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ABSTRACT  

Analysis of rate and pressure transient responses of a well in spatially 

heterogeneous reservoir cannot be performed using conventional well-test analytical 

equations. An accurate analysis of transient pressure/rate responses of wells in 

heterogeneous naturally fractured reservoirs requires precise characterization of the 

complex interactions between various reservoir and well features. These features include 

heterogeneity, natural and induced fractures, reservoir boundaries, and well interference. 

Single-stencil fast marching (SFM) method has been used for pressure transient analysis 

(PTA) and history matching in heterogenous reservoirs. As an improvement to the SFM 

method, we develop and test the multistencils fast marching (MFM) method, which 

exhibits one order of magnitude higher accuracy compared to SFM method. We 

extensively validate the MFM method for various reservoir and wellbore scenarios by 

comparing its predictions against those of SFM Method, KAPPA Saphir analytical 

model, and KAPPA Rubis numerical model. MFM method can be effectively used to 

estimate pressure response not only in homogeneous reservoir with heteromorphous 

geometry of no-flow boundary but also in highly heterogeneous reservoir affected by 

high contrast permeability/porosity distribution and in the presence of induced/natural 

fractures or impermeable zones. Furthermore, using embedded fracture multistencils fast 

marching (EFMFM) method, we improve MFM method to model a discrete fracture on 

the cartesian reservoir girds. Through EFMFM method, pressure response data can be 

estimated accurately not only in a computationally efficient way, but also in an intuitive 

way with the visualization of the time-varying drainage volume.   
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Numerical simulation of pressure propagation is widely used in unconventional 

reservoir characterization to understand the effects and interaction of spatial 

heterogeneity and complex fracture geometries and distributions. Such a simulation is 

required for accurate prediction of reservoir performance. Numerical simulation is time-

consuming owing to the need of high-resolution grid refinement to account for reservoir 

heterogeneity and complex geometries. Pressure/rate transient responses of a well can be 

analyzed using well-test analytical equations and numerical reservoir flow simulators to 

estimate reserves, production forecasting, and diagnostics of hydraulic fracturing. Most 

well-test analytical equations are derived for homogenous reservoirs and are limited in 

their adaptability to heterogeneous reservoirs. A fundamental concept involved in 

pressure/rate transient analysis in homogeneous reservoir is the radius of investigation 

(ROI). Time-varying location of the maximum rate of pressure change produced due to 

the propagation of pressure pulse from a point source (well) into the reservoir away from 

the wellbore is defined as the ROI. The radius of pressure pulse propagation can be 

estimated by solving Eikonal equation which describes motion of wave front 

propagation. The way to characterize the geometry of a front expending outwards is to 

compute the travelling time in which the front reaches each coordinate over the medium. 

Fast marching (FM) method is a case of level set methods and a powerful solution for 

the Eikonal equation. It is composed of a computationally efficient algorithm for tracking 

the propagation of a physical wave front. Though the fast marching method has 

limitations that extension to higher number of dimensions needs expensive cost in 
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computational time and it requires extensive evaluation for discretized space, it has been 

developed and applied into various research fields including image segmentation, motion 

planning in robotics, path planning for intelligent navigation of an unmanned surface 

vehicle, etc. (Dirami et al., 2012, Janson et al., 2015, Liu et al., 2017). Fast marching 

method can also efficiently track the pressure front propagation and ROI in 

heterogeneous reservoirs with complex fracture systems. Computational complexity of 

this method lies in between those of numerical simulators and analytic solutions. In this 

thesis, we develop the MFM method and test its accuracy against analytical solutions, 

numerical solutions, and SFM predictions in various reservoir scenarios such as 

homogeneous reservoirs, fractured reservoirs, and reservoirs with heterogeneous 

permeability distribution. In addition, we propose a new method, named embedded 

fracture MFM method (EFMFM) for fracture modeling.  
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CHAPTER 2: METHODOLOGY FOR TRACKING PRESSURE 

FRONT USING MULTISTENCILS FAST MARCHING 

This chapter presents the steps involved in the transformation of the Diffusivity 

equation to the pressure solution for a fixed rate draw-down using MFM method which 

can solve the Eikonal equation representing the high-frequency (asymptotic) solution of 

the diffusivity equation for a pressure impulse at the well. High-frequency limit 

represents most rapidly varying portion of the solution that corresponds to the 

propagation front.  

2.1 Asymptotic Solution for Diffusivity Equation 

 Diffusivity equation can be solved to obtain pressure transients within a porous 

medium exhibiting heterogeneous permeability distribution. Diffusivity equation is 

expressed as 

𝜙(𝑥)𝜇𝑐𝑡

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
=  ∇ ∙ {𝑘(𝑥) ∙ ∇𝑝(𝑥, 𝑡)} (2.1) 

where vector x denotes a point in the reservoir, scalars k(x) and ϕ(x) denote the 

permeability and porosity of the reservoir, respectively, at the location x. Those two 

properties depend on geometric configuration of medium and time along with liquid flow 

assumption that compressibility, ct, and fluid viscosity, μ, are constant in isotropic and 

fully saturated formation. Equation 2.1 is converted to frequency domain using Fourier 

transform.  

𝜙(𝑥)𝜇𝑐𝑡(−𝑖𝜔) 
𝜕𝑝(𝑥, 𝜔)

𝜕𝜔
=  𝑘(𝑥) ∙ ∆𝑝(𝑥, 𝜔) + ∇𝑘(x) ∙ ∇𝑝(𝑥, 𝜔) (2.2) 

Frequency domain solution of Equation 2.2 is given as (Fatemi et al., 1995) 
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𝑝(𝑥, 𝜔) =  e−√−i𝜔𝜏(𝑥) ∑
𝐴𝑛(𝑥)

(√−i𝜔)
𝑛

∞

𝑛=0

, (2.3) 

where An (x) is the amplitude of the nth order pressure wave at point x.  The first 0th order 

term 𝐴0(𝑥)  represents the high-frequency limit. Consequently, the high-frequency 

solution of Equation 2.1 in the frequency domain is expressed as 

𝑝(𝑥, 𝜔) =  𝑒−√−𝑖𝜔𝜏(𝑥) 𝐴0(𝑥) (2.4) 

Upon performing the inverse Fourier transform on Equation 2.4, following 2D 

time-domain solution is obtained: 

𝑝(𝑥, 𝑡) =  
𝜏(𝑥)

2√𝜋𝑡
𝑒

𝜏(𝑥)2

4𝑡  𝐴0(𝑥) (2.5) 

Considering the highest order term of √−𝑖𝜔, i.e. (√−𝑖𝜔)2, when Equation 2.4 is 

substituted into Equation 2.2, we obtain the Eikonal equation representing the high-

frequency (asymptotic) solution of the diffusivity equation for a pressure impulse, 

expressed as   

∇𝜏 ∙ ∇𝜏 =
𝜙(𝑥)𝜇𝑐𝑡

𝑘(𝑥)
=

1

𝛼
  

|∇𝜏|√𝛼 = 1, (2.6) 

Therefore, Eikonal equation quantifies the propagation of the pressure front or 

the time-varying drainage area (Vasco et al., 2000). Pressure front is defined as the 

maximum pressure response in the reservoir for an impulse source in the well (King et 

al., 2016). The high-frequency solution is associated with the arrival time of the peak 

slope of the pressure transient that is governed by the reservoir properties. The equation 
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governing the diffusive time of flight (DTF) related to the pressure front propagation 

process can be expressed as 

|∇𝜏(𝐱)|√
𝑘(𝐱)

𝜙(𝐱)𝜇𝑐𝑡

= 1         (2.7) 

The entire term inside the square root is referred as the diffusivity α. The time-

varying DTF is also denoted as τ(x) for the point x and has the unit of time 0.5. This 

approach is similar to the solution for the location of propagating wave front in wave 

theory. Equation 2.7 indicates that DTF is inversely dependent on square root of 

diffusivity α. Here, it is assumed that the pressure depends only on the DTF, which is 

equivalent to an assumption that the contour lines of pressure are strongly related to the 

contour lines denoting the DTF (King et al., 2016), who assumed 𝑝(𝑥, 𝑡) ≈ 𝑝(𝜏(𝑥), 𝑡) to 

reduce 3D diffusivity equation to equivalent 1-D form. Datta Gupta et al. (2011) used 

this concept to find the ROI as a function of time in pressure transient analysis. 

Multistencils fast marching (MFM) method is implemented to solve the Eikonal equation 

to assess the DTF, which can be used to derive the pressure propagation in a 

heterogeneous reservoir. 

2.2 Multistencils Fast Marching Method (MFM) 

Fast marching (FM) method is class of solutions designed to solve the Eikonal 

equation to aid in the determination of position of the pressure front. This method is based 

on the observation that arrival time of the pressure front at any node is only dependent 

on the smallest value of arrival time among the immediate neighboring nodes, which is 

referred as the “causality relationship” and is the basis of fast marching methods (Sethian, 

1996). Several improved FM methods, such as Higher Accuracy Fast Marching method, 
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Shifted Grid Fast Marching Method, Untidy Fast Marching method, and Multistencils 

Fast Marching (MFM) method, have been proposed to enhance the accuracy of FM 

predictions. Most FM algorithms, except MFM algorithm, ignore information of nodes 

in the diagonal direction while considering only the 4-adjacent neighboring nodes in the 

2D plane; consequently, having larger prediction errors along the diagonal directions. 

The MFM method eliminates this limitation by utilizing information from all neighboring 

nodes. In this paper, the accuracy of the MFM method is further improved by numerically 

approximating the gradient in the Eikonal equation as a second-order finite difference 

formulation whenever the arrival times of the neighbor points are available, which is also 

implemented in the development of the Higher Accuracy Fast Marching method 

(Hassouna and Farag, 2007). By combining the concepts of MFM method and HAFM 

method, we develop and apply second-order MFM method in this thesis for modeling 

pressure propagation in a heterogeneous reservoir. The step-wise explanation of the 

second-order MFM approach is described in Figure 2.1.  The first node is selected (black 

circle, Figure 2.1a) at the impulse source and DTF at the first node is assigned τ = 0 at r 

= rw. DTF is then calculated for the 8 neighboring nodes (light gray circles, Figure 2.1b) 

surrounding the first node in the 2D plane. Out of the 8 DTFs calculated for the 

neighboring nodes, the node with minimum value of DTF is selected and ‘accepted’ (dark 

gray circle, Figure 2.1b). Following that, the stencil is moved to the neighboring newly 

accepted node and the DTF is calculated for the 10 neighboring nodes   surrounding the 

first node and the next selected node (light gray circles, Figure 2.1c). The stencil is 

moved to the neighboring newly accepted node and the DTF is calculated for the 3 extra 

neighboring nodes surrounding the newly accepted node. The DTF is compared for all 
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the 10 neighboring nodes (light gray circles, Figure 2.1c) including previously calculated 

DTF from the first node to select the next node with minimum value of DTF. This process 

is repeated through all the nodes in the reservoir domain till the DTFs for all points are 

determined (Figure 2.1d, Figure 2.1e). The key difference between multistencils and 

single-stencil approach is the number of neighboring nodes considered at each time-step. 

