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nected one-dimensional lattice with p(a) = 1, p(b) = 3. 3.3(c) and 3.3(e)
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Abstract

In this dissertation, I present my work on ground state entanglement in Bose-Hubbard-

type models. Bose-Hubbard-type models form a wide class of bosonic lattice models

and describe systems that can be realized by cold atoms or molecules trapped in optical

lattices. By studying ground state entanglement, one can understand quantum phases and

phase transitions among them from a microscopic point of view. I will first introduce

the two-component Bose-Hubbard model describing Bose-Bose mixtures, and discuss

the role played by the interspecies entanglement in the Mott-insulator-to-superfluid phase

transition of one component in the presence of a second component. I will show that

interspecies entanglement provides a new perspective to understand quantum phases in

mixtures. Then I will discuss long-range spatial entanglement in single-species Bose-

Hubbard-type models. Specifically, I will build a generic framework for understanding

under which conditions these models harbor certain types of topological order. My results

provide guidance for future numerical studies which can pave the way for searching

experimentally realizable bosonic lattice models harboring nontrivial topological order.

xii



Chapter 1

Introduction

Many-body systems are ubiquitous in nature. They can be man-made such as high-

temperature superconductors, or naturally occurring such as biological systems or galaxies.

Interesting many-body systems are driven by strong correlations and characterized by

their exotic properties resulting from the collective behavior of their constituents. In

physics, a thorough understanding of strongly-correlated many-body quantum systems has

attracted the interest of scientists for decades due to the astonishing potential technological

applications of, e.g., nano-scale materials [3], high-temperature superconductors [4],

ultracold atoms and molecules [5].

In a reductionism viewpoint, it was believed that the physics of a many-body system

was mainly determined by properties of its individual constituents while the rules stipu-

lating how these constituents behave together played a minor role [6]. However, in the

past decades, the study of many-body systems, such as Bose-Einstein condensates [7],

high-temperature superconductors [4] and neural networks [8], has revealed that the in-

teractions among constituents, which governs the way the constituents behave together,

plays a decisive role in determining the physical properties of many-body systems. The

interaction, often of simple nature, e.g., the repulsion among identical electrons caused

1



by the Pauli exclusion principle, generates great complexity as the number of constituents

increases. However, the full complexity of the system is never displayed in a finite-size

system, but rather is an emergent phenomenon as the size of the system gets larger and

larger up to infinity. The emergent phenomenon is a macroscopic property resulting from

the microscopic properties of the many-body system. As an example, the robustness

of topologically ordered quantum phases in fractional quantum Hall systems [5] is an

emergent property determined by the electronic interaction in the presence of magnetic

field. Unveiling the relationship between the emergent properties and the microscopic

interaction is one of the main challenges in understanding strongly-correlated many-body

systems.

Prominent experimentally-realizable many-body models amenable to study collective

behavior and emergent phenomena are Bose-Hubbard-type models. Their experimen-

tal counterparts are ultracold atoms or molecules trapped in optical lattices [9]. These

engineered systems are highly-controllable and tunable, and can be used to simulate

real condensed matter systems which cannot be probed without affecting the systems

themselves. In the past two decades, the study of quantum phase transitions of Bose-

Hubbard-type models together with their experimental realization [10, 11, 12, 13, 14, 15]

has vastly advanced the understanding of many-body systems, and has revealed promising

prospect of systems described by Bose-Hubbard-typemodels in technological applications

such as quantum information processing and physical realizations of quantum computa-

tion [16, 17].

Well-known examples of Bose-Hubbard-type models include the prototype single-

species Bose-Hubbard model [18, 19], the multi-component Bose-Hubbard model [20,

21, 22] describing bosonic mixtures, the extended Bose-Hubbard model [23, 24] with

off-site interaction, e.g., dipolar interaction. A Bose-Hubbard-type model simply consists

of an interaction term which tends to localize bosons on lattice sites and a kinetic-energy
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term which tends to delocalize bosons. The competition between the interaction and

the kinetic energy drives a quantum phase transition between an insulating phase and a

superfluid phase. At a given filling factor, depending on the specifics of the interaction,

the possible insulating phases can be characterized by local order parameter [18, 19]

or nonlocal topological order [25]. This wealth of insulating phases unfolds the com-

plex relationship between emergent properties of the many-body system and interac-

tion between its constituents, and has been the object of extensive studies in the past

decade [23, 24, 26, 27, 28, 22]. Methods like mean-field theory, perturbation theory,

renormalization group, and numerical simulations have been successful in studying insu-

lating phases characterized by local order parameters [29]. However, the understanding

of exotic quantum phases not described by local order parameters call for new methods

and new perspectives.

