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ABSTRACT

This study is comprised of an analysis of slope stability
in strip mines using a finite element model as well as a phys-
ical model. The physical model was designed to simulate typical
rather than specific strip mine conditions in Oklahoma. The
study includes the selection of the physical model material and
the design of the loading apparatus based on dimensional analy-
sis. The failure surface geometry and front surface displace-
ments of the model when loaded were studied and comparisons
have been made between the test results. The displacements
represent the initial movement of the slope. It was found
that the slope remains stable unless a failure surface appears
which intersects the plane of weakness. In order to numerically
model typical conditions in a strip mine, a two~dimensional
plane strair analysis employing the finite element method was
used and a simplified method for strip mine stability has been
developed. The results obtained from this method were compared
to the physical model. The failure surface geometry and the
front surface displacement followed a pattern similar to that

obtained by the experimental investigation.



Chapter 1

INTRODUCTION

1.1 Nature of the Problem

Oklahoma coal resourses have been estimated to be greater
than seven billion short tons (Friedman, 1976). The coal depo-
sits are primarily located in eastern Oklahoma and due to their
shallow depth the extration is almost exclusively by surface
mining methods.

The strip mining of Oklahoma coals continues to be of sign-
ficant interest. As with all forms of energy, the cost of coal
is rising, and with that rise, deeper, less accessible coal de-
posits can be excavated. However, with the need for deeper
strip mines comes an increased need for the understanding of
slope stability and safety in order for mining to be economic.
Because of the uncertainties and heterogeneties that exist in
rock masses it is necessary to rely upon large facotrs of safety.

Traditional methods for the study of slope stability have
been applied to caol mining operations similar to those in Okla-
homa. In particular, the "equilibrium mehtod”, which applies
to consolidated and unconsolidated soil, has found some appli-
cation. But it has been known since 1965 that "equilibrium
mehtods" do not accurately model real physical situation in

areas of overconsolidated and brittle rocks. Recently developed



numerical techniques are capable of handling the problem but as
yet have not been successfully applied to coal mines.

1.2 Approach to the Problem

The present study in an application of a geomechanical model
and analytical procedure. The approach taken in the experi-
mental work involves (1) development of a model material,

(2) design and construction of the model based on dimensional
analysis, (3) selection of the loading apparatus, (4) develop-
ment of instrumentation, (5) loading of the model to failure,
(6) analysis and discussion of the test results.

Before any model tests were conducted, a series of uncon-
fined compressive strength tests were made on the model material
in order to establish its mechanical properties. All model
tests in this study were conducted using the same model material.

Several tests with different compressive strengths for
the rock and the slope angles have been applied. The variables
investigated in the study were face displacement of the slope,
failure surface geometry, and surface distributed loading rate
as a drag line load or other overburden geological loadings on
the top of the working highwall. All model tests were loaded
incrementally to failure and the failure surface for each test
determined.

In the numerical part, the finite element method has been

applied in order to predict stresses and displacements within a



slope of a strip mine. The problem is analysed using two
dimensional plane strain and assuming homogenous, isotropic,
linear material properties.

1.3 Objective of the Investigation

The main objective of this investigation was to describe
the problem of strip mine slope stability throughly, and to
define the accuracy of the two-dimensional finite element
analysis to determine the displacement pattern in the mass
of a strip mine slope, by comparing computer results to the
displacement measured in a physical model.

The second objective of this research is to add to the
present knowledge of the failure mode and safe design of
Oklahoma strip mines. The failure of a slope as a function
of compressive strength of rock in a mining region and the
~geometry of a mine is also investigated. The compressive
strength of the model material for each test was adapted
based on dimensional analysis to a real rock, in order to
establish a support for the finite element analysis.

The simplified approach as based on the finite element
analysis will allow design of a safe and economical strip
mine cross section without having to run a sophisticated
finite element program.

Futhermore, since the failure mode and strength parameters

computed from the analytical analysis agree reasonably well with



the laboratory tests results, more confidence can be placed
in the established approach for the safe design of strip
mines in general and Oklahoma coal mines in particular.

1.4 Scope of the Study

In the stability analysis of slopes in soft rocks like
the shales of Oklahoma, there are at present two basic lines
of approach. The first one is the equilibrium method, which
is basically an extension of soil mechanics theory. The
second one is stress-strain analysis. The equilibrium
method is also capable of predicting the approximate location
of the ultimate failure surface, but satisfactory slope design
should include magnitude of the displacement as well as fail-
ure. It would be desirable, therefore, to analyze the slope
for deformation and safety by computing the stresses and
displacements within the structure.

The availability of high-speed digital computers and
the development of the finite element technique for analysis
during the last two decades has made it possible to analyze
problems involving much greater degrees of complexity than
was formerly possible. Thus it is now feasible to solve
slope stability problems involving complex boundary conditions
in material with hetrogeneous properties.

The measured variation in displacement along a slope
structure provides the engineer with an indication of the
range of stress-strain concentrations that develop in a rock

slope structure. In addition, in some cases, the strain



variations may indicate that failure develops progressively
across the slope mass from a particular point to another
point.

The method of design used in this study based on finite
elements are not only useful in straight forward slope design
but also provide a method of solving complicated slope stabil-

ity problems.



Chapter 2

LITERATURE SEARCH

2.1 Computerized Literary Search

For the purpose of this study a literature survey was
performed by an extensive computer search of several pertin-
ent available data bases, namely: NTIS(National Technical
Information Service), SSIE(Smithsonian Science Information
Exchange), C.D.A. (Comprehensive Dissertation Abstracts) ,GEOREF
(Americal Geological Institute). The search was performed to
provide historical literature applicable and pertinent to the
problem under consideration. In addition to the computer
search, a review of available journals and publication through
the Engineéring and the Geology Libraries at the University
of Oklahoma was conducted.

The search has indicated that no strip mine slope sta-
bility studies have been conducted in the past which include
both experimental and analytical approaches together, nor have
efforts been made to prepare "a general design approach" based
on finite element analysis.

There are some marginal studies that are related to the
topic addressed in this research. These studies can be cate-
gorized in the following two groups:

-Stability of excavation, embankments, and open pit mines

using equilibrium methods.

-Stability of excavations and open pit mines using finite

element method.



2.2 Equilibrium Method

Equilibrium methods of slope stability analysis have
been widely used for designing the slopes in soil or loose
and weathered rocks. It has been found to be satisfactory
and sufficiently simple to be employed for practical problems.

There are at present several methods of stability analy-
sis in existence which apply the equilibrium principle. 1In
general, most of these methods apply the technique of slices,
Fellenius (1936), Taylor (1937), Bishop (1955), Janbu (1957),
Chugaev (1964), Morgenstern and Price (1965), Spencer (1967),
Skempton and Hutchinson (1969), and Sarama (1973), and Sarama
(1979). In these methods, the available strength is computed
on the basis of the Mohr-Coulomb failure criterion (Sarama,
1979). These methods mainly differ in the shape of the
assumed slip surfaces and in the handling of the indeterminacy
of the problem.

Charts for investigating the stability of homogeneous
earth slopes based on equilibrium limit have been available
for many years. The best known of these are Taylor's (1937),
Bishop's (1957), Mongenstern's (1965), Spencer's (1967) and
Janbu's (1954). Each of these charts has limitations. Taylor's
charts do not take into account pore pressures and are based
on total stresses. Bishop and Mongenstern's charts are based
on effective stresses and are for a wider slope angle range

(up to 34°) than Bishop and Mongenstern's charts. Janbu's



charts have greater range and the need for extensive inter-
polation and extrapolation has been removed. However, the
charts are for toe circle failure only, and an iterative
procedure is required to determine the factor of safety for

a given slope. Also, no information is given on the location
of the critical slip circles (Brian, 1978). Brian (1978),
attempted to make stability charts for simple earth slopes.
In this investigation the problem is reduced to finding a
failure surface that gives a minimum stability number instead

of searching for a failure surface that gives the minimum

safety factor.

Among the studies conducted on homogeneous soil or rock
excavations the following are mentioned:

Dunlop and Duncan (1968, 1969, 1970), Constantopoulos
(1970) , Duncan and Goodman (1968), Finn (1966, 1968),
Bhattacharyya (1970), Pariseau (1970). In these studies

~generalized two-dimensional analysis was applied. Based on
these articles it can be said that the behavior of excavations
during construction may be reasonably well predicted by the
finite element technique if appropriate physical model and
material properties are employed (Desai & Christian, 1977).
Since neither soil nor rock can sustain any appreciable ten-
sion, the solutions should be evaluated in the light of this

fact. Zienkiewiex et al (1968) have suggested an approach to



this problem. When tension greater than the tensile strength
develops, an iterative process is performed in which the ex-
cess tensile stresses are relieved and redistributed to the
adjacent elements.

Wang and Sun (1970) in a study of stability of pit slopes
utilized a systematic analysis of pit slope structure by the
stiffness matrix-method. The program can be used to calculate
the magnitude of stress concentration at the toe and the stress
distribution in any homogenous pit slope. 1In 1972, they de-
veloped a computer program to analyze pit slope stability by
using the finite element method. A two-dimensional finite ele~
ment stress analysis computer program using triangular elements
for linear elastic analysis was used.

Pariseau (1972) described an elastic-plastic approach to
the evaluation of slope stability for deep, open pit mines
in order to calculate the stresses, strains and displacements.
Results relating these parameters to the analysis of slope sta-
bility in an actual mine were discussed. He has indicated that
both numerical analysis and field experinece shows that the geo~
logical structure has a pronounced influence on stability.

Wright (1974), superimposed the critical circular slip
surface upon the finite element configuration of the slope and
showed that the limiting equilibrium solution could then be

applied. From the equilibrium solution, the mobilized shear
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strength along the circular slip surface was averaged and
compared to the assigned value. This ratio was considered as
the factor of safety against the sliding of a slope. The re-
sults exceeded the equilibrium limit by more than 20% for a
homogeneous and normally consolidated slope and almost 100%
for an overconsolidated clay.

Smithhan and Chen (1976) presented a plane-strain finite
element progressive failure stress analysis of soil slopes
throughout the entire range of loading up to the ultimate
strength. Emphasis was placed on the effect of large soil
deformation on the behavior of slopes, and the techniques to
evaluate the overall stability of such slopes. As a conclus-
ion it is mentioned that, the finite element large deformation
analysis is found to be very useful when dealing with a pro-
gressive failure stress analysis of a natural slope.

Kawamoto and Takeda (1979) discussed how to take the pre-
existing cracks and the developed cracks into account in the
analysis of rock slopes without the modification of geometry
of the finite element system. The effects of pre-existing
cracks in the rock mass on the behavior of the rock slope have
also been investigated.

Several publications show that the instability of slopes
in stiff clays and shales often cannot be explained in terms

of peak strength values determined by laboratory tests and



11

equilibrium methods of stability analysis (Duncan and Dunlop,
1969). These papers include failures of'excavations and nat-
ural slopes, and encompass failures during construction as
well as many years later. Therefore, an effort is taken in
this study to consider all phases of the problem which are
realistic and characteristic of possible situations in the
field. 1In the following chapters assumptions gained from
scale model experiment which are more realistic with regard
to the geometry of the failing rock mass and the mechanisms
of failure will be discussed. Analysis based on those real-
istic assumptions lead to an improved method of strip mine

slope analysis.



Chapter 3

Similitude Requirements

3.1 Introduction

In order to obtain experimental results of significance,
both structure and rock properties have to be modelled according
to the laws of similitude. A model is a device so related to a
physical system that observations on the model may be used to
accurately predict the performance of the physical system in
the desired respect (Murphy, 1950). The physical system for
which the predictions are to be made is called the prototype.

Most rock is difficult to cut or shape and the model size
is usually restricted because of the capacity of testing machines.
Obviously, the use of low strength synthetic materials, such as
plasters, mortars, etc., that can be cast into the desired dimen-
sions would simplify model testing. In general, the mechanical
properties of synthetic materials must satisfy model-prototype
requirements.

The purpose of the failure experiments is to obtain basic
information about the behavior and failure modes of a slope
model and therefore of the prototype. To overcome the obvious
difficulties in simulating a prototype, there should first be a
clear understanding of its relationship to the model (Rosenblad,

1970) . The required relationships necessary to allow for proto-

12
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type predictions from model tests can be accomplished by the
theory of similitude which may be developed from dimensional
analysis. Consideration of the dimensions in which each
variable is expressed combined with the relationships that exist
between the variables form the basis for dimensional analysis.

3.2 Selection of Variables

Before a dimensional analysis can be conducted a set of
basic quantities must be selected and then the variables in
the system can be defined in terms of the basic guantities
used. These basic guantities are mass, length, and time or
force, length and time. Newton's Second Law of Motion, F=Ma,
relates these quantities. This relationship, expressed dimen-

sionally is F=MLT ™2

and any one quantity may be described in
terms of the other three.

The significant variables that affect the behavior of a
slope in a strip mine can be grouped as: (1) stresses,
(2) intact material properties (3) external loading, (4)

geometry of the structure (Figure 3-1).The parameters can be

related with a functional relationship.

0P=f(YPILPrEPraPerrunrSPvTPlvPl¢Pr fP) (3.1)
where

0p = stress in the prototype

Lp = the height of slope structure

Yp = Density

E

Modulus of elasticity

o)
I
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p = the external applied load to the slope structure
p = width of structure

P = length of the slope structure

up = Unconfined compressive strength

p = shear strength

p = tensile strength

p = Poisson's ratio

internal friction

o)
n

Two of the variables v, ¢ in equation (3.1) are dimensionless.
Since, the Buckingham's m-theorom restrict the m terms in the
functional relationship

Tr — D Gy GED G S
1 = £ (“z'“a'“u vn) (3.2)

to dimensionless and independent variables, two T-terms are

established with v , ¢

Therefore, ten variables remain in the dimensional analysis.
In order to check the total number of dimensionless
products, the variables should be tabulated in terms of the

basic dimensions of mass, length, and time.



22"

33°

a,=55"

Figure 3-1, Model Dimensions
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o Y L E F s T q a b

P Pp__ P P P P P up _p P
M- 1 1 0 1 1 1 1 1 0 0
L -1 -2 1 -1 1 -1 -1 -1 1 1
T -2 -2 0 -2 -2 -2 =2 -2 0 0

The determinant formed from the first two rows of the
eighth and ninth columns in the illustrated dimensional matrix
is a nonzero matrix.

1 0

= 1-0 = 1>0
-1 1

Note also that the determinant formed from any three

columns in the large matrix is zero. For example when columns

6, 7, and 9 is taken.

-1 -1 1| = 0-2+0-0+2+0 = 0

Since all third-order determinants vanish the rank of the
matrix is two. The rank of the matrix is instructive as seen
in Buckingham's theorem. "The number of dimensionless products
in a complete set is equal to the total number of variable
minus the rank of the dimensional matrix " (Langhaar 1969).
Hence the number of dimensionless products in a complete set

is 10-2=8.
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There are several methods for determining the set of
T-terms. An unknown exponent is assigned to each of the 12
variables. Since each m-term must be dimensionless, the expon-
ents of the L, M, T parameters must also be zero. Therefore,
an equation is written so that the exponents of all dimensional
variables containing a length dimension, L, after summation can
be equated to zero. 1In the same way we can write equations for
the other two basic parameters, M and T. Now there are three
auxillary dimensional equations. Two dimensionless variables
¢ ,v have exponent one and there remain ten variables for which
exponents must be determined.

Since there are 3 equations and 10 unknowns, arbitrary
values should be assigned to seven of the unknowns. 1In general
a value of 1 is assigned to one of the unknowns and the others
will be zero. Substitution of these values into the three
auxiliary equations allows the determination of each m-term.
This process is repeated until all the m-terms are determined.
For a complete description of this kind of analysis one can
refer to many standard references (Murphy, 1950) (Langhaar,
1969) .

Thus the developed m-terms are

- S - b
“1= v nu= %% 1T7 E 1r10 L
T
- = = = 3.3
'Il'2 ¢ 'rrs _E_EL:, TTe B ( )
o a
= = gu T ==
1Ta YL Trs %r s L
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Replacing the subscripts p with m for model gives
equivalent expressions for the w—-terms for the model. The
condition for model-prototype similitude is that the following

equations should be satisfied:

B E
P m
¢p=¢m
SP m TB T
Yplo " Ypln E, T E_
(3.4)
Y Lp _ Ynlm a a
E = e p_ 1
p m Ly In
o _Fn b b
EL*?® EL2 EP‘ =5
PP mM P m
up _ %um
E, E,
From (3.4)
L Y E
LMD
L YpPm

where Lp/Lm is the prototype-to-model scale ratio.

Similarly
F E_L2
= PP
F E_12
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From equation 3.4 it can be seen, for example, that a
mortar with an unconfined compressive strength of 55 psi and
modulus of elasticity, Em = 2.2 X 10" psi is a representative
of a prototype rock(shale, where Ep = 0.75 x 10° psi) whose
unconfined compressive strength is equai to 1875 psi, assuming

Poisson's ratio for both is the same.

Qup 55 q

¢ “up = 1875 psi.
0.75 X 10° 2.2 X 10*

A synthetic model material able to satisfy all the re-
quirements of equation (3.4) is probably not attainable. Usu-
ally some compromise is necessary and first consideration should
be given to matching the more important properties.

Therefore, if the uniaxial compressive strength is con-
sidered to be the factor that will dominate failure in this

study in the prototype, the relationship

should be satisfied and the other model strengths can be dis-
regarded. Generally Poisson's ratio will have the least effect
on model-prototype similitude (Obert, 1967). However it is
possible for dimensionless quantities like Poisson's ratio,
angle of friction and strain to be the same in the model as in

the prototype (Brguvanli,1972).
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Since gravity loading has a minimal effect upon the be-
havior of the modeling in this study, it has not been con-
sidered.

The dimensional analysis here is so general that not
only can it be used for observing degrees of freedom and weak
points of surface excavation in rock bodies but it is also
applicable for guantitative evaluation of underground excav-

ations and structures in different rocks.



Chapter 4

EXPERIMENTAL STUDY

4.1 Introduction

Failures that may occur in an open excavation in rock
due to large overburden pressures or live equipment loading
are as yet not completely understood. In the last two de-
cades substantial progress has been made toward the under-
standing of the failures that occur in intact or weathered
rocks due to excavation in highways or open pit mines. But
there remains a serious lack of knowledge about failure
surface extension and failure surface shape for different
rocks. Among these over-consolidated clay, and stiff or
fissured clay shales can be mentioned. As a result no reli-
able method of design for slopes consisting of such rocks
under circumstances of practical importance exists.

Several investigators have concluded on the basis of
failure problems for clay shales that the usual methods of
strength testing and stability analysis are not suitable.
This uncertainty createdsuch alack of confidence that in
most critical cases engineers have suggested a high factor
of safety, which sometimes goes beyond five yielding an
obviously uneconomical design. "Because of contradictions
between theory and observation, consistently reliable pre-
dictions of rock behavior will be the exception and not the

rule, until we understand the failure mechanism of rock"

21
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"
.

(Judd, 1969). To accomplish this purpose, a working high-'
wall in a strip mine is modeled to examine the failure mech-
anism of the structure.

" The model is not designed to simulate a specific proto-
type case in the field, but proposed to add to the present
knowledge of the strength, behavior, failure of mine slopes
as well as the effect of shape of the critical potential
surface in loose and hard rock. Conclusions will be general-
ized as far as possible in order to obtain a reasonable design
approach for Oklahoma mines located in clay, clay shale or
hard rock.

4.2 Considered Mechanical Properties

A rock element is an assemblage of different minerals
with strength resulting from the minerals plus the cement-
ation type. Strength of a rock element is not only related
to the weakest part of the rock matrix and the mineral comp-
onents but also on the type of bond between the minerals.
The critical height of slope is determined by the mechanical

defects such as joints, faults and weakness planes as well.
In present studies, a high vertical slope is thought to be
safe if its intact unconfined compressive strength is high,
(Terzaghi, 1962). . However planes of weakness which are seldom

considered introduce uncertainty. Furthermore, engineering
. constants such as Young's modulus and Poisson's ratio are

unreliable due to rock anisotropy in that they change with

load and direction within the rock (Wantland, 1963).
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"Engineering observations have to be made on specified
rocks and are frequently confined to a determination of uni-
axial compressive strength and modulus" (Jaeger 1971).

Both of these important mechanical properties of rock are
considered in the physical model in this study.

4.3 Plane of Weakness

The plane of weakness in this experiment is a plane
that seperates the coal layer from overlying rock. It
has appreciably lower strength than the rock or the coal
layer and constitutes the mechanical discontinuity in the
slope structure.

Gouge, or some infilling material is frequently found
at the sedimentary contact. The resistance to sliding along
the plane is related to the thickneés and type of material.
Since the infilling material between two planes is quite
wide the small surface asperitiesshould have little influ-
ence on the shear resistance. Therefore, the plane of
weakness in the model is assumed smooth and is covered with
sand as infilling material.

4.4 Design of Loading Steel Frame

A steel frame with dimensions based on relationship (3.4)
was made for use in this investigation. The steel frame di-
mensions are shown in table 4-1. The frame is made of 2 by 2

angles and tubes and braced by angles to prevent local dis-
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placéments. Inside the frame are pieces of horizontal and
vertical clear plexiglass plates with k‘inch thickness sup-
ported by the steel angles. The plexiglass sections can

be individually removed from the steel frame for the purpose
of cleaning or other adjustments. The advantage of plexi-

glass is its transparency vhich allows an analysis of the

failure surface.

Table 4-1
Dimensions of Model (steel  frame)
Prototype Dimensions Relationship 4ode) Dimensions
- 90° 1 b 1 = 22
L, °m
b = 6]_375' 29.1 = 61.375 b = 15°
P %, m
Lo = a5
.
2 . 225.D4 LI 2o 55
- - m
P rE IB
m m
zis.oa . 29,1
m

Miller and Hilts (1970), by gathering field data on open
pPit mine slope stability have obtained the following interest-
ing conclusion: |

"Cut slopes in moderately disturbed areas will be stable

at the recommended slope angles until a cut is made through



25

the coal at the toe of the slope. Where the coal seam is
confined and loaded from above slope failure may not occur
for several weeks following completion of the key cut in
the coal."

In order to provide this condition the front edge of
the box adjacent to the plane of weakness is extended % inch
and it can be seen on Figure 4-1.

A plan view schematic drawing of the complete assembly
is given in Figure 4-1 where each component is labled.

4.5 Model Material Control

The model material is an important part of a rock-like
model cdevelopment and must indicate the simulated properties
of natural rock. A material that simulates rock in all of
its physical properties may never be developed (Rosenblad,1970)
but the material properties can be scaled in accordance with
dimensional analysis to achieve simulitude requirements. 1In
civil and mining engineering work, the strength and deform-
ation properties are usually of most interest (Erguvanli,1972).

Unit weight was considered in order to check the uni-

formity checks were necessary for verifying the homogenous
material prepartion technique.
Unit weight determinations were made on cored cylinders

so that the volume of each cylinder was known.
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Figure 4-1,

A side view of the model
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Unconfined Compressive Strength

Compressive strength is normally defined as the stress
required to crush a cylindrical rock sample unconfined at
its sides. Compressive failure in rock occurs through in-
ternal collapse of the rock structure due to compression
of pore space resulting in grain fracture and movement a-
long grain and crystal boundaries. The true compressive
strength of a rock is therefore influenced by its internal
structure. Harder rock reflects higher compressive strength.
After grain and cementation fracturing of rock under compress-
ion, shear strength is expected to control the failure of rock.
The unconfined compression strength test was selected
since it is the primary reflection of rock failure and it is
a relatively routine test. Cylinders which were 6.2 inches
in height and 3.0 inches in diameter were selected for use
in obtaining the unconfined compressive strength. For each
test of the model six specimens, three from each layer during
the filling of the model were molded in brass molds. The
brass molds are of the type used for making portland cement
mortar test specimens. These kind of specimens require
much less material and less preparation. Industrial oil
was used in order to prohibit bonding of the brass mold to
the model material.

The unconfined compression tests were conducted using



28

a universal compressive strength machine. The unconfined
compressive strength served two purposes: First, to deter-
mine if the material in question satisfied the upper strength
limit requirement; second, to obtain the modulus of elasticity
of the material by establishing the relationship between stress
and strain.

4.6 Material Components

It is hard to find a good modeling mixture as cuttability
and rigidity are mutually exclusive in most materials. Most
of the materials used in previous studies have a ductile fail-
ure behaviro which does simulate a rock. Availability, work-
ability, and reproducibility are important factors that have
been considered.

A literature search revealed that various combinations of
the following constituents have been tried as a model material:
cement, sand, and water; sand, wax and mica; sand and clay;
and plaster, neat or mixed with barite, lead oxide, mica, dia-
tomite, kaolinite, or lime (Erguvanli, 1972). Since most
engineering studies employ a combination of sand cement and
water to model in situ rock, these materials were selected
to be used in this project.

Rosenbald (1970) discussed four possible cementing
agents which can be used to make model materials, portland

cement, gypsum cement, natural cement, and pottery clay.
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Both pottery clay and natural cement in the hardened form
exhibit a brittle failure, which is undesirable in this
case. Portland cement and gypsum cement have been used
extensively in model work.

Two types of commercial sand were used in these tests.
In test numbers 1 to 5 the first type of sand gave better
relationships between stress and strain and as a result a
better value for the modulus of elasticity.

Water was used in all mixes in order to hydrate the
cement and make the mixture workable. Water was present
in two forms, free and bonded. The free water provided
a good workable mix. The free water for 2 tests indicated
that because of evaporation intensity the material strength
is increased very fast and cannot be controlled. The bonded
water can be driven out only at temperature above 130°F.
The Fears Structural Laboratory temperature during the tests
was between 76° - 80° F.

4.7 Preparation of Model Material

The model material was made by mixing fine sand with
cement and water. A concrete mixer machine with four cubic
feet capacity was used to prepare the model material.

The sand and cement were tumbled while dry in the mixer
until the mixture was homogenous (about twenty minutes).

Once the dry mix was homogenous, water was slowly added as
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tumbling continued. Mixing continued for about ten minutes
after all water was added to ensure homogeneity. The water
cement ratio used was 0.2 and cement to sand ratio used
was between 1/14 up to 1/10. It was necessary during the
wet mixing to break up large lumps of material with rod or
by hand. The wet mix looks and feels like a damp, bulky
fine sand, with no fluidity.

Before pouring the material in the steel box a thin
layer of fine sand was spread on the bottom of the box in
order to provide the friction between the model métérial
and the bottom as a plane of weakness.

The wet material was placed in the box model in about
5 inch thick layers and each layer was compacted by 300
successive compaction rod blows spaced in a uniform pattern
over the surface of the layer. The surface of each layer
was scarified deeply after compaction and before adding
material for the next layer to insure that there would be no
continuous planes of weakness in the compacted material.

In this manner the box was completely filled and com-
pacted to a level of % inch above the teop of the box and
the excess material was removed carefully with a sharp
edged metal trowel.

From each layer 3 core samples were taken in order to
monitor the compressive strength of the material. Cylindrical

specimen molds were filled in layers with three layers per
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specimen. Specimens were rodded 24 times with a small dia-
meter steel rod for compaction. After eaéh mold was filled
the excess material was scraped off with a metal trowel.

The sloping front of the model was clamped and covered
with a sheet of thick plastic for a period of one or two days
depending on the required compressive strength. The top level
of slope was allowed to air dry except the section on which
loading would occur, which was covered with a 1 inch steel
plate 15 by 8 inches in dimension.

Since the prepared material does have a desirable modulus
of elasticity, it deforms sufficiently under loading allowing
the resulting deformation to be measured on an array of dial
gages. In general, the modulus of elasticity of the cohesive
material was reguired to be high enough to permit handling
without breakage but low enough so that the material would
fail in plane-strain compression with a loading apparatus of
reasonable dimensions.

The maximum time spent on any preparation was 8 hous and
the minimum time was 6 hours.

4.8 Instrumentation

The modulus of elasticity for the material used in each
test was obtained from cylinders where the overall specimen de-
formation was used to determine the axial strain. The average
strain of the core sample under compression was determined

by measuring the relative displacement between two points
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and dividing by the initial distance between the points
(s==%?). The displacement of points in the core sample rela-
tive to the base plate in the testing machine were measured
using a dial gage on each side of the sample. Sulfur caps
were mounted on the cylinders to make the ends planar. The
caps affected the shape of the stress-strain curves signifi-
cantly due to the inability to apply pre-loading on weak and
brittle cylinders. The stress-strain curve for the gaged
cylinders was used to represent the model material properties.

Dial gages were also used for measuring the deformation
and behavior of the box and model material. Continuous load
was maintained in the vertical direction and transfered to the
upper surface by a 15 x 8 inch plate. Displacement between
the upper surface and the base plate was measured to an accur~
acy of 0.001 inch.

The main purpose of tests #l1 to #5 was to investigate
the failure surface geometry of a working highwall slope under
a distributed load. 1In addition the displacements of the
slope surface itself were simultaneously studied. To accomplish
this purpose a series of 5 dial gages for tests # 1 to #5 and
4 dial gages for the remaining tests were mounted parallel to
the upstream face of the slope through a slot in the frame, to
record the deformations of the upstream slope as loading pro-
gressed. Reading of the gages were taken after each increment

of loading.
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Displacement of the steel frame and the plexiglass plate
was controlled by the use of the several dial gages mounted
on the sides, Figure 4-2.

4.9 Testing Procedure

Following is a description of the testing procedure
that was used for loading the slope model. Some modifi-
cations of the dimensions were used for tests #6 to #9.

The tests varied from 4 to 6 hours in duration.

Once the reguired compressive strength had been reached
as determined from the core samples, the model was loaded.

The testing steps were as follows:

l. Compressive strength estimation were obtained by apply-
ing the load on 3 sulfur-capped core samples, and averag-
ing their values.

2. Stress-strain relationships and consequently the modulii
of elasticity were obtained by applying axial load to
each of the 3 core samples.

3. Pre-loading was used to minimize end effects and to obtain
a smooth stress-strain curve.

4. By a rough estimation, 1/6 of predicted strength was
applied on the model as pre-loading.

5. The "zero" readings on all dial gages placed on the model
were taken.

6. Two dial gages were situated at the top surface while 4
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other dial gages monitored the lateral deformation of
the box. For tests #l1 to #5 five dial gages measured
slope front displacements while four gages were employed
in tests 6 to 9. Readings were taken after each incre-
ment of loading.
7. Each loading increment took approximately 30 seconds.
8. The axial loading was transferred to the model by a
8 x 15 x 1 inch steel plate for tests #1 to #5 and by a
5 x 15 x 1 inch steel plate for tests #6 to #9.
9. After noting the appearance time and nature of prelimin-
ary cracks the loading was continued to final failure.
10. Each test failure surface was traced on the plexiglass
side in order to compare it with other tests.
11. Once failure is complete and final readings made, the
model can be carefully unloaded for the next test.
It is possible to calculate the resulting displacement that
has occured at different depths at the front face by comparing

the differences between the first and final dial gage readings.

