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Abstract 

Hydrologic extremes of drought and flooding stress water resources and damage 

communities in the Red River Basin, located in the south-central U.S. For example, the 

summer of 2011 was the third driest summer in Oklahoma state history and the driest in 

Texas state history. These states suffered great loss from prolonged drought conditions, 

with D4 (exceptional drought) conditions affecting almost the entire state of Texas and 

nearly seventy percent of Oklahoma. When the long-term drought conditions finally 

ended in the spring of 2015 as El Niño brought record amounts of precipitation to the 

region, there were also catastrophic floods that caused loss of life and property. 

Hydrologic extremes, such as these, have occurred throughout the historical record; 

however, decision makers need to know how the frequency of these events is expected 

to vary in a changing climate so that they can mitigate for these impacts and losses. 

Therefore, the goals of this study focus on how these hydrologic extremes impact water 

resources in the Red River Basin, how the frequency of such events is expected to 

change in the future, and how this study can aid local water resource managers and 

decision makers. To accomplish these goals, this study uses statistically downscaled 

climate projections of daily minimum and maximum temperature and daily 

precipitation. These projections were used to first detect the mean daily changes in 

temperature and precipitation through the end of the century, and then to identify the 

future trends in heavy precipitation events at the historical 90th and 99th percentiles and 

severe drought events at a threshold of the Standardized Precipitation 

Evapotranspiration Index’s value of less than or equal to -1.5.
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Chapter 1: Introduction 

Hydrologic extremes are phenomena that negatively impact communities and 

water resources in the Red River Basin, located in the south-central United States. In the 

basin’s history, heavy precipitation and severe events have created multiple billion-

dollar disasters. For example, the most extreme U.S. Drought Monitor category of D4 

(exceptional drought) occurred in 2011 across most of Texas and nearly 70% of 

Oklahoma. Oklahoma experienced its third driest summer and Texas faced its driest 

summer since records began in 1895 (Crouch 2015). Both states tied for the highest 

mean temperature recorded in the U.S. in July, adding further stress to the already-dry 

conditions. Oklahoma and Texas suffered significant losses, and $2 billion in 

agricultural damages accumulated between 2011 and 2012 (Wertz 2012).  

This drought prolonged for nearly 5 years and abruptly ended in May of 2015 as 

El Niño conditions brought heavy downpours, breaking many precipitation records. 

Conditions changed from widespread drought to extreme flooding very quickly, causing 

more harm and loss of life. This extreme rainfall event created an additional $2.6 billion 

in damages (NOAA 2016). While this was a long-lasting event, Durant, OK received a 

daily rainfall value of 2 inches and Newport, OK received as much as 10.5 inches on 

June 18, 2015 (OCS 2015). 

Hydrologic extremes of drought and rainfall have impacted the Red River Basin 

throughout the historical record; however, decision makers need to know how the 

frequency of these events may alter in a changing climate so they can mitigate future 

losses. Therefore, this research has assessed how hydrologic extremes impact water 

resources in the Red River Basin, how the frequency of these events is expected to 
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change in the future, and how the results of this study can aid local water resource 

managers and decision makers. 

1. Global Climate Models 

In order to answer the research question and the goals of this work, this study 

uses a dataset of statistically downscaled climate projections that apply empirical 

relationships between a predictor, or large-scale climate variable, and a predictand, or 

local-scale surface variable (Wilby et al. 2004). These high-resolution projections 

capture local and detailed information that is more useful to decision makers, 

researchers, and resource managers than coarse-resolution global climate models 

(GCMs; Maurer et al. 2014, Thrasher et al. 2013).  

GCMs are models that numerically represent Earth’s atmospheric and oceanic 

processes by projecting climate variables, such as temperature and precipitation, for 

various representative concentration pathways (RCPs; IPCC 2013). RCPs are 

trajectories that provide information about the future anthropogenic causes of increased 

radiative forcings, including changing concentrations of greenhouse gas emissions 

(Moss et al. 2010). For example, RCP 2.6 represents a future scenario with a peak in 

radiative forcing at 3.1 W/m2 and a greenhouse gas concentration of 490 parts per 

million (ppm) that is reached in 2100, followed by a decrease; RCP 8.5 exhibits a 

radiative forcing of 8.5 W/m2 and increasing greenhouse gas emissions of 1,370 ppm by 

2100. 

While GCMs present a large picture of the climate system, community planning 

and decision making requires a higher resolution output with local information. GCMs 

typically have a spatial resolution of several hundred kilometers (IPCC 2013, UCAR 
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2011, Semenov and Barrow 1997, Prudhomme et al. 2002, Feser et al. 2011), which 

lacks details in topography, mountain meteorology processes, local convection, and 

land-sea interactions (Feser et al. 2011, Schmidli et al. 2006, Eden et al. 2012). In 

addition, each GCM has its own inherent bias. Downscaled climate projections correct 

some of these biases and limitations while providing decision makers and resource 

managers with information at a resolution that allows them to make more informed 

decisions about their area (Wilby et al. 2004). 

2. Statistical Downscaling 

 There are two approaches to performing a downscaled climate projection: 

statistical and dynamical. Statistical downscaling computes the relationships between 

large-scale climate variables, or predictors, and small-scale surface variables, or 

predictands (Wilby et al. 2004). Because this approach includes empirical data, it is 

applied only in regions with sufficient data, thus it tends to be limited in its geographic 

scope. For example, there is a lack of data over oceans, less inhabited areas, and poor 

nations that cannot afford the necessary monitoring equipment (Lupo and Kininmonth 

2013). However, statistical downscaling is computationally inexpensive, causing it to be 

a popular downscaling approach (Salameh et al. 2008). Statistical downscaling has been 

used in a variety of studies, such as research in synoptic climatology, numerical weather 

prediction, and climate change studies (Giorgi et al. 2001), and understanding the 

relationships between predictors and predictands can provide information about the 

performance and biases of the model (Goodess et al. 2007).  

 Methods for statistical downscaling include weather typing, regression models, 

and weather generators, described in detail in Wilby et al. (2004). Weather typing 



4 

classifies data into weather “types” based on synoptic, or large-scale, weather patterns. 

In this method, the predictand is assigned to the predominant weather type and then 

simulated with new climate conditions through a regression analysis (Wilby et al. 

2004). For example, Cheng et al. (2010) used weather typing to simulate daily rainfall 

events in Ontario, Canada by identifying the synoptic patterns that were associated with 

these rainfall events and using regression methods.  

Another technique for statistical downscaling is the use of regression models, 

which determine the presence of a linear or nonlinear relationship between a predictor 

and predictand. The relationship between a predictor and predictand is also called a 

transfer function (Giorgi et al. 2001). An example of a regression model can be found in 

Huth (1999), where three multiple regression models and a canonical correlation 

analysis were used to determine how well their statistical downscaling model simulated 

daily mean temperatures in central Europe. They were able to make generalizations of 

the conditions; however, there were uncertainties in whether or not their results applied 

to other seasons outside of their study and other geographic regions.  

The last mentioned technique of statistical downscaling is the use of a weather 

generator, which is a model that simulates daily weather conditions through simple 

statistics, such as means, variances, and covariances (Wilks and Wilby 1999). Fowler et 

al. (2007) explained that weather generators can determine daily precipitation by 

training the model variables with specific climate statistics, such as precipitation 

frequency, rather than weather patterns. 

Statistical downscaling has many advantages and disadvantages. This approach 

is versatile, can aid a wide community of users because it is computationally 
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inexpensive, and can provide point values for extremes (Goodess et al. 2007). A 

drawback is related to the importance of choosing the correct predictor and predictand, 

in addition to the statistical technique (Wilby et al. 2004), as there are many decisions 

that must be carefully made to reach the best outcome. Whether or not statistical 

downscaling is appropriate is dependent on the study area, since it is not applicable for 

areas without a sufficient data record (Giorgi et al. 2001). Additionally, statistical 

downscaling includes the assumption that the relationship between the predictor and 

predictand will not change under future conditions; however, there is no guarantee that 

the same atmospheric processes as present day will remain stationary in the future 

(Goodess et al. 2007, Hewitson and Crane 2006).  

3. Dynamical Downscaling 

The second approach to downscaling is dynamical downscaling, which is much 

more complex and computationally expensive, often requiring the use of 

supercomputers. This method uses output from a GCM as an input to a regional climate 

model (RCM; Schmidli et al. 2006), or, in other words, the fine-resolution RCM is 

nested into the coarse-resolution GCM (Kitoh et al. 2016). Like statistical downscaling, 

climate scientists have various techniques for implementing dynamical downscaling as 

well. For example, spectral nudging is a technique that recognizes that small-scale 

features, like topography and land-sea distribution, and large-scale processes both affect 

regional-scale climate model data (von Storch et al. 2000). Rather than having constant 

boundary conditions as a synoptic feature propagates, spectral nudging forces external 

conditions to influence local processes in the smaller-scale model (Waldron et al. 1996). 

Others have built off of the concept of spectral nudging for climate change studies, such 
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as von Storch et al. (2000), who concludes that spectral nudging can be advantageous 

when there is a need for regional climate statistics, such as for climate change and 

historical climate reconstruction applications.  

Castro et al. (2005) proposed four types of dynamical downscaling methods: (1) 

uses numerical weather prediction (NWP), (2) neglects initial conditions but results take 

into account the lateral boundary conditions, with a horizontal grid spacing of 20-50 km 

(Wilby et al. 2002) from a NWP GCM, (3) has lateral boundary conditions from a GCM 

with forced surface conditions, and (4) uses lateral boundary conditions from a coupled 

earth system GCM with interacting elements. Rockel et al. (2008) applied the second 

type of simulation with spectral nudging in order to assess the value of the second 

technique from Castro et al. (2005), concluding that the dynamical downscaling 

technique adds value to small-scale characteristics and the values remain close to 

observations. However, they stated that if there is a large bias in the GCM, then 

dynamical downscaling is not beneficial.  

An advantage of dynamical downscaling is the ability to represent physical and 

mesoscale processes better than course-resolution GCMs due to the high spatial 

resolution and reduction of GCM biases (Murphy 1999). This attribute is also an 

advantage over statistical downscaling since the latter uses statistical relationships 

rather than representing the physics behind the processes. High-resolution details, 

including topography and coastlines, add value to the model and take local processes 

and convective precipitation into account (Kitoh et al. 2016). Furthermore, this method 

can be used in areas where there are not long data records (Kitoh et al. 2016). The key 

disadvantage of this approach is the amount of computational power required, which 
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only allows the user to simulate a small time period of a few ensembles (Goodess et al. 

2007).  

Taking these points into consideration, statistical downscaling was the best 

technique for this study. It allowed us to project multiple climate variables for different 

timeframes and RCP scenarios in order to estimate changes in the future frequency of 

heavy rainfall and severe drought for the Red River Basin. Chapter 2 presents the 

details of the statistically downscaled dataset used for our analysis. 

4. Impacts of Hydrologic Extremes 

According to the Intergovernmental Panel on Climate Change (IPCC) and the 

National Climate Assessment, many regions of the world, including the United States, 

are likely to experience a higher frequency of drought conditions and heavy rainfall 

events in the future. As temperatures rise in the future, there is more evapotranspiration 

at the surface which affects drought further by creating a moisture deficit 

(Venkataraman et al. 2016). The IPCC’s Fifth Assessment Report declared that drought 

is likely to increase by the end of the 21st century in some regions (IPCC 2014). 

Downscaled climate projections created for the National Climate Assessment indicated 

that drought conditions in 2071-2099 are expected to become more severe by at least 

30%, compared to 1970-1999, in the northwest U.S. during the summer while the 

southwest U.S. will likely experience more drought in spring months under a high 

emission scenario (Walsh et al. 2014). 

 Furthermore, in the Great Plains, especially southern portions, an increase in the 

number of consecutive dry days is estimated to occur (Shafer et al. 2014). Drought 

affects many sectors, such as energy, agriculture, and water resources, and an increase 
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in these events only stresses these sectors further. In addition, heavy precipitation events 

are also expected to increase by the end of the 21st century in the Southern Plains 

(Shafer et al. 2014). Heavy rainfall events have increased during the last several 

decades in this region and are expected to continue (Walsh et al. 2014). Christian et al. 