The best known example of quantum phases characterized by nonlocal order are

topologically ordered phases initially studied in the context of fractional quantum Hall

effect [30]. Topologically ordered phases are characterized by topological ground state

degeneracy and low-energy excitations which can be viewed as quasiparticles called

anyons [5, 31]. The braiding properties of anyons are robust against decoherence and

can be utilized to perform topological quantum computation which is currently the most

promising route to perform quantum computation [32, 5]. The description of these phases

is beyond the Ginzburg-Landau symmetry breaking paradigm, and thus challenges the

current understanding of collective behavior in certain many-body systems [33]. Recently,

it has been realized that the nature of exotic properties in a topologically ordered phase

originate from certain nonlocal properties of the system’s ground states. These properties

are determined by nontrivial ground state entanglement [34]. This perspective encourages

the use of concepts borrowed form quantum information theory, especially quantum

entanglement, in the study of many-body physics [35]. This perspective also provides

3



a new angle to understand quantum phases and transitions among them in terms of

entanglement associated with ground states. Moreover, it is believed that the study of

ground state entanglement in many-body systems can reveal the complex relationship

between emergent properties and microscopic interactions in many-body systems [33].

In Bose-Hubbard-type models, insulating ground states characterized by local or non-

local order are mainly determined by the dominating interaction which establishes the

correlation among the degrees of freedom living on each site of the lattice. The correla-

tion, which is quantum mechanical in nature, reflects the entanglement of the many-body

system. Therefore, the ground state entanglement plays a key role in understanding in-

sulating phases. Moreover, a thorough understanding of quantum phases stabilized by

Bose-Hubbard-type models in terms of ground state entanglement is crucial in view of

potential applications of cold-atom systems trapped in optical lattices in quantum infor-

mation and quantum computation, in particular topological quantum computation. In

this dissertation, I report my work on studying the role played by interspecies entangle-

ment in the Mott-insulator-to-superfluid phase transition in Bose-Bose mixtures trapped

in optical lattices. I also report my work on unveiling the relationship between certain

type of long-range ground state entanglement and the interaction term in a wide class of

two-spatial-dimensional Bose-Hubbard-type models in which the interaction dominates

over the kinetic energy.

This dissertation is written based on my work published in References [21], [22] and

[25], and is organized as follows.

Chapter 2 briefly introduces Bose-Hubbard-type models and concepts of entangle-

ment. Chapter 3 studies the ground state degeneracy in finite systems and develops a

degenerate perturbation theory to study the two-component Bose-Hubbard model in the

strong-interaction regime. Results from this chapter are used to study interspecies entan-

glement. Chapter 4 systematically studies the interspecies entanglement in ground states

4



of the two-component Bose-Hubbard model, and shows a close relationship between the

entanglement and the shift of the Mott-insulator phase boundary of one component in

the presence of the other component. Chapter 5 develops a generic framework for the

emergence of the Z2 toric-code topological order and the double-semion topological order

in a certain class of Bose-Hubbard-type models. Chapter 6 summerizes my work and

discusses my future research plan.
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Chapter 2

Bose-Hubbard-type models and ground

state entanglement

In this chapter, we introduce Bose-Hubbard-type models and briefly describe the Mott-

insulator-to-superfluid quantum phase transition in the single component Bose-Hubbard

model. We then review fundamental concepts of interspecies entanglement and long-

range spatial entanglement that will be studied in details in Chapter 4 and 5 respectively.

We also discuss the concept and basic properties of topological order using the toric code

model as an example.

2.1 Bose-Hubbard-type models

A Bose-Hubbard-type model is a many-body model of interacting lattice bosons. This

type of model captures the quantum phase transition of different systems ranging from

cold atoms trapped in optical lattices [19] through granular films [18]. The prototype of

Bose-Hubbard-type models is the single-species Bose-Hubbard model [18, 19]. In the
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Figure 2.1: Phase diagram of the Bose-Hubbard model. M.I. inside the lobe stands for
Mott-insulator phase. The superfluid phase is outside the lobe.

grandcanonical ensemble, it has the following form

H = −t
∑
<i, j>

b+i b j +
U
2

∑
i

ni (ni − 1) +
∑

i

µni, (2.1)

where b j (b+i ) is the annihilation (creation) operator corresponding to the site j (i) of the

lattice, ni = b+i bi is the particle number operator at site i, < i, j > stands for a nearest-

neighbor pair of sites, t is the hopping matrix element, U is the onsite interaction, and µ

is the chemical potential.

At zero temperature, the Bose-Hubbard model features two quantum phases, the

Mott-insulator phase and the superfluid phase [18, 19], as shown in Fig. 2.1, where Mott-

insulator phase is inside the lobes while superfluid phase is outside. In the phase diagram,

each lobe corresponds to a fixed integer filling factor. At integer filling factor, when the

interaction dominates, the system governed by the model is in the Mott-insulator phase,

while when the hopping dominates, the system is in the superfluid phase. The Mott-

insulator phase is characterized by an excitation energy gap for adding a particle or a hole

to the system while the superfluid phase is compressible and gapless. The lobe boundary
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can be crossed in two different ways according to the different nature of phase transitions.

