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Abstract 

The physical properties of shale are fundamentally controlled by its microstructure; 

however, shale is problematic due to microstructural heterogeneity that can exist across 

multiple scales. This creates difficulty in determining a representative sample size for 

imaging as well as petrophysical measurements. Utilizing large area, high-resolution 

SEM imaging, appropriate representative elementary areas (REA) are determined for 

imaging and analysis. Imaging has been performed on contiguous regions of a 1 ft long 

section of Wolfcamp Shale core. The porosity and organic matter content of this area 

has been segmented, analyzed and are reported as bounded values. Pore size 

distributions and pore areal contributions have been calculated from these data. 

Measurements on sampling size suggest that the REAs needed for analysis differ for 

various microstructural components of interest (e.g. the size of the image required for 

analysis of pores is much smaller than that needed to analyze organic matter). 

Variations of REAs are reported for porosity and TOC of different samples along the 1 

ft Wolfcamp Shale core section. REAs for samples of this core section range from 0.2 - 

0.8 mm2 for analysis of pores and from 0.6 – 1.2 mm2 for analysis of organic matter.  

 

Grain size of shale controls multiple properties of the formation such as gross gamma 

ray response, thermal properties, elastic properties, and hydraulic properties. In 

addition, grain size can provide information about the depositional environment that can 

be crucial to determine “sweet spots” for hydrocarbon exploration. In this research, an 

approach to analyze grain size distribution is developed. Initially, minerals can be 

grouped into four categories based of their grayscale values in 8-bit backscattered 
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electron tif images. Appropriate representative elementary area (REA) of each mineral 

group is estimated for imaging and analysis. The aspect ratio of clay minerals can be 

used to distinguish them from these groups. In addition, watershed segmentation 

techniques are applied to the images to further the grain size distribution. Orientation 

study is performed for these clay grains to determine the trend of grain alignment, 

which is strong indication of shale anisotropy. It is confirmed by the velocity 

measurements conducted on samples within a 195 ft interval located in the same well. 

When comparing with the petrophysical measurements of porosity and organic matter 

content, the result shows a strong correlation between these petrophysical 

measurements (crushed helium porosity and TOC) and the SEM measurements 

(porosity and organic content) even though the unit bases are quite different. I compare 

SEM pore size distribution with MICP and MNR data. The information obtained from 

this study has two important implications: 1) it defines the imaging scale required to 

extract useful information about porosity and organic matter and 2) it provides a method 

for grain size analysis in shale.  
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Chapter 1: Introduction 

1.1 Motivation and Problem Statement 

Organic shales have been traditionally treated as a source rocks for conventional source 

rocks. In recent years, shales have emerged as oil and gas reservoirs. The exploration 

and production from shale plays, however, is extremely challenging and expensive due 

to their low porosity and ultra-low permeability as well as their complicated 

microstructure. With the development of horizontal drilling and multi-stage hydraulic 

fracturing technologies, the production has become economic, opening a new era for 

unconventional resource exploitation.  

 

The distribution of U.S. organic shale formations can be seen in Fig 1.1. For these 

onshore lower 48 states shale plays, the technically recoverable shale gas volume is 

estimated to be up to 750 Tcf and the technically recoverable shale oil volume is 

approximately 23.9 billion barrels (EIA, 2011). 
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Figure 1.1: Map of the U.S. shale gas and shale oil plays in the lower 48 states 

(sources: www.eia.gov) 

Although each shale has unique composition, organic rich shales by definition have 

small particle size (below 4 µm in diameter) and contain significant amount of organic 

matter (2 wt% or above). In addition to their low porosity and ultra-low permeability, 

shales have a high degree of mineralogical and microstructural heterogeneity at 

different scales. This creates challenges for both petrophysical measurements and 

imaging analysis. To deal with heterogeneity, it is crucial to image and analyze shale 

microstructure across multiple scales. Different techniques including optical and 

scanning acoustic microscopy (Prasad et al., 2002; Prasad et al., 2009; Bocangel et al., 

2013; Ko et al., 2017) were performed to serve this purpose as they allowed mapping 

http://www.eia.gov/
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large areas. These techniques however are limited in resolution. Images acquired using 

scanning electron microscopy (SEM) technique allow extremely small features to be 

recognized.  However, with the favorable resolution, SEM images at high magnification 

have a very limited field of view. These limitations are overcome by creating a stitched 

mosaic of high resolution images. In their research, Goergen et al. (2014) created the 

areas of 1-inch length with high resolution. 

Researchers have extracted statistical measurements on pores and organic matter from 

SEM images, e.g., Loucks, 2009; Curtis et al., 2010; Suri 2011; and Pommer and 

Milliken, 2015. These studies were performed on relatively small areas, thus suffer 

significant uncertainty when compared to core-plug petrophysical experiments (Ko et 

al., 2017). Automated, large-area, high-resolution SEM imaging provides more 

statistically significant sampling. Unnecessarily large areas, however, result in 

significant waste of time and money and increase demands for data storage. 

Determining the optimal scale and resolution required for such measurements would 

make the overall process of data collection and analysis more efficient.    

Multiple techniques have been applied to determine the grain size as well as grain size 

distribution for rock sample including sieving, laser diffraction, and optical microscopy 

(Bishop, 1934; Gladkikh et al., 2008; Bakhtiary and Arson, 2013; Ballard and Beare, 

2013; Varfolomeev, 2016) Those techniques, however, are more appropriate for 

conventional reservoir rocks. An approach to estimate grain size for shale using high 

resolution SEM imaging technique is introduced in this thesis. 

This thesis presents results on the determination of bounds on the representative 

elementary area for imaging and detailed petrophysical analyses of a 1 ft long section of 
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Wolfcamp Shale core. While conventional techniques require expensive core plugs, 

SEM imaging can be performed on rock cuttings and less consolidated core plugs.  

 

1.2 Scope of the Thesis 

 

This thesis presents results on the determination of bounds on the representative 

elementary area (REAs) for pore and organic matter from imaging analyses. The 

relationship between SEM imaging analyses is correlated with direct petrophysical 

measurements on core. While conventional techniques require expensive core plugs, 

SEM imaging can be performed on rock cuttings and less consolidated core plugs. This 

thesis addresses upscaling SEM data to core petrophysical measurements and 

potentially to log-scale. Earlier works related to upscaling SEM data to core data are 

discussed in Curtis et al. (2014) and Goergen et al. (2014).  

I used a FEI SEM mapping technique to study large areas (up to 1.6 mm2) with a 

resolution of 10 nm. The SEM map experiments as well as petrophysical measurements 

were conducted on 24 samples taken from a 1 ft section of Wolfcamp core. For each of 

the samples, a map was broken down into sub-maps. Petrophysical results such as 2D 

porosity, 2D organic matter, or 2D mineral areal percentage were obtained for each sub-

map. These results were combined to determine the REAs. For upscaling purpose, the 

results extracted from SEM map were compared with results from petrophysical 

experiments. To be specific, SEM porosity was compared with crushed helium porosity, 

SEM TOC was compared with LECO™ TOC, and pore size distributions from SEM 
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was compared with pore size distributions acquired from Mercury Injection Capillary 

Pressure (MICP) and Nuclear Magnetic Resonance (NMR).           

 

1.3 Organization of the Thesis 

 

The thesis is divided into five chapters and is organized as follows 

 Chapter 2 introduces background research undertaken for this thesis. It includes 

a brief description of scanning electron microscopy, discussion of previous work 

on the upscaling process, and finally a brief geological description of the 

Wolfcamp formation. 

 Chapter 3 explains the methodology of the FEI SEM mapping technique as well 

as petrophysical measurements performed on the samples. 

  In Chapter 4, the results obtained from SEM maps are presented and discussed. 

 Finally, in Chapter 5, conclusions and most significant finding from this study. 
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Chapter 2: Research Background  

2.1 Scanning Electron Microscopy (SEM) 

2.1.1 Principle of SEM 

 

The scanning electron microscope is a powerful tool for observing and interpreting the 

microstructure of rock samples at micro- and nanometer scale. For this study, all of 

SEM experiments are performed on the FEI Helios Nanolab™ 650 DualBeam™ 

FIB/SEM machine. The microscope includes following components: 

 An electron gun as a source from which an electron beam is accelerated down 

the column 

 A series of lenses including condenser lenses and objective lenses to control the 

diameter of the electron beam as it interacts the specimen 

 A series of apertures to affect the properties of the electron beam when it passes 

through them 

 All of the components above kept at high vacuum levels (Hafner, 2007). 

A more detailed breakdown of SEM system is illustrated in Fig 2.1. In the SEM, an 

image of an area is obtained by irradiating that area with a finely focused electron beam, 

which is swept in a raster across the surface of the specimen (Goldstein et al., 2003) ; 

the electron beam is rastered from left to right and top to bottom; there is a one-to-one 

correspondence between the rastering pattern on the specimen/sample and the rastering 

pattern to produce the image or spectra on a display monitor. The signal created from 

beam-specimen interaction is collected by the detector and then processed; the intensity 

of the signal coming from a pixel on the specimen is converted into gray scale value of 
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the corresponding monitor pixel. The monitor image is thus a two dimensional rastered 

pattern of grayscale values (Hafner, 2007). Each image is 8-bit; the gray value of 0 

represents for black and 255 represents for white.        

