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ABSTRACT 

Polymers such as xanthan and guar gum are widely used in the oilfield and food 

industry as v iscosifiers. In hydraulic fracturing operation, guar gum polymer 

so lution is used as fracturing fluid to create fracture in a target zone that contains 

hydrocarbon. Fracturing fluid viscosity helps transport propppant down the well and 

into the fracture. If the fluid is not viscous enough, the proppant is deposited at the 

mouth of the fracture and fracture closes. However, high concentration of polymer 

in the fluid leads to gel damage in the fracture and reduces its conductivity. 

Poor fracture conductivity could lead to expensive re-fracturing operation or 

abandonment. One way to avoid gel damage/polymer residue problem is to use 

surfactant or surfactant based fluid. These fluids form micelles that are simi lar to 

polymer structure and, thereby, increase the viscosity. This micelle structure breaks 

down when it comes in contact with hydrocarbon. However, surfactant based fluids 

arc expensive and can form emulsion. The trend in the oil industry is to reduce the 

polymer content in the fracturing fluid and to crosslink it. Crosslinking is nece sary 

so as to increase the viscosity of the low polymer concentration linear gel. Despite 

these measures. gel damage to fracture conductivity is a concern and affects 

productivity or a well. 

Blends of xanthan and guar gum are used in the food industry to prepare nui I · that 

ha\ c superior \ iscosity then either parent polymer. This synergy between these 
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polymers can be used to prepare new fracturing fluids that have desirable viscosity 

at low polymer concentration, thereby, solving the problem of proppant placement 

and fracture conductivity. In addition, prepared fluids would be cheaper than high 

concentration guar gum fluids as they require addition of less polymer. 

In this study, the effect of polymer concentration, ratio of xanthan to guar polymer, 

and temperature on the synergy of xanthan and guar gum polymers is investigated. 

Paiiicle settling behavior in these complex fluids under static conditions has been 

studied as well. Results show that increase in polymer concentration increases the 

strength of synergistic interaction while increase in temperature decreases it. Based 

on the results a 40 lbm/Mgal guar gum/xanthan fluid blend was identified as a 

suitable fracturing fluid. This blend showed better viscosities at low shear rates than 

both 40 and 60 lbm/Mgal guar gum fluids. In addition, it is less expensive than 60 

lbm/Mgal guar gum fluid. 
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1.1 Overview 

CHAPTER 1 

INTRODUCTION 

Fluid viscosity 1s an important parameter that affects the success of hydraulic 

fracturing operations. This fluid property plays a maJor role in providing the 

following: 

1. Sufficient width for proppant to enter the fracture. 

2. Carrying prop pant from the well bore to tip of the fracture. 

3. Generating required pressure to control the growth of fracture height. 

4. Fluid loss control (in cases where a gel filter cake cannot form, the fracturing 

fluid viscosity is the main mechanism for fluid Joss control) . 

It is also essential that the fluid used, besides exhibiting the desired viscosity, must 

be safe to handle, environmental-fri endly, non-damaging to fracture conductivity 

and reservoir permeability. These are some of the primary concerns that need to be 

addressed when selecting a suitable fracturing fluid. 

An ideal fracturing fluid, in addition to the above detailed parameters, should also 

be: 

l. Cost effective, such that the performance of the fluid does not drive up the 

fracturing costs to unacceptab le leve ls. 

Compatible with the formation so it doe not interact adversely or cause 

damage to the formation mineralogy and fo rmati on fluids. 
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3. Able to break easil y so that the viscos ity reduces after fracturing and 

pro ppant placement, ensuring easy fl ow back and cleanup of fracture . 

4. Not lead to water blocks, which are caused by an increase in water saturation 

in the near-wellbore area, thereby, decreasing the relati ve permeability to 

hydrocarbon. 

5. Easy to mix even under very adverse conditions. 

To surnrnarize, an ideal fracturing fluid would be the one that would have an easil y 

measured, contro lled viscosity, controllable fluid loss characteristics, non-damaging 

to the fracture and non-interactive with the formation fluids, be completely safe to 

handle and to the environment. Unfortunately, this is not practical and currently 

used fracturing fluids compromise on many of these ideal properties. Typically, cost 

is the driving force, even though this sometimes leads to choices, which can be 

disastrous to the productivity of the well. Regardless, cost is a very important 

parameter, other being the viscosity. 

As stated above, fluid viscosity 1s critica l for a successful fracturin g job. Thi s 

\ iscosity should be stable at high temperature, pump rates, and shear rates. It is 

important to note that even though fluid viscos ity is a maJOr parameter guiding 

rracture design, excessive viscos ity increases costs and rai ses treating pressures. It 

is. therefore. important that fracturing fluid s show pseudoplastic or shear thinning 

rheological behavior. A shear thi nning fluid would have low visco iti es at hi gh 

shear rates encountered when pumping the flui d down to the target zone. and hi gh 
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viscosities at low shear rates such as when carry111g the proppant through the 

fracture. 

Another major concern with conventional guar gum based frac turing fluids is that 

they leave residue and damage the proppant pack. To counter this, polymer 

concentrations used for fracturing have been reduced and the fluids are formulated 

such that the lower concentration polymers still yield required rheology to transport 

proppant after crosslinking. However, even after adding enzymes and oxidizers to 

break down the molecular structure of polymer gel, the effect of these breakers is 

still not enough to eliminate the damage to the proppant pack. Therefore, there is a 

need to reduce the number of additives used to fo rmulate the fluid to reduce residue 

in the fracture. One solution is to use surfactants, which form worm-like micelles in 

aqueous solution. These micelles have a gross structure similar to polymer chains, 

which increases the viscosity of fluid. Surfactants do not need additives to break 

down as they completely breakup once in contact with hydrocarbon . However, 

surfactants are expensive as compared to polymers and are known to form 

emulsions with ce1iain crude oils. 

'I his study presents an alternate solutio n to counter the problem of polymer res idue 

b) utilizing the synergy of xanthan gum and guar gum n uids. These polymers are 

used in the food indu try to thicken and impart desirable tex ture to sa uces, yogurts, 

chC\\ing gum. toothpaste . etc. They are being replaced by their blend , which show 

better rheology than either xanthan or guar Ouids, are cheaper and have better 
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texture due to their ynergy. The aim of this study is to investigate this phenomenon, 

so as to formulate a fracturing fluid that is cheaper and shows higher viscosities at 

low polymer concentrations and low shear rates without addition of chemicals. 

1.2 Statement of Problem 

Polymers are used to increase the viscosity of fracturing fluid to a value that is 

determined to be sufficient to transport proppant effectively into hydraulically 

created fractures. After placing the proppant, reducing the viscosity of fluid is 

essential to promote flowback of fracturing fluid so minimum obstruction occurs as 

hydrocarbons move from format ion to wellbore. Breaking the fluid and obtaining 

good proppant pack conductivity wi ll result in high returns once the well starts 

producing. Reducing gel damage to the proppant pack and formation leads to 

minimal flow restrictions and directly impacts the return of oil and gas to wellbore 

(Almond 1984). 

Due to their abundance, relative low cost, proppant-carrying ability, guar gum and 

its derivatives are extensively used as fracturing fluids today. However, these 

polymers have insoluble residue, carried over from manufacturing process and also 

generated during breaking of the Ouid. Broken linear or crosslinked guar gels 

damage the proppant pack and sign ifican tl y reduce its conductivity (Devine et al. 

1999). It is, therefore, beneficial to reduce the polymer concentration in fracturing 

lluid to mitigate problems of polymer residue. This presents another problem, as 

poor or insufficient fracturing Ouid viscosity wi ll lead to premature sc reen-out, 
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where proppant drops out in wellbore or fracture, impairing fluid's ability to extend 

the fractures deeper into the formation. A third concern is that high viscosity of Ouid 

would result in higher friction pressure losses when pumping down the tubing. 

Delayed crosslinkers, introduced in 1982, are used to strengthen the viscosity of low 

concentration polymer fluids. Using these chemicals would delay the crosslinking 

reaction so viscosity of fluid will not increase until shortly before it reaches the 

bottom of wellbore and enters the fracture. Low viscosity of low concentration 

polymer fluids will not result in significant increase in friction pressure losses as 

fluid is pumped to the bottom of wellbore. Despite these measures, damage to 

proppant pack due to polymer residue remains a concern in the industry. In addition, 

using delayed crosslinkers and addition of more chemicals in formulating fracturing 

fl uids poses environmental and cost concerns. 

1.3 Objectives 

The princip le aim of this study is to strengthen the rheological properties of low 

concentration guar gum polymer fluids by utilizing synergy of guar gum-xanthan 

gum polymers . Therefo re, the objectives are to: 

1. Develop complex fluid composed of guar gum and xanthan gum polymers that 

loVver cost and show better performance than conventional guar based fracturing 

fluids. 

5 



2. Formulate the fluid such that it has better shear thinning properties than guar 

gum pol ymer fluids . 

3. Ensure the developed fluid has higher low shear rate viscosity than guar gum 

polymer fluids. 

4. Improve understanding of particle settling in complex fluids. 

1.4 Scope and Methodology 

This study involves experimental investigations and theoretical study to achieve 

above stated objectives. Experimental work involved rheological studies of complex 

fluids at ambient temperature (77 °F) to determine strength of synergy of xanthan 

and guar gum polymers in fresh water at two different concentrations - 40 

lbm/Mgal (0.48 wt%) and 60 lbm/Mgal (0.71 wt%). Rheology of complex fluids at 

150 °F was studied to determine their sensitivity to temperature. Shear thinning 

property and relative high low shear rate viscosity of the developed complex fluids 

was compared with component guar gum polymer fluid. Cost analysis was 

performed as well and based on these investigations a complex fluid with a polymer 

concentration of 40 lbm/Mgal was identified as a viable fracturing fluid. 

To design successful fracturing treatments it is important to understand particle 

settling characteristics in complex fluids as these affect proppant distribution in 

fracture. Therefore, experimental work involved studying terminal settling velocity 

of particle in complex and base (guar gum and xanthan gum) fluids . The scope of 

settling velocity study was: (1) to determine if settling velocity correlations 
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settling velocity study was: (1) to determine if settling velocity correlations 

available in the literature for polymer fluids are applicable for complex fluids, and 

(2) to relate terminal settling velocity to fluid viscosity and identify complex fluid 

with relative high low shear rate viscosity and better shear thin11ing property than 

component guar gum fluid. Particle settling under static and dynamic conditions was 

theoretically studied, taking into account factors such as wall effects and paiiicle­

patiicle effects. Based on this study, experimental single particle settling velocity 

data was compared with Shah (1982) correlation. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 Fracturing Fluids 

There is a wide variety of fracturing fluids available today with an even more 

impressive range of additives. The fracturing fluids can be broadly categorized into: 

1. Water based fluids - Fluids that use water as the base fluid. 

2. Oil based fluids - Fluids that use oil as the base fluid for water sensitive 

formations. 

3. Energized fluids - Fluids that use immiscible gases with water such as 

Nitrogen, and Carbon dioxide. 

4. Multi-phase emulsions - Fluids that use immiscible material with water such 

as propane or diesel such that water is the internal phase. 

5. Acid fluids - Fluids that use a weak acid as the base fluid. 

The additives can be categorized as: 

1. Gelling agents - Additives that increase the viscosity of so lution. 

2. Cross- linkers - Additives that increase the viscosity of a linear gel. 

3. Breakers Additives that reduce the viscosity of fluid after fracturing 

treatment. 

4. Fluid loss additives - Additives that aid in fluid loss by building a filter cake 

on the rracturc face as the fluid loses to the formation. 

5. Bactericides Additives that kill micro-bacterial organisms that could 

degrade the !luid. 
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6. Surfactants and non-emulsifying agents - Additives that prevent formation 

of emulsions and water blocks. 

7. Clay control additives - Additives that prevent swelling of clay on contact 

with water. 

8. Temperature stabilizers - Additives that prevent loss of viscosity of polymer 

gel at high temperature. 

The first fracturing fluid used was developed during the Second World War and 

composed of gasoline gelled with palm oil and cross-linked with napthenic acid, 

commonly called Nalpalm. These fluids were highly hazardous and expensive, 

leading to the development of safer, cheaper, water based fluids. Most of the 

fracturing fluids used today are water based fluids. The components of a typical 

cross-linked water based fluid are: polymer, water, cross-linker, buffer, and gel­

stabilizer or breaker. Each component is critical to the development of desired 

fracturing fluid properties. Polymers in fracturing fluids act as viscosifiers and 

thereby provide desired viscosity to: 

1. Generate fracture width. 

2. uspend proppants. 

3. Control fluid loss to formation . 

4. Reduce friction pressure in tubing. 

Guar gum and ccllulosic derivatives are the most commonly used polymers in 

rructuring fluids. Usually these polymers in water are cro -linked with metal-based 
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cross-linkers. The first cross-linked guar fluid used a borate cross- linker and was 

patented by Lord Kern with Sinclair (later ARCO) on October 16, 1962. Metal­

based cross-linking agents developed by DuPont for plastic explosive app lications 

were found to be useful for formulating fracturing fluids for hi gh temperature 

applications. Fluids formu lated using cellulosic derivatives are residue-free and help 

minimize fracturing fluid damage to formation . However, these derivatives are 

difficult to disperse due to their rapid rate of hydration. Fluids formulated using guar 

gum and its derivatives are easily dispersed but produce some residue when broken. 

Strong oxidizing agents such as sodium or ammonium per sulfate are added to these 

fluids to break the polymer as the temperature increases. The first patent on borate 

gel breakers was issued to Tom Perkins, Sinclair, December 29, 1964. 

Buffers are used in conjunction with polymers such that optimal pH for polymer 

hydration can be attained. When this optimal pH is reached, the fluid or the polymer 

exhibits the maximum viscosity. Usuall y weak acid/weak base blends are used as 

buffers in fracturing fluids. The ratios of these blends are adjusted so the desired pII 

can be attained. Some buffers dissolve slowly to delay the cross-linking effect. 

Gel stabilizers are added to fracturing fluids to inhibit chemical degradation as the 

fluid travels from the wcllbore to the fracture tip . Some commonly used gel 

stabili/crs arc methanol. Tri Ethanol Amine (TEA), and va rious inorganic sulfur 

compounds. Some stabil izers interfere with cross-linking. Therefore, it is important 

to identil} compatibility of individual components in the fracturing fluid. TEA and 
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sulfur compounds are preferred over methanol as it is expensive, flammable, and 

toxic. 

2.2 Guar gum 

Guar gum is a galactomanan obtained from the endosperm of the Cyamopsis 

telragonolobus seed. Galactomanans are polysaccharides consisting of a mannose 

backbone with galactose side groups. The principal backbone is a chain of (1 -4) - ~­

D-mannopyranosyl units, with single (1-6)-a-D-galactopyranosyl units linked to the 

principal chain. The molecular weight of the polymer ranges from 1.2 x I 06 to 2.0 x 

I 06 g/mol. Figure 2.1 shows the structure of the guar gum polymer. This figure 

shows two mannose units (forming the backbone) and one linked galactose 

molecule (side group). 

11 
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Figure 2.1: Structure of guar gum polymer (Curr et al. 201 2) 

I he mannose to galactose ratio 1s 1.2 to 1.8 and can change depending on 

temperature at which guar is dissolved 111 water. The di tribution of ga lactose 

ramifications is not constan t, i.e., there are mooth (no ramifications, i. e. , mannosc 
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unit is not linked to a ga lactose molecule) and hairy regions. Hairy regions are when 

one galactose molecu le is linked to every mannose unit. The interaction among 

galactomanan molecules, with themselve or with other polysaccharides (synergy) is 

enhanced by the presence of smooth regions . Figure 2.2 explains the smooth and 

hairy regions of a guar gum polymer. 

- 0 - C60 41-19 - 0 - C60 4H1 0- 0 - C60 4H9 - 0 - C604H10- 0 -

1 I 
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Figure 2.2: Guar gum polymer chain with hairy and smooth regions 

n 

Although guar gum and its derivati ves are the most commonly used polymers to 

increase the viscosi ty of fracturing flu ids, the conductiv ity of fractures created is 

low because of res idua l unbroken ge l in the fracture. It is, therefo re, desirable to 

reduce the po lymer concentration of fracturing fluids witho ut comprom ising on 

viscosity. One method of achiev ing thi s is to cross-link. Cross-linking increa es the 

p~rformance of these po lymers by yie lding hi gher viscosities without increasing the 
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polymer concentration. Low polymer concentration cross-linked gels lower costs 

and help minimize formation damage. 

Advantages of using guar gum as a viscosifier for hydraulic fracturing operations 

are: 

1. It is highly dispersible in water as well as brines of different salinity. 

2. Aqueous solutions of guar display the desired shear thinning rheology and 

can be cross-linked with borax to give very high gel strength for suspension. 