It can be crossed from the M.I. regime by fixing t/U while increasing (decreasing) µ/U.

This phase transition corresponds to adding (removing) a boson to (from) the system. The

MI-SF boundary can also be crossed at fixed integer filling factor while increasing t/U.

This phase transition corresponds to delocalizing bosons.

The Bose-Hubbard model can be extended to a wide class of bosonic lattice models.

For example, there can be more than one bosonic species in the system [20, 21, 22] as

will be discussed in Eq. 3.3. One can also set U = ∞ (hardcore limit), and add a site-site

interaction term to form the extended Bose-Hubbard model which can be realized by

degenerate gasses, e.g., polar molecules trapped in optical lattices [23, 36]:

H = −t
∑
<i, j>

b+i b j +
∑
i, j

Vi jnin j, (2.2)

where Vi j is the site-site interaction amplitude. The interaction in the extended Bose-

Hubbard model can be short-ranged, e.g., nearest neighbor interaction, or long-ranged,

e.g., dipolar interaction. In principle, the amplitudes t can also be inhomogeneous and

dependent on pairs of sites. Furthermore, ring-exchange hopping terms can be present

to form a class of models with potential to realize certain topological order as will be

discussed in Chapter 5.

In general, the typical form of a Bose-Hubbard-type model consists of the interaction

term which tends to localize bosons on lattice sites and the hopping term which tends

to delocalize bosons. The competition between the interaction and the hopping drives

quantum phase transition between an insulating phase and a superfluid phase. For a

given fixed filling factor, the interaction specified by Vi j as a function of pairs of sites can

give rise to a variety of insulating phases [23, 24, 26, 27, 28, 25], characterized by local

order parameter or nonlocal topological order. As a matter of fact, as we will discuss

8



later in great details, gapped insulating phases are mainly determined by the dominating

interaction which establishes the ground state entanglement among the degrees of freedom

living on each site of the lattice.

2.2 Entanglement

Entanglement in ground states of many-body system is defined in terms of certain de-

compositions of the Hilbert space for the whole system into a tensor product of Hilbert

spaces of subsystems. There are many possible decompositions corresponding to the

different nature of quantum correlations. In this dissertation, we consider two types of

decompositions.

2.2.1 Bipartite entanglement

For the two-component Bose-Hubbard model describing, e.g., Bose-Bose mixture of cold

atoms trapped in optical lattices, a natural decomposition of the Hilbert space H of the

whole system is in terms of the two components. In other words,H = Ha ⊗Hb whereHa

andHb are the Hilbert spaces of the two bosonic species, A and B, respectively. With this

decomposition, we study the bipartite entanglement of the ground state and its relationship

with the superfluid-to-insulator transition of one of the two components in the presence

of the other component. This work is discussed in Chapter 4.

The bipartite entanglement of a pure state, for example the ground state |Ψ〉 ∈ H =

Ha ⊗ Hb of the two-component Bose-Hubbard model, is uniquely characterized by its

Schmidt decomposition [37]. This means that there exist a basis {|ξm〉}1≤m≤M of Ha and
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a basis {|γn〉}1≤n≤N of Hb (assuming M ≥ N) such that

|Ψ〉 =

N∑
n=1

√
εn |ξn〉 ⊗ |γn〉 , (2.3)

where the set {εn}1≤n≤N is the spectrum of the reduced density operator ρa of ρ =

|Ψ〉〈Ψ|. The amount of bipartite entanglement in |Ψ〉, as measured by the von Neumann

entanglement entropy [37], is

− Tra[ρa log ρa] = −
N∑

n=1
εn log εn. (2.4)

InChapter 4, by studying the vonNeumann entropy of |Ψ〉, we show a close relationship

between the bipartite entanglement of |Ψ〉 and the superfluid-to-Mott-insulator quantum

phase transition.

2.2.2 Spatial entanglement

To avoid ambiguity in the following discussion on spatial entanglement, we clarify vocab-

ulary regarding many-body systems defined on lattices that we will use in the following.

A lattice model refers to a generic form of lattice Hamiltonians for many-body systems,

e.g., the Bose-Hubbard model as given by Eq. 2.1, without specifying the Hamiltonian

parameters, lattice geometry and lattice topology. Lattice geometry refers to the type of

lattice, e.g., triangular lattice, square lattice or Kagome lattice. Lattice topology refers to

the topology of the manifold in which the lattice is embedded as specified by the boundary

conditions. For example, a lattice with periodic boundary conditions is embedded in a

torus. A lattice system refers to a lattice model with specified Hamiltonian parameters and

lattice geometry, but with unspecified lattice topology. Note that a lattice system can be

viewed as a family of lattice Hamiltonians indexed by lattice topology. For example, the
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1D Ising model with specified Hamiltonian parameters can be defined on an open string

or a closed ring. In the two different lattice topology, the terms entering the Hamiltonians,

which involve the boundary of the chain are different in the two lattice topology. When the

lattice topology, i.e. boundary conditions, is specified, we say that a lattice system is gov-

erned by a specified Hamiltonian. We refer to a lattice system with specified Hamiltonian

as a lattice Hamiltonian.