4.10 Presentation and Discussion of Model Test Data

From the data presented in tables 4-1 to 4-9 and Figures
4-1 to 4-12 in Appendix A the following outcomes may be
drawn:

1. Experiments were performed to provide enough knowledge

of strip mine slope behavior to accomplish this
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a) Model Instrumentation

b) Loading Machine

Figure 4-2, An illustration of model instruments and loading equipment.



Table 4-2 Computation of modulus of elasticity of model for different tests

(E = .75 X 10° psi for prototype shale rock)

Model _ Prototype
. Modulus Compressive | Angle of Unit ljeight Compressive
Test No. | of Elasticity | Strength Shear 1b/ft° (wet) | Strength
- E, psi psi Failure ¢ PSI
y 3 0
~ 1 23.6X10 26.0 35 135 826
g 3
WE| 2 25X10 34.52. 30° 140 1052
Q
ua X
av| 3 28x10° 40.0 24° 142 1205
g 3 o
25 4 44.6X10 72.86 22 145 1226
= )
HEE 54%10° 224,22 15° 150 3114
—_ 3 0
= 6 19X10 23.0 34 136 907
.‘E :’.’.: 3 0
3 7 25X10 32.0 31 138 960
wn 3 0
a? 8 44.20 X10 60.0 23 142 1016
o9
wal g 42.16X10° 89.6 18° 147 1593

9¢€
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Purpose, the front face of the model which simulated a work-
ing high-wall was instrumented to measure face displacement.
The records of the front surface displacemnts are shown in
Tables 4-1 to 4-9, Appendix A. Variation of displacement with
depth at the front surface is plotted in Figure 4-3,
Observation during the experiment has proven that the tension
crack first occurs on the top and then a crack appears in the
middle and spreads upward toward the tension crack and finally
downward to the plane of weakness.

The displacements present the initial movement of the material,
which structure remains stable unless the failure surface
appears and intersects the plane of weakness.

In mining, engineers should specify what location should be
monitored. If there is not an accurate knowledge of the criti-
cal region, the area to be monitored could be extensive.

Displacement in the lower portion (Dial gage #4) is max-
imum and was increasing as cracking neared. This can possibly
give warning of threatening failure in a strip mine slope.

In a mine the magnitude of face movement is totally un-
know until an actual failure occurs. On the other hand stab-
ility analysis based on laboratory strength properties fail to
provide satisfactory comparisons with slope behavior observed
in the full-scale test cut at some mines. This is due to the

presence of joints and fractures. However, knowing the most
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critical point based on the experiment in this study there is
no need for overly sophisticated instruments to monitor the
movements. Simple devices can be installed to predict the
failure and to give an alarm of any movement.

Complete failure was clearly indicated by a sudden outward
translation of the front surface and a corresponding settle-
ment of the top surface of the model.

While making the sulfur caps it was discovered that the more
brittle core samples failed due to the twisting necessary in
the capping process. Such brittle materials require extreme
care during test~preparation.

With increasing compressive strength, the curvature of the
failure surface decreased for test #1 o #5. All the failure
surfaces intercepted the plane of weakness somewhere near the
toe of the slope.

Test #6 and #7 for a vertical cut and #8, #9 for a slope were
carried out in order to see if this kind of loading and mater-
ial modeling indicates well-known failure surface. Based on
Figures 4-11 and 4-12 Appendix A, it can be seen that toe fail-
ure did not occur, indicating good agreement between theory and
model.

In all the tests except #1 and #9 the initial crack appeared
somewhere below the head of slide. This supports Peck's(1969)
statement: "It does not necessarily imply that failure always
starts at the head of a slide; there are undoubtedly several

other forces to be considered".
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11. The failure surface is not circular for loose rock when
there is a restriction for the penetration of slip sur-
face (plane of weakness) through a rigid stratum below.
By monitoring the excessive strip mine slope displace-

ments during the operation with the knowledge of the most

critical point of a working highwall (dial gage #4), the
behavior of a potential failure can be predicted. This en-
sures that the slope is safe and may exhibit small movements
within acceptable design. On the other hand it would also
enable the mine operators to take steps to minimize product-

ion and equipment damages and danger to human life.
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Chapter 5
STABILITY OF SPOIL PILES AND

UNCONSOLIDATED WORKING HIGHVWALL

5.1 Introduction

One of the problems associated with coal strip mining
is disposal or storage of a large volume of overburden waste
material generated during the mining operation. This waste
material is called spoil. Dumping or loose storage of spoil
piles is a source of siltation, acid water runoff, and land-
slides. Several different regulations restrict the size and
geometry of overburden storage areas in order to assure their
stability. These regulations include: 1limiting the steepness
of a natural slope upon which overburden can be placed; limit-
ing the angle of the fill slope which is referred to as the
"natural angle of repose" of the spoil.

Several investigations have illustrated that spoil fail-
ures occured in surface mines which were in agreement with
regulations. However, the regulations are so general that in
some cases interpretation of the regulations resulted in ex-
cessive costs, while simple analysis shows that a less extreme
plan would yield sufficient stability with less mining cost
for a particular region.

Both unconsolidated highwall (used here as a soft or

fractured rock) and spoil consist of combination of coarse

41
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and fine material. Since stability analysis based on equili-
brium methods are applicable as long as soft rock is considered,
this chapter will include:

. A brief review of the equilibrium method

. A study of mechanisms involved in unconsolidated high-
wall and spoil failures.

. Some suggestions for modification of existing app-
roaches based on the equilibrium method for spoil
stability analysis.

Finally the purpose of this chapter is not to compute

the stability of particular Oklahoma strip mines but to de-
velop better approach on which to design such mines. Unfortun-
ately, little or no research has been done in strip mine slope
behavior which can be used as a basis for comparison . The
stability hazard related to groundwater has not been reported
in Oklahoma surface mine operations, but spoil failure has been
seen in some mining sites (Figure 5-1).

5.2 Eguilibrium Method

Most slope stability analysis methods employ the assump-
tion of limit equilibrium where the soil is assumed to be in a
state of plastic equilibrium. A cross section of unit thick-
ness as a two-dimensional plane strain problem is assumed. A
free body diagram of a soil mass, bounded by the top surface

and the assumed failure surface is analysed using equations of
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statics. Strength parameters and pore pressure distribution
are assigned to the cross section based on a combination of

in situ and laboratory testing. The soil is usually considered
to be homogenous in directions normal to the cross section.

The observation of many failed slopes resulted in the
development of stability analysis procedures which considered
circular or arc shaped failure surfaces, now known as the
Swedish method. Swedish methods are divided into two groups.
The first group is based on the assumption that the soil mass
above the failure surfaces acts as a mass unit. The second
group assumes the soil mass to be divided into a number of
slices and the conditions of static equilibrium are applied to
the individual slices and summed for the entire structure.

For the case of cohesive clay, application of the equili-
brium method with a circular failure surface is widely recom-
mended. It has been of proven value in the studies of soil
and unconsolidated material. Therefore, it will be applicable
to spoil stability of Oklahoma mines.

Slope stability analysis methods based on equilibrium
method possess some of the following deficiencies:

1. The parameters of strength such as (C,¢) must be esti-
mated or determined in the laboratory. In actual slopes,
great uncertainty exists in this respect.

2. The safety factor is assumed to be the same at all

points of the failure surface.
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Figure 5-1. Slope failure in a strip mining located at
eastern part of Oklahoma.
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3. The Basic Equilibrium Method was applied on circular
failure surfaces only. More recently, the slice pro-
cedure has been extended to failure surfaces which have
no restrictions placed on their shape. The method is
referred to as the Generalized Method of Slices.

The experimental study discussed in the previous chap-
ter provides a good support for the "Generalized Method
of Slices".

4. The problem is statically indeterminate and cannot
be solved without the deformation condition.

5. Equilibrium analysis will provide a valid indication
of stability for large factors of safety but they are
not capable of indicating which zones are most highly
stressed. Analysis has shown that the elastic stress
concentration around slopes may be large enough to
cause local failure of the soil even when the factor
of safety against catastrophic failure is as large as
five (Dunlop and Duncan, 1970).

6. The Failure Criterion is not capable of accounting
for the anisotropic behavior associated with the
existence of planes of weakness (Hoek and Brown, 1980).

The study in the following sections is made to eliminate

some of these deficiencies and to develope a reasonable approach
applicable to the analysis of spoil and unconsolidated high-

walls of strip mines.
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5.3 Factor of safety

The factor of safety is commonly defined as the ratio of
available shear strength of the soil to the shear resistance

required to maintain equilibrium. The safety factor is then

F. = Shear strength available to resist sliding
S Shear stress mobilized along failure surface
and after rearranging this equation, one gets
T=% (C+ 0ty -1
s

where 7 is the mobilized shear stress, C is the cohesion,

¢ is the angle of internal friction, and o is the normal stress
on the plane of failure resulting from the applied loads, and
Fs is the safety factor with respect to shear strength. The
factor of safety for a stable spoil or highwall must be at
least equal to unity.

5.4 Determination of the Critical Slip Surface

The critical failure surface is the slip surface which has
the lowest factor of safety. Since all other slip surfaces pro-
duce higher factors of safety, any method of analysis that does
not determine the critical slip surface results in unsafe
situations.

The experimental study discussed in the previous chapter
indicated that the slip surface is not a circle for loose rock
when there is a restriction for the penetration of the slip

surface through a rigid stratum below. The effect of the shape
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of critical slip surfaces has already been shown to be of poss-
ible importance in computing factors of safety for homogenous
simple slopes (Bell, 1968). The experimental results show that
the slip surface can be divided into three zones, linear near
the top, concave outward in the middle region, and a f£lat sur-
face aqjacent to the coal layer for the highwall, while coin-
ciding with the original ground surface or the undistrubed
underclay for spoil, as shown in Figures 5-2, 5-3.

In general, the slip surface can be considered as a compo-
site of curved and flat surfaces.

Establishing the critical slip surface based on the equili~
brium method is largely a trial and error process, accomplished
by numerical or graphical methods. Because of the repetitive
nature of the calculations it is possible to use computers to
allow for more iteration in the analysis of complex failure
surfaces. Several analytical methods have been deveioped but
among them the Fellenius or the Simplified Bishop Method (1955)
is recommended because of the error involved in this method is
less than with other methods.

5.5 Indeterminacy

In the slope stability analysis which assumes circular arc
shaped failure surfaces, the soil mass is divided into a number
of slices. In order to determine shear strength for each slice,
the normal stress must be known. For each slice in Figure 5-4,

there are three equations of equilibrium and n unknowns. Clearly
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the problem is statically indeterminate. The alternative
is to employ assumptions in order to reduce the number of
unknowns.

Bishop (1954), Janbu (1956), Mongenstern and Price (1975),
Bell (1968) and others have attempted to develop a statically
determinant procedure to determine the factor of safety for a
sliding body. Each one has a set of particular assumptions and
Bishop considers no external forces acting on the surface of the
slope. Of these Janbu's and Bishops procedures are recommended
in spoil slope analysis because they are less error prone.

It should be mentioned that there is considerable
literature published on slope stability and its in-
determinacy. The purpose of this section is not to present a
comprehensive critique, but particular emphasis is placed on
modification of the methods which are most applicable to the
analysis of spoil and unconsolidated highwall throughout this
research.

5.6 Plane Failure

One of the methods to store the waste from the first cut
is to push it down the natural slope to form a sidehill bench
which is called spoil bank. Figure 5-3, shows a typical cross
section of a spoil bank.

There are two possible modes of failure for spoil banks;

one involving plane failure surfaces which coincide with the
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Figure 5-4, an illustration of indeterminacy of slice method.
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original ground surface at the bottom of the f£ill, and the other
involving circular or curved failure surfaces which lie entirely
within the £ill bench. The curved failure surface will be more
critical if the shear strength of the spoil materials at the
bottom are the same as the original ground surface. If the
original ground surface is not cleaned of the organic material
then the original ground surface is a plane of weakness and
the plane failure is more critical. However, both modes of
failure must be investigated and the one which gives the smaller
safety factor will control the design.

The plane failure procedure has been utilized in analyiz-
ing the stability of surface mine spoil banks by Huang (1977).
The analysis of plane failure with modification in Huang's
approach in order to approximate reality in spoil bank sta-
bility is presented in this section.

Figure 5~5 illustrates the forces acting on a spoil bank.
Huang established the following relationship for the factor of

safety as
CH CSCo + (1-u) W cos atgd
W sina 5-2

F =

where

C is the effective cohesion of soil, H is the height, and H CSC o
is the length of the failure plane and § is the effective angle
of internal friction of soil. N is the effective force normal

to the failure plane and W is the total weight of fill and r,
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Figure 5-5, Forces on spoil bank. (HUANG, 1977)
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is the pore pressure ratio, which is a ratio between the pore

pressure along the failure plance and the overburden pressure.
For a derivation of relationship 5-2 the reader should consult
Huang (1977).

The total weight of f£ill W can be written as

W = %yH? csc wesc o sin( -o) 5-3
where

Y is the mass unit weight of fill.
Substituting W from Eguation 5-3 into Equation 5-2, the safety

factor is 5-4

F=2S8Sinw csccicsc (ALY ('gﬁ) + (l-ru) tan ¢ cot.o

If the interface of the original ground surface and the

spoil or the interface of unconsolidated highwall and the coal
layer is considered as a joint the ® can be modified. Patten
(1966) has reported that the roughness of joints can be taken
into account by increasing the friction angle on the joint
surface. If the discontinuity surface between the unconsoli-
dated highwall and the coal layer or spoil and original ground
surface is inclined at an angle i to the shear stress as

shown in Figure 5-2, a relationship between the applied shear

and normal stress can be written as:

T=0 tg($ + i) 5-5
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Barton (1973) derived the following emprical equation:

T=0tg (¢ + JRC . loglo—%-{) 5-6
Where JRC is a joint roughness coefficient which is between
5 and 20, and —%~ is effective normal stress to joint compres-
sive strength ra%ib.

Barton's experiments were carried out at low normal stresses
and his equation is applicable in the range 0.01 < o/ci <0.3.
(Hoek and Bray, 1977) Since the normal stress in most rock slope
stability problems falls within this range, the application of
this equation is recommended.

By substituting the modified ¢ from Equation 5-6

into Equation 5-4, the safety factor is considered as:
_ - - c_ - 3
F =2 Sinw CSCoCSC (w ~o) (YH) + (l-r)) tg (¢ + JRC log

g
E} ) Cot.a 5-7

This equation is applicable when the original ground surface
is covered by organic or loose materials with a lower shear
strength as well as other similar cases.

If the original ground surface roughness is to be changed
by man~made parallel ditches or if coarse refuse is deposited
at the bottom of the fill as a blanket, the safety factor will

be effectively modified. Experience indicates that the water
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within this coarse refuse drains freely thus the shear resist-
ance will be increased.

If the interface between the unconsolidated highwall and
the underlying coal layer is filled with a soft clay or fine
material the method of analysis must be altered. Goodman(1970)
showed experimental results which indicated that once the fill-
ing thickness exceeds the amplitude of the surface projections,
the strength of the joint is controlled by the strength of the
material.

Barton (1974) presented a comprehensive review of the
shear strength of filled discontinuities and prepared a table
for the shear strength values of the filled joints. If a major
discontinuity with a significant thickness of infilling material
is encountered in a mining excavation, the shear strength of
the discontinuity should be taken as that for the infilling
material. It is recommended that the shear strength of infilling
material be determined in accérdance with soil mechanics prin-
ciples.

Appendix B shows application of a modified approach to
spoil bank stability and a comparison with Huang's procedure.

5.7 Method of Slices

One of the most widely used methods for determining the
factor of safety of a circular failure surface is the method

of slices. This method permits the utilization of different
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values for C and ¢ for each slice. As previously discussed
the indeterminacy is an important factor in this method.

Bishop (1955) extended the Slice Method by including
the effect of forces between the slices (known as the Bishop
Method of Slices). As mentioned before for each slice in
Figure 5-4, there are three equations of equilibrium and more
unknowns. Thus the problem is statically indeterminate. It
is necessary to employ assumptions in order to reduce the number
of unknowns. The force AW is assumed to act vertically through
the center of the slice, while AFm acts perpendicular to the
base of the slice at the midpoint. AFt is the shear force re-
quired to maintain equilibrium. Conversly if the resultants
of the interslice forces are assumed to be equal and opposite
they cancel one another, a situation handled by the Ordinary
Method of Slices. Bishop expressed that the value of safety
factor using the Ordinary Method of Slices is conservative
when compared to the Bishop Method of Slices. By summing forces
in a directional normal to the shear surface at the midpoint
of each slice, the safety factor for the Ordinary Method of
Slices becomes as:
_i EA‘R{_‘L('AW + Q) Cosa - ApMJ tgd

I ( AW+Q)Sina

Fs

where

W The total weight of the slice of soil
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AL The length of the slice of soil

¢ The angle of inclination of slip surface

.Ap The excess pore pressure

In the Bishop Method by considering the interslice

forces, the expression for the safety factor is

oo : - 1
I {cAicCosa+ [}AW+Q—ApA£ Cosa) + (?mf?m*43t9¢]CQsa+(tg$s§2“)

F =
[
IAW sina

For the details of derivation the reader can refer to the given
reference. Bishop assumes that if no external forces are present
and - the slope is stable, then

Z(Pm - P =90

m +l)'

X(Tm - Tm_+l)

It
o

~ The resultants of the total horizontal forces,
including the effect of seepage if present

T, T - The vertical shear forces on sections m and
m+l ,
m+l respectively

Bishop's method involves a lengthy process of determining
the safety factor. An initial value is assumed for F by taking

(T _ -T

- m+1) = 0, then the values of (Tm -Tm+l) are adjusted to

satisfy the condition such‘as Z(Pm -Pm+1) = 0.

Bishop suggested that in most cases the factor of safety
given by (Tﬁ - Tm+l) = 0 is sufficiently accurate. This method
is known as Bishop's Simplified Method and assumes that the

interslice forces are horizontal. Wright (1973) has shown that
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the variation in Fs by either method is less than 6%.

Spencer (1967) expressed that the error involved in the
Bishop Simplified Method is conservative.

Janbu (1954) applied the method of slices to limit
equilibrium analysis in which composite or general failure
surfaces were investigated. In this analysis he assumed
the same assumpticns employed in Bishop's Simplified Method.
In Bishop's approach the moments are taken about a central
location which is the center of the circular arc; whereas in
Janbu's Method moments are taken about the midpoint of the base
of each slice.

When the shape of the failure surface is not circular
as a result of some structural feature such as the spoil waste
and rock interface or loose highwall and coal layer interface,
the conditions assumed in deriving the circular failure charts
are no longer valid. Significant errors can arise from
the application of the circular failure charts in such cases,
particularly when low shear planar features such as spoil and
original ground surface form part of failure surface. Conse-
quently, a more accurate form of analysis must be used.

-Janbu's Method of analysing non-circular failure is
simple enough to permit the solution of strip mine problems
by hand. The earthquake force can be taken as 0.05 times
the weight of the slice and applied as a horizontal force at

the centroid of each slice (Cowhered, 1977).
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In appendix B a hypethetical problem is solved using various
methods. Using Huang's approach, considering the plane of weak-
ness as a joint, the safety factor is decreased and the modified
procedure is more conservative.

5.8 Variational Method

The calculus of variations allows the determination of the
critical sliding line without the necessity of estimating the slip
surface shape. The method has been applied by.Garber (1973),
Biermatowski (1976), Revilla and Castillo (1977), Garber and
Baker (1979).

The work in Appendix B is an extension of Revilla and
Castillo (1977) research. The non-linear equations have been
solved using numerical techniques in order to obtain the safety
factor. Since their method is based on Janbu's method consid-
ering cohesive soils and since strip mine spoil is not a cohesive
waste, the method is not recommended for the case under consider-
ation.

Furthermore the approach is not applicable to cohesive high-
walls since the external loading and plane of weakness is not

included.



Chapter 6

AN ANALYSIS OF THE FAILURE OF OVERCONSOLIDATED AND

BRITTLE ROCKS USING THE FINITE ELEMENT TECHNIQUE

6.1 Introduction

The fact that heavily overconsolidated, fissured clays
and clay shales cannot be analysed by conventional methods
has been mentioned before. It has been pointed out by Bishop
(1976) that the error associated with conventional methods is
related to the brittleness of this type of rock. Skempton
(1965) and Bjerrum (1967) discussed the importance of the
stress-strain characteristics of such rock. Furthermore,
Duncan and Dunlop (1969) discussed the effect of initial
stress conditions in overconsolidated clays and shales that
may contribute to the slope stability of such rock. This
study was performed using a plane strain formulation of the
finite element technique.

Deformation and fracture in these rocks are related to
the compl:x process of deformation due to loading and un-
loading in the past. The hysteresis loop formed in a load-
ing-unloading cycle, (which in a sense is an indication that
energy has been dissipated) cannot be justified for overcon-
solidated clay rock. It appears that the strain energy is

stored in the rock, but at present there is no generalized
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model to explain the effect of this process adequately. Also
the stress-strain relationships found in the laboratory do not
include the type of elastic rebound that occurs at the site
(Emery, 1966).

The model under consideration for simulation of a strip
mine by the finite element method is based on the model
suggested by Dunlop and Duncan for a slope but combined
with a simplified approach for the plane of weakness.

6.2 Classification and Identification of Rock

Field investigation has shown that the rock which typi-
cally overlies coal layers in Oklahoma can be divided in
three groups, clay, brittle shale and hard shale. Clay can
be either cohesive normally consolidated clay or overconsoli~-
dated clay. Brittle shale can be weathered shale or overcon-
solidated clay shale. Hard shale includes both stiff fissur-
ed shale and intact shale free from joints and fissures. 1In
occasional sections coal deposits may be covered by sandstone
limestone or varied rock types.

In the previous chapter it was mentioned that the equili-
brium method can be applied to normally consolidated clay.
This chapter includes the application of the finite element
method to the analysis of a working highwall consisting of

overconsolidated clay, clay shale and intact hard rock.
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6.3 Initial Stresses

The most important factor affecting the behavior of an
excavated slope is its initial stress state. These stresses
might be measured but are usually estimated. The vertical
stresses are assumed to be equal to the overburden pressure
and the horizonal stresses are equal to K (earth pressure co-
efficient) times overburden pressure. For a normally consoli-
dated rock, the value of K can be calculated from elasticipy
considerations K ='(i¥37 .

For an overconsolidated rock that has been under cyclic -
loading and unloading the difficulties in estimating the
initial stresses are greater. 1In fact the erosion of over-
lying rock will increase the value of the earth pressure

coefficient. The value of K is estimated using the follow-

ing relationship for over-consolidated rock (Goodman, 1980)

= -V azl o L -
K_Ko+[(Ko 1-\)) Aﬂ 7 6-1
where
KO = initial value of earth pressure coefficient before
unloading

Z = the depth before unloading

AZ = the thickness of the removed overburden
v = Poisson's ratio
The vertical and horizonal stresses can be calculated from

following relationships
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Uy =%XZ ~ PW 6-2

In equations 6-2 and 6-3 y is the unit weight of rock and
Pw is the pore water pressure. For the cases where the rock
is below ground water level, the saturated unit weight is con-
sidered.

6.4 Residual Stresses

In addition to the initial stress (gravitational stress)
caused by rock loading from its own weight there are residual
stresses which are due to the tectonic history of the rock
formation. These stresses developed due to a variety of
causes, including the shrinking earth's crust, plate colles-
ions, mountain building, etc. The stress field in the earth's
crust is so complicated that the rock mass seldom gives suff-
icient information to predict the stresses resulting from this
past tectonic activity. HoWever, the gravitational forces com-
bined with horizontal residual forces can provide an important
influence on the stability of deep strip mine slopes.

Jointed rocks and soft sedimentary rocks cannot long re-
tain residual stresses because in the jointed rock the stress

has been relieved by fracturing and in the sedimen%ary rock
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as well as igneous rocks (Piteau, 1970), can retain high
residual stresses.

Near surface stress measurements in hard rock areas
have in some cases shown that the horizontal stress compon-
ent at the surface can be much greater than the vertical
stress. At Grand Coulee Dam, Washington, the Bureau of
Reclamation measured horizontal in situ stresses which were
6 times the lithostatic stress (Dodd, Anderson, 1971). High
lateral stress in a mine near Barberton, Ohio also has been

reported (Long, 1963).

It is important to mention that the residual lateral
stress should not be confused by lateral stress due to over-
consolidation. But, in general, in Oklahoma strip mines no
residual stresses are expected due to the existance of rela-
tively soft rock.

6.5 Creep

Creep is a time-dependent strain and can be expected on
a slope where high stresses are concentrated for a long time
(Murral, Misra, 1962).

In general, deformations due to time are negligible in
hard rock excavations but for soft rocks such as shale and
mudstone, creep deformations can be readily seen and may

lead to failure within days (Piteau, 1970).
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Creep is not an important factor in the stability of
strip mine slopes since a working highwall is constantly be-
ing altered during the excavation operation.

6.6 Groundwater

The water pressure distribution depends on the geologic
structure, the permeability and the storage capacity of the
rock mass. Raising the watertable increases water pressure
and consequently creates a possible failure condition. In-
stability related to groundwater pressures follows several
different mechanisms that provide the condition of failure of
the slope structure (Terzaghi, 1962, Muller, 1964, Serafin,
1968).

High storage capacity creates high hydrostatic pressures
in the saturated rock mass. These hydrostatic pressures are
both lateral and vertical and their intensity increases with
depth.

Groundwater fluctuations (rises and drawdown in the water
level) , change the hydrostatic pressure. To model the fluctua-
ting hydrostatic pressure, forces are calculated and applied to
the nodal points of the elements. Both uplift and lateral
forces should be calculated and applied to the nodal points of
each element. The uplift force U is equal to

\

.V - v(—‘zf—) 6-4

U =Yy s
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where Yo is the unit weight of water,y is the densitv of rock
and Vg is the volume of solids in the element and v, is the
voids of the element (Efrossini, 1975).

The lateral forces are equal to the hydrostatic pressure
times the length of the solid at the triangular element.

The rate of lowering of the groundwater level depends
on the rate of excavation. Because of the higher rate of
excavation in strip mining the equilibrium position can not
be reached during the excavation operation. Therefore, in
order to specify the groundwater boundary on the finite element
model, field observation and measurement is necessary.

6.7 Dynamic Loading

The dynamic loading in slope structures is usually con-
centrated on exposed surfaces and the maximum seismic force
produced should be evaluated under its most unfavorable orient-
ation. The vibrational loading caused by the use of heavy con-
struction equipment, i.e., drag line, can induce such a dynamic
stress field, as can earthquakes and blasting.

In strip mining operations frequent blasting is regquired.
No catastrophic failures have been reported to date in Okla-
homa. It is reasonable to assume that the influence of blast-
ing on slope stability results only in temporary deterioration

of the rock properties.
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To simulate the earthquake effect in a finite element
model the horizontal forces can be introduced as nodal point

forces. These new horizontal forces are equal to: (Efrossini,

1975)

FH = (FHO) C + (Fv) C
where

Fu is the horizontal force including earthgquake effect, and
FHO is the horizontal force due to excavation, and

Fv is the vertical force due to excavation, and

C is the earthquake coefficient.
The earthquake coefficient can be obtained by dividing
the measured acceleration by acceleration of gravity g.
Finally, the state of stress for each element after in-
cluding dynamic loading, is calculated by adding the stress
changes to the initial stress values.

6.8 Simulation of Excavation

The study of excavation was carried out by plane strain
analysis which reduces a real three-dimensional problem to
two-dimensions (Appendix C). A three-dimensional solution
requires a much greater number of computations and is generally
too expensive and complex to analyze. Such a simplification
of the three-dimensional problem to a two-dimensional one is

needed in order to achieve a strip mine analysis. The results
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of the two-dimensional analysis can then be interpreted in
terms of their applicability to the actual three-dimensional
geometry and excavation sequences.

The process of excavation was simulated by computiné
the forces acting on the excavated slope face and applying
the opposite of these forces to the same surface on the nodal
points, Figure 6-1. The final state of stress for each ele-
ment was estimated by adding the stress variation due to ex-
cavation to the intial stress values.

It has been shown that for a homogenous, isotropic,
linear elastic material the resulting stresses are independ-
ent of the excavation sequence, therefore analysis involving
a single step of excavation or a number of steps should give
the same results (Dunlop, 1970). Thus the single step app-
roach for simulating the excavation of Oklahoma strip mines

is suggested.

The displacements to be considered are those which are
induced by the excavated rock. The load is applied as a con-
centrated force on related nodal points. Therefore it is an
appropriate assumption to consider the initial displacements
and strains to be equal to zero before application of loads.

The displacements are obtained by standard structural methods.

Since shear strength is assumed to be constant in the struc-

ture, a constant modulus of elasticity can be applied in the

analysis (Dunlop, 1969).
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6.9 Boundary Condition

A trianglar finite element mesh is used for stress
analysis. The structure is divided into a number of hori-
zontal or inclined straight lines which are not permitted to
intersect each other. The end points of each line are on
the boundary of the structural model. Each line is further
divided into a number of intervals of either egual or arbitr-
ary length. Special attention was paid to insure that the
lateral boundaries in this model were sufficiently distant
from the slope face. Thus the boundary nodal points are con-
sidered as fixed boundary nodes. The nodal points along the
bottom boundary were constrained from moving vertically, simu-
lating the preexisting weakness plane between coal and rock.
A typical mesh with numbering of nodal points, coordinates
and elements is shown in figure 6-2.

Although the stress conditions in the region immedi-
ately adjacent to the slope and the front surface are con-
sidered to be of primary interest in this chapter, the fail-
ure surface, the movement of the front surface, as well as
the displacements on the other boundaries will illustrate the
importance of model simulation.

6.10 Failure and Safety Factor

For the case of constant modulus throughout the depth,

if shear stress values are equal to the undrained shear
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Figure 6-1 Analytic Simulation of Excavation
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strength of the clay failure will occur. The undrained shear
strength of the clay can be determined in the laboratory but
the value can be assumed based on previous experiments.

There are several methods for determining the failure
surface location. Brown and King (1966) have illustrated that
the failure surface is made up of trajectories of maximum
shear stress directions.