 

Figure 2.1: Components of a typical scanning electron microscope (Hafner, 2007) 
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2.1.2 SEM Signals – Secondary Electrons and Backscattered Electrons 

 

During the beam – sample interaction, the beam electron can interact with the electric 

charge field of both the sample nucleus and electrons. As a result, numerous types of 

signals are created including backscattered electrons, secondary electrons, characteristic 

X-Rays, Auger electrons, and cathodoluminescence (Zhou et al., 2007) (Fig 2.2). This 

study focuses upon secondary and backscattered electrons. Secondary electrons are 

involved in inelastic events where a beam electron interacts with the electric field of a 

sample atom electron; this results in transfer energy to the sample atom and a potential 

expulsion of an electron from that atom as a secondary electron (SE). SE’s energy is 

less than 50 eV (Hafner, 2007). SEs are mostly used for topographic contrast in the 

SEM, i.e. for the visualization of surface texture and roughness. The topographical 

image quality depends on the number of SEs collected by the detector (Zhou et al., 

2007).  

Backscattered electrons are involved in elastic events where a beam electron interacts 

with the electric field of the nucleus of a specimen atom; this results in a change in 

direction of the beam electron without any significant change in the energy of the beam 

electron. If the beam electron is deflected back out of the sample, the diverted electron 

is called backscatter electron (BSE). BSEs can have energy from 50 eV to almost equal 

to incident beam electron energy (Hafner, 2007). Fig 2.3 visualizes the two types of 

electrons by two types of beam-sample interaction. The BSE signal is sensitive to the 

atomic number (Z) contrast. Areas of sample composed of higher atomic number will 

have more positive charges on the nucleus resulting in more electrons being 
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backscattered, which yields more backscatter signal and thus appear brighter in the 

image. For pore, organic matter, and mineralogy interpretation, the SEM images from 

SEM MAPS™ are generated with backscattered mode.    

 

Figure 2.2: Illustration of multiple types of signals generated from an incident 

electron beam – sample interaction in the SEM and the regions from which the 

signals can be detected (Zhou et al., 2007) 

 

Figure 2.3: SEM illustration of a secondary electron caused by an inelastic event 

(left) and a backscattered electron caused by elastic events (Hafner, 2007) 
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2.1.3 SEM Map 

All the maps were generated using FEI SEM MAPS™ software which facilitates 

automated acquisition of high-resolution SEM images. Initially, the dimensions and 

location of a map on the imaging surface of a sample is selected. By choosing the 

resolution, the dimension and the number of SEM images is thus determined. The 

quality of the SEM images is extremely sensitive to the depth of focus. A slight change 

in working distance, i.e. the distance of between the objectives lens and the sample, 

during the automated imaging process can result in out of focus image. Therefore, there 

is a requirement for calibrating focus. The focus setting is chosen as “interpolated”. By 

using interpolated focus setting, three locations in the map are manually picked for 

calibration; the locations near the edge of the map are favorable as they can cover the 

maximum area of the map. At each location, the SEM images are finely focused up to 

x100,000 magnification. All SEM images are then automatically acquired based on the 

working distance of the three calibrated locations. Finally, the images are stitched 

together to form a complete map. The overlap between two images is no larger than 5% 

of the dimension of each image. 
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Figure 2.4: Portions of the BSE map of the Barnett sample (B4) and the Wolfcamp 

sample (W4) (left) and their corresponded segmented organic matter (white) 

network (right) Note a higher concentration of organic matter can be observed in 

B4 (Curtis et al., 2014) 

 

2.2 Previous Works – SEM Upscaling  

 

It is crucial to analyze and interpret shale microstructure as shale microstructure is the 

fundamental factor that controls its physical properties. While many different 

techniques mentioned in Chapter 1 applied for microstructural study fall short of either 
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providing sufficient area of investigation or providing sufficient resolution. The idea of 

using automated high-resolution SEM imaging and stitching technique to overcome this 

challenge had been applied by Curtis et al. (2014) and Goergen et al. (2014). The results 

from imaging data are correlated with discrete core petrophysical measurements for 

upscaling purpose. 

Curtis et al. (2014) presented an attempt to map the distribution and connectivity of 

organic matter in shale. Fig 2.4 shows portion of the BSE maps of one Barnett sample 

(B4) and one Wolfcamp sample (W4) and their corresponding segmented organic 

matter network BSE maps. The length of the images is 1.5 mm.  The measured TOC 

values for B4 and W4 are 7.6 wt% and 3.4 wt%, respectively, while the organic 

contents from the area measured from the maps for these two samples are 14.6% and 

4.5%, respectively. The weight percentage of organic matter translates into more 

organic matter by  area for all samples. However, while the difference between TOC 

and SEM organic matter content is fairly small for the Wolfcamp sample, the difference 

is large (7% difference) for the Barnett sample. It can be seen from Fig 2.4 that most of 

organic matter associated with the clay is small and elongated while majority of organic 

matter associated with larger, non-clay grain is larger. W4 is heavily dominated by clay 

(78%), more of small, elongated organic matter is observed, resulting in less organic 

content. Compared to W4, B4 is less clay dominated (48%) but contains much more 

quartz and carbonate, resulting in larger organic sizes. Statistical results extracted from 

1/8 of area of the map (due to size limitation) on sample W4 suggests that most of 

organic matter is below 100 nm in diameter and is elongated. Note that most of organic 

matter being elongated may be a consequence of looking parallel to bedding plane and 
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viewing the edge of the organics. The orientation study for both two samples suggests 

no strong preference to the bedding plane is found for all organic matter. However, 

when the study is restricted to the largest 100 organic matter objects, they appear to 

orient at roughly 19o to bedding for both two samples. 

Before this thesis, study on capturing scale of heterogeneity in organic shale was 

presented (Goergen et al., 2014). The study was conducted using the FEI SEM mapping 

technique. The experiments were conducted on a 1 ft section of Wolfcamp core, the 

same with the samples using in this thesis. The maps acquired for the samples is up to 2 

mm in length. Goergen’s statistical results from the map of sample #4 indicate that 

although there is organic porosity, clay porosity dominates and makes up to 80% of the 

total segmented porosity. Fig 2.5 illustrates the dominance of clay porosity. The image 

is from the map of the same sample; porosity is segmented and highlighted in red. Clay 

porosity develops a near bedding (horizontal orientation) dominant pore network. When 

comparing with crushed helium porosity, SEM porosity for the map of this sample 

appears to be less, 4.0% compared to 7.8% (Goergen et al., 2014). 

 

Upscaling of rock properties was also studied for conventional reservoir. Previously, 

rock properties measured from core plugs in the laboratory with inadequate evaluation 

of heterogeneity. These properties were used as an input for simulation grid blocks 

which have larger volume, resulting in remarkable uncertainties and imprecision. 

Vahrenkamp et al, 2011 introduced a new approach to account for carbonate inherent 

heterogeneity via small scale simulation model. The study was conducted on a 3.5 ft 

thick carbonate layer in the vertical direction. Different rock properties such as porosity, 
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permeability, and relative permeability curves were determined using high resolution 

CT scanning – Digital Rock Physics (DRP) processes combination on a 8-inch slab of 

core. These properties were served as an input for the simulation model of the 3.5 ft 

carbonate layer; the simulation model is created from deriving Formation Macro Imager 

(FMI) logging data and it provides the upscaled absolute permeability and relative 

permeabilities. The detailed workflow is showed in Fig 2.6. Fig 2.7 shows the 

permeabilities estimated from CT-DRP combination on the 8-inch sample slab: the 

permeability for vertical flow is 6.0 mD and the permeabilities for horizontal flows are 

2.3 mD and 3.3 mD. These permeabilities result in an absolute permeability of 8 mD for 

vertical flow for the grid block model derived from FMI logging (Fig 2.7). Fig 2.8 

shows the comparison between porosity values of three plugs from this 8-inch slab 

estimated from CT-DRP combination and those from laboratory measurements. A 

strong agreement is observed for porosity estimation from all of the plugs. 

 

Figure 2.5: SEM image from the map of sample #4. Porosity is segmented (red). 

Clay porosity leads to a high-degree of pore shape anisotropy (Goergen et al., 

2014) 
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Figure 2.6: Workflow for upscaling rock properties in a 3.5 ft carbonate layer 

from nanometer to gird block scale (Vahrenkamp et al, 2011). 

 

Figure 2.7: Absolute permeability for vertical flow from a 3.5 ft layer simulation 

model (first picture) derived from permeabilities for vertical flow (second picture) 

and horizontal flows (third and fourth pictures) from 8-inch sample slab 

(Vahrenkamp et al, 2011). 
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Figure 2.8: Comparison between porosity measured from laboratory and from CT 

scanning for three plugs located in the 8-inch slab. Strong agreement is observed 

(Vahrenkamp et al, 2011). 

 

2.3 Geologic Description – Wolfcamp Formation  

 

The Wolfcamp shale is located at the Permian Basin of Texas and New Mexico (Fig 

2.9). The samples selected for this microstructural study were from the Wolfcamp Shale 

located in southern Midland Basin below the Spraberry Formation (Fig 2.10). United 

States Geological Survey (USGS) has confirmed that the Midland Basin Wolfcamp 

contain approximately 20 billion barrels of recoverable oil, 16 trillion cubic feet of 

associated natural gas, and 1.6 billion barrels of natural gas liquids (USGS, 2016). The 

total organic carbon for the Midland Basin Wolfcamp Shale range from 2 to 10 wt%; 

Ro values ranges from 0.85 to 1.10% which indicates the formation is at the late oil 

generation and early gas generation windows (UNG, 2012). The formation is deepest at 

the center of the Basin (approximately 12,000 ft) and becomes much shallower varying 
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from 4,000 to 7,000 ft when moving towards the edges of the basin (Fig 2.11). The 

formation is composed of a series of laminated black shales and argillaceous limestone. 

