts in the field have only produced one novel class of antibiotics in the last 50 

years (140). One of the major bottlenecks is the screening process in gram-negative 

bacteria due to their high levels of intrinsic resistance provided by a low 

permeability outer membrane and active efflux (5). Here, we are utilizing a 

combination of efflux deficient and hyperporinated strains to study the differential 

contribution of active efflux and outer membrane permeability on antimicrobial 

susceptibility. Our results suggest that most antibiotics belong to one of four 

groups depending on their potentiation by the deletion of efflux or 

hyperporination. This study also highlights the differences of the cell envelope of P. 

aeruginosa and E. coli and that so-called “rules of permeation” will likely be 

different depending on the bacterial species. 
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2.2 Introduction 

 Infections caused by multidrug resistant bacteria are becoming increasingly 

more frequent and are projected to even surpass cancer as one of the leading causes of 

death (1). As seen in a recent report by the US Center for Disease Control, the most 

critical threats are drug resistant gram-negative bacteria (6). Gram-negative bacteria 

possess a high level of intrinsic resistance due to their low permeability outer membrane 

and an arsenal of efflux pumps that significantly decrease the intracellular accumulation 

of antibiotics. The low outer membrane permeability coupled with active efflux causes 

problems not only in the treatment of patients with infections, but also in the process of 

drug discovery. The hit rate during drug screening is estimated to be 1,000-fold lower 

for P. aeruginosa when compared to gram-positive bacteria and is one of the major 

bottlenecks in the discovery of new antibiotics against gram-negatives (7). Improving 

the antibiotic pipeline is of great importance to ensure the continued efficacy of our 

arsenal of drugs. Currently, the frequency of emergence of drug resistance is much 

higher than the amount of time it takes to discover and approve new antibiotics. This 

will ultimately result in a post-antibiotic era where some infections can no longer be 

efficiently treated (141). Hence, new innovations in the drug discovery pipeline are 

desperately needed. 

 To study the permeability of the gram-negative cell envelope, it is necessary to 

separate the contributions of the outer membrane and active efflux on drug activity. It is 

important to identify which chemical features allow antibiotics to easily diffuse through 

the outer membrane or to circumvent efflux. Here, we are describing the use of efflux 

proficient and deficient E. coli and P. aeruginosa strains that have a chromosomally 
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encoded open pore in order to study the contribution of active efflux and outer 

membrane permeability on drug activity. The pore is a genetically modified porin from 

E. coli that was altered by removing 4 extracellular loops and its cork domain, resulting 

in an internal diameter of about 2.4 nm that can facilitate diffusion of large molecules 

(106, 122, 123). Expression of the pore is inducer-dependent and does not result in 

significant changes to the physiology of the bacteria (106). Furthermore, uptake 

experiments utilizing radiolabeled [14C]-erythromycin showed that the pore increases 

the accumulation of this large antibiotics (106).  

 Using these strains, we tested the contributions of the outer membrane and 

active efflux to resistance of a range of antimicrobials belonging to different classes of 

drugs. Our findings suggest that antibiotics can be clustered into four distinct groups, 

which are divided based on their potentiation by hyperporination, deletion of efflux, or 

both. Furthermore, these groups differ between E. coli and P. aeruginosa due to 

differences in their respective outer membrane permeability and arsenal of RND 

transporters. Grouping antibiotics this way may lead to the discovery of specific 

chemical features that facilitate uptake into the cell. In addition, our studies showed that 

measuring MICs in hyperporinated strains reveals true substrate specificities of efflux 

transporters and that the outer membrane barrier can significantly mask the 

contributions of these pumps. We present here a first approach to separate the 

synergistic effects of the outer membrane from active efflux on antimicrobial activity in 

gram-negative bacteria. The antimicrobial susceptibility tests described here were 

carried out by Dr. Ganesh Krishnamoorthy and the author of this dissertation. 

 



98 

2.3 Results 

2.3.1 Interpretation of antimicrobial susceptibilities in the context of 

hyperporination. 

 Measuring antimicrobial susceptibility is typically done by MIC experiments. 

The minimal inhibitory concentration (MIC) is the concentration of a compound that 

inhibits visible growth of the bacteria. The traditional way of determining the MIC is by 

two-fold broth dilution in a 96-well plate of the compound and subsequent inoculation 

of the bacteria into each well. The plates are incubated at 37°C for 16-20 hours 

depending on the organism and the MIC is determined visually (113). The MIC does 

not give any indication of whether the compound is bactericidal or bacteriostatic and 

cannot be used to determine the activity of the compound in vivo, as there are many 

pharmacokinetic and pharmacodynamic parameters that need to be considered (113). 

Hyperporination of some antibiotics has a significant impact on the MIC and 

interpretation of such results needs to be evaluated with the context of permeability and 

active efflux due to the existence of synergy between the two. The following 

interpretations are made based on our novel kinetic model of drug uptake which was 

submitted and is currently under review(138). 

 In order for cell growth to be inhibited by a compound, it needs to accumulate to 

a certain concentration threshold inside the bacteria to efficiently bind its target. This 

intracellular concentration threshold is largely determined by the KD of the compound 

and its target. Consequently, the MIC is determined by the extracellular concentration 

of the drug that allows the compound to sufficiently accumulate inside the cell past this 

threshold. Accumulation is largely hindered by diffusion across the outer membrane and 
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the opposing flux of efflux transporters. These two forces act in synergy, meaning that 

the low outer membrane permeability significantly limits the flux across the membrane 

barrier. Thus, the effective periplasmic concentrations of the antimicrobial that RND 

transporters encounter at any given time is much lower than what is present outside the 

cell. As we will see in the results, this lower periplasmic concentration allows 

transporters to provide effective efflux. This synergy provides effective means to 

protect the cell from the compound. However, since we are able to measure MICs for 

the vast majority of the antimicrobials, increasing the extracellular concentrations of the 

drug eventually leads to higher periplasmic accumulation due to higher rates of passive 

diffusion across the barrier. If the drug concentration in the periplasm is higher than the 

Km of the transporter and its activity approaches Vmax, the transporter is overwhelmed 

and efflux is inefficient. At that point, increasing the extracellular concentration of the 

compound has a bigger impact on the intracellular accumulation. 
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Figure 2.1 - Correlation between drug accumulation and active efflux in the 

context of hyperporination. 

Simplified model of the accumulation of antimicrobials and its dependence on the 

synergy between the outer membrane and active efflux. The dotted, red line signifies 

the intracellular concentration threshold required for inhibition of bacterial growth. The 

y- and the x-axis show the intracellular and extracellular drug accumulation 

respectively. A: Theoretical accumulation of efflux proficient (WT), ΔEfflux, and WT-

Pore cells. Accumulation in ΔEfflux cells is largely determined by passive diffusion. 

The WT curve shows slow initial uptake due to efficient efflux. Once the periplasmic 

concentration is high enough, the transporter is overwhelmed and drug accumulation 

increases. Hyperporination of the WT (WT-Pore) allows for increased flux across the 

outer membrane, resulting in a higher periplasmic concentration of the drug. The 

transporters are overwhelmed at a lower extracellular concentration. B: This figure is in 

agreement with most of our fluorescent uptake studies. The ΔEfflux mutant is not 

completely efflux deficient and hyperporination still potentiates compounds in this 

strain. C: If binding sites on the outer membrane are saturated before the drug can 

overwhelm efflux, the intracellular concentration of the compound will plateau and 
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never reach the concentration threshold required to inhibit the growth of the bacterium. 

In these cases, hyperporination will reveal potential susceptibilities of the cell to the 

drug. 

 

  

 When the cells are hyperporinated, the flux of compounds increases across the 

outer membrane barrier and, consequently, their concentration in the periplasm. Thus, 

lower extracellular concentrations are sufficient to saturate and overwhelm the 

transporter, resulting in a decrease of the MIC (Fig. 2.1A). To further complicate this, 

there are several efflux transporters, each with their own Km, that transport their 

substrates across the inner and outer membrane. In E. coli, most efflux across the outer 

membrane is depleted by deleting the universal OMF TolC (55). Hence any observed 

efflux in the ΔTolC mutant is likely due to transporters that translocate their substrates 

across the inner membrane. P. aeruginosa has several RND transporters encoded on its 

chromosome, many of which with their own OMF, which makes it significantly more 

difficult to deplete efflux across the outer membrane alone. The transporters also differ 

in their substrate specificities. If more than one transporter is contributing to efflux of a 

compound, increasing the extracellular concentration should overwhelm the transporters 

sequentially according to their respective Km of the substrate. Furthermore, our 

observations from kinetic uptake experiments utilizing fluorescent dyes showed that our 

efflux deficient mutants still possess efflux capacities. We detected a low initial 

accumulation that, after a certain extracellular concentration (about 3 µM of HT in P. 

aeruginosa), became more rapid. Thus, our results most closely resemble a drug 
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accumulation model that can be seen in figure 2.1B, which shows the presence of efflux 

in all four strains. Another possibility is that the drug will saturate the available binding 

sites on the outer membrane before it can accumulate to high enough levels to 

overwhelm the efflux transporter. In this case, efflux will always operate efficiently and 

render the cell completely resistant (Fig. 2.1C). Due to the limited nature of MIC 

measurements, we will not be able to determine whether there is still residual efflux in 

our efflux deficient and hyperporinated strains. However, we will be able to delineate 

the contributions of the outer membrane and active efflux at growth inhibiting, 

intracellular concentrations.  

 

2.3.2 Effects of efflux and outer membrane permeability on drug susceptibilities of 

E. coli. 

 We tested the antimicrobial susceptibilities of BW25113 (WT), BW25113 with 

insertion of fhuAΔC/Δ4L (WT-Pore), the BW25113 TolC mutant GD102 (ΔTolC), and 

GD102 with fhuAΔC/Δ4L (ΔTolC-Pore) using antibiotics from a wide range of classes. 

To rule out a negative impact of the arabinose promoter of the fitness of the pore 

strains, we inserted this promoter together with the multiple-cloning site of the plasmid 

pTJ1 into our non-pore expressing variants. Expression of the pore was induced with 

0.1% arabinose, which we previously showed to results in about 150 copies of the pore 

per cell (106).  
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Table 2.1 - Antibiotic susceptibilities of E. coli strains to different classes of 

antibiotics. 
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 The susceptibilities were determined by MIC measurements using the traditional 

two-fold broth dilution method into 96-well plates. Cultures were first grown to OD600 

of 0.3, induced, and further grown to an OD600 of 1.0. Cells were inoculated into the 

plates at an inoculum size of 5*105, as is commonly done (113), and incubated for 16 

hours at 37°C. Arabinose was present in all wells throughout the incubation time to 

ensure proper expression of the pore. The MIC was determined visually or, 

alternatively, the absorbance at OD600 was read using a micro-plate reader. 

Contributions of active efflux and outer membrane permeability were determined by 

calculating the fold change of the MIC due to the loss of efflux or the introduction of 

the mutant pore. The results can be seen in table 2.1. 

 Based on our results, we can divide the antibiotics into four groups depending 

on their potentiation by efflux, hyperporination, or both. Group I antibiotics are neither 

affected by hyperporination, nor by deletion of efflux, and are exclusively made up of 

aminoglycosides. Aminoglycosides bind the 30S subunit of the ribosome and inhibit 

protein synthesis, and need to permeate both membranes to reach their target. These 

antibiotics are highly polar as seen by their very low logD values compared to all other 

antibiotics tested (Fig. 2.2). The logD is a measure of polarity and is calculated by the 

decadic logarithm of the concentrations of ionic and non-ionic species of a compound in 

octanol divided by their concentrations in water. Hence, a low logD means that the 

particular compound mainly partitions into the aqueous phase. Aminoglycosides 

typically contain several amino groups that carry a positive charge at physiological pH 

and are thought to permeate the cell envelope by a “self-promoted” uptake mechanism 

(139). The positively charged aminoglycosides displace divalent ions at the outer leaflet 
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of the outer membrane and disrupt the organization of lipopolysaccharides (LPS) (139). 

This causes the membrane to permeabilize and allows for increased uptake of the drug. 