(2015) also discovered that wet years are increasingly following drought years in the 

Southern Plains. Therefore, it is important to understand how these events impact our 

study area.  

On the large scale, the Red River Basin region is expected to have a drier and 

warmer climate with intermittent heavy rainfall events, which are dangerous under these 

conditions because soils are too dry to absorb enough rainfall to prevent flooding 

(UCAR 2010). These periods of flash flooding are a hazard to human health, as raw 

sewage and other toxic chemicals often contaminate the water supply (Lee 2015, Taylor 

et al. 2011). Heavy rainfall also causes a large economic impact from inundated streets 

and structures and may require structures to be updated sooner than previously planned 

(National Research Council 2011). On the other hand, drought stresses the water system 

by reducing the amount of surface water supply and increasing the water demand, 

which affects the agricultural and energy industries, as well as public water supply 

(Shafer et al. 2014). For example, a precipitation deficiency leads to reduced ground 

water recharge, soil water content, and inflow to water bodies (Wilhite 2000). 

Some of these impacts have affected stakeholders in the Red River Basin as 

well. A short (10-minute), online survey was sent to various stakeholders who work and 

make decisions in the Red River Basin, such as natural resource managers, engineers, 

and energy producers. The goal of this survey was to seek information about the 
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impacts of heavy rainfall and drought events across the Red River Basin and the actions 

that jurisdictions take during these events. For heavy rainfall, impacts listed were 

inundated buildings and streets, decreased water quality, damage to infrastructure, and 

substantial negative economic impacts. During these events, the participants’ 

jurisdictions have provided safety resources to their population and participated in 

outreach. Drought impacts included a reduction in groundwater levels, decreased water 

quality and quantity, reduced lake levels for energy production, and lower survival rates 

of species in the basin. The actions described were outreach to stakeholders, water 

conservation, drought committee meetings, and water storage. This valuable 

information aided the understanding of the impacts of these extreme events and how an 

increase in the future frequency of these events may affect communities. The full list of 

survey questions is located in Appendix B. 

In conclusion, our study sought to identify impacts of hydrologic extremes, 

determine the change in future frequency of these events, and aid water resource 

managers and decision makers in mitigating for future impacts by providing a high-

resolution analysis that offers localized results. Chapter 2 of this manuscript provides 

detailed information about the dataset of statistically downscaled climate projections 

and the study region, along with an analysis of mean daily changes in future 

temperature and precipitation across the basin. Chapter 2 will be submitted for 

publication to the Journal of Applied Meteorology and Climatology, which is a journal 

of the American Meteorological Society. An analysis of future heavy rainfall and severe 

drought  events in the Red River Basin is then presented in Chapter 3. This chapter will 
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be submitted to the Weather and Climate Extremes journal, which is an Elsevier 

journal. Chapter 4 then summarizes the study and provides overall conclusions. 
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Chapter 2: Downscaled Climate Projections for the Red River Basin, 

South-Central U.S. 

 1. Introduction 

As the global climate changes, numerical projections from climate models 

provide information that aids resource managers, policy makers, and researchers in 

planning for the future (Maurer et al. 2014, Thrasher et al. 2013). While water resource 

managers and decision makers can view global climate models (GCMs) for basic 

information, the associated low spatial-resolution output lacks the local information that 

they need to plan for their community (Thrasher et al. 2013). Therefore, high-resolution 

climate projections that are either model-generated in high resolution (less common) or 

are downscaled to high resolution (more common) are more useful to these local 

managers. In the Red River Basin, located in the south-central U.S., this detailed 

climate information helps those who make long-term (e.g., 50 years) water plans. This 

study discusses the creation of a downscaled dataset that includes historical and future 

projections of daily minimum and maximum temperature and daily precipitation that 

stakeholders in the Red River Basin can use to make more informed decisions. 

GCMs are numerical models that represent atmospheric and oceanic processes 

(IPCC 2013) and can offer a large-scale view of future climate conditions, such as 

projected temperature and precipitation, under different representative concentration 

pathways (RCPs). The RCPs serve as scenarios of various radiative forcing trajectories 

from anthropogenic greenhouse gas emissions and changes in land cover (Moss et al. 

2010). Moss et al. (2010) discussed the four RCPs –– RCP 2.6, RCP 4.5, RCP 6.0, and 

RCP 8.5 –– where RCP 2.6 represents a scenario where radiative forcing peaks at 3.1 
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W/m2 and the concentration of greenhouse gases reaches 490 parts per million in 2100 

then decreases and RCP 8.5 represents a scenario with more than 8.5 W/m2 of radiative 

forcing and a concentration of greenhouse gases that exceeds 1,370 parts per million by 

2100.  

Although GCMs provide an overall depiction of possible future conditions, they 

do not take local processes into account, having a coarse-resolution range of 50 

kilometers to several hundred kilometers depending on the model, but 250- to 600-

kilometer resolution is the most common (IPCC 2013, UCAR 2011, Semenov and 

Barrow 1997, Prudhomme et al. 2002, Feser et al. 2011). These local processes can 

include mountain meteorology and land-sea interactions (Feser et al. 2011). Other GCM 

limitations include biases in rainfall intensity, response to climate forcing, natural 

variability, and simulated precipitation with a shortfall in convection and across 

mountainous areas (Schmidli et al. 2006, Eden et al. 2012). Downscaling can correct 

some of these GCM biases (Schmidli et al. 2006) and provide greater detail, with 

higher-resolution data that allow local decision makers and resource managers to make 

more informed decisions about their area and to understand local phenomena to a higher 

degree (Wilby et al. 2004). 

Thrasher et al. (2013) provided an example of the significance of downscaled 

climate projections to resource managers and decision makers. The spatial resolution of 

the projections offered enough detail to determine the changes in the freezing line in 

mountainous regions, relating to the amount of melting snowpack that affects the water 

supply. Resource managers also can learn about how their area may be affected by 

drought, causing them to change their community’s water plans and usage of the water 
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supply (Venkataraman et al. 2016). In addition, knowing how their region’s climate is 

expected to change may alter food production areas, causing alteration in land use 

(Zhang and Zhang 2016), especially where crops are rainfed. Downscaled climate 

projections provide more localized information than GCMs through high-resolution 

data for applications by decision makers and can help them to create better drought and 

water resource management strategies (Nam et al. 2015). 

2. Study Area 

 This study focuses on the Red River Basin of the South (hereafter Red River 

Basin), with headwaters in far eastern New 

Mexico (Figure 2.1), flowing west to east 

through Texas, Oklahoma, and Arkansas, and 

exiting into the Mississippi River in 

Louisiana. The basin covers 239,361 km2 and 

crosses a west-to-east gradient of 

precipitation with average yearly rainfall totals of approximately 500 to 1300 

millimeters (20 to 50 inches). Because of this moisture gradient, the Red River Basin is 

home to many different ecoregions, from the High Plains in the west to the South 

Central Plains in the east (U.S. EPA 2013).  

This basin is vital for the area’s drinking water supply and recreational and 

cultural activities (Xue et al. 2015). However, because the basin benefits multiple states 

and metropolitan cities, such as Fort Worth, TX, and Oklahoma City, OK, there have 

been disagreements regarding water rights in this basin. Oklahoma, Texas, Arkansas, 

and Louisiana signed a water compact in 1978 to share the water resource fairly 

Figure 2.1. Red River Basin 
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(OWRB 2016); however, because Texas had been routinely exceeding its allotment of 

water, the Oklahoma Legislature restricted the state’s apportioned water to remain 

within state boundaries in 2002, excluding Texas from any option to buy water from 

Oklahoma (Malewitz 2013). This new statute, Title 82-1B, upset decision makers in 

Texas because Tarrant County, including Fort Worth, previously bought water from 

Oklahoma. The issue eventually rose to a legal case that was brought before the U.S. 

Supreme Court –– Tarrant Regional Water District vs. Hermann (2013) –– that wished 

to declare Oklahoma’s new law as unconstitutional under interstate commerce laws. 

The case was dismissed, however, allowing Oklahoma to determine how to use its 

apportioned water. 

 Similarly, in 2016, a water rights issue between the City of Oklahoma City and 

both the Choctaw Nation of Oklahoma and Chickasaw Nation was resolved. This 

dispute arose in 2011, during a period of extreme drought in Oklahoma and Texas, 

when officials in Oklahoma City purchased rights to water in Sardis Lake, a reservoir in 

southeast Oklahoma that is within tribal boundaries of the Choctaw Nation. Both tribes 

had views of water rights that conflicted with those of Oklahoma City, but all 

governments came to an agreement that allowed the State of Oklahoma to manage the 

water supply while ensuring that the Tribes continued to have a voice in water resource 

and conservation issues for the region. These disagreements are important examples of 

the extremes that communities under pressure from water stress will undertake to gain 

or maintain their rights to water. With drought ravaging the U.S. Southern Plains in the 

current decade, states have been forced to look for new water resources or reduce water 
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use. Therefore, precipitation, temperature, and streamflow projections have become of 

important interest to water planners in the basin. 

3. Data  

3a. Introduction to the Dataset 

This study employs an ensemble of statistically downscaled, high-resolution 

climate projections that were created by the Geophysical Fluid Dynamics Laboratory of 

the National Oceanic and Atmospheric Administration and disseminated by the South 

Central Climate Science Center of the U.S. Geological Survey. One purpose of the 

ensemble was to examine the representativeness of the dataset to aid water resource 

managers in the Red River Basin with their long-term water plans. The dataset was 

generated by statistically downscaling output from three representative GCMs using 

empirical relationships between a predictor, or large-scale climate variable, and a 

predictand, or local-scale surface variable, by diverse techniques (Giorgi et al. 2001). 

Appropriate transfer functions, described below, were used to link the predictor and the 

predictand. Statistical downscaling was a better option for this study, compared to 

dynamical downscaling, because it allowed us to create projections for multiple models 

and scenarios without being as computationally demanding and expensive. 

Downscaled daily surface maximum and minimum temperatures and daily 

precipitation were projected for historical and future periods using over 3600 grid points 

throughout the region. The historical projections were trained from an observational 

dataset from Livneh et al. (2013) that originally included daily minimum and maximum 

temperature and daily precipitation data from 1915-2011 with a 0.16-degree resolution. 

From these data, a timeframe of January 1st, 1961 to December 31st, 2005 was selected 
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and the data were interpolated to 0.1°. The downscaled projections included a 

timeframe of 1961-2005 for the historical period and 2006-2099 for the future period, 

seeking results for the end of the 21st century.  

To force the projections on the large scale, three GCMs were chosen from the 

Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012): the low-

resolution version of the Max Planck Institute’s Earth System Model (MPI-ESM-LR; 

Giorgetta et al. 2013), the Community Climate System Model (CCSM4; Gent et al. 

2011), and the fifth version of the Model for Interdisciplinary Research on Climate 

(MIROC5; Watanabe et al. 2010). The CCSM4 model has a resolution of 0.9° by 1.3° 

and couples the atmosphere, ocean, land surface, and sea ice, and the sixth realization 

was used for this study, which spans from 1850 to 2005. For the MPI-ESM-LR model 

with a 1.9-degree resolution, the r1 realization was used, which has a timeframe from 

1880 through 2005; future simulations included natural forcings but excluded volcanic 

aerosols after 2005. The r1 realization was used for the MIROC5 model with a 

resolution of 1.4°. In addition, the first version of the perturbed physics model was used 

for all models. 

These models were selected based on their historical performance from the 

evaluation of Sheffield et al. (2013) which included consideration of model biases in 

seasonal temperature and precipitation in central North America and the frequency of 

hot days and heavy rainfall days in the south-central U.S. Additionally, the climate 

sensitivity of the models was included in the overall selection process (Forster et al. 

2013). These final three GCMs selected have relatively smaller biases compared to the 

full suite of CMIP5 models and represent a portion of the models’ uncertainties, 
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generally spanning the range of one standard deviation above and below the ensemble 

mean. For example, CCSM4 falls on the mean and MIROC5 and MPI-ESM-LR are on 

each end of the inner 50% of model sensitivities (Figure 2.2). 