 

Figure 0.1: Algorithm of multistencils fast marching (MFM) method 

2.3 Drainage Volume and Pressure Transient Analysis   

MFM algorithm tracks the temporal and spatial evolution of the drainage volume. 

In order to formulate the drainage volume as a function of physical time, τ calculated 

using the MFM approach needs to be transformed to the physical time t. The relationship 

used in this thesis is τ2 = 4t, which is based on the assumption that pressure depletion will 

not occur beyond the pressure front during a 2-D radial flow; therefore, the flow can be 

considered as a pseudo steady state flow with a transient reservoir boundary. Finally, a 

geometric approximation of the drainage volume is used to relate the well rates with the 

pressure response of a well.  Multistencils fast marching (MFM) method solves Eikonal 

equation, derived in section 2.1, to compute Diffusivity Time of Flight (DTF) at all the 

nodes. Following that, diffusivity equation in three dimensions is transformed to one 

dimensional space formed using DTF as the new spatial coordinate (Zhang et al., 2015). 

In doing so, the drainage volume can be related to DTF. Diffusivity equation is expressed 

as 
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𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
=  ∇ ∙ {𝜙𝑐𝑡𝛼 ∇𝑝} (2.8) 

High-frequency solution of Diffusivity equation generates the Eikonal equation 

expressed as 

|∇𝜏| =
1

√𝛼
 (2.9) 

In order to perform the dimensional transformation of Diffusivity equation from 

radial coordinates to DTF coordinates, a strong relationship is assumed between pressure 

contours and DTF contours, such that  𝑝(𝑥, 𝑡) ≈ 𝑝(𝜏(𝑥), 𝑡). In other words, pressure 

gradient direction aligns with the DTF gradient direction (Zhang et al., 2015). Pressure 

gradient with respect to DTF can then be written as 

∇p =
𝜕𝑝

𝜕𝜏
 ∇𝜏 (2.10) 

Equation 2.9 when incorporated into Equation 2.10 generates 

∇p =
𝜕𝑝

𝜕𝜏
 

1

√𝛼
𝐧𝜏 (2.11) 

where 𝐧𝜏 is the inward-pointing unit normal vector to the contour of τ. Substituting 

Equation 2.11 into Equation 2.8, we get 

𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
=  ∇ ∙ (𝜙𝑐𝑡√𝛼

𝜕𝑝

𝜕𝜏
𝐧𝜏) (2.12) 

To work with Equation 2.12, divergence operator needs to be applied on 𝐧𝜏 that 

requires coordinate transformation from Cartesian coordinate system to (τ, ψ, κ), such 

that τ is the direction of the DTF and the other two coordinates, ψ and κ are orthogonal 

directions to each other and to τ. Thus, the divergence of vector 𝐧𝜏 in the direction of τ 

can be expressed as 
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∇ ∙ 𝐧𝜏 =
1

ℎ𝜏ℎ𝜓ℎ𝜅
[
𝜕(ℎ𝜓ℎ𝜅𝑛𝜏)

𝜕𝜏
] (2.13) 

where hτ, hψ, and hκ are the lengths of the covariant vectors. On applying the divergence 

operator, Equation 2.12 converts to  

𝜙𝑐𝑡

𝜕𝑝

𝜕𝑡
=  

1

ℎ𝜏ℎ𝜓ℎ𝜅

𝜕

𝜕𝜏
(𝜙𝑐𝑡ℎ𝜓ℎ𝜅√𝛼

𝜕𝑝

𝜕𝜏
) (2.14) 

According to the definition of covariant vector, hτ is equal to √𝛼 . Also, the 

product ℎ𝜏ℎ𝜓ℎ𝜅 is simply the Jacobian J of the coordinate transformation. Therefore, 

Equation 2.14 reduces to 

𝐽𝜙
𝜕𝑝

𝜕𝑡
=  

𝜕

𝜕𝜏
(𝐽𝜙

𝜕𝑝

𝜕𝜏
) (2.15) 

J and 𝜙 are functions of (τ, ψ, κ) in general. Double integral of Equation 2.15 

over the coordinates ψ and κ generates  

𝜔(𝜏)
𝜕𝑝

𝜕𝑡
=  

𝜕

𝜕𝜏
[𝜔(𝜏)

𝜕𝑝

𝜕𝜏
] (2.16) 

where 

𝜔(𝜏) =  ∬ 𝜙𝐽(𝜏, 𝜓, 𝜅) 𝑑𝜓𝑑𝜅 (2.17) 

 Drainage pore volume in the (τ, ψ, κ) coordination system is expressed as 

𝑉𝑝(𝜏) = ∭ 𝜙𝐽(𝜏, 𝜓, 𝜅) 𝑑𝜏𝑑𝜓𝑑𝜅 (2.18) 

Consequently, 𝜔(𝜏) can be reformulated as 

𝜔(𝜏) = ∬ 𝜙𝐽(𝜏, 𝜓, 𝜅) 𝑑𝜓𝑑𝜅 =
𝜕𝑉𝑝(𝜏)

𝜕𝜏
 (2.19) 

Equation 2.16 can be simplified using Equation 2.19 as 
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𝜕𝑉𝑝(𝜏)

𝜕𝜏

𝜕𝑝(𝜏, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝜏
(

𝜕𝑉𝑝(𝜏)

𝜕𝜏

𝜕𝑝(𝜏, 𝑡)

𝜕𝜏
) (2.20) 

This is the 1D Eikonal equation in terms of the DTF. 

 

Figure 0.2: A cartoon of streamlines and DTF contour (adapted from King et al., 

2016) 

In Figure 2.2, the flux is chosen inwards pointing to the well to accommodate 

positive flux for a producing well. The volume between streamlines and the DTF contour 

is the time-varying drainage pore volume (Vp). At any location x, the rate of change in 

the drainage pore volume is the porosity at that location. The inward-pointing normal 

vector (𝐧𝜏) to the propagation of pressure front is related to the negative gradient of the 

drainage volume (Vp). Based on the above two statements and Equation 2.19, we can 

formulate the following  

𝐴𝜙𝒏𝜏 =  −∇𝑉𝑝(𝜏) = −𝜔(𝜏)∇𝜏  (2.21) 

Using Equations 2.21 and 2.9, flow rate (flux) in Cartesian coordinates can be 

transformed to the (τ, ψ, κ) coordinates as follows 

𝑞(𝜏, 𝑡) = −
𝑘𝐴

𝜇
𝐧𝜏 ∙ ∇𝑝 = −

𝑘𝐴

𝜇
𝐧𝜏 ∙ [∇𝜏

𝜕𝑝

𝜕𝜏
+ ∇𝜓

𝜕𝑝

𝜕𝜓
+ ∇𝜅

𝜕𝑝

𝜕𝜅
]

≈
𝑘𝐴

𝜇

𝜔(𝜏)∇𝜏

𝐴𝜙
∙

𝜕𝑝

𝜕𝜏
∇𝜏 = 𝑐𝑡𝜔(𝜏)

𝜕𝑝

𝜕𝜏
 

(2.22) 
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Using Equation 2.22, the diffusivity equation expressed as 2.20 can be restated in 

terms of the flux in 1D as  

𝑐𝑡

𝜕𝑝(𝜏, 𝑡)

𝜕𝑡
=

𝜕𝑞(𝜏, 𝑡)

𝜕𝑉𝑝(𝜏)
 (2.23) 

Integrability of pressure requires (King et al., 2016) 

𝜕

𝜕𝜏

𝜕𝑝(𝜏, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑡

𝜕𝑝(𝜏, 𝑡)

𝜕𝜏
 

(2.24) 

Equation 2.24 facilitates the derivation of 1D Diffusivity equation in terms of flux 

expressed as 

𝜕𝑞(𝜏, 𝑡)

𝜕𝑡
−

𝜕𝑉𝑝(𝜏)

𝜕𝜏

𝜕

𝜕𝜏
(

𝜕τ

𝜕𝑉𝑝(𝜏)

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
) = 0 (2.25) 

Dimensionless Boltzmann ratio 𝜉 is expressed in terms of τ and t as 

𝜉 =  
𝜏2

4𝑡
 (2.26) 

Using this dimensionless variable, derivatives of the flow rate are expressed as  

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
=

𝜏

2𝑡

𝑑𝑞(𝜏, 𝑡)

𝑑𝜉
 and 

𝜕𝑞(𝜏, 𝑡)

𝜕𝑡
= −

𝜏2

4𝑡2

𝑑𝑞(𝜏, 𝑡)

𝑑𝜉
 (2.27) 

Therefore,  

𝜕𝑞(𝜏, 𝑡)

𝜕𝑡
= −

𝜏2

4𝑡2

2𝑡

𝜏

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
= −

𝜏

2𝑡

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
 (2.28) 

Using Equation 2.25 and 2.27, Equation 2.23 can be transformed to  

𝜏

2𝑡
(

1

𝑤(𝜏)

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
) +

𝜕

𝜕𝜏
(

1

𝑤(𝜏)

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
) = 0 (2.29) 
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In this form, the diffusivity equation may be integrated explicitly with the initial 

and boundary conditions. It requires one initial condition and two boundary conditions. 