Figure 2.9: Location of Wolfcamp formation (light blue) in the Permian Basin in 

Texas and New Mexico (USGS) 

 

Table 2.1: Stratigraphy of selected Permian Basin (UNG, 2012) 
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Figure 2.10: Stratigraphic nomenclature of Delaware Basin and Midland Basin. 

Note the Wolfcamp formation in Midland Basin is located below the Spaberry 

formation (Kelly et al., 2012). 

 

Figure 2.11: Vertical depth map of the Wolfcamp formation throughout the 

Midland Basin (Bachmann et al., 2014) 
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Chapter 3: Experimental Procedure 

3.1 Sampling Procedure 

A 1-foot section of core was selected from the Midland Basin Wolfcamp Shale and 

sampled. Fig 3.1 illustrates the sampling and tests performed. A vertical slab was taken 

from the core and divided into 24 intervals (approximately 12.5 mm each). Samples 

were taken from each interval for SEM, FTIR, SRA, crushed helium porosity, and TOC 

measurement. As indicated, the samples were taken such that the material for each test 

was taken as close as possible, horizontally, to other test samples for that interval. 

 

Figure 3.1:  Location of SEM Map and petrophysical measurements of the 24 

samples from a one-foot section of Wolfcamp shale core. Different colored labels 

indicate different types of tests; the tests are performed next to each other 

horizontally in each interval. The measurements are compared to the properties 

estimated from the images spanning the cored interval 
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3.2 Scanning Electron Microscopy (SEM) Imaging 

3.2.1 SEM Procedure 

The SEM samples were prepared perpendicular to bedding by mechanical polishing. 

400, 600, and 800 grit emery paper were used until there were no remarkable scratches 

or artifacts observed on the surface under monocular microscope at 50x magnification. 

The samples then underwent broad ion beam milling the sample process. Two-step 

milling procedure using a Fischione Instruments Model 1060 ion mill is performed 

allow large milled surface area for imaging. The first step is three-hour milling at 5 kV 

voltage which focused on the center area of the sample. The second step is nine-hour 

milling at 6 kV voltage at low angle which focuses on the surrounding region. Milled 

samples were lightly sputter coated with Au/Pd to minimize charging artifacts. Imaging 

was performed by FEI MAPS software on a FEI Helios Nanolab™ 650 DualBeam™ 

FIB/SEM using a concentric backscatter detector (CBS) and a 2 kV accelerating 

voltage. The reason for using backscattered electron images is that this type of imaging 

is sensitive to atomic number and Z-contrast. Features on the SEM image which are 

composed of heavier elements, i.e. have higher Z, appear lighter. On a typical SEM 

image for shale microstructure, pore is the darkest feature, while pyrite is the lightest 

feature.  An entire SEM map for each sample was centered on the sample and the size 

of the maps were approximately 270 µm wide by 6,000 µm long (1.56 mm2 area). Each 

map is comprised of about 3,000 individual SEM images; the length of the image is 

perpendicular to bedding. To preserve the highest quality for the map, consistency of 

contrast and focus of the images are required.  Instead of running one map at the desired 

size (273 µm x 6,000 µm), three sub-maps with dimensions of 273 µm x 2,000 µm 
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(each includes ~1,000 SEM images) were acquired. The three maps were stitched into a 

large map with desired dimension. The resolution of each map was 10 nm. 

Avizo® Fire 9.0 and custom MATLAB software were utilized for analysis on the SEM 

MAPS™. Every map underwent a denoising procedure using non-local means filter 

method by Avizo® Fire 9.0 software. After that, components of interest were carefully 

segmented by choosing threshold values from SEM images and their statistical results 

were extracted. The average threshold values are reported in Table 3.1. 

Table 3.1 – Average threshold values from SEM 8-bit images. The classification of 

the mineral groups can be seen at 3.2.3 

Component Threshold range 

Pore 0 - 114 

Organic matter 115-135 

Mineral group SCl  

(silica, clays, Mg-dol., feldspar) 

136-156 

Mineral group CCl 

(calcite, clays, Fe-dol., K-feldspar) 

157-178 

Mineral group RA 

(rutile, apatite) 

179-200 

Mineral group P 

(pyrite) 

201-255 

 

3.2.1 SEM Segmentation – Pore and Organic Matter 
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Pore and organic matter are the lowest density components in shale microstructure, 

hence pores are the darkest and organic matter is the second darkest feature presented 

on the SEM map. Fig 3.2 illustrates an example of how pore and organic matter are 

segmented from an SEM image. The threshold values are determined manually for each 

component and the gray scale image is converted into binary image. 

 

3.2.3 SEM Segmentation – Mineralogy Breakdown 

 

Besides porosity and organic matter, minerals with different densities presents as 

different shades of a gray in an SEM images. Due to their much higher density, 

minerals appear as much brighter features compared to pores and organic matter. Based 

on gray scale, four major groups of minerals are recognized and separated: group SCl 

including silica, clays (kaolinite and illite), magnesium rich dolomite, and feldspar; 

group CCl including calcite, clays (chlorite), iron rich dolomite, and potassium feldspar; 

group RA including rutile and apatite; and group P including pyrite. Because the gray 

values of certain minerals in each group are very similar or overlapping (especially in 

group SCl and group CCl), they can not be separated from each other based on gray 

scales. Fig 3.3 shows an example of how the four major groups of minerals are 

segmented from an SEM image from sample #1. Note the mineral grains in group SCl 

constitute to most of the microstructure. The majority of the minerals in this group are 

large quartz grains mixing with numerous clays. Majority of the minerals in group CCl 

are highly elongated clays and large to average sized calcite and dolomite grains. 

Compared to group SCl, clays in group CCl are more abundant. Only a few mineral 
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grains are observed in group RA and P. Rutile and apatite grains (group RA) tend to 

have smaller size than pyrite grains (group P). Fig 3.4 illustrates how the mineral 

distribution observation is significantly enhanced by converting gray scale SEM map 

into color map with different colors represent different major mineral groups as well as 

pore and organic matter.  

 

 

Figure 3.2: A) pores are segmented, i.e. that is defined through setting gray scale 

thresholds. The left most image is the original, the middle image shows the pore 

highlighted in red and the right most image show the extracted pore areas, B) 
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organic matter is segmented in an SEM image; organic matter is highlighted in 

blue. The sequence of images is the same as defined in A. 

 

Figure 3.3: Sample #1 minerals are segmented through setting gray scale 

thresholds. There are 4 major mineral groups: group SCL (silica, clays, Mg-dol., 

feldspar), group CCL (calcite, clays, Fe-dol., K-feldspar), group RA (rutile, 

apatite), and group P (pyrite). These groups are highlighted in different colors 

with density range increasing from the left to the right. 
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Figure 3.4: A portion of SEM map (sample #1) before and after mineralogy 

segmentation. There are 4 major mineral groups: group SCL (silica, clays, Mg-

dol., feldspar), group CCL (calcite, clays, Fe-dol., K-feldspar), group RA (rutile, 

apatite), and group P (pyrite). Note the mineral distribution in shale 

microstructure is much easier to observe with the segmentation.  
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To improve the grain size distribution study, better mineralogy breakdown is required. 

Clays were suggested to have a much lower aspect ratio than sand grains (Xu and 

White, 1995). Thus, it is noticed that clay grains which present in group SCl (silica, 

clays, Mg-dol., feldspar) and group CCl (calcite, clays, Fe-dol., K-feldspar) have 

remarkably low aspect ratio compared to other grains in these two groups; it is crucial 

to separate clay from group SCl and CCl based on grain shape, i.e. aspect ratio. Fig 3.5 

illustrates how aspect ratio of a particle is defined. Aspect ratio is the ratio of smallest 

diameter of a particle to the largest dimeter orthogonal to it; it ranges from 0 to 1. A 

particle with aspect ratio of 1 is perfectly rounded and become more elongated when 

aspect ratio approaches 0. For group SCl and CCl, clay grains are highly elongated and 

thus have small aspect ratio compared to other grains in the same group. Fig 3.5 shows 

aspect ratio histogram profile from group SCl of sample #1. Different cut-off aspect 

ratio values for clay – other grain separation are chosen from large to small. All 

particles with aspect ratio smaller than the assumed cut-off value are selected; grain size 

distribution for those particles are plotted. Fig 3.6 – 3.8 shows the grain size distribution 

for grains from group SCl of sample #1 with aspect ratio less than 0.4, 0.35, and 0.3, 

respectively. When the cut-off aspect ratio is value is assumed to be 0.4, no clear trend 

line is observed (Fig 3.6). No clear trend line is observed when the assumed aspect ratio 

cut-off value decreases to 0.35 (Fig 3.7). When the value is 0.3, a trend between number 

of grain and grain equivalent radius is recognized (Fig 3.8). This indicates that at this 

cut-off value or below, majority of grains start to follow a straight trend line. Aspect 

ratio of 0.3 is then defined as the cut-off where majority of grains are clays (Fig 3.9). 
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Other grains with aspect ratio higher than 0.3 are grouped together.  The complete 

mineralogy breakdown is shown at Fig 3.10  

 

 

Figure 3.5: Aspect ratio is defined. Particle with aspect ratio of 1 is perfectly 

rounded. As the aspect ratio decreases, the particle is more elongated.  

 

 

 

 

Figure 3.6: Grain size distribution of all particles with aspect ratio less than 0.4. 