The factor of safety is defined as the ratio of the shear
strength to the shear force along the failure surface. First
it is required to calculate shear stress and normal stress at
any point. Second, normal stresses and shear stresses along
the failure surface may be obtained. Consider Figure 6-3,
stresses S oy, fxy should be calculated by the numerical
technique. Assume point A is on a line, tangent to the failure
surface and Sh normal stress and Thm shear stress at that
surface. The angle 6 is the angle between the tangent at A
and the 1ine'norma1 to the x-axis. Then the normal and shear

stress on the failure surface at point A can be determined by

o =% (0. + 0 ) + - i -
n 5 ( % Y) % (0x oy) Cos 26 + Txy Sin 26 6-3

Tom = Txy Cos 26 - %(ox - oy) Sin 28 6-4
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Figure 6-3, Stresses at a point on a Failure Surface.
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Knowing the principal stresses from finite element analysis,
the normal and shear stresses at every point along the failure
surface can be determined by equations 6-3 and 6-4. Then by
substituting o n in the Coulomb equation, the shear resistance
can be obtained.

T=C+o n tge 6-5

C and ¢ are already defined. The total shear strength and total
shear force are obtained by summing the shear strengths and shear
stresses at all points along the failure surface. The factor

of safety is defined as:

(c + %n tg ¢) 4dL

Fg = aL 6-6

]

T
) mn

where dL is defined as an incremental length.

6.11 Stress Distribution Along the Plane of Weakness

Within an infilling material or in the vicinity of a shear
zone the displacement related to reduction of shear strength
combined with dilatory effects and secondary fractures can be
observed. Finite element modeling and formulation for stress
distributiqp along such a shear zone is not fully developed.

Only a small number of contributions to the numerical analysis
of the detailed behavior of rock joints in direct shear have

been made. This can be related to the difficulties of specifying
the constitutive laws for the behavior of rock materials and

joints and evaluating the respective parameters. However, the
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existence of weak structural planes in a rock slope body, or
in the rocks surrounding a mine excavation may play an all-
important role in rock stability. In analytical computations
for rock mechanics important research topics consist of simul-
ating these weak planes and reflecting their mechanical non-
linear properties (Jun, 1979). Of the few models describing
the effect of weak planes, the following have some bearing on
the problem under consideration:

Goodman (1974) suggested a joint element model with emphasis
on mechanical non-linear properties of joints.

Ghaboussi et al (1973) explained slip elements that model
rock joints, faults and interfaces with finite element analysis.

Byrne (1974) incorporated a transversely isotropic filling
material in the joint element formulation.

Jun (1979) suggested an analytical model for the mechanical
non-linear properties of the simulated joint planes based on in
situ direct shear testing data.

Hously and Worth (1980) have suggested that the only approp-
riate constitutive relationship for an intensely sheared region
is one involving no dilation.

Analytical results reported by Goodman and Dubios (1972)
have illustrated that, for planar joints with low values of 1
(less than five), the dilatancy effects may not be large. For

the case of the strip mines in Oklahoma the joint surfaces are
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mostly planar. It is sufficient to account for the joint rough-
ness by adjusting the joint friction angle only and assuming
that there is no dilatancy.

The simulation of the plane of weakness as a simplified
method was performed in this study by considering the rock
mass adjacent to the discontinuity as a continuum with fixed
boundary conditions. The shear strength of the plane of weakness
was calculated by Barton's equation. If the shear stress on
the nodal points calculated by finite element representing the
weakness plane is greater than the shear strength calculated
from Barton's eguation, then it is assumed that failure on the

joints had accurred.

6.12 Coal Layer

Lateral elongation in the coal layer will generally occur
throughout its full depth following completion of the key cut
in the coal layer. As discussed in the chapter three the model
is designed based on the fact that there is no key cut. There-
fore, analysis of the coal layer is not an important subject in
Oklahoma strip mines.

Attempts to understand the elastic and engineering properties
of a coal layer are as yet quite basic and preliminary, and any

conclusions are to be considered tentative. For example little is
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known concerning the stiffness and strength of coal. This section
will review existing methods and propose extentions to be used
in this analysis of the stability of the coal layer.

The application of the finite element technigue to the coal
layer requires detailed knowledge of the constitutive relations
of the coal materials involved. Unfortunately, in the present
state of knowledge, there is no generally accepted understanding
of these relations. The determination of the compliances based
on constitutive relations of coal in a laboratory shows consider-
able Séatter. This should be expected for a heterogenous material
such as coal that contains numerous bedding planes. Each bedding
plane contains visible layers such as fusain or calcite that
are oriented in the direction of the bhedding planes.

Consequently in the past distribution of compliance values
has been determined based on statistical analysis (Atkinson, 1976).

The compliance matrices include non-symmetry in the off-diag-
onal terms, indicating that the coal layer connot be considered as
a single intact isotropic layer. The compliances obtained by load-
ing normal to the bedding planes are different from those obtained
by loading parallel to the bedding planes. The presence of the
non-symmetry may therefore be related to the bedding planes (Atkin-
son, 19765 (Van, 1975).

Previous studies have neglected the non-symmetry of the

compliance matrix, and a symmetric compliance matrix is assumed.
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Finite element analysis programs require material property
input in the stiffness matrix and this is possible if the
compliance matrix is non-singular.

Inspection of a coal layer reveals the existance of
horizontal bedding planes and two sets of vertical cracks
called cleats which are nearly perpendicular to one another.
It is reasonable to assume that the mechanical behavior of
coal will be influenced by this orthogonal system and a trans-
versely anisotropic or an orthotropic material model is a good
approximation. The stiffness matrix based on a transversely
anisotropic material model is arranged in Appendix C.

In the closed form solution the coal layer can be assumed
to be formed of n laminae bonded together to make a laminate
and to act as an integral structural element.

The stiffness of such a composite material configuration
can be obtained from the properties of the constituent laminae
by well known procedures. The coal laminate is assumed to
consist of perfectly bonded orthotropic laminae, and infinite-
simally thin bonds with no shear deformation. Consequently,
the displacements are continuous across the laminae boundaries
so that no laminae can slip relative to another. Therefore
the coal layer laminates acts as a single layer with known
special properties for each laminae. The assumptions require
the determination of the mechanical properties of each bedding

planes.
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Appendix D includes the application of mechanics of com-
posite material to the coal layer and with this approach the
stresses, strains and occurance of failure in a coal layer can

be predicted.

6.13 Output Discussion

In order to obtain information concerning the failure sur-
face and movement of the model structure, a finite element mesh
(Figure 6-2) with 281 triangle elements and 164 nodal points were
analyzed. Both uniform and non-uniform meshes were used since
the meshes can be made finer around the failure surface where
high shear stress trajectories are expected. Based on obser-
vations from the physical model, the nodal points on the vertical
boundaries far from the slope sﬁrface and the plane of weakness
are constrained from moving in either direction. The assumed eff-
ective stress parameters of rock are v = 0.2 and E = 54000 Psi.

The behavior of the slope model subjected to four concen-
trated vertical loads on nodes number 11, 22, 33, 44 were analyzed
in order to investigate the slip surface shape and the most criti-
cal displacement on the front surface of the slope. For each run

the structure was subjected to four different concentrated loads of

5, 10, 20 and 30 kips and is treated similar to the problem discuss-
ed in the experimental chapter with the application of the theory of

elasticity.
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The movement of the nodal points on the front surface
represents the displacement of the body. Like the physical
model the external load was applied on the top surface and
the displacement of the front surface was carefully studied.

The finite element solution gives the displacement of
all the nodes within the slope structure but the displace-
ment of the nodal points 1 to 1l located along the front sur-
face are given more importance in this study. When the dis-
placement for 1 to 11 were plotted, (figure 6-4) node number
five was found to undergo the largest displacement. This
node is therefore chosen as the reference from which the dis-
placement data is presented in terms of the load-displacement
curve.

Comparing the displacements for this model (figure 6-4)
with the physical model (figure 4-3) it can be seen that the
patterns of the variation of displacement with depth at the
front surface are almost identical at all locations. The re-
sults indicate that the displacement of node number 1 is zero
as expected due to its position on the boundary.

Yielding first occurs around the elements 18 and 36,
then concurrently spreads upward toward the ground surface
and downward to the plane of weakness. This is what has been
seen in the physical model. Elements such as 80, 98, 116,

134 and 152 are located in the tension zone and it is in this
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region that a tension crack was noted in the experimental
study before complete failure occured. As the loading was
increased, more tension zones are developed farther from

the slope surface and this also has been seen in the physical
model. Therefore, in a real strip mine as the floor of ex-
cavation gets deeper (called locading) more cracks can be ex-
pected further from the excavation. Some individual elements
close to the ground surface and adjacent to the front surface
yield at very low load levels. This is due to local bulging
that helps to reduce the potential yielding stresses. This
should not be considered as a part of the failure surface but
can be understood as a local collapse. Figures 6-5 and 6-6
show the failed elements that make up the failure surface

for the model. When the failure surface from the experimental
study (Figure 4-10-2, Appendix A) is compared to the failure
surface obtained from the numerical study (Figures 6-5 and 6-6)
good agreement is noted for hard rock. 1In general, the failure
surface has minor changings for the variation of the applied
loads.

The finite element program has been run for a working
highwall with a 45° slope angle and 100 feet height. The
vertical boundary is placed 250 feet away from the toe. The
nodal points on the vertical boundary and the plane of weak-

ness are constrained from moving in either direction.



Node no.
or Depth inches

. % 30 kips
11 O 20 kips  E=54,000 Psi
® 10 kips v=0.2
/A 5 kips

-.02 -.01 o .01 .02 .03 .04
Displacement (inches)

Figure 6-4, Maximum displacement at the front surface of model
(E=54000 Psl, ¥=0.2)
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(a) Failure surface for model with 10 Kips (b) Failure surface for model with 5 Kips
Concentrated load on nodes 11, 22, 33, 44 Concentrated load on nodes 11, 22, 33,
44 .

= 5 i =
E 0.54 X 10 PSl, Vv 0.2 E = 0.54 X 105 PSi, v = 0.2

Figure 6-5, Failure Surface For Finite Element Model



(a)

Failure surface for model with 30 Kips

concentrated load on nodes 11, 22,

E = 0.54 X 10° Psi,-v = 0.2

Figure 6-6, Failure

33,44

(b)

Failure surface for model with 20
Kips. Concentrated load on nodes
11, 22, 33, 44 :

E = 0.54 X 10° ,v= 0.2

Surface For Model
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First, the structure was considered as a normally con-
solidated rock and 30 kips concentrated load was applied on
nodal points 11, 22, 33, 44. The lateral earth coefficient
varies while other variables are constant. Of all the nodal
points located along the front surface, number 5 has been
found to undergo the largest displacemnt. Table 6-1, shows
the variation of the maximum displacement at node number
five for different lateral earth coefficients.

Figures 6-7 and 6-8, illustrate the possible failure
surfaces for lateral earth coefficients 0.4 and 0.8. It can
be said that by increasing the lateral earth coefficient, the
failure surface for a working highwall moves toward the slope
surface. In order to indicate the stress variation the struc-
ture is divided into six sections and tables 6-2 and 6-3
illustrate the maximum stress variation with changing lateral
earth coefficient. It is concluded that variation of the
lateral earth coefficient has a significant effect on the

stress pattern of the slope. The principal stresses Oy

and Txy have been increased but cy was decreased. It is
observed that excavation produces greater variations in the
stresses at the lower part of the slope than the upper part
and high stress concentration is located around the fixed

boundary, node number one. The variation of stressoy is higher

than the variation of stress Oy and Txy.



Table 6-1, Maximum Displacement at Node Number 5 for Different

Lateral Earth Coefficients, normally consolidated rock.

Case No. K Yy, lb/ft? v E, Psi Max. Displ. at
Lateral Earth Density Poisson's Ratio Modulus of Node No. 5, ft
Coefficient . . e " Elasticity’
[ee]
3 ~J
1 0.4 160 0.2 0.75 X 10° 0.8099 X 10~
-2
2 0.5 160 0.2 0.75 X 10° 0.1119 X 10
-2
3 0.6 160 0.2 0.75 X 108 0.14312 X 10
_2
4 0.7 160 0.2 0.75 X 10° 0.17242 X 10
’ _2
5 0.8 160 0.2 0.75 X 10° 0.20704 X 10




Figure 6-7, Failure surface for normally consolidated rock with
30 Kips concentrated load on nodes 11,12,33,44,

E=0.76 X 10° Psi,¥=0.2,Y =160 Pcf, K=0.4



Figure 6—-8, Failure surface for normally consolidated rock with
30 Kips concentrated load on nodes 11, 22, 33, 44,

E=0.76 X 10° Psi, ¥=0.2, Y=160 Pcf , K=0.8



Table 6-2, Stress variation due to excavation in slope
structure with K = 0.4, v = 0.2, E = 0.75 X 10°psi,

06

Y = 160 Pcf
88 44 11
40
84 .@ > 7
81
A_\Q
78 34
Section 1 2 3 4 5 6
TAU xy 2.2 1.65 1.73 2.14 1.27 -1.16
KSF
SIGMA X 2.14 1.46 -2.54 1.51 1.23 - -1.27
KSF
SIGMA y 8.29 5.38 -3.19 5.42 2.23 -2.61

KSF




88 44 11

Table 6-3, Stress variation due to excavation in slope structure
with K = 0.8, v = 0.2 E = 0.75 X 10°Psi, y = 160 PcF

Section : 1 2 ' 3 I 5 6

TAU xy . 4.85 - 2.35 1.59  3.60 2.12 ~1.38
KSF :

SIGMA X ©3.75 3.55 : 2.08 0 2.47 : 2.40 1.62
KSF

SIGMA Y 6.45 4.90 -3.16 : 5.37 ' 2.22 : -2.64

KSF

16
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Also, the same structure was considered as an overconsoli-~
dated rock. Table 6-4 shows the variation of the maximum dis -
placement at node number five with lateral earth coefficients

greater than one.
Figure 6-9 and 6-10,illustrate the possible failed ele-

ments comprising the failure surfaces for lateral earth coeffi-
cents 3 and 5. It is seen that there is not any significant
change in the possible failure surfaces. As a conclusion it
can be said that in overconsolidated rock the failure surface
undergoes very minor change with increasing lateral earth co~
efficient, while normally consolidated rock tends to fracture
closer to slope surface.

Table 6-5 shows the variation of the maximum displacement
at node number five with varying modulus of elasticity. 1In
general, the modulus of elasticity of rock has a great effect
on the front surface displacement. Increasing the modulus of
elasticity of the rock material results in proportional adverse
variation of the displacement of the slope front surface and
minor effect on the highly stressed zone.

Table 6-6, illurstrates the effect of Poisson's ratio on
displacement of node number five and stress in element number
one. A change in Poisson's ratio affects the distribution of
stresses, while magnitude of the horizontal stress shows more

variation.



Table 6-4, Maximum displacement at node number five for different lateral earth
coefficient, overconsolidated rock.

Case No. K § 1b/ft® v E,Psi - Max. Displ. at _,
Lateral Earth Density Poisson's - Modulus of - | Node No.5, ft X 10
Coefficient | .. .. ... .. . Ratio. . ... . Elasticity. . |.. .
1 2 .160 .. ... {...0.2... ..).0.76 x 10% .. | ..  0.587
2 3 160 ... | .. 0.2..... |- 0.76 X 10% ... ....0.904
3 a 60 ... ... {...0.2... .| 0.76 X 105 | . 1.220
4 5 160 .. . AOWZ...[{,. 0.76 X 10°% L 1.537

€6




Figure 6- 9 Possible failure surface for overconsoiidated rock with
30 Kips concentrated load on nodes 11,22,33,44,and

E=0.76 X 10° Psi,¥=0.2,Y=160 PCF, K=3.0



Figure 6-10 Possible fallure surface for overconsolidated rock with
30 Kips concentrated load on nodes 11, 22, 33, 44 and

E=0.76 X 10° Psi,¥=0.2, Y=160 PcF, K=5.0



TABLE 6-5

Maximum Displacement at node number 5 and variation of stress at element number one

Y = 160 1lb/ft?

6 6 6 6 6
E, Modulus of 0.34 X 10 0.42 X 10 0.49 X 10 0.55 X 10 0.63 X 10
- Elasticity :
Psi
Displacement 1 1 . -1 _1 -1
0.33 X 10 0.27 X 10 0.237 X 10 0.207 X 10 0.184 X 10
Feet .
Ox
-4.88 -4.,88 -4.87 -4.87 -4.87
KSF
y 19.51
KSF -19.52 ~-19.52 -19.51 -19.51 .
Ty
KSF 36.29 36.29 36.29 36.29 36.29

56



Table 6-6, Maximum displacement at node number 5 for different values of Poission's
ratio and variation of stresses

E = 0.34 X 10° psi
vy = 160 lb/ft?
K=5.0
v
Poisson's . 0.15 0.25 0.30 0.35
ratio
Maximum . . . .
Displacement : =1 - - -
at node No.5 . 0.327 X 10 0.335 X 10 0.337 X 10 0.337 X 10
feet
%%, KSF
at element -3.34 -6.79 -9.32 -12.98
No. 1 )
Uy' . KSF .
at element -18.96 -20.38 =-21.76 -24.12
No. 1
Xy, KSF
at element 36.89 35.58 34.70 33.59
No. 1

L6
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When comparing Tables 6-1 and 6-4, it is observed that
using a higher lateral earth coefficient, (K = 5.0 instead of
K = 0.4), results in considerable increase in the displace-
ment along the slope surface.

The program has also been run for a strip mine with
v = 0.3 and E = 0.57 X 10° Psi, v = 160 Pcf, X =5 and 100 feet
height. Figures 6~11 and 6-12 show the possible failure sur-
faces and displacements at the front surface respectively.

The maximum displacement at node number 5 is 0.205 feet. Com-
paring this case with the output in Table 6-5, it can be seen
that in a strip mine slope with a very low modulus of elasti-
city, large displacement occurs with no important change to
the failure surface while variationof %x is greater than the
variation of the other two principal stresses. Appendix C
lists the output for this case. The stress distribution shows
a tension zone which starts from the ground surface under the
_ concentrated loads and penetrates to a depth of one-third of
the excavation height.

In general, it has been seen that the two-dimensional fin-
ite element method is able to simulate the geometry and loading
system, while calculating the stresses and displacements,
providing enough information in order to compare the failure

surface pattern of a working highwall slope in a strip mine.
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It indicates that such analysis can provide a good quantita-
tive estimate of working highwall movements. The computed
displacements are of the same order of magnitude as those

reported from other field studies and observations.



Figure 6-11, Possible failure surface for a strip mine with
V=2, E=0.57 X 10 Psi, Y=160 Pcf, K=5 and 100 feet height



Node NO.
1"

-

10

¥ L) ¥

) 0.05 0.1 0.15 0.2 0.25 0.3

Displacement (feet)
Figure 6—12, Maximum displacement at the front surface for astrip~ mine with

¥=0.3, E=0.57 X 105 Psi, ¥=160 Pcf and 100 feet height

T0T



Chapterxr 7
SUMMARY AND CONCLUSION
7.1 Summary

An experimental investigation has been performed in
order to study the failure and front surface displacement of
a slope on a weak plane representing a strip mine. The study
consists of the development of the model material and design
of the loading apparatus based on dimensional analysis, and
the development of instrumentation, interpretation and pre-
sentation of the test data.

The main objective of this study was to add to the
present knowledge of the behavior and failure of a strip mine
in general. The model was not designed to simulate a specific
strip mine in Oklahoma.

A series of tests was conducted on the model. The
failure surfaces of several slopes were observed and studied
as a function of model geometry, unconfined compressive
strength and the modulus of elasticity of the model material.
A set of dial gages were installed at the front surface of the
model for measuring the displacements of the front surface.
Comparisons have been made between the test results by chang-
ing the mechanical properties of model material. The equili-
brium method and its deficiencies have been discussed. 1In

general this method (with some modifications) has been re-

102
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commended for soil and loose rock. An example which included
the plane of weakness has been solved.
Two-dimensional finite element analysis was employed for
the parametric study and stability analysis of the physical model
and working highwall of the strip mine. Formulation of the method,

types of elements and loading condition for a strip mine were des-

cribed. 1In applying this method to a strip mine analysis, the
following assumptions and simplification were necessary:

1. The rock slope profile was considered normal to a
hypothetical axis of the system while the top sur-
face remains flat for a certain length. This im-
plies that the stresses in the structure are prin-
cipal stresses and plane strain conditions can be
assumed.

2. The reduction of a real three-dimensional problem
to a two dimensional one; the simulation of the
three-dimensional condition is possible by apply-
ing lateral forces to the planar two-dimensional
finite element to represent the horizontal gravita-
ional or tectonic forces.

3. The variation of stresses, due to excavation was
estimated in the finite element model by applying
the rock weight as a concentrated force on the
nodal points of the finite element mesh acting

at the front surface of slope.
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4. The lateral earth coefficient, K, for a homogeneous,
isotropic, elastic material has been taken greater
than one in order to represent overconcolidated rock.

The importance of lateral earth coefficient for a normally
consolidated and over-consolidated rock as well as other mech-
nical properties such as the modules of elasticity and Poisson's
ratio and their effects on the failure surface, stresses and
front surface displacement were investigated. Application of
the elastic analysis approach using finite element and mechanics
of composite material concepts to the stability of a coal layer
was discussed and material properties in a stiffness matrix for
transversely anisotropic and orthotropic material have been
suggested.

The results obtained from the finite element analysis were
compared to those from the physical model. The failure surface
and the front surface displacements obtained from finite ele-
ment analysis followed a pattern similar to that obtained by
the experimental investigation, thereby establishing its reli-

ability.
7.2 Conclusion

From the results of this study, the following conclusions

can be drawn:
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This study has presented a numerical approach to
the strip mine stability problem. It is the first
study to treat this problem in both a numerical and
experimental framework.

Crack occurence and propagation was observed in the
physical model by applying about two third of the
final loading. This indicates that the highwall
slope can remain stable until deep cracks occur.
Thus, acoustic monitoring in a strip mine cannot be
a reliable device. Appearance of shallow cracks
may not be dangerous if the controlled loading

does not exceed the ultimate strength of the rock
mass.

For a strip mine slope in rock the shape of the
most critical slip surface is not a circular arc

as reported earlier by several investigators. The
failure surface attains a linear shape as the com-
pressive strength of the rock increases.

The failure surface was observed to develop first
near a depth of one-half the excavation height. It
then extended upward to the ground surface and down-
ward to the plane of weakness and finally includes

a portion of the plane of weakness.
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The physical model showed that considerable out-
ward displacement of the slope surface is possible
during the period of loading, but as failure app-
roached only minor displacement occured. Therefore,
monitoring the slope displacements should be a

part of the controlling process from the prelimin-
ary stage to the final stage of excavation.

The plane of weakness as an interface between the
coal layer and the overlying soil used in the equili-
brium method has an important effect on the computed
safety factor.

The study has shown that the finite element method
provides an appropriate technique for stability in-
vestigation of a strip mine excavated in hard rock.
Figure 7-1, illustrates an agreement between physi-
cal and numerical model.

Analyses based on the use of isotropic linear
elastic stress-strain characteristics has been

found to be useful in obtaining significant inform-
ation about the variation of stresses and displace-
ments with depth, and finally for initial investiga-
tions of strip mine stability.

Brittle and overconsolidated clay and clay shale

slopes can be modeled by the finite element method
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and the coefficient of earth pressure, K, has a
significant effect on the front surface movement,
failure surface and shear stresses.

A simplified method for strip mine stability analy-
sis using a numerical model based on finite elements
has been presented.

Analyses based on experimental work and the finite
element method show a slip surface of two-portions,
a vertical tension zone immediately below the ground
surface and a curve or a line extended to the plane
of weakness, (Figure 7-2).

The maximum displacement occurs almost at the mid-
point of the exposed slope (node number five) in

a strip mine, (Figure 7-3). A comparison between
the results obtained for a real strip mine, 100
feet height, with a different moduli of elasticity
(75 x 10“ psi and 56 x 10° psi) indicated that the
range of displacements at node number five were
0.14 and 1.92 inches respectively.

Monitoring the displacements of the slopes is a
difficult and important task, although of funda-
mental importance. XKnowing the critical location
and magnitude of displacements from finite ele-

ment analysis, internal instruments for measuring
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horizontal movements (such as deformation rods or
any appropriate mechanical devices) can be instalied.

14. Good agreement between the predicted failure surface
by the finite element method and observed results of
physical model tests was demonstrated, (Figure 7-4).
This indicates the suitability of the approach app-
lied in this study for making reasonably accurate
evaluations of the failure surface and front surface
displacements in a strip mine.

It is hoped that the results presented herein will help

in a better understanding of the behavior and safe design of

the strip mines of Oklahoma in the future.



Figure 7-1

A comparison of failure surfaces of numerical model
(E=54.0 x 103psi,¥=0.2 and 10 kips concentrated load
on nodal points 11, 22, 33, 44) with physicai model

(Test #5, E=54.0 x 103psi, hard rock).

60T



Figure 7- 2 A comparison of failure surfaces of numerical model
(E=23.6 x 103,¥=0.2 and 5 kips concentrated load
on nodal points 11, 22, 33, 44) with physical model
(Test #1, E=23.6 x 103 psi, loose rock).
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Figure 7-3 A comparison of front surface displacement for numerical

model (E=54.x 103psi, ¥=0.2 and 30 kips concentrated
load on nodes No. 11, 22, 33, 44) with physical model
(Test #1, E=23.6 x 103psi).
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Figure 7-4 A comparison of pattern of front surface displacement of numerical
model (E=54.0 x 103psi, ¥=0.2 and 20 kips concentrated load on godal

points 11, 22, 33, 44) with physical model (Test #5, E=54.0 x 10°psi).
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Appendix A

Model Test Data



Table 4-1

Test #1
DATA:_ Front Surface Displacement
Max. Lateral Displacement of box, .012 inch
Load Dial Gage Dial Gage Dial Gage Dial Gage Dial Gage
b #1 #2 . #3 #4 #5
Reading Reading Reading Reading Reading

0.0 0. 5872 0.5380 0.5180 0.40120 0.4360
250 0. 5870 0.5389 0.5180 0.40120 0.4360
500 0. 5741 0.5389 0.5180 0.40130 0.4460
750 . 0.5639 . 0.5389 0.5181 0.40130 0.4460
1000 0.5630 0.5380 0.5160 0.40122 0.4460
1250 0 5624 0.5371 : 0.5151 0.40120 0.4460
1500 0. 5621 0.5365 0.5149 0.40119 0.4329
1750 0.5620 0.5365 . 0.5144 0.40110 0.4329 °
2000 0.5620 0.5351 , 0.5140 0.40110 0.4322
2225 0.5619 , 0.5351 0.5130 0.40110 0.4319
2500 0.5619 0.5350 0,5125 0.40100 0.4312
2750 0.5618 0.5349 0.5120 ' 0.40090 E 0.4315

* +3000 0.5616 0.5345 0,5110 0.40095 0.4318
3250 0,5612 0.5345 0.5110 0.4u015 0.4322 CRACK
3500 0.5609 0.5340 0,510 0.4030 0.4328
3750 0.5600 : 0.5340 0.5110 . 0.4030 0.4331
4000 0,5590 0.5350 : ~0.5M2 0.4055 0.4340
4250 0,55R5 0.5360 0.5115 ' 0.4060 0.4355
4500 0.5590 0.5380 0.5120 . . 0.4075 0.4366
4750 0.5605 0.5400 0,5130 0.4080 0.4380
5000 0,5620 0.5430 0.5145 0.4086 0.4395
5250 0.563% 0.5480 0.5160 0.4091 0.4410
5500 0.5659 0.5540 0.5200 0.4100 0.4430
5750 0.5670 0.555Q 0.5360 0.4209 0.4450

6000 0.5692 0.5560 0.5470 0.4382 0.4470



Table 4-1-1

0.3522

Test N

DATA: Stress-Strain Relationship

LOAD Dial Gage  Dial Gage Dial Gage Dial Gage AH e= &7
ib. PSI i §2 f #2 AVE.inch,
; Reading Reading Displacement Displacement
0.0 0.0 0,341 0.6097 0.0 . - 0.0 0.0 0.0
24 3.395 0.3450 0.6104 0.0009 0.0007 0.0008 0.000133
gd 6.225 0.3461 0.6108 0.002 0.001 : 0.00155 0.0002583

4 11.884 0.3482 0.6115 0.0041 0.0018 0.00295 0.000491
04 14.714 0.3491 0.6121 0.005 0.0024 0.0037 0.000617
24 17.540 0.3500 0.6130 0.0059 0.0033 0.0046 0.000766
44 20.373° 0.3506 0.6136 0.0065 0.0039 0.0052 0.000866
84 26.032 . 0.6142 0.0081 0.0045 0.0063 0.00105
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TABLE 4-2
TEST #2

DATA: Front Surface Displacement
Max. Lateral Displace of box, .014 inch

Load Dial Gage Dial Gage Dial Gage Dial Gage Dial Gage
1b, n #2 #3 #4 #5
Reading Reading Reading Reading Reading

0.0 0.3888 0.5480 0.3582 . 0.3289 0.3475

500 0.3864 ’ 0.5450 0.3560 0.3280 0.3460
1000 0.3860 0.5450 0.3565 0.3280 0.3455
1500 0.3850 0.5450 0.3565 0.3280 0.3455
2000 0.3849 ’ 0.5440 0.3560 0.3270 0.3450
2500 0.3830 0.5430 0.3560 0.3260 . 0.3450
3000 0.3810 0.5410 0.3540 0.3260 0.3450
3500 0.3780 0.5380 0.3520 0.3250 0.3450
4000 0.3740 0.5360 0.3510 0.3250 0.3450
4500 0.3710 0.5340 0.3500 0.3750 0.3460
5000 . 0.3680 0.5320 0.3499 0.3250 0.3488
5500 0.3640 0.5310 0.3498 0.3270 0.3522 CRACK
6000 0.3610 0.5299 0.3500 0.3300 "0.3580
6500 0.3580 0.5290 0.3520 0.3340 0.3582
7000 0.35A0 0.5395 ’ 0.3680 0.3420 0.3560

3500 0.3728 0.5620 0.3852 0.3639 0.3575°
000 . ’



TABLE 4-2-1

. Test #2
DATA: Stress-Strain Relationship
LOAD Dial Gage Dial Gage Dial Gage Dial Gage AH e= AR
Lb. PSI 1 #2 i #2 Ave.in H
. Reading Reading Displacement Displacement ’ S
0.0 0.0 0.2440 0.5098 0.0 0.0 0.0 0.0
24 3.375 0.2450 0.5103 - 0.001 0.005 0.00075 0 .000125
44 6.225 0.2460 0.5109 0.002 0.0011 0.00155 0 .000258
84 11.884 0.2480 - 0.5114 0.004 0.0016 0.0028 0 .000467
104 14.114 0.2490 0.5120 0.005 0.0022 0.0036 0 . 00060
124 17.540 0.2499 0.5129 0.0059 0.0031 0.0045 0 .00075
144 20.373 0.2505 0.5135 0.0065 0.0037 0.0048 0 .0008
184 26.032 0.2520 0.5140 0.0080 0.0042 0.0061 0 .001016
204 28.86 .0.2530 0.5150 0.009 0.0052 0.007 0.00118 .
224 31.692 0.2540 0.5154 0.010 0.0056 0.0078 0 .00130
244 34.52 - 0.2550 0.5180 0.011 0.0082 0.0096 0 .00160
284 40.181 0.2580 0.5195 0.014 0.0097 0.0118 0 .00197
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TABLE 4-3-1