We noticed no significant potentiation of the activity of the aminoglycosides when we 

expressed the pore, which suggests that this “self-promoted” uptake is not a limiting 

factor for these drugs to enter the cell. Additionally, there is no significant difference 

between WT and our TolC deletion mutant, suggesting that there are no aminoglycoside 

proficient transporters that translocate substrates across the outer membrane in E. coli.  

 The second group consists of antibiotics that are affected by hyperporination but 

not efflux. Most members of this group are large antibiotics like coumermycin and 

rifampin (Table 2.1 and Fig 2.2). Their size is well above the cut off of the major porins 

in E. coli OmpF/C, and hyperporination allows them access to the cell. Efflux 

transporters are not proficient in transporting these compounds, likely because they 

cannot penetrate the cell envelope and transporters have not evolved to use them as 

substrates. Interestingly, β-lactams are also part of this group and are somewhat of an 

exception. These antibiotics are below the exclusion size of the general porins and were 

shown to diffuse through OmpF (142). However, the fact that hyperporination 

potentiates the activity of this class of antibiotics suggests that this diffusion is still a 

limiting factor for these antimicrobials. β-lactams target the cell wall synthesis in the 

periplasm and their accumulation in hyperporinated strains is likely greatly increased. 

Efflux also somewhat effects their activity, however the outer membrane permeability 

seems to be the major determinant of their MIC. 

 The third group is the largest one of the drugs tested, and is potentiated by 

deletion of efflux but not by hyperporination. This group consists of chloramphenicol, 
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tetracycline, proflavine, triclosan, and fluoroquinolones. With the exception of triclosan 

and tetracycline, their logD values are around zero, suggesting that they are amphiphilic 

in nature (Fig. 2.2). Furthermore, they are all below the exclusion size of OmpF/C. 

Thus, these antibiotics likely freely diffuse either through general porins or the outer 

membrane. Our data suggests that this diffusion is fast, since hyperporination has no 

impact on these antibiotics. Deletion of TolC dependent efflux results in a modest 4 to 

8-fold change of the MIC on average.  The exception to this is novobiocin, which 

showed a staggering 256-fold change in susceptibility with the deletion of TolC. 

Novobiocin is an aminocoumarin and targets DNA gyrase. Interestingly, the other 

aminocoumarin tested, coumermycin, is a group II antibiotic and, thus, only affected by 

hyperporination and not efflux. The molecular weight of novobiocin is significantly 

lower than coumermycin, allowing it to permeate the cell envelope through general 

porins. This is, presumably, why efflux transporters are proficient in the efflux of 

novobiocin but not coumermycin. 
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Figure 2.2 - Features of antibiotics divided into four groups in E. coli. 

A: Correlation between logD and the respective molecular weight of antibiotics 

belonging to the four groups. Outliers are marked by a square shape with their 

corresponding name. B: Average MIC fold changes of the indicated strains of 

antibiotics in their respective group. The dotted, black line represents no fold change. 
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 Group IV antibiotics are potentiated by hyperporination and efflux. For these 

antibiotics, efflux acts in synergy with the outer membrane to significantly limit their 

accumulation inside the cell. Members of this group include macrolides, as well as the 

smaller antibiotics virginiamycin and the β-lactam cloxacillin. Macrolides are large 

antibiotics that cannot freely diffuse through general porins. However, other than group 

II antibiotics, efflux transporters are able to use them as substrates. Surprisingly, 

hyperporination of the TolC deficient strain further decreased their MIC, suggesting that 

there is significant efflux across the inner membrane of these antibiotics. Interestingly, 

cloxacillin, a member of the β-lactam family, is also part of this group. Other than 

ampicillin and carbenicillin, this β-lactam is a very good substrate of efflux pumps, as 

seen by a 512-fold decrease of the MIC once TolC is deleted. Since its target is in the 

periplasm, cloxacillin is not potentiated by hyperporination in the ΔTolC strain. The 

detergent SDS is also in this group also falls into this group and its activity is 

significantly affected by outer membrane permeability and efflux. Similar to cloxacillin, 

SDS is not affected by the mutant pore in the ΔTolC strain, suggesting that it is not a 

substrate of transporters that translocate substrates across the inner membrane. 

Surprisingly, there is a significant difference when comparing the contribution of efflux 

in cells with an intact outer membrane and hyperporinated cells. In cells without the 

pore, this contribution varies from 32 to 512-fold, but in cells expressing the mutant 

pore the fold change is much lower and constant between 16 and 32-fold. This 

highlights that the outer membrane barrier masks substrate specificities and efflux 

capacities of transporters, and removal of this barrier reveals the actual contribution of 

efflux on the activity of antimicrobials. 
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2.3.3 Antibiotic susceptibilities in hyperporinated and efflux deficient P. 

aeruginosa variants. 

 Next, we tested a similar range of antibiotics on drug susceptibility in the P. 

aeruginosa strains described in chapter 1 with the exception of PΔ3, which was 

replaced with a close relative PΔ3S (ΔmexAB-oprM ΔmexCD-oprJ ΔmexJKL) and its 

pore expressing variant. Similar to PΔ3, this strain is deficient in three efflux 

transporters. We chose this strain because it lacks the OMFs OprM and OprJ, making it 

more similar to PΔ4 and PΔ6. This should allow for a better comparison of the 

contributions of minor efflux transporters. Insertion of the pore in this strain was 

confirmed by PCR and functionality tested via vancomycin spot assays. The cell 

envelope of P. aeruginosa is significantly different from E. coli and its permeability is 

reduced largely due to the absence of general porins with large exclusion sizes (5, 30, 

32). Thus, we are expecting differences in the potentiation of MICs by hyperporination 

compared to E. coli. Additionally, P. aeruginosa has a much larger arsenal of RND 

transporters, making it significantly more difficult to reduce the efflux across the outer 

membrane. Any differences we see in efflux deficient strains when we introduce the 

mutant pore are likely due to contributions of minor transporters. The results of the 

antimicrobial susceptibility testing can be seen in table 2.2. 
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Table 2.2 - Susceptibilities of P. aeruginosa strains to different antibiotics. 
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 Again, we divided the antibiotics up into four groups by whether they are 

potentiated by hyperporination, deletion of efflux, or both. Similar to E. coli, 

aminoglycosides represent group I, due to their “self-promoted” uptake mechanism and 

their ability to circumvent efflux. MexXY-OprM is the only transporter that was 

reported to provide resistance to aminoglycosides, however we do not see potentiation 

of these antibiotics in the OprM deficient PΔ3S or in the MexXY deletion mutants PΔ4 

and PΔ6 (143, 144). Like for E. coli, the “self-promoted” uptake mechanism seems to 

be faster than diffusion through the large mutant pore, hence hyperporination has no 

effect on the activity of these antibiotics. This group of antibiotics is highly effective at 

crossing the gram-negative cell envelope and bypassing the intrinsic resistance 

mechanisms. Aminoglycoside resistance is mainly mediated by aminoglycoside-

modifying enzymes that typically act by transferring acetyl groups onto the antibiotic 

thus, inactivating it (145). 
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Table 2.3 - Contributions of efflux and outer membrane permeability to the MIC 

of selected antibiotics in P. aeruginosa. 
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 Group II antibiotics are all fairly large molecules with molecular weights 

exceeding 800 Da. These antibiotics are unable to cross the outer membrane, which 

limits their activity in gram-negative bacteria. Similar to E. coli, efflux transporters are 

unable to use them as substrates, possibly due to the fact that efflux transporters have 

not evolved to translocate these large compounds. The only exception to this may be 

coumermycin, which shows a 4-fold decrease in the MIC when comparing PAO1-Pore 

and PΔ6-Pore (Table 2.3). This change in the MIC is not seen with an intact outer 

membrane, suggesting that the major limiting factor is still the uptake of this antibiotic. 

Structurally, it is very similar to novobiocin, which is an excellent substrate for efflux 

transporters. This could explain why some transporters might be able to translocate 

coumermycin. 

 Group III antibiotics are potentiated by efflux are significantly potentiated by 

the depletion of efflux, but less by hyperporination. These antibiotics are relatively 

small with 200-400 Da (Table 2.3 and Fig. 2.3). Their size should preclude them from 

free diffusion through porins in P. aeruginosa due to their estimated exclusion size of 

200 Da, thus it is likely that they diffuse through the outer membrane (32). 

Alternatively, a small fraction of OprF porins are suggested to form larger channels that 

could facilitate the diffusion of group III antibiotics (146). The group consists of 

fluoroquinolones, chloramphenicols, SDS, and triclosan and generally have a logD 

value of around zero. Two group III members from E. coli are absent in the group III of 

P. aeruginosa. Tetracycline and novobiocin are both group III antibiotics for E. coli. 

They are between 450 and 600 Da which allows them to diffuse through OmpF in E. 

coli, but are too large for diffusion through P. aeruginosa porins. 
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 Group IV consists of antibiotics that are potentiated by depletion of efflux and 

permeabilization of the outer membrane. In contrast to E. coli, this is the largest group 

of the antibiotics tested and also includes the β-lactams ampicillin and carbenicillin, 

both of which belong to group II in E. coli. These two drugs are good substrates of P. 

aeruginosa efflux transporters, but not for TolC dependent transporters in E. coli. In 

addition to β-lactams, macrolides, novobiocin, and tetracycline belong to group IV in P. 

aeruginosa. They appear to have logD values that are further away from zero when 

compared to group III, making them less amphiphilic, and their molecular mass is 

higher on average. 
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Figure 2.3 - Properties of antibiotics belonging to the four groups in P. aeruginosa. 

A: Correlation between LogD at pH 7.4 and molecular weight for the four groups in P. 

aeruginosa. B: Average MIC fold changes of deletion of efflux or hyperporination. The 

dotted, black line signifies no fold change. 
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 In P. aeruginosa, we still measured significant contributions of efflux in the 

hyperporinated strains as seen by a 4 to 8-fold greater change in the MIC for triclosan, 

SDS, novobiocin, azithromycin, and cloxacillin due to removal of efflux. This is in 

contrast to E. coli, where the contribution of efflux is either equal to or lower in 

hyperporinated strains. This suggests that efflux still significantly contributes to 

resistance in P. aeruginosa even when the outer membrane permeability is increased. 

Furthermore, the lower fold changes for cells with an intact outer membrane highlight 

that the residual efflux works in synergy with the outer membrane. When looking at the 

contributions of minor efflux transporters on the activity of the tested antibiotics, we 

noticed that for many cases, like ciprofloxacin, azithromycin, erythromycin, and 

tetracycline the stepwise deletion of transporters also resulted in a stepwise reduction of 

the MIC (Table 2.4). The difference between PΔ3S and PΔ4 is the presence of MexXY 

in PΔ3S. This transporter is a major contributor for clinical resistance in P. aeruginosa 

isolates and has a broad substrate specificity (89). This results in a relatively large MIC 

fold change between PΔ3S and PΔ4 for vancomycin (Table 2.4). MexXY is generally 

thought to utilize the outer membrane factor OprM, which is absent in PΔ3S (144). 

However, some research groups reported that it can utilize other outer membrane 

factors like OpmH that are present in PΔ3S (147).  In hyperporinated cells, we did not 

observe this large fold change, suggesting that MexXY is overwhelmed in PΔ3S due to 

high concentrations of substrates in the periplasm and provides inefficient efflux. 

Another large increase in susceptibility is seen for SDS of 16-fold when comparing PΔ4 

and PΔ6. This is likely due to deletion of TriABC, which was previously reported to 

provide resistance to the detergent (148, 149). 
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 MIC fold chages 
 

 PΔ3/ PΔ4/ PΔ3-Pore/ PΔ4-Pore/ 
 Drug PΔ4 PΔ6 PΔ4-Pore PΔ6-Pore   

Amikacin 0.5 1 1 0.5 
Group I 

Tobramycin 1 1 1 1 

Coumermycin 1 1 2 0.5 

Group II Rifampin 1 1 1 1 

Vancomycin 8 0.5 1 2 

Levofloxacin 4 1 1 2 

Group III 

Ciprofloxacin 4 2 2 2 

Nalidixic acid 2 1 1 1 

Chloramphenicol 2 1 2 2 

Triclosan 2 2 4 1 

SDS 1 16 1 2 

Novobiocin 4 1 1 2 

Group IV 

Azithromycin 4 1 2 2 

Erythromycin 2 1 4 2 

Tetracycline 2 2 1 2 

Ampicillin 1 2 4 2 

Cloxacillin 1 1 1 2 

Carbenicillin 2 0.5 2 1 
 
Table 2.4 - Contribution of minor transporters to resistance against selected 
antibiotics. 
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 Overall, the four groups remained largely the same for P. aeruginosa and E. 

coli. The antibiotics that behaved different were β-lactams, which were good substrates 

of transporters in P. aeruginosa but not E. coli, novobiocin, and tetracycline. The last 

two were likely too large to free diffuse through the general porins in P. aeruginosa and 

were significantly potentiated by the expression of the pore. Efflux capacities also seem 

to be higher in P. aeruginosa, likely due to its bigger arsenal of RND transporters. 