Note no clear trend line is observed. 
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Figure 3.7: Grain size distribution of all particles with aspect ratio less than 0.35. 

Note no clear trend line is observed. 

 

Figure 3.8: Grain size distribution of all particles with aspect ratio less than 0.3. 

Note a trend line is observed (black line). More fluctuation is observed due to less 

number of grains. 
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Figure 3.9: Clays are separated from other grain particles in aspect ratio 

histogram due to their elongated shape. The cut-off aspect ratio for separation is 

0.3  
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Figure 3.10: Four major mineral groups are separated from an SEM map based 

on gray-scale values. The minerals in each group have close or overlapping gray 

values. Clays are separated from other grains in group SCl and group CCl based 

on aspect ratio. 

 

3.2.4 SEM Segmentation – Watershed 

 

One of the major challenges in grain size studies is grain segmentation. Watershed 

segmentation is utilized to separate grains. It is applied right after the thresholding 

segmentation step. Fig 3.6 illustrates how watershed can effectively define the 

boundary and thus distinguish two overlapping objects. From a binary image of two 

overlapping objects as a result of thresholding segmentation (Fig 3.11A), at every pixel 

within the objects (white area), a distance from that point to its closest edge of the 
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objects is calculated. A gray scale distance image is then created (Fig 3.11B); the 

regions at the center are darker compared to the regions near the edges as they have 

further distance to the edge of the objects. The distance map is treated as a topographic 

map. The darkness of the pixels is directly proportional to their topographic depth.  The 

dark regions at the center are thus considered deeper compared to the brighter regions 

near the edges. “Water” is then progressively filled within those regions; the boundary 

between the two objects is decided when the water from the two regions meets (Fig 

3.11C). Fig 3.12 shows an example of how mineral group CCl (calcite, clays, Fe-dol., 

K-feldspar) is segmented from an SEM image using the watershed method. After 

watershed segmenting, boundaries between grain particles are successfully recognized, 

resulting in improved grain size analysis. 

 

 

(A)                                           (B)                                       (C) 

Figure 3.11: Illustration of watershed segmentation process – convert an image of 

overlapping objects (A) into a distance image (B) and finally into image with 

completed separated objects by progressively filling “water”  
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(A) (B) 

Figure 3.12: Watershed segmentation applied to an SEM images. Mixing grains 

are successfully separated (group CCl (calcite, clays, Fe-dol., K-feldspar) – sample 

#1). 

 

3.3 Petrophysical Measurements 

3.3.1 Crushed helium Porosity Measurements 

Porosity measurements were performed using the Micrometrics™ 1340 low pressure 

helium pycnometer (LPP). At each depth interval, four to eight grams of sample were 

taken and dried in the oven at 100o for 12 hours for free water removal. The samples 

were cooled in a desiccator. The weight and volume of the samples were carefully 

measured. The samples were finely crushed and put into a pycnometer cell; the weight 

loss is allowed to be no more than 0.05%. The crushed samples were put in the oven at 

1000C for another 12 hours before being run in the LPP machine. During LPP run, 

helium is injected into the crushed sample at low pressure (approximately 20 psi). The 

grain volume was measured by the machine using Boyle’s Law. The grain volume was 

corrected to account for the weight lost during the crushing procedure using: 
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𝑉𝐺𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
= 𝑉𝐺 +

∆𝑚

𝜌𝐺
 

The crushed helium porosity was calculated from the bulk volume and corrected grain 

volume of the sample: 

Ø =
𝑉𝐵 − 𝑉𝐺𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝑉𝐵
 𝑥 100% 

 

  3.3.2 Total Organic Carbon (TOC) Measurements 

 

TOC measurements were performed using LECO™ C844 TOC instrument. 

Approximately 10g of sample at each interval are used. The crushed particles were 

sieved with a 40 mesh sieve. The weight of each crushed sample was carefully 

measured. The crushed samples were washed with diluted acid (50% HCl: 50% H2O) to 

remove inorganic carbon. The crushed samples were washed with deionized water to 

remove remaining acid. Samples were mixed with cooper and iron accelerators before 

being placed in the LECO™ machine. During the experiment, the samples were burned 

in a high frequency induction furnace; the remaining carbon (organic carbon) was 

oxidized to produce CO2. The amount of CO2 produced during the procedure is 

measured by infrared detectors and corresponds to the TOC in weight percentage. 

 

3.3.3 FTIR Mineralogy Measurements 

The mineralogy measurements were performed using the Thermo Scientific™ Fourier 

Transform Infrared Spectroscope (FTIR) in the transmission mode. The samples were 

finely crushed to a particles diameter less than 30 µm. The crushed samples were heated 
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at 100oC for 12 hours to remove moisture. They were to plasma ashing for 12 hours for 

organic carbon removal using the Anatech™ asher. An exact amount of 0.005 g of 

ashed sample was mixed with 0.3g of KBr. The mixture was run in the FTIR 

spectrometer by making semi-transparent disc using a pellet press. An FTIR absorbance 

spectrum was captured as a function of wavenumber. The spectrum is inverted using 

partial least squares regression method to acquire the quantitative mineralogy in weight 

percentage.  

 

 3.3.4 Mercury Injection Capillary Pressure (MICP) Measurements 

 

The objective of MICP test is to acquire the pore throat volume distribution. 

Approximately 10g of sample are used for this measurement. The samples were placed 

in penetrometers. The experiment consists of two stages. First, the penetrometers were 

inserted into low pressure port and evacuated. Small pressure (1.5 psi to 5 psi) is 

applied to the system that mercury was pushed to fill the stem of the penetrometer; the 

pressure was gradually increased until it reached 60 psi. The first stage lasted for one 

and a half to two hours. The penetrometer was then transfer into the high pressure port 

and pressurized to 60,000 psi. The equilibrium time between successive pressures is 35 

sec for pressure below 27 psi and 60 sec for pressure above 27 psi; there are 

approximately 45 pressure steps for low pressure stage and 150 steps for high pressure 

stage.  Mercury intrusion was measured in both stages as a function of change in the 

capacitance of the stem (Bocangel 2013). 
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3.3.5 Nuclear Magnetic Resonance (NMR) Measurements 

 

NMR experiments record the interaction of an external magnetic field, the spin angular 

momentum and magnetic moment of hydrogen atoms. As a magnetic field is applied, 

the magnetic moments of atoms become aligned with the applied field. When the 

applied field is removed, the hydrogen atoms experience relaxation; eventually 

approaching a new equilibrium. The ratio between high and low energy atom 

populations during the transition between equilibrium stages produces a signal that can 

be used to characterize petrophysical properties such as porosity, water saturation, fluid 

type, and wettability (Odusina, 2011).  

During NMR experiments, net magnetization of hydrogen atoms is measured with the 

present of external magnetic field (Kleinberg et al., 1993; Howard, 1994; Dunn et al., 

2002). The NMR relaxation time T2 is defined as: 

1

𝑇2
=

1

𝑇2 𝑏𝑢𝑙𝑘 
+

1

𝑇2 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+

1

𝑇2 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 
 

where T2 bulk, T2 surface, and T2 diffusion are bulk fluid relaxation, surface relaxation, and 

diffusion relaxation, respectively. With the use of fast measurement timing and 

homogeneous magnetic field, surface relaxation dominates in a fast diffusion limit 

(Dunn et al., 2002) The equation becomes: 

1

𝑇2
≃

1

𝑇2 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
= 𝜌

𝑆

𝑉
 

where 𝜌 is surface relaxivity, S is pore surface area, and V is pore volume. 
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The objective of NMR experiments is to acquire the pore body size distribution. The 

measurements were made on the one-inch dimeter samples taken at each interval of the 

core section using a 2 MHz benchtop system. The value for half of the echo spacing τ is 

selected as 0.057 ms. All of the samples are kept at native state saturations. 

 

3.3.6 Overview - Petrophysical Measurements  

 

Measurements of thermal maturity, crushed helium porosity, TOC, and FTIR 

mineralogy were performed on all 24 Wolfcamp samples. Thermal maturity from 

source rock analysis showed an average Tmax value of 451oC which indicates that these 

samples fall into the peak wet gas window (Dow, 1977). Fig 3.13 shows the helium 

porosity, TOC, and FTIR mineralogy results with the increasing depth. Low pressure 

crushed sample helium pycnometer porosity values ranged from 7.8 – 11.0 %. 

LECO™™ TOC values ranged from 2.0 – 6.0% by weight. Transmission FTIR 

spectroscopy indicated mineralogy is dominated by clay (55-75 wt%), which is mostly 

illite, following by quartz (8-25 wt%), feldspar (approximately 10 wt%), and carbonate 

(approximately 5 wt%). Overall, the mineralogy is fairly homogeneous over the 1 ft 

interval, especially the clay content. Porosity distribution with T2 relaxation from NMR 

data is consistent throughout the 1 ft section (see Fig 3.13). For the plot of each sample, 

a dominant signal of clay-bound water at extremely fast relaxation time (0.7 – 1 ms) 

following by a smaller broad peak of adsorbed fluid at 50-60 ms indicates the 

dominance of clay porosity (Goergen et al., 2014).  Available MICP data of 21 samples 
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also shows a strong consistency within this section (see Fig 3.13); the diameter of most 

of the pores ranges from 4 to 8 nm. 