For a fixed flow rate drawdown in an infinite domain, the initial and boundary conditions 

are (King et al., 2016): 

t = 0 : p = pi q = 0  

τ = 0 :  q = qw  

τ → ∞ : p → pi q → 0  

and the solution is obtained by solving the restated Equation 2.29 in the form of  

𝜕
𝜕𝜏

(
1

𝑤(𝜏)
𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
)

(
1

𝑤(𝜏)
𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
)

= −
𝜏

2𝑡
 (2.30) 

Integrating the Equation 2.30 within an arbitrary function of time in terms of DTF 

leads to  

∫  

𝜕
𝜕𝜏

(
1

𝑤(𝜏)
𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
)

(
1

𝑤(𝜏)
𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
)

𝑑𝜏

𝜏

0

= ∫ −
𝜏

2𝑡

𝜏

𝜏=0

𝑑𝜏  

[ln (
𝜕τ

𝜕𝑉𝑝(𝜏)

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
)]

0

𝜏

= −
𝜏2

4𝑡
  

ln (
𝜕τ

𝜕𝑉𝑝(𝜏)

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
) − ln

𝑞(0, 𝑡)

𝑉𝑝(0, 𝑡)
= −

𝜏2

4𝑡
 (2.31) 

With the IC and BC conditions mentioned above, we end up with 
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𝜕τ

𝜕𝑉𝑝(𝜏)

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
= −

𝑞𝑤

𝑉𝑝(𝑡)
𝑒−

𝜏2

4𝑡 (2.32) 

Using Equation 2.24, the asymptotic solution to the diffusivity equation for a 

fixed rate draw-down in an infinite domain is expressed as 

𝑐𝑡

𝜕𝑝(𝜏, 𝑡)

𝜕𝑡
=

1

𝑤(𝜏)

𝜕𝑞(𝜏, 𝑡)

𝜕𝜏
= −

𝑞𝑤

𝑉𝑝(𝑡)
 𝑒−

𝜏2

4𝑡 (2.33) 

Now, we need to know a relationship between the physical time t and the diffusive 

time of flight τ to find the pressure in the reservoir. During the propagation of pressure 

in the heterogeneous reservoir, we describe the characteristic of pressure drop as pseudo 

steady state with an assumption of no-flow at the edges of pressure front. Therefore, the 

exponential terms tend to 1. Using this relationship, we can integrate the equation with 

time to determine the pressure drop after the drainage volume is calculated using the 

MFM method. The solution for a fixed rate draw-down is written as 

∆𝑝(𝜏, 𝑡) =
𝑞𝑤

𝑐𝑡
∫

𝑑𝑡

𝑉𝑝(𝑡)
𝑒−

𝜏2

4𝑡

1

𝑡=0

≈
𝑞𝑤

𝑐𝑡
∫

𝑑𝑡

𝑉𝑝(𝑡)

1

𝑡=0

 (2.34) 

For a fixed rate draw-down in an infinite domain, we have: 

∆𝑝(𝜏, 𝑡) =
𝑞𝑤

𝑐𝑡
∫

𝑑𝑡

𝑉𝑝(𝑡)
𝑒−

𝜏2

4𝑡

1

𝑡=0

                                                                                (2.35) 

Bourdet-type derivative of pressure in wellbore can then be expressed as 

𝑝′
𝑤𝑓

=  
𝑑∆𝑝𝑤𝑓

𝑑𝑙𝑛(𝑡)
= 𝑡

𝑑∆𝑝(𝜏, 𝑡)

𝑑𝑡
|

𝜏=0

=
𝑞𝑤𝑡

𝑐𝑡𝑉𝑝(𝑡)
                                                   (2.36) 
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CHAPTER 3: VALIDATIONS OF MFM-BASED PRESSURE 

FRONT SIMULATION 

3.1 Accuracy of MFM method  

Several numerical experiments are performed to test the accuracy of the 

proposed second-order MFM method for two-dimensional front tracking applications. 

These experiments are necessitated because of the limited literature on validations of FM 

predictions of pressure front propagation. First, MFM and SFM predictions of travel time 

are compared against an assumed analytical solution. Second, MFM predictions are 

compared against those of SFM method in terms of radius of investigation in a reservoir 

with homogeneous and heterogeneous permeability distribution. Further, predictions of 

the proposed MFM method are compared those of previously published models. Finally, 

commercial KAPPA Rubis numerical and KAPPA Saphir analytical models are used for 

the numerical validation of MFM predictions in complex reservoir scenarios, such as 

vertical fractured well in naturally fractured reservoir. All the numerical experiments 

assume a centrally located single vertical well producing at a constant flow rate. 

3.1.1 Multistencils Fast Marching vs. Single-stencil Fast Marching vs. Analytic Models 

Similar to Hassouna and Farag (2007), we compare the error norms for SFM and 

the proposed second-order MFM predictions of travel-time isocontour lines in 2D plane 

against an assumed analytical travel-time function (Figure 3.1a). Discrepancies between 

the computed travel time T(x) obtained using MFM and SFM methods and the assumed 

analytical travel-time solution Ta(x) at any given node on the 2D plane located at x are 

quantified using the following three error norms: 
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𝐿1 =
1

𝑛
∑|𝑇 − 𝑇𝑎|

𝑛

𝑖=1

   (3.1) 

𝐿2 =
1

𝑛
∑|𝑇 − 𝑇𝑎|2

𝑛

𝑖=1

   (3.2) 

𝐿∞ = max(|𝑇 − 𝑇𝑎|)   (3.3) 

Where n is the total number of nodes defined on the 2D planar reservoir for modeling 

purposes.  

In Figure 3.1, a large rectangular reservoir with a distinct distribution of 

diffusivity is modeled as a 2D plane with uniformly placed 101 nodes by 101 nodes. The 

reservoir model has 1 centrally located node identifying the well location (the source of 

pressure), 400 nodes at the edges identifying the reservoir boundary, and 9800 nodes 

identifying the reservoir nodes located inside the reservoir boundary. Analytical travel-

time function assumed for this numerical experiment is  𝑇𝑎(𝑥) = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦
0
)

2
−

1. In doing so, we invoke Equation 2.7 to obtain the reservoir diffusivity at all nodes as 

a continuously differentiable function (Figure 3.1a), which can be assumed as a 

permeability distribution if other parameters in the diffusivity term α are assumed to be 

constant. Following that, SFM and MFM methods are implemented to model the 2D 

pressure front propagation in the large reservoir with the aforementioned distribution of 

diffusivities. Various error norms for this comparison are listed in Table 3.1, which 

includes 1st and 2nd order SFM and MFM predictions.  Error norms in Table 3.1 illustrate 

that second-order MFM method enhances the accuracy by almost an order of magnitude 

compared to the other methods. 
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Figure 0.1: (a) Distribution of diffusivity in a large square-shaped reservoir for 

comparing the error norms of SFM and MFM travel-time predictions against an 

assumed analytical travel-time function, and (b) radius of investigation (ROI) 

contour lines generated using SFM and MFM methods along with those calculated 

using exact solution of ROI in a large homogenous reservoir spread across a 20,000 

ft by 20,000 ft square-shaped area.  

 

 

Table 3.1: Error norms of computed travel time T(x) for various fast marching 

methods. 

 

 Error norms 

 L1 L2 L∞ 

1st order SFM 0.74610 0.69709 1.31485 

2nd order SFM 0.19740 0.04234 0.32895 

1st order MFM 0.60693 0.44561 0.97252 

2nd order MFM 0.03961 0.00250 0.18765 

 

Figure 3.1b compares the radius of investigation predicted using SFM and MFM 

methods against that derived using the well-established analytic solution. The 

comparison is performed for a large square-shaped homogeneous reservoir spread across 

20,000-ft by 20,000-ft with an impulse pressure source in the centrally located well. The 

reservoir and fluid properties assumed for this comparison are listed in Table 3.2. As the 
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pressure front propagates farther in the reservoir, the differences between predictions of 

each method and analytic solution decreases (Table 3.3). At 25th hour, the relative errors 

in SFM prediction is 0.5% and that in MFM prediction is 0.05%, which decreases to 

0.1% and 0.01%, respectively, at the 75th hour. At both the times, the accuracy of MFM 

is one order higher than that of SFM. In Figure 3.1b, the accuracy of MFM method in 

comparison to SFM method is visually demonstrated using isocontour lines. 

Table 3.2: Properties assumed for the case involving a vertical well centrally located 

in a large square-shaped homogeneous reservoir spread across 20,000-ft by 20,000-

ft. 

 

Reservoir property 

Dimension 20,000 ft X 20,000 ft 

Grid size 10 ft X 10 ft 

Matrix permeability 100 md 

Porosity 0.20 

Fluid property 

Viscosity 1 cp 

Total compressibility 1.0 X 10-6 psi-1 

 

Table 3.3: Radius of investigation computed using various methods for the case 

involving a vertical well centrally located in a large square-shaped homogeneous 

reservoir spread across 20,000-ft by 20,000-ft. 

 

 Radius of Investigation 

 Analytic SFM MFM 

25 hours 3631 ft 3600 ft 3628 ft 

75 hours 6290 ft 6280 ft 6289 ft 
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In heterogeneous reservoirs with smoothly varying permeability distribution 

(Figure 3.2a), the difference in accuracies of SFM and MFM method predictions for 

pressure propagation from a centrally located well is noticeable in terms of the predicted 

isocontour lines showing the edges of pressure front propagation (Figure 3.2b) and time-

varying drainage volume (Figure 3.3). The reservoir, well, and fluid properties assumed 

for this comparison are listed in Table 3.4. At the 10th day, there is a 4% discrepancy 

between the drainage areas predicted by both the methods (Figure 3.3) amounting to 

1.11×105 ft3 of difference in drainage volumes. The difference between the predictions 

increases as the pressure front propagates farther in the reservoir, unlike the 

homogeneous case. Owing to the underestimation of drainage area by the SFM method, 

the pressure drops and Bourdet-type pressure derivative responses (Figure 3.4) are 

higher for the SFM method as compared to MFM method. 

Table 3.4: Properties assumed for the case involving a vertical well in a 

heterogeneous reservoir with smoothly varying permeability distribution. 

Reservoir property 

Dimension  3,000 ft X 3,000 ft 

Grid size 10 ft X 10 ft 

Permeability range 0.005 - 0.075 md 

Porosity 0.10 

Fluid property 

Viscosity 1 cp 

Total compressibility 1.0 X 10-6 psi-1 
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Figure 0.2: (a) Heterogeneous distribution of permeability and (b) ROI contour 

lines generated using SFM and MFM methods in a large reservoir spread across a 

3,000-ft by 3,000-ft square-shaped area. 