3. The polymer structure of fracturing fluid is easily broken by breakers, 

serving as the ideal carrier for placing proppant far back into the fractures. 

Disadvantages of using this polymer are: 

1. Poor thermal stability. 

2. Sensitivity to high pH leading to loss of viscosity. 

3. Susceptibility to bacterial fermentation. 

4. Residual damage. 

2.3 Xanthan gum 

Xanthan gum is a bio-polysaccharide synthesized by Xanthomonas campestris , and 

is used as a thickener in many industries other than petroleum, such as 

pharmaceutical. cosmetic and food. The primary structure of xanthan consists of 

repeated pcntasaccharide units formed by two gluco e units, two mannose units, and 

one glucuronic acid unit, in the molar ratio 2.8:2.0:2.0. Its main chain consists of~-
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D-glucose units linked at the 1 and 4 po itions. Trisaccharide side chains contain a 

D-glucuronic acid unit between two D-mannose units linked at the 0-3 position of 

every other glucose residue in the main chain. The trisaccharide branches appear to 

be closely aligned with the polymer backbone. The resulting stiff chain may exist as 

a single, double, or triple helix (Morris, 1977; Milas and Rinaudo, 1979), which 

interacts with other polymers to form a complex structure. Figure 2.3 shows the 

polymer structure of xanthan gum. The molecular weight distribution ranges from 2 

x 106 to 20 x 106 g/mol. This molecular weight distribution depends on the 

association between chains, forming aggregates of several individual chains. 

[ - Glucose - Glucose - ]n 
I 

Manno e 

Mannose - Glucuronic 

Figure 2.3: Structure of xanthan gum polymer (Makela & Makela 2013) 
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Dissolution temperature. or the temperature at which xantban gum is dissolved in an 

aqueous medium, determines the conformation of the polymer structure. At low 

dissolution temperature, xantban shows ordered conformation, whi le at higher 

temperature xanthan shifts to a disordered structure. Figure 2.4 shows examples of 

ordered and disordered conformations of single helix xanthan gum structure. 

Ordered Disordered 

Figure 2.4: Ordered and disordered conformations of single helix xanthan gum 

Xanthan gum in aqueous solution exhibits non- ewtonian, shear-thinning behavior. 

It is extensive ly used in the oil industry a a viscosifier and friction -reducing 

additive in drilling, completions and workover operations. It is highl y desirable as a 

drilli ng mud. and produces .Oat velocity profi le in annu lar flow, which is required 

for efficient li ft ing of cuttings in lower density muds. Even at very low shear rates, 

xanthan behaves as a pseudopla tic fluid. yielding high viscosities. This unique 

rheology (high lo -v shear rate vi scos ity or LSRV) often offsets xanthan's high cost 
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as compared to other viscosifiers. Xanthan is anionic, with tolerance for sa linity and 

fair tolerance for hardness ions. Temperature tolerance varies with water-phase 

components, but it starts to degrade around 200 to 250 °F. Extreme pH or hardness 

is not we ll tolerated and it is susceptible to bacterial attack. 

2.4 Synergy of xanthan and guar gum 

Mixtures of xanthan gum and galactomanans such as guar gum, locust bean gum or 

tara bean gum, show a higher combined viscosity than that occurring in each 

separate po lymer. Galactomanans are polysaccharides that yield galactose and 

mannose on hydrolysis. In this study the galactomanan investigated is guar gum. 

Synergistic interaction of xanthan and guar is affected by polymer ratio in the 

mixture, polymer concentration, dissolution temperature or the temperature at which 

polymer is dissolved, temperature of mixture, salinity, and shear rate. 

Synergistic interaction between xanthan and guar was :first reported by Rocks 

(1971 ). Since then many theories have been proposed to explain synergy of xanthan 

and guar. It is important to note that the nature of this synergistic interaction is not 

entirely understood. Some researchers claimed that the higher viscosity or gelation 

or xanthan and guar mixture is due to their incompatibility (Kovacs, 1973 and 

Schorsch et al., 1995). llowever, there is considerable evidence and literature that 

supports intermolecular binding between xanthan and guar (Cairns et al., 1986; 

Miles ct aL 1987: Cheetham & Mashimba, 1988; Cheetham et al. , 1986; Cheetham 

& Punruckrong, 1989; Foster & Morri , 1994; Goycoolea et al. , 1994; McCleary & 
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eukom, I 982). The intermolecular binding mechanism between xanthan and guar 

is still controversial, and over the years different models have been proposed. They 

are described below: 

1. Dea et al. (1977) and Morris et al. (1977) proposed that the intermolecular 

binding occurs between the ordered (helical) xanthan and unsubstituted or 

poorly substituted guar backbone. This strength of the intermolecular 

binding is dependent on the galactose content (Dea & Morrison, 1975). 

2. Tako et al. (1984) and Tako (1991) proposed that the intermolecular binding 

occurs between side chains of xanthan and guar backbone. They suggested 

that the side chains of xanthan are inserted into adjacent substituted regions 

of the guar backbone, which had an extended two-fold ribbon like 

conformation. 

3. Cairns et al. (1986) and Cairns (1987) proposed that the intermolecular 

binding occurs between the disordered xanthan and guar. They suggested 

that disordering of xanthan helical structure is essential for ge lation. They 

proposed that xanthan had a disordered, extended two-fold cellulose like 

conformation when interacting with guar. Cheetham et al. (1986) and 

Cheetham & Mashimba (1988, 199 1) pro po ed that the interaction occurs 

between the di ordered segments of xanthan chains and guar. 

4. Mannion et al. (1992) proposed two different mechanisms. At room 

temperature, the interaction with ordered xanthan gi es weaker elastic gel 

\ ith little dependency on the galactose content of guar. The second 
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mechanism requires heating the xanthan-guar mixture. The heat disordered 

xanthan segment gives a stronger gel that is highly dependent on galactose 

side chains of guar. 

5. Zhan et al. (1993) disagreed with two-mechanism theory and stated that 

there can only be one mechanism governing xanthan-guar synergy. They 

suggested that the extent of disorder induced in xanthan prior to mixing with 

guar is the main factor for synergistic interaction. 

It is clear that the nature of synergistic interaction is not clearl y understood despite 

various investigations and experimental studies since 1971. Investigating the 

mechanism of synergy between xanthan and guar gum polymers is beyond the scope 

of this study. Rather it is important to understand how this synergy can be utilized 

for the oil and gas application. Based on experimental results of previous 

investigators a number of inferences can be drawn. 

Weak interaction of xanthan gum and guar gum polymer mixtures is due to presence 

of side chains on every other unit or every two to four units of guar gum molecule 

(Tako and Nakamura 1984). Rheologica l behavior of mixtures having a total 

polymer concentration of 0.2% was investigated. No synergistic interaction at room 

temperature was observed. This might be due to side chains on guar gum molecul e 

preventing the insertion of trisaccharide s ide-chains of xanthan gum molecule into 

the backbone of guar gum molecule. At room temperature de-acetylated xan than 

and guar gum showed synergistic interaction. Th is might be because the xanthan 
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molecules are more flexible and could associate with guar gum molecules better 

when free from intermolecular association caused by the acetyl group. At low 

temperatures, xanthan and guar gum mixture displayed synergy and had higher 

viscosity than either polymer. Maximum synergy was observed when the ratio of 

xanthan and guar gum was 2: 1. At temperatures of 25 °C and above, the synergy of 

native xanthan and guar gum stai1s to decrease. For de-acetylated xanthan and guar 

gum mixture, at temperatures of 30 °C and above, the synergistic interaction starts 

to weaken . This might be due to Brownian motion of the gums in aqueous solution. 

Use of xanthan-hydroxypropyl guar mixture as fracturing fluids in low to moderate 

temperature wells to counter poor clean up and proppant pack damage was 

recommended (Clark et al. 1985). Rheology of 15 lbm/Mgal xanthan gum and 15 

lbm/Mgal hydroxypropyl guar mixtures was studied. The aim was to investigate if 

synergy o f these polymers can be utilized for effective proppant transport and 

replace cross linked guar gum fluids , which are associated with excess viscosity and 

poor cleanup. A special apparatus was used to measure single particle settling 

\eloc ity of proppant in blends, which had a rotatable inner cylinder to provide 

external shear to the fluid. This external shear is in addition to the internal shear 

caused by the settling o f the particle. The particles used were sieved glass beads of 

mesh size 30. It was found that xanthan and hydroxypropyl guar at ratio of 3:4 

showed the best synergy. Settling velocity of glass bead in this blend was studied at 

!luid temperatures, ranging from 25 to 85 °C. Suspension ability of the polymer 

hknd impro \ 'Cd s ignificantl y as the temperature wa increased above 50 °C. At 85 
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°C, the settling velocity in the blend was 500% less than those in 40 lbm/Mgal 

hydroxypropyl guar. 

Strength of synergy between xanthan and guar gum polymer fluids increases with 

increasing polymer concentration and decreases with increasing temperature (Casas 

et al. 2000). Three concentrations of food grade xanthan and guar gum polymers 

were investigated: 1, 1.5 and 2 kg/m3. Ideal dissolution temperature to prepare 

component polymer fluids was identified in the study. Highest viscosity was 

obtained at 1:1 (wt./wt.) ratio of xanthan gum (dissolved at 40 °C) and guar gum 

(dissolved at 80 °C) at 2 kg/m3 concentration. Decrease in apparent viscosity of 

these polymers with increase in temperature is reversible and is explained by 

molecular interaction of these polymers in solution, which get weaker as 

temperature increases. The solubility of guar gum is temperature dependent. At low 

temperatures (< 25 °C), the fraction of guar gum dissolved is 88% with a 

mannose/galactose ratio in the dissolved polymer is 1.23. This ratio increases with 

increasing dissolution temperature. At 80 °C, it was found that the more than 91 % 

polymer is dissolved and the mannose/galactose ratio is 1.43. This change in 

mannose/galactose ratio affects viscosity, which increases, reaching a maximum at a 

dissolution temperature of 60 °C. Dissolution temperature of these polymers is the 

most influential variable for synergy. It was found that the hi ghest viscosity was 

achie\cd \\<hen xanthan gum was dissolved at 40 °C and guar gum was dissolved at 

80 °C. 

20 



Optimal ratio range for improved synergy between non-acetylated xanthan and guar 

gum was found to be 1 :4 to 1 :2 (Fischer ct al. 2001 ). Non-acety lated xanthan is a 

xanthan variant where the acetyl group on the first mannose unit of the side chain is 

not present. Removal of this acetyl group aids in the binding process with guar by 

making the double helix configuration less stable and allowing the single helix 

xanthan backbone to bind to the unsubstituted guar backbone. Therefore, non­

acetylated xanthan produces stronger synergy with guar than xanthan gum. Various 

polymer concentrations were investigated: 10, 15, 20 and 25 lbm/Mgal. The higher 

the polymer concentration, higher is the viscosity of polymer blends. Synergistic 

interaction is adversely affected by presence of salt, particularly K+ and Ca+2. KC! is 

normally used as a controlling agent in fracturing fluids. This can be countered by 

substituting KC! with Tetra Methyl Ammonium Chloride (TMAC) for clay control. 

Chelating agent can be used to chelate Ca+2 ions. Different chelating agents were 

investigated: Tri-Sodium Nitrilo Tri-Acetic Acid (NTA), Tri-Ethanol Amine (TEA) 

and Tetra-Sodium Ethylene Di-Amine Tetra-Acetic Acid (EDTA). It was found that 

a combination of NT A with TEA or EDT A works best in chelating Ca2+ ions, as 

long as concentration of NTA is adjusted acco rding to the hardness of water. At 

temperature above 100 °F, the overall viscosity of blends reduced considerably, 

making it necessary to crosslink. 

As pointed out by various investigators, the synergistic interaction between xanthan 

and guar is not clearly under tood. Some report no synergy between xanthan and 

guar at room temperature while others report weak ynergy at temperatures below 
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25 °C. It i important to note that the structure of polymer plays a major role in this 

synergist ic interaction and that all investigators used different formulation of 

xanthan or guar. Some used food grade while others used non-acetylated or de­

acetylated xanthan. 

2.5 Particle Settling Behavior in Newtonian and Non-Newtonian Fluids 

It is important to have reliable knowledge of terminal settling velocity of spherical 

particles in Ouids for process design calculations in different industrial settings. 

Typical examples are design of slurry pipelines, settling tanks, separators, fluidized 

bed reactors, falling ball viscometers, etc. In the oil and gas industry, flow around 

submerged particles occurs during transport of cuttings and transport of proppant in 

a fracture. Particle motion in fluids can be characterized by three flow regimes: 

creeping, intermediate and turbulent. 

2.5.1 Particle Settling in Newtonian Fluids 

Many investigators have studied particle motion in Newtonian fluids extensively. 

When flow around pherical pa1iicle is in creeping flow regime, the analytical 

equation derived by Stokes (1851) can be used to calculate its terminal settling 

velocity. For flow in intermediate and turbulent region various empirically derived 

correlations exist by different investigators (Clift et al. 1978; Chhabra 2006) to 

estimate drag coeffic ient (CD), which is then used to calculate terminal settling 

\ elocity. Lapple and Shepherd (1940) produced a standard curve to estimate drag 

codTicient using particle Reynolds number by compiling average values o f 
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experimental data of different investigators. Using this curve, terminal settling of a 

particle in a Newtonian fluid can be estimated by trial and error method. To avoid 

thi tedious process j C0 N ~ep and particle Reynolds number can be plotted on a 

logarithmic scale to produce a straight line, which can then be used to estimate drag 

coefficient and calculate terminal settling velocity (Shah 1982). This method has 

been tested with experimental data by previous invest igators and shows good 

agreement. 

2.5.2 Particle Settling in Non-Newtonian Fluids 

Pariicle settling in non-Newtonian fluids has been extensively studied and reported 

by various investigators due to their wide occurrence in chemical and petroleum 

processes. Chhabra (1986, 1990, 2006) critica ll y reviewed and reported chemical 

industry literature available on particle settling in non-Newtonian fluids prior to 

1990. 

An empirical correlation relating drag coefficient and gen ral ized particle Reynolds 

number fo r spherical pariicles falling at the ir terminal settling ve loc ity in 

hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), and polyeth ylene 

oxide (PEO) fl uids was developed and the rheological data of these fluid s was fitted 

with Ell is fl uid model (Dallon 1967). Chhabra ( 1990) used Dallon' experimental 

data and refi tted the fluid s with power law fluid model covering the flow behavior 

inde.-, n. ra nging from 0.64 to 0.94. Prakash (1983) deve loped an emp iri ca l 

correlation between drag coefficient and particle Reynold number from 
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experimental data of spherical particles in CMC solutions that shows a dependence 

on the power Jaw flow behavior index. It was noted that confining walls could have 

influenced data but no wall correction was applied. 

Peden and Luo ( 1987) reported experimental data of spheres falling in aqueous 

solutions of CMC and HEC as well. Two constants in their empirical correlation 

showing the relationship between drag coefficient and particle Reynolds number 

were reported to be functions of power law flow behavior index but the dependence 

was found to be irregular. In addition, their correlation does not reduce to expected 

limiting behavior for Newtonian fluids. Although, Koziol and Glowacki (1988), 

Reynolds and Jones (1989) and Machac et al. (1995), have also reported similar 

results, none of their correlations have been tested using independent experimental 

data. 

Kelessidis and Mpandelis (2004) produced a five-parameter implicit model to 

predict the settling velocity of single particle in pseudoplastic fluids. Their equation 

is similar to one proposed by Heider and Levenspiel (1989) for Newtonian fluids 

using non-linear regression and has five constants. Predictions from this model were 

compared with limited CMC fluid data with power Jaw constant, n > 0.74. It was 

found that 80% of the data fa ll wi thin 30% deviation. Kelessidis (2004) reported an 

explicit equation to predict terminal velocity of solid pherc falling through 

pseudoplastic Ouids. llowever, this model as well was tested with limited data and 

only for n > 0.56. 
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All these studies mentioned a dependence of drag coefficient on power law behavior 

index. This dependence was in addition to the one accounted for in definition of 

generalized particle Reynolds number. However, the study of Lali et al. (1989) 

disputed these findings and claimed that their data of drag coefficients of spheres 

moving through power law fluids correlated well with Newtonian standard drag 

curve. Chhabra (1990) gathered a large body of experimental data available in the 

literature and reexamined them to explore the possibility of using the Newtonian 

standard drag curve for power law fluids. Specifically, he considered data of Dallon 

(1967), Prakash (1983), Machac et al. (1987), Lali et al. (1989) and his own 

gathered data (Chhabra 1980). He found that Newtonian drag curve provides a 

satisfactory representation of the drag coefficient - generalized particle Reynolds 

number data for power law fluids . His study covered fluids with power law index 

values between 0.55 and 1.00 and generalized particle Reynolds number range of 1 

- 1000. Mean error reported was 30% but maximum errors of up to 70% were 

encountered as well . 