 

 

Figure 3.13: Measured TOC, crushed helium porosity, FTIR mineralogy, NMR T2 

distributions, and MICP for the 24 samples plotted against increasing depth over 

the one-foot depth interval. Note that the mineralogy is dominated by clay, 

predominately illite 
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Chapter 4: Results and Discussion 

This chapter presents the results of three studies from SEM imaging analyses. The first 

study investigates the appropriate representative elementary areas (REA) required for 

imaging various microstructural components including porosity, organic matter, and 

mineral grains. The second focuses on the size distribution for each of these 

components. Finally, the third study involves the correlation between the imaging data 

and other petrophysical data including crushed helium porosity, TOC, MICP, and 

NMR. 

4.1 Pore and Organic Matter 

4.1.1 Representative Elementary Area 

 

From one map, which has the standard dimensions of 273 µm width and 6,000 µm 

length (1.56 mm2 area) stitched from approximately 3,000 SEM images taken at 10 nm 

resolution; multiple sub-maps of different sizes selected at random locations were 

extracted for comparative analyses. The 2D SEM porosities of these sub-maps were 

calculated using the segmentation method described previously and were compared 

with the segmented porosity value of the entire original map. Fig 4.1A shows an 

example result from sample #5. The area of original map of this sample is 1.56 mm2. A 

large fluctuation of the porosity is observed for small sub-maps (especially below 10% 

of the original map). As the size of the sub-maps increases, the porosity values converge 

to the porosity of the whole map for sample #5. Fig 4.1B shows the truncation error of 

the porosity of each sub-map compared to the porosity of the whole map. Truncation 

error of sub map at scale i, Ei is defined as: 
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𝐸𝑖 = |
𝛷𝑖 −  𝛷𝑚𝑎𝑝

𝛷𝑚𝑎𝑝
| ∗ 100 

 where i is the porosity at scale i and map is the porosity of the entire map image. At 

the scale of 22% of whole map which is equivalent to an area of 0.32 mm2, all porosity 

values are almost the same and close to the porosity of the whole map. This area is 

roughly equivalent to a 550 µm x 550 µm image. At this size of sub-map or larger, the 

truncation errors are 10% or less. Note that the acquisition time for the whole map of 

1.56 mm2 is approximately 66 hours for the acquisition parameters used, e.g., dwell  

 

Figure 4.1: A) Porosity measured from SEM map (sample #5) for different sub-

map areas is compared to total porosity for the original map (red line), B) 

Truncation errors of each porosity value is compared to 10% truncation error (red 

line). Note beyond a map area of roughly 20% of the whole map, the difference in 

porosity estimates reduces and become acceptable.  



40 

time and resolution. Collecting a map of 0.32 mm2 requires only 15 hours and still 

provides a representative porosity result. In addition to the acquisition time, the image 

processing time for feature extraction is much less.  

 

The REA study is also performed for organic matter on the same sample (Fig 4.2A), 

using the same the cut-off of 10% truncation error or less (Fig 4.2B). A similar trend is 

observed: the organic matter content by area fluctuates at small sub-map sizes and 

converges toward the organic matter content of the whole map as the size increases. 

However, the REA for organic matter was determined to be 80% of the original map 

(approximately 1.09 mm2) which is significantly larger than the REA for porosity of the 

same sample. The minimum map area required to representatively capture the organic 

matter content for sample #5 is about three times larger than for porosity. 

The REA values for porosity and organic matter content for the 24 Wolfcamp Shale 

samples are showed in Fig 4.3. Throughout the one-foot core section, variations in 

REAs are observed for both porosity and organic matter, which reflects the degree of 

heterogeneity of the formation. With one exception, the minimum required imaging 

area for porosity is smaller than for organic matter content. REA for porosity ranges 

from 0.2-0.8 mm2 with the average of 0.5 ± 0.2 mm2; REA for organic matter ranges 

from 0.6 – 1.2 mm2 with the average of 1.0 ± 0.2 mm2.  
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Figure 4.2: A) Organic matter content measured from an SEM map of sample #5 

for different sub-map areas is compared to the total organic matter content for the 

original map (red line), B) Truncation errors of each TOC value is compared to 

10% error (red line). Note beyond a map area of roughly 70% of the total area, the 

difference in TOC estimates reduces and become acceptable. Note also this area 

threshold is considerably larger than that for porosity.  
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Figure 4.3: REA for porosity and organic content for 24 samples with depth. These 

are estimated from the whole maps. In general, the REAs for organics are roughly 

twice that for porosity. 
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4.1.2 Pore and Organic Matter Size Distribution 

 

Pore size distribution studies of 3D shale microstructure using FIB/SEM system 

indicated that the number of pores decreases with increasing pore body radii assuming 

spherical pores (Curtis et al., 2010; Giffin et al., 2013; Goral et al., 2015). Do these 3D 

observations translate into 2D? Fig 4.4 shows the pore size distributions plotted for all 

24 Wolfcamp samples. The distributions were determined from the entire map acquired 

for each sample. The number of pores appears to be inversely proportional to an 

equivalent spherical pore body radius on a log-log scale. All 24 pore size distributions 

follow a similar trend wherein small pores dominate in number. The pore size 

distribution shows consistency throughout the 1 ft section. Unlike the variations 

observed in REA studies for porosity and organic matter, a single sample in this one-

foot section is necessary for estimating the pore size distribution. The result of small 

pore domination strongly agrees with the earlier pore size distribution from the smaller 

scale 3D SEM reconstructions (Curtis et al., 2010; Giffin et al., 2013; Goral et al., 

2015). As the pore body radius approaches the SEM resolution of 10nm, the data 

deviates from the observe trend. Undersampling in which there is insufficient pixel 

density to determine the structure of any element near the resolution of an image is 

responsible for the underestimation (Curtis et al., 2010). The distribution of organic 

matter particle sizes was also studied (Fig 4.5). The result shows a similar trend to pores 

as small organic matter particles dominate in number with the number of organic matter 

particles decreasing proportionally with the increasing equivalent spherical radius. A 

greater separation in the size distributions is observed for the organic matter than for the 
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pore size distributions. Fig 4.6 shows an example of the variation of organic 

distributions. Most of organic matter particles from sample #5 (Fig 4.6A) are relatively 

small in size and fill between the clays. However, from sample #13 (Fig 4.6B), apart 

from small organic matter particles between the clays, a number of larger organic matter 

particles is observed (highlighted in red circles). Most of these particles are associated 

with cracks. The distribution parallel to bedding would be expected to have different 

distributions and REAs. 

Assuming spherical pores and organic matter, the pore and organic matter size 

distribution plots are converted into areal contribution plots, respectively (Fig 4.7). The 

area contributions show that larger pores dominate in area with more than 80 % of pore 

area coming from pores with radius larger than 50 nm despite dominating by smaller 

pores. For organic matter particles, particles with radius smaller than 50 nm still 

contribute up to 35% of total area. One reason for this significant amount of small 

organic matter is because the selected one-foot core is clay-heavy in mineralogy and 

imaging suggests there are a lot of organic matter particles filling in the small regions 

within the clay network. When the areal contribution plots of pore and organic matter 

are combined, it is observed that pore area is generally larger than organic matter area. 

Total pore area can be up to 10 µm2, while it is 7 µm2
 for organic matter. The average 

pore radius for the 24 samples ranges from 200 to 380 nm, while the average organic 

matter radius ranges from 70 to 180 nm. This suggests that most of the pores are located 

outside of the organic matter, i.e. they are mostly mineral-associated pores. 
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Figure 4.4:  Pore size distribution for 24 samples with 50 nm radius boundary (red 

line). Note the similarity in the trend for 24 samples. Note the assumption of 

spherical pores. 

 

 
Figure 4.5:  Organic matter size distribution for 24 samples with 50 nm radius 

boundary (red line). There is more scatter in the organic trends than the porosity 

trends. Note the assumption of spherical organic matter. 
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Figure 4.6: SEM backscattered images of A) sample #5 and B) sample #13. Red 

circles highlighted larger organic matter particles which are mostly associated 

with cracks. These organic filled cracks are important and considered as key to 

HC generation.  

 

Pore and organic matter size distributions of each sample were studied at different 

scales. Three sub-maps of 10% scale (273 µm x 571 µm) which totally cover 30% area 

of the whole map of sample #5 are randomly selected. Fig 4.8A shows the pore size 

distribution plots of these three sub-maps. The same trend is observed as with the 

pervious pore size distributions (Fig 4.4) in that there is an inversely proportional 

relationship between number of pores and equivalent pore body radii on a log-log scale. 

The three distributions almost overlay and contain an almost equivalent total number of 

pores. The pore size distribution thus is very consistent at this sub-map scale. Breaking 

the map down to a smaller scale, six pore size distribution plots of six sub-maps of 5% 

scale (273 µm x 286 µm) at random locations are reported in Fig 4.8B. A similar trend 
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is observed for these plots, i.e. that number of pores decreases with increasing pore 

radius. A greater variation is observed because of higher standard deviation of total 

number of pores. However, the percentage deviation is always less than 5%. This 

suggests that to study pore size distributions, only a small area of ~5% scale for imaging 

is necessary. As for this 1 ft core section, the area needed to capture pore size 

distribution would be smaller than the area required to capture the total porosity (REA). 