 

 

Figure 0.3: SFM and MFM predictions of time-varying drainage volumes in a large 

heterogeneous reservoir, as described in Figure 3.2, being produced using a vertical 

well. 
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Figure 0.4: Diagnostic plot of pressure change and Bourdet-type pressure derivative 

responses of a vertical well in a large heterogeneous reservoir, as described in Figure 

3.2, computed using SFM and MFM methods. 

 

3.1.2 MFM method vs. Previously proposed method 

In the cases of vertical well in a large reservoir (Figure 3.5) and fractured well in 

a bounded reservoir (Figure 3.6), our proposed second-order MFM predictions match 

well with those generated using the KAPPA analytical model. For the fractured well 

response, MFM accurately predicts the typical half-slope behavior in the pressure 

derivative response due to the presence of bi-wing planar fracture extending from the 

wellbore. Notably, when the reservoir is depleted because pressure front reaches the 

enclosing no-flow boundary, the pressure change and its derivative responses exhibit the 

unit slopes (Figure 3.6), which is a characteristic of a closed reservoir. 

Neha et al. (2012) and Xie et al. (2012) implemented SFM method to estimate 

the pressure drop and its derivative responses observed in a centrally located vertical well 

in large homogeneous reservoir (Figure 3.5) and those in a centrally located vertical 
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fractured well in bounded reservoir (Figure 3.6). They demonstrated the efficacy of FM 

method as a pressure transient analysis tool using these cases. In order to validate and 

benchmark the MFM method that we developed and present in this thesis, we developed 

models similar to Neha et al. (2012) and Xie et al. (2012) and compared MFM predictions 

against their predictions. For the case of vertical well in large reservoir (Figure 3.5), 

Table 3.5 lists the assumed reservoir, well and fluid properties. MFM method and SFM 

method (previously published model) generate similar pressure derivative responses. The 

pressure change response computed using the proposed MFM method agree very well 

with KAPPA analytical solutions, whereas a good agreement is not observed for the 

previously published SFM predictions. For the case of vertical fractured well in bounded 

reservoir (Figure 3.6), Table 3.6 lists the assumed reservoir, well and fluid properties. 

In this case, the proposed second-order MFM method predicts pressure change and its 

derivative more accurately compared to the those predicted using the previously 

published models. Accuracy of MFM predictions is supported by their agreement with 

those generated using the KAPPA analytical solutions. Among the three methods, 

significant discrepancy in the pressure derivative response is exhibited by the previously 

published SFM method predictions especially beyond 10 days from the beginning of 

constant flow drawdown in the bounded reservoir (Figure 3.6). This figure also 

illustrates that the boundary effect on well response is observed at 10 days of production. 
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Table 3.5: Properties assumed for the case involving a vertical well in a large 

reservoir, described in Figure 3.5. 

Reservoir property 

Dimension  6,000 ft X 6,000 ft 

Grid size 5 ft X 5 ft 

Initial pressure 4500 psi 

Matrix permeability 1 md 

Thickness 10 ft 

Porosity 0.25  

Well property 

Well radius 0.25 ft 

Flowrate 100 bbl/day 

Fluid property 

Viscosity 0.4 cp 

Total compressibility 6.0 X 10-6 psi-1 

 

 

Figure 0.5: Diagnostic plot of pressure change and Bourdet-type derivative 

responses of a vertical well in a large homogeneous reservoir computed using MFM 

method, KAPPA Saphir analytical model, and previously published SFM model. 



23 

Table 3.6: Properties assumed for the case involving a vertical fractured well in a 

bounded reservoir, described in Figure 3.6. 

Reservoir property 

Dimension  2,000 ft X 2,000 ft 

Grid size 1 ft X 1 ft 

Initial pressure 4100 psi 

Matrix permeability 1 md 

Thickness 10 ft 

Porosity 0.076  

Well/Fracture property 

Well radius 0.25 ft 

Flowrate 100 bbl/day 

Fracture half-length 200 ft 

Fluid property 

Viscosity 0.4 cp 

Total compressibility 6.0 X 10-6 psi-1 

 

 

 

Figure 0.6: Diagnostic plot of pressure change and Bourdet-type derivative 

responses of a vertical well in a fractured reservoir computed using MFM method, 

KAPPA Saphir analytical model, and previously published SFM model. 
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3.1.3 MFM method vs. KAPPA analytical model vs. KAPPA numerical model 

Computational complexity and accuracy of the proposed MFM method lies in 

between analytic methods and numerical models. Compared to numerical solutions, 

MFM method is faster and better accounts for heterogeneity in the reservoir diffusivity 

with a lower prediction accuracy. On the other hand, MFM method is more realistic with 

less simplifying assumptions compared to analytic solutions. Overall, MFM method can 

account for heterogeneity of reservoir properties and complexity of geometries and 

orientations without resorting to computationally intensive reservoir simulation or to 

simplifying assumptions of analytical models. To demonstrate the advantage of MFM 

method, we perform a numerical experiment using KAPPA software’s numerical and 

analytic tools for pressure transient modeling. In this experiment, we attempt to predict 

another vertical fractured well response in a bounded reservoir using the properties listed 

in Table 3.6. Figure 3.7 presents the results that allows a better comparison for the 

assessment of MFM accuracy compared to analytic and finite-difference numerical 

solutions. Noticeable discrepancies are observed in the pressure derivative responses 

among three methods during the radial flow regime lasting between 0.1 day to 10 days 

from the beginning of constant flow drawdown in the bounded reservoir. Figure 3.7 

illustrates that the boundary effect on well response is observed at 10 days of production. 

This example is too simple to discuss the computational efficiency. However, we can 

comment that three flow regimes, namely infinite conductivity fracture flow, infinitely 

acting radial flow, and closed reservoir flow, can be identified in all three methods. The 

effect of no-flow reservoir boundary in the MFM and KAPPA analytical methods tends 

to be well-identified compared to that in KAPPA numerical method. The number of grids 
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and nodes were equal in the MFM and KAPPA numerical models for this numerical 

experiment. 

 

Figure 0.7: Diagnostic plot of pressure change and Bourdet-type derivative 

responses of a vertical fractured well in a bounded homogeneous reservoir, similar 

to that described in Figure 3.6, computed using MFM method, KAPPA Saphir  

numerical model, and KAPPA Saphir analytical model. 

 

3.2 Validations of MFM method 

3.2.1 Basic reservoir, Fluid, and Well Properties 

In this section, validation of MFM method against KAPPA analytical model is 

performed for various reservoir scenarios, such as variation in matrix permeability, 

compressibility, flowrate, viscosity, wellbore radius, porosity, reservoir size, and fracture 

half length (Figures 9 and 10). We undertake this extensive validation work because 

there is no literature on the efficacy of MFM method for a wide range of reservoir 

scenarios. Overall, the proposed MFM method generates accurate results. Prediction 

accuracy for well with finitely conductive bi-wing fractures is poor compared to those 
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for other properties presented in Figures 9 and 10. Implementation of fracture width in 

corner-point grid scheme, as adapted in MFM method, needs to be improved with grid 

refinement to improve the accuracy for finite fracture conductivity.   

 

 

Figure 0.8: Diagnostic plot of pressure change and its derivative responses of a 

vertical well in a bounded homogeneous reservoir for various (a) compressibility, 

(b) permeability, (c) flowrate, and (d) porosity computed using MFM method. 
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Figure 0.9: Diagnostic plot of pressure change and its derivative responses of a 

vertical well in a bounded homogeneous reservoir for various (a) fracture half 

length, (b) reservoir size, (c) viscosity, and (d) well radius computed using MFM 

method. 

 

3.2.2 Geometry of Reservoir Boundary 

For purposes of validation, we consider four geometries of no-flow reservoir 

boundary, namely (a) partially circular no-flow reservoir boundary with single sealing 

linear fault, (b) partially circular no-flow reservoir boundary with two parallel sealing 

linear faults, (c) partially circular no-flow reservoir boundary with two perpendicular 

intersecting sealing linear faults, and (d) square-shaped no-flow reservoir boundary 

(Figure 3.10). 
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Figure 0.10: Travel-time computed using MFM method at t = 100 days for four 

distinct reservoir boundary shapes, namely (a) partially circular no-flow reservoir 

boundary with single sealing linear fault, (b) partially circular no-flow reservoir 

boundary with two parallel sealing linear faults, (c) partially circular no-flow 

reservoir boundary with two perpendicular intersecting sealing linear faults, and 

(d) square-shaped no-flow reservoir boundary. 

 

We present the validation of MFM predictions against KAPPA Rubis numerical 

simulation for each case with different boundary shapes in Figure 3.11. The duration of 

radial flow regime depends on the distance of no-flow boundaries from wells. After the 

end of radial flow regime, characteristic signatures of the reservoir boundary shapes are 

observed in both MFM and KAPPA predictions. In the presence of rectangular no-flow 

boundary (Case d) and channel-type two parallel no-flow boundaries (Case b), the 

derivative response shows the characteristic unit slope and half slope, respectively, as 

shown in Figure 3.11. Furthermore, in the presence of single sealing fault (Case a) and 
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two intersecting sealing faults (Case c), the derivative response stabilizes at twice and 

four-times, respectively, of its value attained during the radial flow regime, as shown in 

Figure 3.11, which is characteristic of two sealing faults at various orientations 

 
Figure 0.11: Travel Diagnostic plot of pressure change and its derivative responses 

of vertical wells in reservoirs having various boundary shapes, as described in 

Figure 3.10, computed using MFM method. 

 

3.2.3 Effect of Fractures 

MFM method can be effectively used to estimate pressure response not only in 

homogeneous reservoir with heteromorphous geometry of no-flow boundary but also in 

heterogeneous reservoir affected by permeability/porosity distribution and in the 

presence of induced/natural fractures. In unconventional reservoirs, it is crucial that 

reservoir simulation and pressure front tracking account for the effect of induced fracture 

and complex natural fracture network in the reservoir to quantify the interactions of 

hydraulic fractures and natural fractures with pressure front. These interactions govern 

the drainage volume. We test the accuracy of MFM method for reservoirs with complex 

fracture geometries and conductivity distribution being produced from a vertical 
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fractured well. Temporal variations of drainage volume in such reservoirs are studied 

using following three scenarios: 

 

Figure 0.12: Travel Diagnostic MFM predictions of travel-time contour lines till t = 

50 days for three naturally fractured reservoirs of varying conductivity being 

produced from a vertical fractured well. 