Novotny (1977) studied particle transport using vertical fractures. He stated that 

shear rate in fracture consisted of two components : a horizontal component related 

to fluid motion and a vertical component related to particle settling, and presented 

an equation that required only knowledge of shear rate to predict settling velocity . 

Harrington et al. (1 979) showed that terminal settling velocity of proppant in non-

ewtonian crosslinked fracturing gels is 78% lower than calculated values obtained 

using Stokes (1 851) equation for creeping flow . Hannah and Harrington (1981) 
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subsequently showed that it was not possible to predict the settling velocity with just 

shear rate. 

Shah (1982, 1986) proposed a new method to analyze particle-settling velocity in 

non-Newtonian fluids. He demonstrated the effect of fluid behavior index, n, on 

drag coefficient for particle settling in non-Newtonian fluids . Previous authors had 

employed conventional coordinates - drag coefficient versus particle Reynolds 

number. Although this works well with Newtonian fluids, it tends to obscure the 

effect of power law behavior index. This can be seen from the data of Shah (1982, 

1986), which scattered around the ewtonian standard drag curve with no 

discernable trend and with significant deviations . However, when this data was 

plotted as Co2
-

11 versus NRepg it showed a family of curves as a function of n. This 

indicates the dependence of drag coefficient on power law flow behavior index. For 

Newtonian fluids (n = 1), it reduces to the Newtonian standard drag curve. To avoid 

trial and error method to evaluate drag coefficient and, thereby, terminal settling 

velocity of particle, he plotted settling velocity data as c5-n N ~epg versus NRepg 

and proposed correlations for particle settling in power law fluids. The inadequacy 

of Newtonian model to correlate the data of single solid spherical particle moving in 

power liquids was demonstrated (Shah et al. 2007). They recommend using Shah 

(1982) model, as it is an improvement to existing models in the literature to predict 

spherical particle settling velocity in power law liquids . 

26 



2.5.3 Particle Settling in Fluids with Yield Stress 

Particle settling behavior in complex fluids with yield stress is different from fluids 

without yield stress. Various investigators have tried to come up with drag 

coefficient correlations as a function of modified particle Reynolds number such 

that when yield stress is assigned a zero value, the correlations reduce to Newtonian 

standard drag curve. However, this has attained limited success with most of the 

data scattered around the Newtonian standard drag curve. 

Spherical particle settling data in Bingham plastic fluids was reported by Valentik 

and Whitmore (1965). Graphical relations between settling velocity of spherical 

particle and diameter of unsheared envelope of fluid surrounding the particle were 

given. These relations were not based on the actual diameter of the spherical 

particle. They suggested using particle Reynolds number - drag coefficient 

correlations developed for Newtonian fluids to estimate drag coefficient provided 

diameter of unsheared envelope and plastic viscosity are used to calculate particle 

Reynolds number. However, the model did not have any physical basis and no 

method was given to predict the unsheared envelope of fluid surrounding the 

particle. 

An expression to determine drag coefficient of spherical particle in Bingham plastic 

fluids using modified particle Reynolds number that incorporated yield stress was 

given using fifty data points (Du Plessis and Ansley 1967). Ansley and Smith 

(1967) modified particle Reynolds number and developed a correlation parameter 
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on the basis of stress analysis of surrounding fluid due to forces acting on falling 

spherical particle. They proposed two correlations to predict drag coefficient in 

creeping and turbulent flow region as a function of this parameter. These 

correlations could not predict drag coefficient in the intermediate zone. Further, the 

correlating parameter developed could not be reduced to particle Reynolds number 

when yield stress was assigned a zero value. Based on visualization studies of 

slowly flowing Bingham plastic fluids around bodies of different shapes it was 

found that drag is not simply due to increase in effective volume of the body as 

suggested by Valentik and Whitmore (1965) (Brookes and Whitmore 1969). 

A theoretical model was developed to predict drag coefficient as a function of 

modified Reynolds number using data of Valentik and Whitmore (1965) (Dedegil 

1987). However, this model as well could not reduce to Newtonian standard curve 

when yield stress in modified particle Reynolds number was assigned a zero value. 

Fluids that exhibit yield stress can completely suspend small or fine particles. 

Maximum diameter a particle can have to stay suspended in fluid with yield stress 

was given (Dedegil 1987). 

2.5.4 Particle Settling in Fluids Under Dynamic Conditions 

Proppant transport and settling in a fracture is an example of particle settling under 

dynamic conditions. Since it is important to understand the phenomenon affecting 

proppant placement in a fracture, studies were undertaken using Newtonian oils as 

the fluid medium in a transparent, vertical, clear, plastic fracture model (Kem et al 
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1959). These experiments confirmed that separation from fluid and banking of 

proppant occurs in a vertical fracture due to gravity. Using a similar apparatus, 

proppant transport in both Newtonian and non-Newtonian fluids was studied 

(Babcock et al 1967). Proppant transport in horizontal fractures was investigated 

and it was established that proppant formed dunes similar to that formed in river 

beds (Wahl 1963). Using experimental data of these investigators, mathematical 

models were developed that would predict final placement of proppant on 

completing a fracturing job. 

These models were proven to be insufficient to predict proppant settling in 

crosslinked gels, introduced to the industry in mid to late 1960s. Due to high 

viscosity of these fluids, tests run in vertical fracture models showed no separation 

of proppant. However, the residence time allowed in these tests was too short and 

this could have led to erroneous results. This uncertainty has led to some researchers 

using established correlations for non-crosslinked, non-Newtonian fluids, based on 

Stokes law, and applying them for crosslinked gels . Others have treated these gels 

as perfect support fluids by assuming no proppant separation. 

Feeling a need to understand proppant settling in crosslinked gels under dynamic 

conditions, Hannah and Harrington (1978) used a concentric cylinder tester and 

attempted to match experimental data of particle settling with predictions of non­

Newtonian form of Stokes Law. To simulate dynamic conditions, outer cylinder of 

was rotated while inner cylinder remained stationary . This experimental setup is 
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similar to the one used by Novotny (1977). However, their experimental data did 

not agree with theoretical predictions. Using a similar tester, with a different aspect 

ratio, rotating inner cylinder and stationary outer cylinder, settling rates of proppant 

in crosslinked gels was measured (Harrington et al 1979). Experimental data of 

proppant settling velocities were plotted on a logarithmic scale against apparent 

viscosity and a straight line was obtained . This line was parallel to but 78% lower 

than Stokes line on a similar plot leading them to develop an empirical constant to 

predict settling velocity . However, this empirical constant is fluid specific and 

cannot be general ized. 

Particle settling experiments m non-Newtonian fluids under static and dynamic 

conditions were conducted and a correlation was developed which is dependent on 

power law fluid parameter, n (Shah 1982). The experimental data of Hannah and 

Harrington (1978) show good agreement with the correlation predictions . 

2.5.5 Wall Effects 

The drag experienced by a free falling particle in a fluid or its terminal settling 

velocity in a bounded fluid is not the same as in infinite fluid . Bounding walls exert 

a retarding effect on terminal velocity of particles in a viscous medium and this has 

been studied both theoretically and experimentally for centuries (Newton 1687; 

Munroe 1888; Ladenburg 1907). This retarding effect is brought about by upwards 

counter flux of fluid, whi ch balances downwards flux of the solid and that of the 

dragged down fluid . The smaller the area available for the counter flux , i.e., the 
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smaller the container cross-section area as compared to the particle size, the more 

critical the phenomenon. For perfectly spherical particles falling in a cylindrical 

tube, the diameter ratio of particle diameter to cylinder diameter is an important 

parameter that can be used to quantify wall effects. 

In creeping flow regime, both fully theoretical and empirical correlations have been 

proposed to estimate wall factor, which is the ratio of bounded terminal settling 

velocity to unbounded terminal settling velocity (Francis 1933, Haberman and Sayre 

1958, Clift et al. 1978, Iwaoka and Ishii 1979). Theoretical analysis is not available 

for terminal Reynolds number outside the creeping flow regime and empirical 

correlations are used to estimate the wall factor. Based on 3000 experimental 

observations, the effect of cylindrical column diameter on single particle settling 

velocity for Reynolds number range of 0.054-20000 was published (Whitmore 

1961 ). Experimental observations suggest that wall effect phenomenon becomes 

less critical with increasing Reynolds number (Munroe 1988). For intermediate flow 

regime Fidleris and Whitmore (1961) gave multiple correlations for different 

Reynolds numbers and selected values of diameter ratio (0.1 -0.6). They concluded 

that in intermediate region wall factor is a function of both diameter ratio and 

particle Reynolds number in an unbounded medium . Wall factor is independent of 

Reynolds number in the creeping and turbulent region. 

For non-spherical particles in creeping flow regime, wall effect correction factor has 

been correlated with geometric parameters, shape and orientation (Johnson et al. 
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1987, Leith 1987, Sheaffer 1987, Lee and Leith 1989, Cheng 1991). Similar 

approaches to develop correction factors based on Reynolds number, shape and 

orientation of non-spherical particles have been published and gained wide 

acceptance in the literature (Finn 1953, Jones and Knudsen 1961, List and 

Schmeanauer 1971, Kasper et al. 1985, Unnikrishnan and Chhabra 1991, Sharma 

and Chhabra 1991, Swamee and Ojha 1991). Generalized correlations have been 

developed for non-spherical particles in cylindrical columns by Haider and 

Levenspiel (1989) and Thompson and Clark (1991) to account for wall effects on 

drag coefficient. 

2.5.6 Particle-Particle Effect 

In addition to effect of container boundaries, particle settling is affected by presence 

of other surrounding particles. When the particles are near each other, the motion of 

a particle is impeded by other particles and settling process is called hindered 

settling. Static sedimentation experiments to evaluate the settling behavior of non­

flowing slurries were conducted by Kirkby and Rockerfeller (1985). They found 

that proppant clustering phenomenon results in average static-slurry settling 

velocities considerably greater than those of single particles . Setting of single 

particles and suspensions in static HPG fracturing fluids was studied by Dunand and 

Soucemarianadin (1985). They concluded that in fluids with identical single particle 

settling velocities, the average settling rate of a concentrated suspension in a static 

non-Newtonian fluid is two to three times higher than in a corresponding Newtonian 

fluid Empirical correlations have been developed by various investigators that 
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relate hindered settling velocity to single particle settling velocity in a particular 

fluid (Steinour 1944, Richardson and Zaki 1954, Slattery 1962). An experimental 

study was undertaken to simulate the behavior of proppant-laden fluids in a fracture 

and observe proppant settling behavior under controlled test conditions (McMechan 

and Shah 1991). It was concluded that at low slurry concentrations, clustering 

occurs in linear gels leading to higher settling velocities than single particle settling 

velocity . As concentration is increased beyond a critical value, hindered settling 

effects are dominant. 
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CHAPTER3 

THEORETICAL STUDY 

This section details a theoretical study undertaken to understand Newtonian fluids, 

non-Newtonian fluids, and particle settling in Newtonian and non-Newtonian fluids . 

Fluids are constituents of matter that experience continuous deformation when stress 

is applied to them. Therefore, the stress applied to a fluid can be expressed in terms 

of the rate of deformation or shear. Viscosity of a fluid is its ability to resist shear 

deformation when shear stress is applied to it. 

3.1 Newtonian and non-Newtonian Fluid Rheology Models 

ewtonian fluids are simple fluids that adhere to Newton law of viscosity . Shear 

stress is related to the shear rate by a constant, for a given pressure and temperature, 

which is the viscosity of the Newtonian fluid (Eq. 3.1). Water, oil, alcohol , etc. are 

examples of fluids considered as Newtonian and viscosity is a fluid dependent 

property. These fluids have simple internal structure with low molecular weight and 

dissipate energy due to collision of small molecules. 

where, 

i: = shear stress, I bf/ft2 

y - shear rate, l/s 

~t Newtonian viscosity, lbf/ft2-s 

T = µy (3 .1) 
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Newtonian fluids are the simplest mathematical models of fluids that account for 

viscosity. No real fluid fits this definition perfectly but many common liquids and 

gases can be assumed to be Newtonian for practical calculations under ambient 

conditions. 

Non-Newtonian fluids do not adhere to Newton law of viscosity. These fluids have 

dissolved molecules that give rise to non-Newtonian behavior. There are many 

classifications among non-Newtonian fluids based on how shear stress is related to 

shear rate. For the scope of this study, non-Newtonian fluids discussed are 

pseudoplastic or shear thinning fluids. Shear thinning is an effect where fluid's 

viscosity decreases with an increasing rate of shear. Viscosity is no longer a 

constant at all shear rates and is shear dependent. Hence, the term 'apparent' is used 

to differentiate from Newtonian viscosity and to denote its shear dependency. Power 

law fluid model can be used to describe the relationship of shear stress and shear 

rate of a shear thinning fluid (Eq. 3.2). 

T = Kyn 

where, 

n =flow behavior index (<l for shear thinning fluid), dimensionless 

K = fluid consistency index, Ibf/ft2-sn 

(3.2) 

At a given pressure and temperature, n and K are constant for a given composition 

of fluid . As was the case with Newton's law of viscosity, no real fluids fit power 
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law rheology model perfectly. For practical considerations, this rheology model is 

adequate to describe fluid properties of different fluids used in the oil and gas 

industry . 

3.2 Particle Settling in Newtonian Fluids 

Consider a spherical particle of mass 'm' moving through static Newtonian fluid. 

The major forces acting on the particle are: gravity (Fg), buoyancy (Fb), and viscous 

drag (Fv). These forces are shown in Fig. 3 .1. Applying force balance in the vertical 

direction: 

dv 
m-=F -Fb-F. 

dt g v (3.3) 

Figure 3.1: Forces acting on a single particle in Newtonian fluid 
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The measure of force of gravity on the particle is given by its weight (Eq. 3.4). 

F9 =mg (3.4) 

Mass of the particle can be expressed in terms of its density and volume. 

(3.5) 

where in consistent units, 

Fg =gravity force 

Dp =diameter of particle 

PP= density of particle 

g = acceleration due to gravity 

Buoyancy is the upward force exerted by volume of fluid displaced by partially 

submerged or fully submerged particle. The measure of this force is given by the 

weight of the displaced fluid. 

(3.6) 

Expressing the mass of the particle in terms of its volume and density , Eq. 3.6 

reduces to: 

F - i D3 
b - 6rr pPB (3 .7) 

where in consistent units, 

Fb = buoyancy force 

p = density of fluid 
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Viscous drag force is the measure of fluid resistance and acts opposite to relative 

motion of a particle moving with respect to surrounding fluid . For creeping flow 

regime, viscous drag force is given by Stokes' Law (Eq. 3.8) . This equation is only 

valid for smooth spherical particles in a homogeneous Newtonian fluid under steady 

state conditions. 

(3.8) 

where in consistent units, 

Fv =viscous drag force 

~l =Newtonian fluid viscosity 

v =velocity of particle 

When a particle is released into a static fluid , its velocity increases with time due to 

the net force acting on the particle (Eq. 3.3). As the particle accelerates, the drag 

force increases and reduces the net force acting on the particle. In steady state, the 

net force acting on the particle is zero and it travels at its maximum attainable 

velocity or terminal settling velocity. Therefore, at steady state: 

F -Fb-F. =0 g v (3 .7) 

Since Eq. 3.8 is only valid under steady state conditions, the particle velocity 'v' in 

the equation can be denoted by 'vt', particle terminal settling velocity . 

Substituting the constituent forces in this equation and re-arranging it, terminal 

settling velocity can be expressed as: 

V _ D~(Pp-p)g 
t - 18µ (3.8) 
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Under steady state conditions, the viscous drag force can be expressed in terms of 

drag coefficient as: 

where in consistent units, 

- 1 2 c Fv - -pvt A D 
2 (3 .9) 

A = surface area of particle projected on a plane perpendicular to flow direction 

Co = drag coefficient, dimensionless 

Drag coefficient is a dimensionless number used to quantify the drag or fluid 

resistance to relative motion of particle. 

From Eq. 3.8 and 3.9, drag coefficient in creeping flow or Stokes region can be 

expressed as : 

(3 .10) 

The variables in Eq. 3 .10 represent the ratio of inertial forces to viscous forces, 

which is defined as particle Reynolds number, NRep - This is a dimensionless 

quantity used quantify the relative importance of these two types of forces for given 

fl ow conditions. It is expressed as : 

N - pDpVt ( ) 
Rep - µ 3.11 

Therefore, for a single particle settling at its terminal velocity in a ewtonian fluid 

under steady state conditions and when the flow regime is m Stokes region 

(creeping flow), the drag coefficient can be analytically given as: 

C - 24 o--­
NRep 
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Particle Reynolds number can be used to characterize different flow regimes 

observed. 