 Figure 2.2. Performance assessment of the selected 3 GCMs (CCSM4, MIROC5, 
MPI-ESM-LR) based on North American (NA) and central North American 
(CNA) winter (DJF) and summer (JJA) bias in (a) precipitation and (b) 
temperature, (c) bias in the number of hot days and heavy precipitation days for 
the south-central U.S. (based on Sheffield et al. (2013)), and (d) Climate 
sensitivity (based on Forster et al. (2013) and personal communication with Dr. 
Derek Rosendahl).  
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3b. Quantile Mapping Approaches 

After model selection, we selected three of the four available RCP scenarios 

(RCP 2.6, RCP 4.5, and RCP 8.5) because they represent the full range of existing 

scenarios. Using these for each of the three GCMs, we implemented quantile mapping 

techniques to downscale the output, also reducing biases in the large-scale climate 

models during post-processing (Themeßl et al. 2011). For example, all three chosen 

models have been shown to underestimate precipitation in the winter, and two of the 

models overestimate temperature in the summer for the central North America region 

(Fig. 2.2, Sheffield et al. 2013). In this case, quantile mapping helped to correct these 

biases in the probability distributions of the GCMs and were tested to find the 

sensitivity of the projections. Quantile mapping incudes a stationarity assumption, 

meaning that biases and patterns that occur in the historical period are assumed to also 

occur in the future period (Cannon et al. 2015, Mauran 2012, Milly et al. 2008). In 

addition, for precipitation downscaling, we used a threshold of 0.127 mm to classify 

rainfall days, while dry days were defined as those days with precipitation amounts 

falling below the threshold. 

3c. Cumulative Density Function Transform (CDFt) Method 

We selected the downscaling techniques of Cumulative Density Function 

Transform (CDFt; Michelangeli et al. 2009), Equi-Distant Quantile Mapping (EDQM; 

Li et al. 2010, Cannon et al. 2015), and Bias Correction Quantile Mapping (BCQM; Ho 

et al. 2012). The CDFt downscaling technique uses a transfer function, shown in 

Equation 2.1 (Li et al. 2010), to identify the quantitative relationship between the 
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modeled historical and the observed cumulative distribution functions and uses the 

same relationship to generate the future cumulative distribution function (Pierce et al.  

 xm,p t = F-1
o,h Fm,h xm,p               Eq. 2.1 

2015). Subscripts represent observed (o), historical (h), modeled (m), and predicted (p) 

data, x!,# is the modeled climate variable that is being predicted, and xm,p is the bias 

corrected climate variable. This equation improves the tail behavior of the projections 

by keeping the distribution within the bounds of the observed data, and the technique 

preserves the initial GCM means in the downscaled output by transforming the mean of 

the GCMs to match the historical observed means.  

The two parameters used by CDFt are dev, the coefficient of development, 

which is the difference between the historical and future GCM mean and is used to 

extend the range for quantiles to be calculated, and npas, the number of quantiles that 

are being estimated. For this study, dev=1 and npas=100, the default. Pierce et al. 

(2015) analyzed the CDFt method and their results revealed that this method generally 

produces lower precipitation estimates across the U.S. However, in the Red River Basin 

region, their findings indicated a wet bias across a large part of the region, especially 

during the summer. Daily maximum temperature was underestimated in their end-of-

century projections for much of the basin in the summer as well. 

3d. Equi-Distant Quantile Mapping (EDQM) Method 

The second method we used was EDQM and the downscaling was performed 

through the transfer functions in Equation 2.2 (Cannon et al. 2015) and 2.3 (Li et al. 

2010). The modeled mean for the historical and predicted period is represented by xm,h 

and xm,p t  (Cannon et al. 2015). A ratio approach (Eq. 2.2) for EDQM versus an 
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additive approach (Eq. 2.3) for precipitation eliminates the possibility of negative 

precipitation values occurring after bias correction, which generally arises when a 

 xm,p t = F-1
o,h Fm,h

xm,hxm,p t

xm,p t

xm,p t

xm,h
               Eq. 2.2 

 xm,p t = xm,p+ F-1
o,h Fm,p xm,p -F-1

m,h(Fm,p xm,p )            Eq. 2.3 

model has a wet bias and projects a decrease in precipitation (Wang and Chen 2014). 

Therefore, both methods were applied in the calculation of EDQM, with a ratio 

approach being implemented for precipitation and an additive approach for temperature.  

EDQM assumes that the historical model error will persist in the future, and the 

technique bias corrects future temperature values by adding the historical bias value to 

the modeled change in that estimate at a given quantile across the gridpoints (Pierce et 

al. 2015). This method also upholds the modeled median change in the future. Pierce et 

al. (2015) projected very wet and dry regions to have a higher error; however, in the 

Red River Basin region, their estimates showed an underestimation of precipitation in 

the winter with a smaller mean error of 0 to -1 degrees Celsius and an overestimation in 

the summer with mean error of 0 to 0.5 degrees Celsius. 

 Quantile mapping methods do not require a temporal structure, or sequence, that 

represents the historical record; however, the resulting downscaled projections are used 

for hydrologic impacts studies, applying the Variable Infiltration Capacity model (Liang 

et al. 1994) for rainfall runoff and input to the RiverWare (Zagona et al. 2001; Xue et al. 

2016) water management tool. Thus, it was essential to link the daily variability of the 

GCM and downscaled output from both techniques to create temporal consistency by 

creating an algorithm to reorganize the downscaled output to improve the correlation of 
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the projections with the coarse-resolution GCM time-sequenced values. Once this 

process was complete, the downscaled data were quality controlled. 

3e. Bias Correction Quantile Mapping (BCQM) Method 

It is worth noting that we intended to use the BCQM method (Ho et al. 2012) as 

a third downscaling technique; however, there were substantive issues found with this 

method. BCQM uses the transfer equation in Eq. 2.1, but it only includes historical 

observations for data training and disregards information from future projections 

(Cannon et al. 2015). This technique can alter the trends of the GCMs after bias 

correction substantially, which affects precipitation analyses and skews the data 

distribution (Maurer and Pierce 2014). The tail distribution becomes skewed when the 

model projects values that fall outside of the historical range used for training. When 

the variance is overestimated in the historical period, the mean and quantiles also are 

overestimated after bias correction, and vice versa for underestimation (Cannon et al. 

2015). Therefore, the BCQM technique was not used for this study and cannot be 

recommended to decision makers in the Red River Basin at this time. 

4. Results 

The resulting dataset of statistically downscaled climate projections for the Red 

River Basin is publically available in NetCDF format. The data include daily minimum 

and maximum temperatures (in degrees Kelvin) and daily precipitation (in kg/m2s) from 

the described three GCMs and two downscaling techniques for the historical time 

period (1961-2005) and future period (2006-2099). There are 72 statistically 

downscaled projections created at a resolution of 0.1°, or approximately 11 kilometers 

latitude by 9 kilometers longitude, including 18 projections for the historical period and 
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54 projections for the future period. The gridded observational dataset (Livneh et al. 

2013) used as the downscaling training dataset is also available for validation purposes.  

Many analyses can be executed from these data. For example, in Section 4a, we 

provide an analysis for the difference in mean daily values between the most recent 25 

years in the historical period (1981-2005) and two 25-year segments of the future period 

(2046-2070 and 2075-2099) under RCP 2.6 and RCP 8.5 scenarios. We then computed 

the mean daily changes of precipitation for each season, which we discuss in Section 

4b. 

4a. Changes in Precipitation and Temperature 

Our first example of an analysis that can be conducted from these data include a 

simple calculation of the projected changes in mean daily precipitation and daily 

minimum and maximum temperature between the historical and future timeframes. We 

converted temperature to degrees Celsius and precipitation to millimeters per day. 

Overall, we determined that the models generally project an increasing precipitation 

trend in eastern portions of the Red River Basin and a decreasing trend in the west for 

both downscaling techniques, especially during the end-of-century period under RCP 

8.5 (Fig. 2.3). Under the CDFt technique, the CCSM4 and MPI-ESM-LR models 

estimate mean daily precipitation to decrease in the west up to 0.5 mm/day and increase 

in the east by up to 0.7 mm/day (Figure 2.3). In the historical period, 4-5 mm/day of 

mean daily precipitation occurred in the east, which indicates a 15% increase by the end 

of the 21st century (Fig. 2.4). In the west, historical mean daily precipitation ranged 

from 1-3 mm/day, which is a 15% decrease in the future. 



29 

The EDQM technique yielded a smaller range in precipitation differences, 

spanning from a 0.5-mm/day decrease to a 0.4-mm/day increase but exhibited the same 

spatial patterns as CDFt. On the other hand, the MIROC5 simulations demonstrated a 

basin-wide increase in precipitation for all RCPs and timeframes with the exception of 

the end-of-century scenario with RCP 8.5, where a basin-wide decrease was projected 

from both downscaling techniques. Sillmann et al. (2013) found that the MIROC5 

model projects the highest precipitation totals among the CMIP5 models, which may 

explain the model’s generally higher estimates. The differing results between models 

represent uncertainties in the models, downscaling methods, emission scenarios, and 

natural variability (Knutti and Sedláček 2013).  

Figure 2.3. Difference fields for mean daily precipitation (in mm/day) 
between historical (1981-2005) and end-of-century (2075-2099) timeframes 
for RCP 8.5. Columns represent the GCMs (CCSM4, MIROC5, and MPI-
ESM-LR, from left to right respectively); rows represent downscaling 
methods, with CDFt on top and EDQM on bottom. Brown and tan colors 
represent future decreases in precipitation compared to the historical period; 
blue-green colors represent future increases in precipitation. 
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Projections for mean daily minimum temperature differed greatly between RCP 

2.6 and RCP 8.5 scenarios. In a lower emission scenario, mean minimum daily 

temperatures increased up to 2°C for both timeframes, while estimates in the higher 

emission scenario increased by as much as 6.6°C by the end of the century (Fig. 2.5) 

compared to the historical value of approximately 10°C (Fig. 2.6). Mean daily 

maximum temperature is similar, and each projection revealed a basin-wide increase 

with no decreases in either minimum or maximum temperature (Fig. 2.7).  

The largest warming was projected to occur in the end-of-century time period of 

2075-2099 under the RCP 8.5 scenario for all models and downscaling methods. 

Although, MIROC5 exhibited warmer mean temperatures in the future time periods, 

with values being 1°C higher than the other two models. This difference can be 

explained by the warm bias in MIROC5 temperatures, shown in Figure 2b and 

described in Sheffield et al. (2013). Sheffield also estimated a warm bias in MPI-ESM-

Figure 2.4. Difference fields for the CCSM4 
mean daily precipitation (in mm/day) for the 
historical (1981-2005) timeframe. Darker 
shades of blue represent higher rainfall values. 
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LR for the central North America region. The CDFt and EDQM results were nearly 

equivalent in regard to temperature variables.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5. Difference fields for mean daily minimum temperature (°C) 
between historical (1981-2005) and end-of-century (2075-2099) timeframes 
for RCP 8.5. Columns represent the GCMs (CCSM4, MIROC5, and MPI-
ESM-LR, from left to right respectively); rows represent downscaling 
methods, with CDFt on top and EDQM on bottom. Darker shades of red 
represent higher minimum temperature values. 
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Figure 2.6. Difference fields for mean daily 
minimum temperature (°C) for the historical 
(1981-2005) timeframe for CCSM4. Dark shades 
of red represent higher minimum temperature 
values. 

Figure 2.7. Difference fields for mean daily maximum temperature (°C) 
between historical (1981-2005) and end-of-century (2075-2099) timeframes 
for RCP 8.5. Columns represent the GCMs (CCSM4, MIROC5, and MPI-
ESM-LR, from left to right respectively); rows represent downscaling 
methods, with CDFt on top and EDQM on bottom. Darker shades of red 
represent higher maximum temperature values. 
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4b. Seasonal Changes in Precipitation 

To better understand the changes seen in Section 4a, we computed the mean 

daily precipitation differences between the historical and future periods for each 

climatological season, categorized as December through February (DJF), March 

through May (MAM), June through August (JJA), and September through November 

(SON). Because modeled precipitation is more variable than temperature, we chose to 

only analyze the seasonal precipitation changes. Model projections indicated that the 

two downscaling techniques yielded similar results and spatial patterns.  