 

• Case 1: A reservoir with only infinite conductivity fractures (Figure 3.12a) 

• Case 2: A reservoir with both cemented natural fractures and infinite 

conductivity fractures (Figure 3.12b) 

• Case 3: A reservoir with only cemented fractures. (Figure 3.12c) 

As can be seen in Figure 3.13, Case 3 has smallest drainage area and highest-

pressure depletion. Time-varying drainage area stabilizes for Case 1 around 60 days and 

it takes 120 days for Case 3. Differences in the pressure propagation and travel time due 

to the difference in cemented- and open-fracture distributions are visible in Figure 3.12. 

The presence of open fractures permits a fast propagation of pressure, which is not 

possible in the presence of closed fractures. Pressure propagation in Case 3 was also 

simulated using KAPPA Rubis numerical simulator (Figure 3.14). Overall, there is a 

qualitative agreement between MFM and KAPPA Rubis predictions. However, the effect 

of reservoir boundary is not evident in KAPPA Rubis results, which is adequately 
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captured as the unit slope signature of the pressure derivative response in MFM 

predictions 

 

Figure 0.13: MFM predictions of (a) time-varying drainage volumes and (b) 

pressure change responses of vertical fractured wells in three naturally fractured 

reservoirs, as described in Figure 3.12. 

 

 

 

Figure 0.14: Diagnostic plot of pressure change and its derivative responses of a 

vertical fractured well in a naturally fractured reservoir, as shown in Case 3 of 

Figure 3.12, computed using MFM method and KAPPA Saphir numerical model. 

 

3.2.4 Well Interference Effects 

MFM method can be used to model superposition in space and in time provided 

the system exhibits linear behavior. Algorithm used in previous sections needs to be 
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modified to consider superposition principle. Using the new algorithm, the estimated 

drainage volume attributes the pressure drop and its derivative for multi-well scenario. 

Superposition in space requires that the propagation of pressure front for each well is 

modeled using MFM method separately in the absence of other wells, with an assumption 

that there is no effect from adjacent wells. The drainage volume calculated using the 

MFM method is used to compute the pressure changes at any point in the reservoir due 

to each well, which is then added to obtain the total pressure change in the multi-well 

scenario. Superposition in space is valid when the entire system exhibits negligible non-

linear flow behavior, for example, absence of turbulence and non-linear pressure 

dependence of reservoir and fluid properties.  MFM method was tested for a case with 

producing well located 50-ft away from the observation well (Figure 3.15). MFM 

predictions of pressure and its derivative responses match well with KAPPA analytical 

and numerical predictions (Figure 3.16). 

 

Figure 0.15: MFM travel-time predictions of two producing vertical wells 50-ft 

away from each other in a square-shaped bounded homogeneous reservoir. 
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Figure 0.16: Diagnostic plot of pressure change and its derivative responses of a 

vertical well 50-ft away from another vertical well in a square-shaped bounded 

homogeneous reservoir, as described in Figure 3.15, computed using MFM method, 

KAPPA Saphir analytical model, and KAPPA Rubis numerical model. 

 

3.3 Conclusions 

In this chapter, we tested an accurate and efficient method for pressure responses 

and validated intensively in KAPPA numerical solutions for various fractured 

heterogeneous reservoir scenarios. The reservoir drainage volume can be estimated from 

the pressure ‘front’ propagation using multistencils fast marching (MFM) method. A 

geometric approximation of the drainage volume is then used to compute the well rates 

and the reservoir pressure. MFM Method proves to be computationally efficient in 

characterizing the effects of reservoir and fracture properties on pressure transient 

response in complex reservoirs. This method can effectively give an intuitive clue for not 

only reservoir behavior but design process of hydraulic fracture or well spacing. 
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CHAPTER 4: MULTISTENCILS FAST MARCHING IN THE 

PRESENCE OF ZONES OF HIGH-CONTRAST DIFFUSIVITIES 

In previous chapters, multistencils fast marching method is implemented in 

heterogeneous reservoirs with smoothly varying permeability distribution and containing 

thin infinite- and zero-conductivity fractures. The proposed modeling method was 

validated against analytic and numerical results. In this chapter, the MFM method is 

improved further to model reservoirs with high-contrast permeability distribution and 

large-sized low-permeability zones, which were erroneously modeled using the MFM 

method as proposed in the previous chapter. 

4.1 Literature Review 

Extensive studies have been conducted on tracking wave propagation front, 

propagation path and its speed in highly heterogeneous medium (Dey et al., 2009; 

Capozzoli et al., 2014). These studies include the conventional fast marching (FM) 

techniques to find the first-arriving phase as well as the recent developments to employ 

the reflection of wave propagation in the FM method (Rawlinson and Sambridge, 2004). 

FM method is a popular numerical tool in petroleum engineering to determine the 

drainage volume in highly heterogeneous reservoirs, such as shale formation with 

discrete fracture network (Kim et al., 2009; Kang et al., 2013; Yang et al., 2017) Current 

analysis on the reservoir drainage volume using FM method involves relatively low-

contrast or smoothly varying permeability distribution in the reservoir. Presence of high-

contrast permeability heterogeneity in the medium challenges the computation of 

drainage volume. In this chapter, MFM method is improved to estimate realistic drainage 

volume in reservoirs with spatially distributed zones of high-contrast diffusivities. The 
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accuracy of the proposed method is evaluated by comparing the MFM predictions against 

those of KAPPA Rubis numerical simulator. 

4.2 Problem Statement 

There are numerous publications on fracture analysis and reservoir performance 

characterization in spatially heterogeneous hydrocarbon reservoirs. FM-based methods 

facilitate interpretation of pressure transient responses to estimate reservoir volume and 

flow parameters. FM method predictions have been validated for reservoirs with high-

conductivity induced fractures and sealed natural fracture. The MFM method that we 

developed and described in Chapter 3 tracks down the propagation of outermost pressure 

front and subsequently enables computation of the drainage volume in ideal reservoirs 

without large-sized areas of high permeability contrasts. MFM simulations for reservoirs 

containing cemented/conductive fractures accurately predict the propagation of pressure 

response because the volume of fractures compared to the reservoir volume is negligible. 

However, MFM method developed so far is prone to numerical dispersion and errors 

with an increase in the number of the fractures and the volume occupied by zones of high 

contrast. 

We improve the MFM method and describe the improvements and algorithmic 

changes in this chapter. For example, Figure 4.1b shows the pressure front propagation 

at 5 days in the square-shaped bounded reservoir with an impermeable patch (Figure 

4.1a) being produced from a centrally located vertical well. The two solid lines in Figure 

4.1b represent the pressure fronts, wherein the outer front describes the extent of pressure 

propagation in the bounded reservoir and the inner front indicates that pressure and flow 

is not able to penetrate the impermeable patch in the reservoir at the 5th day of production. 
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The improved MFM algorithm captures the effect of impermeable patch on the drainage 

volume.  

 

Figure 0.1: (a) distribution of permeability in logarithmic scale with a 100-ft by 200-

ft size impermeable zone and (b) depth of investigation (DOI) contour line at t = 5 

days in a large reservoir spread across a 1000-ft by 1000-ft square-shape area. 

 

Similar challenges are encountered in a low-permeability reservoir containing 

several highly conductive (or resistive) pathways, as shown in Figure 4.2a. Application 

of the MFM method described in Chapter 3 generates numerical noise in the calculation 

of pressure derivative response, as shown in Figure 4.3a. These noisy computations are 

primarily due to the erroneous calculations of drainage area due to the large number of 

fractures with large permeability contrast with respect to the reservoir. The usefulness of 

the improved MFM method is presented in Figure 4.3b, in which the pressure derivative 

response is free from fluctuations that indicate accurate accounting of the presence of 

high-contrast fractures in the reservoir (Figure 4.2a).  
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Figure 0.2: (a) High permeability contrast map of a vertical well in a circular-

shaped bounded heterogenous reservoir and (b) travel-time computed using MFM 

method at t = 40 days. 

 

Figure 0.3: Diagnostic plot of pressure changes and Bourdet-type derivative 

responses of a vertical well in the bounded heterogeneous reservoir, as described in 

Figure 4.2a, computed using (a) the previous MFM algorithm and (b) improved 

MFM algorithm. 

4.3 Improved MFM Method   

The new MFM algorithm to generate the drainage volume and pressure 

diagnostic plots is descried in Figure 4.4. First, reservoir and fluid properties, such as 

porosity, permeability, total compressibility, and viscosity, and numerical discretization 

parameters are defined by the user. Following that, diffusivity speeds are calculated for 
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all the grids representing the reservoir. Based on the diffusivity speed map, MFM method 

is invoked to compute the Diffusivity Time of Flight (DTF), as described in Chapter 3. 

Once the DTF is determined for all the grids, the simulator creates the contour lines for 

each time step by connecting nodes of equal DTF. Drainage volume is then calculated 

using the inner area of each contour line. Pressure diagnostic plot can be generated by 

integrating the drainage volume as a function of time using Equation 2.35 with the 

assumption of a constant rate drawdown in a vertical well. When the boundaries of large-

sized zones of high permeability-contrast are encountered, the pressure front makes a 

detour around low permeability zone. Once the pressure front finishes a detour, the 

pressure front creates two enclosed pressure fronts, one expanding outwards and the other 

surrounding low permeability zone. The improved front tracking algorithm can 

distinguish those multiple enclosed pressure fronts one by one. The areas of identified 

high-contrast zones are subtracted from the total inner area of the outermost pressure 

front for a specific time to obtain an accurate drainage area.  
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Figure 0.4: Flow chart of the improved multistencils fast marching method. 
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4.4 Improved MFM Predictions   

Efficacy of the improved MFM method in comparison to the earlier one is 

demonstrated on the reservoir model shown in Figure 4.5a. The propagation of front is 

modeled in Figure 4.5b, in which the front starts enveloping the high-contrast patch on 

the fifth day of production and completely envelopes the patch close to 35th day of 

production. The new algorithm generates smoothly varying drainage volume, unlike the 

abrupt change observed around 38th day of production when using the previous code 

(Figure 4.6).  