Interestingly, P. aeruginosa is more resistant to many antibiotics, like macrolides and 

fluoroquinolones, but when efflux is deleted and the outer membrane permeability is 

increased it is oftentimes more susceptible than E. coli ΔTolC-Pore. This shows that 

overall intrinsic resistance is much higher in this bacterium than in E. coli. 

 

2.3.4 Effects of structural differences of antibiotics on their potentiation by efflux 

or hyperporination. 

 The strains that we created represent ideal tools to study the contribution of the 

outer membrane and active efflux on antibiotic activities in E. coli and P. aeruginosa. 

The ideal outcome of a study like this would be a set of physicochemical properties that 

define the permeation of compounds through the cell envelope. These “rules of 

permeation” could be added to Lipinski’s rule of five to significantly improve current 

drug design efforts (5, 140). Here, we are describing a preliminary screening of a library 

of structurally diverse β-lactams, cephalosporins, sulfonamides, and fluoroquinolones 

on their activity in our E. coli and P. aeruginosa strains. The data presented here are the 

results of the susceptibility testing. Tables of all results can be found in appendix B for 

E. coli and appendix C for P. aeruginosa. At the time of writing, further analysis of 
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physicochemical correlations by potentiation of the outer membrane or deletion of 

efflux is currently done in collaboration with Dr. Jerry M. Parks from the Oak Ridge 

National Laboratory and Dr. John K. Walker from the Saint Louis University School of 

Medicine. 

 Overall, we tested 18 fluoroquinolones (FQs), 23 sulfonamides (sulfas), and 44 

β-lactams (PEN), of which 28 were cephalosporins (CEF) and plotted their activities 

with respect to potentiation in pore expressing strains and efflux deficient strains of E. 

coli (Fig. 2.4) and P. aeruginosa (Fig. 2.5). The sulfonamides showed the lowest 

activity against both species, and were only marginally potentiated by inactivation of 

efflux and hyperporination. When compared to PAO1, PΔ6-Pore MICs were reduced by 

an average of only 5-fold. Most of the sulfonamides were not potentiated at all and 

other by 4-fold. The exceptions were sulfameter, sulfamethoxypyridazine, 

sulfamonomethoxine, and sulfamethoxazole, which were potentiated 16-fold in PΔ6-

Pore compared to PAO1. Of those, deletion of efflux seemed to have the biggest impact 

on activity, since most sulfonamides are small antibiotics and should be able to diffuse 

through porins of P. aeruginosa. Similarly, the activity of this class of antibiotics was 

very low in E. coli, with an average potentiation of about 2.75-fold when comparing the 

WT to ΔTolC-Pore.  

 Cephalosporins were modestly potentiated by the mutant pore and the deletion 

of efflux. With the exception of ceftriaxone and cefmenoxime, the average fold change 

was about 10 between PAO1 and PΔ6-Pore. Ceftriaxone was potentiated by 256-fold 

and cefmenoxime a staggering 1024-fold when comparing those strains. On average, 

the potentiation of cephalosporins in P. aeruginosa was similar for hyperporination and 
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deletion of efflux, both of which showed an average potentiation of about 5-fold.  

Cephalosporins had the highest average molecular weight of the four groups of about 

450 Da. In E. coli, the most potentiated cephalosporin was cefoperazone with a 256-fold 

difference between WT and ΔTolC-Pore, and the average overall potentiation was about 

10-fold for the other members of that family. Hyperporination had the biggest 

contribution to cephalosporin activity in E. coli with an average potentiation of about 5-

fold. 

 Hyperporination and the deletion of efflux had a much greater impact for the 

other β-lactams. About half of these penicillins were excellent efflux substrates in P. 

aeruginosa with MIC fold changes greater of at least 16, while the other half were not 

good substrates of efflux transporters. Some of the penicillins, like methicillin and 

nafcillin, showed a staggering 4000 to 8000-fold reduction in the MIC when comparing 

PAO1 and PΔ6-Pore. This change is mainly due to deletion of efflux, however 

hyperporination also potentiated these antibiotics by 8 and 16-fold respectively. The 

group of penicillins that was not potentiated by the deletion of efflux also only showed 

modest potentiation when strains were hyperporinated. Since most of them still had 

very high MICs, i.e. higher than 125 µM, they either have low affinity to the penicillin-

binding proteins in P. aeruginosa or the bacterium possesses other means of resistance 

to these antibiotics. The penicillins were also highly potentiated by the deletion of 

efflux in E. coli, with an average fold change of 283 between WT and ΔTolC. 

Interestingly, about half the penicillins were good substrates of TolC dependent efflux 

transporters, and the other half was only modestly or not at all potentiated by the 

deletion of efflux. However, the two groups seemed to be different in E. coli and P. 
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aeruginosa, highlighting the differences in substrate specificities of the transporters in 

the two species. 

 With the exception of nadifloxacin and moxifloxacin, fluoroquinolones were 

much more potentiated by the deletion of efflux than hyperporination in P. aeruginosa. 

The two exceptions have higher molecular weights compared to the rest of the 

fluoroquinolones, which likely results in limited diffusion across the cell envelope of P. 

aeruginosa. The average potentiation due to efflux was 35-fold, with difloxacin being 

the only fluoroquinolone with a modest 4-fold potentiation. Deletion of efflux also 

potentiated E. coli strains more than hyperporination. The average fold change due to 

deletion of efflux in E. coli was 26, with many fluoroquinolones only potentiated by 4-

fold. Hyperporination only decreased the MIC of fluoroquinolones about 5-fold in P. 

aeruginosa and about 3-fold in E. coli. Thus, these antibiotics are not limited by the 

diffusion across the outer membrane but by the presence of active efflux transporters. 
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Figure 2.4 - Antibiotic susceptibilities of members of four families in E. coli. 

A and B: Contributions of the outer membrane to susceptibilities of antibiotics from the 

four indicated groups. Pore strains are plotted on the y-axis and the parent strain on the 

x-axis. The black line indicates no fold change. C and D: similar to A and B but 

showing the contribution of efflux. 
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Figure 2.5 - Susceptibilities of diverse members of four families of antibiotics in P. 

aeruginosa. 

A and B: MICs of antibiotics in pore strains plotted against their respective parental 

strain, highlighting the contribution of outer membrane permeability to resistance 

against the indicated families of drugs. C and D: Similar as A and B but indicating the 

contribution of efflux instead. The black lines indicate no fold change. 
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 Overall, active efflux and the outer membrane permeability affected the 

susceptibilities of both E. coli and P. aeruginosa. P. aeruginosa was overall more 

resistant to the tested antibiotics, but also showed a higher potentiation when efflux is 

deleted and the mutant pore is expressed. This highlights the differences of the cell 

envelope of the two species and the greater levels of intrinsic resistance of P. 

aeruginosa compared to E. coli. Further analysis of this data will hopefully reveal 

correlations between physicochemical properties of antibiotics and their potentiation in 

hyperporinated or efflux deficient strains. 

 

2.4 Discussion 

 Infections caused by multidrug resistant gram-negative bacteria represent a huge 

challenge for the clinician, and are expected to become more frequent in the coming 

years (1). These bacteria are especially difficult to treat due to their high intrinsic 

resistance mediated by active drug efflux and a low permeability across the outer 

membrane. This intrinsic resistance directly translates to much lower hit rates during 

drug screening, significantly diminishing the rate of drug discovery for these bacteria 

(5). New innovations in the drug development process are desperately needed in order 

to ensure that we possess a potent arsenal of antibiotics. One approach is to define 

physicochemical properties of antibiotics that could predict their propensity to cross the 

gram-negative cell envelope (140). These “rules of permeation” could be added to 

Lipinski’s rules of five to dramatically improve the development of antibiotics (5). 

 The strains described in chapter one of this dissertation provide the means to 

separate the contribution of the outer membrane and active efflux to resistance of E. coli 
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and P. aeruginosa. They represent a significantly better way to study the outer 

membrane permeability barrier then currently available methods like the use of 

polymyxins. These tools allow us to specifically screen for chemical features that allow 

better penetration of the outer membrane or circumvent efflux, and can help in the 

development of rules of permeation. Here, we described a first attempt at classifying 

antibiotics into four distinct groups based on their activity in hyperporinated or efflux 

deficient strains. Members of the proposed groups of antibiotics differ slightly between 

E. coli and P. aeruginosa, highlighting the differences in their respective outer 

membrane and arsenal of efflux transporters. Group I antibiotics are not potentiated by 

compromising the outer membrane barrier or by deleting efflux. These antibiotics likely 

follow a “self-promoted” uptake mechanism and carry positive charges. Hence, 

resistance to these antibiotics will mainly come from enzymatic inactivation or 

modification. Group II antibiotics are drugs that are affected by the outer membrane 

permeability but not by efflux. These are large antibiotics, greater than 800 Da, that are 

typically unable to penetrate through the outer membrane. Efflux transporters may not 

have evolved to utilize them as substrates due to their limited exposure to these 

compounds. The exception are some β-lactams in E. coli, which are much smaller than 

800 Da but still poor substrates of efflux transporters. Antibiotics of the group III are 

generally small, with an average molecular weight of about 350 Da, and are good efflux 

substrates. This group is potentiated by the deletion of efflux but not by 

hyperporination. Since hyperporination does not potentiate efflux proficient cells, there 

is little synergy between efflux and the outer membrane permeability for these 

antibiotics, which results in semi-efficient efflux. Group IV antibiotics are affected by 
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both hyperporination and the deletion of efflux. Thus, there is significant synergy 

between efflux transporters and the low permeability outer membrane barrier. These 

antibiotics are larger than group III antibiotics, but smaller than drugs from group II. 

Their average molecular weight is around 500 Da and they seem to be slightly less 

amphiphilic than group III antibiotics. 

 We also showed a first approach at screening of libraries of structurally diverse 

members of three antibiotic families. Although detailed analysis of physicochemical 

properties is not yet completed, we see a clear difference in the contribution of 

hyperporination and active efflux between E. coli and P. aeruginosa. This suggests that 

if there are such “rules of permeation”, they will likely differ between different gram-

negative bacteria. Differences in the properties of the outer membrane and in the arsenal 

of efflux transporters necessitates to carry out similar screenings in other gram-negative 

species like Acinetobacter and Burholderia among others. Nevertheless, our approach 

to utilize a genetically modified outer membrane porin provides valuable insight into 

the contribution of outer membrane and active efflux to antibiotic resistance.  
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Chapter 3.  Kinetic control of quorum sensing in Pseudomonas aeruginosa by 

multidrug efflux pumps. 

3.1 Abstract 

 Pseudomonas aeruginosa is an important human pathogen, the physiology 

and virulence of which are under control of quorum sensing signals. These signals 

often have dual physiological roles, functioning as toxins to other cells and as 

oxidative-stress protectors of their producer cells. Hence, their internal and 

external concentrations should be tightly controlled to maintain the steady-states. 

In this study, we analyzed the efficiencies and substrate specificities of two 

multidrug efflux transporters MexEF-OprN and MexG/HI-OpmD implicated in 

transport of quorum sensing signals in P. aeruginosa. Our results show that the 

two transporters, when overproduced, can provide clinical levels of resistance to 

diverse fluoroquinolones and protect P. aeruginosa against exogenous toxic 

phenazines. The two transporters however, differ significantly in their efficiencies, 

with MexG/HI-OpmD saturated by much lower concentrations of substrates. 