In the mid-century period, the models generally projected a change of 0.5 

mm/day from the historical value; however, there were distinct patterns in some models. 

For example, the CCSM4 model exhibited the largest changes in mean daily 

precipitation. This model estimated the mean daily precipitation to increase by 2 

mm/day in the MAM timeframe, compared to less than 0.5 mm/day in the other models 

(Fig. 2.8). This substantial amount revealed a 40% increase compared to historical 

values. Furthermore, the model projected a basin-wide decrease in the JJA timeframe 

with some locations having a reduction of 0.85 mm/day, while the other two models 

included a large-scale increase in mean daily precipitation. This result shows that the 

CCSM4 model projects more extreme values during the spring and balances its annual 

average by a widespread reduction during the summer in the mid-century period. Qiao 

et al. (2017) analyzed seasonal precipitation in the Red River Basin and used the same 

dataset as our study for the mid-century timeframe. Their results showed that the 

highest increases in precipitation occur in the spring and largest decreases were in the 

fall for the mid-century period. In addition, they discovered that precipitation amounts 
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in the upper quantiles are driving the precipitation totals in spring, which may validate 

that CCSM4 projects more extreme events in spring. Their results are consistent with 

ours. 

 On the other hand, larger changes were seen in the end-of-century period under 

RCP 8.5. We noticed the same previous patterns for the CCSM4 model, but the largest 

changes emerged in the MPI-ESM-LR model (Fig. 2.9). For example, mean daily 

precipitation in the DJF period increased by 1.68 mm in the eastern basin, which is 

more than 30% greater than the historical value. Precipitation increased in the JJA 

period as well, along with a decrease of 1.3 mm/day in the Texas Panhandle. 

Furthermore, this model projected the largest MAM decreases. Meanwhile, the 

MIROC5 model included small changes throughout most of the year. Precipitation 

uncertainties are evident by the end of the 21st century and two of the three models 

show that extreme values are likely driving the seasonal trends.  
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Figure 2.8. Difference field in seasonal changes in mean daily precipitation 
(mm/day) between the historical (1981-2005) and mid-century (2046-2070) 
timeframes for RCP 2.6 using the (a) CDFt downscaling technique and (b) 
EDQM technique. Columns represent seasons (DJF, MAM, JJA, SON). 
Brown colors represent a decrease in daily precipitation and blues represent 
an increase. 
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Figure 2.9. Difference fields in seasonal changes in mean daily precipitation 
(mm/day) between the historical (1981-2005) and end-of-century (2075-2099) 
timeframes for RCP 8.5 using the (a) CDFt downscaling technique and (b) 
EDQM technique. Columns represent seasons (DJF, MAM, JJA, SON). 
Brown colors represent a decrease in daily precipitation and blues represent 
an increase. 
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5. Conclusions 

Statistically downscaled climate projections provide high-resolution output that 

is more useful to water managers, decision makers, and researchers than coarse-

resolution global climate models. This study introduced a dataset that includes 

downscaling from three GCMs (CCSM4, MPI-ESM-LR, and MIROC5) using two 

statistical downscaling techniques (CDFt and EDQM) at a resolution of 0.1° for the Red 

River Basin. The dataset contains a historical time period (1961-2005) and a future 

period (2006-2099) and projects daily minimum and maximum temperature and daily 

precipitation through the end of the 21st century.  

While there are uncertainties in the models, downscaling techniques, and future 

emissions, results of the mean daily differences between historical and future climate 

variables indicate a decrease in mean daily precipitation in western portions of the basin 

and an increase in the east by the end of the century. Our seasonal analysis indicates 

that extreme values in some seasons may be driving the trends in mean daily 

precipitation, especially in the end-of-century period under RCP 8.5. In addition, daily 

minimum and maximum temperatures were projected to increase across the basin by up 

to 7°C, especially toward the end of the century and under a higher emission scenario. 

Results suggest that water resource managers and decision makers may need to plan for 

drier and hotter conditions in the western Red River Basin and wetter and hotter 

conditions in the east. This analysis explores one possibility of the use of this dataset; 

however, it can be beneficial for many other studies regarding climatological and 

hydrological aspects in the region. 
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Chapter 3: Future Hydrologic Extremes of the Red River Basin 

1. Introduction 

Hydrologic extremes of heavy precipitation and severe drought stress water 

resources and damage communities in the Red River Basin, located in the south-central 

United States. For example, the summer of 2011 was the third driest summer in 

Oklahoma state history and the driest in Texas history since records began in 1895. 

These states suffered great losses from prolonged drought conditions, with U.S. 

Drought Monitor category D4 (exceptional drought) conditions affecting almost all of 

Texas and nearly seventy percent of Oklahoma by area. As the long-term drought 

conditions finally ended in the spring of 2015, El Niño brought record amounts of 

precipitation to the region, resulting in catastrophic floods that caused loss of life and 

property. For example, daily rainfall values on June 18, 2015 included 2 inches in 

Durant, OK and as much as 10.5 inches in Newport, OK (OCS 2015). 

Hydrological extremes, hereby defined as heavy rainfall and severe drought 

events, have occurred throughout the historical record and are expected to continue in 

the future; however, decision makers need to know if and how the frequency of these 

events may vary in a changing climate so that they can mitigate these losses. Therefore, 

this research has examined how these hydrologic extremes impact water resources in 

the Red River Basin, how the frequency of such events is expected to change in the 

future, and how this study can aid local water resource managers and decision makers. 

To analyze the future frequency of hydrological extremes, this study used 

statistically downscaled climate projections, which use quantifiable relationships 

between large-scale climate variables, or predictors, and small-scale surface variables, 
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or predictands (Wilby et al. 2004). Downscaling generates high-resolution, detailed 

output that is more useful to decision makers and local resource managers than coarse-

resolution global climate models (GCMs; Maurer et al. 2014, Thrasher et al. 2013). 

GCMs are numerical models that simulate Earth’s large-scale atmospheric and oceanic 

processes and take greenhouse gas concentrations into account (IPCC 2013). GCMs 

calculate the evolution of climate variables, such as temperature and precipitation, that 

quantitatively describe future climatic changes; however, they currently only provide 

output in a coarse resolution of generally several hundreds of kilometers (Wilby et al. 

2004, IPCC 2013, UCAR 2011, Prudhomme et al. 2002). In addition, GCMs have 

limitations, including biases in climate forcings of greenhouse gases, natural variability, 

and rainfall (Lupo and Kininmonth 2013, Eden et al. 2012, Schmidli et al. 2006). To 

correct for these biases and gain local-scale information that is more beneficial for 

impact assessments and for decision makers and water resource managers, downscaling 

is typically the solution.  

2. Study Area 

 The Red River Basin has a diverse climate, with average yearly rainfall totals 

ranging from approximately 500 to 1300 millimeters (20 to 50 inches) from the west to 

the east, respectively. The basin, covering 239,361 km2, spans from New Mexico to the 

Mississippi River (Fig. 2.1) and is important for many ecoregions, the water supply, and 

cultural and recreational activities (Xue et al. 2015, Bertrand and McPherson 2017, in 

prep.). Conflicts over water resources in the basin have occurred in the past, such as the 

Supreme Court case, Tarrant Regional Water District vs. Hermann (2013), that arose 

after Oklahoma legislatures prohibited out-of-state water distribution in 2002, 
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preventing Tarrant County, and therefore, Fort Worth, Texas, from continuing to buy 

water from the state (Malewitz 2013). Another major water rights conflict occurred 

between the City of Oklahoma City and the Choctaw Nation of Oklahoma and 

Chickasaw Nation from 2011-2016, during a time of extreme drought in Oklahoma. 

These examples shine a light on the issues of water resources in the Red River Basin 

and the local stresses that arise during drought.  

On the other end of the spectrum, the Red River Basin has experienced heavy 

and extensive rainfall in the past, resulting in river and flash flooding. For example, 

record-breaking precipitation amounts in Texas and Oklahoma in May and June of 2015 

brought flooding that caused a loss of lives and property (Crouch 2015). Southern 

Oklahoma’s May monthly rainfall was 400% above average, with over 20 inches of rain 

(Di Liberto 2015). One Oklahoma City station recorded a 1-in-1000-year rainfall event 

for an accumulated period of 30 days. In northern Texas, levees broke, leading to 

flooded homes and voluntary evacuations (Breslin 2015). While this was a long-lasting 

event, daily rainfall values reached 2 inches in Durant, OK and 10.5 inches in Newport, 

OK on June 18, 2015 (OCS 2015). Periods of flash flooding are a hazard to human 

health not only from high flood waters, but from raw sewage and other toxic chemicals 

often contaminating the water supply from the stormwater runoff (Lee 2015, Taylor et 

al. 2011). Oklahoma and Texas experienced this, with various levels of sewage, oil, and 

insecticides released into the stormwater. This rainfall event caused at least 31 fatalities 

(Breslin 2015). 

Climate change studies of the Southern Plains have discussed a drier and 

warmer pattern in the future (Gutzler and Robbins 2010, Shafer et al. 2014, 
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Venkataraman et al. 2016). When intermittent heavy rainfall events occur in this 

pattern, soils can be too dry to absorb rainfall quickly enough to prevent flooding 

(UCAR 2010). Thus, even during drought conditions, it is important for water resource 

managers and decision makers to understand how flooding is expected to impact their 

community. In some cases, increased frequency of these events in the future may make 

it necessary for water infrastructure to be updated (National Research Council 2011). 

Taking these points into consideration, this study identifies if heavy rainfall and severe 

drought events may be expected to continue in the future for the region. 

3. Methods and Data 

3a. Research Design 

The goal of this study was to identify the future changes in frequency of 

hydrologic extremes in the Red River Basin in order to aid water resource managers and 

decision makers in the region. For our study, hydrologic extremes include heavy rainfall 

and severe drought events. Our study applies a dataset of statistically downscaled 

climate projections for the Red River Basin (Bertrand and McPherson 2017, in prep.) in 

order to determine any future changes in the frequency of these events in our future 

periods (2046-2070 and 2075-2099) compared to the historical period (1981-2005). To 

answer this research question, we first defined a heavy rainfall and severe drought 

threshold for our study area. We then selected a peak-over-threshold (POT) approach 

for both event types in order to identify the frequency of events that exceeded the 

thresholds in our selected timeframes. Because our goal was to find changes and trends 

in the future periods, we then computed the 25-year difference in event frequency 

between the historical and each future period across the basin. Our study provides 
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information on a grid cell basis, allowing us to discover spatial patterns that are also 

useful to decision makers and communities. The remainder of this section discusses the 

specific methodology we used for our study, as well as information about the dataset.  

3b. Data 

Bertrand and McPherson (2017, in prep.) provided details of the dataset, which 

uses statistical downscaling methods to project a 0.1-degree resolution of climate 

variables, such as minimum and maximum temperature and precipitation on a daily 

scale. The dataset was created by the Geophysical Fluid Dynamics Laboratory (of the 

National Oceanic and Atmospheric Administration) and was shared by the South 

Central Climate Science Center (of the U.S. Department of the Interior) in order to aid 

decision makers and water resource managers in the basin with local-scale information 

for long-term water plans (Bertrand and McPherson 2017, in prep.). The climate 

variables were projected for a recent historical period of 1961-2005 and through the end 

of the 21st century, or 2006-2099, for various representative concentration pathway 

(RCP) scenarios.  

After an evaluation of GCMs from the Coupled Model Intercomparison Project 

Phase 5 (CMIP5; Taylor et al. 2012), three models were selected to be downscaled: the 

Community Climate System Model (CCSM4; Gent et al. 2011), the fifth version of the 

Model for Interdisciplinary Research on Climate (MIROC5; Watanabe et al. 2010), and 

the low-resolution version of the Max Planck Institute’s Earth System Model (MPI-

ESM-LR; Giorgetta et al. 2013). The dataset includes two quantile mapping methods 

that statistically downscaled the data and reduced GCM biases, which are the 

Cumulative Density Function Transform (CDFt; Michelangeli et al. 2009) and Equi-
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Distant Quantile Mapping (EDQM; Li et al. 2010) with RCPs of 2.6, 4.5, and 8.5. For 

more information about the quantile mapping techniques, model selection, and model 

evaluation, refer to Bertrand and McPherson (2017, in prep.).  