For single-species hardcore bosonic lattice systems governed by a certain Hamiltonian,

we consider the following decomposition, H = ⊗N (Λ)
i=1 Hi, where the index i runs through

N (Λ), the number of sites in the latticeΛ, andHi = C
2 is theHilbert space of the degrees of

freedom on each site. HereHi can be viewed as expanded by the occupation number basis

{|0〉 , |1〉} on the ith site. In terms of this decomposition, the ground state |Ψ〉 is, in general,

multipartite entangled and this type of entanglement is usually called spatial entanglement.

The spatial entanglement has a much richer structure than the bipartite entanglement. In

the following, we introduce the so called “long-range entanglement” [34] corresponding

to topological order of 2D lattice systems, which will be discussed in Chapter 5 for

Bose-Hubbard-type models.

2.2.3 Gapped phase and local unitary transformation

The complexity of the spatial entanglement arises from the number ofHi participating in

the decomposition, i.e. the number of lattice sites. The complexity increases with increas-

ing lattice size. A complete measure and characterization of the spatial entanglement in

ground states is very challenging. Nonetheless, one can still look at nonlocal properties

of the spatial entanglement to describe gapped quantum phases of systems governed by

local Hamiltonians 1. Here, we briefly describe this approach.

1A local Hamiltonian is a sum of local operators. Local operators act nontrivially only on a subset of
sites which is small compared to the lattice size. A more precise definition is given in Reference [38]
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Figure 2.2: Spectrum of a gapped lattice Hamiltonian. ∆ separates the lowest eigenvalues
from the rest of the spectrum and stays finite in the infinite system size. The spacing
between the lowest eigenvalues vanishes as the system size increases.

We start by clarifying the concept of “gapped phase” [33] and then discuss the con-

ditions under which two systems with specified Hamiltonians are in the same quantum

phase.

In this dissertation we only consider local lattice Hamiltonians. A lattice Hamiltonian

H is said to be gapped if there exists a finite spectral gap∆ separating the lowest eigenvalues

{E1, · · · , En}, corresponding to the n eigenstates {|Ψ1〉 , · · · , |Ψn〉} of H , from the rest of

the spectrum. The gap ∆ stays finite when the system size increases to infinity, while

the eigenvalue spacing in {E1, · · · , En} vanishes exponentially with increasing lattice size.

These properties are illustrated in Figure. 2.2 which shows the change in the spectrum of

the system as the system size increases. The eigenstates {|Ψ1〉 , · · · , |Ψn〉}, distinguished

from other eigenstates with higher energy, span the ground state subspace E 2, and n is the

ground state degeneracy.

Let us now consider two gapped lattice Hamiltonians H0 and H1, and with ground

2Note that {|Ψ1〉 , · · · , |Ψn〉}, {E1, · · · , En } and E are all system-size-dependent, but n is system-size-
independent. For simplicity in notation, we omit the subscript for system size when unnecessary.
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state subspaces E0 and E1. These two lattice Hamiltonians feature the same quantum

phase if they can be adiabatically connected. In other words, there exists a smooth family

H (r) of Hamiltonians with r ∈ [0, 1] such that H (0) = H0, H (1) = H1 with the energy

gap remaining open when changing r from 0 to 1. It has been shown [34, 38] that the

existence of such a H (r) is equivalent to the existence of a local unitary transformation

U = Te−i
∫ 1
0 drH ′(r)

3 such that E1 = U (E0). Here, a local unitary transformation is

simply a unitary operator which is a finite sum of operators of the form UI1 ⊗ · · · ⊗ UIM

where {I1, · · · , IM } are disjoint subsets of the lattice 4. Simply speaking, when a local

unitary transformation acts on a state, it only changes the local properties of the state while

leaving the nonlocal properties unchanged. An example of local unitary transformation

is U = ⊗N (Λ)
i=1 σx

i , i.e. the tensor product of the Pauli operators σ
x
i on each site. When it

acts on a spin product state |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉 · · · of eigenstate of the Pauli operators

σz
i , it results in |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉 · · · . After the action of U , the local state is changed.

However, the nonlocal property—|↑〉 and |↓〉 are located alternatively—is not changed.

Moreover, both |↑〉 ⊗ |↓〉 ⊗ |↑〉 ⊗ |↓〉 · · · and |↓〉 ⊗ |↑〉 ⊗ |↓〉 ⊗ |↑〉 · · · are not entangled.

Indeed, if a state is entangled, then, after the action of a local unitary transformation, the

state is still entangled, and vice versa.