Unlike MexEF-OprN, mutational inactivation of MexG/HI-OpmD leads not only 

to a reduction of the levels of the important virulence factor pyocyanin, but also 

makes P. aeruginosa cells hypersusceptible to phenazines. In addition, we 

demonstrate that MexG binds pyocyanin, physically associates with MexHI and 

represses the activity of the transporter, pointing onto a negative regulatory role. 

We conclude that differences in kinetic properties of transporters are critical to 

maintain proper intra- and extra- cellular concentrations of phenazines and other 
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signaling molecules, and that the kinetic properties of MexG/HI-OpmD are 

responsible for the steady-state in the synthesis and secretion of phenazines. 
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3.2 Introduction 

 Pseudomonas aeruginosa is a gram-negative, opportunistic human pathogen that 

is most commonly associated with nosocomial diseases and infections in cystic fibrosis 

patients (8). The increased frequency of multidrug resistant isolates of this bacterium is 

of particular concern. The World Health Organization recently published their priority 

list of antibiotic resistant bacteria and placed P. aeruginosa into the highest priority 

group (150). The pathogen achieves its high level of drug resistance mainly through the 

interplay of low outer membrane permeability and active drug efflux across the cell 

envelope (4, 5). In gram-negative bacteria, the most prominent efflux transporters 

involved in resistance are RND type transporters, largely because of their ability to 

translocate substrates across the outer membrane and their broad range of substrates (4, 

58). These transporters associate as tripartite complexes consisting of the inner 

membrane RND transporter, a membrane fusion protein (MFP), and an outer membrane 

channel (OMF). P. aeruginosa has at least twelve RND transporters encoded on its 

chromosome, which differ from each other in their level of expression and substrate 

specificity (151, 152).  

The most clinically relevant of these are MexAB-OprM (40), MexCD-OprJ (41), 

MexEF-OprN (42, 43), and MexXY (43). The role these transporters play in resistance 

is well documented and their broad substrate specificity highlights some redundancy 

between them. What is less understood is their role in cell physiology and virulence and 

why different transporters are overproduced and selected under different environmental 

conditions. It has been shown that MexAB-OprM translocates 3-oxo-acyl-homoserine 

lactones and, thus, exerts some control over the quorum sensing network of P. 
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aeruginosa (80). HHQ (4-hydroxy-2-heptylquinoline), a direct precursor for the quorum 

sensing regulator PQS (Pseudomonas Quinolone Signal), was found to be a substrate of 

MexEF-OprN (81). In fact, overexpression of this RND transporter was shown to 

decrease the production of PQS, and several PQS regulated virulence factors like 

pyocyanin and rhamnolipids (81, 153, 154). In addition, MexHI-OpmD was also shown 

to be involved in virulence of P. aeruginosa (83, 88). A mutation in either mexI or 

opmD, the RND transporter or the OMF respectively, resulted in the loss of virulence 

and a reduction of quorum sensing signaling molecules (83). These phenotypes were 

suggested to result from MexHI-OpmD transport a PQS precursor (83). Another study 

found that a deletion of MexHI-OpmD results in different colony morphology when 

compared to WT colonies, and that the transporter exports the endogenously produced 

phenazine 5-methylphenazine-1-carboxylate (5-Me-PCA) (84).  

MexHI-OpmD is a somewhat unusual RND transporter because of the fourth 

protein MexG encoded by the first gene in the operon. Sequence analysis indicates that 

MexG is an inner membrane protein with four transmembrane a-helices, a longer, and a 

shorter periplasmic loop. Other transporters containing additional genes in the operons, 

like MdtABC of E. coli (155) or TriABC from P. aeruginosa (156), contain either an 

additional RND or MFP subunit, whereas MexG does not share any homology to those 

components. It is also distinctly different from small peptides like AcrZ of E. coli, 

which changes the substrate specificity of the transporter (157). Previous studies found 

that MexG is not required for the antibiotic efflux activity of MexHI-OpmD (93), and 

that MexG binds to PQS (158). However, the function of MexG and whether or not it is 

a component of the complex is still unknown.  
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All RND transporters function in the context of the two-membrane cell envelope 

and are believed to translocate their substrates through the specific outer membrane 

channel and across the outer membrane. The outer membrane of P. aeruginosa is 

notorious for its low permeability as it lacks general porins, such as E. coli OmpF and 

OmpC. The synergistic interactions with the low permeability barrier of the outer 

membrane masks the activities of efflux pumps and complicates the assessment of their 

kinetic properties and substrate specificities (138, 159). We previously developed a 

hyperporination approach that enables influx of various compounds across the Gram-

negative outer membranes and separates contributions of active efflux and the outer 

membrane barrier in intracellular accumulation of compounds and in antibacterial 

activities (160, 161). We also found that hyperporinated P. aeruginosa strains are 

hypersusceptbile to quorum sensing signals, deficient in secretion of pyocyanin and 

prone to cell aggregation (161).  

Pyocyanin is one of the most important virulence factors in P. aeruginosa and is 

required to establish full virulence of the pathogen (162, 163). It leads to oxidative 

stress by the formation of reactive oxygen species and reduces ATP levels through the 

oxidation of NADH and NADPH in host cells (163, 164). The phenazine has significant 

antimicrobial and antifungal activity, and was also shown to be important for 

mammalian lung infections (165-167). However, P. aeruginosa is intrinsically resistant 

to its antibiotic activity. Furthermore, pyocyanin was shown to assist in the adaptation 

to anaerobic conditions by acting as an electron mediator between NADH and 

oxygen(168). The virulence factor also serves as a signaling molecule and was, in fact, 

found to upregulate expression of MexG/HI-OpmD (127). The genes required for 
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pyocyanin synthesis are located directly downstream of the mexGHI-opmD operon, 

suggesting a possible interaction between the transporter and the virulence factor. Thus, 

the intracellular and extracellular levels of this compound have to be carefully regulated 

to ensure that it can act as a signaling molecule and electron mediator without becoming 

toxic to the cell. 

Here, we analyzed substrate specificities and efflux capacities of MexG/HI-

OpmD and MexEF-OprN, the two pumps implicated in efflux of quorum sensing 

signals. We also characterized the function and the role of MexG/HI-OpmD in 

physiology of P. aeruginosa.  Our results show that MexG interacts with MexHI-OpmD 

complex and negatively affects the efflux activity of MexHI-OpmD. Unexpectedly, the 

overexpression of MexG/HI-OpmD provides strong resistance to fluoroquinolones, at 

levels comparable to those provided by MexEF-OprN. Furthermore, MexHI-OpmD is 

more efficient then MexEF-OprN in protection of P. aeruginosa against toxic 

phenazines, as seen not only in strains overexpressing the pumps but also in mutants 

lacking MexGHI-OpmD. The transporter allows for the extracellular accumulation of 

pyocyanin, while providing resistance from its toxic effects. The outer membrane 

barrier acts in synergy with RND transporters and significantly masks the efflux 

efficiencies of the transporters towards substrates. Our results suggest that, in contrast to 

MexEF-OprN, the ability of MexG/HI-OpmD to provide resistance to fluoroquinolones 

is dependent on the presence of the barrier. However, increasing the outer membrane 

permeability does not significantly affect its ability to translocate phenazines, 

highlighting its specificity towards this class of substrates. We conclude that the 

endogenous activity of MexG/HI-OpmD establishes the steady-state concentration of 
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phenazines inside and outside of cells and its ability to provide resistance to 

fluoroquinolones is strongly affected by the permeability properties of the outer 

membrane and activities of efflux pumps with overlapping substrate specificities.  

 

3.3 Results 

3.3.1 The small inner membrane protein MexG associates with MexHI-OpmD. 

 MexHI-OpmD is a unique transporter in that its operon contains a fourth gene 

encoding MexG, a protein of unknown function. To test whether MexG physically 

associates with MexHI we created a construct expressing MexG with an N-terminal 

FLAG tag, MexH, and MexI with a C-terminal His tag. The plasmid was introduced 

into PΔ3 cells lacking mexAB, mexCD, and mexXY transporters. Cells producing the 

tagged MexGHI were split into two aliquots and the short 12 Å crosslinker 

dithiobis(succinimidylpropionate) (DSP) was added to one of them, before the 

purification of MexI using His•Bind resin. After purification, the MexI-containing 

fractions were analyzed by immunoblotting with anti-His and anti-FLAG antibody to 

detect MexI and MexG, correspondingly. No MexG was detected by immunoblotting in 

MexI fractions purified from cells untreated with the cross-linker. In contrast, we could 

clearly detect MexG in elution fractions purified from the cross-linked cells, even after 

extensive washes with imidazole. Reduction of the cross-linker yielded a 15 kDa band 

reacting with anti-FLAG antibody and corresponding by size to MexG (Fig. 3.1A). We 

repeated the experiment with a plasmid expressing MexG with N-terminal FLAG tag 

and MexH with a C-terminal His tag, however we were unable to detect any 

crosslinking of MexG and MexH (Fig. 3.1A). This result suggests that there is a 



134 

physical interaction between MexG and MexHI-OpmD, and that MexI or the MexHI 

complex are required for this interaction.  
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Figure 3.1 - MexG crosslinks to MexHI in P. aeruginosa whole cells. 

A: Immunoblotting of MexIHis (left) and MexHHis (right) elution fractions purified from 

PΔ3 cells harboring pMexGHI-FLAG and pMexGH-Flag respectively. Cells were 

treated with crosslinker prior to lysis as indicated. The lower panel shows the release of 

FLAG-tagged MexG from crosslinked samples when elution fractions are treated with a 

reducing agent (DTT), due to the presence of a disulfide bond in the crosslinker. DSP, 

Dithiobis(succinimidylpropionate); DTT, Dithiothreitol. Top panels show the 

development with anti-His and the lower panels with anti-FLAG primary antibodies. B: 

Immunoblot of membrane fractions from cells harboring the corresponding plasmids 

showing the expression of efflux transporter constructs. The respective outer membrane 
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channels (OMF) are tagged with a C-terminal His tag and visualized with anti-His 

monoclonal antibody. 

 

 

3.3.2. MexHI-OpmD confers resistance to structurally diverse fluoroquinolones at 

comparable levels to MexEF-OprN. 

 The overexpression of MexHI-OpmD in antibiotic susceptible strains of P. 

aeruginosa was previously found to provide resistance to some antimicrobials including 

fluoroquinolones, ethidium bromide, and some dyes such as acriflavine and rhodamine 

6G (93). To compare the efficiency and substrate specificity of MexHI-OpmD to 

MexEF-OprN, which is frequently overproduced in clinical isolates and provides 

clinical levels of resistance, we created three constructs that constitutively express either 

MexGHI-OpmD, MexHI-OpmD, or MexEF-OprN using the Escherichia-Pseudomonas 

shuttle vector pBSPII (169). We confirmed similar expression levels of these constructs 

in an efflux deficient mutant PΔ4 deficient in mexAB-oprM, mexCD-oprJ, mexJKL, and 

mexXY (Figure 3.1B) and tested susceptibilities against several antibiotics (Table 1). In 

agreement with previous results, all three constructs provided resistance against the 

fluoroquinolones ciprofloxacin and levofloxacin, ethidium bromide and acriflavine but 

only the overexpression of MexEF-OprN drastically increased the MICs of 

chloramphenicol, tetracycline, triclosan, and trimethoprim. Hence, all three pumps are 

overproduced and functional. Interestingly, we were unable to find an antibiotic that is a 

substrate of MexGHI-OpmD but not MexEF-OprN. Thus, in agreement with previous 

studies (42, 93), MexEF-OprN has a broader substrate specificity than MexGHI-OpmD.  
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Table 3.1 - Antibiotic selectivity profiles of cells producing MexEF-OprN and 

MexG/HI-OpmD. 

CIP, ciprofloxacin; LEV, levofloxacin; EtBr, ethidium bromide; ACR, acriflavine; TET, 

tetracycline; CF, chloramphenicol; TRI, triclosan; TRM, trimethoprim.  
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Table 3.2 - Susceptibilities of PΔ4 cells overexpressing different RND transporters 

to fluoroquinolones. 
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Figure 3.2 - Susceptibilities of cells expressing MexHI-OpmD, MexGHI-OpmD, 

and MexEF-OprN to fluoroquinolones. 