TEST #3

DATA: Stress-Strain Relationship
Load Dial Gage Dial Gage Dial Gage Dial Gage Dial Gage
1b. ) §2 #3 #4 #5

Reading Reading Reading Reading Reading
14000 0.3170 0.5805 0.4055 0.4180 0.3455 '
14500 0.3175 0.5815 0.4160. 0.4190 0.3470
15000 0.3185 0.5825 0.4250 .0.4200 0.3470
15500 0.3195 . 0. §880 0.4350 0.4480 0.3565 -



TABLE 4-3

TEST #3
DATA: Front Surface Displacement
Max. tateral Displacement of box,. .016 inch
Load Dial Gage Dial Gage Dial Gage Dial Gage Dial Gage
1b n . 12 #3 #4 #5
_ Reading Reading . Reading Reading Reading N
0.0 0. 3325- U. 5750 U.4100 0.4180 - 0.3475
500 0, 3295 0.5880 0.4100 0.4200 0.3475
1000 0,3275 0.5880 0.4100 0.4200 0.3475
1500 0.3270 0. 5880 0.4100 0.4200 0.3475
2000 0.3270 0.5878 0.4100 0.4200 0.3474
2500 0.3265 0.5875 0.4100 0.4200 - - 0.3473
3000 0.3260 0. 5865 0.4090 -0,4190 0.3472
3500 0,3260 0. 5865 0.4090 0.4190 0.3472
4000 0.3255 0.5860 0.4085 0.4190 0.3470
4500 0.3249 0.5853 0.4080 0.4180 0.3465
5000 0,3245 0.5850 0.4075 0.4175 0. 3465
5500 0,3245 0. 5850 0.4075 0.4170 0. 3462
6000 0,3240 0.5845 0.4070 0.4169 0.3455
6500 0,3235 0.5842 0.4065 0.4165 0.3452
J000 0.3230 0.5840 0.4064 '0.4162 0.3450
7500 0,3225 0.5835 0.4060 0.4150 0.3445
8000 0,3220 0. 5825 0.4055 0.4150 0.3441
8500 0.3215 0.5820 0.4052 0.4150 0.3440
9000 0.3210 0.5820 0.4050 0.4149 0.3440
9500 0,3205 0.5815 0.4050 0.4149 0.3440
10000 0.3195 0.5810 0.4050 0.4149 0.3440
10500 0.3190 0.5805 0.4045 0.4149 . 0.3440
11000 0.3180 0.5790 0.4030 0.4145 0.3440
11500 0,3175 0.5790 0.4025 0.4145 0.3439 CRACK
12000 0.3170 0.5790 0.4025 0.4T50 0. 3447
12500 0,3170 0.5790 0.4025 0.4152 0.3442
13000 0,3170 0.5792 0.4030 0.4160 0.3450
13500 0,3169. . 0.58007 0.4040 0.4180 0.3455
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TABLE 4-3-2

DATA: Test #3 Sample #]

LOAD Dial Gage Dial Gage n 2 - Av. e= B
1b. PS1 n f2 Displacement Displacement AH

Reading Reading
0.0 0.0 0.6720 0.6891 0.0 0.0 0.0 0.0
50 5.61 ° 0.6780 0.6945 0.006 0.0054 0.0057 - 0.00092
100 11.21 0.6920 0.7100 0.02 0.0209 0.0205 0.00348
- 150 16.82 0.6922 0.7120 0.0202 0.0229 0.0216 0.00348

200 22.42 0.6930 0.7131 0.021 0.024- 0.0225 0.00363
250 28,03 0.6940 0.7144 - 0,022 0.0253 0.0236 0.00381
300 33.63 0.6950 0.7156 0.023 0.0265 0.0247 0.00398
350 .39.24 0.6960 - 0.7169 0.024 0.0278 0.0267 0.00431
400 44.84 0,6980 0.7184 . 0.026 0.0293 0.0276 0.00445



TABLE 4-4

Test #4
DATA: Front Surface Displacement
Max. Lateral Displacement of box, .016 inch.
Load Dial Gage Dial gage Dial Gage Dial Gage Dial Gage .
n fi2 #3 #4 #5
Reading Reading Reading Reading Reading
10.0 0.3842 0.4375 0.5896 " 0.5645 0.,4595
1000 0.3840 0.4360 0.5896 0.5645 0.4452
2000 . 0.3835 0.4005 0.5896 0.5645 0.4451.
3000 0.3825 0.3555 0.5885 0.5630 0.4441
4000 0.3820 0.3545 0.5879 0.5620 0.4432
5000 0.3810 0.3535 0.5870 0.5610 0.4420
6000 0.3800 0.3525 0.5860 0.5600 0.4410
7000 0.3795 0.3515 0.5852 0.5590 0.4400
8000 0.3775 0.3499 0.5850 0.5585 0.4399
9000 0.3775 0.3496 0.5850 0.5583 0.4399
10000 0.3760 0.3494 0.5849 0.5583 0.4399
11000 0.3755 0.3490 0.5849 "0.5583 0.4400
12000 0.3740 0.3485 0.5848 0.5583 0.4409
13000 0.3730 - 0,4485 0.5849 0.5589 0.4415
14000 0.3Nns 0.4480 0.5849 0.5590 0.4430
15000 0.3710 0.4480 0.5849 0.5600 0.4440 CRACK
16000 0.3690 0.4479 0.5850 0.5620 0.4465
17000 0.3685 0.4479 0.5859 0.5630 0.4480
18000 0.3675 - 0.4479 0.5865 0.5650 0.4510
19000 0.3670 0.4479 0.5880 0.5675 0.4570
20000 0,36R0 0.34%0 0.5900 0,5720 0.4650
21000 U,3722 0.4485 0.6116 0.5905

0.4655



TABLE 4-4-1

TEST #4

DATA: Stress-Strain Relationship

load _  Dial Gage  Dial Gage f e oH e =4t
PSSl 1b n #2 Displacement Displacement AV

Reading Reading .

0.0 ., 0.0 0.4630 0.3880 - 0.0 0.00 0.00 0.00
11.21 100 0.4631 0.3960 0.0001 . 0.008 0.0041 0.00066
22.42 200 0.4650 0.3965 . 0.002 0.0085 0.0053 0.00085
33.63 300 0.4661 0.3970 0.0031 0.009 0.0061 0.00098
44.84 400 0.4685 0.3980 0.0055 0.010 0.0077 0.0012
56.05 500 0.470) 0.4000 0'.0071 0.012 0.0096 .0015
72.80 650 0.4800 0.4050 0.017 0.017 0.017 0.0027.
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TABLE 4-5

TEST #5
DATA: Front Surface Displacement
Max. .Lateral Dlsplacement of Box, .T 5 inch
Load Dial Gage Dial Gage Dial Gage Dial Gage Dial Gage
1b 1 #2 . #3 # ... .. #8 L.
Reading Reading Reading Reading Reading
0.0 0. 2685 0.5260 0.4630 0.3699 0.4349
1000 0. 2€70 0.5260 0.4630 0.3699 0.4280
2000 0. 2670 0.5260 0.4630 0.3699 . 0.4195
3000 0. 2640 0.5260 0.4625 0.3675 0.4185
4000 0. 2625 0.5260 0.4619 - 0.3690 0.4179
5000 ° 0.2615 0.5260 0.4614 0.3685 0.4172
6000 0.2550 0.5260 0.4605 0.3680 0.4165
7000 0.2545 0.5240 0.4600 0.3675 - 0.4160
8000 0.2540 0.5240 0.4599 .0.3672 0.4159
9000 0.2535 0.5240 0.4595 0.3670 0.4152
10000 0.2530 0.5240 0.4590 0.3665 - 0.4149
11000 0.2525 ' 0.5240 0.4585 0.3663 0.4145
12000 0.2510 - 0.5225 0.4582 . 0.3660 0.4139
13000 0.2505 0.5225 0.4579 0.3655 ] 0.4135
* 14000 0.2500 0.5215 0.4575 0.3652 0.4132
15000 0.2490 0.5213 0.4570 0.3602 0.4130
16000 0.2480 0.5213 0.4565 0.3601 0.4130
17000 0.2470 0.5213 0.4562. 0.3600 - - 0.,4130
18000 0.2465 0.5212 0.4560 0.3600 . 0.4131
19000 0.2455 0.5213 0.4555 0.3600 0.4131
20000 0.2450 0.5212 0.4555 0.3650 0.4134
21000 0.2445 0.5212 0.4553 0.3650 0.4135
22000 0.2435 0.5170 0.4550 0.3650 0.4140
23000 0.2425 0.5170 0.4550 0.3651 0.4145
24000 0.2420 0.5170 0.4550 0.3652 0.4150
25000 0.2419 0.5170 0.4560 0,3660 0.4160
26000 0.2410 0.5170 0.4569 0.3670 0.4170

27000  0.2410 0.5172 0.4575 0.3680 - 0.4185



- TABLE 4-5-1

TEST #5

DATA: Stress-Strain Relationship

Load Dial Gage Dial Gage Dial Gage Dial Gage Dial Gage

b n #2 #3 ’ #4 #5

Reading Reading Reading Reading Reading

28000 - 0.2400 0.5180 0.4585 0.3699 0.4200

29000 0.2400 0.5180 0.4595 0.3705 0.4210

30000 0.2400 0.5189 0.4605 0.3719 0.4230 CRACK
31000 0.2395 0.5199 0.4615 0.3730 0.4245 ‘
32000 0.2395 0.5199 0.4620 0.3735 - 0.4250

33000 0.2395 0.5209 0.4630 0.3750 0.4262

34000 0.2395 0.5209 0.4635 0.3760 0.4280

35000 0.2395 0.5210 0.4649 0.3775 0.4295

36000 © 0.2390 0.5220 0.4660 0.3790 0.4310
+ 37000 0.2399 0.5230 0.4680 0.3805 0.4330

38000 0.2440 0.5260 . 0.4710 0.3830 0.4350

39000 0.2460 0.5289 0.4730 X 0.3850 0.4360

40000 0.2530 0.5340 0.4770 0.3885 0.4380

41000 0.2585 0.5360 0.4810 ° 0.3919 0.4389



TABLE 4-5-2

TEST #5
DATA: Stress-Strain Relationship
Load Dial Gage Dial Gage Dial Gage Dial Gage AVE. €= %ﬂ
1b PSl [ #2 #1 #2 A, in
Reading Readin Displacement Displacement

0.0 - 0.0 0.8660 0.510 0.0 0.0 0.0 0.0
50 5.6 0.8700 0.5150 0.004 0.0042 0.0041 0.00066
100 1n.21 0.8740 0.5156 0.008 0.0048 0.0064 0.00103
200 22.42 - 0.8743 0.5169 0.0083 0.0061 0.0072 0.00116
300 33.62 0.8760 - 0.51711 0.01 0.0063 0.0081 0.00131
400 44.84 0.8770 0.5183 0.011 0.0075 0.0093 0.0015
500 56.05 0.8775 0.5201 0.0115 0.0093. 0.0104 0.00168
600 67.26 0.8785 0.5219 0.0125 0.0111 0.0118 0.0019
700 78.48 0.8800 0.5230 0.014 0.0122 0.0131 0.00211
800 89.68 0.8810 0.5245 0.015 0.0137 0.0144 0.00239
900 100.89 0.8820 0.5259 0.016 - 0.0151 0.0148 0.00239
1000 112. 1N 0.8830 0.5269 0.017 0.0161 0.0166 0.00268
1100 123.32 0.8845 0.5279 0.0185 0.0171 0.0178 0.00287
1200 134.53 0.8860 0.5291 0.020 0.0183 0.0192- 0.0031
1300 145.74 0.8870 0.5300 0.021 0.0192 0.0201 0.00324
1400 156.95 0.8885 0.5309 0.0225 0.0201 0.0213 . 0.00344
1500 168.16 0.8890 0.5318 0.023 0.021 0.0225 0.00363
1600 179.37 0.8915 0.5329 0.0255 0.0221 0.0238 0.00384
1700 190.58 0.8940 0.5340 0,028 0.0232 0.0256 0.00413
1800 201.80 0.8959 0.5351 0.0299 0.0243 0.0271 0.00437
1900 -213.00 0.8990 0.5361 0.033 0.0253 0.0292 0.00471

2000

224.22
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TABLE 4-6

TEST #6
DATA: Vertical Cut, Front Surface Displacement
Max. Lateral Displacement of Box, .012 inch
Load Dial Gage Dial Gage Dial Gage Dial Gage
n #2 #3 #4
Reading Reading Reading Reading
0.0 0.4360 0.4655 0.3550 0.2260
250 0.4360 . 0.4655 0.3550 ' 0.2260
500 0.4360 0.4655 0.3550 - 0.2260 .
750 0.4360 0.4655 0.3550 : 0.2260
1000 0.4360 0.4660 0.3550 0.2260
1250 0.4360 0.4660 0.3555 0.2265
1500 0.4365 0.4662 0.3555 0.2265
1750 0.4375 0.4665 0.3555 0.2265
2000 0.4390 0.4670 0.3565 0.2265
2250 0.4400 0.4675 0.3580 0.2290
2500 0.44100 0.4695 0.3585 0.2295
+ 2750 0.4420 0.4695 0.3585 0.2295
3000 : 0.4440 0.4700 0.3600 0.2310
3250 0.4450 0.4710 _ 0.3600 0.2310 CRACK
3500 0,4455 0.4715 0.3610 0.2310
3750 0.4475 0.4735 0.3620 0.2315
4000 0.4490 0.4750 0.3630 0.2315
4250 0.5500 0.4765 0.3645 0.2315

4500 0.5550 0.4800 0.3680 0.2335



TABLE 4-6-1

TEST #6
DATA: Stress-Strain Relationship
LOAD Dial Gage Dial Gage Dial Gage Dial Gage AH €= %’-{
PSI 1b n #2 # 2 - AVE.
Reading Reading Displacement Displacement ‘

0.0 0.0 0.2561 0.4437 0.0 0.0 0.0 0.0
11.88 84 0.2580 0.4450 0.0019 0.0013 0.0016 0.000267
14.77 104 0.2590 0.4460 0.0029 0.0023 0.0026 0.000433
17.54 124 0.2600 0.4470 0.0039 0.0033 0.0026 0.00060 -
20.37 144 0.2610 0.4480 0.0049 0.0043 - 0.0046 0.000770
23,20 184 0.2620 0.4490 0.0059 0.0053 0.0056 0.000903
26.032 184 0.2640 0.4550 0.0079 0.0113 0.0096

0.00160
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Table 4-7

DATA #7 Vertical cut, Front surface displacement

Maximum lateral displacement of box .015

BY

-
0.0 0.400 0.2000 0.2475 0.3525
500 0.4000 0.2000 0.2475 0.3525
1000 0.4000 0.2000 0.2475 0.3525
1500 0.4000 0.2000 0.2475 0.3525
2000 0.4000 0.2000 0.2475 0.3520
2500 0.4020 0.2000 0.2475 0.3515
3000 0.4030 0.2009 0.2478 0.3505
3500 0.4050 0.2010 0.2485 0.3500
4000 0.4070 0.2020 0.2405 0.3519 .
4500 0.4010 0.2090 0.2500 0.3470 crack
5000 0.4270 0.2180 0.2570 0.3480
5500 0.4270 0.2195 .0.2580 0.3480
6000 0.4300 0.2220 0.2600 0.3480
6500 0.4987 0.2430 0.2809 0.3698



Table 4-7-1

Test #7
DATA Stress-strain relationship BY
b Load si Dial Gage #2 Displ. Displ. Ave. _OH
P #1 Read. # #2 M €*H
0.0 0.0 0.2561 0.4437 0.0 0.0 0.0 0.0
84 11.88 0.2580 0.4450 0.0019 0.0013 0.0016 0.000267
104 14.7 0.2590 0.4460 0.0029 0.0023 0.0026 0.000433
124 17.54 0.2600 0.4470 0.0039 0.0033 0.0036 0.0006
144 20.37 0.2610 0.4480 0.0049 0.0043 .0.0046 0.000767
164 23.20 0.2620 0.4481 0.0059 0.0044 0.0046 0.000767
184 26.03 0.2630 0.4490 0.0069 0.0053 0.0056 - 0.000933
204 28.86 0.2640 0.4500 0.0079 - 0.0063 0.0071 0.00118
224 31.67 0.2650 0.4501 0.0089 0.0064 0.0077 0.00128
244 34.52 0.2651 0.4510 0.0090 0.0073 0.0082 0.00137
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Table 4-8

Test #8
DATA Front surface displacment BY
Maximum lateral displacement of box .014 inch
Dial

Load 1b. Gage #1 #? X ¥

0.0 0.2000 0.1700 0.3520 0.5775

500 0.2010 0.1700 0.3520 0.5775
1000 ° 0.2010 0.1700 0.3520 0.5775
1500 0.2010 0.1700 0.3520 0.5774
-2000 0.2009 0.1699 0.3518 0.5774
2500 0.2008 0.1697 0.3516 0.5772
3000 0.2006 0.1694 0.3514 0.5770
3500 0.2003 0.1691 . 0.3511 0.5768
4000 0.2002 0.1687 ° 0.3507 0.5762
4500 0.2001 - 0.1685 0.3504 0.5760
5000 0.2007 0.1683 0.3503 0.5758 . crack
£500 0.2010 0.7700 0.3502 0.5756
6000 0.2036 0.1710 0.3500 0.5752
6500 0.2050 0.1730 . 0.5760
7000 0.2090 0.1750 0.3550 0.5800
7500 0.2160 0.1800 0.3600 0.6000
8000 0.2198 0.1920 0.3750 0.6780




Table 4-8-1

DATA Test #8, stress-strain relationship

Load per b n #2 f #2 Ave AH egaﬂ_
0.0 0.0 0.5151 0.6110 0.0 0.0 0.0 0.0
4.48 40 0.5157 0.6119 0.0006 0.009 0.0085 0.000121
8.97 80 0.5165 0.6125 0.0014 0.0015 0.00145 0.000233

13.45° 120 0.5172 0.6130 0.0021 | 0.0020 0.00205 0.00033
17.93 160 0.5175 0.6136 0.0024 0.0026 0.0025 0.000403
22.42 200 0.5179 0.6142 0.0028 0.0032 0.0030 0.000484
26.91 240 0.5188 0.6149 0.0032 0.0029 0.0035 0.000581
31.39 280 0.5189 0.6155 0.0038 0.0045 0.0041 0.000661
35.87 320 0.5195 0.6160 0.0044 0.005 0.0047 0.000758
40.36 360 0. 5201 0.6166 0.0050 0.0056 0.0053 0.000854
44.84 400 0.5209 0.6172 0.0058 0,0062 0.0060 0.000968
49.33 440 0.5215 0.6178 0.0064 0.0068 0.0066 0.00106
53.81 480 0.5224 0.6187 0.0073 0.0077 0.0075 0.00121
60.00 535 0.5238 0.6196 0.00869 0.00867 0.00868 0.00140



DRV IMIIXO —~tn

- O

541

4l

181

748

1 1 1 1

3

E = 44.20X10" Psi

q,= 60.0 Psi

8.3

86 89 12 15 I8
FIGURE 4-8: 'STRAIN (»18+3 IVIN)
TEST $ 8



Table 4-9

DATA Test #9 Front Surface Displacement
aximum Lateral Displacement of box, O. inch .,

Dial

Load Gage #1 # 43 #4
0.0 0.5210 0.4000 0.3456 0.5100
1000 0.5219 0.4005 0.3459 0.5100
2000 0.5219 0.4005 0.3459 0.5100
3000 0.5214 0.4001 . 0.3459 0.5100
4000 0.5209 0.4000 0.3455 0.5100
5000 0.5205 _0.3995 . 0.3453 0.5100
6000 0.5200 0.3990 - 0.3450 0.5100
7000 0.5190 0.3970 0.3430 0.5070
8000 0.5180 0.3965 0.3520 0.5055
9000 0.5180 0.3960 . 0.3414 0.5049
10000 0.5175 0.3960 0.3410 0.5040.
11000 0.5175 - 0.3960 0.3410 0.5042
12000 0.5175 0.3957 0.3408 - 0.5040
13000 0.5172 0.3954 0.3418 0.5040
14000 0.5171 0.3955 0.3404 0.5040
15000 0.517) 0.3951 0.3402 0.5030
16000 05172 0.3951 0.3401 0.5031
17000 0.5175 0.3951 03402 0503 crack
18000 0.5185 0.3960 0.3409 . 0.5032
19000 0.5200 0.3970 . 0.3410 0.5040
20000 0.5220 0.4000 0.3430 0.5050

21000 0.5240 0.4060 0.3450 0.5080



DATA Test #9, Stress-strain relationship

Table 4-9-1

Dial Gage Dial Gage Displ. Displ. Ave,
Load 1b # Read. #2 Read. # #2 BH e=ﬁ-'i-
0.0 0.0 0.4890 0.2225 0.0 0.0 0.0 0.0

11.21 100 0.4075 0.2300 0.0085 0.0075 0.008 0.00129

22.42 200 0.4990 0.231 0.0100 0.0086 0.0093 0.0015
33.63 300 0.5000 0.2310 0.011 0.0095 0.0103 0.00166
0.84 400 0.5015 0.2335 0.0125 0.0110 0.0117 0.00188
56.05 500 0.5025 0.2350 0.0135 0.0124 0.0130 0.0021 -
67.26 600 0.5035 0.23N1 0.0145 0.0146 0.01455 0.00234

78.47, 700 0.5052 0.2304 0.0162 0.0169 0.0165 0.0027
89.68 800 0.5080 0.2400 0.0190 0.0180 0.0185 0.00298
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Test #1

Test #2

[T RTNN

Xy

Test #3

Figure 4-10-1, illustration of failure surface for slope model



——
—

Test #4

Test #5

Figure 4-10-2, fllustration of failure surface for slope model



Test #6

|

Test #7

Figure 4-11, 1llustration of failure surface for a vertical cut



Test #8

Test #9

Figure 4-12, illustration of failure surface for a slope (a=55°)



APPENDIX B

Solution of a Sample Problem by
Equilibrium Methods and Application
of the Varitional Method



Determine the factor of safety of the spoil bank with
H=40 ft.,w = 36%anda= 20°.
The spoil slope has the following characteristics:

For £ill material C = 200 psf, ¢ = 30°, r, = 0.05

and y= 125 pcf
For interface material ¢ = 160 psf, ¢ = 24° and r, = 0.1

First consider plan failure using Equation 5-4,

. [o] -
Fs 2 sin y csc a csc(y - u)(Vﬁ) + (1 -ru) tan ¢ cot o

160

F 2 sin 36 csc 20 csc (36 - 20)(I7§—§_35) +

(1- .05) tan 24 cot 20° = 1.56

The interface roughness, JRC coefficient is taken to
be equal to five, because of poor workmanship in preparing
the natural ground surface. Therefore, the plane of weak-
ness is assumed smooth and nearly planar. Now using

Equation 5-7,

_ . 0 e 160
F, = 2 sin 36" csc 20 csc (36 - 20) (135075 *+

(1L - .05) tan (24 + 5 log;, 0.2) cot 20 = 1.39

For circular failure, using the charts based on the
simplified Bishop Method, Haung has obtained a minimum

safety factor equal to 1.38.



Janbu's method of analysing non-circular failure
is applied and after 4 iterations the convergence is
Obtained. The initial value of Fg was assumed to be 1.00
and the final value of the safety factor was 1.28.

The following table summarizes the safety factors

obtained from different methods.

Modified
Plane Bishop's Janbru's
Plane Failure Failure Method Method
1.56 1.39 1.38 1.28

Variational Method:

Determination of the safety factor for cohesive soils

based on Janbu's method is from

n 2
Zi=1 © 8x;(1+tan’0;)

I L : (1)
p Aw; tan oy

ie

Where c is cohesion, Awi the weight of ith slice, oy

the inclinations of the sliding curve and Axi the width of

.th

the i slice.

The factor of safety is expressed as a quotient of two

integrals:



xl )
fx F (x, y, y') dx
0 (2)

X1
fx G (xr yr ¥') dx
0

Thus the determination of the safety factor of a spoil
slope coincides with the problem of determining the minimum
value which takes functions (2). Castillo and Revilla have
proven that the form of Euler's equation applicable for

this problem is:

X
fxl F(s, y, y')dx O _d ¥

0 =%y dx 3y" (3)
fxo G (x, y, ¥y') ax 9y dx 3y

Therefore the curve which gives the minimum safety
factor will have to satisfy this integro-differential
equation.

Now let the width of the slices reduce to zero and
f = £f(x) and y = y(x) be the equations of the curves
representing the slope profile and the sliding curves,
respectively, Figure 1-B.

Now the substitution of

Aw; = v(y - f) Ax (4)



into equation (1) gives

X1
fx C (1 + y'?) ax

g = o (5)

*1
er y(y = £(x))y'dx
o]

where y is the unit weight of the soil and X and Xy
are the abscissas of the two points where the sliding line
intersects the slope profile.

The method is applied to an exponential slope that
indicates a spoil slope. The spoil slope profile can be
assumed as

x/Hl
f = H(e - 1) (6)

H and H1 are constants, Figure I-B

The Euler equation for (S) is

[ }
vE'
Thus
y'=%—s-f+B (8)



x1 A xO 1
X - i‘ L fl
| /
l
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/L/ slip line
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AX )

Y

Figure 1, Slope profile and diagram
used in Janleu’'s method.

A
Xt =KX X

Figure 1-3, Geometrical definition of

an exponential slope.
(Revilla and Castillo, 1977)



and its general solution is

x/H
= - Sy 1, Sy (9)
y = 5C H Hl e + 3c Hx + Bx + D
using
- YH
¢ =3
leads to
x/Hl
y = GHISe + (B +GS) ¢+ D (10)

This curve must pass throught the points (0,0), thus

D = GlHls

and the problem must satisfy the following transversality

condition

y'? - 2y'f' -1 | =0 (11)

X = xo_
For the details of the formulation the reader can refer
to Revilla and Castillo (1977).
We now have equation (5) and (10) and (11l) which have
three unknown (S, Xy B). However, the equationsare non-
linear.

A hypotical problem is analyzed with the following

parameters



1b</:ft2 Hft |H' ft| ¢ 1b/¥t3 F
600 | 14 | 5 0.0 120 | .76
700 | 14 | 5 0.0 120 |0.91
800 | 14 | 5 0.0|120 |1.07
900 | 14 | 5 0.0{120 |1.22

1000 | 14 | 5 0.0 120 [1.40

and for each corresponding cohesion the safety factor
in the last column is obtained.

The effect of cohesion on the safety factor is obvious.
With decreasing cohesion the safety factor approaches to zero.

This proves that the variational method based on Janbu's
method cannot be applied to non-cohesive spoil slopes of
strip mines.

The following computer program is arranged to solve the

non-linear equation by employing the numerical method.
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o0

o0~

10
11

12
13
14
15

16
17

18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
30
37
" 38
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48

49

10

131

DIMINSIUN S(10)s8B(5) +XU{5)eX{30)
CNYMAUN N

CIMMUN ZOTHERS/DeVsHLsCor 12 .
C=SCORESIUN OF SUIL PUUND PER SQUARE FT
D=DENSLITY OF SOIL PLUND PZR CUBIC FT
HI IS A CONSTANT IN FEET

V=HEISHT UF SPULIL SLOPE IN FEET
NUMBER OF SUBINTERVALS

N=500

READ(S41)CeDoklyV

FORMAT (4F 8+ 2)

X(1)=SF

X{2)=8

X{3)=X0

ESTIMATE THE VALUES FOR UNKNOWNNS
X(1)=3e. 4
X(2)=21.

X{3)=33.

IZ IS THE NUMBER OF ITERATIUNS

1Z=30

CALL NGONLIN(3+591Z¢2eX90001)

3 IS THE NUMBLER JF EQUATIUN

S IS THE NUMBER OF DIGIT NUMBERS

2 IS THE OUTPUT FORMAT

¢001 IS THE PERCISION UF THE CALCULATIUN
WRITE(G623)CeDsH1 WV

FORMAT (SXy ' COHESION UF SUIL='9F6e2915Xs"DENSITY OF SOIL=',F6e2415X

X9 HI=® gFO 29 1SXs *HEIGHT LF SPULL SLUPE =%'9F6424/)
WRITE(G+2)X{1)sX(2)sX(3)

FORMAT (5X+s ' SAFETY FACTURS® oF6e2+15Xs *CONSTANT='9F0e2015X 9" XL="4Fbo

*2)

SUBROUTINE AUXFCN SOLVES THE INTEGRALS BY NUMERICALS METHLD
STOP

END

SUBROUTINE NONLIN IS WRITTEN BY DRe KEN BROWN IN THE NUMERICAL

SOLUTION UF ALGEBRIC EQUATIUN 1968

SUBROUTINE NONLIN(Ny NUMS IGy4AXIT o IPRINT s X9 EPS)

REAL X{30) sPART(30),TEMP(30) +COL(30+s31)¢RELCUNF
& +FACTORIHOLD eHFPLUSIUERMAX, TEST

DIMENSION 1SUB(30) LUUKUP(30,30)

IFLAG=0.

DELTA=1+E-7 .