For our comparative analysis, 25-year time periods were chosen from the 

dataset, which include a historical period of 1981-2005 and two future periods of 2046-

2070 and 2075-2099 to offer a mid-century and end-of-century analysis. In addition, 

RCP scenarios 2.6 and 8.5 were selected to provide a range of possible future radiative 

forcings.  

3c. Heavy Precipitation Definition 

Literature has shown that there is no standard definition of an extreme or heavy 

precipitation event, for the term is dependent on the climatology of the region (Liu et al. 

2013, Schoof and Robeson 2016). For example, in a dry location where it is typical to 

have little precipitation, the threshold of heavy rainfall is different than in an area prone 

to convective storms with heavy downpours. While there is a lack of clarity in heavy 

rainfall definitions, there are various criteria of these events in the literature for different 

study areas. Some researchers use a specific daily rainfall value that is set as the 

threshold. For example, a study in India defined a “heavy [rainfall] event” as 100 

mm/day of precipitation and a “very heavy event” as 150 mm/day (Goswami et al. 

2006). In addition, Vavrus et al. (2015) classified a heavy precipitation event in the 

northeast U.S. as having at least 2 inches of rainfall in one day. 

Return periods and Generalized Extreme Value (GEV) distributions have also 

been used to study extreme rainfall. For example, results from Kharin et al. (2013) 

revealed that the historical 20-year return period is reduced to as much as 6 years in the 
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future for CMIP5 models. Cheng and AghaKouchak (2014) assess intensity-duration 

curves with GEV distributions to compute several return periods under a stationary and 

nonstationary climate, revealing more extremes in a nonstationary environment. 

Furthermore, Tryhorn and DeGaetano (2011) developed GEV distributions to validate 

their statistical downscaling techniques by analyzing extreme precipitation events in the 

northeast U.S. They found that the simulated return periods were within the 95% 

confidence interval of the observations and the GEV distributions. 

On the other hand, many studies utilize a percentile approach. Zhang et al. 

(2011) states that using percentile thresholds and the number of days exceeding those 

thresholds allows us to compare frequencies spatially. This method is also termed a 

peak-over-threshold (POT) approach, which Villarini et al. (2013) similarly uses to 

assess precipitation values at the 95th percentile. Schoof and Robeson (2016) list 

indicators created by the Expert Team on Climate Change Detection and Indices 

(ETCCDI) from the World Meteorological Organization Commission for Climatology 

(CCI)/World Climate Research Programme’s Climate Variability and Predictibility 

(CLIVAR) project (Vavrus et al. 2015) in which “extremely wet days” are calculated by 

the 99th percentile of annual total precipitation.  

Another instance of a 99th percentile method is shown in Emori and Brown 

(2005), where they use this threshold with daily precipitation from six climate models. 

Other percentile values have been found in the literature as well, such as Zhai et al. 

(2005) that determines the frequency of extreme rainfall events over time in China, 

which are classified as days with rainfall greater than the 95th percentile for a selected 

time period. Therefore, implementing a POT approach from a set percentile is 
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commonly found in the literature and is implemented in this study to analyze the 

frequency of heavy precipitation events occurring from a spatial perspective. 

In our study, we selected the POT approach with thresholds of the 90th and 99th 

percentiles of rain days in the 25-year historical period of 1981-2005, based on the 

statistically downscaled dataset used in this study. The percentiles of the historical 

period and the number of daily events exceeding each of these thresholds in the 

historical and future periods (2046-2070 and 2075-2099) were calculated across the Red 

River Basin through R version 3.3.2 (R Core Team 2016). From here on, the number of 

events that exceed the 90th and 99th percentiles of the historical period are referred to as 

the “frequency of heavy precipitation events,” and the future events at these thresholds 

are denoted as “90th and 99th percentile events”. The differences, or changes, between 

the historical frequency and each future frequency across the basin were then computed 

to determine whether there were any increasing or decreasing trends in heavy 

precipitation events. Our computed values thus represent the change in the number of 

days during a 25-year period, not yearly differences. 

3d. Severe Drought Definition 

The second type of hydrologic extreme analyzed in this study is drought. 

Drought also has many definitions, depending on the application, and there are various 

types of drought, such as meteorological, agricultural, and hydrological (Palmer 1965). 

For the purpose of finding short-term hydrologic extremes, this study focused on 

meteorological drought. Even focusing on this one type of drought, much of the 

literature highlights that there is not a standard way to define or measure the hazard 

(Dracup et al. 1980, Wilhite and Glantz 1985, Wilhite 2000). A concise definition by 
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the National Weather Service is, “a deficiency of moisture that results in adverse 

impacts on people, animals, or vegetation over a sizeable area” (NOAA 2016).  

One method to empirically measure drought is through drought indices, such as 

the Standardized Precipitation Index (SPI; McKee et al. 1993). The SPI is user friendly, 

allowing the user to calculate the drought conditions for specific timeframes and 

determine how many droughts, and at what magnitude, have occurred in that time frame 

(McKee et al. 1993, Guttman 1998, Keyantash and Dracup 2002). This index can be 

computed by creating probability distribution functions for the long-term precipitation 

of a location for a selected time scale and then calculating the cumulative probability of 

a certain precipitation amount (McKee et al. 1993, Guttman 1999). The SPI value is 

then estimated by applying an inverse normal function to the probabilities with a mean 

of zero and standard deviation of one. Therefore, the SPI provides the probability of a 

wet or dry event occurring by showing the number of standard deviations the values are 

from the mean. Negative SPI values represent a deficiency in moisture relative to local 

climatology and positive values are above the median precipitation (Guttman 1999).  

Unfortunately, SPI does not take evapotranspiration into consideration and thus 

is insufficient to use in a warming world. Instead, the Standardized Precipitation 

Evapotranspiration Index (SPEI) accounts for the SPI’s limitations and provides the 

ability to perform a multiscalar analysis (Vicente-Serrano et al. 2010). SPEI can be 

calculated by Equation 3.1, where P is monthly total precipitation and PET is the 

potential evapotranspiration (Vicente-Serrano et al. 2010). There is an R package, SPEI, 

for simple calculation of the drought index at various timescales (Beguería and   
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SPEI = P - PET                 Eq. 3.1 

Vicente-Serrano 2013). Through this software package, users can choose different 

methods for the calculation of potential evapotranspiration (PET). Examples include the 

Thornthwaite equation (Thornthwaite 1948) that uses mean daily temperature and 

latitude and the Hargreaves equation (Hargreaves and Samani 1985) that uses monthly 

average minimum and maximum temperature. Equation 3.2 displays the Hargreaves 

 ET0 = 0.0023Ra TC + 17.8 TR0.5               Eq. 3.2 

equation, where ET0 is reference evapotranspiration, Ra is the radiation component, TC 

is the mean temperature in degrees Celsius for the time period, and TR is the daily 

temperature range (Hargreaves and Samani 1985). The Thornthwaite and Hargreaves 

equations require different data variables for calculation of PET but do not have specific 

requirements for the number of observations. 

Venkataraman et al. (2016) utilized this package to calculate SPEI in Texas 

under three emission scenarios through the end of the 21st century. They chose to 

calculate PET, and thus SPEI, with the Hargreaves method because other research has 

shown that the Thornthwaite equation is not ideal for climate change studies due to the 

method overestimating drought conditions with increased temperatures (Lockwood 

1999). Amatya et al. (1995) analyzed several methods of calculating PET, including 

Thornthwaite and Hargreaves, and found that the Thornthwaite method performed the 

worst for their humid study area of North Carolina. Furthermore, Lu et al. (2005) 

discovered that PET values calculated from the Thornthwaite equation were the lowest 

among six methods used to calculate PET in the southeast U.S., including a watershed 

in Arkansas.  
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For our study, the SPEI was the most suitable drought index because it could 

easily be calculated from limited climatological variables, such as monthly minimum 

and maximum temperature and monthly precipitation (UCAR 2014), as recommended 

by Beguería et al. (2014). The SPEI R package also allows the user to input the time 

scale desired for the calculation, which is important for multiscalar analyses whereby 

drought is examined at different time scales, such as for long-term assessments and 

impacts. 

The variables of daily minimum and maximum temperature and daily 

precipitation in our downscaled dataset enabled a simple calculation of PET using the 

Hargreaves method and then further computation of SPEI. To run the package in R, 

monthly average minimum and maximum temperatures and monthly total precipitation 

were required for both the historical and future time periods. We then calculated PET 

and SPEI values for each grid cell in the Red River Basin at a one-month timescale 

from these monthly averages and totals, then computed the frequency of severe drought 

events for each grid cell in the basin. 

The SPEI classifies extreme drought as a value of less than or equal to –2 

(McKee et al. 1993); however, our study discovered that these events are rare, 

especially during 25-year periods; hence, we selected a threshold of SPEI less than or 

equal to –1.5 to encompass severe drought. Our study’s historical period of 1981-2005 

was a wetter period than other 25-year periods on record (Fig. 3.1), and it did not 

contain the high-magnitude drought of the 1950s or 1960s, thus clarifying the small 

number of extreme drought events and length of drought found (Fig. 3.1). Similar to the 

heavy precipitation analysis, the differences between the historical frequency and each 
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future frequency across the grid were calculated in order to determine any changes in 

severe drought through the 21st century.  

 

 

4. Results 

4a. Heavy Precipitation 

 The difference between the number of heavy precipitation events in the 

historical period (1981-2005) and each future period (2046-2070 and 2075-2099) was 

calculated for the ensemble that used CCSM4, MIROC5, and MPI-ESM-LR models 

with CDFt and EDQM downscaling techniques for RCP 2.6 and RCP 8.5 across the 

Red River Basin. The 90th percentile of precipitation during the historical period ranged 

from approximately 7 to 35 millimeters (0.3 to 1.4 inches) per day across the basin, 

while the 99th percentile spanned from 22 to 88 millimeters (0.9 to 3.5 inches) per day. 

Heavy precipitation thresholds increased to the east, coinciding with the average annual 

Figure 3.1. Long-term annual precipitation history for the South Central 
climate division in Oklahoma (Oklahoma Climatological Survey 2017). 
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precipitation gradient of approximately 500 to 1300 millimeters (20 to 50 inches) per 

year (USGS 2017, Bertrand and McPherson 2017, in prep).   

For example, the threshold for the grid cell that encompassed Amarillo, TX, 

which is located in the Texas Panhandle, in the CCSM4 model was 12.3 millimeters 

(0.5 inches) for the historical 90th percentile and 32 millimeters (1.3 inches) for the 99th 

percentile. In the center of the basin, the heavy precipitation threshold near Ardmore, 

OK, was 17.6 millimeters (0.7 inches) for the 90th percentile and 42.6 millimeters (1.7 

inches) for the 99th percentile. Eastern locations exhibited higher thresholds, such as a 

90th percentile of 17.6 millimeters (0.7 inches) and a 99th percentile of 52.2 millimeters 

(2.1 inches) in the grid cell that Shreveport, LA was within. Because the thresholds 

were calculated from rain days, the annual number of 90th and 99th percentile events in 

the historical period were dependent on location and followed the west to east gradient 

as well, as seen in Figure 3.2. It is worth noting that gridded data produce a lower 

frequency of heavy rainfall events, because the grid cell is averaging what would be 

several point observations (Ensor and Robeson 2008, Contractor et al. 2015). 

Figure 3.2. Annual occurrence of 90th and 99th percentile events in the 
modeled historical period for three locations in the Red River Basin. The red 
line represents results for Amarillo, TX, the black line represents Ardmore, 
OK, and the blue line represents Shreveport, LA.  
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The future projected change in the amount of precipitation associated with the 

historical 90th percentile threshold varies between models, statistical downscaling 

techniques, and RCP scenarios and is shown in Table 1, where negative values are 

associated with decreasing events and positive values show increasing events. Overall, 

we discovered a decreasing trend of events exceeding the historical 90th percentile 

thresholds in the west and an increase in these events in the east for the future scenarios. 