A, D: PΔ4 (A) or PΔ4-Pore (D) cells harboring either pMexHI-OpmD, pMexGHI-

OpmD, or pMexEF-OprN are tested against a library of structurally diverse 

fluoroquinolones. MICs of fluoroquinolones are expressed as fold changes compared to 

PΔ4 cells with empty vector. Fluoroquinolones for each column from left to right: 

Ciprofloxacin, Enrofloxacin, Levofloxacin, Gatifloxacin, Moxifloxacin, Prulifloxacin, 

Sparfloxacin, Difloxacin, Lomefloxacin, Ofloxacin, Pazufloxacin, Norfloxacin, 

Pefloxacin, Sarafloxacin, and Nadifloxacin. B, C: Effect of IPTG inducer concentration 

on MICs of ciprofloxacin in PΔ4 (B) and PΔ4-Pore (C) cells expressing indicated 

transporters. 
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Figure 3.3 - MIC fold differences between the transporters and due to co-

expression of MexG with MexHI-OpmD. 

A: Fold changes of the MIC between MexEF-OprN and MexHI-OpmD as calculated by 

MIC(MexEF-OprN)/MIC(MexHI-OpmD) with and without the pore. B: Fold changes 

of the MIC as a result of co-expression of MexG with MexHI-OpmD as calculated by 

MIC(MexHI-OpmD)/MIC(MexGHI-OpmD). The dotted line represents no change. 
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Since fluoroquinolones are common substrates between these pumps, we next 

analyzed MICs of a library of 15 fluoroquinolones in PD4 cells carrying the three efflux 

pump constructs. Examples of some of these quinolones can be seen in Figure 3.4. In 

PD4, both MexEF-OprN and MexHI-OpmD transporters provided strong resistance to 

all the drugs tested, indicating that overexpression of either one of them could lead to 

clinical levels of fluoroquinolone resistance (Fig. 3.2A). Surprisingly, for the majority 

of tested fluoroquinolones there was no difference in MICs in cells producing either one 

of these two pumps. In a few cases, the MICs differed only by two-fold (Table 2 and 

Fig. 3.3A). Furthermore, for most fluoroquinolones the fold MIC change in PD4(empty 

vector)/PD4(pump) was 64-128 with a few exceptions of 32-fold change in MICs.  

Thus, despite the different substrate specificities, MexEF-OprN and MexHI-OpmD do 

not recognize differences in structures of fluoroquinolones.  

As was previously reported(93), MexG was not required for the functionality of 

MexHI-OpmD. In fact, we observed a slight reduction of the activity of MexHI-OpmD 

when MexG is co-expressed (Table 2 and Fig. 3.3). However, this difference was not 

the same across all compounds. For example, most of the compounds tested showed 2 

to 4-fold decrease in MIC, whereas the presence of MexG potentiated the activity of 

moxifloxacin by 8-fold, decreasing the MIC from 2.5 µM in PD4(pMexHI-OpmD) to an 

MIC of 0.3 µM in PD4(pMexGHI-OpmD).  
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Figure 3.4 - Examples of structural diversity of the tested fluoroquinolones. 

Examples of structural differences between the fluoroquinolones tested. Moxifloxacin 

showed the largest (8-fold) reduction in the MIC due to co-expression of MexG. 
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To determine whether the expression of MexG negatively affects the expression 

of MexHI-OpmD components, we isolated and analyzed by immunoblotting the 

membrane fractions from PD4 cells carrying the respective constructs.  Figure 3.1B 

shows the expression of the His-tagged outer membrane channels of all three plasmids. 

We did not detect significantly different levels of expression between the MexHI-

OpmD and MexGHI-OpmD constructs. This suggests that the reduction of activity for 

certain substrates when MexG is co-expressed is not due to differences in protein 

expression. Thus, the presence of MexG negatively affects the fluoroquinolone efflux 

by MexHI-OpmD to varying degrees depending on the compound. 

 

3.3.3. Hyperporination of the outer membrane differentially affects antibacterial 

activities of fluoroquinolones in cells overproducing MexEF-OprN and MexHI-

OpmD. 

We next analyzed the change in MICs of fluoroquinolones in the hyperporinated 

PD4-Pore overproducing efflux pumps, thus removing the contribution of the outer 

membrane barrier on antibacterial activities.  We first titrated IPTG, the inducer of the 

pore, to select its optimal concentration (Fig. 3.2 B and C). As expected, a decrease in 

MICs of ciprofloxacin with increasing concentration of inducer was seen in PΔ4-Pore 

strains, but not in PΔ4 strains. We measured a 4-fold decrease in the MIC of 

ciprofloxacin in PΔ4-Pore(pBSPII) in the presence of 2 mM IPTG. Similarly, we also 

observed a decrease in the MIC by 4-fold and 8-fold in the induced PΔ4-Pore(pMexEF-

OprN) or PΔ4-Pore(MexHI-OpmD), respectively. We then tested the remaining 

fluoroquinolones in PΔ4-Pore strains induced by 2 mM IPTG (Table 3 and Fig. 3.2D). 



144 

In agreement with previous studies (161), hyperporinated cells were much more 

susceptible to the antibiotics as seen by a decrease of the MIC up to 64-fold when 

comparing PΔ4 and PΔ4-Pore(pBSPII). Hyperporination also increased susceptibilities 

of strains overexpressing the efflux pump constructs, albeit to a different extent. 

Surprisingly, the hyperporination seemed to affect the activity of MexHI-

OpmD/MexGHI-OpmD much stronger than MexEF-OprN. For most of the 

fluoroquinolones, the overexpression of MexEF-OprN in PΔ4-Pore generated the same 

64 to 128-fold increase in MICs, efficiently overcoming the increased influx of 

antibiotics due to hyperporination. For pazufloxacin and sarafloxacin the change in 

MICs was only 16-fold, suggesting that the outer membrane barrier has a significant 

contribution in the activities of these antibiotics and MexEF-OprN is effective against 

them only when the outer membrane is intact. On the other hand, MexHI-OpmD could 

provide the same 64-fold MIC change only for nadifloxacin in hyperporinated cells, 

whereas for all other antibiotics the fold MIC changes were significantly lower with 

most in the 4 to 16-fold range. As a result, for such antibiotics as moxifloxacin, 

norfloxacin, or pefloxacin the difference in susceptibility between MexHI-OpmD and 

MexEF-OprN in hyperporinated PΔ4-Pore was up to 8-fold (Fig. 3.3A). This result 

suggests that MexEF-OprN is much more effective than MexHI-OpmD in efflux of 

fluoroquinolones and that the low permeability barrier of the outer membrane enables 

high levels of fluoroquinolone resistance provided by overexpression of MexHI-OpmD. 

In agreement, hyperporination also diminished the ability of MexGHI-OpmD to protect 

against fluoroquinolones as seen from only a 4 to 8-fold change in MICs for most of the 

compounds. Surprisingly, the efflux of nadifloxacin remained unaffected by 



145 

hyperporination and MexG, further supporting the conclusion that the negative effect of 

MexG depends on specific substrates of MexHI-OpmD. 
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Table 3.3 - Antibiotic resistance profile of PΔ4-Pore cells producing indicated RND 

pumps. 
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3.3.4 MexEF-OprN and MexHI-OpmD have different efficiencies in efflux of a 

fluorescent probe. 

To establish that the changes in MICs observed in hyperporinated cells are due 

to the differences in efflux activities of the overproduced pumps, we utilized a real-time 

fluorescence uptake assay. For this purpose, we used a fluorescent probe Hoechst 33342 

(HT) to carry out the uptake experiment. Like fluoroquinolones, HT is an inhibitor of 

DNA topoisomerases (170). But HT is also a fluorescent probe, the emission of which 

is significantly enhanced when it binds to lipids or DNA, allowing us to monitor its 

uptake into cells (44). The uptake data were fitted to an exponential equation to extract 

initial rates of uptake (Fig. 3.5). We observed a clear difference in the initial rates of HT 

uptake with and without the transporters present, indicating that HT is a substrate of 

both MexEF-OprN and MexHI-OpmD efflux pumps. Overexpression of MexEF-OprN 

dramatically, up to 10-fold, decreased the rates of uptake of HT both in the absence and 

presence of the pore, suggesting that HT is an excellent substrate of this efflux pump. 

Thus, in agreement with MIC measurements, hyperporination does not affect the 

activity of this pump. The overexpression of MexHI-OpmD also decreased the rates of 

HT uptake, but only in cells with an intact outer membrane. In PD4(pMexHI-OpmD) 

cells, the rate of HT uptake decreased by about 2-fold, indicating that HT is also a 

substrate of MexHI-OpmD, but it is expelled from the cells much slower than by 

MexEF-OprN. The co-expression of MexG with MexHI-OpmD further reduced its 

activity, supporting the conclusion that MexG negatively affects the activity of the 

efflux pump. Furthermore, neither MexHI-OpmD nor MexGHI-OpmD overexpression 

was able to reduce the rate of HT uptake in hyperporinated cells, indicating that unlike 
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for MexEF-OprN, the integrity of the outer membrane is critical for activity of 

MexG/HI-OpmD.  

 Taken together with MIC measurements, these results suggest that MexHI-

OpmD is a weak efflux pump that heavily relies on the outer membrane barrier for its 

activity against fluoroquinolones and HT.  Alternatively, MexHI-OpmD is presented 

with an elevated concentration of an endogenously produced substrate in 

hyperporinated cells that outcompetes the antibiotics, resulting in increased 

susceptibility. 
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Figure 3.5 - Kinetic uptake measurements comparing MexEF-OprN to MexG/HI-

OpmD. 

A, C: A real-time course of intracellular accumulation of 32 µM HT in PΔ4 (A) and 

PΔ-Pore (C) expressing indicated efflux pump constructs. Kinetic curves were fitted to 

an exponential equation and initial rates were calculated. B: The plot of initial rates of 

HT accumulation in the indicated cells as a function of extracellular HT concentration. 

D: Graph of the initial rates of HT accumulation in pore expressing cells plotted against 

the extracellular HT concentration. All kinetic measurements were done in triplicate. 

Error bars are SD (n=3). 
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3.3.5 Deletion of MexGHI-OpmD leads to a decrease in the extracellular levels of 

pyocyanin. 

We next investigated a possibility that endogenous substrates outcompete 

fluoroquinolones in the hyperporinated cells overproducing MexG/HI-OpmD.  For this 

purpose, we constructed a series strains lacking mexGHI-opmD. In addition to the wild 

type PAO1 strain, the mexGHI-opmD operon was deleted from PΔ3, PΔ4 and PΔ6 

(same as PΔ4 but with additional deletions of mexEF-oprN and triABC). For simplicity 

reasons, the ΔmexGHI-opmD variants will be referred to as PAO1ΔG, PΔ3ΔG, PΔ4ΔG, 

and PΔ6ΔG respectively. We used this approach of a stepwise deletion due to the 

known significant overlap in substrate specificities of RND transporters in P. 

aeruginosa and the progressive loss of the secretion of pyocyanin due to changes in 

quorum sensing signaling (161). 

The constructed mutants did not show an extended lag phase (Fig. 3.6A and B) 

that was previously reported (83). Similarly, we were unable to see a decrease in the 

production of PQS (data not shown), but we did notice that the ΔmexGHI-opmD 

mutants produced significantly less pyocyanin even in already pyocyanin-deficient 

efflux mutants (Fig. 3.6C). We measured the amounts of this phenazine in supernatants 

of bacterial cultures and found a noticeable, more than 2-fold, decrease in the amounts 

of pyocyanin in the cultures of all ΔmexGHI-opmD strains when compared to their 

respective parental strains (Fig. 3.6C).  

To confirm that MexGHI-OpmD is linked to the synthesis and excretion of 

pyocyanin, we measured amounts of this pigment in the cultures of the PAO1 strains 

overproducing different components of the transporter (Fig. 3.6D). When compared to 
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the wild type, PAO1 overexpressing MexGHI-OpmD or MexHI-OpmD produced twice 

the amount of pyocyanin. Expression of MexG alone did not change the amounts of 

pyocyanin in the culture medium, but expression of MexGHI without the outer 

membrane channel OpmD resulted in a 50% increase. This suggests that MexHI might 

be able to associate with another outer membrane channel to achieve at least partial 

activity. MexG does not appear to be required for this functionality of the transporter. In 

agreement with previous results, overexpression of MexEF-OprN resulted in decreased 

production of pyocyanin (153). Thus, the amount of secreted pyocyanin positively 

correlates with the expression of MexG/HI-OpmD in P. aeruginosa cells and this 

correlation is independent of the presence or absence of other RND pumps.  
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Figure 3.6 - Deletion of mexGHI-opmD results in a decrease of pyocyanin 

production. 