RELCUN=10+E+0%*{—=NUMS1G

JTEST=1

IF{IPRINTSEQe1)PRINT 48

FORMAT(1HL)

DO 700 M=1,MAXIT

I1QUIT=0

FMAX=0

Ml=M~1

IF(IPRINTNES1)GO TU 9

PRINT 49sM1o(X{I)esI=1sN)

FORMAT(IS53E18.8/(E23+8,2E1848))

DO 10 J=14N

LOOKUP(14J)=y

DO 500 K=1,N

IF(K=1)134,134,131}

KMIN=K=1



39
40
a1
a2
a3
44
a5
46
a7
a8
a9
50
51
52
53
Sa
55
56
57
58
59
60
61

63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
8o
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

134

134S
135

iS1
161

190
200

202

203

209
210

220
500

CALL BACK (KMINsN¢Xs ISUByCUE+LOUKYP)
CALL AUXFCN(XsF oK)
FMAX=AMAX L (FMAXsABS(F))

IF (ABS(F) « GEEPS) GU TU 1345

1QUI T=1IQUIT+1

IF(IQUITeNEWNIGO Tu 1345

GU TO 725

FACTOR=0.001E+490

ITALLY=0

DU 200 I=KeN

ITEMP=LOUKUP(K,1)

HOLD=X(ITEMP)

PREC=b.E=~4

ETA=FACTOR%ABS (HULD)
H=AMINLI(FMAX,ETA)

IF(HeLTePREC) H=PREC
X(ITEMP)}=HOLD+H

IF(K=1)1614161,151

CALL SACK (KMINsN+XsI5UB,COE.LDOOKUP)
CALL AUXFCN(X,FPLUSsK)

PART(ITEMP) =(FPLUS-F )/H
X{ITEMP)=HOLD
IF(ABS(PART(ITEMP))eLTDELTA) GU TO 190
IF(ABS(F/PART(ITEMP) JeL.Eel +E+1S5)GU TO 200
ITALLY=ITALLY+}

CONT INVUE

IF(ITALLYSLESN=K) GU TC 202
FACTUR=FACTUOR*10.0E+00

IF (FACTOR«GTelle) GO TD 775

GO 7O 135

IF(KeLTeN) GO Tu 203
IF(ABS(PART(ITEMP) ) +LTWOELTA) GO TU 775
COE(KysN+1)=0.,0E+00

KMAX=1TEMP

GO TO 500

KMAX=LOUKUP(KsK)

DERMAX=A3S (PART(KMAX))

KPLUS=K+1

DO 210 I=KPLUSN

JSUB=LOUKUP (K, 1)
TEST=ABS{PART(JSUB))
IF(TEST.LT«DERMAX) GU Tu 209
DERMAX=TiLST

LOUKUP(KPLUS, I )=KMAX

KMAX=JSUB

GO Tu 210

LOOKUP(KPLUS.I)=JSUB

CONT INUE

IF (ABS(PART(KMAX) ) +«EQe0+0)G0O TO 775
IS5UBIK)=KMAX

COE(KsN+1)=0,0E+00

DO 220 J=KPLUSWN
JSUU=LOOKUP(KPLUS ¢ J)
COE(K»JSUB)==PART (J5UB)/PART (KMAX)
COE(KoN+1 I=COE(KsN+1)+PART(JSUBI XX (JSUB)
CONTINUE

COE(KaN+1 1=(COE(KyN¢t1)=F ) /PART (KMAX) +X (KMAX)
X{KMAX)=COE (NsN+1)

IF(NeEQel) GO TO 610

CALL UBACK(N=1sNyX» 15U +CUE+LUUKUP)



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
i1l5
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
1386
139
140
141
142
143
144
145
146
147
148
149
150

151
152
153
154
155
156

610
625

630
649
650
600
700

1753

1763

725

77?7

750

7788

8777
751

7515

775
752

7525
800

100

200

IF(M=1) 650,650,625

DJ ©30 I=1.N

IF(ASSI(TEMP(I)~X{1))«GTLABS(X(1))$RELCON) GU TC 649

CONT INUE :

JTEST=JUTEST+!

IF(JTEST=3)0500725+725

JTLST=1

DU 660 I=1sN

TEMRP(I)=X(T)

CUNT INUE

PRINT 1753

FORMAT(/*NO CONVERGENCE.MAX NUMBER UF ITERATIONS UStD.Y)
IF(IPRINTeNE«1)GO TO 802 :

PRINT 1763

FORMAT(*FUNCTION VALULS AT THE LAST APPRUXIMATION FULLOW:'/)
IFLAG=1

GO YO 7777

IF(IPRINTeNES1) GO TO 800

DO 750 K=1eN

CALL AUXFCN(XsPART(K)sK)

CONTINUE

IF(IFLAGeNE1)GO TO 8777

PRINT 7783y (PART(K)sK=1sN)

FORMAT(3E20.8)

GO T0 800

PRINT 751

FURMAT (//7° CONVERSENCE HAS BEEN ACHIEVED.THE FUNCTION VALUES!')
PRINT 7515+ (PART(K)sK=14N)

FORMAT(*AT THE FINAL APPROXIMATICON FOLLUW:®//(2E2048))
GO TO 800

PRINT 752

FORMAT(//'MODIFIED JACUGIAN IS SINGULAReTRY A DIFFERLNT')
PRINT 7525

FORMAT(*INITIAL APPROXIMATIONe®)

MAXIT=M1+1

RETURN

END

SUBROUTINE BACK(KMIN NsXyI1SUDB) COE+LOOKUR )

DIMENSICN X(30)»COE(30+31)sISUB(30) »LOUKUP(30+30)
COMAUN ZUTHERS/DsVaH1eCo IZ

DO 200 KK=1,KMIN

KH=KMIN-KK+2

KMAX=1SUB(KM=1) '

X(KMAX)=0¢0E+00 )

DO 100 J=KMeN

JSUB=LOOKUP (Ki1eJ)

XCKMAX)=X(KMAX)+COL(KM=1 4JSUB) 2X(JI5UB)

CONT INUE

XIKMAX)=X (KMAX) +COE(KM=1 ¢N+1)

CONT INVE

RETURN

END

SUBROUTINE AUXFCN(X+YsK)
DIMENSION X{3)+R(S500)+P(300)
COMMON N

COMMON ZUTHERS/DeVeH14+Cy IZ
N=500

G=(D*V)/ (2.%C)



157 G3 TO (14243)4K

158 1 FosC+CeX(2)8%2

159 FNSCE( Lo #((~GEX( L) #EXP(X(3)/ML) ) +(CEX{ )X 12)))%%2)

160 RRI=Je D

X33 M=N=~1

12 DO 4 [=1.M

163 Q=(X{(3)/N)*1]

o4 RIIJ=CH( 1+ {(=GEX(1)*EXP{Q/HLI) I H(SEX(1I+X{2)))*%2)

1¢S5 R(I)Y=RR+R(I)

166 RR=R(1)

167 4 CUNT ITIVE

168 RR=2+¥RR

169 H1 1 =FU¢FN¢RR

170 H11=(X(3)/(2.%N))*H11

171 FO=D*X(2)

172 FN=D2{ =GeHIEX (1) ¥EXPIX{3)/HI)+GRX{ 1) *X(3)+X{2)*X(3)+GoHI*X(1)~VEEX
*P(X(3)/HL1 )+ V) % (~GHEXPIX(3)/ril ) +62X (1 )+X(2))

173 PP=0.0

174 M=N=-1

175 DO 5 J=1.M

17¢ Q={X(3)/N)*y

177 PlJ)=D#(~CRHI*X(1)*EXP(Q/H] 1+G*X {1 I EX(3)+X L2 )X (I +GEHLIEX( L) -V XP
*#(Q/H1 )+V)*(-G*EXP(Q/HL)I+GXX(1)+X(2))

178 PLI)=PP+P(J)

179 PP=P(J)

180 5 CONT INVE

181 PP=2.%PP

182 H2=F O+FN+PP

183 H2=(X(3)/7(24%N)) 2H2

.184 Y=X{1) *H2-H11

185 RETURN

186 2 Y={=GuX{1)REXPIX(II/HI I+ (GEX(1I+X(2)) ) %x22=2¢ ¥{~G¥X({ 1 )*EXP(X{(3)/H1)
*+(GEX(1)4X(2)))*V/HI*EXP(X(3)/HL)~1,

187 RETURN

188 3 Y=VE(EXP(X(3I/HL)=~1)4+GEHLEX(LISEXPIX(I)I/HLII=(GeX( 1) +X(2) )% X(3)+G*
*H1%X(1)

189 RETURN

190 END

SEXEC
COHESIUN UF S01L=%00.00 DENSITY UOF SOIL=130.00 Hl= -=¢
SAFETY FACTOR= lell CUNSTANT= 2417 X0O= 18.64

STATEMENTS EXECUTED= 244511
CORE USAGE 0B8JECT CODE= 10224 BYTESsARRAY AREA= 11908 BYTES«TOTAL AREA AVAl
DIAGNOSTICS NUMBER OF ERRORS= 0s NUMBER OF WARNINGS= O0» NUMBER UF

COMPILE TIME= 0¢09 SEC,EXECUTIUN TIME= 4,74 SEC, 224044246 MONDAY



Appendix C
Finite Element Formulation and

Computer Program



Finite Element Formulation For Rock 2s

A Linear Material

In this section, the standard finite element technigque is
described and then an appropriate stiffness martix for a part-

icular rock is suggested.

Triangular Finite Element

The basis of the finite element analysis is subdividing a
continuum into an assemblage of discrete pieces called finite
elements, the vertices of which are called "nodal points", Fig-
ure C-1. Triangular elements are the simplest to use because
if made small enough, they give results comparable to results

obtained with more elaborate quadrilateral elements.

finite
element

nodal point

—
Figure C-1. A continuum divided into triangular elements.



Elemental Stiffness Formulation

Consider a triangle element of Figure C-1 with a constant

thickness h and the local coordinates as shown in Figure C-2.

V5= b,
Y
L=, 0= 3,
(xl JJl)
X
Figure C-2. The three-noded triangular element, local
system.,

Suitable displacement functions have been shown to be the linear

polynomials
Ui(x,y) =a + a X + ay (1-a)
Vi(x,y) = a + a X + ay (1-b)

where U (x,y) and V(x,y) are the x and y components of displace-
ment within the element. Let the element nodal displacement

vector Gi be defined as

(3 r
8y 011
S2 Vi
8 5 ==<’§3 > = <« 92 > (2)
" Va2
s U,
Se lV3




Thus the element has 6 degrees of freedom. The displace-

ment functions can be written in matrix formwag

- a1
Ui(x,y) =il x y 0 0 O az
tas
0 0 0 1 x vy lay [

as

\fs
Where a1 . e e a6 are constants that depend on the geometry

and nodal displacement of the element. The nodal displacement

vector is

U (er) [] { (3)
= N . al.
vV o (x,y) + } .

where
l x y 0 0 O
&q = Shape function
i matrix
2%6 0 0 0 1 x 6
and
Ea}T =E a a a a a] Generalized Coordinates
1 2 3 4% 5 8 Vector

Equations (l-a) and (l-b) are admissable functions and so satisfy
the definition of completeness.
Ifa =a = a = a =0, then

2 3 5 6

U; (x,y) = a

V; (s,v) = a,



which represents the rigid body displacements. For a

plane elasticity problem the strain-displacement relationship

iS 2 2
Ju
Exx = 5% + % (8 E + 3 Y ) strain in x-direction
X X
v a2 2
£ =55 + (&2 4 §~—X) strain in y-~direction
Yy Y 3y2 ay?

y =288, 3V, 8u 3u, 3 I  ghoar strain in X-y

Xy oy ox 9x Jy 0X Jy plane

Considering only first order (linear) terms and neglecting the

second order changes in the displacements these simplify to

e = dU(x,y)

XX  oX (4-a)
= V_(x,y) 4-b

fyy T 3y (4-p)

y = dUx,y) . V(X,y) (4-c)

Xy oy oxX

The strain field is found by differentiating equations (1l-a)

and (l1-b) according to the definitions of strain:

= a

eXX 2

€ = a

Yy 6
=a + a
YXY 3 5

Therefore, the strain components in the element are constant.
The linearity of U (x,y) and V(x,y) ensures compatibility between

the sides of adjoining elements.



Substituting element nodal coordinate values in Equations

(l1-a) and (l1--b) we obtain

‘Ol—-‘ol—'oi—"
O % O ¥ o ¥
o oK oOoN

= © O - O

5
a
6
—

|

J

If we take the local coordinate system origin at node 1 and

specify the coordinates of nodes 2 and 3 with respect to node 1,

then x1 =0, y1

or

6x6

!owor—-OHl

lo r o » o =]

- O H O k- O

~ O B O ¢+ O

¥ O X o © o

¥ O X ©o o o

< o o o

N o

T

aj
az
as
ay
as

ag

< oK O O O
|5 = |

-

= 0, which reduces the previous equation to:

(5)

(6)



From equation (5)

bl

Inversion of [A] is always possible because

— )

2
1 b §1 Y1
det. FAJ = ---’.;det. 1l X2 Y2 >~
L i
1 X3 Y3
- —
\— —/

by the Laplace expansion and the quantity

1 X1 Y1
det. 1 X2 \'g

1 X3 Ys

is twice the area of the element. A routine calculation

gives — ——
A 0 0 0 0 0
A }yz— ys 0 ys 0 7Y, 0
A~ =l

i Ajx-x 0 -X C X 0

3 2 3 2
6x6 0 A 0 0 0 0
0 Y- Y, 0 Y, 0 Y,
0 x - X 0 -X 0 X
L_ 3 2

in which



A = 2 (area of the element triangle) =X, ¥Y3- X3 ¥,

substituting equation (7) into equation (3) gives the dis-
placement fields in terms of the element nodal displacement

vector:
o \
U~(X1Y)i -1
RN [N] &) [NJ A i{a}i (9)
;Vi X1Y)1

i -)

Now, the strain vector, %ﬁi can be computed from the dis-

placement field given by equation (9):

X

(exw G ) _aa; 0_1 rUi(x,yD

[hw b= o0 T8 ¢

3
ny UY+V)Q —33;- Vi (x,y)
or L. / . L - L —J
" 1
el = i .
Fehe=BbTs 61 o
where
3 _1 P ]
¥ 0 01 0 0 0 O
_ d -
[B] 1 < 0 3; [N] . =0 0 0 0 0 1
3X6 2x6
_9 9 0 0 1 0 1 O
Lfy X N




The stress compontents in the element can be derived using the
material constitutive relationships expressing stress components
in terms of strain components given in equation (10). This rel-

ationship can be expressed as:

{} L)L )

where

Y

3xl Oxy

J

and [D:]i is elasticity matrix of the element.
3x3

Element Stress-Strain Relationships

The stress-strain relations for a Hookian material are

~ - r— 7] o -
(0] XX c 1 C 12 C 13 € XX
o =i C C C €
vy 21 2 23 vy
Txy Ca Cz Cas ny

For an isotropic rock in plane strain
oo

1-v v 0
[_C ] - E Vv -V 0
(1+v) (1-2v) 0 1- 2v

o
[ R
|

S R e
SRR} .



where E is the modulus of elasticity, v is Poisson's ratio and

_ E(l-v)
(1+v) (I-2v)
\).

2 gy

Das = 1-2v
2(1-v)

In order to account for the coal layer that has parallel

texture a transversely anisotropic elastic stress-strain rela-

tionship is suggested.

— 2 —_
E; (1-nvs) \ E1V2 0
(1+ vi) (1-vi=2nv’) 1_\,12“\)2
Ié}= E;1 v» "E2(1-v,) 0
L l—v1-2nv2 1-v1=2nv,
0 4] 2G
2
| —
or _
Dnp D1 0
[D]= Dy D2 0 (12)
l_ 0 0 D3
with n = gﬁ—. The x is oriented parallel but the y axis is

orthogonal to the texture.

The Young's moduli E; and E, are

valid for compression normal and parallel to the texture, res-

pectively. Poisson's ratio vz is the strain parallel to the

texture in orthogonal compression, and v, is for strain parallel



to texture in parallel compression, which is also per-
pendicular to the strain.

This rock model has already been applied to regularly
jointed rock. This model gives useful results in a rock
with the series of discontinuitites that represents a direct-
ion of latent cleavity due to beddina or schistosity. Sub-.
stituting the elements of matrices [P] i (for isotropic)

and [?] i into Equation (l11l) we obtain:

CEE R | < Nl
{°}i= ! -.]‘Ll

0 qu 0 0 0

l\o 0 uD g 0 HUD 33 0 (13)

in which the first and fourth column elements are zero since
they represent zero stresses due to rigid body displacements.

As in the previous finite element formulations, for some
given loading (in x-y plane) on the element, we can formulate
the total potential energy expression generalized element stiff-

ness matrix,

3, G - L

where A represents the area of the 1 element and h is the
thickness (constant) of the element. On carrying the multipli-
catior and integration over A;, we arrive at the matrix [%}i
for isotropic and transversely anistropic materials respectively

in the forms:



z| = hbu o o0 ©o0 o0 o 0
i 2 (15-a)
;0 0 D 0 Dy O
"0 Dp O 0 o0 1
‘ 0 0 0 0 0 0
1 0 Dn1 0 0 0 Dp
i
['I-{]i - e /0 0 Dy 0 Dy O (15-b)
- 0 0 0 0 0 o ’
0 0 Da; n D3z O
0 Dy 0 0 0 D22
The equilibrium equation of the element is:
1 .0 )
{Fji X 1% (16)

where
T

-1 M- o1
[l =L TR [
is the element stiffness matrix. By Equations (7) and (17)

we may rewrite Equation (16) in the form
T T -

e B (- L B o



-1
Multiplication of [%. ]g and [K]-i for isotropic and

transversely anisotropic respectively yields the matrices

—

0

y,-v,))

&

Dn(X’-Xz)

DIX(YZ-YJ)

D (X -X )
2 o3 2

D (X -X)
3 3 2

-D X
3 2

D 3 (y2-y!)

0

[=]

D (X-X)
k < 3 2
1] (Yz- y!)
-D X

3 2
Dsays

X

3 2
-Dasyz

For isotropic

D (X -X)
3 3 2

Du(Yz"Ya)

o

0

-~

D (X -X)
3 3 2

Dﬂ(y2-y3)

For transversely

anisotropic

D'xz(ynz- y3)

(X - X))
s T2

Dlz(y2—y3)

D (X -X )
2 3 2

(19-a)

(19~b)



Each column of matrices (19-a) and (19-b) satisfies
the conditions

IF
X

LF
y

The zeros in the first and fourth columns of the matrice

Row (1) + Row (3) + Row (5)

0

Row (2) = Row (4) + Row (6)

0

(19-a) and (19-b) represents nodal forces induced by unit values
of a and a, which correspond to rigid body translations in the
X and y directions, respectively.

Definition of the element stiffness matrix Equation (17)

then yields,

<)s- [A-l:]: LINEe"

which, after substitution will give the element stiffness
matrix for isotropic and transversely anisotropic rock res-
pectively.

Subroutine TES performs this function in the computer

program listed in the following section of this appendix.



M- %

(Yz - Y;) 2

- 2
+ Dy;(xy = x5)

Dy2(x3 = xp) ly; = ¥,)

+ Dy3ixy = %) (y, = y,)

y3ly; = v3)

= Dy3X3(xy = x,)

Dsays(x3 - X,)

- Dyax3lyy - ¥;)

= ¥alyy - ¥q)

+

Dy3%z(x3 = x5)

= Dy3¥,(xy ~ x,)

+ Dya%plyy =~ vy)

Dyaixy -

+ D33(Y2 - Ya) (x: - xz)

x,) (¥, = ¥3)

Dy3fy, = ¥3)*

+ xy ='x)?

Dliy3(x3 - x,)

= Dagx3ly; - ¥3)

D33¥3(yz = v3)

- x3(x3 - xz)

= D)oYy (%y = X,)

= DJJYz (YZ - Y3)

+ xz(x3 - x2)

Y3ly; = vy) = D33X3ly; = v3) - Y3y, D33%3%;
2 . 2

Y3 + Dy3*3 = (D) *+ D33)x3y,
= Dy3x3ixy = x,) +.D1573(%y - %5) ' : = Dy3X3x, D) 5X5¥,
= Dyax3ly; - ¥3) Dy3¥3ly; = ¥y) . P12%3Y; = Dy3¥3Y;

= (D, + Da,)x .y DyayY3 + X
+ Da3yylxg = x3) = X3ixy = x5} 12 7 7337730 3373 773 +D33x,Yy - XaXy
“Yalya = ¥3) Daaxyly; - ¥y) T ¥Ya¥; Dy3%y¥y , \ - Dy + Dy)

- - - Y, + Doax
+ D%, (x5 = X,) Dy ¥, (%3 = %,) = Dy3xyx, + Dy ,%q¥, 2 3372 X,¥;
P1a%3 ¥y = ¥5) = Dy3¥,yly; = v3) Dy 2%5v3 = D33¥,¥3 .
= (D, + D)%,y D,y + x!

= Dyjypxy = x5) + Xy (x5 - x,) + D3ax,y, - Xy%y 12 33'72%2 3372 2

(20-a)

Element Stiffness Matrix for isotropic material




Dy1(¥2 = ¥3) ¥3

Dy3(x3 = %) ¥,

- 3 - - . .
Dyplyz = ¥3) + D33{x3 = x5} {yy = ¥3) Dty = ¥y) ¥, | = Dyyixy - xy y,
- ' - - - - - -
Dyylxy = x5) +D)oly, = ¥3) %y = %) | = Dy3(x3 = xp) x4 Dialyy = ¥3) %3 | & Dy3lxy = %) %, | + Dy 0y, = v x,
- -yt - -
Dya(xy = X;) D33lyz = ¥3) O12(%3 = %) ¥3 [ P3alv2 = ¥3d Y3 | -p)y (x3 =3 vy | - Dyyty, - vy v,
- - 2 = Daaly, = ¥q) x = DpylXa = %X,) x
¥z = ¥3) + Dy + Dyalxy = x)) 331¥2 T ¥3) X3 223 7 %2 X3 | 4 Dy3ty, - ¥y) %, |+ Dyytxy - xp) x,
{y, = y3) {x3 = xj,)
Dp¥alyy = ¥3) = Dy3x3lyg - ¥3) ¢ o s < D3g*a¥y = Dy3¥,¥, Dy3%5¥,
= DaaXalXa = X,) +b Ya (X, = Xx,) Dlly3+D3;xa = D, oYX ’
33%3{x%3 = X3 12Y3(%3 = X, - 127373 = D33%3%; + Dy,¥3%,
= Dy xy(y, = ¥3) D33¥3(Yy = ¥y) = Dy %3y
12%3(¥2 = ¥3 33¥3'¥z = ¥3 12%3¥3 Dag? + Dyt D, 5%,v, = Dy;v3¥,
4 Dya¥alXa = Xo) _sz (Xy = %,) -033y3"3 3373 2273 ;D .
337373 2 227373 2 33?3*2 - pzzx3x2
- Dy,Ya(yy = ¥3) Dy3%y(yy = ¥y) = Dy3¥p¥3 D33¥*3¥3 - Dy3x,y,
* DoyaXa (X, = X,) -D (X2 = X,) - DX, X + By ,¥,X 2
33%21%3 = X3 12¥21%3 = X3 3372 ; 127273 Dyy¥3 + Dyax3 = Dy,¥,%,
Dy o%Xo (yz - y,) D33Y2 (vz bl YJ) M D12x2Y3 - D33Y293 DJJV;
.o = (D3 + D33) xpy,
= Dyy¥,(xy = %) + Dyp%y(xy = Xj) 33¥2%3 = D22¥z%y +Dy %3

(20-b) Element

Stiffness Matrix for Transversely Isotropic Material



Assemblage of the Structural Stiffness Matrix

To solve the problem, it is necessary to combine the in-
dividual element stiffness matrices [K] i and the individual
load matrices {F} i to form the structural stiffness matrix

[K] and the structural load matrix {F} , respectively.

All of the cited references on finite element analysis

contains the process of assemblage.

The matrices {-F}and [KJ connected with the structural

system are related by the equation

L71=[x]4e]

where{ -}15 the structural load matrix, [K:, as defined before
and 6} in the structural nodal displacement matrix. Solution
of this force-displacement equation gives the unknown nodal
displacements { 5} .

The entire computational process for an elastic analysis

is diagramatically represented in Figure c-3.



READ STRUCTURAL DATA-
MECHANICAL PROPERTIES
BOUNDARY CONDITIONS
ELEMENT GEOMETRY

SELECT A PROPER
ELASTICITY MATRIX [D]

T

CALCULATE ELEMENT
STIFFNESS MATRIX K]i

ASSEMBLE THE STRUCTURAL
STIFFNESS MATRIX Pq

|

SET UP ELEMENT
LOAD MATRIX [F]

ASSEMBLE THE LOAD
MATRICES [F]

T
SOLVE THE BANDED
STRUCTURAL STIFFNESS
EQUATION

i

CALCULATE THE ELEMENT
STRESS COMPONENTS

|

EXTRACT ELEMENT NODAL
DISPLACEMENT FROM
Fj MATRIX

1
OUTPUT STRESSES AND DISPLACEMENTS

)

i

:STOP‘

Figure C-3. FLOWCHART FOR FINITE ELEMENT PROGRAM




[F R N LU

[ N o

$J03

DIMERSION S(910+26) s F(910s1)sNFRIC(S1C)eNCCD(S2) eCM(91041)
DIMENS ION ES(0.0)-EF(6)-IE(3’oPX(3)oPY(3)-X(3)-Y(’)
DIMENSION SIGMA(3)+ICR(6)

DIMENSION INFMT(12),0UTFMT(12)

DIMENSION IPCONE(20) +IPCCN(20)sPCUNQ(Z0)e NCODE{EHE) .

o LT T T T T N e T T e ——

nnnnnnnnnpnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

THIS PROGRAM HAS BEEN #RITTEN BASED ON THE COURSE CONTENT CF CE
6763 AND HAS BEEN MOLCIFIED FOR ANALYSIS UF JOUINTED BLOCKY ROCKS

IN

1979« THE PROGRAM HAS BEEN ADJUSTED TC ANALYSE A STRIP MINE AND TO

CALCULATE STRESSES ANC DISPLACEMENTS CF A CONTINUJUS MEDIA.

THE PRCGRAM CAN SOLVE EITHER A PLANE STRESS OR PLANE STRAIN PRDBLEM.

FOR ANY Gl VEN NODAL FORCES AND PRESCRIBED DI SPLACEMENTS.

ANALYSIS 1S PERFORMEL BY THE FINITE ELEMENT METHOD.MAKING USE OF

LINEAR TRIANGULAR ELEMENTS.

BY COMBINING FOUR TR IANGULAR ELEMENTYS IT BECOMES POSSIBLE TC USE
QUADRILATERAL ELEMNENTS AND TG UBTAIN MCRE ACCURATE RESULTSe

|
(s
]

= = —-——= e s s o e o —_—

S$-1S THE STRUCTURAL STIFFNESS MATRIX

F-1S THE STRUCTURAL LOAD MATRIX

NFREE=-IS THE FREE NODES VECTCOR

NCOD=~1S THE CCONSTRAIND NODES VEC TOR

CM— 1S .THE VECTCR THAT REPLACES THE LOAD VECTUR F WHICH
WILL BE DESTRYED TC CCNTAIN THE NCDAL DISFLACEMENTS.
THE REASON THAT W& KEEP THE LCAD VECTCRe EECAUSE wE
GOING TO USE 1T IN THE ENERGY CALCULAT ION

ES—1S THE ELEMENT STIFFNESS MATRIX

EF-1S THE ELEMENT LOAD VECTOR

J1E~1S THE VECTOR OF THE ELEMENT NODES INDEX

P{X)eP(Y)~ARE THE BCUNDARY TRACTIONS IN X AND DIKECTICNS RESPECTIVELY

XsY=ARE THE X AND Y COORDINATES OF EACH NODE TO BE CALCU_ATED
FROM CERTAIN FIXED GLGBAL COCRDINATES
S1GMA=1S THE STRESS VECTGR
ICR- 1S T+E VECTOR OF ROUW AND COLUMN INDICIES. THIS VECTOR
* TAKES CARE OF FINDING THE ROWS AND COLUMNS IN THE STRUCTURAL
ST IFFNESS MATRIX THAT CORRESPOND TU THE ROWS AND COLULMNS
OF THE ELEMENT STIFFNESS MATRIX UNDER CONS IDERAT ION
NTE=NO OF TOTAL ELEMENTS
NTD=NO UF TOTAL NUDAL CISPLACEMENTS
NTF=NO OF TOTAL FREE NODAL DISPLACEMENTS
NCD=NO OF CONSTRAINED NODAL DISPLACEMENTS
NB=BAD wICTH CF THE S MATRIX
NLC=NU OF LOADING CONDITICNS
PDISSIONS RATIO=NUSNO OF ELEMENT NCDAL DltpL—NEhD
CODE NUMEERe CCCE O=PLANE STRAINE,.CCDE 1= P_ANE STRESS
NEND= NUMBER OF ELEMENT KRCOAL DI SPLACEMENTS
NPCONE~- IS THRE NUMBER OF PARTJIALLY CONSTRAINED ELEMENT
NPCGN=1S THE MNUMBER OF PRRTIALLY CCNSTRAINED NGDES
JPCONE~1S THE INDEX VECTOR OF PARTIALLY CCNSTYRAINED ELEMENTS
I1PCON~-1S THE INDEX VECTUR UF PARTIALLY COISTRAIKED NODES
PCONQ-1S THE INDEX VECTOFR CF PARTIALLY CCMASTRAINED CUANTITIES
INTEGER CLUDE
REAL WU, MU
- NU=e 2
C= 8208,

READ STRUCTURAL DATA



10
11

12
13
14
15
1€
17

1s
20
21
22

22

c4
25
2c¢
27
2t
29
30
31

3z

34
35
30
37
3

S5

ac
“1
a2
43
as
ao'c
40
“«?
4y
]
ue
51

b

READ (S¢700) KWTE«NTD«NCDsCCDOEoNBo NTF ¢ NENDs NLC
700 FORMAT(B8IS)

C

€ READ CCNSTRAINEC NOTAL DISPL. NUMBERS

C -
READ(S,7C2) (NCOD(I1)+1=1,9)
READ(S.702) (NCOD(I)e1=10.18)
READ(S¢7C2) (NCOD(1)+1=19,.27)
READ(S+702) (NCOD(1)+1=28,26)
READ(5¢702) (NCOD(1)¢1=37445)
READ(S»2702) (NCOD(1) ¢1=46,52)

702 FORMAT(91S)

NCODE=0 FOR ELEMENT WITHOUT SPECIAL DISPLACEMENT
NCODE=1 FCRE ELEMENT wiITh SPECIAL DISPLACEMENTY
INETIALIZED NCODE AS O

s NaRaNaXaXal

DO 998 K=1NTE
NCCDE(K)=0.
998 CONT INVE
READ (5¢933) NPCONE'NFCCN
933 FORMAT (218)

WRITE INPUT CATA

(o a Ny

WRITE (6.800)

800 FORMAT (1H1+1X+1O0HINFUT DATA/)
PRINT 93S5.NPCCNESNPCCN

935 FORMAT (1HC 9 5X ¢ THNPCCNE= 159 SX9 6HNPCUN=y IS)

IJF (NPCONE) $41+951,.941

941 DD 999 K=1.NPCONE
READ (5.580) IPCUNELK)

S80 FORMAT (15)

NG

MAKE NCODE=1 FUR ELEMENT WITH SPECIAL DISPLACEMENT

J=IPCCNE (K)
NCCDE(J)=1.
999 CUNTINUE
PRINT S3€
936 FORMAT (1HO+S5Xe * INDEX VECYTCR OF PARTIALLY CONSTRAINED ELEMENTS®)
PRINT 937+ (1 PCONE(K) +K=1 s APCCNE)
937 FORMAT (1HC.EXe1015)

READ (Se702) (IPCEN(K) ¢K=1 ¢ NPCCN)
READ (5¢550) (PCUNQ(K)eK=1 NPCON)
950 FLCRMAT (6F10.5)
PRINT 92¢
926 FORMAT (1HC+SXe*INDEX VECTOR OF PARTIALLY CONSTRAINED NODEE*)
PRINY 937+ ({IPCON(K) o k=1 ¢ NPCON)
PRINT 927
927 FOKMAT (1HO0+SXe* INDLX VECTCR UF PARTIJALLY CONSTRAINED QUANTITIES!
DO $29 K=] +NFCCN
PRINT S32¢hePCUNQIK)
‘932 FCRMAT (1ML oSXeUHFCULNOCL 4 13,°311%'eE2Ce8)
345 COANTINLE
951 WRITE (L.8C1)
531 FOFR4AT (JHC 02/ ¢3FRTE 0326 31NT Do 2% 9 DHNCI 0 1 Xe 4HCLDE e 2X e 2H!Be 2 X ¢ IHKR TS



53
54

56
57
S8
-1

60
61
62

63
64

65

ot
o7
68
09
70
71
72

72
74

78
7¢
77
7t
7%
€0
S

>
-

Sa
es5
Yc
87
(1]
(1349
90

0OABOOND (e NaXal

noan

ol e Nal

[a X aKal

JIXeQHNEND e 2X¢ IHNLC/)
WRITE (64700) NTEJNTCoHNCEs CODEoNB ¢NTF ¢NEND 4NLC
WRITE (6,802)

£02 FORMAT(1h0, 1Xs31HCONSTRAINED NODAL DISPL NUMBERS/)
WRITE (6+702) (NCUD( I)s1=1,NCD)
READ( S+ 7C3) INMT -
READ (S, 703) QUTFMT .