In light of the discussion above, we say that two gapped lattice Hamiltonians are in the

same quantum phase if and only if their ground states can be connected by a local unitary

transformation.

Local unitary transformations can partition gapped lattice Hamiltonians into classes.

In each class, lattice Hamiltonians can be connected by local unitary transformations and

have the same nonlocal properties in their ground states. Since lattice Hamiltonians in

each class are also in the same quantum phase, then, a quantum phase can be viewed as

3Here T is the time ordering operator, local Hamiltonian H ′(r) is generally not the adiabatic path.
4Note that a local unitary transformation is not necessarily a local operator, because it can act nontrivially

on the whole lattice.
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characterizing a class of gapped lattice Hamiltonians which all possess (or lack) the same

nonlocal properties in their ground state entanglement.

2.2.4 Long-range entanglement and topological order

There exist classes of gapped lattice Hamiltonians whose ground states cannot be mapped

to product (non-entangled) states by any local unitary transformation. Ground states of

lattice Hamiltonians in these classes are called long-range entangled [34]. The long-

range entanglement gives a “microscopic” characterizes of topological ordered phase for

2D lattice systems. Moreover, a 2D lattice system possesses topological order if it has

long-range entangled ground states when defined with any lattice topology [34, 33].

Topological order can also be defined “macroscopically”. A 2D gapped lattice system

possesses topological order if the following two conditions are satisfied [31]:

• the ground state degeneracy n depends on the lattice topology only;

• ground states are locally indistinguishable, i.e. for any twoground states,
〈
Ψα

���A
���Ψβ

〉
∼

CAδαβ in the thermodynamic limit for any local operator A, where CA is a constant

dependent only on A.

These two conditions guarantee that the lattice system can be effectively described by

topological quantum field theory in the thermodynamic limit and the low-energy excita-

tions can be described by deconfined anyons. Furthermore, the local indistinguishability

of ground states supports the robustness of the topologically ordered lattice systems, that

is, a local perturbation cannot break topological nonlocal properties of the lattice system.

This robustness to local perturbations makes topologically ordered lattice system one

of the best candidate for topological quantum computation. Since Bose-Hubbard-type

models can potentially be experimentally realized, it is of great interest to theoretically
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Figure 2.3: This figure shows a square lattice with defects. v stands for a site, i stands for
a link, and p stands for a plaquette. Blue links attached to v contributes to Av. Red links
as boundary of p contributes to Bp.

demonstrate the existence of topological order in these models. For this purpose, we

develop a generic framework for the emergence of topological order in a certain class of

Bose-Hubbard-type models as discussed in detail in Chapter 5.

The best example which illustrates the two conditions specified above is the toric

code [39, 1], a lattice system with lattice geometry. The toric code is a spin-1/2 lattice

system with spins located on the links of the lattice. Alternatively, the system can also

be defined with spins located on lattice sites, but for consistency with the literature, we

consider the version defined on links. On an arbitrary lattice Λ, the toric code defines the

Hamiltonian

HTC = −
∑
v

Av −
∑

p

Bp (2.5)

where Av =
∏

v∈∂i σ
z
i and Bp =

∏
i∈∂p σ

x
i . Here, as shown in Fig. 2.3, v stands for a site

or vertex, i stands for a link or edge, and p stands for a plaquette or face of the lattice.

v ∈ ∂i means the link i is attached to the vertex v. i ∈ ∂p means the link i is a part of the

boundary of the plaquette p. Examples of ∂i an ∂p are illustrated in Fig. 2.3 where blue

links attached to v contribute to Av and red links as the boundary of p contribute to Bp.

The toric code is exactly solvable since Av an Bp commute for all v and p. The ground

state energy is separated from other excited energy levels by 1 in any system size. The
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Figure 2.4: This figure is borrowed from Reference [1]. It shows a torus with different
type of cycles on it. Contractible cycle a is the boundary of region A. Parallel non-
contractible cycles like b and c together form the boundary of region B. Non-contractible
cycle d is not the boundary of any region.

ground state degeneracy depends only on the lattice topology and is independent on the

lattice geometry. For example, when the lattice is embedded in a sphere, the ground

state is unique, while when the lattice is embedded in a torus, the ground state is 4-fold

degenerate.

Let us discuss the origin of the ground state degeneracy with the case of torus. On a

torus, different cycles, i.e. closed loops, have different topological properties. As shown

in Fig. 2.4, contractible cycle a is the boundary of region A, parallel non-contractible

cycles like b and c together form the boundary of region B, and single non-contractible

cycle d is not the boundary of any region. These different properties determine four types

of cycle configurations. A cycle configuration is simply a collection of cycles on the torus.