Creeping flow regime: NRep < 0.1. 

Intermediate flow regime: 2 < NRep < 500. 

Turbulent flow regime: 500 < NRep < 200,000. 

Analytic equations to quantify drag coefficient are not available as particle 

Reynolds number increases beyond creeping flow regime range. However, based on 

extensive experimental data, empirical correlation for drag coefficient exists in the 

intermediate range and is given as: 

Intermediate flow regime c - 18.5 
D - N o.6 

Rep 
(3 .13) 

At very high Reynolds numbers, value of drag coefficient is approximately constant: 

Turbulent flow regime: CD :::::: 0.44 (3 .14) 

Lapple and Shepherd (1940) gathered experimental data of many investigators and 

produced a curve representing the relationship of drag coefficient and particle 

Reynolds number for solid sphere motion in Newtonian fluids (Fig. 3 .2) . Using this 

plot, by trial and error, the terminal settling velocity of a particle with known 

diameter and density in a fluid can be determined. This difficulty arises, as both 

drag coefficient and particle Reynolds number are functions of terminal settling 

velocity. 
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Figure 3.2: Standard Newtonian Drag Curve (redrawn, Lapple and Shepherd 

1940) 

Shah (1982) proposed that to avoid the difficulty of trial and error procedure, the 

data represented in Fig. 3.2 might be plotted with jcoNRep 2 as y-axis and particle 

Reynolds number as x-axis (Fig. 3 .3). As y-axis is now independent of terminal 

settling velocity term and is a function of particle diameter, density, and fluid 

properties, it can be easily calculated. Usi ng this value, the corresponding x-axis 

quantity can be determined. Once, particl e Reynolds number is obtained, terminal-

settling velocity can be calculated using Eq. 3 .11 . 
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Figure 3.3: .JcoNRep 2 vs. particle Reynolds number (redrawn, Shah 1982) 

3.3 Particle Settling in Non-Newtonian Fluids 

A simple but incorrect approach to determine terminal-settling velocity m non-

Newtonian fluids is to use modified analytic and empirical equations developed for 

particle settling in Newtonian fluids . To account for non-Newtonian behavior of the 

fluid , Newtonian viscosity term in particle Reynolds number is replaced with 

apparent viscosity, which is a function of shear rate. The prefix 'generalized ' is 

added to particle Reynolds number to indicate that the fluid is non-Newtonian . For a 

fluid that fits power law rheology model, generalized Reynolds number is given as : 

N = PVtDp 
Repg Kyn-1 (3.15) 

where, 

N R<!pg =-- generalized particle Reynolds number, dimensionless 
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Previous investigators have shown that drag coefficient of a solid sphere in non-

Newtonian fluid cannot be estimated by simply replacing particle Reynolds number 

with generali zed particle Reynolds number. There is an additional dependence on 

the power law fluid parameter, n. A family of curves that are a function of flow 

behavior index, n, are produced when Co2
-n is plotted on y-axis and generalized 

particle Reynolds number on x-axis (Shah 1982). With increasing Reynolds number 

the dependence on ' n ' diminishes. This plot can be used to represent all three flow 

regions and drag coefficient can be estimated by trial and error method. To avoid 

this difficulty Shah ( 1982) plotted c5-n N ~epg on y-axis and generalized particle 

Reynolds number on x-axis . This plot reduces to the standard Newtonian drag curve 

shown in Fig. 3.3 when n is unity. The y-axis term is independent of terminal 

settling velocity tenn and can be easily calculated using particle and fluid 

properties. Te1minal settling velocity of a particle can be calculated by estimating 

particle Reynolds number from Eq. 3.16, 3.17 and using it in Eq. 3.18 . 

(3.16) 

c2-nN2 _ [ (3.5778) 2 -n(0.02615)] [d~+2 p 71 (Pp-p)z-n ] 
D Repg - 362(n-1) J< Z (3 .17) 

V = [(36)n-1 l<NRepg ] 1/(2-n) 

t 0.16l7d~p 
(3. 18) 

v.herc. 

A. B. C correlation constants. 

I his correlation is valid for: 0.281 < n < 1.000 and 0.0 l < NRcpg < 500. The 

correlation con ·tants. A. B and C. are functions of Oow behav ior index and can be 
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estimated using Fig. 3.4. Particle shear rate used in this correlation is the maximum 

shear rate and is given in consistent units as: 

, 3Vt 
y=­

Dp 
(3 .19) 

-.-~~~~~~~-------=.-0.1~1 

16 +-+--+--+-r-t-· 
co 
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Figure 3.4: Correlations Constants -A, Band C (redrawn, Shah 1982) 

3.4 Particle Settling in Fluid Under Dynamic Conditions 

Hannah and Harrington (1981) have reported dynamic proppant transport data in 

linear fracturing gels. Their experimental data did not agree with modified form of 

Stokes' Law. This is because there is an additional dependence of drag coefficient 

on power law parameter, n, as described in the previous section . This data when 

plotted as Cs-nN~epg versus generalized particle Reynolds number showed good 

agreement with Shah (1982) correlation . Experimental data generated for particle 
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settling under dynamic conditions with different diameter particles and power law 

fluids agree well with this correlation developed from static particle settling data 

(Shah 1982). Due to shear thinning of the fluid under dynamic conditions, particle 

settling is faster than under static conditions. However, in a fracture this effect is 

opposed by exaggerated wall effects, which retard particle settling. 

3.5 Wall Effects 

As discussed in the previous chapter, various empirical correction factors to account 

for wall effects have been reported and widely used by previous investigators. This 

section discusses wall effects on smooth spherical particle settling in a long 

cylindrical column of fluid. The correction factor (f) is the ratio of terminal settling 

velocity of particle in bound fluid to its velocity in infinite fluid (Eq. 3.20). It is 

independent of particle Reynolds number in creeping and turbulent flow regions. In 

the intermediate region, it is dependent on both diameter ratio (A.) and particle 

Reynolds number in infinite fluid (NRepco). 

f = .3!I_ 
Vtcx 

(3 .20) 

where in consistent units, 

f =correction factor, dimensionless 

Vt= terminal settling velocity in bound fluid 

vi"'= terminal settling velocity in infinite fluid 

(3 .21) 

where in consistent units, 

A.= diameter ratio, dimensionless 
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Dp =diameter of particle 

De= diameter of cylinder 

Chaabra et al. (2003) reviewed a large number of experimental data on wall effects 

and recommended using the Haberman and Sayre (1958) equation (Eq. 3.22) for 

creeping regime, the Di Felice (1996) equation (Eq. 3 .23) for intermediate region, 

and Newton (1687) equation (Eq. 3.24) for turbulent regime. These equations have 

been developed empirically from experimental data. 

Creeping: f = ( 1 - 2.105il+2.086Sil
3

-1.7068il
6

) · A< 0.8 
1-0.75857il5 ' -

(3 .22) 

Intermediate: ( 
1-il )a 3.3-a f = il ; -- = 0.lNRepoc ; 0.08 S A S 0.7 1-0.33 a-0.85 

(3 .23) 

Turbulent: (3 .24) 

3.6 Hindered Settling 

Presence of multiple particles in a fluid leads to mutual interference in the motion of 

particles. The settling velocity of particles is considerably less than that of a single 

particle in fluid. This is because the particle is settling through a slurry or 

suspension of particles rather than a simple fluid . Therefore, accounting for bulk 

density and viscosity of slurry in Eq . 3.8 would give the maximum hindered settling 

velocity of a particle in fluid. 

(3 .25) 

where in consistent units , 
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vH =maximum hindered settling velocity 

Pb = bulk density 

~lb= bulk viscosity 

Bulk density of slurry can be calculated by dividing the mass of fluid and suspended 

particles with the volume occupied by the slurry. Bulk viscosity is a function of 

shear rate and in case of suspensions it is an indefinite and indeterminate value. 

However, the interference caused by the presence of many particles is a function of 

the volume fraction of slurry (<I>) occupied by the fluid. Therefore, the viscosity of 

the fluid may be multiplied by a factor determined as a function of volume fraction 

(<!>) to determine bulk viscosity of slurry. For spherical particles the following 

relationship was developed (Steinour 1944): 

101 .82(1-¢ ) 
(3.26) 

Since bulk density is a function of volume fraction (<!>), particle density and fluid 

density, it is simpler to express hindered settling velocity in terms of some function , 

f(</>), and terminal settling velocity of single particle in fluid: 

(3 .27) 

This function of volume fraction was empirically determined by Steinour (1944) as: 

( ) 
VH </>

2 

f ¢ = ~ = 101.82(1-¢) 
(3 .28) 

If <I>< 0.7, the following simpler relationship can be used: 

(3 .29) 
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CHAPTER4 

EXPERIMENTAL SETUP 

The various experimental setup, equipment, chemicals, and the procedure followed 

to gather experimental data are detailed in this section. A number of precautions 

were taken and the recommended mixing procedures were followed carefully when 

preparing xanthan and guar gum polymer solutions. Based on the literature review, 

the factors that affect synergy of xanthan and guar fluids are: 

1. Ratio of xanthan/guar gum in the blend 

2. Polymer concentration 

3. Dissolution temperature of xanthan and guar gum in fresh water 

4. Temperature of the blend 

5. Salinity of water used to prepare xanthan and guar fluids 

In this study, the effects of polymer concentration, ratio of xanthan and guar fluids 

in the blend, and temperature of the blend have been investigated. Xanthan and guar 

gums were dissolved at 25 °C or 77 °F in fresh water. The water used to prepare 

these fluids was tap water supplied by the City of Norman. 

I\vo pol;mer concentrations (40 and 60 lbm/Mgal) were investi gated. Eight bl ends 

of xanthan and guar gum fluid were prepared for each polymer concentration . 

Temperature and pH were closely monitored. The viscometer readings were 

recorded at a con tant temperature of 25 °C or 77 °F. The volumetric ratios of 

. ·anthan/guar gum fluids investigated and the nomenclature used are shown in Tab le 
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4.1. To study the effect of temperature, a rheology study of some of these blends at 

each polymer concentration was undertaken at an e levated temperature of 150 °F. 

Table 4.1 Nomenclature of xanthan/guar gum fluid blends 

Volumetric ratio of xanthan/guar gum fluids Nomenclature 

0: 1 40 I b Guar Gum 

1 :4 Blend (1 :4 X:G 40 lb) 

1:3 Blend (1 :3 X:G 40 lb) 

I :2 Blend (1:2 X:G 40 lb) 

2:3 Blend (2:3 X:G 40 lb) 

I: 1 Blend (1: 1 X:G 40 lb) 

3:2 Blend (3:2 X:G 40 lb) 

3: 1 Blend (3:1X:G40 lb) 

4:1 Blend (4:1X:G40 lb) 

1 :0 40 lb Xanthan Gum 

0: 1 60 lb Guar Gum 

1 :4 Blend (1 :4 X :G 60 lb) 

1 :3 Blend (1 :3 X:G 60 lb) 

1 :2 Blend (1 :2 X:G 60 lb) 

2:3 Blend (2:3 X:G 60 lb) 

1: 1 Blend (1:1X:G60 lb) 

3 :2 Blend (3:2 X:G 60 lb) 

3: 1 Blend (3:1 X:G 60 lb) 

4: I Blend (4: 1 X:G 60 lb) 
t--

60 lb Xanthan Gum 1:0 

-L 1 Equipment 

A model 35 Fann viscometer shown in Fig. 4.1 with number 1 spring wa used to 

measure rheology of fluids. Table 4.2 shows specifications of the v i co meter. Model 

35 Fann is a coaxial cyl inder rotational viscometer. The te t fluid i contained in the 

annular space between the cylinders. Rotation of the outer cylinder at knov n 
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velocities and viscous drag exerted by the fluid creates a torque on the inner 

cylinder or bob. This torque is transmitted to the spring and its deflection is the dial 

reading of the viscometer. 

Figure 4.1 Model 35 Fann Viscometer 

Ta ble ..t.2 Specifications of Model 35 Fann Viscometer 

eo metry 

meter of Bob, 

G 

Dia 

Dia 

Rat 

meter of C up, 

io (~ - Db/De) 

Dimensions, Shear Rate Range, 

34.49 

36.83 5. 11 - 1021.80 

0.9365 
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T he rheo logy of Duids was measured at 77 and 150 °F. The fluid temperature was 

maintained constant using a hot water bath shown in Fig. 4 .2 . Fl uid qua li ty was 

mo nito red by measuring pH. 

Figure 4.2: Hot wa ter bath with an immersion heater and rin g stand 

Specia ll y constructed equipment shown in Fig. 4 .3 and 4.4 was used to determin 

term inal ve loc ity o f pherical pai1ic le in test flu ids. It is a 6 1li ft long Plex ig las tube 

\\ ith an in te rnal di ameter of 3. 72- in. and an outer di ameter o f 4-in. A t the bottom of 

the tube. a small spi go t was attached to drain the Duid afte r the tes t. A tran parent 

scale spans the length of the tube and has graduati on in both centimete r and inche . 

oice recorded on camera was u cd a a time tamp to mea ure te rm ina l ettling 
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velocities of particles. The specifications of three particles used arc given in Table 

4.3. 

Figure 4.3: 6 ~ft Plexiglas Tube (OD x ID: 4.00 x 3.72 -in.) with scale 

Table -&.3: Specification of Particles 

Mas, g Volume, cc Diameter, cm Specific Gravity 

3.8385 1.434 

3.8898 1.55 1.436 2.50 

3.9599 1.438 
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3 - Video Camera 
4 - Scale 
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Figure 4.4: Schematic of equipment used for single particle settling tests 

4.2 Chemicals Used 

The xanthan gum used sold under the commercial name of FLO-VIS L® by MI 

SWACO. It is a li ght tan color liquid suspension with a specific gravity of 1.1 and 

has an active polymer content of 4 lbm/ga l. It di sperses readily in aqueous olution 

and hydrates rapid ly. The guar gum used wa commercially so ld as BJ Services 

Gelling Agent. It is a pale ye llow, a lmost whitish, powder with a sli ght odor. It 

disperses readily in aqueous so lution and yields hi gh viscosity rapidly. 
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4.3 Experimental Procedure 

For the rheology study xanthan and guar gum polymers were made in 500 ml 

batches. Their blends were prepared the same way by adding appropriate amount of 

guar and xanthan in that order to 500 ml of tap water. The mixing procedure for 

these polymer fluids is detailed below. The blender used to prepare the Duids is 

shown in Figure 4.4. All the Duids for rheology study were prepared the same day 

so as to ensure that the properties of tap water and ambient temperatures were same 

for all the samples. 

Xanthan Fluid Mixing Procedure: 

1. Desired amount of xanthan gum suspension was carefully measured in a syringe. 

2. 500 ml of tap water was carefully measured in a graduated cylinder. 

3. The water was added to a blender jar and mixed at 100-120 rpm. 

4. Xanthan suspension was carefully added to the vortex of water. 

5. If water is mixed at very high speeds, air will be entrained in the polymer fluid. 

6. The fluid was monitored carefully and blender speed was increased as required 

( 140-150 rpm for 40 lb Xanthan Gum and 170-180 rpm for 60 lb Xanthan Gum). 

7. After 30 minutes of shearing the fluid, the blender was switched off. 

8. The fluid was transferred to a tri-pour and hydrated for 24 hours. 
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Figure 4.5: Blender used to mix fluids with manual and automatic speed 

controls 

Guar Gum Fluid Mixing Procedure: 

1. Desired amount of guar gum powder was carefully measured using an e lec tronic 

scale. 

2. 500 ml of tap water was carefully measu red in a graduated cy linder. 

3. The water was added to a blender jar and mixed at 140-1 50 rpm . 

4. Guar gum powder was added slowly with a spoon to the vortex . 

5. If the mixture is mixed at low speeds, guar wi ll form fi h eyes or st ick to the 

blender blades. There is no danger of entrained air a was the case with xanthan 

gum. 
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6. The fluid was monitored carefully and speed was increased as required (180-1 90 

rpm for 40 lb Guar Gum and 220-230 rpm for 60 lb Guar Gum). 

7. After 30 minutes of blending, the blender was switched off. 

8. The fluid was transferred to a tri-pour and hydrated for 24 hours. 

Xanthan Gum-Guar Gum Blend Mixing Procedure: 

1. Desired amount of guar gum powder and xanthan gum suspension were 

measured carefully. 

2. 500 ml of tap water was carefully measured in a graduated cylinder. 