703 FORMAT(6X+12A4) '

INITIAL REWIND TO ASSURE PROPER TAPE POSITION

REXIND 1
WRITE (6.,803)
803 FORMAT(1HO«1X «12HELENENT DATA/)

NE=ELEMENT NUMBER

JIE=ELEMENY NCODE INDICIES (NODE NUMBERS) TO BE READ IN COUNTER
COUNTER CLOCKWISE DIRECTICN

READ NE» IEsX oYL ELEMENTWISE, INTO TAPE 1}

DO 10 N=1,NTE
READ (S INFMT ) NEsIEC1)s IE(2)s IEC3)e X(1) o X{2) o XC3) o¥(1),Y(2),Y(3)

WRITE CUT FROM TAPE 1}

-

WRITE(6+OUTFMT) NEoIEC1)41E(2)e JEC3)e X(1)e XC2)eX(3)e¥(13s¥Y(2),Y(:
MODIFY COCRDINATES X AND Y SO0 THATY X(1)=Y¥(1)=0

V0 155 1=2,3

X(1)=XCI)=X(1)

Y(1i=Y(1)-Y(1)
155 CONT INVE

X(1)=0e

Y(1)=0e
10 WRITE(1) NESIE(1)e1EC2)2IE(3)eXU1)eX(Z2)sX(3)oY(1)Y(2)sY(3)
«RITE END OF FILE TO MARK THE END CF VAL IC INFORMATION

END FILE 1

REWIND 1

SELECT A PROPER ELASTICITY MATRIX

1F (CCDE.EQ.0) GU TG 15
MUSE/Z(le=NU:%2)
D12=NU
D33=(} e~NU)/2a
GD TO 16

15 MUSE®S(1 a=NUN((1e4NU ) (1s~202NU) )
D12=NL/( 1 e—NU)
DA3=(1e=~2e63NU)/(2.%( 1o~NV})

16 K=0 .
DD 17 I=1.RTD
DO 18 J=1+NCC
JF(1«EQ«NCOD(J)) GG TC 27
18 CONTINUE
K=K+1
NFREE(K) =}
17 CIATINUE



91
92
9J
94
9¢&
96
97
9e

99
100

101

102
103
104
10€&
1006

107

108
109
110
111
112
112
114
11¢&
11¢

117

11
12¢
121
1&o

123

Nno

nonn

00N

nn 0

(aNaNaNal

ann

nfen A0ON

2ERD STRUCTUKAL STIFFNESS AND LOAD MATRICES, S'AND F

DO 19 I=1.NTF
DU 20 J=1,NLC
F(leJ)=0e

20 CCATINUE
DO 21 K=1,NB
S(I«K)=0.

21 CONTINUE

19 CONTINUE

CALCULATE ELEMENT ST IFFNESS MATRIX-ES (ELEMENTVISE)
AND CONSTRUCT THE STRUCTURAL MATRIX S

NL=1
DO 22 N=1,NTE

STEP 1 - REAL THE ELEMENT DATA FROM TAPE 1
READ (1) NESIE(1)+IEC2)0IEC(3)»XC1)oX(2)eX(3)aY(1)eY(2),Y(3)

DC 24 L=1.2
ICRIL)=(IE(1)-1)%2+L
ICRIL+2)=(IE(2)~-1)%23L
ICRIL+Q)=(IE(3)-1)*2+L
24 CONT INUE
STEP 2 — CALL TwC DIMENS IONAL ELEMENT ST IFFNESS SUBRCUTINE

CALL TES(LSsXeYsD12:D230MU NEND EF «No» ICR:NPCCNoNPCCNE 4 IPCON,FCCN
3 NCCDE)

STEP 3 = STUFF ES INTC S MATRIX BY CALLING STIFFNESS
ASS EMBL ING SURROUTINE WITF THE AID OF ICR(1)
JICR~INDEX MATRIX TO KEEP TRACK OF CCLUMNS AND ROWS OF S
CALL ASSEMS(ESs SINFREEWNTF JNENDeICRsNBH,121)
IF (NCODE(N))S61,23,9601
$61 DO 96€ L=1.2
ICRIL)=CIE(1)=-1)%24L
ICRIL+2)=(1E(2)-1)*24L
ICRIL+4)=(IE(3)~1)%2+L
966 CONT INVE
CALL ASSELF (EF oF oEFREE'NTFeNERDo KL+ ICReNB)
23 CONTINLUE

REWIND TAPE 1 FOR LATER USE
REWINC 1

CALCULATE ELLMLNT LOAD MATRICES~LFs AND CCASTRUCT TErE
STRUCTURAL LOAD MATRIX « Fs FUR KO OF LOADING CONDITIDNS

DO 25 NL=1 sNLC
FOR EACH LCACINGs READ TFE KO CF LCADED ELEMINTS -~ LE

READ (5. 709) LE

. 709 FOFRMAT(52Xx,1%)

PRINT 333.LE
333 FORMAT(1HCSXs"s0e OF LOADED ELEMENTS LL=°,4,13)
IF{LL.CC.0) GT TO 30O



C
C INPUT CATA ON EACH OF THE LOADED ELEMENTS

124 DO 26 N=1,LE .
12% READ(Ss710) NE+1EC1)s1EC(R2) oJE(3)eXU1)eX(2) o X(3) oY (1)sY(2)0oY(3)
126 710 FORMAT(415,6F10.0)
127 PRINTONESIE(I)2IE(2) sIEL3) oX(2DeX(22X(3)sY(1)Y(2),Y(3)
12¢€ DO 27 1=1,NEND -
129 EF(I)=0.
130 27 CONTINUVE
131 READ(S+711) (PX(1)ePY(1)el=1,3)
132 7131 FORMAT(6X+6F10.3)
(4
C SET UP EF MATRIX DUE TO BOUNDARY TRACTIDNS, PX(I) AND PY(I)
c
132 CALL EBL(EF ¢ XoY oPXsPY)
134 DO 28 L=1,2
13% ICR(LI=(IE(L)~1)%24L
130 ICRILH2)=(IE(2)~1)%2+L
137 ICR(LA)I=(IE(3)-1)=24L
13¢& 28 CONTINUE
[
C STUFF EF NTC-~F
Cc
139 CALL ASSEMF(EFsFoNFREEJNTF+NEND,NL 31 CR4NB)
14C 26 CONT INUE
Cc
€ NNC-NO OF NODAL CONCENTRATED LCADS (STRUCTULRAL)
C
14) 33 READ (S+¢712) ANNC
1842 712 FCRMAT(S52Xe 15)
143 PRINT 444 JNNC
144 444 FORMATC(INHOSXes"NOe OF CONCENTRATED NCCAL LCACS NNC=',13)
145 IF (NNC.EQ.0) GO TL 2S5
14€ DO 32 N=1 +NNC
147 ' READ( S+ 713) NNsP
148 713 FORMAT(oX, I55sF10.3)
14Y PRINT SS55¢NNeP
150 555 FORMAT(1IHODsSX»*AT THE NCDAL PCINT NN=',13+:SXe+* THERE IS A LCAL P=
1F10.3) '
151 DO 31 L=1NTF
152 IF (NNJEC.NFREE(L)) GC TC 323
153 31 CCNT INVE
154 32 NN=L
15¢ FINNSsNLI=F(NNNL)+P
15¢ 32 CONT INUE
157 25 CCKTINUE
C
C SOLVE THE SYSTEM CF BANDED STRUCTURAL STIFFNESS EUUATIONS
c
158 CALL SOLVE (SoF sNTF 4NByNLC)
C
L OUTPUT NOCAL DISPLACEMENTS
Cc
15¢ WRITE(Gs £06)
1.0 $00 FCRMATCIHD o5EXe 19 ENCCAL DISPLACERENTSY/)
101 20 38 NL=1,NLC
el . WRITL(Es £15) WL
163 KRITE(&E07) (NFREEC1)oF(3IsNL) s 1=1ehTF)
Jue 807 FORMAT(I4,50XsL17e06)

X ] <8 CONT INVE



202
204
205
206
207
208

209
210
211
212
212
214
21¢
21¢€
217

218

2169
220
221
222
223
224
228
226

227
228
229
230
231
232
233
234
235
23¢
237
238
23¢9
240
241
82
243
284
245
28 ¢
% 4
P Y]
Dby

€ STENY= STRAIN ENERGY
C PIENT= PCTENTIAL ENERGY
C
STENY=0.
PTENY=0.
DO S5 NL=1,NLC
DO S6 I=1,NTF
STENY=STENY+(F(IsNL)*CM(I.AL))/2¢
56 CONTINUE
C
C SINCE QUARTER OF THE DISK IS ANALIZED MULTIPLY STENY BY &
C
STENY =4 ¢« #STENY
PIENY==STENY
WRITE (6. £20)
820 FORMAT(1HO s 1Xs12HLOACING CONDy 8BXe SHSTENY s 10X+ SHPTENY/)
RITE (6+821) NLSTENYPTENY
821 FORMAT(7Xs I3s5XsE15¢522XsE 1545)
55 CONTINUE ’
sSTOP
END

SUBROUTINE TES(ES +XeYeD12+D33¢UsNENDs EFs Ne I1CR¢ NPCON+NPCONE 5 IPCON
1PCCNQ s NCCDE)

C .
C CALCULATE THE ELEMENT ST IFFNESS MATRIX +OUTPUT-ES

DIMENSION ES({6+6) +X(3),Y(3)
DIMENS ION EF(6)sICR(E)y IPCON(20)+FCONG(20) + NCUDE( 886)
DO 1S5S0 1I=1.NEND

EF(I)=C.
DO 151 J=1,NEND
ES(1¢J)=0.
151 CONTINUE
150 CCNTINVE
C
€ INPUT ES MATRIX (FACTCR H IS REMOVED)
(4

DEL=X(2)*Y (3 )-X(3)%xY (2)
C=U/( 2.%DEL)
X32=X{3)-X(2)
Y23=Y(2) =Y (3)

ESC1,1)=C*( Y22%%24DI3%X32%¢2)
ES(24¢1)=Co(D12sX32*YZ2+D329Y23%¥X32)
ES(3¢1)=Ce (Y(3)2Y23-C33sX(2)*X32)
ES{4s 1)=Co{~D12*X{ 3)#Y23+D 23#+Y(3)*x32)
ES(S+1)=C* (-Y()#svY234D33eX (2)%X32)
ES(6+1)=C2(D12¢ X(2)sY22-D338Y(2)2X32)
ES(2¢2)=C%(D33*Y23%224X32%22)
ES{3+2)=Ca(~C335¢X(3)IY234D12+Y (3)2X32)
ES(&a¢2)=Co(D3Z*Y(3)*Y23=-X(2)*X32)
ES(S¢2)=C*(D332X(2)2YZ3-D1i22Y(2)*%X%32)
ES(6¢2)=Cr(-D33sY(2)*Y23+X(Z)*X3z)
ES(3¢2)=Ca(Y(3)8424D3228X(3)822)

ES(% ¢3)=Cr (=(C124D23)3X(3)2Y(3))
C£S(5+3)=C2(-Y(2)2Y(3)~D33¢X(2)*X(3))
ES(6s3)=Ce (D12 X(2)2Y(2)4022eX(3)*rY(2))
ES(Q ¢4 )=C (DILrY (2 )8 024X(2 )522)
ES(Se8)=Ct (DIL=X(2)3Y(3)+DITsX(3)5Y(2))
ES(Ls4 )=C2(=D3XnY(2)0Y(2)-X(2)8X(2))
E£S(55)=Co (Y (2)2224D33TX(1)082)



250 £5(6+S)=C2(-(L12+D32 )X 2)2Y(2))

251 LS(6+0)=Co (D3JsY (2)s 424X (2)%%2)
C USE SYMMETRY

252 M=NEND-1

253 DO 156 1=1 M

254 K=1+1

255 DO 157 J=K'NEND

25¢ EStI +J)=ES(J.1)

257 157 CONTINUE

. 258 156 CONT INVE
€ IF ELEMENT HAS A PRESCRIEED QUANTITY MDDIFY ES AND EF

259 1F(NCODE(N))100,2C0, 100
260 100 DD 191 1I=1,6
261 DO 192 J=1NPCON
262 IF (ICR(X)-IPCON(J)) 192,193,192
263 192 CCATINUE
264 GO TO 191
265 193 DO 194 K=1+6
26¢ EFIK)=EF(K)~ES (Kes1)*FCCNCLJ)
267 ES(K»1)=0.
208 ES({1sKJ)=0.
265 194 CONTINWE
270 ES(I,1)=1.
271 EF(12)=FCCNQ(J)
bedy g 191 CONTINUE
273 200 RETURN
274 END
275 SUBRGUTINC ASSEMS(ES+S)NFREE+NTF s NENLC s ICRs NBeNTT)
<
C TUFF ES MATRICES INTO TRE S MATRIX (FREE NODAL DISPL ONLY)
C OUTPUT = S MATRIX
C
27¢ ) DIMENSION 5(910,28) «NFREE(NTF)
277 DIMENSION ES(6+6)+1CR(6)
C
C LACE ZERO IN ICR(1) IF CONSTRAINED DISPLATEMENTS
C . .
278 DD 202 K=}1sNEND
279 : DO 203 L=1yNTF
2890 IF (ICR(K).CQ.NFREE(L)) GO TC 204
281 203 CONT INUE
28 1CRIK)=0.
23: G0 TO 202
2084 204 JCR(K)=L
«8E 292 CCNTINUE .
. € \
C
€ FIND ROWS IN THE BANDED S MATRIX
C
8 DO 205 K=1,NEND
87 11=I1 CR(K)
28 IF (11eEC.0) GC TC 205
209 DO 206 M=1oNIND
C
C FIN) COLUMNKE Ik THE FANCED S MATRIX
Cc.
29¢C IF (ICR(VM)ECT) GO TC 20¢
2yl JI=ICRIMI+ -1

292 IF (JJeLTe 1) GC TL ZCu



a93
294
295
29¢
297

<98

299

300

301
332
302
304
305

306

307
J0&
306
310
311

312
313
314
31
336

317

Ns
Yy

320
3z1
322
322
3.4
32<
32¢
3:7

S{11¢JJ)=S(114JJ)4CS (KeM)
20€ CONTINUE
205 CCNT INVE

RE TURN

END

SUBROUTINE EDL(EF.XsYePXs PY)

CONVERT THE ELEMENT BOUNDARY TRACTIONS INTO THE ELENMENT
FCRCES—EF

DIMENSION EF(6)eX(3)sY(3).PX(3),PY(3)

LET PX(1)=PX23seeee + PX(3)=PX12y ETCe

nen 6and

DEL=X(2)*Y (3)-X(3)*Y(2)

NN

OmomnuoL-RuZdiNﬂ*ﬂPunonomnOﬂu.N.uuu>20mmq
DO 171 I=1,3 .
J=(1-(1/3)%3)+1
K={(I+1)~((I+1)/3)%3)+1
ASSQRT((X(J)=X(K))I3224(Y(J)~Y(K) )% 2)

NOD AL

UF EF(I)

B=DEL+05*(Y(J)=V(KII*IX{II+X(KIIH+D e S (XK I=X(JIIIH(Y(KI4Y( D))

C=0eSHY (K)HXIKIHX(JIII=X{KIF(Y(KI+Y(J)))

D=0eS2(=Y(J)E(X(KI+X(JII+X(IIX(Y(KI+Y(J)))
EF(1)=EF(1)+ExA%PX(1)/DEL
EF(2)=EF(2)+B*AxFY(1)/DEL
EF(3)=EF(3)}+CxAP X(] ) /DEL
EF (4 )=EF (4 )+C*AXPY (] }J/DEL
EF(S)=EF(5)+D*A*PX(1)/DEL
EF(6)=EF(6)+D*AXPY( ] )/DEL

171 CCNTINUVE
RE TURN
END

SUBRCUTINE ASSEMF (EF+FeNFREE+NTFoNENDsNL+ ICR«NB)
C
C ASSEMBLE CF INTO F AND OUTPUT F
C
DIMENSION F(NTF 1) o NFREE(NTF)
DIMENSION EF(G)eICR(6)
[
C FIND ROWS IN UNBANDED STRUCTURAL STIFFNESS EQUATIONS
C PLACE ZERO IN ICR(I) IF CONSTRAINED KNODAL D1 SPLACENLCNTS
(4 .
20 222 K=1+MNCND
DO 223 L=1.NTF
IF (ICR(K)+EQ.NFREEL(L)) GO TO 22«
223 CONTINUE
1CRIK)=0
GC TYe 222
224 ICR(K)=L
222 CONTINUE
C
C FIKD PORE 1IN BANDED F  MATRIX
C
DO 225 K=1.KNEN
1I=ICRIK)



330 IF (11.EC.0) GO 7TO 225

33 FOITeNL)=F (11 +NL)4EF(K)
332 225 CONT INUE .
333 RETURN
334 END
33s SUBROUT INE SOLVE(A.BsNNsMM,.LC)
C
(< SOLUTION CF SYMMETRIC BAND ECUATICNS
c A=MATRIX,STORED AS BAND
c B=INPUT AS FORCE VECTCRs OUTPUT AS SCLUT 1ON VECTOR
c NN=NUMBER OF EQUATIOAS
< MM=BAND WIDThk, LC=WICTH OF B
C (o .
C C-VECTOR DOES NOT ACCEPT VARIABLE DIMENSION, THEREFORE 1T MUST
C BE DIMENS JONED FOR EACH PROBLEY WL TH NB-DIMENSION
C
336 DIMENSION A(S10,28)»B(910,51),C(24)
337 N=0 .
338 100 N=N+1
c
C RECUCE N TH EQUATION
c DIVIDE RIGHT SIDE BY DIAGONAL ELEMENT
c
339 DD S M=1,LC
340 5 BINsMISB(NsMI/ZA(NS1)
C CHECK FOR LAST EQUATICN
3a) IF (N-NN)150,300,15C
[«
c DIVIDE N TH EQUATICN BY DIAGONAL ELENMEANT
C
3482 150 DG 200 K=2,MM
34z C(K)=A(NK)
3a4 200 A(NsK)I=AINJK I AIN.1)
c
C REDUCED REMAINING EQUATICNS
C
348 DO 260 L=24MM
34¢ I=NeL-1
347 IF(NN-1) 260,240,240
34¢ 240 J=0
346 DO 250 K=L ¢MM
350 J=J+1
351 250 ACI+J)ISA(TI0J)=CIL)SA(NIK)
aso DO 6 M=1,LC
3s3 L BC1eMI=BUIMI-CIL)IABINM)
354 260 CCNTINUE
ass GO TO 100
C
c BACK SUBSTITUTION
35¢ 300 N=N~1
4
c CHECK FOFR FIRST EQUATIUN
<
257 IFIN) 25C,SCC,25C
c
C. CALCULATE UNKKCwA E(N)
C

abe 250 D0 400 K=2,MM
20y L=NK-1



360
361
362
363
364
365
366

367

36¢e
369
370

371
372
373
374
375
37¢
377
378
ars
38¢

381
3382
383
384
385
386

387
38e
389
390
391
392
393
394
395
339€
397
398
399
400
401

402
402

IFINN-L) 400,370,370
370 DG 7 ¥=1 «LC
7?7 BINsM)=B(NsM)=AINsK) 3B(L+M)
400 CONT INUE
GO TO 300
500 RETURN
END

SUBROUTINE STRESS (EF oX¢Y sMUeD12¢D33+S IGMAe NEND)

COMPUTE ELEMENT STRESS COMPONENTSs OUTPUT-SIGMA(L)

onAn

DIMENSION EF(6) sX(3) +Y(3) »SIGNA(3)
DIMENSION A(6+6)+DB(2+,6)4DBA(3+6)
REAL MU

ZERD A.DByLCBA,S IGMA MATRICES

onn

DO 40C I=1+3
SIGMACI)=0e.
K=1+3
DO 401 J=1sNEND -
A(leJ)=0+
A(KeJ)=0e
DB(I¢J)=0e
DBA(149)=0¢

401 CONTINUE

400 CONTINUE

INPUT LB MATRIX

(g N ol 5]

DB(1+2)=MU
DB(1+6)=NU%D12
DB(2, 2)=DB( 1+6)
DB(2,6)=CB(1,2)
DB(3,3)=NU*D33
DB(3s S)=DB(3+3)

INPUT A INVERSE MATRIX

(g M als]

DEL=X(2) Y (3)=-X(3)*Y (2)
AClel)=1e
A(2:1)=(Y(2)-Y(3))/DEL
Al3+1)=(X(3)-X(2))/DEL
ACas2)=1.
AlSe 2)=A(24 1)
A(642)=A(3,1)
A(2,3)=Y(3) /DEL
A(3+s3 )==-X(3)/DEL
A(S5+4)=A(2:2)
A(EsQ)=A(3:3)
A(2:,5)=~-Y(2)/DEL
Al3+5)=X(2)/DEL
Al(S5,6)=A(2,5)
A(6+6)=A(3+¢5)

Cc

C FORM DBA MATRIX

c
DO 405 1=1 3
DD 40€¢ J=1eNEND



404
43S
406
407
408

409
41 0
411
412
413
414
415

407
406

L 333

onn

409
408

SEXEC

DO 407 K=1,MEND
DBA(1:J)=DBA(1+J)+DB(1sKI*A(KsJ)
CONT INUE

CCNT INUE

CONTINUE

COMNPUTE SIGMA .

DO 408 I=1.,3

DO 409 J=1.NEND
SIGMA(I)=SIGMA(I)+DBA(I+J)*EF(J)
CUNT INVE

CONT INVE

RETURN

END



INPUT DA

TA

" NPCUONE= o NPCON= 0
NTC NTD NCOD CODE NE NTF NENC NLC
281 322 S2 0 24 270 6 1
CONSTRAINED NODAL DISPL NUMBERS
2 24 46 68 90 112 124 156 178
200 222 244 266 288 308 324 326 328
330 316 318 320 382 304 3006 286 1
23 45 67 89 111 133 185 1?77 199
€21 243 265 287 307 2323 325 327 329
215 317 319 321 303 305 285
ELEMENT CATA
1 1 2 12 25C.0000 240.0000 240.0000
2 2 13 12 240.0000 230.0000 242.0000
3 2 3 13 240,0000 230.0000 230.0000
4 3 14 13 23C.0000 220.000C 2300000
5 3 4 14 230.0000 220.0000 220.0000
] 4 15 14 220,0000 210.0000 220.0000
7 4 S 15 22C.0000 210.000C 210.0000
8 5 16 1S 210.0000 200.0000 210.000C
9 S 6 16 210.0000 200.000C &£00.0000
10 6 17 16 200.0000 190.000C 200.0000
13 [ 7 17 200.0000 190.C000 190.0000
12 7 18 17 19C.0000 180.000C 190.0090
13 7 8 18 190.0000 180.000C 180.000C
14 8 19 18 18C.0000 170.,0000 18040000
15 -] 9 19 180.0000 170.0000 170.0000
16 9 20 19 170.0000 160.000C 170.0000
17 9 10 20 170.0000 160.0000 160.0000
18 10 21 20 160.0009 150.000C 160.0000
19 10 11 21 160,0000 150.,0000 1S50.000C
20 11 22 21 150.0C00 142.0000 150.0000
21 12 13 23 240.0000 230.000C 230.0000
22 13 24 23 230.0000 220.0000 230.0000
23 13 14 24 23C.0000 229.0000 220.0000
24 14 25 264 220.0000 210.0000 222.0000
25 14 1S 25 220.0000 210.0000 210.0200
26 15 2¢ 25 210.000C 2Z00.C00C 210.0000
27 15 16 26 210.0000 200.,0000 200.0000
28 16 27 26 20C.0000 190.0000 200.0000
29 16 17 27 203.0000 190.000C 190.0000
30 17 28 27 190.0C00 180.0000 190.0000
31 17 18 28 1SC.0C00 180.0000 180.0000
32 18 29 28 18C.0000 17C.Cc00C 180.,000°0C
33 18 19 29 1800000 170.0000 170.0000
34 31y 30 29 17C.0000 100.0000 179.0000
35 19 20 30 170.000C 160.000C 16G0.003C
30 20 31 30 160.0000 131£0.0000 1€0.0050
37 20 21 31 1€C.0000 150.000C 1SC.0CO5
3, 2 32 31 150.,0000 143.C003 1S0.000°C
3y 2 22 32 150.00C0 143.000C 140.0200
“l e 33 o 14C3,00C0 15C.CO90C 140.030°¢C

0 .0000
10.0C00
10.0000
200000
20 C000
300000
30.C000
40.CCO0
400030
500000
50.0000
60,0000
60+ 0000
700000
700000
80. 0000
800000
90,0000
900600

100.0000

0« CCOO
100000
100000
200 CCOO
20.000¢C
3050209
30.0000
40.0000
400 C0J0
50.CCO0
500000
60. CCO0
G0.000C
700030
70 CCO0
E0.C00°2
5J.JCI2C
S0.CCOC
50.CC2C

100« CCI0

10 .0000
10. 0000
20. 0000
20.0000
3040000
30.0000
40.2000
40.000C
50.0000
$0.0000
6C. 0000
€0.0000
70. 0000
70. 0000
80.2000
80. C000
9C.0000
90.0000
1020.C000
100.0009
10.0000
10.0000
20.0000
200000
30.0000
30.0000
40.2000
40.0000
50.0000
50.2000
60.0000
60. 0000
70,0000
70.0000
80.0000
60.0000
90.3000
90« J30C0O
1002000
100.00C0

0.000%
0.0C00
10.0CC0
10.0000
200000
29.0000
30.0000
30.0C0¢
40.0000
40.0000
50.0000
50.0000
60.0000
6C.00CC
70.0000
70.0000
80.0000
80,0000
90.0000
90.0000
0.0000
0.0C00
10.0000
10.0000
20.000C0
230000
30.0000
30.0000
40.0000
40,0008
500009
S$0.0C30
6C.0C00
60.0000

"70.0009

70.0C02
80.0002
82.C0C03
90.C200
90.CCTO



23
24
24
25
25
206
26
27
27
28
28
29
29
30
30
31
31
32
32
33
34
35
35
36
36
37
37
38
38
3¢9
39
40
40
41

41
42
42
a5
43
44
£3-)
qc
4o
47
47
48
4t
49
a4y
S50
59
51

S1

& ™

k= 2

52
52

53 -

54
54
S5

24
35
25
36

37
27
38
28
39
29
40
30
41

31
42
32
43
33
44
3S
46
36
47
37
48
38
49
39
50
40
51

41

Sz
42
S
43
54
44
SS
46
57
&7
58
48
59
49
60
50
61

51

62

52
63
53
64
54
65
55
6o

34
34
35
35
36

37
37
38
38
39
39
40
40
41
41

42
42
43
a3

45
a5
46
46
a7
a7
48
48
49
49
50
S0
51

51
s2

53
53
54
S4
56
56
S7
57
58
58
59
59
(]
60
61
61

62
62
63
&3
64
64

65

65

23C.0000
220.00C0
220,0000
21C.0C00
21C.0000
200.,0000
200.0000
190.0000
190.0000
18C.0000
180.0000
17C.0000
170.0000
160.0000
1 €C.0000
150.,0000
150.0000
14C.0C00
140.0000
13C.0000
22¢€. 0000
210.0000
21€.0000
200.00C0
200.0000
19C. 0000
190.0000
18C.0000
18C. 0000
170.6000
170.,0000
160.0000
160.0000
150.0000
150.0000
140.0000
140.0000
130.0000
130.0000
120.0C0C
210.0000
200.0000
200.0000
190.0000
150.0C00
1823.0000
180.0000
170.0C00
170.000C0
160.0000
1€0.0C00
150.0000
150.0000
140.0000
140.00C0
13C.0CJ0
130.00020
120.0000
12C.0000
110.30CC

«20.0000
210, 000C
210.000C
20C. 020C
200, 020C
190.0000
1920, 0000
180.0000
180.0000
170. 0000
170.0000
160.0000
160.000C
1500000
150.000C
140.000¢C
140.0000
130.0000
130.0000
120.0000
210. 0000
2000000
290.0000
190, 000C
190.0000
180. 0000
180.000C
170.0000
170. 0000
1€0.C0C0O
100.0000
150. C0O0C
150.0000
140, 0000
140, 000C
130.0000
139. 000C
1200000
120.0000
110« 000C
200.C000C
1900000
190, 000C
180.0000
180.000°C
170.000¢C
1700000
1600000
1600000
150.5000
150.000C
140.0000
1400 0000
130. 000C
130.C0C0
122 000¢C
120.C000
110.0000
1102002
1C0.C0CO

220.0000
220.0000
210.0000
210.0000
200.0009
200.0000
190.,0000
190.,0000
160 .0000
180.0000
170.0000
170.0000
160.0000
160.0000
150.0000
150.,0000
140.,0000
140.0000
120.0000
130.000C
210.0000
210,0000
2£00.0000
206.09000
190.0000
190.0000
1800000
180.0000
170.0000
173.0000
160.0000
160.000C
150.0C00
150.0000
140.0000
140.0000
1350.0000
130.000C
120.0000
120.000¢C
200.000C
200.0000
19,0000
193.0000
160.0000
180.000C
170.0000
170.0000
100.0000
160.0000
153,0000
150.000C
140.0000
14C.0000
13J0.0000
130.5000
123.000C
120 .3000
112.000C
1102.000¢C

0.c000
10.0000
10.€C00
20.0C00
2£0. 6000
30.0000
3040000
404000
40.0000
50.0000
50. €000
60 .0000
60,0000

70.C000 .