 

Figure 0.5: (a) Distribution of permeability in logarithmic scale and (b) diffusive 

time of flight contour lines at various times for a bounded reservoir spread across a 

1000-ft by 1000-ft square-shaped area with a low-permeability 400-ft by 200-ft 

rectangular zone being produced from a centrally located vertical well.  
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Figure 0.6: Time-varying drainage volume computed using previous and improved 

MFM methods for the bounded reservoir shown in Figure 4.5a. 

Next, the improved MFM algorithm is evaluated on reservoirs containing various 

shapes of isolated high-contrast zones. Various cases include square, circle, triangle, and 

L-shaped regions (Figure 4.7) of low permeability that exhibits high contrast with 

respect to reservoir permeability. The computed drainage volumes for the four cases are 

plotted simultaneously as a function of time till the pressure front reaches the no-flow 

rectangular boundaries (Figure 4.7). In Figure 4.8, all the time-varying drainage 

volumes are plotted including one for the homogeneous reservoir without any high-

contrast zone, identified using black curve. All computed curves are smooth, and the late-

time stable drainage area decreases with the increase in isolated high-contrast shapes 

having extremely low permeability. In Table 4.1, The late-time stable drainage volumes 

calculated using the improved MFM method are compared against the expect values 

based on model geometry. The table indicates greater than 99.5% accuracy in the new 

MFM predictions of late-time drainage volumes for various reservoir models. Presence 
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of these zones result in a significant alteration in the pressure front propagation beyond 

their locations. In Figure 4.8, the time for stabilization of the time-varying drainage 

volumes increases with increase in number of isolated high-contrast zones of low 

permeability, which indicates that these zones impede the overall front propagation. Case 

3 stabilizes 10 days after the stabilization of the homogeneous case without any isolated 

high-contrast zones.  

 

Figure 0.7: Diffusive time of flight contours computed using the improved MFM 

method in bounded rectangular reservoirs with distinct high-contrast zones of low 

permeability. 

 

Figure 0.8: Time-varying drainage volumes calculated using MFM method in 

bounded rectangular reservoirs with distinct high-contrast zones of low 

permeability. 
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Table 4.1: Late-time drainage areas predicted using MFM method against the 

total reservoir area based on the model geometry as shown in Figure 4.7.  

 Homogeneous Case 1  Case 2 Case 3 Case 4 

Expected value   1,000,000 ft2 910,000 ft2 839,314ft2 794,314 ft2 726,814 ft2 

Estimated value 1,000,000 ft2 908,798 ft2 837,692 ft2 791,790 ft2 723,089 ft2 

 

4.5 Validation of the Improved MFM Method 

For purposes of validation, MFM predictions are compared against KAPPA 

Rubis numerical simulation, KAPPA Saphir analytical, and CMG numerical simulation 

results. The pressure change and pressure derivative responses obtained using MFM 

method are compared against those obtained using KAPPA numerical simulator, KAPPA 

analytical model, and CMG simulator for bounded reservoirs with isolated high-contrast 

zones. Notably, the KAPPA and MFM predictions have agreeable responses, whereas 

CMG and MFM predictions exhibit discrepancies.   

4.5.1 MFM method vs. KAPPA Rubis simulator vs. KAPPA Saphir simulator 

This comparison was done for bounded reservoir spread across 1000-ft by 

1000-ft square-shaped area with two 100-ft by 200-ft rectangular-shaped high-contrast 

zones of low permeability being produced using a centrally located vertical well (Figure 

4.9). Other input properties used are listed in Table 4.2. The pressure and its derivative 

responses computed using KAPPA numerical simulator closely match those obtained 

with MFM method (Figure 4.10). Bourdet-type pressure derivative responses obtained 

using the two simulators diverge from 2 days to 50 days of production until the start of 

closed boundary flow exhibited by a unit slope. We claim that the drop in the pressure 

derivative as predicted by MFM method is more realistic than KAPPA numerical result 
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because the MFM predicted drop in the derivative indicates absence of an infinite no-

flow boundary and it happens primarily because of pressure front takes a certain time to 

engulf the high-contrast low-permeability zone. Once that zone is engulfed the pressure 

derivative drops down from the sealing-fault-like response. 

Table 4.2: Properties assumed for the case involving a vertical well in the bounded 

reservoir described in Figure 4.9. 

Reservoir properties 

Dimension  1,000 ft X 1,000 ft 

Grid size 1 ft X 1 ft 

Initial pressure 5000 psi 

Matrix permeability 0.15 md 

Thickness 10 ft 

Porosity 0.1  

Well property 

Well radius 0.25 ft 

Flowrate 5 bbl/day 

Fluid property 

Viscosity 0.4 cp 

Total compressibility 6.0 X 10-6 psi-1 

 

 

 



45 

 

Figure 0.9: (a) Diffusive time of flight contours and (b) KAPPA Rubis simulation of 

reservoir pressure at t = 100 days in across 1000-ft by 1000-ft square-shaped 

bounded reservoir with two 100-ft by 200-ft rectangular-shaped high-contrast zones 

of low permeability. 

 

Figure 0.10: Diagnostic plot of pressure change and Bourdet-type pressure 

derivative responses of a vertical well in a bounded rectangular reservoir, shown in 

Figure 4.9, computed using MFM method, KAPPA Saphir, and KAPPA Rubis 

numerical simulation. 
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4.5.2 MFM method vs. CMG vs. KAPPA Saphir numerical model 

This comparison was done for bounded reservoir of 0.5 mD permeability 

spread across 1000-ft by 1000-ft square-shaped area with four 100-ft by 400-ft 

rectangular-shaped zones of permeability 0.05 mD, 0.005 mD, 0.0005 mD, and 0.00005 

mD, respectively, being produced using a centrally located vertical well (Figure 4.11). 

Other reservoir and fluid properties are listed in Table 4.3. In Figure 4.11b, the 

propagation front is able to completely move through the 0.05 mD zone on the 8th day, 

whereas for the 0.005 mD zone the front is able to propagate only one-fourth of the width 

into that zone. Zones with 3-order of permeability contrast with respect to the host 

medium behave as impermeable zones in this scenario. Pressure and derivative responses 

computed using MFM method and KAPPA numerical simulator are in good agreement 

(Figure 4.12). For CMG simulations, single phase production and constant fluid 

properties were set to consistently compare the CMG results with MFM predictions. The 

computed pressure drops and it derivative responses obtained using CMG significantly 

deviates from those computed using MFM method and KAPPA simulator after 1 day of 

production, when the pressure front reaches the surrounding low-permeability zones 

(Figure 4.12).  
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Table 4.3: Properties assumed for the case involving a vertical well in a bounded 

reservoir, described in Figure 4.11. 

Reservoir properties 

Dimension  1,000 ft X 1,000 ft 

Grid size 1 ft X 1 ft 

Initial pressure 5000 psi 

Matrix permeability 0.5 md 

Thickness 10 ft 

Porosity 0.1  

Well property 

Well radius 0.25 ft 

Flowrate 1 bbl/day 

Fluid property 

Viscosity 0.4 cp 

Total compressibility 6.0 X 10-6 psi-1 

 

 

Figure 0.11: (a) Distribution of permeability in logarithmic scale and (b) diffusive 

time of flight contours in a bounded reservoir spread across a 1000-ft by 1000-ft 

square-shaped area with four low-permeability 100-ft by 400-ft rectangular zones 

being produced from a centrally located vertical well. 
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Figure 0.12: Diagnostic plot of pressure change and Bourdet-type pressure 

derivative responses of a vertical well in a bounded rectangular reservoir, shown in 

Figure 4.11, computed using MFM method, KAPPA Saphir numerical simulation, 

and CMG. 

4.6 Conclusions 

We applied improved MFM algorithm to highly heterogeneous reservoirs with 

high-contrast diffusivities. Our method is successfully utilized in the reservoirs with 

impermeable zones or relatively low-permeability zones. The algorithm is validated 

against KAPPA Rubis and CMG numerical solutions for generating pressure transient 

responses for wells located in reservoirs with high-contrast permeability distribution.  
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CHAPTER 5: MULTISTENCILS FAST MARCHING IN THE 

PRESENCE OF INFINITELY CONDUCTIVE FRACTURE 

5.1 Review of Literature Survey for Fractured Network  

Simulation techniques for naturally fractured reservoir (NFR) have drawn keen 

attention over the last decade. Accuracy of model predictions are challenged in zones of 

high-contrast diffusivity, thin-zones of high conductivity, and complex fracture networks 

(Moinfar et al., 2014). Discrete fracture network (DFN) modeling is commonly used to 

incorporate physically-consistent fracture geometry and topology (McClure et al., 2013; 

Delorme et al., 2013). In this modeling strategy, fracture is defined as an explicitly 

independent element in the fracture network. DFMs provide more-realistic 

representations of NFRs than dual-continuum models. The physical properties, such as 

storage, transmissibility, and the geometrical properties including the fracture position 

and magnitude, are statistically assigned to reservoir matrix with the information 

obtained from the laboratory studies and geological mapping (Shahid et al., 2016).  

The modeling techniques in DFN is classified roughly into two types. The first 

one is changing grid size, shape, or coordinates in accordance with fracture geometry, 

similar to adaptive mesh grid, unstructured grid or local grid refinement method (Cipolla 

et al., 2011; Sun et al., 2015). The second methodology evaluates the fracture using fixed 

grids with embedded discrete fracture model or upscaled permeability method (Kang et 

al., 2013; HosseiniMehr, S. M., 2016). Local grid refinement is one of the most popular 

methods to simulate the fractures as a collection of smaller-sized grids. Nevertheless, this 

approach is computationally intensive for complex fracture geometry. Recent researches 

have been conducted to introduce unstructured grid system in fracture modeling instead 
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of Cartesian grid or corner point grid (Sun and Schechter, 2015; Yang et al., 2017). 

However, the computational cost problem remains when it is applied into the simulation 

of highly complex unconventional reservoirs. Despite the limitations, the unstructured 

grid is generally accepted as it ensures more accurate and elaborate modeling than local 

grid refinement. It is widely agreed that embedded discrete model is the most 

computationally efficient method (Chai et al., 2016).  