3. The water was added to blender jar and mixed at 140-150 rpm. 

4. Guar gum powder was added first. After it completely dispersed in the water, 

the rpm was lowered. 

5. Xanthan gum suspension was added next. Care has to be taken as if the rpm is 

too high, air will be entrained in the fluid. 

6. The fluid was monitored constant ly and rpm increased or decreased as required. 

7. After 30 minutes the blender was switched off and the fluid was transferred to a 

tri-pour. 

8. The blend was left to hydrate for 24 hours. 

Procedure for rheology study: 

1. Alter hydrating for 24 hours, 300 ml of the fluid was poured into the viscometer 

cup. up to the mark on the inside wall of the cup . 

56 



2. The temperature and pH were then measured. The hot water bath was used to 

increase the temperature of the fluid in the sample cup. 

3. While the fluid was heated , it was continuously stirred to ensure even 

distribution of heat. 

4. Once the fluid had reached the desired temperature it was placed on the 

viscometer stand. 

5. The stand was then raised so that bob and sleeve were immersed in the fluid. 

6. Readings were then taken at different rpms (3, 6, 100, 200, 300, and 600). 

Procedure for Single Particle Settling Tests: 

The lower the terminal settling velocity, the higher is the viscosity of fluid. These 

tests, therefore, identify which fluid would show high low shear rate viscosity. In 

the current experimental setup, each particle was carefully released into a polymer 

fluid or blend so as not to impart acceleration or force. After the particle had 

travelled a distance of 2 ft from the top of the tube, measurements were made to 

calculate terminal velocity over the next 2 ft. This was done to minimize the 

entrance and exit effects. Since, the fluid was contained in a cylinder of 3.72-in. 

inner diameter it may not be considered infinite. Wall effects affect the settling 

\Clocity calculations. To minimize these effects, the ratio of the particle diameter to 

the c; lindcr diameter was maintained very low and the particle were released at the 

center of the tube. f'he Plexiglas tube is sufficiently long to ensure that the particle 

achie\es /.ero acceleration motion and travels at its terminal ettling velocity. 
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The procedure followed for the single particle settling tests is listed below: 

1. The fluids used in these tests were prepared in 5 gallon buckets and blended 

with a Lightin blender. 

2. After hydrating for 24 hours, the fluid was carefully poured into the Plexiglas 

tube with a tri-pour. The tube was tilted so the polymer fluid would ilow into it 

gently. 

3. Care was taken with xanthan fluids and the blends so air bubbles were not 

entrained. 

4. Plexiglas tube was then carefully set on a stand. 

5. A particle was gently wet with the polymer fluid and released at the exact center 

of the tube to minimize wall effects. 

6. The particle was allowed to settle for two feet measured from the top of the tube. 

7. Travel time of the particle over fixed equal intervals was measured using voice 

recording as a time stamp on a video camera. When particle has reached its 

terminal settling velocity, it requires the same time to travel these intervals. 

8. The particle was then allowed to settle to the bottom of the tube. Measurement 

were made in the middle of the tube to minimize entrance and exit effects . 

9. The test was repeated with two other particles of similar size and diameter. 

.tA Equations Used in Data Analysis 

lhe equations used for fluid characterization and terminal sett ling velocity 

calculations are discussed here. The nuid studied were found to be 
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pseudoplas ti c/shear-thinn ing and can adequately be described by power law or 

Ostwald-de-Waele rheology model. 

Wall Shear Stress, 'rw 

Wall shear stress was calcul ated fro m the viscometer dial readings (8) using the 

equation: 

Tw = 0.01066N8i 

where, 

'rw = wall shear stress, lbr/:ft2 

N = spring number, dimensionless 

ei = dial reading at i111 rpm 

Wall Shear Rate, Yw 

(4.1 ) 

Wall shear rate was calculated from the speed of the rotating sleeve of the 

viscometer using the equation: 

Yw = 1.703 RPM (4.2) 

where, 

Yw =wall shear rate, 1/s 

RPM = revolutions per minute of model 35 Fann viscometer 

Power Law Fluid Model 

Wall hear stress and wal l shear rate were used to calcul ate the power law 

parameters, n, the fl ow behavior index, and Kv, the viscometer consistency index . 
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The relationship of wall shear stre s and wall shear rate of a power law nuid 1s 

given as: 

(4.3) 

where, 

1°\\ = wall shear stress, lbr/ft2 

Yw =wall shear rate, l /s 

Kv =viscometer consistency index, lb r-s 11/ft2 

n = fluid behavior index, dimensionless 

Apparent Viscosity, µa 

The viscosity of a non-Newtonian fluid is shear dependent, hence the use of the 

term 'apparent'. For a shear thinning fluid, the viscosity increases with decrease in 

shear. Apparent viscosity of a power law fluid is calculated using the equation: 

µ = 47880K y· n-i a v w (4.4) 

Vvhere, 

~la= apparent viscosity, cP 

K\ = viscometer con istency index, lb r-s11/ft2 

y\\ wall shear rate, 1/s 

Terminal ettling Velocity, v1 

Terminal-settling velocity is the velocity of a particle in a fluid when its acce lerat ion 

is zero. Therefore. it can be calculated u ing the equation of motion: 

Ve = x/t (4.5) 

60 



where, 

vi = terminal-settling velocity, ft/s 

x = displacement of a pa1iicle, ft 

t = time, s 
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CHAPTERS 

RESULTS AND DISCUSSION 

Analysis of the rheology data involved calculating the wall shear stress and wall 

shear rate using the equations described in the previous chapter. It was found that 

the fluids investigated were adequately described by Ostwald-de-Waele or power 

law model. Logarithmic plots of wall shear stress and wall shear rate or rheograms 

were made to estimate the power law parameters. The slope of the straight line is the 

flow behavior index and the intercept at unity wall shear rate is the fluid consistency 

index. 

Terminal settling velocity of three particles with similar size, density and mass in 

polymer fluids and blends was measured. The experimental results were compared 

with prediction of Shah (1982) correlation. Terminal velocity data was also used to 

compare the rheology of blends and polymer fluids. Cost analysis of blends and 

polymer fluids was undertaken to determine a blend that optimized on price and 

performance. 

5.1 Rheology Studies 

Rhcolog) of 40 and 60 lb/Mgal polymer fluids and complex fluids was studied at 

ambient (77 °F) and elevated temperature (150 °F) . The aim was to identify the 

complex fluids that di played higher viscosities at low shear rate , better hear 

thinning propertie -, and better temperature stability as compared to component guar 
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gum polymer fluid. A good shear thinning fluid would have low viscosity when 

pumped down to the formation (6000 - 10000 s- 1 shear rate) and high viscosity 

when transporting proppant in fracture (0.01 - 500 s- 1 shear rate). Low viscosity 

when pumping would result in less pump pressures and lower costs. It is a lso 

important that these fluid properties remain stable with increasing temperature as 

fluid is pumped down the tubing. 

5.1.1 40 lb/Mgal Concentration Polymer Fluids 

Model 35 Fann viscometer data of all 40 lb/Mgal polymer concentration fluids are 

li sted in Tables A.1 - A. I 0 in Appendix A. Power law fluid parameters, flow 

behavior index and fluid consistency index, of control polymer fluids and eight 

complex fluids are listed in Table 5.1. Based on volume percentage of 40 lb/Mgal 

xanthan gum polymer added, viscosity at low shear rates and shear thinning, two 

complex fluids show strong synergy- Blend (1 :3 X:G 40 lb) and Blend (3:1X:G40 

lb). 

Table 5.1: Power Law Fluid Parameters of 40 lb/Mgal Polymer Fluids 

Fluid n Kv, lbr-s 11 /ft2 

40 lb Guar Gum 0.578 0.00842 

Blend (1 :4 X:G 40 lb) 0.349 0.04783 
r-

Blend (1 :3 X:G 40 lb) 0.306 0.06901 

Blend (1 :2 X:G 40 lb) 0.358 0.04158 
I--

Blend (2:3 X:G 40 lb) 0.312 0.05640 

Blend (I: 1 X:G 40 lb) 0.298 0.06161 
.. 

Blend (3:1X:G40 lb) 0.228 0.08651 

Blend (4: I X:G 40 lb) 0.167 0.] 3078 

Blend (1 :0 X:G 40 lb) 0.203 0.10152 

40 lb Xanthan Gum 0.141 0.11455 
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Figure 5.1: Rheograms of 40 lb Guar Gum, Blend (1:3 X:G 40 lb) and 40 lb 

Xanthan Gum at 77 °F 

Figure 5.2: Apparent Viscosity of 40 lb Guar Gum, Blend (1:3 X:G 40 lb) and 

40 lb Xanthan Gum at 77 °F 
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Rheograms of 40 lb Guar Gum, Blend (1 :3 X:G 40 lb) and 40 lb Xanthan Gum at 77 

°F are shown in Fig. 5.1 while their apparent viscosities are shown in Fig. 5.2. On 

replacing 25% of 40 lb Guar Gum with 40 lb Xanthan Gum, the viscosity at 5.11 s- 1 

shear rate increased by more than 420%. At this shear rate, viscosity of the complex 

fluid was approximately 20% lower than 40 lb Xanthan Gum . However, 40 lb 

Xanthan Gum shows lower viscosities than 40 lb Guar Gum and Blend (1 :3 X :G 40 

lb) at higher shear rates of 511 and 1022 s- 1
. The complex fl uid shows better shear-

thinning ability than 40 lb Guar Gum. 

1 10 100 1000 10000 

Wall Shear Rate, 1/s 

Figure 5.3: Rheograms of 40 lb Guar Gum, Blend (3:1X:G40 lb) and 40 lb 

Xanthan Gum at 77 °F 
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Figure 5.4: Apparent Viscosity of 40 lb Guar Gum, Blend (3:1X:G40 lb) and 

40 lb Xanthan Gum at 77 °F 

Figure 5.3 shows the rheograms of 40 lb Guar Gum, Blend (3 :1X:G40 lb) and 40 

lb Xanthan Gum at 77 °F. Apparent viscosities of these fluids are shown in Fig. 5.4. 

The complex fluid displayed higher viscosities at all six shear rates investigated than 

40 lb Xanthan Gum. At 5. 11 s- 1 shear rate this fluid has 700% higher viscosity than 

40 lb Guar Gum and 20% higher viscosity than 40 lb Xanthan Gum . At 1022 s-' 

shear rate, 40 lb Xanthan Gum has lower viscosity than 40 lb Guar Gum and Blend 

(3 :1X:G40 lb) . Blend (3:1X:G40 lb) shows higher viscosities and better shear 

thinning property than Blend (1 :3 X:G 40 lb) . However, this complex fluid is 

prepared with 75% 40 lb Xanthan Gum and 25% 40 lb Guar Gum, and has three 

times higher xanthan flu id content than Blend (1 :3 X :G 40 lb). 
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Figure 5.5: Apparent Viscosities at 5.11 and 1021.8 s-1 of 40 lbm/Mgal polymer 

fluids at 77 °F 

To compare the viscosities of all 40 lbm/Mgal concentration polymer fluids at high 

and low shear rates, the rheology data at 5 .11 and 1021. 8 s- 1 shear rates of these 

fluids has been shown in Fig. 5.17. A general trend of viscosity at both these shear 

rates can be observed with increasing xanthan content in complex fluids. All eight 

blends showed significant increase in viscosities as compared to 40 lb Guar Gum at 

low shear rates. Addition of xanthan fluid to 40 lb Guar Gum results in a spike in 

apparent viscosity at 5.11 s- 1 shear rate. The trend of viscosity at this shear rate then 

stabilizes and gradually increases with increasing xanthan content. At 1021 .8 s- 1 

shear rate, apparent viscosity gradually decreases with increasing xanthan content 

and 40 lb Xanthan Gum shows the least viscosity . The sudden spike in viscosity at 

low shear rates on addition of 20 - 25% xanthan to guar polymer fluid is similar to 
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that observed by Fischer et al. (2001) using blends of 25 I b/Mgal non-acetylated 

xanthan fluid and 25 Jb/Mgal guar gum fluid at 0.17 s- 1 shear rate. 

5.1.2 60 lb/Mgal Concentration Polymer Fluids 

Viscometer data of all 60 lb/Mgal concentration polymer fluids are listed in Tables 

A.11 - A.20 in Appendix A. Power law fluid parameters, flow behavior index and 

fluid consistency index, of control polymer fluids and eight complex fluids are listed 

in Table 5.2. Based on volume percentage of 60 lb/Mgal xanthan gum polymer 

added, viscosity at low shear rates and shear thinning, two complex fluids show 

strong synergy - Blend (I :3 X:G 60 lb) and Blend (1: 1 X:G 60 lb). 

Table 5.2: Power Law Fluid Parameters of 60 lb/Mgal Polymer Fluids 

Fluid n Kv, lbr-s 11/ft2 

60 lb Guar Gum 0.202 0.11949 

Blend (I :4 X:G 60 lb) 0.197 0.19234 

Blend (1:3 X:G 60 lb) 0.205 0.19921 

Blend (I :2 X:G 60 lb) 0.221 0.17042 

Blend (2:3 X:G 60 lb) 0.249 0.17482 

Blend (I: 1 X:G 60 lb) 0.272 0.14533 

Blend (3: l X:G 60 lb) 0.286 0.] 2975 

Blend (4:1X:G60 lb) 0.282 0.15582 

Blend (1:0 X:G 60 lb) 0.270 0.14642 
f-

60 lb Xanthan Gum 0.483 0.03074 
'--· 
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Figure 5.6: Rheograms of 60 lb Guar Gum, Blend (1:3 X:G 60 lb) and 60 lb 

Xanthan Gum at 77 °F 
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Figure 5.7: Apparent Viscosity of 60 lb Guar Gum, Blend (1:3 X:G 60 lb) and 

60 lb Xanthan Gum at 77 °F 
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Rheograms of 60 lb Guar Gum, Blend (1 :3 X:G 60 lb) and 60 lb Xanthan Gum are 

shown in Fig. 5.6. Apparent viscosities of these fluids are shown in Fig. 5.7. This 

fluid shows higher viscosities than both xanthan and guar gum polymer fluids at all 

six shear rates investigated . Viscosity of complex fl uid at 5.11 s-1 shear rate 

increased by 270% on replacing 25% of 60 lb Guar Gum with 60 lb Xanthan Gum. 

At this shear rate, it shows 50% higher viscosity than 60 lb Xanthan Gum. It also 

displays better shear thinning property than 60 lb Guar Gum. 
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Figure 5.8: Rheograms of 60 lb Guar Gum, Blend (1:1X:G60 lb) and 60 lb 

Xanthan G um at 77 °F 
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Figure 5.9: Apparent Viscosity of 60 lb Guar Gum, Blend (1:1X:G60 lb) and 

60 lb Xanthan Gum at 77 °F 

Figure 5.8 shows the rheograms of 60 lb Guar Gum, Blend (1:1X:G60 lb) and 60 

lb Xanthan Gum. Apparent viscosities of these fluids are shown in Fig. 5.9. At 5.11 

s- 1 shear rate, this complex fluid displayed 290% higher viscosity than 60 lb Guar 

Gum and 60% higher viscosity than 60 lb Xanthan Gum. Although this blend shows 

higher low shear rate viscosity than Blend (1 :3 X :G 60 lb), it requires 100% (vol.) 

more xanthan gum fluid to prepare. 
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Figure 5.10: Apparent Viscosities at 5.11 s-1 and 1021.8 s-1 of 60 lbm/Mgal 

polymers at 77 °F 

To compare the viscosities of all 60 lbm/Mgal concentration polymer fluids at high 

and low shear rates, the rheology data at 5.11 and 1021.80 s- 1 shear rates of these 

fluids has been shown in Figure 5.10. All eight blends showed significant increase 

in viscosities as compared to 60 lb Guar Gum and 60 lb Xanthan Gum at low shear 

rates . However, all of these blends displayed considerable increase in viscosity at 

1021.80 s- 1 shear rate compared to 60 lb Xanthan Gum. Apparent viscosity at 5.11 s-

1 of complex fluids spikes and gradually increases with increasing xanthan content. 

At the higher shear rate of 1021.80 s- 1
, apparent viscosity of these fluids spikes and 

gradually decreases with increasing xanthan content. Addition of xanthan imparts 

better shear thinning property to 60 lb Guar Gum . The viscosity trend at the two 

shear rates is consistent with the experimental results of Fischer et al. (2001) 
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obtained using blends of 25 lb!Mgal non-acetylated xanthan and 25 lb/Mgal guar 

gum fluids at 0.17 s· 1 shear rate . 