However, these trends were not consistent across all models and all RCP scenarios. For 

example, the mid-century (2046-2070) results for RCP 2.6 included an increase in 

heavy precipitation events across much of the basin for the MIROC5 model, but a 

basin-wide decrease in events for the CCSM4 model (Fig. 3.3). In addition, the CCSM4 

mid-century results for RCP 8.5 included a basin-wide decrease in 90th percentile days 

and results for MIROC5 were variable on each run.  

The largest decreases in extreme precipitation events at the 90th percentile 

occurred in the RCP 8.5 scenario, especially for the end-of-century period. For example, 

projections from the MPI-ESM-LR model and CDFt downscaling technique estimated 

locations in the far western portion of the basin to have a decrease in the number of 90th 

percentile daily events by as many as 249 days compared to approximately 900 events 

that occurred in the historical 25-year period (Table 1a, Figure 3.4). The EDQM 

technique demonstrated the same pattern; however, the change in number of events was 

not as large as the CDFt results, with the greatest decrease being 98 days in this 

scenario and timeframe. There were projected increases in heavy rainfall events as well, 

most noticeably in the MPI-ESM-LR model. This model estimated some locations in 

the east to have approximately 113 more 90th percentile rainfall days by the end of the 
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Table 1. Change of the number of days in the 25-year period of heavy precipitation 
events at the (a) 90th percentile and (b) 99th percentile of the historical period. 
Change in the number of days is calculated under RCP 2.6 and RCP 8.5 scenarios 
(columns) for each model and statistical downscaling technique (SD), and the 
range across the basin is displayed as the basin minimum (left side of each column) 
and maximum (right side). 
 

Minimum and Maximum Number of Days for the Change in Historical versus Future  
Heavy Precipitation Events 

Model, SD Mid-century  
(2046-2070) 

End-of-century 
(2075-2099) 

Historical 
(1981-2005) 

 RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5  

 Min   Max Min   Max Min   Max Min  Max Min  Max 

(a) 90th Percentile     

CCSM4, CDFt –76 47 –123 4 –108 47 –84 74 0 691 

MIROC5, CDFt –23 105 –71 92 –37 111 –133 27 0 627 

MPI-ESM-LR, CDFt –112 57 –185 71 –112 112 –247 76 0 913 

CCSM4, EDQM –70 59 –104 13 –90 59 –75 59 0 499 

MIROC5, EDQM –27 92 –82 66 –48 116 –119 12 0 499 

MPI-ESM-LR, EDQM –61 68 –85 97 –49 101 –98 113 0 419 

         

(b) 99th Percentile         

CCSM4, CDFt –24 68 –24 65 –29 40 –23 72 0 70 

MIROC5, CDFt –18 45 –21 51 –21 45 –12 51 0 63 

MPI-ESM-LR, CDFt –24 44 –23 53 –23 53 –14 71 0 92 

CCSM4, EDQM –22 34 –19 34 –24 15 –20 32 0 50 

MIROC5, EDQM –12 43 –9 45 –15 46 –9 68 0 50 

MPI-ESM-LR, EDQM –10 30 –16 35 –16 35 –11 49 0 42 
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century under a RCP 8.5 scenario for both downscaling techniques compared to 900 

events that occurred in the historical period.  

 Results for rainfall events associated with the 99th percentile of the historical 

period showed similar patterns to those of the 90th percentile, with the most common 

pattern being an increase in heavy rainfall days in the east and many fewer occurring in 

the west. However, there were model differences in trends compared to the 90th 

percentile events. For example, while the MPI-ESM-LR model exhibited the highest 

decrease in extreme events in the basin for the 90th percentile, the MIROC5 (during the 

end-of-century period for RCP 8.5) and the CCSM4 portrayed this characteristic in the 

99th percentile for both CDFt and EDQM techniques (Figs. 3.5 and 3.6). All three 

models projected a decrease in mean daily precipitation in the western Red River Basin 

(Bertrand and McPherson 2017, in prep.); however, the models were handling extremes 

differently.  

When we compared results for the mid-century period under RCP 2.6 (Fig. 3.5) 

versus the end-of-century period under RCP 8.5 (Fig. 3.6), we noticed that heavy 

rainfall events are affected by different emission scenarios and timeframes as well. The 

largest decreases in events occurred in the 2075-2099 timeframe for the CCSM4 model 

where the western and central portions of the basin were estimated to experience up to 

nearly 30 fewer heavy rainfall days, compared to 70 events that the CCSM4 modeled 

for the historical period (Table 1b).  

Increases in 99th percentile events were variable and dependent on the model and 

RCP scenario. Most model runs projected an increase in heavy precipitation events in 

the eastern Red River Basin. These results agree with Wuebbles et al. (2014) who used 
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CMIP5 models to indicate that rainfall in the U.S. is projected to increasingly fall in the 

99th percentile of their long-term historical period, especially in the RCP 8.5 scenario. 

The most widespread increases in the end-of-century period occurred using the MPI-

ESM-LR model, especially in the RCP 8.5 scenario, which includes approximately 70 

more heavy rainfall days than the historical period. The difference is a sizeable change 

and indicates that the number of heavy precipitation events may increase by more than 

75% in this area as compared to the historical period.  

Sillmann et al. (2013) analyzed the performance of the CMIP5 models for 

extreme indices and stated that the MPI-ESM-LR model produces the greatest simple 

daily intensity, an extremes index from ETCCDI, in millimeters per day versus other 

models, which could explain a higher number of events occurring with this model. 

Dosio (2016) found that the MPI-ESM-LR model overestimates precipitation. This 

overestimation also occurred in the mean daily precipitation analysis of the Red River 

Basin compared to observational data (Bertrand and McPherson 2017, in prep.). While 

there were differences between models for different timeframes and RCP scenarios, the 

most common trend included an increase in the number of heavy rainfall events in the 

eastern Red River Basin, where average annual rainfall is higher, and a decrease in 

events in the drier, western portions of the basin. 
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Figure 3.3. Change in 25-year total frequency of all heavy rainfall days over 
25 years at the 90th percentile between the historical period (1981-2005) and 
mid-century period (2046-2070) under a RCP 2.6 scenario. 

 Figure 3.4. Change in 25-year total frequency of all heavy rainfall days over 
25 years at the 90th percentile between the historical period (1981-2005) and 
end-of-century period (2075-2099) under a RCP 8.5 scenario. 
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 Figure 3.5. Change in 25-year total frequency of all heavy rainfall days over 
25 years at the 99th percentile between the historical period (1981-2005) and 
mid-century period (2046-2070) under a RCP 2.6 scenario. 

 
Figure 3.6. Change in 25-year total frequency of all heavy rainfall days over 
25 years at the 99th percentile between the historical period (1981-2005) and 
end-of-century period (2075-2099) under a RCP 8.5 scenario. 
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4b. Severe Drought 

Similar to the heavy rainfall analysis, a frequency analysis of severe drought 

was also computed for each grid cell in the Red River Basin for each model, statistical 

downscaling technique, and RCP scenario for the historical and future timeframes. To 

gauge how meteorological drought may change in the future, we calculated monthly 

averages of SPEI and counted the number of events when SPEI was less than or equal 

to –1.5. Because the analysis included monthly events, consecutive months of severe 

drought were considered to be separate events. Drought often occurs for several 

consecutive months, so we acknowledge that this could have affected our results. 

During the 25-year historical period, the downscaled models indicated that the highest 

frequency of severe drought in the basin was 24 events, which occurred in southeast 

Arkansas and north-central Louisiana (Fig. 3.7). This result is consistent with NOAA’s 

time series of drought in the southeast climate division of Arkansas (2017; Fig. 3.8). A 

similar number of historical severe drought events were also located in the Texas 

Panhandle.  

Table 2 displays the ranges for the projected change in number of severe 

drought events for each future setting, with negative and positive values indicating 

decreasing or increasing events in the basin, respectively. Overall, the change in severe 

drought included a range of increasing and decreasing events across the basin. As Table 

2 shows, the difference between the number of severe drought events was relatively 

consistent from historical to future periods for each model.  
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Figure 3.7. Spatial representation of the 
historical drought frequency for the 
CCSM4 model 

Figure 3.8. Palmer Drought Severity Index of the southeast 
climate division of Arkansas for the historical period (NOAA 
2017). 



65 

Table 2. Ranges in the change between historical and future frequency of 1-month 
severe drought events under RCP 2.6 and RCP 8.5 scenarios for each model and 
statistical downscaling technique (SD) 
 

Minimum and Maximum Number for the Change in Historical versus Future 1-Month 
Severe Drought Events 

Model, SD Mid-century  
(2046-2070) 

End-of-century  
(2075-2099) 

Historical 
(1981-2005) 

 RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5  

 Min  Max Min  Max Min  Max Min  Max Min  Max 

CCSM4, CDFt  -9  8 -12 10 -8  8 -10 12 0 24 

MIROC5, CDFt  -9 14  -8 13 -8 11 -8 11 0 21 

MPI-ESM-LR, CDFt -10 10  -6 9 -8 10 -12  8 9 21 

CCSM4, EDQM -10  9 -12 8 -11  8 -12 11 0 26 

MIROC5, EDQM -13 12 -12 10  -9  7 -12  9 0 22 

MPI-ESM-LR, EDQM -13 12 -12 10  -9  7 -12  9 0 23 

 

Although the minimum and maximum values were similar throughout, there 

were some spatial trends for each model. For example, the CCSM4 model projected an 

increase in the number of severe drought events across northwestern and central 

portions of the basin and a decline across the southwest and east (Figs. 3.9 and 3.10). 

This pattern was demonstrated in both the mid-century period under RCP 2.6 and the 

end-of-century period under RCP 8.5; however, the magnitude of this change was 

greater for the latter. For example, southwest Oklahoma and north-central Texas may 

receive up to 12 more severe drought events between 2075-2099, as compared to the 

historical frequency of 10-15 events over 25 years. Doubling the frequency of these 

events is likely to cause great damage to communities. Bertrand and McPherson (2017, 
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in prep.) identified a decrease in mean daily precipitation in the western part of the Red 

River Basin and a rise in both minimum and maximum temperatures, consistent with 

the projections of more drought events across the west in the future.  

The MIROC5 model projected the trend of more severe drought events in the 

west and fewer in the east as well. The largest change in these events occurred in the 

mid-century period under RCP 2.6 for both downscaling techniques, when higher 

frequencies of severe drought were projected to occur and expand through the central 

Red River Basin. For example, we estimated an increase of at most 14 more events 

during a 25-year period throughout the basin, but especially across southeast Oklahoma 

and northeast Texas, and up to nine fewer events in the east, particularly in southern 

Arkansas (Table 2, Fig. 3.9). These results indicate that the frequency of severe drought 

may double in the western and central areas of the basin; however, southern Arkansas 

may experience a decline of these events by one third in the mid-century period 

compared to historical events.  

Our analysis for the end-of-century timeframe under RCP 8.5 exhibited the same 

spatial pattern but had a much weaker signal, indicating a smaller range of severe 

drought occurrence compared to the historical period (Fig. 3.10). However, under this 

same RCP scenario for the end-of-century period, there were more widespread areas of 

decreasing severe drought events throughout the basin. These results support those of 

Venkataraman et al. (2016), who computed SPEI values across Texas to assess drought 

through the 21st century. They discovered that locations like Lubbock, located in far-

west Texas, just south of the Texas Panhandle, are expected to experience more 

droughts by the end of the century under RCP 8.5 conditions. 
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Lastly, the MPI-ESM-LR results included the similar pattern of more severe 

drought events in the west and fewer events in the east; however, the signal was small 

compared to the other two models, and the location of the highest frequency of future 

events both shifted farther westward and expanded across the southeast (Figs. 3.9 and 

3.10). This pattern was similar to that of the historical period, as seen in Figure 3.7. For 

example, we estimated an increase of as many as 12 events near the New Mexico/Texas 

border and northeast Texas during the 25-year, mid-century period, especially for the 

EDQM downscaling technique, compared to 15-20 events that occurred in the historical 

period. By the end of the century, however, our projections indicate less prominence in 

the increasing trend of events for the EDQM downscaling technique and a widespread 

decrease in the number of severe drought events throughout the basin, with scattered 

pockets of more events using the CDFt technique (Figs. 3.10c and 3.10f).  