A and B: Growth curves of the indicated strains. C: Extracellular concentrations of 

pyocyanin in PAO1, PΔ3, PΔ4, and PΔ6 parental strains (blue) and their derivatives 

macking mexGHI-opmD (ΔG) mutants (orange). D: Extracellular concentrations of 

pyocyanin in cultures of PAO1 strains overexpressing MexEF-OprN or different 

combinations of MexG/HI-OpmD components. All measurements were done on 

cultures grown to stationary phase and in triplicate. Error bars are SD (n=3). 
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Figure 3.7 - Structures of phenazines and quorum signals. 

A: Synthesis pathway of pyocyanin, showing the intermediate 5-methyl-1-carboxylic 

Acid (5-Me-PCA). B: Pyocyanin exerts its toxic effects by reducing NADH and 

NADPH, thus reducing the intracellular levels of ATP. At the same time, this allows it 

to serve as an electron shuttle during oxygen poor conditions. C: Structures of HHQ 

and phenazines methosulfate (PMS). HHQ is suggested to be exported by MexEF-

OprN. 
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3.3.6 MexGHI-OpmD provides a self-protection of P. aeruginosa to phenazines. 

Pyocyanin is a powerful toxin that inhibits the electron transport chain and 

several other pathways (162, 168). Figure 3.7B shows the oxidized and reduced forms 

of this compound. To test whether pyocyanin is a substrate of MexG/HI-OpmD we 

performed growth spot inhibition assays with PAO1 and all efflux deficient mutants 

(Fig. 3.8A). All strains that contained a chromosomal copy of mexGHI-opmD were 

fully resistant to pyocyanin. On the other hand, the efflux deficient mutants that lacked 

mexGHI-opmD were all hypersusceptible, as seen from large zones of inhibition. This is 

the first time that a P. aeruginosa strain was found to be susceptible to pyocyanin. 

PAO1ΔG was still resistant to pyocyanin at the concentrations tested, indicating that the 

constitutively expressed MexAB-OprM can provide some level of resistance to 

phenazines. However, the pyocyanin hypersusceptibility of all efflux-deficient strains 

suggests that MexG/HI-OpmD is expressed in these strains and provides immunity 

against this toxin.  

We inserted the pore into PΔ4ΔG and PΔ6ΔG strains and measured the MICs of 

pyocyanin (Table 4). Deletion of MexGHI-OpmD from PΔ4 resulted in a 4-fold 

decrease of the MIC of pyocyanin. Interestingly, this strain is 4 times more resistant to 

chloramphenicol and ciprofloxacin, which suggests that another transporter, based on 

the resistance profile likely MexEF-OprN, is overexpressed. Thus, MexEF-OprN is still 

able to provide some level of resistance to phenazines in PΔ4ΔG. The MIC of 

pyocyanin decreased by a staggering 64-fold when MexGHI-OpmD was deleted in PΔ6 

and no further decrease was observed with hyperporination, suggesting that PΔ6ΔG is 

depleted of phenazine efflux. The strain PΔ5S, same as PΔ4 but with deletion of 
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mexEF-OprN, was still completely resistant to pyocyanin, indicating that MexGHI-

OpmD is sufficient to provide efflux of this virulence factor. Furthermore, PΔ4ΔG-Pore 

showed the same MIC of pyocyanin as PΔ6ΔG, suggesting that the phenazine efflux in 

PΔ4ΔG is weak and highly dependent on the presence of the outer membrane barrier. 

On the other hand, hyperporination of PΔ4 only decreased the MIC of pyocyanin by 4-

fold, indicating that MexGHI-OpmD can compensate for the loss of the barrier and still 

provide resistance to phenazines. Taken together, these results show that MexGHI-

OpmD is highly efficient in the efflux of pyocyanin, whereas deleting MexEF-OprN has 

no effect on the MIC of phenazines. 

As could be expected based on the above results and previous studies (84), 

deletion of mexGHI-opmD resulted in a drastic increase in susceptibility to PMS, a 

close analog of 5-Me-PCA, which is an endogenous highly reactive precursor of 

pyocyanin (Fig. 3.8B). Unlike with pyocyanin, the zone of inhibition for PAO1ΔG was 

roughly 2-fold larger than for PAO1, indicating that PMS is more toxic and the 

MexG/HI-OpmD-dependent self-protection is seen even in the presence of MexAB-

OprM. Furthermore, the deletion of MexGHI-OpmD in PΔ4 resulted in a large 16-fold 

decrease of the MIC, whereas the deletion of MexEF-OprN had no impact in the MIC. 

Similar to pyocyanin, PΔ6 was still fully resistant to PMS and the deletion of MexGHI-

OpmD in that strain resulted in the same MIC as for PΔ4ΔG, further confirming that 

these strains are depleted of phenazine efflux. 
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Figure 3.8 - MexGHI-OpmD provides resistance to pyocyanin and PMS. 

A, B: Spot assays with pyocyanin (A) and PMS (B) showing zones of inhibition in 

strains with and without mexGHI-opmD. C, D: Quantification of zones of inhibition of 

pyocyanin (C) and PMS (D) in indicated strains. Error bars are SD (n=2). 
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 To test whether phenazines are responsible for the decreased activity of MexHI-

OpmD against fluoroquinolones in hyperporinated strains, we set up checkerboard 

assays to analyze possible interactions between ciprofloxacin and pyocyanin with PΔ4-

Pore cells containing different plasmids (Fig. 3.9). For each strain, we calculated an 

average fractional inhibitory concentration (FIC) index. The FIC is the fraction of the 

MIC in combination with a second drug and the MIC by itself. The FIC index is the 

sum of the two FIC from each drug and is commonly used to describe interactions of 

two antimicrobials (171, 172). Generally, a FIC index of ≤0.5 represents synergy, a FIC 

index of 1 represents an additive/inconclusive effect, and an FICI of ≥2 is defined as 

antagonism between the two antimicrobials (173, 174).  We found the FIC index of ~2.3 

for the control PΔ4-Pore with empty vector, whereas the FIC indexes measured for 

PΔ4-Pore cells expressing MexEF-OprN, MexHI-OpmD, and MexGHI-OpmD were 

1.6, 1.1, and 1.0 respectively. Thus, there are no significant interactions between 

pyocyanin and ciprofloxacin in the hyperporinated strains overproducing efflux pumps 

but an antagonistic interaction is possible in the absence of these efflux pumps. The 

higher FIC indexes for MexEF-OprN and the empty vector strain could, presumably, be 

due to complementation effects of exogenous pyocyanin. These strains produce very 

low levels of pyocyanin, which also serves to maintain redox homeostasis in P. 

aeruginosa. It is likely that low, non-inhibitory concentrations of pyocyanin could 

stimulate cell growth in these strains (168). These results also show that in the strains 

overproducing MexG/HI-OpmD, ciprofloxacin and pyocyanin do not interact with each 

other and the antibacterial activities are simply additive. Thus, the reduction of the 

activity of MexHI-OpmD against fluoroquinolones in hyperporinated strains highlights 
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the low efficiency of the transporter for these substrates and that the efflux is highly 

dependent on the presence of the outer membrane barrier. This is in contrast to 

phenazine efflux of MexGHI-OpmD and shows that the outer membrane can 

significantly mask the efflux efficiencies of RND transporters. 
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Table 3.4 - MICs of phenazines in efflux deficient mutants. 
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Figure 3.9 - Checkerboard assay with pyocyanin and ciprofloxacin. 

Growth of the indicated strains at different combinations of pyocyanin and 

ciprofloxacin concentrations. The optical densities of cultures are indicated with green 

(high) to red (low). 
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3.3.7 MexG binds to pyocyanin in vitro suggesting a functional relationship with 

MexHI-OpmD. 

In all assays described above, the presence of MexG had a negative effect on the 

activity of MexHI-OpmD. We next analyzed whether MexG will bind to pyocyanin. To 

test this, we purified MexG using metal affinity chromatography and analyzed binding 

to pyocyanin by fluorescence spectroscopy. MexG contains five tryptophan residues 

that are predicted to be in the transmembrane helices. As tryptophan residues were 

excited, the emission of MexG fluorescence peaked at around 330 nm. In contrast, 

pyocyanin has a very low fluorescence at the same excitation and emission wavelengths 

(Fig. 3.10A). However, addition of increasing concentrations of pyocyanin to MexG 

significantly quenches the fluorescence of MexG and causes a slight red shift in the 

emission spectra (Fig. 3.10B), suggesting that pyocyanin binds MexG and causes a 

change in the environments of the tryptophan residues. We calculated a KD of 

pyocyanin to MexG to be about 0.6 µM (Fig. 3.11A). This suggests that the binding is 

quite strong, with the KD similar to what was previously reported for MexG and PQS 

(158). The solvent used for pyocyanin did not alter the fluorescence of MexG in the 

amounts used during each experiment (Fig. 3.10C). 
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Figure 3.10 - Emission Spectra of MexG and Pyocyanin. 

A: Fluorescence emission spectra of MexG (1 µM) and pyocyanin (10 µM) excited at 

290 nm. B: Titration of indicated concentrations of pyocyanin into a sample of 1 µM 

MexG. Addition of pyocyanin quenches MexG fluorescence indicating a physical 

interaction. C: Effects of ethanol (solvent for pyocyanin) on fluorescence of MexG. 

Amounts of ethanol shown are exceeding the ones used during the experiment. 
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Figure 3.11 - Pyocyanin binding to MexG. 

Fluorescence emission at 330 nm (excitation at 290 nm) of the wild type MexG (A) and 

MexGΔHW (B) incubated with increasing concentration of pyocyanin was measured 

and normalized as described in Methods and is plotted as a function pyocyanin 

concentration. Fitted line shown in black. Error bars are SD (n=3). 
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To determine whether pyocyanin binding is specific, we constructed the MexG 

mutant MexGDHW, which contains two substitutions His95Ala and Trp98Ala at the C-

terminal end of the transmembrane domain 3.  The mutant was purified in the same 

manner as MexG WT. We repeated the fluorescence binding experiment with this 

mutant and found that the affinity of MexGDHW to pyocyanin decreased by at least 10-

fold when compared to MexG WT to a KD of about 7 µM (Fig. 3.11B). The lower 

binding affinity for MexGDHW shows that pyocyanin binds specifically to MexG, 

which suggests that there is a functional relationship between the protein and the 

MexHI-OpmD transporter. 

 

3.4 Discussion 

P. aeruginosa is a highly resistant human pathogen that is infamous for its 

colonization of lungs in cystic fibrosis patients. The high intrinsic resistance stems from 

its 12 chromosomally encoded RND efflux transporters and its outer membrane, which 

presents a significant permeability barrier for most antibiotics. Though RND 

transporters are most commonly associated with an antibiotic resistance phenotype, they 

also play important roles in the physiology of P. aeruginosa. The natural substrates of 

these transporters are often still unknown and more research is needed to elucidate the 

roles they play in establishing homeostasis of signaling molecules and virulence factors. 