In this chapter, we combine the discrete embedded fracture model with fast 

marching method to apply the proposed MFM method in complex NFR. This facilitates 

an accurate consideration of fracture influence on diffusive time of flight (DFT) 

calculations for accurate simulation of drainage volume and pressure derivative 

responses.  

5.2 Methodology 

The following sections introduces the improved MFM method capable of 

modeling natural fractures as discrete embedded fractures in the reservoir model. A novel 

Virtual Fracture Matrix (VFM) is developed and implemented in the earlier version of 

MFM method to consider the effect of the fractures on DTF calculations. The adopted 

methodology facilitates fracture modeling without local or adaptive grid refinement.  

5.2.1 Concept of Embedded Fracture MFM   

As mentioned earlier, the main aim of this chapter is to introduce a novel method 

for fracture treatments while keeping the computational cost within acceptable limits. For 

this purpose, this embedded fracture MFM method (EFMFM) is successfully used for 

evaluation of the effect of the fracture on diffusivity time of flight. FM method is a 

numerical technique that determines DTF from the nodes on the propagation front to all 
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the neighboring node, then selects the neighboring node with minimum DTF, and these 

two steps are iterated till all nodes in the reservoir are selected. Calculation of DTF 

between the selected node and neighboring node is based on the solution of Eikonal form 

of the high-frequency solution of the diffusivity equation that requires dividing the 

distance between the nodes by the diffusion speed of the grid connecting the node.  

In Cartesian grid system, the DTF calculation is straightforward even with 

multistencils fast marching method because the distance between nodes is always 

constant. However, when a linear embedded fracture passes through multiple reservoir 

grids, as illustrated in Figure 5.1a, nodes on the linear fracture needs to be defined at the 

point of intersection of fracture and the reservoir grids; following that, the DTF from 

fracture node to neighboring nodes can be calculated using the distance between the 

nodes. Once the coordinates of fracture nodes and fracture properties are obtained, the 

diffusion time can be traced over the matrix and along the fracture simultaneously using 

EFMFM by following the procedure illustrated in Figure 5.  

In the EFMFM method, front propagation in the reservoir nodes follows the 

algorithm for MFM method discussed in Chapter 4. When the front reaches the nodes 

close to the fracture nodes (black circles, Figure 5.1b), DTF is calculated to all the 7 

neighboring unaccepted nodes points (gray circles, Figure 5.1b) to account for the 

presence of linear discrete fracture. Newly selected nodes include 3 fracture nodes and 4 

reservoir nodes (gray circles, Figure 5.1b). Following that, the closest node, which in 

this case is the last fracture node, is selected as a next accepted node (black circles, 

Figure 5.1b) from where DTF will be calculated. In the next iteration, DTF is calculated 

to all the 8 neighboring unaccepted nodes points (gray circles, Figure 5.1c), such that 
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DTF calculation is performed for the two grids along the fracture. In case of conductive 

fracture, DTF along the fracture node is always faster compared to the DTF from fracture 

nodes to adjacent reservoir nodes; consequently, all fracture nodes are accepted as the 

front propagates (black circles, Figure 5.1e). Subsequently, DTF calculations are 

performed for propagation from fracture nodes to the adjacent reservoir nodes (gray 

circles, Figure 5.1e). After all the reservoir nodes adjacent to fracture nodes are 

estimated, (Figure 5.1e), the front propagation occurs based on the previously discussed 

MFM method. MFM algorithm is considerably changed to account for the extra diffusion 

paths along the fracture, as illustrated in Figure 5.1c, by implementing an additional 

matrix account for the propagation into, along, and out of the fracture nodes. This new 

matrix is referred as the Virtual Fracture Matrix. 

 

Figure 5.1: Schematic diagram of the algorithm for Embedded Fracture MFM for 

a reservoir containing a single linear infinite-conductivity fracture. Evolution of 

propagation front is shown chronologically from subplots a to f. 
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5.2.2 Virtual Fracture Matrix  

Virtual Fracture Matrix (VFM) was created and implemented to model 

propagation of front from reservoir into fracture, along the fracture length, and out of the 

fracture back into the reservoir. An alternative computationally expensive approach is to 

increase the size of the matrix containing the DTF of all nodes and that containing the 

accepted and selected nodes by adding extra nodes identifying the fracture between 

adjacent reservoir nodes, which is similar to local grid refinement. Such an approach is 

challenging in naturally fractured reservoirs with complex fracture geometry and 

topology. We claim that the VFM approach that we adopt in our work is scalable for 

various fracture geometry and topology along with being computationally less expensive. 

In this approach, the fractures nodes and adjacent reservoir nodes along the horizontal 

and vertical grids are treated as a 3×n matrix, where n is the number of fracture nodes. 

Based on geometrical properties of a linear discrete fracture, namely location, slope, and 

length, first the adjacent reservoir nodes along the vertical and horizontal stencils are 

identified and indexed (Figure 5.2a). Following that, the fracture nodes are identified as 

points intersecting the stencils connecting the adjacent reservoir nodes (Figure 5.2b). All 

these aforementioned nodes are then placed into the 3×n VFM, such that three elements, 

two reservoir nodes and one fracture node, of each stencil are listed vertically in a way 

that share the common node in two adjacent columns (Figure 5.2c). Shared reservoir 

nodes are divided into two elements of the VFM, one on 1st row of a certain column and 

the other on the 3rd row of an adjacent column. As a result, first and third row of VFM 

represents reservoir nodes and its second row represents the fracture node.  
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Figure 5.2: Schematic of generation of Virtual Fracture Matrix. 

When a propagation front reaches an adjacent reservoir node, the propagation 

happens along the blue dotted lines of Figure 5.3a within the VFM. When the front 

reaches a fracture node, DTF is calculated in 3 directions towards the three unaccepted 

neighboring nodes. For fracture nodes, the propagation was modeled using FM 

algorithm. However, unlike conventional FM method, the DTF calculation for 

propagation from fracture nodes requires prior knowledge of the distance of the fracture 

node from its adjacent nodes and also the distinct diffusivity along the blue dotted lines 

because of the differences between fracture and reservoir properties. Accepted nodes are 

numbered sequentially beginning with 0 that progressively increases depending on the 

fracture propagation in the VFM, as shown in Figure 5.3b. The red star indicates the 

reservoir node that was reached by the propgation from the reservoir. The color scheme 

in Figure 5.3b indicates the time taken by the front to propagate through the fracture 
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system, such that darker color of a node indicates that the node was reached earlier than 

the nodes with lighter color. For the case shown in Figure 5.3 the propagation speed along 

the fracture is relatively similar to that in the adjoining node.  

 

Figure 5.3:  (a) Diffusion paths and (b) sequential propagation of front in the 

VFM.   

 

Reliability of the VFM implementation needs to be tested with various fracture 

conductivities. In the numerical experiment presented in Figure 5.4, unlike the one 

shown in Figure 5.3, the distance between fracture nodes and reservoir nodes are 

considered for accurate modeling. A 10×10 reservoir model with a discrete linear 

fracture was used for this experiment. The propagation front propagates from well 

located at rightmost bottom corner and approaches the fracture from the reservoir node 

identified with blue square. For the first numerical experiment under the described 

scenario, reservoir permeability is assumed to be similar to fracture permeability. 

Therefore, differences in computed DTF between fracture and reservoir nodes shown in 

Figure 5.4b depends only on the distance between the nodes. For instance, the time taken 
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to reach the farthest corner of the fracture is similar to that required to reach its adjoining 

reservoir node. Also, there is a gentle gradation of color from darker to lighter in the 

VFM, which indicates relatively uniform propagation of front from one end to the other.  

 

Figure 5.4: Computed DTF within VFM for (a) reservoir model with a fracture of 

(b) equal diffusivity, (c) infinite diffusivity, and (d) zero diffusivity. The reservoir is 

10-ft by 10-ft and the DTF in VFM are computed after the propagation front 

reaches the blue shaded node. 

For the infinite conductive fracture (Figure 5.4c), all elements in the second 

row identifying the fracture nodes have the same DTF as first accepted node (blue 

square). For the numerical experiment with non-conductive fracture, propagation will 

neither occur into the fracture nor across the fracture. Computed DTFs from fracture 

nodes to adjacent reservoir nodes are infinitely large (Figure 5.4d) that will force the 

propagation front to detour the fracture.  

5.2.3 Algorithm of Embedded Fracture MFM with virtual fracture matrix.   

Efficacy of the embedded fracture MFM method with the VFM is described using 

a 3×4 reservoir model containing an infinite-conductivity fracture (Figure 5.5a). We 

chose a small-sized reservoir model to quantitatively explain the workings of the 
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proposed FM method. Reservoir properties are assumed to be homogeneous.  A 

producing well is located at the rightmost bottom corner. The reservoir nodes near the 

fracture are numbered and VFM is generated (Figure 5.5a) as described in the previous 

section. Propagation front reaches the reservoir node 3 (Figure 5.5a). For this reservoir 

node, two paths towards fracture nodes exist, which are also considered in VFM. DTF 

for the two paths are compared with rest of possible DTFs in the reservoir shown by 

arrow. The fracture node located vertically above the reservoir node 3 is accepted because 

of the lowest DTF required to reach to this fracture node (Figure 5.5b). Corresponding 

changes are recorded in the VFM.   Subsequently, the DTF from the newly accepted 

fracture node to neighboring nodes and the reservoir node 3 to the previously unaccepted 

fracture node are computed in the VFM (Figure 5.5b).  

The fracture being infinitely conductive, all the fracture nodes will be iteratively 

accepted to generate the front propagation pattern shown in Figure 5.5c. In the next 

iteration, DTF of all outward-bound propagation emerging from the fracture nodes are 

computed and compared with those for the reservoir nodes on the front. This results in 

sequential acceptance of reservoir nodes 2, 4, and 1, sequentially, based on distances 

between the nodes (Figure 5.5d). After all fracture nodes and adjacent reservoir nodes, 

all the surrounding reservoir nodes are determined, the EFMFM algorithm returns to 

MFM algorithm to finish the DTF calculations for the remaining reservoir nodes (Figure 

5.5d). The flow chart, shown in Figure 5.6, summarizes the overall EFMFM algorithm. 
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Figure 5.5: Schematic of the Embedded Fracture MFM with VFM algorithm 

applied to 3×4 reservoir containing single linear discrete fracture.  
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Figure 5.6: Flow chart for Embedded Fracture MFM with VFM. 