While there is variability between GCMs, we document an overall increase in 

drought events in portions of the western Red River Basin and a decline in the east. 

Wuebbles et al. (2014) found that CMIP5 models project an increase in the risk of 

drought in the RCP 8.5 scenario in the U.S. due to projected increases in evaporation 

and decreases in precipitation, which further validates our end-of-century results. 

Furthermore, with both temperature and precipitation taken into account for the 

calculation of SPEI, the models were more consistent for our estimation of these events 

than for our extreme precipitation analysis.  
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Figure 3.9. Change in 25-year total frequency of severe drought at a 1-month 
timescale between the historical period (1981-2005) and mid-century period 
(2046-2070) under a RCP 2.6 scenario. Purple colors represent a decrease in 
events and oranges represent an increase. 

Figure 3.10. Change in 25-year total frequency of severe drought at a 1-
month timescale between the historical period (1981-2005) and end-of-
century period (2075-2099) under a RCP 8.5 scenario. Purple colors 
represent a decrease in events and oranges represent an increase. 
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5. Conclusion/Discussion 

Hydrologic extremes of rainfall and drought have affected the Red River Basin 

in the past, creating negative economic impacts and causing damage to infrastructure 

and water quality and quantity. In order to alleviate for future losses, this study intended 

to identify the trends in the frequency of future heavy rainfall and severe drought events 

in the basin by using statistically downscaled climate projections through the end of the 

21st century. By using a peak-over-threshold approach for heavy rainfall events at the 

90th and 99th percentiles of the historical period, we discovered that the selected models 

generally show an increase in heavy rainfall events in the eastern portion of the basin 

and a decrease in the west, especially during the 2075-2099 period under a RCP 8.5 

scenario. However, results for the RCP 2.6 scenario, when emissions are reduced, still 

indicate this trend. Heavy rainfall events cause large economic impacts from inundated 

homes and streets, erosion around infrastructure, and reduced water quality. Those in 

the eastern Red River Basin, such as across northeast Louisiana, may need to prepare 

for more of these events and their consequences in order to prevent future damages as 

well as possible. 

 We detected severe drought events by using the Standardized Precipitation 

Evapotranspiration Index (SPEI) at a one-month timescale, and values of less than or 

equal to -1.5 were classified as severe drought. This analysis also included a POT 

approach to identify the frequency of historical and future severe drought events. The 

results from this analysis differed between models, as each model projects precipitation 

differently. The most common result, although not unanimous among all three models, 
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was an increasing trend in number of severe drought events in the western Red River 

Basin and a declining trend in the east.  

For the eastern basin, a decrease in severe drought would be good news, as 

drought impacts energy production, water quality and quantity, the ecology of the area, 

and agriculture. For example, the drought in 2011 led to $13 billion in damages in the 

Southern Plains (NOAA 2016) and caused a 6% increase in energy demand and 30% 

reduction in reservoir storage for cooling power plants in Texas (Scanlon et al. 2013). 

During this event, groundwater levels of aquifers in the region were below normal 

(Andrews 2013). For the western portion of the basin, an increase in extreme drought 

events, coupled with mean precipitation expected to decline, would create a more dire 

situation for water resources in this already arid or semi-arid region.  

As one of the goals of this study was to aid stakeholders in the region, these 

results will be communicated to stakeholders through a webinar that will present the 

details of the study and what communities may expect in the future in regard to heavy 

rainfall and severe drought events. The results of this research will also be displayed on 

the South Central Climate Science Center’s website to reach other stakeholders. 

There are many factors of uncertainty with our study. First, the time period of 

the historical observations in which the projections were trained from plays a role in the 

statistics of the downscaled projections. The observation dataset is constrained to the 

1961-2005 time period and our 25-year selection of 1981-2005 was wetter than other 

25-year periods; therefore, having a longer time-series would potentially impact the 

threshold of the 90th and 99th percentiles. There is also uncertainty with the GCMs, 

downscaling techniques, and RCP scenarios. For example, Chen et al. (2011) discussed 
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uncertainty in GCMs and various downscaling techniques and found that GCMs have 

the largest uncertainty but the choice of downscaling technique has an impact on results 

for climate change studies. Taking this into account, we still found common patterns 

throughout our results. This study aimed to provide information and awareness of the 

possible scenarios of future hydrologic extremes of the Red River Basin and to help 

stakeholders to understand their future risks so they can mitigate for potential losses. 
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Chapter 4: Conclusion 

 Hydrologic extremes of rainfall and drought have created billions of dollars in 

damages and stressed water resources in the Red River Basin in the past. These events 

have occurred throughout the historical record; however, it is important to know how 

the frequency of these events is expected to vary in a changing climate so that decision 

makers can mitigate for these losses. Therefore, this study used statistically downscaled 

climate projections to determine the change in frequency of these events through the 

end of the 21st century. While global climate models provide a general idea of future 

conditions for water resource managers and decision makers, the coarse resolution does 

not compare to high-resolution statistically downscaled data (Thrasher et al. 2013). 

Therefore, this study introduced a dataset of statistically downscaled climate projections 

from three GCMs (CCSM4, MIROC5, and MPI-ESM-LR) and two downscaling 

techniques (CDFt and EDQM) at a 0.1-degree resolution for the Red River Basin under 

RCP 2.6 and RCP 8.5. The data were projected for a historical period (1961-2005) and 

future period (2006-2099) and included daily minimum and maximum temperature and 

daily precipitation. 

1. Precipitation and Temperature 

To explore the data, mean daily changes in all three climate variables were 

calculated between the most recent historical period of 1981-2005 and two future 

periods of 2046-2070 and 2075-2099 to deliver a mid-century and end-of-century 

analysis. The general pattern of precipitation showed mean daily precipitation declining 

in the western Red River Basin and increasing in the east by the end of the century. 

Compared to the historical period, this indicates a 15% change across the basin. In 
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addition, mean daily minimum and maximum temperature were projected to increase up 

to 7°C across the basin, especially toward the end of the century and under RCP 8.5. 

The mean daily minimum temperature was estimated to double for this scenario 

compared to historical projections. A seasonal analysis was then performed for 

precipitation, and we found that some seasons include more extreme values that are 

driving the overall trend in mean daily precipitation, especially for the end-of-century 

timeframe with a higher emission scenario. These results indicated that water resource 

managers and decision makers need to prepare for a much warmer climate with drier 

conditions in the west. The conditions seen in this analysis were confirmed in the 

literature (Shafer et al. 2014, Qiao et al. 2017). 

2. Hydrologic Extremes 

The next step of this study included an examination of future hydrologic 

extremes of the Red River Basin. After we examined the literature, a peak-over-

threshold approach was decided for both the heavy rainfall and severe drought analyses. 

Heavy rainfall events were defined by the daily 90th and 99th percentiles of rain days in 

the historical period for each grid cell in the basin. Severe drought events were 

classified by the Standardized Precipitation Evapotranspiration Index (SPEI) value of 

less than or equal to -1.5 for a 1-month timescale. Using the same conditions that were 

previously described (three GCMs, two statistical downscaling techniques, and two 

RCP scenarios), the frequency of both types of events was found for the historical 

period and each future period. The difference between the historical and future 

frequency of these events was then computed in order to identify any changes in heavy 

rainfall and severe drought through the end of the century. 
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Similar to the analysis of mean daily precipitation, we discovered that the 

models generally projected an increase in both tiers of heavy rainfall events in the 

eastern Red River Basin, such as northeast Louisiana, and a decrease in the west, 

especially under a RCP 8.5 scenario for the end of the century. For the 99th percentile 

events, some areas in the east were projected to receive over twice as many heavy 

rainfall events than in the modeled historical period, which is a substantial change.  

On the other hand, the most common trend for the change in severe drought 

events included an increase of future events in the west and a reduction in the east. For 

this analysis, we discovered variability between RCP scenarios and downscaling 

techniques, but each model tended to sustain similar spatial patterns throughout. For 

example, the CCSM4 model projected events in southwestern Oklahoma and north-

central Texas to double by the end of the century. Meanwhile, the MPI-ESM-LR model 

had a smaller signal of increasing events and a widespread pattern of decreasing events 

had more prominence. However, the overall trend remained with an east versus west 

pattern of decreasing and increasing events, respectively. 

The main results of this study include drier and warmer conditions with 

increasing severe drought events in the western Red River Basin and wetter and warmer 

conditions with increasing extreme rainfall events in the east. For both cases, water 

resources are likely to be affected. While there is uncertainty in the models, our 

downscaling techniques, and future emission amounts, this study aimed to provide 

localized information for decision makers and water resource managers in this region to 

be able to make more informed decisions for resilience against these life-threatening 

and damaging events in the future. 
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Figure A1. Difference fields for mean daily precipitation (in mm/day) 
between historical (1981-2005) and mid-century (2046-2070) timeframes 
for RCP 2.6. Columns represent the GCMs (CCSM4, MIROC5, and 
MPI-ESM-LR, from left to right respectively); rows represent 
downscaling methods, with CDFt on top and EDQM on bottom. Brown 
and tan colors represent future decreases in precipitation compared to 
the historical period; blue-green colors represent future increases in 
precipitation. 
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Figure A2. Difference fields for mean daily precipitation (in mm/day) 
between historical (1981-2005) and end-of-century (2075-2099) 
timeframes for RCP 2.6. Columns represent the GCMs (CCSM4, 
MIROC5, and MPI-ESM-LR, from left to right respectively); rows 
represent downscaling methods, with CDFt on top and EDQM on 
bottom. Brown and tan colors represent future decreases in 
precipitation compared to the historical period; blue-green colors 
represent future increases in precipitation. 
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Figure A3. Difference fields for mean daily precipitation (in mm/day) 
between historical (1981-2005) and mid-century (2046-2070) timeframes 
for RCP 8.5. Columns represent the GCMs (CCSM4, MIROC5, and 
MPI-ESM-LR, from left to right respectively); rows represent 
downscaling methods, with CDFt on top and EDQM on bottom. Brown 
and tan colors represent future decreases in precipitation compared to 
the historical period; blue-green colors represent future increases in 
precipitation. 
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Figure A4. Difference fields for mean daily precipitation (in mm/day) 
between historical (1981-2005) and end-of-century (2075-2099) 
timeframes for RCP 8.5. Columns represent the GCMs (CCSM4, 
MIROC5, and MPI-ESM-LR, from left to right respectively); rows 
represent downscaling methods, with CDFt on top and EDQM on 
bottom. Brown and tan colors represent future decreases in 
precipitation compared to the historical period; blue-green colors 
represent future increases in precipitation. 
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Figure A5. Difference fields for mean daily minimum temperature (°C) 
between historical (1981-2005) and mid-century (2046-2070) timeframes 
for RCP 2.6. Columns represent the GCMs (CCSM4, MIROC5, and 
MPI-ESM-LR, from left to right respectively); rows represent 
downscaling methods, with CDFt on top and EDQM on bottom. Darker 
shades of red represent higher minimum temperature values. 
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Figure A6. Difference fields for mean daily minimum temperature (°C) 
between historical (1981-2005) and end-of-century (2075-2099) 
timeframes for RCP 2.6. Columns represent the GCMs (CCSM4, 
MIROC5, and MPI-ESM-LR, from left to right respectively); rows 
represent downscaling methods, with CDFt on top and EDQM on 
bottom. Darker shades of red represent higher minimum temperature 
values. 