70 .0000
80. 0000
80,0000
90.0000
90. C000
100 .0000

0.C000
10.C000
10.0000
20,6000
20.0000
30.0000
30,0000
40,0000
40,0000
50.CCOO
500000
€0, 0000
60,0000
70.000C
70. €000
80.0000
80.C000
90. €000
90 .0000
100, €000

0. CO00
10 .0020
10.C000
20.€000
20.0090
30.CCO0
30.0000
40,0000
40. €000
50 +0000
50.CC00
60.C000
60.0C20
70.CCOO
70 .0000
80.0C20
80.£000
90.C03C
¥0. €000
160, 9200

110.0000
10.0000
20.0000
20 .0000
30.0000
30.0000
40.0000
40,0000
$0.0000
50.0000
60,0000
60.0000
70.0000
70,0000
80.0000
80« 0000
90.0000
90.0000
100. 0000
100.0000
10.0000
10.0000
20.0000
20.0000
30.€000
30.0000
40.C000
40.0000
50.0000
50,0000
60.0000
60.0000
70.0000
700000
£9.0000
80.00C0
90.0000
90. 0000
100.0000
100.0000
10.0000
10.0000
20,0000
20.0000
30.0000
300000
40.0000
40.0000
50. 0000
50.0000
60.0000
60,0000
70.0000
70.2000
£0.€000
80.0000
50.£0C0
902.0000
1€0.0000
100.€000

0.000C0

ce.COOC
130C0Q
10.0C02
20.0000
20.00C0
300000
30,0000
40.0000
40,0000
S$0.0000
S0.0000
60.0000
€0.0000
70,0000
70,0000
80.CC00
80.0000
90.0000
$0.0C00

0.0000

00000
10.0C09
10.0000
20.0C00
200000
30.0000
30.0000
40.0000
40,0000
50.0000
50,0000
60.000C0
60.0000
70.C 000
70.00CO
80.C000
80.0000
$0.0CCO
90.0000

0.0000

V.0000
10.0000
10,0000
20.0000
20,0000
30.06C0
30.0000
40,0000
40.0000
S0.0000
S0.0CC3
62.0C00
60.0000
70.0CC¢C
70.0C09
80.C00C
80.00CC
50,0002
$0.0000



101
102
103
104
105
100
107
108
109
110
11
112
133
114
115
116
117
118
19
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
1390
140
141
142
143
144
145
146
. 187
148
149
150
151
152
153
154
154
150
1L7
154
159
| Y AV

56
S7
57
58
S8
59
59
60
60
61
61

62
62
63
63
64
64
65
65
6¢&
67
68
6E
69
69
70
70
71

71
72

73
73
74
74
75
75
70
7¢C
77
7€
79
79
80
80

81
82
82
83
83
84
84
85
as
8o

8L

a7
87
Bt

S7
68
S8
69
59
70
60
71

61
72
62
73
63
74
64
75
65
76
66
77
68
79
69

70
81
71
82
72
83
73
84
74
85
75
86
76
a7
77
88
7S
90
80
o1
81

82
93

83
94

84

9%
85
9u
8o
97
[-X4
93
(-]
99

67
67
68
68
69
69
79
70
71
71

72
72
73
73
74
74

75
75
76
76
78
78
79
79
80
80
81

81
82
82

83
83
84
84
85

85
86
86
87
87
89
89
90

90
91

91

92
92
93
93
94

94

o5
95
Yo
90
o7
97
o8
93

2CC. 0500
193.0000
190.0000
180.0C00
1800000
170.0000
1700000
160.,0000
1&0.0000
1500000
150.0000
140.,0000
140.0C00
130.0000
13C. 0000
1200000
1200000
1100000
110.0000
100.0C00
1900000
1800000
180.0C00
1700000
170.0000
160. 0000
160.0000
150.C0C0O
150.0000
140.00C0
140,0C0C0
1300000
130.0000
12C. 0000
1200000
110.,0000
110.0000
100.0000
100,0000
90.0000
1800000
170.0CCO
170.,0000
16C. 0000
1¢0.0000
152.000C
150, 0000
1400000
16400000
12060000
150.,0000
120.0000
120,0000
110,00C0
11C. 0500
100.0000
100.000C

GCe OCCC
90,0000

8C.0000

190.0000
180.0000C
180.0000
170.0000
170.0000
160.0000
160, 00080
150.0000
150.0000
140.000C
140 .,0000
130.0000
130.0000
120.0000
120.0C0C
110.0000
110.0000
100. 000C
100.0000
S0. 0000
180.000¢C
170.0C00
170.0C00
160.0000
160.0000
150.000C
150,000¢0
1423.000¢C
140,000C
130.0000
130.,000C
120.000¢C
12C.0000
110.000C
110.0000
100.0000
100. 000C
‘900000
90.0000
80.0000
170.0000
160.,0000C
160.0000
150.0000
150.000C
140.0000
130.0000
130.0000
130.0000
120.000C
120.0000
110.0C00
11C.000¢C
303.0000
102.000¢C
9%.00¢C
90.0CC0
83.0200
83.0022
70.0C00

190.0000
130.0000
1£0.0000
180.0000
1700000
170.0000
160.2000
160.0000
150.0000
150.0000
140 .0000
140.0000
120.0000
130.0000
120.00230
120.0000
110 .0000
110.0000
100.0000
10C.0000
180,0000
180.,0000
170.0000
170.0000C
160.0000
160.0000
150.0000
150.2000
142.003¢C
143.,0000
1300000
123.000C
120.0000
120.0020
110.0000
110.0000
100.,0000
1000000
90.0000

90.000¢C
170.0000
170.0000
160.0000
160.0000
150.0€00
‘150.0000
140.0000
142,0000
132.0000
133.000¢C
120.0000
120.0000
110.0000
112.0000
103.0000
10%.0003
90.3C00

900000

£2.00290

eC.0000

0.0000
10.C000
10 ,0000
20.C000
20« C0O00
300000
30C000
40.0C00
40 0000
$0. 0000
50 « 0000
€0.0000
60, C0OOO
700000
70,0000
80.C000
80,0000
900000
900500

1000000

0. 0000
100000
100300
206 CO00
20 «C000
30.C000
30.C000
40.0000
400 CCOO
$0.0000
S50.0000
60. CO00
600000
70.C000
70+ CO00
800000
650+ 0000
900000
90 .0000

100.C000

00000
10,C000
100000
20 0000
20« CO00
30.0000
3060002
40, CO00
40,0000
S0.C000
S50.CC00
€ 00000
60. CCOO
7C <0000
70.0320
80. CCOD
80,2000
90.CS00
90. C500

1000000

10.0000
10.0000
20.0000
200000
30.0000
30.0000
40.0000
40,0000
S0 0000
$0.0000
60+ 0000
6092000
70,0000
70.0000
80,0000
80.0000
90.0000
90,0000
100.0000
1000000
10,0000
10.0000
20 .0000
20,000C
300000
300000
40,0000
40,0000
50,0000
5060000
6040000
600000
700000
70.0000
80,0000
80.0000
90,0000
90,0000
100 .0000
100.C000
10.0000
100000
200000
20 0000
30, 000C
30.0000
40.0000
40,0000
$0.0000
50,0000
600000
¢L0.0000
70.0000
70,0000
80,0000
8Ce 0002
90.000C
9062000
100, 0000
100.0C00

0.,0000

0.0000
10.0000
10.0000
20.0000
20.0000
30.0000
30.0C00
40,0000
40,0000
500000
50.0000
60.0000
60.0600
70.0000
70.0000
80.0000
80.0000
S0.0CC0
90.0000

0.0000

0.0000
10.0000
i 0.0000
2040000
20.0000
39%.0000
30.0000
40.0000
4C.0CCC
50.0000
50.0000
€0.0000
60.0000
700000
70.0000
80.0000
80.000C
90.0000 .
90,0000

0.0000

00000
10.0C00
10.0000
20,0000
20.0C00
30.0000
30.0000
43.0000
40,0000
50.0C0C
50.0000
60,0000
60.0C00
73.0000
70.0000
80.0C23
£0.0000
90.C000
90.000)
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125
125
126
126
127
127
128
128
129
129
130
130
133

131

132
133
134
134

135
135
136
136
137
137
138
138
139
139
140
140
141

141

142
142
144
145
145
1ac
146
147
147
148
148
149
149
150
150
151

151

154
155
155
156
156
157

123
134
124
135
125
136
1206
137
127
138
128
139
129
140
130
141
131
142
132
1432
134
145
135
146
136
147
137
148
138
149
139
150
140
151
141
152
142
153
143
145
155
14b
156
147
157
1448
158
146
159
150
162
151
163
152
155
103
150
164
157
165

133
133
134
134
135
135
136
136
137
137
138
138
139
139
140
140
141
141
142
142
144
144
145
145
146
146
187
147
148
148
149
159
150
150
151
151
152
152
153
154
154
155
155
156
156
157
157
158
158
159
159
160
160
161
162
162
163
163
164
1068

125.0000
115.0€00
115.,0000
1 €5.0000
1C5.0C00
95.0000
95,0000
85. 0000
85.0000
75,0000
75.0000
65.0000
65. 0000
§5.0000
55.0000
45.0000
45.0000
35.0000
35.0000
25,0000
1 CC. 0000
90.0000
$0.0000
8C. 0C00
80.0000
70.000¢C
7C. 0000
60,0000
60.0000
50,0C00
50.0000
4C. 0000
40.0000
50.0000
30.0000
20.0000
20.0000
10.0000
10.0000
7£. 0C00
65.0000
65.0000
55, 0000
$5.0000
45.0000
45.0C00
35.0000
35.0000
25.0000
25.0000
15.0000
15.0000
5.000C
5.0990
42.0000
30.0000
30.9200
20.00CC
2c.oc0¢C
10.,993¢C

115.000¢C
S$0.000C
105.000¢C
80.0000
95.0000
70.0000
85.0000
60. 0000
750000
50,0000
65,0000
40.0000
55.0000
30.0000
45,0000
20.000¢C
35.0000
10.0000
25.000C
0.0000
90.0C00
65.,00¢CC
80.0000
S5. 0000
70.0000
45 .0000
60.000C
35.0000
50. 0000
25.000C
©0.C000
15.0000
30.000C
5.0000
20.000¢0C
0.C000
10,0000
6. 0000
0.0000
65. 0000
30.000¢C
55.0000
209000
45.C000
10.0000
25.000C
0.0000
25.000C
0. 0309
15.C000
0. 0020
5.000C
C«0000
0. 000¢C
S30.0000
C.COCO
cTe COCC
0.C002
1C.CO0C
%.CO0C

100.000¢C
100.0000

90.0000-

90.0000
80.0000
80,0000
70.0000
70.0000
600000
60.0000
$0.0000
50.0000
40.0000
40.000¢C
30,0000
30.0000
20.0000
20.0C00
1C.0000
10.000C
75.0000
7500920
65.0000
€5.0000
55.000¢C
55.0000
45.,000C
45.000C
35.0000
35.0000
25,0000
25.0000
15.0000
15,0000
50000
$5.0000
00000
0.0000
0.0000
40.0000
40,0000
30.0000
300000
20.0000
20.0000
10,0000
10.000C
0.0000
0.0000
0.0000
0.,0000
0.0000
0.0000
0.0000
0.0000
0.0000
C.09392
0.0000
03000
2.0090

0.0000
10.C000
10.0000
20,0000
2040000
30.€000
30.0000
40.C000
40.C000
50.0000
50.6000
60,0000
600000
70.€000
70 .0000
80,0000
80.,C000
50 .C000
90.€000
100.€000

0.0000
10.C000
10.0000
20.0000
20.C000
30.0000
30.C000
4%0.CO00
40,0000
50.C000
50.0000
60.0000
60.C000
70,0000
70 .C000
80.C000
80 .C000
90.C000
$0.€000

0.0000
10.€000
10.0000
20.0000
20.€C000
300000
30.C030
40.C000
40 .,000¢C
50.C000
50.9000
60.0000
L0.C000
70.0000
7C « 0000

0.CCO0
10.C000
10.£C00
2042000
«08000
500022

10,0000
10.0000
20.9000
20,0000
30.0000
30,0000
40.0000
40.0000
S$0.0000
S$0.0000
60.0000
60.0000
70.0000
700000
80.3000
80.0000
90,0000
90.0000
100.0000
100, 0000
10,0000
10. 0000
20.0000
20 .0000
30. 0000
30.0000
40,0000
4C., CO00
50.00C0
500000
69,0000
60 .0000
70. 00CO
70.0000
8C.0000
80, 09200
90.0000
90.0000
100.0000
100000
10,0000
20,0000
20 .0000
30,0000
30.0000
40,0000
40,0000
50,0000
$0.0000
60.C000
60 0000
70,0000
700000
809000
10. 3000
10.0000
2009200
20.20C0
3C.00C2
30.9000

0.00C0O
0.,0000
10.0000
18.0000
20 .0000
20,0000
30.0000
30.0000
40,0000
40.0000
500000
5C0.0C00
60.0000
60,0000
70.0000
70.0000
80.0000
80.0000
90.0000
90.0000
00000

00000
10,0000
10.0000
20.0000
20.0000
30.0000
30.0C00
40.0000
40.0000
§0.0CCO
5040000
60,0000
€0.00C0
70.0000
700000
800000
80.C000
90.0C€00
00000

0.0000
10.0000
10,0000
20.0000
20.0000
30.0000
30.0000
40.0000
40.0000
50.0CC0O
S0.0000
60.0000
60,0000
70.0000

0.0000

0.0000
120000
10.00CO
20.0000
20.CCTO




281 157 1S5e 165 10.0000 0.0200 0.0000 30 .0000 40,0000 20.0000
1O« UF LUADED ELEMENTS LE= 0

NCe UF COUNCENTRATEC NCLAL LOADS NNC= 13

AT THE NODAL POINT NN= 44 .I"HCRC IS A LLAD P= -30.000
AT THE NODAL PCINT NN= 66 THERE 1S A LOAD P= =-=30.000
AT THE NOJAL POINT NN= 88 THERE 1S A LOAD F= -30.000
AT THE NODAL POINT Nh= 21 THERE 1S A LOAD P= 220000
AT THE NODAL PCINT NN= 19 THERE IS A LCAD P= 43.000
AT THE NODAL POINT NN= 17 THERE IS A LCAD P= 87.000
AT THE NODAL PCINT NN= 15 THERE IS A LDAD P= 130,000
AT THE NODAL PCINT KNN= 313 THERE IS A LOAD P= 173.000
AT THE NODAL POINT NN= 11 THERE XS A LDAD P= 217.000
AT TriE NODAL PCINT NN= 9 THERE IS A LOAD.P= 260,000
AT THE NUDAL POINT NN= 7 THERE IS A LOAD F= 303.000
AT TrE NODAL POINT NN= &5 TFHERE IS A LOAD P= 347.00C
AT THE NOD.AL PCINT KNhN= 3 - THERE 1S A LOAD P= 390.000

NODAL DOISPLACEMENTS

LUAD ING CUND= 1

3 C.B841762E-01
4 -0.2553CGE~01
s 0.128828E 00
'y ~0e 336846E-01
7 0« 15239CE 00
8 ~0.341257E-01
9 D« 161406E 00
10 =0+.307359E~01
11 0.159473E 00
12 , -0. 2556338E-01
13 ) 0.149403E 00
16 ~0e214778E~01
15 0. 134114E 00
16 ~0e 186045E-01
17 0+116334E DD
18 . -0e 1 B1566E-01
19 0.994925E-01
Z0 , ~0206784 E-01
21 0. 85832 pE~01
22 «0.251202E-01
25 . 0.L48932E~-D1
26 ~Ce1312%5E-01
27 0.1C5067E 00

28 ~04.165204E~01



0. 1278885 00
-0.192321 E~C1
0.137783E 00
~0.177668E-01
0.137805E 00
-0 15671 0E~01
0+130597E 00
-0+151132E-C1
0.1187S4E 00
~0.160206E-01
0.1 05082E 00
-0e150583E-01
0.929496E-01
~0+234206E-01
0.B4S975E-01
=0 «2971S57E-01
0.525044E~01
-0 «647532E-02
0.876S89E~-01
~0.528371E-02
0.10879SE 00
~0.9910S2E-02
O«1186EEE 00
-0 .98391FE~02
0.119BSSE 00
-0+10400EE-01
01146465 00
-0.121S42E~-D1
00105436 00
-0 «155823E-01
0.94E3E1E~0O1
-0e200657E~ 01
0 .854738E-01
~0e 252923E-01
0. 79€2 CSE~-01
=0 «261433£~01
0« 43E2BBE-01
~0.2E52669E-02
0.745323E-01
~0e36$321E-02
0.535834E-01
~0«439352E-02
0. 1C29SEE 00
-0 .553290E-02
0.1 04671E 00
~0.77207CE-02
0.100789E 00
~0.112243E-01
0.934995E-01
-0 .156811 E-01
0. E507CS5E-01
-0.2049S7E-01
0.77742G5~C1
Do 26428E3E-01
0.7279S€E-01
-0.2556 07 E~C1
0.3738645-01
-0.2935415-02
C+.ta1E72E-01
~De4B73C5E-03



$S
%6
97
S8
Y9
100
103
102
103
. 104
105
100
107
108
109
110
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
135
136
137
138
129
140
141
142
143
144
145
140
147
148
149
150
151

| 3
154
157
| B4
159
10

0.811397E~01
~0e143401E-02
0. 89694 0E-01
-0 .346861E-02
0. 51542 8E-01
~0.6732€7€-02
0.885323E-01
-0.109510E-01
0.826163E-01
-0.155045E-01
0.758121E-01
-0.192717E-01
0« 700008E-01
-0.208152E-01
0.6668585~01
-0 179154E=01
0.3226126~01
0+.108866E-02
0e 557654E-01
0.11477GE~02
0+706762E-01
-0e112947E-03
0.782610E-01
~0 «273230E-02
0.800018E-01
-0 +6434 28E-02
0.775582E-01
-0.1062S7E~01
0 .726968E-01
~0.143803E~01
0.672411E-01
~0 «164759E-01
0. 62811 0E-01
~0e155046E=01
0.593721E-01
-0.133767E-01
0.28261CE-01
0+169756E-02
D. 486755E~01
0.1788€E5E-02
0.616563E-0)
0.263161E~03
0.6 82353E-01
~0.259007E~02
0.697534E-01
-0 621026E-02
0.677281E-01
~0.577367E-02
0.637726E-01
-0.122775E-01
0.5S€152E~01
~0.126466E-01
0.559715E-01
-0e131420EE~-01
0+.5203285-01
-0.1%2921E-01
C.24776€5-01
0elb?542E-02
0. 425354E-01
Ce.1BE1S7E~02



161
162
1€3
164
145
166
167
1¢€8
1€9
© 370
n
172
173
174
175
176
179
160
181
182
183
184
1es
186
187
188
189
180
191
192
183
154
165
166
197
158
201
202
203
204
205
206
207
208
209
210
211
212
213
214
2195
216
217
218
219
220
225
224
225
2.6

0.53735€EE-01
0.20511SE-03
0.+593550E-01
~0¢255584E-02
0.€063S7E-01
-0 ¢568346 E~02
O« 5899 COE-01
~0.829275E-02
0558743E-01
~ 0. 9533 05E- 02
0.527464E-01
-0+924673E-02
0.49320€E-01
~0.846698E-02
0+449802E-01
- 0.849254E~02
0.217283E-01
0.181058E-02
0+371100E-01
0+168263E-02
0+ 467063E-01
0.6840385-04
0+514708E-01
~0e2341 74E-02
0.525733E-01
~0+474535E-02
0.512917E-01
~0.637231E-02
0.487889E-01
~0e6900S3E-02
0+464254E-01
~0.639927E-02
0+%28511E-01
~0+692163E-02
0.3844 08E-01
-0.69E23€6E-02
0.189966E-01
0. 16494 0E-02
0.322629E-01
0+145785E-02
0¢404504E-01
0.44844€E-04
0 +444930E-01
-0.184473E-02
0+454765E-01
~0+349135E-02
04444 814E-01
~0.4430S9E-02
0+422277E-01
-0.46140€E-02
0+404626E-01
-0.500944E-02
0.3672 EEE- 01
~0.5457355-02
0. 35219€9E-01
-2.5777702-02
C.153882E-01
0+13€7€0E-02
9259236 2E-01
0.124721C-02




2z7
228
229
230
221
232
233
234
235
‘236
237
238
239
240
241
242
245
246
247
248
249
250
251
282
253
254
285
256
257
258
259
260
2€1
262
263
264
267
2¢8
269
270
27
272
273
274
275
276
277
278
279
280
281

283
284
289
250

avyl .

2s2
£93
294

0.323781E~- 01
0e322766LE-03
0355753~ 01
-0.784202E~02
0364289E-01
=0e41703 84E~-02
0.357189E~01
=-0.233808E—-02
0e33S442E-~-01
=0 .298151E-02
0+315009E-01
~0e32€677€E—- 02
0.278676E-01
~0e 379 7EGE—02
0.233512E~-01
=0 453993E—02
0.1140139E~-01
0.11613€E-02
04191046 E-01
0e133324E~-02
0¢237602E-01
Oel 02959E~-02
0.255874E~ 01
049574 2E-03
042€4320E-01
-0816532E-04
C «255348E-01
=0.651031E-03
0«23654EE-01
~0+110089E-02
0.207380E~-01
~0.174192E-02
00169297E-01
-0 258481 E~02
0«1276E4E-012
~0«317722E-02
Oe 762955E- 02
0.1148055E-02
0.126227E-01
0.1€67921E-02
Oel1529835-01
0.162940E-02
0.16278B€EE~-01
0.131372z-02
0.159485E~01
0e53B43€E-03
0144895Z-01
0.605027E-03
0.11797€5-01
0100307E-03
0.821071E-02
~0e61652EE-03
0.4395066E-02
-0.62601 7E-03
Bed772€7E~02
0¢131309E-02
Ce 716464 JE-02
NelEEOCEE~O02
0817957 5-02
De14E2BCE-02




2sS
296
297
298
299
300

LOADING COND=
NO OF ELEMNT=

LOADING COND=
NO OF ELENT=

LOAD ING COND=
NC OF ELEMT=

LOAD ING COND=
NO OF ELENT=

LUADING COND=
NC OF ELEMT=

LOADING COND=
NO UF ELEMT=

LOAD ING CONDs=
NC OF ELEMT=

*LOAD ING COND=
NC UF ELEUT=

LOADING COND=
NO OF ELENT=

LOAD ING COND=
NO UF ELEMT=

LOAD ING COND=
NC OF ELENMT=

LOADING COND=
NC UF ELEWT=

LCADING COND=
NO UF CLENT=

LOADING COND=
NG OF ELEMT=

LOAV ING COND=
NC OF ELCNT=

LUADING COND=
NC UF BELEVT=

LOAL I1RG CUNDS=
NO CF ELEl=

[ORrey

0 s

O

SIGMA X

—=058210E
0e¢1176SE
0412900E
0.16983E
Ce18112E
0.187868E
Ce19723E
C«18921E
0.19682E
0.17900E
C«18506E
C e 1SR9GE
0.l¢3555
0.13176E
0.134P2E
€ .977130L

DeStYILE

02

02

02

02

c2

02

02

02

o2

02

02

02

o1

01

SIGMA Y

-0 23284E 02
~0.18888E 02
-0.14349E 02
-0.13326E 02
-0. €8146E O1
-0.86456E 01
~0+49049E G1
~0.E1055E O1
~0.20624E 01
~0.25078E 01
~0.81738E~C1
-0.73443E 00

0.11038E 01

0.30896E CC

C«.15331E 01

0. €0540C

(%]
[4)

Ce 10877 21

0.817671E-02
0e 131714E~02
0.717689E~02
0.121386E-02
Oe 471545E~02
0.818254E~03

SIGMA XY

0.28786E 02
0.24547E 02
0.17625€ 02
0.166B0E 02
0.10998E 02
0.11091E 02
0.63695E 01
0.7027€E 01
0.29827E 01
0.40108E 01
0.55528E 00
0.17898E 01
~0.97372E 00
0.31S85E 00
~Co1728€E O1
=-De 24 21E 0O

-J«1t 043¢ 01



LOADING COND=
NO OF ELEMT=

LOADING COND=
NO OF CLEMT=

LOADING COND=
NE OF ELENMT=

LOADING COND=
NG OF ELEMT=

LOADING CUND=
NO OF ELEMT=

LOADING COND=
NO CF ELENMT=

LOADING COND=
NG OF ELENT=

LOAD ING COND=
NG OF ELEMT=

LOADING COND=
NC OF ELEMT=

LOADING COND=
NO OF CLEMT=

LOADING COND=
NC LUF ELEAT=

LOADING COND=
NC OF ELEMT=

LOADING COND=
NO OF ELEMT=

LOADING COND=
NO CF ELEMT=

LOADING COND=
NC OF ELENMT=

LOADING CONO=
NC OF ELEMT=

LCADING COND=
NDO OF ELEMT=

LUADING COND=
ND OF LLENMT=

LCADING COND=
Ne UF ELEMI=

LOADING CUND=
NC CF° ELEMT=

9+55S81E
0+55800E
0 «40223E
~0+2$936E
0.83050E
0.85523E
0.13094E
o.i:svzs
O« 15144E
0.15621E
0¢15623E
0.16028E
O+ 18594E
0+15296E
0.13472E
0e130677E
0e113)2E
Ce 11390E
0 +855C3E

Ce.ES?ECE

01

01

01

01

02

02

o2

o2

02

02

02

02

02

o2

o2

)}

o1

0.[4297§-OI
=058167E-01
=-D.447S9E 0OC
=0e¢11S74E 02
=0sS1492E 01
~0+81604E 01
=0.70251E 01
-0.5112SE 012
~064731SEE 01
-0.28117E 01
~0.28113E 01
-0.11S31E 01
-0+ 14541E 01}
-0.20542E 00
-0.66126E 00

OllSGllE 00
=0e 43494E OO
-0.12440E 00

=~0.83433E €O

~0e72291E ¢O

~0.97383E
-0 «12B15E
0«5CS69E
0. 22193E
0«19918E
0.15701E
0.14818E
0. 1058B€E
0¢10557E
0 .67259E
0.72198E
0. 38436E
0.46326E
0 +17686E
0.26754E
0. 42032E
6.127215
=3 «20781E
0.22363C

=-0e30131E

00

00

oo

02

o2

o2

02

02

02

01

01

01

01

o1

01

00

01

00

00

<]+



LOGADING CONO=
NO OF ELEMT=

LOADING COND=
NO OF ELEMT=

LOAD ING COND=
NG OF ELEMT=

LOADING COND=
NO OF ELEMT=

LOAD ING COND=
NO OF ELEMT=

LOADING COND=
NO OF ELENMT=

LOADING COND=
NC OF ELEMT=

LOADING COND=
NC OF ELENT=

LOADING COND=
NO OF ELEMT=

LOADING COND=
NO OF ELEnT=

LOADING COND=
NC OF ELEMT=

LUADING COND=
NC OF ELEMT=

LOAD ING COND=
NO OF ELEMNT=

LOADING COND=
NO OF ELEMT=

LCADING COND=
NC OF ELEMT=

LCADING COND=
NC OF ELEMT=

LOADING CDiO=
NO OF ELEMT=

LOADING COND=
NC OF ELE#T=

LOAD ING COND=
NL UF ELENT=

LUADING CUND=
NC OF ELEMT=

0.60530C

0« SB8094E

0+39040E

-0 ¢ 14764E

0.64358E

0463738E

€e«10470E

0 +10590E

Jel2455E

0+ 120L20E

013095E

0¢13238E

Oe12738E

0«12830E

0«11L20E

0 e11044E

098925E

Ds SBUOLAE

C«790623E

Ce78152C

o1

o1

01

02

02

02

02

02

02

02

02

02

02

01

o1

01

o1

-0.13551C
=0.23296E
=0.28060E
=0. E9055E
=00 29274E
=0.41752E
=0.,31513E
~0.26€8ZE
=06 2202CE
—=0.15438E
-0+14251E
=0+ £523SE
~Ce $7.73SE
=-0.60831E

=0.91136E

. =0.E1S51SE

=-0.12530C
=0.12773E
=0.17718E

~0e2343SE

0

01

01

o1

01

o0l

01

01

01

01

01

00

co

00

co

2

01

0}

o1

=-0e57373E-02
047721E 00
-0.35870E 00
0«17956E 02
0.16609E 02
0«1365S7E 02
O« 13092E 02
0. 980S8E 01
0. 9H309E 01
0.66990E 01
0.70960E 01
0+428%4E 01}
0o 4d662E 01
0 «24984E 01
0.30798E 01
0.12574E 01
Oe 16229E 01
D«4915S0E 00
0.060620 00

D.28€33t 0C



LOAD ING COND=
NC OF LLEMT=

LOAD ING COND=
NO UF ELENMT=

LOAD ING COND=
NO OF ELEMT=

LOAD ING COND=
NC OF ELENT=

LOAD ING COND=
NC OF ELEMT=

LOADING COND=
NO OF ELEMT=

LOAD ING COND=
NO OF ELEMT=

LOAD ING COND=
NO CF ELEMT=

LOADING COND=
NC UF ELEAT=

LOAD ING CO:ND=
NC OF ELEMT=

LOADING COND=
NC OF ELEMT=

LOAD ING COND=
NGO UF ELEMT=

LOADING COND=
NC CF ELEMT=

LDADING CONO=
NC OF ELEMT=

LOADING COND=
NC OF ELEMT=

LOAD ING COND=
NOU UF ELEMT=

LOAD ING COND=
NC CF ELENT=

LOADING COND=
NC CF ELEMT=

LCAD NG COND=
NC UF ELENMT=

LCAD ING COND=
NC JF CLEMTS

0 .59LB1E

0e55432E

0+41960E

=0 «57836E

0.52970E

0+50796E

0.86390E

0+85440€

0«10458E

0.1C4al14E

0.11161E

0.11123E

0«11001E

0e1C949E

Ce1C154E

0«10100E

0«88470E

O «E7865E

Ce73C47C

0e 73C05E

01

01

00

01

01

(2}

01

02

02

02

02

02

02

92

02

01

o1

01

01

=0.2608ZE

=0e¢ 2667 EE

~0+31046E

~0+23135E

=0 84461E

=0e 17134E

~0.82365E

=~0+.12038E

~0472530E

-0.50102E

=0 7144 CE

~086324E

-0.89384E
-0e11031E
-C.13017E
—0.15192€
-0.1832SE
~0420742E

~0e 2844 7E

=0424615E

01
01
01
o1
00
o1
00
12
0C
00
00
0o
00
ot
o1
c1
o1
01
01

c1

-0.20648E

0+.29455E

-0 «58632E

0¢14989E

0. 14192E

0.11906E

0.3132607E

089570

0.90413E

Oe 64491E

0.67552E

0.44161E

0.47808E

0e28210E

0«3C6B8E

016LC53E

0e¢16384E

0. 778S2E

0e43923F

0 «24024E

00

00

00

02

02

02

02

o1

01

01

01

01

01

o1

01

o1

01

o0

00

09




LOAD INC COND=
NC OF ELENMT=

LOADING COND=
NC OF ELEMT=

LOADING COND=
NO UF ELEMT=

LOADING COND=
NO OF ELENT=

LOADING COND=
NO OF ELEMT=

LOADING COND=
NC OF ELEMT=

LOAD ING COND=
NO OF ELEMT=

LOADING COND=
NO OF ELENT=

LOADING COND=
NO OF ELENMT=

LOADING COND=
NC OF ELEMT=

LLADING COND=
NO OF ELEMT=

LCADING COND=
NO OF ELEMT=

LOADING COND=
NC OF ELEMT=

LOADING COND=
NC GF ELEMT=

LOADING COND=
NC OF ELEMT=

LOADING COND=
ND OF ELEMT=

LOADING COND=
NC OF CLEMT=

LOADING COND=
NC OF ELEMT=

LUADING COKD=
NO OF ELENT=

LUADING COND=
N0 DF CLENMT=

0 .59175€

0 +59786E

054021E

o1

01

01

=-0¢46476E-01

C+45366E

0..42237E

0.7321SE

0.70921E

0 .89540E

0.87776E

0. $6618E

0.95148E

0.96133E

0 «94956E

0«89786E

0. 88969L

079351E

0+79214E

0.67C15L

Oe CEB274E

01

o1

01

o1l

01

01

01

o1

o1l

01l

0l

o1

01

ol

-0.28073E 01
-0.25€27E 01
- 0.2706EE 01
~0.18590E 00

0.95986E 00
~0.29151E 00

0.45292E 00
~0.43440E 00

0+31066E~01
~0.6746SE ©O
-0.45365E 00
~0.10416E 01
~0,10170E 01
-0.14E87SE 01
-Ce16171E 01
~0.19437E 01
-0.21842E C1
-0.21592E 01

=0.25067 O}

«-020033€ D1

~0+52654E 00

0.1110€E 00

-0.13169E 01

0.12786E 02

0.12344E 02

0,10443E 02

0,1 0325E 02

0.81188BE 01

0.82262E 01

0.60523E 01

0.62522E 01

0.42906E D1

0«44403E 01

0.28153E 01

0.286075E 01

0+10200E 01

0+¢13454E 01!