5.1.3 40 lb/Mgal Concentration Polymer Fluids at 150 °F 

Rheology of40 lb Guar Gum, Blend (1 :3 X:G40 lb), Blend (3:1X:G50 lb) and 40 

lb Xanthan Gum were investigated at 150 °F . The study was undertaken to 

determine if the polymer blends that showed favorable rheological properties were 

stable at elevated temperatures . Rheological data of these fluids is listed in Tables 

A.2 1-A.24 in Appendix A. 
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Figure 5.11: Rheograms of 40 lb Guar Gum at 77 and 150 °F 
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Figure 5.12: Apparent Viscosity of 40 lb Guar Gum at 77 and 150 °F 

Figure 5.11 shows rheograms of 40 lb Guar Gum while Fig. 5.12 shows apparent 

viscosities at 77 and 150 °F. Apparent viscosities at all six shear rates investigated 

decreased as the fluid temperature increased. At 5.11 s- 1 shear rate, viscosity of this 

fluid decreased by 60% on increasi ng the temperature from 77 to 150 °F. Similarly, 

Fig. 5.13 shows rheograms of Blend (1 :3 X:G 40 lb) while Fig. 5.14 shows apparent 

viscosities at 77 and 150 °F. Increase in temperature resulted in lower viscosities at 

all six shear rates investigated. At 5.11 s- 1 shear rate, viscosity of this blend was 

70% lower on increasing the temperature from 77 to 150 °F . 
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Figure 5.13: Rheograms of Blend (1:3 X:G 40 lb) at 77 and 150 °F 
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Figure 5.14: Apparent Viscosity of Blend (1:3 X:G 40 lb) at 77 and 150 °F 
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Figure 5.15: Rheograms of Blend (3: 1 X:G 40 lb) at 77 and 150 °F 

Figure 5.16: Apparent Viscosity of Blend (3:1X:G40 lb) at 77 and 150 °F 
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Figure 5.15 shows rheograms of Blend (3:1 X:G 40 lb) and Fig. 5.16 shows 

apparent viscosities at 77 and 150 °F. Similarly, Fig. 5.17 shows rheograms of 40 lb 

Xanthan Gum and Fig. 5.18 shows apparent viscosities at 77 and 150 °F. Apparent 

viscosities of both fluids decreased with increasing temperature at all six shear rates 

investigated. At 5.11 s- 1 shear rate, viscosity of Blend (3:1X:G40 lb) decreased by 

40% while that of 40 lb Xanthan Gum decreased by 17%. Therefore, among the 

fluids investigated, 40 lb Xanthan Gum shows the least deviation as temperature is 

increased. As xanthan gum fluid content in the blends increases, the deviation in 

rheology decreases with increasing temperature. 
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Figure 5.17: Rheograms of 40 lb Xanthan G um at 77 and 150 °F 
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Figure 5.18: Apparent Viscosity of 40 lb Xanthan Gum at 77 and 150 °F 

5.1.4 60 lb/Mgal Concentration Polymer Fluids at 150 °F 

The rheology of 60 lb Guar Gum, Blend (1:3 X:G 60 lb), Blend (1 :1 X:G 60 lb), 

Blend (3: 1 X:G 60 lb) and 60 lb Xanthan Gum was studied at an elevated 

temperature of 150 °F. These particular blends were chosen and compared with 

controlled xanthan and guar gum polymer fluids as they showed strong synergy and 

desirable rheological properties at 77 °F. The aim was to determine the effect of 

temperature on synergistic interactions between xanthan and guar gum polymer 

fluids. Rheological data of these fluids is listed in Tables A.25-5 .29 in Appendix A. 
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Figure 5.19: Rheograms of 60 lb Guar Gum at 77 and 150 °F 
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Figure 5.20: Apparent Viscosity of 60 lb Guar Gum at 77 and 150 °F 
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Figures 5.19 and 5.20 show rheograms and apparent viscosities of 60 lb Guar Gum 

at 77 and 150 °F, respectively. Apparent viscosities at all six shear rates investigated 

decreased at elevated temperature. At 5.11 s· 1 shear rate, the viscosity of 60 lb Guar 

Gum decreased by approximately 80% on increasing the temperature from 77 to 150 

°F . Similarly, Fig. 5.21 shows the rheograms of Blend (1 :3 X:G 60 lb) and Fig. 5.22 

shows the apparent viscosities at 77 and 150 °F . Apparent viscosities of complex 

fluid decreased on increasing the temperature at all six shear rates investigated. At 

5.11 s· 1 shear rate apparent viscosity was 65% lower at 150 °F as compared to at 77 

°F. 

10 -·.--~~~~~~~~~r; e Blend (1:3 X:G 60 lb) at 77 F 

t:.. Blend (1:3 X:G 60 lb) at 150 F 

Figure 5.21: Rheograms of Blend (1 :3 X:G 60 lb) at 77 and 150 °F 
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Figure 5.22: Apparent Viscosity of Blend (1:3 X:G 60 lb) at 77 and 150 °F 
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Figure 5.23: Rheograms of Blend (1:1 X:G 60 lb) at 77 and 150 °F 
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Figure 5.24: Apparent Viscosity of Blend (1: 1 X:G 60 lb) at 77 and 150 °F 

Figures 5.22 and 5.24 show rheograms and apparent viscosities of Blend (1: 1 X:G 

60 lb) at 77 and 150 °F, respectively. Viscosities of complex fluid decreased with 

increasing temperature at all six shear rates investigated. Viscosity of Blend (1: 1 

X:G 60 lb) at 5.11 s·1 shear rate decreased by about 50% on increasing the 

temperature. Similarly, Figs. 5.25 and 5.26 show rheograms and apparent viscosities 

of 60 lb Xanthan Gum at 77 and 150 °F, respectively . On increasing the temperature 

to 150 °F this fluid displayed higher viscosities at all six shear rates . Of all the 60 

lbm/Mgal concentration polymer fluids, 60 lb Xanthan Gum is the only fluid that 

shows an increase in viscosity on increasing the temperature. Higher xanthan gum 

fluid content in blend resulted in it being more thermally stable. 
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Figure 5.25: Rheograms of 60 lb Xanthan Gum at 77 and 150 °F 
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Figure 5.26: Apparent Viscosity of 60 lb Xanthan Gum at 77 and 150 °F 
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5.2 Single Particle Terminal Settling Velocity Tests 

Although multiple blends of both polymer concentrations showed strong synergy 

and desirable rheological properties only two blends were chosen for single particle 

settling tests: Blend (1:3 X:G 40 lb) and Blend (1:3 X:G 60 lb). This is because 

these two blends displayed strong synergy and required less amount of xanthan gum 

fluid to prepare. Including the parent polymer fluids, six fluids were considered for 

these tests: 40 lb Guar Gum, 40 lb Xanthan Gum, Blend (1 :3 X:G 40 lb), 60 lb Guar 

Gum, 60 lb Xanthan Gum and Blend (1 :3 X:G 60 lb). Figure 5.27 compares 

experimental drag coefficient data with standard Newtonian drag coefficient curve 

for solid spheres by Lapple and Shepherd (1940). 

100000 ,..--...--;-.-----:--i---:~'"7"7--:-77:"":::-7""---:-:--~~----~-~~--...., 
• 40 lb Guar Gum - Exp. Data 

10000 

u 1000 
~ 
c 
QI 
·u 
i: 
QI 
0 
u 
Cl 

I I'll ... 
Cl 10 

0.1 
0.0001 0.001 

<> Blend (1 :3 X:G 40 lb) - Exp. Data 

0.01 0.1 10 100 1000 10000 

Particle Reynolds Number, NRep 

Fig. 5.27: Drag Coefficient fo r Solid Spheres 
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Experimental data are not in agreement with theoretical curve as the fluids 

investigated are non-Newtonian. Drag coefficient cannot be computed as a function 

of particle Reynolds number by simply replacing viscosity with apparent viscosity . 

Effect of non-Newtonian parameter, n, has to be taken into account. Figure 5.28 

shows a logarithmic plot of c5-n N ~epg and generalized particle Reynolds number. 

Figure 5.29 shows a logarithmic plot of c0
2

-n and generalized particle Reynolds 

number. 

c 
I 

N 
0 

() -

Fig. 5.28: Effect of non-Newtonian parameter non c5-nN~epg 
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Effect of flow behavior index, n, on drag coefficient can be seen in both Fig. 5.28 

and 5.29. For each value of 'n ', a family of curves can be generated in these figures . 

Theoretically, effect of 'n' on drag coefficient diminishes with increasing particle 

Reynolds number and when flow turns turbulent (NRepg > 500) drag coefficient is 

independent of n. Not enough experimental data is shown in these figures to see this 

transition. However, it can be seen that for the same generalized particle Reynolds 

number, values of both q,- 11 N~epg and Co2
-

11 decrease with increasing value of n. 

Using similar plots, drag coefficient correlation that accounts for non- ewtonian 

behavior was developed by Shah (1982). His correlation is valid for : 0.281 < n < 

1.000 and 0.01 < N Repg < 500. 
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Since the experiments were carried out in a cylindrical column, the fluid cannot be 

considered infinite and terminal-settling velocity data obtained was corrected for 

wall effects. Table 5.3 lists correction factor, flow regime and empirical correlation 

used to account for wall effects on particle settling in these fluids . 

Table 5.3: Correction factor used to account for wall effects 

Fluid Flow Empirical 
Correction Factor 

Regime Correlation 

40 lb Guar Gum 0.8989 

40 lb Xanthan Gum 0.8542 
Intermediate De Felice (1996) 

Blend (1:3 X: G 40 0.8523 

60 1 b Guar Gum 0.8581 

60 lb Xanthan Gum 
0.6874 Creeping 

Haberman and 
Blend (1 :3 X: G 60 Sayre (1958) 

40 lb Guar Gum, 60 lb Guar Gum and Blend (1 :3 X :G 40 lb) lie within Shah (1982) 

correlation limits. Predictions of this correlation have, hence, been compared with 

experimentally observed terminal settling velocity of three particles in these fluids 

and can be seen in Tables 5.4, 5.6 and 5.7. Tables 5.5, 5.8 and 5.9 show terminal 

settling velocity of particl e in 40 lb Xanthan Gum, 60 lb Xanthan Gum and Blend 

(1 :3 X:G 60 lb), respectively. 
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Table 5.4: Terminal Settling Velocity of Particle in 40 lb Guar Gum 

Particle 
Terminal Settling Velocity, ft/s 

Experimental Predicted 

1 2.274 2.239 

2 2.299 2.244 

3 2.227 2.248 

Table 5.5: Terminal Settling Velocity of Particle in 40 lb Xanthan Gum 

Particle Terminal Settling Velocity, ft/s 

1 1.341 

2 1.175 

3 1.071 

Table 5.6: Terminal Settling Velocity of Particle in Blend (1:3 X:G 40 lb) 

Particle 
Terminal Settling Velocity, ft/s 

Experimental Predicted 

1 0.981 0.957 

2 1.006 0.959 

3 0.988 0.962 

Table 5.7: Terminal Settling Velocity of Particle in 60 lb Guar Gum 

Particle Terminal Settling Velocity, ft/s 

Experimental Predicted 

1 1.190 1.086 

2 1.156 1.088 

3 1.023 1.090 

Table 5.8: Terminal Settling Velocity of Particle in 60 lb Xanthan Gum 
Particle Terminal Settling Velocity, ft/s 

1 0.052 
2 0.051 
3 0.050 
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Table 5.9: Terminal Settling Velocity of Particle in Blend (1:3 X:G 60 lb) 

Particle Terminal Settling Velocity, ft/s 
1 0.322 

2 0.335 

3 0.319 

·------- · ---· 
3 ~~----~~~-.-4-0-lb~Gu_a_r_G-um~~~~-O~Bl-en_d_(-1:_3_X-:G_4_0_1b-)~ 

• 40 lb Xanthan Gum t3 60 Guar Gum 
2:: Blend 1 :3 X:G 60 lb X 60 lb Xanthan Gum 

2.5 ~------1-----

~ I 4- - - - - -- - - - - - -- - - -~ - -- - - --+--------A 

1,: !---=-~ --==----L----~-=-
~ l;l a I 
j .: . -=-=== -~-=-==~=-=-~--~11--J 

o L-·- x ·----- ____ ~ _ i .: _ _ ___ J 

Particle 1 Particle 2 Particle 3 

Fig. 5.30 Terminal Settling Velocity of Particle in Polymers and Blends 

The average terminal settling velocities of particle in four polymer fluids and two 

blends are shown in Fig. 5.30. The least velocity was observed with Blend (1 :3 X:G 

60 lb) and the highest was displayed by 40 lb Guar Gum. Particle settling velocity in 

Blend (1 :3 X:G 40 lb) were close to that of 40 lb Xanthan Gum and lower than 60 lb 

Guar Gum. Lower single particle terminal settling velocity in a fluid indicates that 

the fluid would display high viscosity at low shear rate. From this figure it can be, 
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therefore, inferred that at low shear rates, Blend (1 :3 X:G 40 lb) has higher viscosity 

than 60 lb Guar Gum and comparable viscosity to 40 lb Xanthan Gum. 

5.3 Cost Analysis 

As stated earlier, price is an important driving factor when selecting a suitable fluid 

for hydraulic operations. Therefore, a cost analysis is integral to this study to 

investigate if the blends of xanthan and guar fluids are viable as fracturing fluids. 

Table 5.10 presents the cost of 40 lbm/Mgal polymer fluids. Table 5.11 shows 

prices of 60 lbm/Mgal polymer fluids. 

Table 5.10: Price of 40 lbm/Mgal Concentration Polymer Fluids 

Fluid Price, $ per 1000 gallons 

40 lb Guar Gum 160 
Blend (1:4X:G40 lb) 200 

Blend (1 :3 X:G 40 lb) 210 
Blend (1:2X:G40 lb) 227 

Blend (2:3 X:G 40 lb) 240 

Blend (1: 1 X:G 40 lb) 260 

Blend (3 :2 X:G 40 lb) 280 

Blend (3:1X:G40 lb) 310 

Blend (4:1X:G40 lb) 320 

40 lb Xanthan Gum 360 
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Table 5.11: Price of 60 lbm/Mgal Concentration Polymer Fluids 

Fluid Price,$ per 1000 gallons 

60 lb Guar Gum 240 

Blend (1:4 X:G 60 lb) 300 

Blend (1:3 X:G 60 lb) 315 

Blend (1 :2 X:G 60 lb) 340 

Blend (2:3 X:G 60 lb) 360 

Blend (1: 1 X:G 60 lb) 390 

Blend (3:2 X:G 60 lb) 420 

Blend (3:1X:G60 lb) 465 

Blend (4:1X:G60 lb) 480 

60 lb Xanthan Gum 540 

The cost of one pound of xanthan gum was considered as the cost of FLO-VIS® by 

MI SWACO and it is $9. The cost of one pound of guar gum was taken from 

RockWater Energy Solutions as $4 . However, it is important to note that the price of 

guar gum is extremely volatile . India produces 80% of the world's supply of guar 

gum. Normally, 60% of its exports go to the oil industry and 40% to the global food 

industry, according to The WaLl Street Journal (WSJ) newspaper. In May 2012, the 

export price of a metric ton (MT) of guar gum was $27,000, according to WSJ, and 

it plunged to $7,000/MT in December 2012. 

5.4 Discussion 

Mixtures of xanthan and guar gum polymer fluids indeed show synergy. The 

strength of this synergy is dependent upon polymer concentration, polymer ratio, 

and temperature. Increasing the polymer concentration from 40 to 60 lbm/Mgal, 
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increased the strength of synergistic interactions of xanthan and guar gum polymer 

fluids . 

On blending these polymer fluids in different ratios, the rheology of resultant fluid 

was greatly affected. Blend (1:3 X:G 40 lb) and Blend (3:1 X:G 40 lb) showed 

strong synergy between parent polymers among the 40 lbm/Mgal concentration 

polymer fluids, taking into account the amount of xanthan polymer added. 

Although, all blends of 60 lbm/Mgal concentration polymer fluids displayed higher 

viscosities than 60 lb Guar Gum and 60 lb Xanthan Gum at low shear rates, taking 

into account the xanthan content Blend (1 :3 X:G 60 lb) and Blend (1: 1 X:G 60 lb) 

displayed strong synergy. On increasing the temperature from 77 to 150 °F, the 

rheology of all polymer fluids was adversely affected except for 60 lb Xanthan 

Gum, which showed an increase in viscosities at various shear rates . The blends 

with the highest xanthan content showed the least deviation in viscosity at elevated 

temperature. 