92 

 

 

 

 

 

 

 

 

 

Figure A7. Difference fields for mean daily minimum temperature (°C) 
between historical (1981-2005) and mid-century (2046-2070) timeframes 
for RCP 8.5. Columns represent the GCMs (CCSM4, MIROC5, and 
MPI-ESM-LR, from left to right respectively); rows represent 
downscaling methods, with CDFt on top and EDQM on bottom. Darker 
shades of red represent higher minimum temperature values. 
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Figure A8. Difference fields for mean daily minimum temperature (°C) 
between historical (1981-2005) and end-of-century (2075-2099) 
timeframes for RCP 8.5. Columns represent the GCMs (CCSM4, 
MIROC5, and MPI-ESM-LR, from left to right respectively); rows 
represent downscaling methods, with CDFt on top and EDQM on 
bottom. Darker shades of red represent higher minimum temperature 
values. 
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Figure A9. Difference fields for mean daily maximum temperature (°C) 
between historical (1981-2005) and mid-century (2046-2070) timeframes 
for RCP 2.6. Columns represent the GCMs (CCSM4, MIROC5, and 
MPI-ESM-LR, from left to right respectively); rows represent 
downscaling methods, with CDFt on top and EDQM on bottom. Darker 
shades of red represent higher minimum temperature values. 
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Figure A10. Difference fields for mean daily maximum temperature (°C) 
between historical (1981-2005) and end-of-century (2075-2099) 
timeframes for RCP 2.6. Columns represent the GCMs (CCSM4, 
MIROC5, and MPI-ESM-LR, from left to right respectively); rows 
represent downscaling methods, with CDFt on top and EDQM on 
bottom. Darker shades of red represent higher minimum temperature 
values. 
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Figure A11. Difference fields for mean daily maximum temperature (°C) 
between historical (1981-2005) and mid-century (2046-2070) timeframes 
for RCP 8.5. Columns represent the GCMs (CCSM4, MIROC5, and 
MPI-ESM-LR, from left to right respectively); rows represent 
downscaling methods, with CDFt on top and EDQM on bottom. Darker 
shades of red represent higher minimum temperature values. 
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Figure A12. Difference fields for mean daily maximum temperature (°C) 
between historical (1981-2005) and end-of-century (2075-2099) 
timeframes for RCP 8.5. Columns represent the GCMs (CCSM4, 
MIROC5, and MPI-ESM-LR, from left to right respectively); rows 
represent downscaling methods, with CDFt on top and EDQM on 
bottom. Darker shades of red represent higher minimum temperature 
values. 
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Figure A13. Difference field in seasonal changes in mean daily 
precipitation (mm/day) between the historical (1981-2005) and mid-
century (2046-2070) timeframes for RCP 2.6 using the (a) CDFt 
downscaling technique and (b) EDQM technique. Columns represent 
seasons (DJF, MAM, JJA, SON). Brown colors represent a decrease in 
daily precipitation and blues represent an increase. 
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Figure A14. Difference field in seasonal changes in mean daily 
precipitation (mm/day) between the historical (1981-2005) and end-of-
century (2075-2099) timeframes for RCP 8.5 using the (a) CDFt 
downscaling technique and (b) EDQM technique. Columns represent 
seasons (DJF, MAM, JJA, SON). Brown colors represent a decrease in 
daily precipitation and blues represent an increase. 
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Figure A16. Change in 25-year total frequency of all heavy rainfall days 
over 25 years at the 90th percentile between the historical period (1981-
2005) and end-of-century period (2075-2099) under a RCP 2.6 scenario. 
Orange colors represent a decrease in events and blue/greens represent 
an increase. 
 

Figure A15. Change in 25-year total frequency of all heavy rainfall days 
over 25 years at the 90th percentile between the historical period (1981-
2005) and mid-century period (2046-2070) under a RCP 2.6 scenario. 
Orange colors represent a decrease in events and blue/greens represent 
an increase. 
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Figure A17. Change in 25-year total frequency of all heavy rainfall days 
over 25 years at the 90th percentile between the historical period (1981-
2005) and mid-century period (2046-2070) under a RCP 8.5 scenario. 
Orange colors represent a decrease in events and blue/greens represent 
an increase. 
 

Figure A18. Change in 25-year total frequency of all heavy rainfall days 
over 25 years at the 90th percentile between the historical period (1981-
2005) and end-of-century period (2075-2099) under a RCP 8.5 scenario. 
Orange colors represent a decrease in events and blue/greens represent 
an increase. 
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Figure A19. Change in 25-year total frequency of all heavy rainfall days 
over 25 years at the 99th percentile between the historical period (1981-
2005) and mid-century period (2046-2070) under a RCP 2.6 scenario. 
Red colors represent a decrease in events and blues represent an 
increase. 

Figure A20. Change in 25-year total frequency of all heavy rainfall days 
over 25 years at the 99th percentile between the historical period (1981-
2005) and end-of-century period (2075-2099) under a RCP 2.6 scenario. 
Red colors represent a decrease in events and blues represent an 
increase. 
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Figure A21. Change in 25-year total frequency of all heavy rainfall days 
over 25 years at the 99th percentile between the historical period (1981-
2005) and mid-century period (2046-2070) under a RCP 8.5 scenario. 
Red colors represent a decrease in events and blues represent an 
increase. 
 

Figure A22. Change in 25-year total frequency of all heavy rainfall days 
over 25 years at the 99th percentile between the historical period (1981-
2005) and end-of-century period (2075-2099) under a RCP 8.5 scenario. 
Red colors represent a decrease in events and blues represent an 
increase. 
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Figure A23. Change in 25-year total frequency of severe drought at a 1-
month timescale between the historical period (1981-2005) and mid-
century period (2046-2070) under a RCP 2.6 scenario. Purple colors 
represent a decrease in events and oranges represent an increase. 

Figure A24. Change in 25-year total frequency of severe drought at a 1-
month timescale between the historical period (1981-2005) and end-of-
century period (2075-2099) under a RCP 2.6 scenario. Purple colors 
represent a decrease in events and oranges represent an increase. 
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Figure A25. Change in 25-year total frequency of severe drought at a 1-
month timescale between the historical period (1981-2005) and mid-
century period (2046-2070) under a RCP 8.5 scenario. Purple colors 
represent a decrease in events and oranges represent an increase. 

Figure A26. Change in 25-year total frequency of severe drought at a 1-
month timescale between the historical period (1981-2005) and end-of-
century period (2075-2099) under a RCP 8.5 scenario. Purple colors 
represent a decrease in events and oranges represent an increase. 
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Appendix B: Survey Questions 

Title of survey: Red River Basin Survey: Hydrologic Extremes 

[Online consent form] 

I agree to participate: 

m Yes (1) 

m No (2) 

*If Yes, participant is directed to Question 1. 

*If No, participant is directed to the End of Survey message. 

 

1. What type of jurisdiction best describes your area of decision responsibility? (Please 

select all that apply.) 

q International (1) 

q National / Federal (2) 

q State (3) 

q Sovereign Tribal Nation / Indian Lands (4) 

q Watershed / Drainage Basin / Catchment (5) 

q County (6) 

q Village / Town / City (7) 

q Neighborhood (8) 

q University / College (9) 

q Other (Please describe.) (10) ____________________ 
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2. In what area of the basin are you working in? 

m New Mexico (1) 

m Texas (2) 

m Oklahoma (3) 

m Arkansas (4) 

m Louisiana (5) 

3. For decisions pertaining to heavy rainfall and/or drought events, which option best 

represents your role(s)? (Please select all that apply.)  

q Agricultural producer (1) 

q Other agricultural decision maker (not a producer) (2) 

q Fossil fuel energy producer (generation) (3) 

q Renewable energy producer (generation) (4) 

q Energy utility manager (transmission or distribution) (5) 

q Water resources manager (6) 

q Natural resources manager (excluding energy and water resources) (7) 

q Conservation manager (8) 

q Engineer (e.g., civil engineer, water resources engineer, hydrologic engineer, dam 

operations manager) (9) 

q Hydrologist (10) 

q Transportation planner (11) 

q Risk manager (e.g., insurance) (12) 

q City or regional planner (13) 

q Emergency manager (14) 
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q Public safety official / First responder (e.g., police officer, fire chief) (15) 

q Researcher (e.g., academia) (16) 

q Educator (e.g., K-12, college, university) (17) 

q Legislator or elected official (18) 

q Weather or climate services expert (19) 

q Public health official or provider (20) 

 

Questions 4-9 pertain to extreme drought. 

 

4. What products or indices do you use to gather drought information? (Please select all 

that apply.) 

q U.S. Drought Monitor (1) 

q U.S. National Weather Service (includes Climate Prediction Center) (2) 

q Palmer Drought Severity Index (PDSI) (3) 

q Standardized Precipitation Evapotranspiration Index (SPI or SPEI) (4) 

q Crop Moisture Index (CMI) (5) 

q Soil moisture data (e.g., Oklahoma Mesonet) (6) 

q Other (Please describe.) (7) ____________________ 
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5. For each season, what U.S. Drought Monitor category would cause adverse impacts 

to your jurisdiction, resulting in you or your organization to begin taking action (e.g., 

water conservation measures, water use restrictions)? 

 

D0 

(abnormally 

dry) (1) 

D1 

(moderate 

drought) (2) 

D2 (severe 

drought) (3) 

D3 (extreme 

drought) (4) 

D4 

(exceptional 

drought) (5) 

Winter (1) m  m  m  m  m  

Spring (2) m  m  m  m  m  

Summer (3) m  m  m  m  m  

Fall (4) m  m  m  m  m  

 

6. How many consecutive months of drought would cause adverse impacts to your 

jurisdiction? 

7. What impacts would you expect to see in your jurisdiction if this occurred (e.g., 

infrastructure damage, ecological damage, impacts on water quality or quantity, etc.)? 

8. What specific actions do you or your organization take in the event of your 

previously selected drought category being reached (e.g., water conservation measures, 

water use restrictions)? 

9. Do you use any other specific triggers to determine if action is needed, such as 

reservoir level or water use exceeding a threshold? (If yes, please explain.) 

m Yes; Explain: (1) ____________________ 

m No (2) 
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Questions 10-13 pertain to extreme rainfall. 

 

10. What amount of rainfall in a two-week period would cause adverse impacts to your 

jurisdiction, resulting in you or your organization to begin taking action (e.g., activating 

emergency response procedures, releasing water resources, disseminating public 

warnings or advisories, or relocating resources or people)? (Please give a response in 

inches.) 

11. If the rainfall amount from your previous response occurred, what impacts would 

you expect to see in your jurisdiction (e.g., flooded streets, fish kills, disease outbreaks, 

water contamination)?  

12. What specific actions do you or your organization take in the event of your selected 

rainfall amount being reached (e.g., activating emergency response procedures, 

releasing water resources, disseminating public warning or advisories)? 

13. Do you use any other specific triggers to determine if action is needed, such as 

reaching the 99th percentile of rainfall or the 100-year flood threshold? (If yes, please 

explain.) 

m Yes; Explain: (1) ____________________ 

m No (2) 

14. Does your workplace have a current plan or a plan in progress for future climate 

conditions? (If yes, please explain.) 

m Yes; Explain: (1) ____________________ 

m No (2) 
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15. Would you like to be contacted with the research results for your jurisdiction in the 

Red River Basin? This would include information about the future frequency of extreme 

drought and rainfall events in your area. If so, please click the following link to provide 

us with your contact information.  

https://ousurvey.qualtrics.com/jfe/form/SV_a2Asnx8NMlaRDcV 

 

End of survey message: 

Thank you for your time! If you are interested in the results of this research, then you 

can check the South Central Climate Science Center’s webpage 

(www.southcentralclimate.org) in summer of 2017. If you chose to complete this 

survey, your responses will be of great help to this research regarding the impacts of 

extreme drought and rainfall in the Red River Basin. If you opted in to participate in 

this research further, then you will be contacted soon.  

 

 The following is a secondary survey that was created to keep contact information 

separate from previous survey responses. 

Title of survey: Red River Basin Survey 2: Contact Information 

 

Thank you for completing the previous survey! This is the contact page for the Red 

River Basin: Extreme Drought and Rainfall survey. If you chose to be contacted with 

research results for your jurisdiction, then please answer the following questions. If you 

would not like to provide contact information, you may exit this survey. 
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1. Would you like me to contact you with my research results for your jurisdiction in 

the Red River Basin? If yes, please provide contact information (email and/or phone 

number). 

m Yes; Contact info: ____________________ 
m No 
 
2. What is your name? (Optional) 

 

End of survey message: 

Thank you for your time! If you are interested in the results of this research, then you 

can check the South Central Climate Science Center’s webpage 

(www.southcentralclimate.org) in summer of 2017. If you opted in for the opportunity 

to receive research results for your jurisdiction, then you will be contacted soon.  

 

 

 

 

 

 

 

 

 

 

 

 