In the first type, a configuration contains contractible cycles and pairs of non-contractible

cycles in the same toroidal direction, e.g., cycle a with b and c. In the second and the third

type, except for contractible cycles, there is a single non-contractible cycles, e.g., cycle d,

in one direction and pairs of non-contractible cycles in the other direction. In the fourth

type, there are single non-contractible cycles in both the toroidal directions. These four

types of cycle configurations are realized by orthogonal ground states of the toric code

and give rise to the 4-fold degeneracy.

The local indistinguishability of ground states is also determined by the topological
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properties of cycles. Indeed, any local operator acts only on a local region from where the

type of cycle configuration cannot be inferred. Hence, the average of any local operator

has no difference in the four ground states. Furthermore, since a local operator cannot

change the topological properties of a cycle, e.g., change a to b, it cannot map a type of

cycle configuration to another type, and thus cannot induce transitions from one ground

state to another.

The locally indistinguishable ground states support anyonic excitations. Here, we

briefly discuss anyonic excitations in the toric code. For convenience, we can view

〈Ψ|−Av |Ψ〉 indexed by vertex v, and 〈Ψ|−Bp |Ψ〉 indexed by plaquette p, as energy

densities distributed over the lattice in the ground state |Ψ〉. An anyonic excited state is

a low-energy excited state in which the energy densities are locally changed from their

values in the ground state. For example, in the ground state |Ψ〉, 〈Ψ|−Av |Ψ〉 = −1

and 〈Ψ|−Bp |Ψ〉 = −1 at every vertex and plaquette, while in an anyonic excited state

|Φ〉, 〈Φ|−Av |Φ〉 = 1 or 〈Φ|−Bp |Φ〉 = 1 or both at some finite number of vertices or

plaquettes. Vertices v or plaquettes p with 〈Φ|−Av |Φ〉 = 1 or 〈Φ|−Bp |Φ〉 = 1 can be

viewed as energy “bumps” on the energy landscape. These energy “bumps” represent

anyons, quasi-particles.

Anyonic excitations are characterized by statistics, fusion rules and braiding of anyons [5].

The statistics describes the symmetry of anyonic excited states under the interchange of the

positions of two identical anyons, and defines the type of anyons. Under the interchange of

two identical anyons, the excited state might stay unchanged for bosonic anyons, acquire a

minus sign for fermionic anyons, or acquire a phase factor eiθ for other types of anyons 5.

The fusion rules stipulate how two anyons can be bounded together and behave as another

type of anyon. The braiding of anyons characterize how anyonic excited states are changed

5Anyons live only in two spatial dimensions. In higher spatial dimensions, states describing identical
particle systems must be either symmetric or antisymmetric under the interchange of two identical particles.
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under pairwise interchange of the positions of anyons.

In the toric code, the anyon corresponding to 〈Φ|−Av |Φ〉 = 1 and labeled by e is

different from the anyon corresponding to 〈Φ|−Bp |Φ〉 = 1 and labeled by m. The e

(m) anyons always appear in pairs. By applying certain unitary operators to an anyonic

excited state, the position of anyons can be moved without changing the excitation energy.

When exchanging the positions of two e anyons, the excited state is unchanged, while

when exchanging the positions of two m anyons, the excited state is changed from |Φ〉

to − |Φ〉. It follows that e anyons are bosons while m anyons are fermions. An e anyon

and an m anyon can be fused together as a bounded pair which behaves as an fermionic

ε anyon. By joining two e (m) anyons together at the same vertex (plaquette), they fuse

into vacuum of anyons, i.e. the ground state. In an anyonic excited state, interchanging

the positions of any pair of anyons only change the state by a phase factor. Because of this

braiding property, anyonic excitations of the toric code is called abelian. In the case of

more complex braiding properties, anyonic excitations are said to be non-abelian.

The statistics, fusion and braiding properties of anyonic excitations in a topologically

ordered lattice system specify the topological order and give a macroscopic counterpart of

long-range entanglement in ground states [33]. Due to the equivalence between the anyonic

excitations and the long-range entanglement, in this dissertation, we limit our discussion

to properties of the ground state entanglement when studying certain topological order. In

particular, we consider the toric-code topological order and the double-semion topological

order. A typical ground state of the toric-code topological order is an equal-weight sum of

states realizing cycle configurations. Similarly, a typical ground state of the double-semion

topological order is a sum of cycle configurations with expansion coefficients dependent

on the number of cycles in each configuration. These long-range entangled states will be

described more accurately in Chapter 5.
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Chapter 3

Analysis and resolution of the

ground-state degeneracy of the

two-component Bose-Hubbard model

The material presented in the chapter is based on my work published in Reference [21]. In

this chapter, we study the degeneracy of the ground-state energy E of the two-component

Bose-Hubbard model and of the perturbative correction E1. We show that the degeneracy

properties of E and E1 are closely related to the connectivity properties of the lattice.

We determine general conditions under which E is nondegenerate. This analysis is then

extended to investigate the degeneracy of E1. In this case, in addition to the lattice

structure, the degeneracy also depends on the number of particles present in the system.