In this study, we investigated the properties and functions of MexG/HI-OpmD 

efflux pump and compared them to MexEF-OprN. Our results suggest that the two 

pumps differ significantly not only in substrate specificity but also in their efflux 

efficiencies. When influx of compounds is slowed down by the low permeability barrier 



163 

of the outer membrane, overexpression of MexG/HI-OpmD provides resistance to a 

broad range of fluoroquinolones and endogenous phenazines at the same levels as 

MexEF-OprN. Surprisingly, despite differences in their structures, all fluoroquinolones 

appeared to be excellent substrates of both transporters, as seen from 64 to 128-fold 

changes in MICs for all tested fluoroquinolones. However, this lack of selectivity faded 

when we removed the contribution of the outer membrane to resistance by 

hyperporination, which leads to an increase of the substrate in the periplasm. This 

highlights the differences of the efficiencies of transporters toward the efflux of 

fluoroquinolones when the outer membrane permeability is compromised. As described 

above, the overproduction of MexEF-OprN increases the MICs of all FQ by 32 to 128-

fold even in hyperporinated cells (Fig. 3.2D).  However, some substrate specificity 

could be deduced from the fold MIC change in MexEF-OprN overproducers with and 

without the Pore. Norfloxacin, prulifloxacin and perfloxacin are excellent substrates of 

MexEF-OprN and their activities are only weakly (4-fold) affected by hyperporination 

(Table 3). Thus, even in the hyperporinated cells, MexEF-OprN is far from saturation 

with these fluoroquinolones. In contrast, MexEF-OprN is significantly more effective 

against nadifloxacin, sparfloxacin and difloxacin only if the influx of these drugs is very 

slow, as seen by the differences in MICs between hyperporinated and non-

hyperporinated cells (Table 2 and 3). 

The effect of hyperporination was even stronger in cells overproducing MexHI-

OpmD. The increased influx across the outer membrane significantly reduced the 

efficiency of this pump against all fluoroquinolones by 16 to 64-fold. Among the least 

affected, 16-fold change in MIC (-pore/+pore), are norfloxacin, ciprofloxacin, 
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pazufloxacin, lomofloxacin and prulifloxacin. With FQs that are strongly affected by 

hyperporination, in addition to nadifloxacin, sparfloxacin and difloxacin for which 

MexEF-OprN is not as effective, MexHI-OpmD lost its efficiency also against 

moxifloxacin, gatifloxcin and levofloxacin (64-fold MIC change). Thus, MexHI-OpmD 

is not only less efficient in efflux of FQs than MexEF-OprN, but also less specific to 

fluoroquinolones. On the other hand, MexG/HI-OpmD is more efficient in the efflux of 

phenazines, which demonstrates that these two transporters have distinctly different 

native substrates. Interestingly, for other non-FQ substrates of MexEF-OprN and 

MexHI-OpmD, hyperporination dramatically reduced the efficiency of both pumps 

(Table 1), suggesting that they are effective against these drugs only because of the low 

permeability barrier of the outer membrane. 

Previously, MexHI-OpmD was found to transport the pyocyanin precursor 5-

Me-PCA (84). Here we demonstrated that MexHI-OpmD also transports pyocyanin. 

Aendekerk et al. have shown that a disruption in mexI or opmD affects the virulence of 

PA14 cells (83), which agrees with our finding that deletion of mexGHI-OpmD leads to 

a decrease in pyocyanin production in all strains tested. Since this deletion also made 

the strains more susceptible to pyocyanin, it is likely that the decrease of its synthesis is 

due to a reduced tolerance to this toxin and that its intracellular concentration must be 

strictly controlled. This is in agreement with our finding that overexpression of MexHI-

OpmD leads to an increased level of pyocyanin synthesis in PAO1. While there is some 

functional overlap with other RND efflux pumps, our results show that MexHI-OpmD 

is likely the primary transporter for phenazines. These findings also establish a direct 

link between MexHI-OpmD and virulence in P. aeruginosa.  
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The role of MexEF-OprN in efflux of phenazines is more complex and seems to 

be similar to FQ efflux of MexGHI-OpmD. The susceptibility to pyocyanin and PMS is 

the same in PD4 and PD6 strains, suggesting that MexEF-OprN is not expressed in these 

cells and does not contribute to protection against endogenously produced phenazines. 

On the other hand, MexEF-OprN seems to be overexpressed in PΔ4ΔG but we still 

measured a 4-fold decrease in the MIC of pyocyanin between PΔ4 and PΔ4ΔG. In 

addition, hyperporination of PΔ4ΔG completely depleted the efflux capacities of the 

strain with respect to phenazines, indicating that the efflux provided by MexEF-OprN 

of these compounds is weak (Table 4). This is even more apparent for PMS, were the 

deletion of MexGHI-OpmD could not be complemented by the elevated expression of 

another efflux transporter (Table 4). Taken together, our studies show that true 

efficiencies of transporters towards certain substrates can be masked significantly by the 

presence of the outer membrane and that they can only be revealed by removing its 

contribution to resistance. It appears that the primary substrates of MexEF-OprN are 

quinolones, like its proposed quorum sensing substrate HHQ (81), whereas the primary 

substrates of MexG/HI-OpmD seem to be phenazines. 

The small membrane protein MexG appears to play a role as a negative 

regulator of the efflux activity of MexHI-OpmD. We showed here that it physically 

associates with the transporter in vivo, establishing that at least a fraction of this pump 

exists as a four-component complex MexGHI-OpmD. Antibiotic susceptibility testing 

showed a decrease in activity of the transporter in respect to some substrates when 

MexG is co-expressed (Fig. 3.3B). This decrease seems to vary depending on the 

substrate tested. Norfloxacin, ethidium bromide, and acriflavine did not show any 
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changes in activity, whereas moxifloxacin showed the biggest reduction of the MIC of 

8-fold. Some substrates might more closely resemble the native binding partner of 

MexG and can activate the small membrane protein. This could point to a regulatory 

function of MexG with respect to the activity of MexHI-OpmD. Our fluorescence 

assays showed that MexG binds pyocyanin and that this binding is specific with a KD of 

about 0.6 µM. It is possible that MexG could act as a sensor of phenazines and other 

signaling molecules in the inner membrane and modulate the activity of MexHI-OpmD 

by dissociating from the complex in the ligand-bound state (Fig. 3.12). 
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Figure 3.12 - Proposed model of the functional role of MexG. 

Pyocyanin has a dual role for the cell as it acts as an electron shuttle for P. aeruginosa 

during oxygen poor conditions and a virulence factor. Thus, the intracellular 

concentrations need to be regulated. When periplasmic concentrations of pyocyanin are 

low, MexG is bound to MexHI-OpmD and the transporter displays a low efflux activity. 

When the concentrations of pyocyanin increase it binds to MexG, which results in 

dissosication of the small inner membrane protein from the transporter. This increases 

the activity of MexHI-OpmD and allows it to provide protection from the virulence 

factor. 
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Appendix A: List of primers 

Primer Name Sequence (5’ – 3’) 

EFNpbspFWD ATGCGGTACCAGGAGGAATTCACCATGGAA

CAGTCATCCCACTTCTCC 

EFNpbspREV TATTAAGCTTAATGGTGATGGTGATGGTGGG

CGCTGGGTTGCCAGCCACC 

GHIDpbspFWD TTAGAAGCTTAGGAGGAATTCACCATGCAG

CGCTTCATCGATAAC 

GHIDpbspREVhis ATATGGATCCTCAATGGTGATGGTGATGGTG

ACGGTTGGCCCCGGCGG 

GpbspREVhis ATATGGATCCTCAATGATGATGATGATGATG

GGCCTTCTGGTAGGTGGC 

GHpbspREVhis ATATGGATCCTCAATGATGATGATGATGATG

GCGGCCGGCGACCGGCAC 

GHIpbspREVhis ATATGGATCCTCAATGATGATGATGATGATG

ATGATGATGATGTGCCTTGTTCACCAGCAGA

TCGG 

HIDpbspFWDhis TTAGAAGCTTAGGAGGAATTCACCATGCAG

AAACCCGTCCTGATC 

GpbspFWDflag TTAGAAGCTTAGGAGGAATTCACCATGGACT

ACAAAGACGATGACGACAAGGGAGGACAGC

GCTTCATCGATAACTCG 
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GHIDnestedFWD ATATGGTACCTAAGCGGTCATCCGCACTAC 

 

GHIDnestedREV ATATAAGCTTCGATGAAGGCGAGCAA 

 

GHIDupFWD ATATGAATTCCGAATAACGCCAGGGGCGTT

ATC 

 

GHIDupREV ATATGGTACCGGGTCGTTCCTTGTGCTGGTC 

 

GHIDdownFWD ATATCTGCAGCCTGGGCGGCTTCATCGGTTT

C 

 

GHIDdownREV ATATAAGCTTTCAACGGTTGGCCCCGGCGG 

 

SalIfrtGMfrtFWD ATATGTCGACCTTGCGGCCCGGACGATCGAA

TTGG 

 

SalIfrtGMfrtREV ATATGTCGACGTGAGCGCAACGCAATGCAT

GATCG 

GdHWfwd CGCCGGTCTTGCTCGCGAAGGTGGCGACGAT

GAGGATGG 

 

GdHWrev CCATCCTCATCGTCGCCACCTTCGCGAGCAA



188 

GACCGGCG 

Greg1FWD GCCAGGCAGATCGCGGCGGTCAGCGCGAGC

GCGTTGCTTTCGAG 

 

Greg1REV CTCGAAAGCAACGCGCTCGCGCTGACCGCC

GCGATCTGCCTGGC 

Greg2FWD GCGCGCATTTCCTCCAGGGCGGCCGCAGCGT

CGAACAGCTTCGCCAG 

Greg2REV CTGGCGAAGCTGTTCGACGCTGCGGCCGCCC

TGGAGGAAATGCGCGC 

Greg3FWD GGCGGTGGCGATGGCGAACAGCGCGGCCGG

CTCCAGG 

 

Greg3REV CCTGGAGCCGGCCGCGCTGTTCGCCATCGCC

ACCGCC 

Greg4FWD GGCGCCGAGCGCTAGCTTGCGGTCCAGCAG 

 

Greg4REV CTGCTGGACCGCAAGCTAGCGCTCGGCGCC 

Greg6FWD GCCGATCACCGCGATGGCTGCGAGGGCGAA

GAACAT 

Greg6REV ATGTTCTTCGCCCTCGCAGCCATCGCGGTGA

TCGGC 

GHIDayFWD TTAGGAGCTCAGGAGGaattcaccATGCAGCGCT
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TCATCGATAAC  

GHIDayREV ATATAAGCTTTCAATGGTGATGGTGATGGTG

ACGGTTGGCCCCGGCGG 
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Appendix B: Drug library results E. coli 

MICs in µM 

Cephalosporins Molecular 
weight 
(g/mol) 

WT WT-
Pore 

ΔTolC ΔTolC-
Pore 

ceftriaxone sodium trihydrate 554.58 0.10 0.02 0.10 0.00 
ceftibuten 410.425 1.56 0.39 1.56 0.39 
cefdinir 395.414 0.39 0.10 0.39 0.10 
cefepime hydrochloride 481.568 0.10 0.10 0.10 0.10 
cefmenoxime hydrochloride 511.558 2000.00 1000.00 250.00 250.00 
ceforanide 519.554 3.91 3.91 3.91 3.91 
cefotetan 575.619 0.98 0.24 0.98 0.24 
cefamandole sodium 462.503 1.56 0.39 0.39 0.10 
cefmetazole sodium 471.534 1000.00 250.00 250.00 250.00 
cefamandole nafate 490.513 3.91 3.91 3.91 0.98 
cefoperazone 645.667 0.39 0.02 0.02 0.00 
cephalexin 347.389 62.50 62.50 62.50 62.50 
cefsulodin sodium 531.539 250.00 250.00 62.50 62.50 
cefoxitin sodium 427.452 6.25 1.56 6.25 1.56 
cefuroxime sodium 424.385 15.63 0.98 0.98 0.24 
cephalosporin c zn 415.418 1000.00 1000.00 1000.00 1000.00 
cefaclor 367.807 3.91 3.91 3.91 3.91 
cephradine 349.405 2000.00 2000.00 1000.00 1000.00 

cefadroxil 363.388 62.50 62.50 62.50 62.50 
cefazolin sodium 454.507 6.25 6.25 6.25 6.25 
cefotaxime sodium 455.465 0.10 0.01 0.02 0.01 
cephalothin sodium 396.438 15.63 3.91 15.63 3.91 
cephapirin sodium 423.463 62.50 15.63 62.50 15.63 
cefonicid sodium 542.566 25.00 1.56 25.00 1.56 
cefprozil 389.426 25.00 6.25 25.00 6.25 
ceftazidime 546.576 1.56 0.39 1.56 0.39 
cefalonium 458.511 6.25 6.25 6.25 6.25 
cefpiramide 612.637 2000.00 2000.00 2000.00 2000.00 
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Beta-Lactams Molecula
r weight 
(g/mol) 