0+ 6EOQCE 00

0.10925C o0¢

=2123765-0)




LOADING COND= )
NO OF ELENMT= S8

LOADING COND= 1}
NC UF ELEMT= 99

LOAD ING COND= 1
NC OF ELEMI= 100

LOAD ING COND= 1}
NO OF ELEMT= 101

LOADING COND= }
NO GF ELEMT= 102

LOAD ING COND= 13
NC OF ELEMT= 103

LOADING COND= 3
NC OF ELEMT= 104

LOADING COND= |
NO OF ELEMT= 1065

LOADING COND= 1
NO GF ELEAT= 13106

LOAD ING COND= 1}
NC OF ELEMT= 107

LUAD ING COND= 1
_NC OF ELEMT= 108

LOAD ING COND= 1
NO UF ELEMY= 109

LOAD ING COND=
NC OF ELEMT= 110

LOAD ING COND= 3
NC OF ELEMT= 111

LOAD ING COND= 1}
NC UF ELEwWI= 112

LUADING COND= ]
NO OF CLEAT= 113

LOAD ING COND=
NO OF ELEMT= 114

LOAD ING COND= 1
NC OF ELENT= 115

LOAS 146 COND= 1}
NC CF ELEMT= 116

LOADING COND= 1
NO OF ELEMT= 117

0.55€77E

0.60074E

0+61205€E

024821E

0 39875E

036340

0 «63407E

0.60325E

0« 77S26E

C «75432E

0 «84604E

0.,8266%9E

0.84701E

0+83389E

Ue79574E

Qs79147E

0« 70886E

Ce718B17E

0 59970

0.63521C

01

01

o1

00

01

o1

o1t

01

01

o1

01

01

01

o1

01

(21

ol

01

01

01

-0.23182E

~0.55907€
~0.S3081E

0. S9286E

0419277E
0+43344E

0.11151E
-0. 11 774E

0.32228E
~0.67532€
~0444601E
-0.12201E
-0.11693€
-0.16939€E
-0.178S2E
-0e 196 00E
~0.21666E
-0.1794 2E
-0.20592E

~0e S6EO7E

01

00

00

00

)2

00

o1

oo

00

00

ol

el

01

01

c1

01

01

o1

30

-0 .8723GE
-0.4909SE
~0.2270SE
0.11068E
0.10859E
0.91982E
0. 91873E
0.73051E
0 +739S6E
0.55502E
0.56302E
0.39755E
0 +3947SE
0.+25926E
0. 23764E
0.140065E
0.98010E
0.4670€E
-0.12338E

=0.2106L0LL

00

1]

oc

02

02

01

o1

ox

01

01

01

01

01

01

o1

01

00

00

00

co



LUADING CUnD= )
NO OF ELENT= 118 0e£S5859E 01 =0, 10474C 0} -0.30385%E 00

LOADING COND= 1
NO CF ELEMT= 119 057917E 01 =0.22444E 090 =0 «23377E 00

LOADING COND= 1
NC OF ELEMT= 120 062466E 01 -0.11072E 00 0.10805E OC

LOADING COND= 1
NC OF ELEMT= 121 0.28704E 00 0.15482E 01 0.96653E 01

LOADING COND= 12
NO OF ELEMT= 122 0+435621E 01 0.2341SE 01 0.96044E 01

LOADING COND= 1}
NO CF ELEMT= 123 0.31553E 01 0+.71463E 00 0.8111SE 01

LOADING COND= %
NO UF ELEMT= 124 0+S5799E 01 0.13208BE 01 0.81473E 01

LOADING COND= 3 -
NC OF ELEMT= 125 0.523S2E 01 -0.58187E-01 0.65142E 01

LOADING COND= 1
NO OF ELENT= 126 DeEESHE 01 0e 34776E 00 0.65578E 01

LOADING COND= 1
NO OF ELEMT= 127 0«65853E 01 ~J¢740699E 00 0449773E 01

LOADING COND= 1 ,
NG UF ELEMT= 128 0+74LO6E 01 ~—C.52817E 00 0.49471E 01

LUADING COND= 1 . :
"NC OF ELENT= 129 0+72€656E 01 ~0,13081E Ol 0035445E 01

LOADING COND= 1
NO OF ELEMT= 130 074785E 01 =-0e 1254SE: 01} 0.33761E 01

LOADING COND= 1}
NO OF ELEMT= 131 0.73791E 01 =-0.16523E 01} 0.22441E 21

LOADING COND= 1

NC UF ELEMT= 132 0+70365E 01 =-D.17380E 01 0.19177E 01
LUADING COND= 1 '

NC OF ELEMI= 133 0e70006E 01 -0.1041BE O1 0e11291E O1

LOADING CunD=
NO UF ELEMT= 134 062547 01 ~0. 18332E 01 0.69702E 00

LOADING COND= 1
NU CF ELENT= 135 004933E 01 -0.10387E 01 0 «34081E 00

LOADING COND= 1
NC OF ELTMT= 130 CeSS5604E 01 =-0e12735E 01 J¢11604E 0O

LUOADING COHO= 1}
NC COF ELemY= 137 C.570vB6CL 01 =0s481063C OO ~Je 39785 ~01



LOAD ING COND= 1
NO OF ELENT= 138

LOADING CONnRD=
NO CF ELENT= 139

LOADING COND= 1
NG OF ELEMT= 13140

LOADING COND= 1
NO OF ELEWT= 141

LOADING COND= 1
NO OF ELENT= 142

LOADING COND= 1
NO OF ELEMT= 143

LOADING COND= 1
NC OF ELEMTI= 144

LOADING COND= 1
NC OF ELEMT= 145

LUADING COND= )
NO OF ELEMT= 146

LOADING COND= 1
NO OF ELEMT= 147

LOADING COND= 1
NC OF ELEMT= 148

LOADING COND= 1
NC OF ELENT= 149

LOADING COND= 1
NO OF ELEMT= 150

LCADING COKD= 1
NO CF ELENT= 151

LOADING COND= 1
NC OF ELEMT= 152

LOADING COND= 1
NO OF ELLMT= 153

LOADING COiD= 1
NO OF ELEMT= 154

LOADING COND= 2
NU OF ELENMT= 155

LOADING COND= 1
NC OF ELEMI= 156

LOADING COND= 1
NC OF ELLIT= 157

0455697C
0.56493E
0+46016BE
0+42760E
0.32103E
0« 2794SE
0 +.49597E
0;461205
0« 60749E
0.5S8125E
0.,65520E
0«64 284E
0+ 65946E
0. 654 7T7E
0.62121E
C+63C02E
0.5?4125
0+ 5SZ70E
C.52300E

€ «H29343E

01 - 0.46635E 20

01 -=J+14812E 00

Y

o1 ~0+56252E-01

00 0.17104E 01
01 0.24061E 01
o1 0.74256E 00
01 0.12839E 01
01  ~0.10684E 00

01 0.25€E87E 00
c1 =0+.79060E 00
01 -0.§9S7ZE 00
01 -0.12501E 01
01 =04 32085E 0}
01 =0.13961E 01

01 =0.14800E 01
01 -0.11274E 01
ol - 0. 1267 E 01

01 -2.52391E €O

01 -0 +.L9816E 0OC

01 ~0e44455E 0O

0. 92773E-01

~3e«B2348E-01

0.31239E

0.8474¢E

0. 84968E

0+.71382E

0.71773E

0.57473E

0e57341E

0.43740E

0.42526E

D«300625E

0e28149E

0.18737E

0«15377E

0. 71044E

0.66704E

0.45329E

0.379€4E

o0

01

01

01

01

o1

01

01

01

01

o1

01

o1

00

1]

0o

20

De1€C402E-901



LOAC ING COND= 1
NO OF CLEMT= 158

LOADING COND= 2
NO OF ELEMT= 159

LUADING COND= 1
NO OF ELEMT= 160

LOADING COND= 1
NC OF ELEMT= 161

LOADING COND= 1
NC OF ELEMT= 162

LUADING COND= }
NO CGF ELEMT= 163

LOADING COND= 1
ND OF ELEMT= 164

LOAD ING COND= 1
NC OF ELEMT= 165

LOADING COND= 1
NC OF ELEMT= 166

LOADING CONO= 1
NO OF ELEMT= 167

LOADING CUND= 1
NU OF ELCMT= 168

, LOADING COND= 1
NC CF ELEMT= 169

LOAD ING COND= 1
NC OF ELEMT= 170

LOADING COND= 1
ND OF ELENT= 171

LOADING COND= 1
NO OF CLEMT= 172

LOAD ING COND= 1
NG OF CLEYT= 173

LOAING COND= 1
NC OF LLEMT= 174

LOADING CUND= 1
NG OF ELEMT= 175

LUADING COND= 1
NO CF LLEMT= 176

LOADLING COND= 1
NC O ELEnT= 177

0 +54289E
CeS55422E
0«560S7E
0.41281E
02904 1E
0.24S589E
0e 44281E
0;41037E
0.53886E
0S51613E
0 58196L
0e57024E
q.58106E
0.581S51E
0«55542E
0.564S2E
D «5422)E
0eS557068E
Cs 521 02E

De51575L

01

01

-

.

01

00

01

01

o3

01

01

o1

o1

01

o1

01

o1

01

01

01

01

c1

~0441066E

Qe 42422E~ 01

0.58308E-01

0416512E

0.2274 1E

De €5314E

0e11354E

=0.+16204E

De15S1EE

-0s 75021E

=058563E

=0 ¢10544E

-0. 10274E

=00 100G4E

=De10747E

=0 .69472E

=00 7515 1E

=0.13212E

0.45152€E

SelLISEE

00 0.46171E
Oel 996G3E
0.21166E

o1 0e74311E

01 0.74862E

00 062499

01 0 «62716E

00 0+5016SE

00. Oe 4S477E

00 0.37770E

00 0 .35990E

01 0+2593€E

01 Oe 23340FE

01 0415598E

o1 0 ¢13207E

00 0.81115¢&

00 0« 651 06E

oo 0.05§50£

co = «B7344E

29 Ded40&ZE

00

oo

00

01

o1

01

01

01

01

N

01

o1

01

o1

01

0o

00

00

00

oS¢




LUADING COND= 3
NC OF ELEMT= 178

LOADING COND= )
NG OF ELEMT= 179

LOADING COND= 1
NO OF ELEMT= 180

' LOADING COND= 1
NO OF ELEMT= 181

LOADING COND= 1}
NO OF ELEMT= 182

LOADING COND= 1
NC OF ELEMT= 183

LOADING CONO= 2

NC OF ELEMT= 184
LOADING COiD= 1}
NO UF ELEMT= 185

LOADING COND= 1
NC OF ELEMT= 186

LOADING COND= 1}
.NC OF ELENT= 187

LOADING COND= 1
NO OF ELEMT= 188

LOADING COND= 1
NO UF ELEMT= 189

LOADING COND= 1
NC OF ELENT= 190

LOADING COND= 1}
NC OF ELEMT= 191

LOADING COND= 1
NG CF ELEMT= 192

LOADING COND= 1
NO UF ELEMT= 193

LdADXNG COND= 3
NC UF ELENT= 194

LUADIG COND= 13
NG UF ELEMT= 195

LOADING CuND= 3
NC OF ELEMT= 190

LOADING COND= 1
G GF LLENT= IS7

G «S2844E

052359€E

0¢ 534 76E

0.37606E

0+2548B6E

0.21930E

0.38511E

0. 35564E

0«46549E

0 .44 349E

0.50060E

0.48829E

0.50199E

0.50136E

0+48636E

0.45682LC

04464 15E

0.45613€

0.5C281EC

0.53280C

ol

o1

00

01

01

01

ci

cl

01

01

01

c1

01

01

(<]}

01

01

01

(2}

0+19918E

00

0.50917€~02

Ce 2301 9E-01

01504 2E
01967 1E
De £44SSE
Ce S7S76E
~019901E
0.21483E
=0« €6527E
= 0e¢ 29S406E
~0e79162E
~0.54961E
~0.E748(CE
~ 0 £2425E
-0.10587C
=~0.32032E
-0.64!2%E

-Ce32247C

o1

01

00

09

00

00

00

00

oc

00

00

00

00

00

00

cJ

0«772C7E~C)

' 0e31576E

00

0. 8473BE~01

0.17353E

0 .64968E

0.61497E

0e5424CE

0.50979E

0 «42906E

0.,39802E

0. 31567E

025054t

0.21270F

-0+19485E

Oe1314SE

0.12766E

0e.74bL2L

0+90947E

D¢ 9130SE

0074 00E

de23228E

00

o1

01

ol

01

01

01

01

o1

01

01

01

00

oc

02

00

¢e



LOAD ING CUND=
NO OF ELEMYI= 198 0.5S0145E 01 =0.14553E 00 0«395%40E 00

LOADING COND= § | .
NC OF ELEMT= 199 0 «50623E 01 0.45765E-01 0.91757E~01

LUADING CONO= 1 .
NC CF ELEMY= 200 0.50202E 01 -0+ 84S25E-01 001897SE 00

LOAD ING COND= 1
NO OF ELEMT= 233 0.31186E 00 0¢ 12474E 01 0.52628E 01

LOADING COND= 1
NO OF ELEMT= 202 0.21061E 01 0.16077E 0O} 0.46164E 01

LOAD ING COND= 1
NC JF ELENT= 203 0.18138E 01 0.43868E 00 0443244E 01

LOADING CONO= 1
NC OF ELEMT= 204 031447E 01 0. E9643E 00 0.3787EE 01

LCADING COND= 1
NO OF ELENMT= 20S 0.28947E 01 -0.10360E 0O 0+33566E 01

LOADING COND= 1
NGO OF CLEMT= 206 0.37799E 01 0.38310E 00 0 «.294S0E 01

LOAD ING COND= 1}
NC CF ELEMT= 207 0 «35968E C1 =0¢34943E €O 024476 01

LOAD ING CONO= 1
.NC OF ELEMT= 208 041063E 01 " De22S4SE~O01 0.21830E 01

LUADING COND= 3
NO OF ELEXT= 209 0e40187E 01 =0 32706E 0O 0.17119E 01

LOADING COND= 1
NO OF ELEMT= 210 " 0e42422E 01 =-0.12574E 00 0 .15845E 01

LOADING COND= 1
NC OF CLENMT= 211 0.42288BE 01 -0.1794 1E 00 0.11896E 01

LGAD ING COND= 1
NC OF ELEMT= 212 0.43218E 01 -0.127SEE 00 0.11461E 01

LUADING COiD= 3
NC CF ELEMT= 213 0443049E 01 -0.19512E 00 0.B4604E 00

LOADING COND=
NO OF CLEMT= 214 0.43750E 01 =0.94852E-C1 D «7S495E 00

LOADING COND= 1}
NC OF ELENT= 215 0.44123E 01 0.S4364E-01 0.060229E 00

LOADING CUND= 1
NCL GF ELLMT= 216 0.45878E 01} =-J+5343CE-01 0.58165E OC

LCADILG CONO= 1
NUL CF CLEMI= 2317 0e46131E 01 Ced7727E-C1 0e33695E 00



LOADING COND=
NO OF ELLEMT= 218

LOAD INC COND= 1
NO ULF CLEMT= 219

LOADING COND= 1
NG OF ELEMT= 220

LOUAD ING COND= )
NC OF ELEMT= 221

LOADING COND= 1}
NC OF ELEMT= 222

LOADING COND= 1
ND OF ELEMT= 223

LOADING COND= 1
NO OF ELEMT= 224

LOADING COND= 1
NC UF ELEMT= 225

LOADING COND= 1
NC OF ELEMT= 226

LCADING COND= 1
NO UF ELEMT= 227

LOADING COND= 1}
NO UF ELLMT= 228

LOADING COND= 1
NC UF ELEMT= 229

LOAD ING COND= 1
NC OF ELENT= 230

LOADING COND= 1
NC UF ELEMT= 231

LOADING COND= 1
NQO OF ELEMT= 232

LOADING COND= 1}
NC OF ELEMT= 233

LOAD ING COND= 1
NC UF CLEMY= 234

LOADING CONO= 1
NC OF ELEMT= 23S

LOADING COND= )
Wb UF LLEMT= 236

LOADING COND= 1
NC LF ELEMYT= 207

0.46572E
0+46802E
0 +45354E
0+26479E
0.16391E
0e14166E
0.24S41E
0.22638E
0 +30208E
0+29105E
0. 33952E
0 +33355E
0 +36458E
0+36015C
0.38368E
0.38123€
0«4 1009E
0.4 0C98E
0-43039E

C «427S1E

01

o1

o1

00

o1

o1

01

01

01

01

01

(]}

01

01

01

c1

01

01

01

01

«Ce 74950E~-01
0.170045-0}
0¢44769E~-C1
0+10592E 01
06 13SSSE 01
0+ S0S73E 00
0+94941E 00
04.18791E 00
0.S5073SE 00
0¢ E6CA7E-D1
0.29914E 00
;-GOQSZE—OI
0.24171E 00
Ce 64 09SE- 01
0.24507E 00
0+13E87E 00
0.18288E 0D
0. 5857CE~ 01
0.78194E~C]

~0.36766L-01

0.36052E
0.+11834E
0+15347E
0.3899S8
0. 31272E
0.31522€
0 +25471E
0+24316E
o.iesoes
0.18372E
0.1551SE
0.13683E
0.11817E
0.98774E
0.84015E
0.069C2SE
0.53719C
0.4C019E
0 .33307€

0e2573CE

00

+]]

oc

o1

01

o

01

01

31

o1

01

01

01

00

00

oc.

00

00

0d

oc



LOADING COND=
NC OF ELEMT= 238

LUADING COND= 1
NC OF ELEMT= 239

LOADING COND= 1}
NO OF ELEMT= 240

LOADING COND= 1
NO OF ELEMT= 241

LOADING COND= 1
NC OF ELEMT= 242

LOADING COND= 1}
NO OF ELEMT= 243

LOADING COND=
NC OF ELEMT= 244

LOADING COND= 1
NC UF ELEMT= 245

LOADING COND= 1
NC OF ELEMT= 246

LOADING COND= 1}

NC OF ELEMT= 247

LOADING COND= 1
NG OF ELEMT= 248

LOADING COND= 13
NG OF ELEnT= 249

LOADING COND= 1
NC OF ELENT= 250

LUADING COND= 1
NC OF ELEMT= 251

LCADING COND= 1
NO OF ELEMT= 252

LOAUING COND= 1
NG UF CLEMT= 253

LOADING COND= 1
NC OF LLEMT= 254

LOAD ING COND= 1
NC OF ELEAT= 255

LOADING COKD= 1
Nu UF CLEWT= 256

LOADING CLND= )
NL UF ELEMT= 257

04 3934E

0.42605E

0.45109E

0.26176E

041 3265E

0.11483E

0.20612E

0.19888€E

0.25877E

0e2E385E
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APPENDIX D

Application Of Mechanics Of
Composite Material To A Coal Layer



In order to analyse the problem a coal layer with six
horizontal bedding planes is assumed. Each bedding plane
(laminae) is cut by minor vertical cleats that is neglected
in this analysis. The major cleats has different lay up
in each plane for example: (30/-30/0/0/-30/30). To simplify
the problem the following assumptions have been adapted:

1. The material is linearly elastic and orthotropic

with respect to rectilinear coordinates x, y, 2.

2. The coal layer as a laminate is sufficiently thin

in the 2z -direction that o, and Tz T are neglected.

vz
3. Interfacial friction and distributed normal loading
are neglected and only tensile forces due to ex-
cavation are considered.
The following formulation consists of exempts from
Mechanics of Composite Materials by Robert M. Jones (1972).
The stress strain relations in principal material coor-

dinates for a coal laminae of an orthotropic material under

plane stress are

- r -

9y Q1 92 0 1)

<92 = (2 Q2 0 e (1)
J12) O 0 Q66) 12




Qij are defined in terms of the engineering constants as:

E
0,, = L

11 1 v12v21
0 Vi2 BEp 0 Vg1 By

12 1=V 1= ViV
Q,, = =2

S —

22 v12v21

Qe = G2

In any other coordinate system in the plane of the

laminae, the stresses are

— -

[0y 91 01, O¢] (Ex)
<% = 012 0 0y <y » (3)
x _616 Q26 g4 Yxy)

where
611 = Qllcos“eﬂ-Z(le + 2Q66)sin26 cos?6 + Qy, sin“®
015 = Q17 + Qy, - 4Q,,)sin?8 cos®0 + Q,,(sin*e + cos"s)

(4)
— (R * 2 2 [N
Q22 = Qllsln 8 + 2(Q12 + 2Q66) sin‘8 cos‘e + Q22 cos*9

- - : 3
(Q11 le 2Q66)51n6 cos®6 +

(le = sz + 2Q66) sin3e cosf



Q26 = (Qll - le - 2Q66) Sinse cosf + (4)

Kle - Q,, + 20g,) sind cos s

Q = - - + 2 2

Qe (sin*8 + cos“e)

The resultant forces acting on a coal laminate is
obtained by integration of the stresses in each layer or

lamina through the laminate thickness

t/2

N =
% J:-t/z 0,42 (5)

where
Nx is a force per unit length (width) of the cross

section of the laminate and t the thicknes of the laminate.

b

i
2,]2 {2
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K ( |
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s |
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Figure 1-D,Geometry of an n-layered laminate




N - -1 N
Ny By B1p Byl |5

<Ny = |2y, By, A, 1£y g

N A A A

| XY l__'16 26 66 ~yx¥J

whereupon

4 T = - 7
0 -1

€x Bi1 212 By Ny
0

8yt = |P12 P22 Pas| Ny (
Y A A A N

L xig N 16 26 66_ XY

To call the matrix A~ Y as &' and when N

Ny = ny = 0, the strains are
(o) e ow w10
. (] b
€x By B Bl [N
0 U
{ay5 A12 A'22 1-\.'26 <0 )
¥ A A 2 0
"xy) |16 T26 6] LJ
or more simply
0 — ]
ex = BNy
0 — ]
Ey = AlZNl
0 — [}
Yxy = BisM1

(11)

(12)

= Nl and

(13)

(13-a)



The stresses in each layer are obtained by use of the

stress—~strain relations for a lamina

N - - f 9
~ —~ -~ ]
Oy 911 Q92 %6 {P11M
—_ ~ ~ —~ 1}
1% ¢ = [Q2 Q2 Q| (212N} (14)
T 0 0 0 AN
% 16 96 %6 161
L ig K - - \ J

The maximum stress criterion, the maximum strain
criterion or the Tsai-Hill criterion can be applied in
order to find out the failure occurrence.
Maximum stress theory:

In the maximum stress theory, the stresses in principal
material directions must be less than the respective strengths,
otherwise fracture is said to have occurred, that is, for

tensile stresses,

< X
1 t (15)

(16)



- ) 3
or [ ) t/2 [o o,
4 N Zx
<N, b= o, pdz =E [ Joy \dz (6)
R=1 J 2, ,

N : T

ny, -t/2 \xy)y (' xy
where Z, and Zp_, are defined in Figure 1.

The integration indicated in (6) can be rearranged to
include the fact that the stiffness matrix for a coal laminae
is constant within the lamina. Thus the stiffness matrix goes
outside the integration over each layer but is within the
summation of force resultants for each layer.

th

The stresses in the K layer can be expressed in terms

of the laminate surface strains and curvature as

ro ™ - = (o r A
Oy Q7 912 ng €x Ky
. A O 0
{990 =192 Q02 Q6| sy 3t ELRy 0y (7)
T Q Q Q o4 K,
\ ny i 16 26 66-K ka% { y,J

where K's are the middle surface curvatures, now substitute

(7) and (6) yields

r ) - " Y N
N ) 0 0 3 0
x | [f 92 %] (%= x |Fx
= 0 0 0 0 3¥x + <K 2dz) (8
1y ’;1 Q12 Q2 Q9 ¥y ( y [ 247 (8)
N 5, 8, B, %l 2 [X
" xy] (Y16 %26 %4 "xy) 1%y



.0 0 0
However, we should now recall that Ex' sy, ka, Kx'

K, and Kx are not functions of Z but are middle surface

Y V4
values and thus can be removed from under the summation.

Thus
(N T 1 (L) - Y
N, A1y B1o Bygl 1% Byp Bia Byg|{¥x
— ]
19 1= {212 222 B¢l 95y ¢+ |B12 B2z B2 |i%y 0 (9)
N A A A yo B B B K
Mxy, |16 P26 Pee) |xy) P16 P26 Pee |“xy
where
N
Ay =), @;)g (2 = Zgy)
k=1
1 (10)
Biy = 3 (Q;.), (22 - 122 )
k=1 Qi3'x %k T Zg-1

The Aij are called extensional stiffness, the Bi.‘are
called coupling stiffngsses. The presence of the Bij implies
coupling between bending and extension of a laminate. Thus,
it is impossible to pull on a laminate that has Bi' terms
without at the same time bending and/or twisting the laminate.

If the angle-ply coal laminate is symmetric about its
middle surface, there is no coupling between bending and
extension. In the case the laminate is subjected to uniaxial

tension the force strain relations are




where

Xer Yoo Xgr Y, are strengths in tension and compression
in different directions.
The stresses in the principal material directions are

obtained by transformation as

2
ol cx cos 06

(17)
.2
02 ox sin” 9

Then by inversion of (17) and substitution of equation

(5), the maximum uniaxial stress, Oyt is the smallest of

cosze
(18)
oy < —ip-
X sin”0
If the inequalities (18) are not satisfied, then the

assumption is made that the coal layer has failed by the

failure mechanism associated with Xir X

o’ Yer Yo respectively.

Now to solve a hypothetical problem consider Figure 2. -
The first step is to calculate all of the components of Eq.
Because of the symmetry a simple representation of the case
is 30/-30/0 and assume the thickness (t) of each coal
laminae to be one inch. The following mechanical properties

are assummed for the coal layer:
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Figure 2-D,An Angle-Ply Coal Laminate



E, = 9.8 x 10% psi
E, = .18 x 10% psi
Vq o= 0.17
, V21 _ V12
From the reciprocal relations = - g5 Va1 T .00312
2 1

and from equation 2,

Q7 = 9.805 x 10° psi
Q5 = 0.0306x 10° psi
Q,, = 0.18 x 1068 psi
Qg = G132 = 0.30 x 10° psi

By equation 4, we can obtain,

- - 6 .«
Qlll30 = 5.65 x 10 psi

but

(Qij) = = (6 )

+0, ij’=a
Thus,
- _ 6 )
Q11|30 =5, 65 x 10 psi
0,19 =9y = 9.805 x 10° psi

01,130 = 1.66 x 10°  psi



- = _ 6 .
015l30=-0151 30 1.66 x 10° psi
0,19 = @, = 0.0306 x 10° psi

Qy,l30= 0-92 x 10° psi

0 - = 6
0y, = 9y, = 0.18 x 10

616130 = 3.03 x 10° psi

Q1630 = =3-03 x 10° psi

Q6lo = 0-0
626|30 = 1.14 x 10° psi

Qppl_30 = -1.14 x 10° psi

Q6lo = 0-0

666|30 = 1.93 x 10° psi
Qegl_30 = ~1.93 x 10° psi
666|0 = Q66 = 0.3 x 106 pSi

Substitution in equation 10, gives

Ay, = 42.21 x 10°% 1b/in
Al2 = 6.70 x 10% 1b/in
Ag = 0.0

A22 = 4,04 x 10°% 1b/in



A, = 8.32 x 10° 1b/in

66

Therefore, the E\] matrix is formed as:

42.21 6.70 0.0
] =10°| 6.70 4.04 0.0 1b/in
0.0 0.0 8.23
Then
0.032 -0.0055 0.0
H'l = 10" |-0.0055 0.0055 0.0 in/1b

0.0 0.0 0.015

Now, from 13-a, strains are

g. = 0.0032
b'4

€. = =0.00055
Y

ny = 0.0

Thus, the stress in the first layer is

Gy ) 5.65 1.66  3.03] (0.0032)
— 6 -
{5, b=10° |1.66  0.92  1.14f <-0.00055

Eny L3.03 1.14 1.93_ k0.0 )




Then,

- 2 .2
o, = 17.2 K/in
= 5.0 K/in?
oy /in
- s .2
rxy = 9.0 K/in

To obtain stresses in other layers, the same approach should

be followed.