Figure 5.31 compares the apparent viscosities of 40 lb Guar Gum, 60 lb Guar Gum 

and Blend (1 :3 X:G 40 lb) at 77 °F. Blend (1 :3 X:G 40 lb) shows about 420% 

increase in viscosity over 40 lb Guar Gum and 70% increase in viscosity as 

compared to 60 lb Guar Gum at 5.11 s· 1 shear rate. At 1021.8 s·1 shear rate, the 

viscosity of Blend (1 :3 X :G 40 lb) is 50% lower than 60 lb Guar Gum, indicating 

higher degree of desirable shear thinning ability of the blend . 
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Figure 5.31: Apparent Viscosity of 40 lb Guar Gum, Blend (1:3 X:G 40 lb) and 
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At elevated temperatures as well, Blend (1 :3 X:G 40 lb) showed better rheological 

properties than 40 lb Guar Gum and 60 lb Guar Gum, as seen in Fig. 5.32. At 5.11 s-

1 shear rate, Blend (1 :3 X:G 40 lb) displayed 270% higher viscosity than 40 lb Guar 

Gum and 170% higher viscosity than 60 lb Guar Gum. At 1021.8 s- 1 shear rate, this 

blend showed more than 50% lower viscosity than 60 lb Guar Gum. There was not a 

significant difference in viscosity between Blend (1 :3 X:G 40 lb) and 40 lb Guar 

Gum at this shear rate. In addition to displaying desirable rheological properties, the 

price of this blend is 13% lower than 60 lb Guar Gum. 

Utilizing the synergy between xanthan and guar gum polymer fluids, a 40 lbm/Mgal 

concentration polymer blend has been formulated that displays better rheological 

properties than 60 lb Guar Gum. Making use of Blend (1 :3 X:G 40 lb) instead of 60 

lbm/Mgal linear guar gum gel, would reduce the polymer content, thereby, reducing 

polymer residue, show better and desirable rheology, reduce costs, and eliminate the 

need for crosslinkers. 
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CHAPTER6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

1. This study constitutes the first step towards utilizing the synergy of xanthan gum 

and guar gum polymer solutions in the oil and gas industry . Rheology studies 

were underatken to determine the effect of polymer concentration, polymer ratio 

and temperature on this synergy. 

2. The polymer concentrations investigated were 40 and 60 lbm/Mgal. Eight 

blends were prepared for each concentration in the xanthan to guar gum fluid 

ratio of: 1:4, 1:3, 1:2, 2:3, 1:1, 3:2, 3:1 , and 4 :1. Rheology measurements were 

made at two temperatures: 77 and 150 °F. 

3. The strength of synergistic intercations between these polymer fluids increased 

with increasing the polymer content from 40 to 60 lbm/Mgal. Blend (3 : 1 X :G 40 

lb) was the only fluid among 40 lbm/Mgal concentration polymer fluids that 

showed higher viscosity than 40 lb Xanthan Gum at low shear rates . All eight 60 

lbm/Mgal concentration polymer blends displayed higher viscosities than 60 lb 

Guar Gum and 60 lb Xanthan Gum at low shear rates . 

4. Apparent viscositites of polymers fluids and blends, except for 60 lb Xanthan 

Gum, were adverse! y affected by increase in tern perature from 77 to 15 0 °F . 60 

lb Xanthan Gum fluids showed an increase in apparent viscosities on increasing 

the temperature. Blends with low xanthan gum fluid content displayed the most 

deviation in apparent viscosities at elevated temperature. 
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5. Based on amount of xanthan gum fluid added, Blend (1 :3 X :G 40 lb) and Blend 

(3 :1 X:G 40 lb) showed strong synergy among 40 lbm/Mgal concentration 

polymer fluids while for 60 lbm/Mgal concentration polymer fluids it was Blend 

(1 :3 X: G 60 lb) and Blend (1: 1 X:G 60 lb). 

6. Static, single particle settling tests in 40 lb Guar Gum, 40 lb Xanthan Gum , 

Blend (1 :3 X:G 40 lb), 60 lb Guar Gum, 60 lb Xanthan Gum and Blend (1 :3 

X:G 60 lb) were conducted . Motion of particle in Blend (1 :3 X :G 60 lb) was in 

creeping flow regime. Experimental terminal settling velocity data of particle in 

40 lb Guar Gum, 60 lb Guar Gum and Blend (1 :3 X:G 40 lb) were in good 

agreement with predictions of Shah (1982) correlation. Terminal settling 

velocity of particle in Blend (1 :3 X:G 60 lb) was the least while that in 40 lb 

Guar Gum was the highest. Velocity of particle in Blend (1 :3 X:G 40 lb) was 

comparable to that in 40 lb Xanthan Gum and lower than in 60 lb Guar Gum. 

This indicates that at low shear rates, Blend (1 :3 X:G 40 lb) has higher viscosity 

than 60 lb Guar Gum. 

7. Based on rheology study, static single particle settling tests, and cost analysis, 

Blend (1:3 X :G 40 lb) was selected as a suitable replacement for guar based 

polymer fluids . It showed 420% increase in viscosity over 40 lb Guar Gum and 

70% increase as compared to 60 lb Guar Gum at 5.11 s-1 shear rate. At 1021 .8 s-

1 shear rate, it showed 50% lower viscosity than 60 lb Guar Gum , indicating 

better shear thinning ability . At elevated temperature of 150 °F, the blend 

displayed 270% higher viscosity than 40 lb Guar Gum and 170% higher 

viscosity than 60 lb Guar Gum at 5.11 s-1 shear rate. It displayed about 50% 
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lower viscosity than 60 lb Guar Gum at 1021.8 s-
1 

shear rate, at this temperature. 

In addition this blend is approximately 13% cheaper than 60 lb Guar Gum. 

8. On replacing 25% of 40 lb Guar Gum with 40 lb Xanthan Gum, a blend has 

been formulated that is less expensive, has better shear thinning property and 

higher viscosities at low shear rates than 60 lb Guar gum fluid at both ambient 

and elevated temperature. This synergy between these polymers can be used to 

increase the viscosity of low polymer concentration guar gum fluids and, 

thereby, help in reducing polymer residue in fractures without adding chemicals 

or crosslinkers. 

6.2 Recommendations 

Recommendations for future work or research are outlined below: 

1. A study should be undertaken to investigate if conventional breakers used in 

fracturing operations to break guar gum fluids are applicable to synergistic 

blends of xanthan and guar polymer fluids. 

2. It would be interesting to check if the polymer residue left behind by 

xanthan/guar gum fluid blends is dependent upon residue of component guar 

gum and xanthan gum fluids . 

3. It is stated in the literature that for strong synergy, the ideal dissolution 

temperature for xanthan fluids is < 40 °C and guar fluids is > 80 °C. This relates 

to the conformation of xanthan and galactose to mannose ratio of guar. The 

rheology of 40 lb Xanthan Gum and 40 lb Guar Gum blends, when mixed at the 
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ideal dissolution temperature, should be investigated to determine its effect on 

synergy. 

4. In this study it was found that strength of synergy decreases with decreasing 

polymer concentration. Synergy of xanthan and guar gum fluids at low polymer 

concentrations such as 25 or 30 lbm/Mgal needs to be investigated to check if 

suitable viscosities can be achieved without crosslinking. Reducing the polymer 

content further would aid in controlling polymer residue problems. 

5. Salinity affects the synergy of xanthan and guar gum fluids adversely . A study 

can be undertaken to see how the rheology of these blends changes with 

. . N + K+ C 2+ . increasing a , or a ions. 

6. This study focuses on taking advantage of the synergy between xanthan and 

guar gum fluids to formulate less expensive fracturing fluids . This technology 

can be extended to any oilfield operations that utilize viscosifiers . For instance, 

gel strength of these polymer blends can be investigated to check if they display 

the low-flat gel strength profile desired in drilling fluid applications. 
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NOMENCLATURE 

Co Coeffi ceint of Drag, dimension! ess 

Db Diameter of bob, mm 

De Diameter of cup, mm 

Dp Diameter of particle, in. 

Fb Buoyancy force, N 

Fg Gravity force, N 

Fv Viscous drag force, N 

Kv Viscometer consistency index, lbr-s11/ft2 

x Displacement of a particle in a fluid, ft 

n Flow behavior index, dimensionless 

t Time, s 

Vt Terminal-settling velocity, ft/s 

GREEK SYMBOLS 

Yw 

Ratio of diameter of bob to diameter of cup, dimensionless 

Void fraction of solids, dimensionless 

Wall shear rate, s- 1 

Ratio of diameter of particle to diameter of cylinder, dimensionless 

Apparent viscosity, cP 

Dial reading of model 35 Fann viscometer at ith rpm, dimensionless 

Wall shear stress, lbr/ft2 
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SUBSCRIPTS 

a 

b 

c 

p 

Apparent 

Bob 

Cup 

·th 
I 

particle 
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APPENDIX A 

RHEOLOGICAL DATA OF POLYMER BLENDS 

Analyzed viscometer data used for the rheological study of polymers and their 

blends are tabulated below. Temperature and pH of these fluids are listed as well. 

Table A.1: Rheological Data of 40 lb Guar Gum 

Wall Apparent 
RPM Dial Wall Shear 

Shear 
Stress, lbr/ft2 

Viscosity, 
Reading 

R -I ate, s cP n = 0.578 

3 2 5.11 0.0213 202 .58 Kv = 0.00842 lb1 
6 3 10.22 0.0320 151.22 s11/ft2 

100 16 170.30 0.1706 46.15 
T = 77 °F 

200 24 340.60 0.2558 34.45 

300 29 510.90 0.3091 29.03 

600 41 1021.80 0.4371 21.67 

Table A.2: Rheological Data of Blend (1:4 X:G 40 lb) 

Wall Wall Shear Apparent 
Dial 

RPM Shear Stress, Viscosity, 
Reading 

R -I lbr/ft2 cP n = 0.349 ate, s 

3 8 5.11 0.0853 791.58 Kv = 0.04783 lb1 
6 10 10.22 0.1066 503.97 s11/ft2 

100 27 170.30 0.2878 80.63 
T = 77 °F 

200 34 340.60 0.3624 51 .34 
300 39 510.90 0.4157 39.42 
600 51 1021.80 0.5437 25 .10 
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Table A.3: Rheological Data of Blend (1:3 X:G 40 lb) 

Wall Wall Shear Apparent 

RPM 
Dial 

Shear Stress, Viscosity, 
Reading n = 0.306 R -I I br/ft2 ate, s cP 

3 11 5.11 0.1173 1065 .60 Kv = 0.06901 lb r-
6 13 10.22 0.1386 658 .78 

100 30 170.30 0.3198 93.55 
sn/ft2 

200 37 340.60 0.3944 57.83 T = 77 °F 
300 45 510.90 0.4797 43 .65 

600 56 1021.80 0.5970 26 .99 

Table A.4: Rheological Data of Blend (1:2 X:G 40 lb) 

Dial Wall Shear Wall Shear 
Apparent 

RPM 
Reading Rate, s-1 Stress, lbrlft2 Viscosity, 

cP n = 0.358 

3 7 5. 11 0.0746 698.60 Kv = 0.04158 lbr-

6 9 10.22 0.0959 447.68 s11/ft2 
100 24 170.30 0.2558 73 .54 

200 31 340.60 0.3305 47 .12 
T = 77 °F 

300 38 51 0.90 0.4051 36.32 

600 46 1021.80 0.4904 23 .28 

Table A.5: Rheological Data of Blend (2:3 X:G 40 lb) 

Dial Wall Shear Wall Shear 
Apparent 

RPM 
Reading Rate, s-1 Stress, I br/ft2 Viscosity, 

n = 0.312 
cP 

3 9 5.1 1 0.0959 878 .65 Kv = 0.05640 lbr-
6 11 10.22 0.1173 545.23 

100 24 170.30 0.2558 78.60 
s11/ft2 

200 32 340.60 0.3411 48 .77 T = 77 °F 
300 38 510.90 0.4051 36.89 
600 48 102 1.80 0.5117 22.89 

'------
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Table A.6: Rheological Data of Blend (1:1X:G40 lb) 

Dial Wall Shear Wall Shear 
Apparent 

RPM 
Reading R - I Stress, lbr/ft2 Viscosity, 

n = 0.298 ate, s 
cP 

3 10 5.11 0.1066 939.13 Kv = 0. 061 61 
6 11 10.22 0.1173 577.38 

100 25 170.30 0.2665 80.16 lb1 s11/ft2 

200 32 340.60 0.3411 49 .29 T = 77 °F 
300 40 510.90 0.4264 37.08 

600 46 1021.80 0.4904 22 .80 

Table A.7: Rheological Data of Blend (3:2 X:G 40 lb) 

Dial 
Wall 

Wall Shear 
Apparent 

RPM 
Reading 

Shear 
Stress, lbr/ft2 Viscosity, 

n = 0.228 R - 1 ate, s cP 
3 12 5.11 0.1279 1175 .93 Kv = 0.08651 
6 14 10.22 0.1492 688.64 

100 24 170.3 0 0.2558 78.48 I br-s11/ft2 

200 30 340.60 0.3198 45 .96 T = 77 °F 
300 34 510.90 0.3624 33 .61 

600 42 1021.80 0.4477 19.68 

Table A.8: Rheological Data of Blend (3: 1 X:G 40 lb) 

RPM 
Dial Wall Shear Wall Shear Apparent 

Reading R -I Stress, I br/ft2 Viscosity, cP n = 0.167 ate, s 
3 16 5.11 0.1706 1609.86 

6 19 10.22 0.2025 903 .82 
Kv = 0.13078 lbr-

100 26 170.30 0.2772 86.79 sn/ft2 

200 32 340.60 0.3411 48 .73 
300 36 510.90 0.3838 34.76 

T = 77 °F 

600 41 l 021. 80 0.4371 19.52 
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Table A.9: Rheological Data of Blend (4:1X:G40 lb) 

Dial Wall Shear Wall Shear Apparent 
RPM 

Reading R -1 Stress, I br/ft2 Viscosity, cP n = 0.203 ate, s 

3 14 5.11 0.1492 1324.76 

6 15 10.22 0.1599 762.44 
Kv = 0.10152 lbr-

100 24 170.30 0.2558 80.97 sn/ft2 

200 30 340.60 0.3198 46.60 

300 36 510.90 0.3838 33 .73 
T = 77 °F 

600 41 1021.80 0.4371 19.41 

Table A.10: Rheological Data of 40 lb Xanthan Gum 

Dial Wall Shear 
Wall Shear Apparent 

RPM 
Reading R -I Stress, Viscosity, 

n =0. 141 ate, s 
lbr/ft2 cP 

3 14 5.11 0.1492 1351.56 Kv = 0.11455 
6 15 10.22 0.1599 745 .26 

100 20 170.30 0.2132 66.52 lbr-s11/ft2 

200 24 340.60 0.2558 36.68 T = 77 °F 
300 26 510.90 0.2772 25.89 

600 31 1021.80 0.3305 14.28 

Table A.11: Rheological Data of 60 lb Guar Gum 

Dial 
Wall 

Wall Shear Apparent 
RPM Shear 

Reading 
Rate, s-1 Stress, lbr/ft2 Viscosity, cP n = 0.483 

3 6 5.109 0.0640 633 .34 Kv = 0.03074 lbr-
6 9 10.218 0.0959 442.58 

100 38 170.3 0.4051 103.33 
sn/ft2 

200 50 340.6 0.5330 72 .21 T = 77 °F 
300 59 510.9 0.6289 58.55 

600 74 1021.8 0.7888 40.91 
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Table A.12: Rheological Data of Blend (1:4 X:G 60 lb) 

Dial 
Wall 

Wall Shear Apparent 
Shear RPM 

Reading Stress, lbr/ft2 Viscosity, cP n = 0.270 R -1 ate, s 

3 22 5.109 0.2345 2131.66 Kv = 0.14642 lbr--
6 25 10.218 0.2665 1285 .25 

100 54 170.3 0.5756 164.86 s11/ft2 

200 66 340.6 0.7036 99.40 T = 77 °F 
300 75 510.9 0.7995 73.94 

600 90 1021.8 0.9594 44 .58 

Table A.13: Rheological Data of Blend (1:3 X:G 60 lb) 

Dial 
Wall 

Wall Shear 
Apparent 

RPM 
Reading 

Shear 
Stress, lbr/ft2 Viscosity, 

n = 0.282 
Rate, s· 1 cP 

" 24 5.109 0.2558 2312.14 Kv = 015581 lb:r-.) 