 

 

 

Figure 4.7: Areal contribution of porosity (red) and organic matter (green) for 24 

samples assuming a 50nm radius boundary (blue line). Note the assumption of 

spherical pores and organic matter. 
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Figure 4.8:  Pore size distribution of A) three sub-maps of 10% scale, average 

number of pores counted is 627,000 ± 17,000 and B) six sub-maps of 5% scale, 

average number of pores counted is 228,000 ± 39,000. Note variation at large size. 
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4.1.3 Imaging Data versus Petrophysical Data (Crushed helium Porosity and TOC) 

 

Since porosity and organic matter studies utilizing SEM imaging are performed on a 

relatively small scale, it is important to correlate the results with those from 

petrophysical measurements which are performed at a larger scale. Petrophysical data 

including crushed helium porosity and TOC measurements are compared with the 

porosity and organic matter estimates derived from SEM data for the 1 ft section of 

Wolfcamp Shale core (Fig 4.9 and Fig 4.10). There are differences between the SEM 

derived data and the lab petrophysical measurements, some are expected based on the 

modes of measurements. Helium porosity measurements yield a volume percentage 

whereas the SEM analysis yields an areal percentage. Organic matter content derived 

from the SEM is also an area percentage whereas in TOC measurements it is a weight 

percentage. Overall, a similar trend between imaging data and petrophysical data are 

observed for both porosity and organic content.  The average difference between SEM 

porosity and helium porosity is 1.0%; the average difference between SEM TOC and 

LECO™™ TOC is 0.6%. Assuming the formation is weakly heterogeneous, it is very 

promising to predict these petrophysical data from SEM imaging analysis. There is a 

small interval highlighted by ellipses where the correlation is fairly poor for porosity 

(red ellipse) as well as organic content (green ellipse). These anomalies can be 

attributed to the high degree of heterogeneity in this interval. 
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Figure 4.9: Comparison of porosity measured from SEM imaging and 

petrophysical data. Red ellipse highlights the interval with the poorest correlation. 

The error is 1.0% on average. Note SEM porosity values are measured from the 

whole maps.  
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Figure 4.10: Comparison of organic content measured from SEM imaging and 

petrophysical data. Green ellipse highlights the interval with the poorest 

correlation. The error is 0.6% on average. Note the SEM TOC values are 

measured from the whole maps.  

 

Fig 4.11 shows an SEM image from sample #3 which is located within the interval 

highlighted by the red ellipse in Fig 4.9. The SEM porosity measured on this sample is 

significantly lower than the helium porosity measured on cores taken in this interval. 

Compared to samples outside the interval, the majority of the pores and cracks for this 
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sample are relatively small. Limited number of large pores and lack of major fractures 

are some of the main reasons for the lower SEM porosity. Fig 4.12 is an SEM image 

from sample #13; the size of organic matter in this sample varies over a considerable 

range; numerous large particles can be observed, resulting in fairly high organic matter 

content. However, TOC measurement for this sample is significantly greater than the 

estimation from SEM images.  

 

 

 

Figure 4.11: SEM backscattered image of sample #3. SEM porosity and crushed 

helium porosity measured for this sample are 3.0% and 7.0%, respectively. Lack 

of large pores and fractures results in low SEM porosity.  
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Figure 4.12: SEM backscattered image of sample #13. SEM TOC and LECO™ 

TOC measured for this sample are 2.4% and 3.8%, respectively. SEM TOC is 

smaller than LECO™ TOC despite numerous of large organic matter particles. 

 

4.1.4 Imaging Data versus Mercury Injection Data 

 

Mercury injection capillary pressure (MICP) measurements were performed on the 

Wolfcamp samples. During this experiment, mercury is injected into the sample in 

defined pressure increments from 5 to 60,000 psi. During the gradual pressure release, 

mercury extrusion is also recorded as a function of pressure. Fig 4.13 shows the 

combination of intrusion and extrusion plots for sample #1. The difference between 

intrusion and extrusion data highlighted by black arrow proves that a significant amount 

of injected mercury is trapped inside the rock sample. Pore connectivity is the main 

reason for this trapped mercury. MICP model is interpreted under the assumption that 
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all of pores are cylindrical capillaries throughout the sample (Fig 4.14), whereas in 

reality, pore with different sizes are connected together (Fig 4.14). Large pores where 

most of fluid is stored are considered pore body while much smaller pores are 

considered pore throat as they help connecting the pore bodies together. The mercury 

trapped recognized from Fig 4.13 is believed to be located inside the pore bodies. 

 

 

Figure 4.13: Mercury intrusion and extrusion as a function of pressure of sample 

#1. Black arrow indicates the difference between intrusion and extrusion profile, 

which represent the amount of mercury trapped inside rock sample. 
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Figure 4.14: MICP model assumption that all pores (blue) are homogeneous in size (left 

figure) versus real life scenario where pores with different sizes are mixed together 

 

 
 

Figure 4.15: Comparison of MICP pore volume distribution and SEM imaging 

pore area distribution of sample #1. While each distribution has one dominant 

peak, they are not at the same pore radius. 
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While MICP results provide pore throat access volume distribution, pore area is 

acquired from SEM imaging data. It is necessary to combine these two to fully 

understand the pore distribution. It is worth noticing that MICP is able to provide 

information at better resolution (3 nm) compared to SEM imaging (10 nm). An example 

for sample #1 is showed (Fig 4.15). The two plots do not match; instead, two distinctive 

peaks are observed. The MICP peak (1) is expected to represent pore throats, while the 

SEM peak (2) is expected to represent the pore bodies. Fig 4.16 shows the MICP/SEM 

combination for all of the 24 Wolfcamp samples. Both MICP and SEM plots show 

strong consistency between the samples as two distinctive groups of peaks are observed. 

From MICP data, the diameter of most of pore population ranges from 4 to 8 nm; from 

SEM data, the diameter of most of pore population ranges from 200 to 400 nm. Do the 

difference between MICP and SEM data related to the difference between mercury 

intrusion and extrusion profiles? To answer that, the ratio between pore body from SEM 

distribution and pore throat from MICP distribution is plotted with the 

intrusion/extrusion difference for each of the samples (Fig 4.17). The amount of 

mercury trapped inside the pore system appears to be directly proportional to the ratio 

of pore body to pore throat. This result strongly agrees with earlier study by Wardlaw 

and McKellar where experimental evidence is presented from glass micromodels and 

from reservoir rocks that the volume of residual mercury trapped during pressure 

reduction increases as pore to throat size ratio increases (Fig 4.18). It can be concluded 

that MICP is able to provide information about pore throats that SEM imaging is unable 

to acquire due to resolution limitation.     
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Figure 4.16: Comparison of MICP pore volume distribution and SEM imaging 

pore area distribution for the 24 Wolfcamp samples. Two separate peaks are still 

observed. 

 

 
Figure 4.17: Difference between mercury intrusion and extrusion versus pore body 

to throat ratio shows a directly proportional relationship. 
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Figure 4.18: Glass model with mercury. Lower part shows the residual trapped 

mercury (Wardlaw and McKellar, 1981) 

 

4.1.5 Imaging Data versus NMR Data 

 

Nuclear magnetic resonance (NMR) was performed on the native-state samples. Pore 

volume distribution is plotted with the increasing T2 relaxation time. While it is fairly 

easy to combine SEM data with MICP data, comparing SEM data with NMR data 

requires T2 – pore radius conversion. Assuming all pores from SEM data are spherical, 

equivalent pore radius R (µm) is related to T2 relaxation time as: 

𝑇2 =
1000 ∗ 𝑅

3 ∗ 𝜌𝑒
 

where ρe (µm/sec) is the effective surface relaxation and is treated as matching factor. 

Fig 4.19 – Fig 4.22 show the comparison between pore distributions from NMR data 

and converted SEM data for sample #1, #2, #3, and #4. NMR and SEM data show a 

strong agreement; the peaks almost overlay each other for all samples. This strong 
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correlation indicates that NMR and SEM data represent the pore body distribution. The 

average ρe is 41 µm/sec ± 3 µm/sec. Compared to ρe values for NMR/MICP matching 

from Sulucarnain’s study (2012), ρe values for NMR/SEM matching is larger. The 

average ρe for matching between NMR spectra and MICP data from Ordovician organic 

rich shale samples is 1.7 µm/sec ± 1.0 µm/sec (Sulucarnain et al., 2012). Since NMR 

and SEM presents the pore body distribution while MICP presents pore throat 

distribution, ρe values for NMR/SEM matching is more reasonable. 

 

 

Figure 4.19: Comparison of NMR pore volume distribution (blue) and converted 

SEM pore area (red) distribution of sample #1. The effective surface relaxation is 

ρe = 33 µm/sec. 
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Figure 4.20: Comparison of NMR pore volume distribution (blue) and converted 

SEM pore area distribution (red) of sample #2. The effective surface relaxation is 

ρe = 40 µm/sec. 

 
Figure 4.21: Comparison of NMR pore volume distribution (blue) and converted 

SEM pore area distribution (red) of sample #3. The effective surface relaxation is 

ρe = 46 µm/sec. 
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Figure 4.22: Comparison of NMR pore volume distribution (blue) and converted 

SEM pore area distribution (red) of sample #4. The effective surface relaxation is 

ρe = 46 µm/sec. 