5.3 Results and validations 

5.3.1 Application of EFMFM on Reservoir with Single Linear Fracture 

EFMFM algorithm here refers to the one that implements VFM. First, we 

demonstrate the simulations generated using EFMFM for reservoir models with larger 

number of nodes (Figure 5.7) compared to the case discussed in the previous section. A 

producing well is located in the rightmost bottom corner of the model. In this numerical 



60 

demonstration, we qualitatively validate the simulation results without trying to assess 

the numerical accuracy. Figure 5.7a presents the MFM model predictions in absence of 

fracture in the reservoir. A gradual variation in color from darker to lighter shade is 

observed indicating a relatively uniform propagation of the front. Figure 5.7b presents 

the EFMFM model predictions for reservoir containing single linear infinitely conductive 

fracture. The darker shade along the fracture indicates that pressure propagates faster 

along the fracture and then diffuses into the surrounding reservoir. Compared to the 

previous case, the presence of fracture results in arrival of pressure front at the leftmost 

top grid to be two times faster. It can be concluded that the EFMFM method qualitatively 

captures the effect of fracture on the front propagation without requiring additional local 

grid refinement. Notably, the darker-shaded elements in first and third rows of the VFM 

identify the reservoir nodes that are located closer to the fracture node compared to those 

that are of lighter shades.  
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Figure 5.7: Diffusive time of flights predicted using (a) MFM algorithm for a 

reservoir without a fracture and those using (b) EFMFM algorithm for a reservoir 

with a single linear infintiely conductive fracture. 

 

5.3.2 Comparison of Estimated DTF with Various Matrix Dimensions 

The 10×0 reservoir model described in the previous section is not suitable to test 

numerical accuracy, which depends on the grid size. Numerical experiments presented 

in this section are performed for reservoir models ranging from 30×30 to 500×500 grids, 

such that each grid is 1-ft×1-ft. Simulation of pressure front propagation is investigated 

for various well locations and infinitely conductive fracture geometry, such as angle, 

length, and location. Figure 5.8a shows planar propagation above the fracture due to 

superposition and hemi-radial flow front the edges of the fracture. Figure 5.8c shows 

hemi-radial flow on the side geometrically opposite to the fracture and elliptical flow 

around the fracture.  
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Figure 5.8: Simualtion of pressure front propagation generated using the EFMFM 

algorithm for various well locations and fracture geometries in reservoir models 

that are (a) 30-ft by 30-ft, (b) 50-ft by 50-ft, (c) 80-ft by 80-ft, and (d) 500-ft by 500-

ft. 

 

5.3.3 Comparison of Drainage Volume (MFM vs. EFMFM vs. KAPPA) 

EFMFM method predictions are compared with KAPPA numerical simulations 

for circular bounded reservoirs of various size and fracture geometry. In this section, 

EFMFM predictions of drainage volume and pressure derivative response are validated. 

MFM method described in previous chapter is limited to blocky fractures, wherein grids 

of specific size (equal to those in the reservoir) are combined together to represent the 

fracture. Therefore, a slanted fracture cannot be accurately modeled as a collection of 

blocky fractures. In that case, accurate prediction of fracture effects requires extremely 

small grid sizes to describe the slanting fracture followed by local grid refinement. 
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EFMFM can efficiently handle slanted fracture without invoking small grids to define 

the fracture.  

The drainage volume and pressure changes are simulated for circular bounded 

reservoir with single infinite conductivity fracture located close to a producing well. The 

200-ft long fracture is located 28 ft away from the well at an angle of +45˚ with respect 

to x-axis. Fracture nodes are not collocated with reservoir nodes due to a 0.3-ft offset 

(Figure 5.9a). EFMFM simulation of this model is straightforward; however, MFM 

simulation requires a 45˚ rotation towards y-axis that allows the fracture to be modeled 

as collection of small-sized square grids (Figure 5.9a). KAPPA numerical simulator uses 

finite-difference and hexagonal grids to model the reservoir as shown in Figure 5.9c.  

MFM and EFMFM predictions of drainage volume are in agreement (Figure 

5.10). In Figure 5.11, the sudden drops in Bourdet-type derivative responses predicted 

by MFM and EFMFM models are detected around 0.07 days (4 hours) because the 

pressure front arrives at the edge of the fracture and then on the front rapidly propagates 

along the fracture. The boundary effect of unit slope in derivative response is predicted 

by MFM, EFMFM, and KAPPA simulations. 

5.4 Conclusions 

Here, we proposed a novel MFM-based method to analyze the effect of single 

linear infinitely conductive fracture on pressure front propagation. EFMFM method can 

simulate naturally fractured reservoirs with complex geometry and topology of fractures. 

EFMFM predictions of drainage volume and pressure derivative responses agree well 

with those generated using MFM method for simpler cases and KAPPA Rubis numerical 

simulations for complex cases. The strong point of EFMFM is that we can consider 
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heterogeneous permeability distribution and complex fracture geometry simultaneously 

to estimate time-varying drainage volume and pressure transient responses without 

adding numerous grid nodes or changing the grid format to account for the effects of 

linear fractures.  

Table 5.1: Properties assumed for the case involving a vertical well centrally located 

in a circular no-flow circular bounded homogeneous reservoir with single infinite 

conductivity fracture, shown in Figure 5.9. 

Reservoir property 

Dimension  1,000 ft X 1,000 ft 

Grid size 2 ft X 2 ft 

Initial pressure 6000 psi 

Matrix permeability 0.4 md 

Thickness 10 ft 

Porosity 0.1  

Radius of no-flow boundary 500 ft 

Well/Fracture property 

Well radius 0.25 ft 

Flowrate 1 bbl/day 

Fracture total length 200 ft 

Fluid property 

Viscosity 0.4 cp 

Total compressibility 6.0 X 10-6 psi-1 
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Figure 5.9: Travel-time computed using (a) EFMFM and (b) MFM method at t = 6 

days and (c) grids generated in KAPPA Saphir numerical simulator for a circular 

bounded reservoir with a centrally located well and single linear infinitely-

conductive fracture.   
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Figure 5.10: EFMFM and MFM predictions of time-varying drainage volumes for 

the reservoir scenario shown in Figures 5.9a and 5.9b, respectively. 

 

 

Figure 5.11: Pressure changes and Bourdet-type derivative responses of a vertical 

well centrally located in the bounded homogeneous reservoir, as described in Figure 

5.9, computed using MFM method, EFMFM method, and KAPPA Saphir 

numerical model. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

Multistencils fast marching (MFM) method is developed to accurately model the 

two-dimensional pressure propagation in planar heterogeneous reservoir with 

heteromorphous no-flow reservoir boundary and natural fractures in vertical multiwell 

scenario at a low computational cost. Particularly, time-varying drainage volume and 

pressure derivative response can be modeled using this method to facilitate accurate 

pressure transient analysis. MFM method predictions were successfully validated and 

benchmarked against analytical and finite-difference numerical solutions for various 

reservoir scenarios. Predictions of the proposed MFM method are one order of magnitude 

more accurate then SFM predictions. Moreover, the MFM method has been improved to 

successfully perform simulation in high contrast permeability distribution and validated 

against commercial simulators.  In MFM method, fracture was modeled as collection of 

square grids of a specific size and accordingly grids of the same width are generated for 

the entire reservoir, which immensely increases the computational time because the 

model of reservoir with fractures requires large number of small-sized square grids. To 

minimize this limitation in fracture modeling, embedded fracture multistencils fast 

marching (EFMFM) method is included in the algorithm to accommodate the effect of 

the fracture on diffusivity time of flight in the Cartesian grid system with low 

computational cost. The corresponding benefit of EFMFM is a large range of applications 

in reservoirs with high-contrast permeability distribution on Cartesian grids and linear 

fractures offset relative to the Cartesian grids.  
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6.2 Recommendations for Future Work 

Following recommendations can improve current simulator to predict the 

drainage volume and pressure responses with more realistic reservoir scenarios 

accurately in a computationally efficient way. Firstly, skin effect near the wellbore and 

wellbore storage effect are not incorporated in the proposed algorithm. Our simulator 

does not have the capability to model the reservoirs with constant-pressure boundary and 

leaky boundary and with complex geometry of multiple intersecting fractures that have 

finite conductivity. Further research can be pursued to overcome these limitations. Once 

the EFMFM-based pressure front simulation accurately accounts for the complex 

geometry and topology of finite conductivity fracture, local grid refinements near the 

well, fractures, and high-contrast zones can be developed for improved pressure transient 

simulation.  Finally, the simulator assumes that wells are fully penetrated with constant 

reservoir thickness and fractures have the same height as a reservoir thickness because it 

is 2-D simulator.  Building a 3-D simulator with anisotropic diffusivity is also 

recommended for the future work.  
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NOMENCLATURE 

α   Hydraulic diffusivity, ft2/hr  

A   Cross-sectional area, ft2 

An(t)   Pressure amplitude of the nth order in the time domain, 1/hr(n+2)/2 

ct   Compressibility, psi -1 

h  Reservoir thickness, ft 

k   Permeability, md 

P   Pressure, psi 

�̅�  Average reservoir pressure, psi 

𝑝  Pressure in frequency domain, psi 

pi   Initial reservoir pressure, psi 

Δp   Pressure drop, psi 

Pwf    Bottomhole flowing pressure, psi 

q   Flux, bbl/day 

qw    Flux at surface, bbl/day 

rw  Wellbore radius, ft 

t    Arrival time of pressure front 

V(t)     Time-dependent volume, ft3 

Vp    pore volume, ft3 

xf   Fracture half length, ft 

𝜇  Fluid viscosity, cp 

𝜉    Boltzmann variable, dimensionless 

τ    Diffusive Time of Flight, √ℎ𝑟  

𝜙   porosity, fraction 

ω   Frequency of the asymptotic expansion, 1/S 

 

 

DTF   Diffusive Time of Flight  

EFMFM Embedded Fracture Multistencils Fast Marching  

FM  Fast Marching 

MFM  Multistencils Fast Marching 

PTA  Pressure Transient Analysis 

ROI       Radius of Investigation 

SFM   Singlestencil Fast Marching  

VFM  Virtual Fracture Matrix 
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