After identifying the cases in which E1 is degenerate and observing that the standard

(degenerate) perturbation theory is not applicable, we develop a method to determine the

zeroth-order correction to the ground state by exploiting the symmetry properties of the

lattice. This method is used to implement the perturbative approach to the two-component

Bose-Hubbard model in the case of degenerate E1 and is expected to be a valid tool to
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perturbatively study the asymmetric character of theMott-insulator to superfluid transition

between the particle and hole side.

3.1 Introduction

Bosonic binary mixtures trapped in optical lattices have attracted considerable atten-

tion [40, 41, 42, 43, 44, 20, 45, 46, 47, 48, 49, 50, 2] in the last decade due to theoretic

prediction of several new quantum phases originated by the interaction between the two

components [20, 45, 46, 47, 48, 49]. The mixture can either consist of two atomic species

or the same species in two different internal states, with each component being described

within the Bose-Hubbard (BH) picture [19, 18]. The recent experimental realization of

bosonic mixtures [41, 42, 43], in addition to their rich phenomenology, has reinforced

the interest for this class of systems. The mixture is described by the two-component BH

model [20]:

H = H (a) + H (b) +U (ab)
M∑

i=1
n(a)

i n(b)
i (3.1)

where U (ab) represents the interspecies interaction, that is, the coupling between the

two components A and B. The local number operators n(a)
i = a+i ai and n(b)

i = b+i bi

are defined in terms of space-mode bosonic operators ai and bi, relevant to species A

and B respectively, satisfying the standard commutators [ar, a+i ] = [br, b+i ] = δri where

i, r ∈ [1, M] and M is the number of lattice sites. H (a) and H (b) are defined by:

H (c) =
U (c)

2

M∑
i=1

n(c)
i (n(c)

i − 1) − T (c)
∑
(i, j)

I(i, j) c+j ci , c = a, b (3.2)

where U (c) is the onsite intraspecies interaction, T (c) is the hopping amplitude describing

boson tunneling, I(i, j) are the off-diagonal elements of the symmetric adjacency matrix in
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which bond {i, j} runs through all pairs of sites with i , j. For the common case of nearest-

neighbor hopping only, one has I(i, j) = 1 on bonds {i, j} connecting nearest neighboring

sites and zero otherwise. The study of mixtures by means of Monte Carlo simulations [50,

2] has greatly contributed to disclose many fundamental properties of the system and

provided an accurate, unbiased study of several aspects of the global phase diagram. On

the other hand, the perturbation approach still represents a considerably effective tool to

obtain a deep insight on the structure of the ground state and the microscopic processes

governing the formation of quantum phases. By construction, the analytic character of this

method clearly shows how microscopic processes incorporated in the perturbation term

of the Hamiltonian along with non trivial entanglement often characterizing mixtures

influence the structure of ground states. In particular, entanglement between the two

components is already present in the zeroth order correction of the ground state for

certain choices of boson numbers N (a) and N (b), non-commensurate to M . In higher

dimensions, other analytic techniques such as the Gutzwiller mean-field approach [18, 48]

are able to provide significant information for macroscopic states characterized by no or

weak entanglement. In some simpler cases, mean-field techniques can be improved by

introducing ‘local’ entanglement between the two components [47, 50].

We are interested in applying the perturbationmethod to the two-component BHmodel

with the ultimate goal of gaining some insight on the structure of the ground state and

the role of entanglement resulting from the interspecies interaction [22]. The application

of the perturbation method, though, can be challenging, certainly analytically but also

numerically, owing to the remarkably-high degree of degeneracy that often characterizes

the ground state of the unperturbed Hamiltonian. In the sequel, we will assume the

hopping amplitudes T (a) and T (b) of the two species as the perturbation parameters for the

two-component BH model.

To understand the nature of the degeneracy and the challenges of the perturbative
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calculation we can consider the following simple example. Let us consider the transition

of bosonic component A from the Mott-insulator (MI) to the superfluid (SF) phase when

component B is SF. This case, studied in Ref. [2, 50] when component B is dilute,

has revealed an evident asymmetric shift of the MI lobe of the (majority) component

A between the particle and hole side of Mott lobe. This effect, in turn, appears to be

related to a ground-state structure which features entanglement between A and B bosons

which is substantially different in the particle and hole-excitation case [22]. The most

elementary version of this transition is found in the limit T (a),T (b) → 0 by considering

a SF component B with N (b) = k (b) M + 1 together with a Mott component A with

N (a) = k (a) M (where k (a), k (b) are nonnegative integers). The corresponding zeroth-

order ground state is |k (a)〉 ⊗
∑

s (b+s /
√

M) |k (b)〉, where |k (c)〉, c = a, b represents a Mott

state with filling k (c), and b+s |k
(b)〉 describes the creation of a solitary boson at site s

causing the SF character of species B. In the grand-canonical ensemble, when the energy

cost for adding a boson to component A is zero, the transition to zeroth-order ground

state of the form
∑

ik Fik a+i b+k |k
(a)〉 ⊗ |k (b)〉 corresponding to A and B both superfluid

occurs. In order to minimize the contribution of the interspecies-interaction term to the

ground-state energy E0, the diagonal elements of the M × M matrix F must be zero. In

general, the high degree of degeneracy (represented by the arbitrariness of Fik) is removed

by imposing the minimization of the first-order perturbative correction E1 with respect

to the undetermined parameters Fik . This solution scheme, however, is viable only if E1

is not degenerate, a condition whose validity can be shown to depend on the number of

particles, the lattice properties, and possibly on model parameters.