 

4.2 Mineral Grain Size Distribution 

4.2.1 Representative Elementary Area 

Seven samples from the 1ft Wolfcamp core are selected for the grain size study. Four 

major mineral groups are successively segmented by thresholding and applying the 

watershed method. Similar method applied for porosity and organic matter to determine 

REA values for mineral groups. From one standard map (276 µm x 6,000 µm), smaller 

sub-maps of different sizes and random locations were extracted. For each of the 

mineral group, SEM areal percentage of these sub-maps were calculated and plotted in 

comparison with the areal percentage value of the original map. Fig 4.23 shows an 

example result for group SCl (silica, clays, Mg-dol., feldspar) from sample #1. The 
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original map area of this sample is 1.45 mm2. Large fluctuation of areal percentage is 

observed for small sub-maps. As the size of the sub-map increases, the areal percentage 

values converge to the areal percentage value of the whole map for mineral group SCl 

of sample #1. This follows a similar trend to those observed porosity and organic 

matter. Truncation error of the areal percentage values of each sub-map is compared to 

the value of the whole map in Fig 4.23B. A cut-off of 10% truncation error is 

acceptable, i.e. 11% of the whole map area. At the 11% full map scale, the area needed 

is 0.16 mm2 or larger) 

 

Figure 4.23: A) areal percentage for mineral group SCl (silica, clays, Mg-dolomite, 

feldspar) measured from SEM map (sample #1) for different sub-map areas are 

compared to total porosity for the original map (red line), B) Truncation errors of 

each areal percentage value is compared to 10% error (red line). Note beyond a 

map area of roughly 11% of the whole map, the difference in areal percentage 

estimates reduces and become acceptable.  

A 

B 
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Excluding image processing time, the required amount of time to acquire this cut-off 

map is 8 hours, which is much less than the required time for the whole map of 

approximately 66 hours. Fig 4.24 – Fig 4.26 shows example results for group CCl 

(calcite, clays, Fe-dol., K-feldspar), RA (rutile, apatite), and P (pyrite) from the same 

sample. The REA values for the four mineral groups from this sample are 0.16, 1.13, 

0.97, and 0.97 mm2, respectively.  

 

Figure 4.24: A) areal percentage for group CCl (calcite, Fe-Dolomite, clays, K-

feldspar) measured from SEM map (sample #1) for different sub-map areas in 

compared to total porosity for the original map (red line), B) Truncation errors of 

each areal percentage value is compared to 10% error (red line). Note beyond a 

map area of roughly 90% of the whole map, the difference in areal percentage 

estimates reduces and become acceptable.  

 

A 

B 
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Figure 4.25: A) areal percentage for group RA (rutile and apatite) measured from 

SEM map (sample #1) for different sub-map areas is compared with total porosity 

for the original map (red line), B) Truncation errors of each areal percentage value 

is compared to 10% error (red line). Note beyond a map area of roughly 78% of 

the whole map, the difference in areal percentage estimates reduces and become 

acceptable  

A 

B 
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Figure 4.26: A) areal percentage for group P (pyrite) measured from SEM map 

(sample #1) for different sub-map areas is compared to total porosity for the 

original map (red line), B) Truncation errors of each areal percentage value is 

compared to 10% error (red line). Note beyond a map area of roughly 78% of the 

whole map, the difference in areal percentage estimates reduces and become 

acceptable.  

 

The REA values for the four mineral groups for the seven Wolfcamp Shale samples are 

showed in Fig 4.27 in comparison with the REA values for porosity calculated in 

Chapter 4.1.1. A fairly similar trend is observed from the results for the selected 
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samples. mineral group SCl (silica, clays, Mg-dolomite, feldspar) has significant low 

REA (0.08 to 0.16 mm2), much lower compared to the REA values for the other three 

mineral groups including group CCl (calcite, clays, Fe-dolomite, K-feldspar), group RA 

(rutile and apatite), and group P (pyrite). These small REA values are due to the 

dominance of quartz which contributes 78% of the total area in average for the seven 

samples in the mineralogy (Table 4.1); the more common a mineral is in the 

microstructure, the smaller area required to capture its representative. Mineral group 

CCl has fairly high REA (0.05 to 0.12 mm2) due to its lower areal percentage (6.2% in 

average). Mineral group RA and Group P have the highest REA (0.97 to 1.30 mm2 and 

0.65 to 1.30 mm2, respectively); the REA required is almost equal to the area of the 

whole map (approximately 1.56 mm2). The large REA values for rutile, apatite, and 

pyrite are due to low concentration; this can be clearly observed from the SEM image 

and map (Fig 3.4). In fact, mineral group RA and P only contribute to 0.3% and 1.1% in 

average to the total 2D microstructural area, respectively. When comparing the REA 

values of the four mineral groups with those of the porosity (see Fig 4.27), we note that 

the representative area required for porosity is smaller than most of the mineral group 

except for group SCl. It is noticed from Table 4.1 that similar behavior is observed for 

areal percentage: on average, the porosity values measured from the whole maps for the 

seven samples are smaller than the areal percentage of group SCl, but greater than the 

areal percentage of the other three groups.  
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Figure 4.27: REA values for porosity and four mineral groups for the selected 

seven samples. Note that REAs for group SCl are significantly low compared to the 

others  
 

 

Table 4.1 – Average areal percentage and REA values for four mineral groups of 

the selected seven samples 

Wolfcamp Group SCl  
(silica, clays, 

Mg-dolomite, 
feldspar)  

Group CCl 
(calcite, 

clays, Fe-
dolomite, K-

feldspar) 

Group RA 
(rutile, 

apatite) 

Group P 
(pyrite) 

Areal percentage, % 78 ± 2 6.2 ± 1 0.3 ± 0.2 1.1 ± 0.3 

REA, mm
2
 0.08 – 0.16 0.8 - 1.13  0.97 – 1.2 0.96 – 1.30 

 

 

4.2.2 Grain Size Distribution 

 

Fig 4.28 shows size distribution result for all of the mineral grains observed from the 

maps of the seven Wolfcamp samples. The distributions were determined from the 

entire map acquired for each sample (similar to pore and organic size distribution). 

There is an inversely proportional relationship between number of mineral grains and 
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equivalent spherical mineral grain radius on a log-log scale. The grain size distributions 

for the seven samples show a high degree of consistency as the plots follow a similar 

trend; an insignificant variation is observed. Similar to pore and organic size 

distribution, grain size distribution indicates that small particles dominate in number. 

The average grain equivalent radius for seven samples within the 1 ft section ranges 

from 288 nm to 321 nm. The average grain radius for all seven samples is 307 nm ± 12 

nm. On average, approximately 200 to 325 grains can be sampled with a nanoindentor 

probe. 

 

  

Figure 4.28: All Grain size distribution for seven samples with their location on the 

right picture. Note the similar trend for these seven samples. Distributions were 

derived from entire SEM maps (1.6 mm2) 

However, mineral grain includes four smaller groups whose amounts and behaviors are 

remarkably different from each other. Thus, it is necessary to break down the grain 
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distribution more finely. Fig 4.29 – Fig 4.32 show the grain size distribution for each of 

the four mineral groups acquired from the entire maps. Similar results are observed for 

all groups as the number of grains appears to inversely proportional to equivalent 

spherical grain radius and small grain particles dominate in number. Comparing to the 

distributions for all grains, the distributions for the four mineral groups show larger 

variation between the samples, especially for mineral group RA (rutile, apatite) and 

group P (pyrite). This is due to the small number of rutile and apatite grains in group 

RA and pyrite grains in group P observed from the maps. These variations for these 

groups are however relatively small; overall it can be stated that the grain size 

distributions are fairly consistent even after breaking down by mineral groups. 

Combining this result with the FTIR from Fig 3.8, It can be concluded that there is no 

significant difference in mineralogy throughout the selected one-foot section of 

Wolfcamp shale. Therefore, only one sample is required at any location from this one-

foot section for a successfully grain size distribution study.  

 
 

Figure 4.29: Grain size distribution for group SCl (silica, clays, Mg-dol., feldspar) 

of seven samples. Note the similar trend for these samples. A little bit more 

variation is observed compared to all grain distribution (see Fig 4.28).  
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Figure 4.30: Grain size distribution for group CCl (calcite, clays, Fe-dol., K-

feldspar) of seven samples. Note the similar trend for these samples. A little bit 

more variation is observed compared to all grain distribution.  

 

Figure 4.31: Grain size distributions for group RA (rutile, apatite) of seven 

samples. Note the similar trend for these samples. More variation is observed 

compared to all grain distribution.  
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Figure 4.32: Grain size distribution for group P (pyrite) of seven samples. Note the 

similar trend for these samples. More variation is observed compared to all grain 

distribution.  

The grain size distribution for clay is effectively separated from group SCl (silica, clays, 

Mg-dol., feldspar) and CCl (calcite, clays, Fe-dol., K-feldspar) based on aspect ratio. 

An example for group CCl from sample #1 (Fig 4.33) shows the distribution results for 

clay grains (mostly chlorite) and for the combination of other grains (calcite, iron-rich 

dolomite, and feldspar) in this group. It is noticed that the number of grains 

proportionally decreases with the increasing grain size. For group CCl in all seven 

samples, the average grain radius of clay (200 nm ± 2nm) is smaller than the average 

grain radius of other grains (227 nm ± 2 nm); this difference is however insignificant. A 

similar result is observed for group SCl as the average radius for clay and other grains 

are 243 nm ± 2 nm and 319 nm ± 2 nm, respectively. 
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                               Clay          Other Grains 

 
Figure 4.33: Grain size distribution for clay grains (left) and other grains (right) 

from group CCl of seven samples. Average radius of clay is less than of other 

grains. 

 

Similar to pore and organic matter, grain size distributions for each sample are studied 

at different scales. Three sub-maps of 30% scale (273 µm x 1,713 µm) which totally 

cover 90% area of the whole map of sample #1 are random selected. Fig 4.34 shows the 

grain size distribution of mineral group SCl (silica, clays, Mg-dol., feldspar) for the 

three sub-maps. As with the previous grain size distribution (Fig 4.28), the same trend 

is observed in that number of grains is inversely proportional to equivalent spherical 

grain radius on the log-log scale. There is a nice consistency that those three plots 

almost overlay each other and contain an almost similar total number of mineral grains. 