WT WT-
Pore 

ΔTolC ΔTolC-
Pore 

azlocillin sodium 461.492 62.50 0.98 15.63 0.24 
meropenem 383.463 0.39 0.39 0.39 0.39 
oxacillin sodium 401.436 2000.00 62.50 0.98 0.98 
penicillin g potassium 334.39 250.00 3.91 62.50 3.91 
penicillin v potassium 350.39 1000.00 62.50 62.50 3.91 
piperacillin sodium 517.555 25.00 6.25 1.56 0.02 
cloxacillin sodium, cloxacillin 435.881 1000.00 250.00 0.98 0.98 
dicloxacillin sodium 470.326 1000.00 62.50 0.98 0.98 
hetacillin potassium 389.469 15.63 3.91 15.63 0.98 
methicillin sodium 380.415 2000.00 250.00 15.63 15.63 
moxalactam disodium 520.473 3.91 3.91 3.91 0.98 
nafcillin sodium 414.475 1000.00 62.50 3.91 0.98 
amoxicillin 365.404 62.50 15.63 62.50 15.63 
ampicillin sodium, ampicillin 349.405 2000.00 250.00 1000.00 15.63 
carbenicillin disodium, 
carbenicillin 

378.4 250.00 15.63 62.50 15.63 

ticarcillin disodium 384.427 2000 2000 1000 1000 
 

Fluoroquinolones Molecular weight 
(g/mol) WT WT-

Pore ΔTolC ΔTolC-
Pore 

ciprofloxacin 331.342 0.39 0.1 0.1 0.02 
enrofloxacin 359.395 1 0.25 0.25 0.02 
levofloxacin 361.368 1 0.25 0.25 0.02 
gatifloxacin 375.394 1 0.25 0.25 0.02 
moxifloxacin hydrochloride 429.484 6.25 0.39 0.39 0.02 
prulifloxacin 443.425 0.25 0.06 0.02 0 
sparfloxacin 392.4 1 0.25 0.25 0.02 
difloxacin hydrochloride 399.391 1.56 0.39 0.39 0.1 
lomefloxacin 351.348 1.56 1.56 0.39 0.1 
ofloxacin 361.368 1.56 0.39 0.39 0.1 
pazufloxacin mesylate 318.3 1 0.25 0.25 0.02 
oxolinic acid 261.23 100 25 6.25 1.56 
flumequine 261.248 1 1 0.25 0.06 
norfloxacin 319.331 1 0.25 0.06 0.02 
pefloxacine mesylate 333.357 0.39 0.39 0.1 0.02 
sarafloxacin hydrochloride 385.364 6.25 0.39 0.1 0.02 
nadifloxacin 360.38 1.56 0.39 0.39 0.1 
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orbifloxacin 395.38 0.39 0.1 0.1 0.02 
 

Sulfonamides Molecular weight 
(g/mol) WT WT-

Pore ΔTolC ΔTolC-
Pore 

sulfameter 280.303 1000 1000 1000 1000 
sulfamethoxypyridazine 280.303 1000 1000 2000 1000 
phthalylsulfathiazole 403.432 1000 1000 1000 1000 
sulfachlorpyridazine 284.722 1000 1000 1000 1000 
sulfaphenazole 314.362 2000 1000 1000 1000 
sulfadimethoxine 310.329 2000 2000 2000 2000 
sulfaquinoxaline sodium 300.336 2000 1000 250 1000 
sulfaguanidine 214.245 2000 1000 2000 2000 
sulfamonomethoxine 280.303 1000 250 250 250 
sulfamethazine 278.33 2000 2000 2000 2000 
sulfamethizole 270.331 2000 2000 250 250 
sulfamethoxazole 253.278 1000 250 1000 1000 
sulfapyridine 249.289 2000 2000 2000 1000 
sulfathiazole 255.317 2000 2000 250 250 
sulfisoxazole 267.304 2000 2000 250 250 
sulfanilamide 172.205 2000 2000 2000 2000 
sulfabenzamide 276.311 1000 1000 1000 1000 
sulfacetamide 214.242 2000 2000 2000 2000 
sulfadiazine 250.277 1000 2000 2000 2000 
sulfamerazine 264.304 1000 1000 1000 1000 
sulfisoxazole acetyl 309.341 2000 2000 250 250 
sulfacarbamide 215.23 2000 2000 250 250 
sulfadoxine 310.329 1000 1000 1000 1000 
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Appendix C: Drug library results P. aeruginosa 

MICs in µM 

Cephalosporins 
Molecular 

weight 
(g/mol) 

PAO1 PAO1-
Pore PΔ3 PΔ3-

Pore PΔ6 PΔ6-
Pore 

ceftriaxone sodium 
trihydrate 554.58 15.6 0.97 3.9 0.015 3.9 0.061 
ceftibuten 410.425 4000 2000 1000 1000 1000 62.5 
cefdinir 395.414 1000 1000 1000 1000 1000 62.5 
cefepime hydrochloride 481.568 3.9 0.24 0.24 0.061 0.24 0.061 
cefmenoxime 
hydrochloride 511.558 15.6 0.97 0.97 0.0152 0.24 0.0152 
ceforanide 519.554 2000 2000 2000 2000 2000 250 
cefotetan 575.619 1000 62.5 1000 62.5 250 62.5 
cefamandole sodium 462.503 2000 2000 2000 1000 1000 250 
cefmetazole sodium 471.534 2000 2000 1000 250 1000 250 
cefamandole nafate 490.513 2000 2000 2000 1000 1000 250 
cefoperazone 645.667 3.9 0.24 0.97 0.97 0.97 0.97 
cephalexin 347.389 4000 4000 4000 4000 4000 250 
cefsulodin sodium 531.539 3.9 0.97 0.97 0.24 0.97 0.24 
cefoxitin sodium 427.452 2000 1000 2000 250 1000 62.5 
cefuroxime sodium 424.385 1000 250 1000 250 1000 250 
cephalosporin c zn 415.418 1000 1000 1000 1000 1000 1000 
cefaclor 367.807 2000 2000 2000 250 1000 62.5 
cephradine 349.405 2000 2000 2000 2000 2000 2000 
cefadroxil 363.388 2000 2000 2000 2000 2000 2000 
cefazolin sodium 454.507 2000 2000 2000 2000 2000 2000 
cefotaxime sodium 455.465 62.5 3.9 3.9 3.9 3.9 3.9 
cephalothin sodium 396.438 2000 2000 2000 2000 2000 1000 
cephapirin sodium 423.463 2000 2000 2000 2000 2000 1000 
cefprozil 389.426 1000 1000 1000 1000 1000 250 
ceftazidime 546.576 3.9 0.24 3.9 0.24 3.9 0.24 
cefalonium 458.511 1000 1000 1000 1000 1000 250 
cefpiramide 360.38 2000 2000 2000 2000 2000 250 
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Beta-Lactams 
Molecular 

weight 
(g/mol) 

PAO1 PAO1-
Pore PΔ3 PΔ3-

Pore PΔ6 PΔ6-
Pore 

azlocillin sodium 461.492 62.5 3.9 3.9 0.24 3.9 0.061 
ofloxacin 361.368 1.56 0.39 0.39 0.097 0.097 0.024 
meropenem 383.463 6.25 1.56 0.39 0.097 0.39 0.097 
oxacillin sodium 401.436 2000 250 250 3.90625 62.5 0.97 
penicillin g 
potassium 334.39 2000 2000 2000 250 1000 250 
penicillin v 
potassium 350.39 2000 2000 2000 250 2000 250 
piperacillin sodium 517.555 15.625 0.97 0.97 0.97 3.9 0.061 
cloxacillin sodium, 
cloxacillin 435.881 8000 1000 1000 62.5 1000 3.9 
dicloxacillin 
sodium 470.326 2000 1000 62.5 3.9 62.5 3.9 
hetacillin 
potassium 389.469 2000 250 1000 15.6 1000 15.6 
methicillin sodium 380.415 2000 250 15.6 3.9 15.6 0.24 
moxalactam 
disodium 520.473 62.5 15.625 62.5 0.97 62.5 0.97 
nafcillin sodium 414.475 1000 62.5 62.5 0.24 3.9 0.24 
amoxicillin 365.404 1000 1000 1000 62.5 1000 15.6 
ampicillin sodium, 
ampicillin 349.405 4000 62.5 1000 62.5 250 62.5 
carbenicillin 
disodium, 
carbenicillin 

378.4 1000 250 15.6 0.97 15.6 0.24 

ticarcillin disodium 384.427 4000 4000 4000 2000 2000 500 
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Fluoroquinolones 
Molecular 

weight 
(g/mol) 

PAO1 PAO1-
Pore PΔ3 PΔ3-

Pore PΔ6 PΔ6-
Pore 

ciprofloxacin 331.342 0.39 0.1 0.1 0.02 0.02 0.006 
enrofloxacin 359.395 1 0.25 0.25 0.02 0.06 0.004 
levofloxacin 361.368 1 0.25 0.25 0.02 0.02 0.004 
gatifloxacin 375.394 1 0.25 0.25 0.02 0.06 0.004 
moxifloxacin 
hydrochloride 429.484 6.25 0.39 0.39 0.02 0.1 0.024 
prulifloxacin 443.425 0.25 0.06 0.02 0 0.02 0.004 
sparfloxacin 392.4 1 0.25 0.25 0.02 0.02 0.004 
difloxacin 
hydrochloride 399.391 1.56 0.39 0.39 0.1 0.39 0.097 
lomefloxacin 351.348 1.56 1.56 0.39 0.1 0.1 0.024 
ofloxacin 361.368 1.56 0.39 0.39 0.1 0.1 0.024 
pazufloxacin 
mesylate 318.3 1 0.25 0.25 0.02 0.02 0.016 
flumequine 261.248 100 25 6.25 1.56 1.56 0.097 
norfloxacin 319.331 1 1 0.25 0.06 0.06 0.016 
pefloxacine 
mesylate 333.357 1 0.25 0.06 0.02 0.02 0.004 
sarafloxacin 
hydrochloride 385.364 0.39 0.39 0.1 0.02 0.02 0.006 
nadifloxacin 612.6375 6.25 0.39 0.1 0.02 0.1 0.002 
orbifloxacin 395.38 1.56 0.39 0.39 0.1 0.1 0.006 

 

Sulfonamides 
Molecular 

weight 
(g/mol) 

PAO1 PAO1-
Pore PΔ3 PΔ3-

Pore PΔ6 PΔ6-
Pore 

sulfameter 280.303 1000 1000 250 250 250 62.5 
sulfamethoxypyridazine 280.303 1000 1000 250 250 250 62.5 
phthalylsulfathiazole 403.432 1000 1000 1000 1000 1000 1000 
sulfachlorpyridazine 284.722 1000 1000 250 250 250 250 
sulfaphenazole 314.362 1000 1000 1000 250 1000 250 
sulfadimethoxine 310.329 1000 1000 1000 250 1000 250 
sulfaquinoxaline sodium 300.336 1000 1000 1000 4000 1000 250 
sulfaguanidine 214.245 4000 4000 4000 4000 4000 4000 
sulfamonomethoxine 280.303 1000 1000 250 250 250 62.5 
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sulfamethazine 278.33 1000 1000 250 250 250 250 
sulfamethizole 270.331 250 250 250 250 250 250 
sulfamethoxazole 253.278 1000 250 250 62.5 250 62.5 
sulfapyridine 249.289 1000 1000 250 250 250 250 
sulfathiazole 255.317 250 250 62.5 62.5 250 62.5 
sulfisoxazole 267.304 250 250 250 62.5 250 62.5 
sulfanilamide 172.205 4000 4000 4000 4000 4000 4000 
sulfabenzamide 276.311 1000 1000 1000 1000 1000 1000 
sulfacetamide 214.242 4000 4000 1000 1000 4000 1000 
sulfadiazine 250.277 1000 1000 250 250 1000 250 
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Appendix D: LN(OD600) vs time plots of growth curves 

 

LN(OD) vs time plots of growth measurements. The steepest part of the curve was used 

to calculate growth rates using linear regression. Six time points were used to determine 

the rates and were selected based on the highest coefficient of determination (r2). 

E. coli: 
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P. aeruginosa: 

 