6 27 10.218 0.2878 1405.42 

100 62 170.3 0.6609 186.31 s11/ft2 

200 75 340.6 0. 7995 113 .25 T = 77 °P 
300 86 510.9 0.9 168 84.64 

600 103 1021.8 1.0980 51 .44 

Table A.14: Rheological Data of Blend (1:2 X:G 60 lb) 

Dial 
Wall 

Wall Shear 
Apparent 

RPM 
Reading 

Shear 
Stress, lbf/ft2 Viscosity, 

n = 0.286 R -1 ate, s cP 

3 20 5.109 0.2132 1937.57 Kv = 0.12975 lbr-
6 23 10.218 0.2452 1180.89 

100 52 170.3 0.5543 158.26 
sn/ft2 

200 64 340.6 0.6822 96.45 T = 77 °P 
300 72 510.9 0.7675 72.20 

600 90 1021.8 0.9594 44.00 
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Table A.15: Rheological Data of Blend (2:3 X:G 60 lb) 

Dial 
Wall 

Wall Shear Apparent 
Shear RPM 

Reading Stress, I br/ft2 Viscosity, cP n = 0.272 R -t ate, s 

3 22 5.109 0.2345 2121.71 Kv = 0.14533 lbr-
6 25 10.218 0.2665 1280.77 

100 53 170.3 0.5650 165.08 s'1/ft2 

200 66 340.6 0.7036 99.65 T = 77 °F 
300 75 510.9 0.7995 74.17 

600 92 1021.8 0.9807 44.78 

Table A.16: Rheological Data of Blend (1:1X:G60 lb) 

Dial 
Wall 

Wall Shear Apparent 
RPM Shear 

Reading 
Rate, s- 1 Stress, 1 br/ft2 Viscosity, cP n = 0.249 

3 26 5.109 0.2772 2458.52 Kv = 0.17482 lbr-
6 28 10.218 0.2985 1460.66 

100 56 170.3 0.5970 176.50 s11/ft2 

200 69 340.6 0. 7355 104.86 T = 77 °F 
300 79 510.9 0.8421 77.33 

600 95 1021.8 1.0127 45 .94 

Table A.17: Rheological Data of Blend (3:2 X:G 60 lb) 

RPM 
Dial Wall Shear Wall Shear Apparent 

Reading Rate, s-1 Stress, lbr/ft2 Viscosity, cP n = 0.221 

3 24 5.109 0.2558 2291.43 

6 26 10.218 0.2772 1335 .69 
Kv = 0.17042 lbr-

100 47 170.3 0.5010 149.38 S
11 /ft2 

200 57 340.6 0.6076 87.08 

300 65 510.9 0.6929 63.50 
T = 77 °F 

600 77 1021 .8 0.8208 37.02 
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Table A.18: Rheological Data of Blend (3:1X:G60 lb) 

Dial Wall Shear Wall Shear Apparent 
RPM 

Reading R -1 Stress, 1 br/ft2 Viscosity, cP ate, s 
n = 0.205 

3 26 5.109 0.2772 2609.51 

6 31 10.218 0.3305 1504.28 Kv = 0.19921 lbr--

100 51 170.3 0.5437 160.81 s11/ft2 

200 61 340.6 0.6503 92.70 T = 77 °F 
300 67 510.9 0.7142 67.17 

600 81 1021.8 0.8635 38.72 

Table A.19: Rheological Data of Blend (4:1X:G60 lb) 

RPM 
Dial Wall Shear Wall Shear Apparent 

Reading Rate, s- 1 Stress, lbr/ft2 Viscosity, cP n = 0.197 

3 26 5.109 0.2772 2485.40 

6 28 10.218 0.2985 1424.48 
Kv = 0.19234 lbr-

100 46 170.3 0.4904 148.75 s11/ft2 
200 56 340.6 0.5970 85.26 

300 62 510.9 0.6609 61.56 
T = 77 °F 

600 75 1021.8 0. 7995 35.28 

Table A.20: Rheological Data of 60 lb Xanthan Gum 

Dial 
Wall 

Wall Shear Apparent 
RPM Shear 

Reading R -1 
Stress, lbr/ft2 Viscosity, cP n = 0.202 

ate, s 
3 16 5.109 0.1706 1556.74 Kv = 0.11949 
6 18 10.218 0.1919 895 .34 

100 29 170.3 0.3091 94.83 lbr-s11/ft2 

200 36 340.6 0.3838 54.54 T = 77 °F 
300 40 510.9 0.4264 39.46 

600 48 1021.8 0.5117 22.70 
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Table A.21: Rheological Data of 40 lb Guar Gum at 150 °F 

Dial Wall Shear Wall Shear 
Apparent 

RPM 
Reading R -I Stress, lb r/ft2 

Viscosity , 
n = 0.651 ate, s 

cP 

3 1 5.11 0.0107 81.51 Kv = 0.00301 
6 1 10.22 0.0107 64.00 

100 8 170.30 0.0853 23.98 I b1s11/ft2 

200 13 340.60 0.1386 18.83 T = 150 °F 
300 17 510.90 0.1812 16.35 

600 25 1021.80 0.2665 12.84 

Table A.22: Rheological Data of Blend (1:3 X:G 40 lb) at 150 °F 

RPM 
Dial Wall Shear Wall Shear Apparent 

Reading Rate, s· 1 Stress, lbdft2 Viscosity, cP n = 0.410 

3 3 5.11 0.0320 301 .59 

6 4 10.22 0.0426 200.38 
Kv = 0.01648 lbr-

100 13 170.30 0.1386 38 .12 sn/ l2 

200 17 340.60 0.1812 25 .33 

300 20 510.90 0.2132 19.94 
T = 150 °F 

600 26 1021.80 0.2772 13.25 

Table A.23: Rheological Data of Blend (3:1X:G40 lb) at 150 °F 

Dial Wall Shear Wall Shear Apparent 
RPM 

Reading R - I ate, s Stress, lbr/ft2 Viscosity , cP n = 0.236 

3 10 5.11 0.1066 966 .62 Kv = 0.07015 lb1 
6 11 10.22 0.1173 569.34 

100 22 170.30 0.2345 66.42 sn/ft2 

200 26 340 .60 0.2772 39.12 
T = 150 °F 

300 29 510.90 0.3091 28.70 

600 34 1021.80 0.3624 16.91 
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Table A.24: Rheological Data of 40 lb Xanthan Gum at 150 °F 

Dial Wall Shear Wall Shear Apparent 
RPM 

Reading R -1 Stress, lbr/ft2 Viscosity, cP n = 0.195 ate, s 

3 11 5.11 0.1173 1114.94 

6 13 10.22 0.1386 638.04 
Kv = 0.08659 

100 22 170.30 0.2345 66.22 lb1~sn/ft2 

200 25 340.60 0.2665 37.89 

300 28 510.90 0.2985 27.34 
T = 150 °F 

600 31 1021.80 0.3305 15.65 

Table A.25: Rheological Data of 60 lb Guar Gum at 150 °F 

Dial Wall Shear 
Wall Shear 

Apparent 
RPM Stress, 

Reading Rate, s- 1 Viscosity , cP n = 0.735 
lbr/ft2 

3 1 5.109 0.0107 112.40 Kv = 0.00362 
6 2 10.218 0.0213 93.54 

100 17 170.3 0.1812 44.39 1 br-s11/ft2 

200 26 340.6 0.2772 36.94 T=l50°F 
300 34 510.9 0.3624 33.18 

600 47 1021.8 0.5010 27.61 

Table A.26: Rheological Data of Blend (1:3 X:G 60 lb) at 150 °F 

RPM 
Dial Wall Shear Wall Shear Apparent 

Reading Rate, s- 1 Stress, lbr/ft2 Viscosity, cP n = 0.390 

3 8 5.109 0.0853 790.79 

6 10 10.218 0.1066 518 .21 
Kv = 0.04465 lb1 

100 33 170.3 0.3518 93.21 s11/ft2 

200 42 340.6 0.4477 61.08 

300 46 510.9 0.4904 47.70 
T = 150 °F 

600 61 1021.8 0.6503 31.26 
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Table A.27: Rheological Data of Blend (1:1X:G60 lb) at 150 °F 

Wall Wall Shear 
Apparent 

RPM 
Dial 

Shear Stress, 
Reading R -I lb r/ft2 Viscosity , cP n = 0.285 

ate, s 

3 12 5.109 0.1279 1170.11 Kv = 0.07850 lb r-
6 14 10.218 0.1492 712 .61 

100 31 170.3 0.3305 95.20 s'1/ft2 

200 39 340.6 0.4157 57.98 T = 150 °F 
300 43 510.9 0.4584 43 .38 

600 54 1021.8 0.5756 26.42 

Table A.28: Rheological Data of Blend (3:1X:G60 lb) at 150 °F 

Dial 
Wall 

Wall Shear 
Apparent 

RPM 
Reading 

Shear 
Stress, lb r/ft2 Viscosity, 

n = 0.211 R - I ate, s cP 

3 20 5.109 0.2132 2021.73 Kv = 0.15282 
6 24 10.218 0.2558 1170.36 

100 41 170.3 0.4371 127.27 I br-s11/ft2 

200 49 340.6 0.5223 73.68 T = 150 °F 
300 55 510.9 0.5863 53 .51 

600 62 1021.8 0.6609 30.98 

Table A.29 : Rheological Data of 60 lb Xanthan Gum at 150 °F 

Dial 
Wall 

Wall Shear 
Apparent 

RPM 
Reading 

Shear 
Stress, lbr/ft2 Viscosity, 

n = 0.214 
Rate, s-1 cP 

3 19 5.109 0.2025 1932.94 Kv = 0.14556 

6 23 10.218 0.2452 1120.75 

100 41 170.3 0.4371 122.67 
I br-s11/ft2 

200 47 340 .6 0.5010 71.12 T = 150 °F 
300 51 510.9 0.5437 51.71 

600 61 1021.8 0.6503 29 .98 

\ 

118 



Table A.30: Approximate Shear Rates for Various Processes 

Process Shear Rate, s:r 

Static drilling mud 0.001 

Fracture flow 0.01 - 500 

Very low stirring 0.01 - 0.1 

Reservoir flow in oil recovery 1 - 5 

Mixing 10 - 100 

Pumping 100 - 1000 

Flow in tubing 6,000 - 10,000 

Flow of drilling mud at bit nozzle 10,000 - 100,000 
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APPENDIX B 

SINGLE PARTICLE SETTLING TESTS 

Rheological measurements made prior to single particle setting tests, temperature, 

pH and data used to estimate terminal settling velocity of particle in pol ymer fluids 

and bl ends are tabulated in this appendix. 

Table B.1: Rheological Data of 40 lb Guar Gum 

RPM Dial Read ing 

3 2 

6 3 pH: 7.70 
100 14 

T: 68 .54 °F 
200 20 

300 25 

600 36 

Table B.2: Rheological Data of Blend (1 :3 X :G 40 lb) 

RPM Dial Reading 

3 10 

6 12 pH: 7.72 
100 23 

T: 64.40 °F 
200 30 

300 37 

600 50 
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Table B.3: Rheological Data of 40 lb Xanthan Gum 

RPM Dial Reading 

3 13 

6 15 pH: 7.61 

100 25 
T: 64.58 °F 

200 31 

300 37 

600 46 

Table B.4: Rheological Data of 60 lb Guar Gum 

RPM Dial Reading 

3 14 

6 18 pH: 7.67 

100 59 
T: 55 .22 °F 

200 65 

300 76 

600 96 

Table B.5: Rheological Data of Blend (1:3 X:G 60 lb) 

RPM Dial Reading 

3 22 

6 29 pH: 7.81 

100 59 
T: 59.72 °F 

200 71 

300 80 

600 100 
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Table B.6: Rheological Data of 60 lb Xanthan Gum 

RPM Dial Reading 

3 24 

6 26 pH: 7.53 

100 40 
T: 57.02 °F 

200 49 

300 57 

600 72 

Table B.7: Specifications of Particles 

Particle Mass, g Particle Diameter, cm Specific Gravity 

1 3.9599 1.438 

2 3.8898 1.436 2.50 

3 3.8385 1.434 

Table B.8: Single Particle Settling Data in 40 lb Guar Gum 

Particle Displacement, ft Time, s 

1 
1 0.43 

1 0.45 

2 
1 0.44 

1 0.43 

3 
1 0.43 

1 0.47 
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Table B.9: Single Particle Settling Data in Blend (1:3 X:G 40 lb) 

Particle Displacement, ft Time, s 

1 
1 

1.05 

1 0.99 

1 0 97 
2 

1 102 

3 
1 0.96 

1 107 

Table B.10: Single Particle Settling Data in 40 lb Xanthan Gum 

Pa rticle Displacement, ft Time, s 

1 
1 0.88 

1 0.87 

2 
1 1.03 

1 0.97 

3 
1 109 

1 1.10 

Table B.11 : Single Particle Settling Data in 60 lb Guar Gum 

Particle Displacement, ft Time, s 

1 0.84 
1 

1 0.84 

2 
1 0.85 

1 0.88 

3 1 0.93 

1 1.03 
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Table B.12: Single Particle Settling Data in Blend (1:3 X:G 60 lb) 

Particle Displacement, ft Time, s 

1 1 27.98 

1 28 .03 

2 1 28.45 

1 29 .35 

3 1 28 .66 

1 29 .53 

Table B.13: Single Particle Settling Data in 60 lb Xanthan Gum 

Particle Displacement, ft Time, s 

1 1 4.65 

1 4.35 

2 1 4.15 

1 4.57 

3 1 4.38 

1 4.78 

124 


	Govindu_2015_001
	Govindu_2015_002
	Govindu_2015_003
	Govindu_2015_004
	Govindu_2015_005
	Govindu_2015_006
	Govindu_2015_007
	Govindu_2015_008
	Govindu_2015_009
	Govindu_2015_010
	Govindu_2015_011
	Govindu_2015_012
	Govindu_2015_013
	Govindu_2015_014
	Govindu_2015_015
	Govindu_2015_016
	Govindu_2015_017
	Govindu_2015_018
	Govindu_2015_019
	Govindu_2015_020
	Govindu_2015_021
	Govindu_2015_022
	Govindu_2015_023
	Govindu_2015_024
	Govindu_2015_025
	Govindu_2015_026
	Govindu_2015_027
	Govindu_2015_028
	Govindu_2015_029
	Govindu_2015_030
	Govindu_2015_031
	Govindu_2015_032
	Govindu_2015_033
	Govindu_2015_034
	Govindu_2015_035
	Govindu_2015_036
	Govindu_2015_037
	Govindu_2015_038
	Govindu_2015_039
	Govindu_2015_040
	Govindu_2015_041
	Govindu_2015_042
	Govindu_2015_043
	Govindu_2015_044
	Govindu_2015_045
	Govindu_2015_046
	Govindu_2015_047
	Govindu_2015_048
	Govindu_2015_049
	Govindu_2015_050
	Govindu_2015_051
	Govindu_2015_052
	Govindu_2015_053
	Govindu_2015_054
	Govindu_2015_055
	Govindu_2015_056
	Govindu_2015_057
	Govindu_2015_058
	Govindu_2015_059
	Govindu_2015_060
	Govindu_2015_061
	Govindu_2015_062
	Govindu_2015_063
	Govindu_2015_064
	Govindu_2015_065
	Govindu_2015_066
	Govindu_2015_067
	Govindu_2015_068
	Govindu_2015_069
	Govindu_2015_070
	Govindu_2015_071
	Govindu_2015_072
	Govindu_2015_073
	Govindu_2015_074
	Govindu_2015_075
	Govindu_2015_076
	Govindu_2015_077
	Govindu_2015_078
	Govindu_2015_079
	Govindu_2015_080
	Govindu_2015_081
	Govindu_2015_082
	Govindu_2015_083
	Govindu_2015_084
	Govindu_2015_085
	Govindu_2015_086
	Govindu_2015_087
	Govindu_2015_088
	Govindu_2015_089
	Govindu_2015_090
	Govindu_2015_091
	Govindu_2015_092
	Govindu_2015_093
	Govindu_2015_094
	Govindu_2015_095
	Govindu_2015_096
	Govindu_2015_097
	Govindu_2015_098
	Govindu_2015_099
	Govindu_2015_100
	Govindu_2015_101
	Govindu_2015_102
	Govindu_2015_103
	Govindu_2015_104
	Govindu_2015_105
	Govindu_2015_106
	Govindu_2015_107
	Govindu_2015_108
	Govindu_2015_109
	Govindu_2015_110
	Govindu_2015_111
	Govindu_2015_112
	Govindu_2015_113
	Govindu_2015_114
	Govindu_2015_115
	Govindu_2015_116
	Govindu_2015_117
	Govindu_2015_118
	Govindu_2015_119
	Govindu_2015_120
	Govindu_2015_121
	Govindu_2015_122
	Govindu_2015_123
	Govindu_2015_124
	Govindu_2015_125
	Govindu_2015_126
	Govindu_2015_127
	Govindu_2015_128
	Govindu_2015_129
	Govindu_2015_130
	Govindu_2015_131
	Govindu_2015_132
	Govindu_2015_133
	Govindu_2015_134
	Govindu_2015_135
	Govindu_2015_136
	Govindu_2015_137
	Govindu_2015_138
	Govindu_2015_139
	Govindu_2015_140
	Govindu_2015_141