The grain size distribution thus is very consistent at this sub-map scale. Breaking down 

into smaller scale, grain size distribution plots of six sub-maps of 20% scale (273 µm x 
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1,429 µm) which totally cover 80% area of the whole map of the same sample at 

random locations are shown in Fig 4.35.  A similar trend is observed for these plots. 

Compared to 30% scale, these lots show a little bit more variation, however the 

percentage deviation is still relatively small. Fig 4.36 and Fig 4.37 show the same 

interpretation for smaller scales including 10% scale (273 µm x 571 µm) which is 

approximately equivalent to REA scale for this group of this map and 5% scale (273 µm 

x 286 µm).  Although greater variations of the plots are observed as the scale gets 

smaller, the difference is always less than 5%. Therefore, to study grain size 

distribution, only a small area of imaging is required. As for this 1 ft core section, the 

area needed for grain size distribution would be two times smaller than the area required 

to capture the representative mineralogy. 
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Figure 4.34: All grain size distribution of three sub-maps of 30% scale for group 

SCl (silica, clays, Mg-dol., feldspar) of sample #1. Note the similar trend of these 

sub-maps. Note we assume spherical grains 

 

 

 
Figure 4.35: All grain size distribution of four sub-maps of 20% scale for group 

SCl (silica, clays, Mg-dol., feldspar) of sample #1. Note the similar trend of these 

sub-maps. Note we assume spherical grains 
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Figure 4.36: All grain size distribution of six sub-maps of 10% scale for group SCl 

(silica, clays, Mg-dol., feldspar) of sample #1. Note the increase in variation 

between the plots especially at large size. Note we assume spherical grains 

 

 

Figure 4.37: All grain size distribution of six sub-maps of 5% scale for group SCl 

(silica, clays, Mg-dol., feldspar) of sample #1.  Note the increase in variation 

between the plots especially at large size. Note we assume spherical grains  
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4.2.3 Clay Grains Alignment 

Earlier study on New Albany Shale and Chattanooga Shale using X ray diffraction 

techniques suggests that anisotropy at elevated pressure is caused mainly by preferred 

orientation of clays parallel to bedding plane (Johnston and Christensen, 1995). 

Therefore, the clay orientation acquired using SEM imaging technique might be useful 

to evaluate the anisotropy. Fig 4.38 shows the orientation plot for the clay particles 

separated from other mineral grains in group CCl (calcite, clays, Fe-dol., K-feldspar) of 

sample #1.  On average, clays are 160 to the bedding plane. More than 60% of the 

elongated particles lie between 00 and 100 to the bedding plane. Most of the clay 

particles are oriented at larger angle (from 100 to 600); there are very few particles at 

high angle to the bedding plane (700 or more). Most of the clays are thus observed to be 

sub-parallel to the bedding plane. According to the study of Johnston and Christensen 

(1995), these samples can be concluded to be strongly anisotropic. The anisotropy of 

the samples (%) is defined as (Johnston and Christensen, 1995): 

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥
 

The velocity measurements were conducted on samples within a 195 ft interval in the 

same well with the 1 ft section. The results show that those samples are highly 

anisotropy, approximately 24 ± 3% for Vp and 26 ± 5 % for Vs at 5,000 psia. This 

strongly agree with the conclusion made from clay alignment study. 

Fig 4.39 shows orientation to the bedding plane for the clay particles separated from 

group CCl (calcite, clays, Fe-dol., K-feldspar) of sample #1 at 100%, 30%, 10%, and 

5% scale. Similar to the entire map (100% scale), sub-maps with smaller scales present 

the same trend that majority of the clay particles are oriented at small angle between 0 
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and 100; most of the clay grains are parallel to the bedding plane. However, the trend for 

clay alignment becomes clearer as the imaging sample size increases. At 5% scale (273 

µm x 286 µm), the low angle peak flattens out and is more difficult to recognize than 

the peak for the entire map. This suggests that a relatively large area needs to be 

acquired for the anisotropy study.     

 

 
Figure 4.38: Clay particle orientation relative to the bedding plane (group CCl 

(calcite, clays, Fe-dol., K-feldspar) – sample #1). Majority of clays are oriented at 

00 to 100 

 

Figure 4.39: Clay particle orientation to the bedding plane at different scale (group 

CCl (calcite, clays, Fe-dol., K-feldspar) – sample #1). Note the trend gets better as 

the scale increases 
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Chapter 5: Conclusion 

5.1 Significance and Contribution 

 

Within the 1 ft interval of Wolfcamp shale, large variations of REA to measure 

porosity, organic matter, and grain size indicate a high degree of microstructural and 

mineralogical heterogeneity. Thus, to successfully characterize this interval, 

representative sample size needs to be studied for each depth interval.  At high 

resolution (10 nm), the reported REA values are large; especially for organic matter and 

mineral Group RA (rutile and apatite), and Group P (pyrite) REAs are almost as large as 

the area of the original map (1.56 mm2). This makes the idea of extracting 

petrophysical information from either a large SEM image with low resolution or a 

small SEM image with high resolution statistically unrepresentative. 

Excluding the factor of viewing angle, clays are proved in SEM images to have slit-like 

shape. By selecting appropriate aspect ratio cut-off, majority clays can be effectively 

separated from other grains in a mineral group of nearly similar density. This improves 

grain size distribution and grain alignment study. 

Strong agreement between derived SEM and NMR pore size data indicates that both 

represent the pore body distribution. Compared to previous works that match MICP 

with NMR pore size data (Sulucarnain et al., 2012; Ghomeshi et al., 2013; Fiorelli et al., 

2015 etc.), effective surface relaxation ρe for SEM – NMR matching is larger (41 ± 3 

µm/sec). This ρe is more reasonable compare to ρe values for MICP – NMR matching. 
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Besides REA and pore size distribution, FEI SEM mapping technique allows the 

determination of grain size in shale. For seven sample distributed in the 1 ft Woflcamp 

core section, average grain size ranges from 288 nm to 321 nm. The average grain size 

for the whole section is 307 ± 12 nm; this indicates that grain size is consistent 

throughout this interval. 

 

 

5.2 Conclusion 

The main conclusions of this study are summarized below:  

 

 Representative Elementary Areas (REA) are determined over a 1 ft Wolfcamp 

core to be 0.8 mm2 for porosity and 1.2 mm2 for organic matter. 

 

 Pore and organic size distribution were derived from MAPS SEM images. Pore 

size distributions are consistent for samples taken throughout the 1ft section. 

Thus, only one MAP sample is required to characterize the pore size distribution 

in this interval. For each depth interval, pore size distribution is consistent at 

different scales. REA needed to capture pore size distribution is smaller than 

REA to measure porosity. 

 

 There is good correlation between porosity estimations from imaging data and 

crushed helium porosity measurement (1.0% difference). There is good 
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agreement between organic measurements from imaging data and LECO™ TOC 

data (0.6% difference). 

 

 NMR data and SEM pore size distributions are very similar. Average effective 

surface relaxation ρe values derived from matching SEM and NMR pore size 

distribution is 41 ± 3 µm/sec. Compared to ρe values from matching MICP and 

NMR distribution, this value is recommended as both SEM and NMR represent 

pore body distribution while MICP data represents pore throat distribution.   

 

 

 We derive grain size distribution from SEM images of shale. Mineral grains can 

be segmented into four groups based on gray scale which reflects atomic 

number. Group SCl includes silica, clay (kaolinite and illite), magnesium 

dolomite, and feldspar. Group CCl includes calcite, clay (chlorite), iron rich 

dolomite, and potassium feldspar. Group RA includes rutile and apatite. Group P 

includes pyrite. Watershed segmentation allows mixing grains from the same 

group to be separated and thus improves grain size distribution calculation. 

REAs for different mineral groups are determined using a workflow similar to 

those used for porosity and organic matter REA determinations. Mineral REAs 

are 0.16 mm2 for group SCl, 1.13 mm2 for group CCl, 1.20 mm2 for group RA, 

and 1.30 mm2 for group P. 
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 Clays are oriented mostly parallel to the bedding plane (160 to the bedding plane 

on average), suggesting anisotropy should be strong in these samples. 

 

 

5.3 Limitation of the Study 

The results and conclusions from the study are constrained by following limitations and 

assumptions : 

 The study is conducted over a limited 1 ft interval of Wolfcamp shale. All of the 

results are legitimate only for this interval of investigation. Different results are 

predicted when working on extended Wolfcamp sections or different formations. 

 

 Size distribution analysis is under assumption that all pore, organic matter, or 

grain particles are spherical. The radius of a particle for this study is the 

equivalent radius of a sphere which has same area. 

 

 The imaging surface in the study is parallel to bedding plane. Different results 

may be expected at the surface perpendicular to bedding plane.  

 

 NMR measurements were conducted on native state samples; a significant 

amount of free water in these samplesis missing as can be observed from the 

NMR spectra. Experiments on saturated samples would yield a better result. 
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 8-bit SEM images result in limited intensity histogram. The gray values only 

range from 0 to 255. Thus it is challenging to diffrentiate a particular mineral 

from the others. It is worth considering using 16-bit images for FEI SEM 

Mapping; this will give a much better intensity histogram where the gray values 

range from 0 to 65,535. 

 

 Watershed is observed to not perform very well on mineral Group SCl (silica, 

clay, magnesium dolomite, and potassium feldspar), where most grains mix 

together.  
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