While this simple case can be solved analytically [51], for situations with N (a) =

k (a) M+p(a) and N (b) = k (b) M+p(b), where p(a) and p(b) are arbitrary integers p(a), p(b) ∈

[1, M − 1], the determination of the zeroth-order ground-state amplitudes (e.g matrix

elements Fik in the example illustrated above) cannot be done analytically and can easily
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become numerically costly. For this reason, determining general conditions for which the

ground-state energy E of model H and the first-order correction E1 are nondegenerate

(without resorting to complicated either analytical or numerical calculations) represents a

precious, essential information for implementing the perturbation method.

In this chapter we show that both the ground-state energy E of H and the lowest

eigenvalue of the perturbation term formed by the T (a) and T (b)-dependent terms in H are

nondegenerate if the simple condition to have a connected latticeΛ is satisfied. Then, after

observing that if the unperturbed ground-state energy E0 is degenerate this degeneracy can

be eliminated if the first-order correction E1 is nondegenerate, we explore the conditions

for which first-order correction E1 is nondegenerate for different choices of p(a) and p(b).

This chapter is organized as follows. Section 3.2 is devoted to give some useful

definitions and to recast the model interaction/hopping parameters into a form more

advantageous for our perturbation approach. In Section 3.3, we define the connectedness

between states of the Fock basis and give the sufficient and necessary condition that links

the lattice connectivity to the state connectedness. This allows us to apply the Perron-

Frobenius theorem [52] to study the degeneracy properties of the ground-state energy.

Concerning the definition of states’ connectedness assumed in this chapter, it should be

noted that similar definitions, followed by the application of Perron-Frobenius theorem,

are used in Katsura and Tasaki’s recent work [53] in the proof of the degeneracy of the

spin-1 Bose-Hubbard model and previously in Ref. [54, 55, 56] devoted to the study of

ferromagnetism of the Hubbard model. Our method differs from previous studies in the

fact that we define the connectedness in a different way in order to give an equivalence

relation. This allows us to conveniently study the degeneracy of the gorund state energy

and its first order correction.

In Section 3.4 we discuss the degeneracy of E1 in two cases: (1) one of the two species

is aMI while the other is SF; (2) there are k (a) M+1 (or k (a) M−1) species-A bosons while
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speciesB is SF with a generic number of bosons. In Section 3.5, we extend our discussion

to generic cases with the only requirement, p(a) + p(b) < M − 1 or p(a) + p(b) > M + 1.

Our analysis shows that E1 is nondegenerate if one assumes certain sufficient conditions

on the connectivity of the lattice. These conditions are satisfied by most lattices.

Finally, in Section 3.6 we show that when p(a) + p(b) = M , E1 is degenerate indepen-

dently on the connectivity of the lattice. We therefore discuss the determination of the

unperturbed ground state in terms of symmetry properties of the lattice for N (a) and N (b)

such that p(a) = 1, p(b) = M − 1 or p(a) = M − 1, p(b) = 1.

3.2 The two-componentmodel in the strongly-interacting

regime

We intend to study the two-component Bose-Hubbard model in the strongly-interacting

regime where T (a),T (b) � U (a),U (b),U (ab). We assume that T (a) ≈ T (b), stating that the

mobility of the bosons of the two components is essentially the same, and 0 ≤ I(i, j) ≤ 1.

To avoid phase separation we also assume (repulsive) onsite interactions such thatU (ab) <

U (a),U (b). Although in the following we will explicitly consider the case of soft-core

bosons, i.e. U (a),U (b) < ∞, the results presented are also valid for the case of hard-core

bosons [57]. The application of the perturbation method suggests the definition of new

interaction/hopping parameters

T (a) = T t (a) , T (b) = T t (b) , U (a) = U u(a) , U (b) = U u(b) ,

24



entailing that model Hamiltonian H takes the form

H = U
[u(a)

2

M∑
i=1

n(a)
i (n(a)

i − 1) +
u(b)

2

M∑
i=1

n(b)
i (n(b)

i − 1) +
U (ab)

U

M∑
i=1

n(a)
i n(b)

i

]

+ T
[
− t (a)

∑
(i, j)

I(i, j) a+i a j − t (b)
∑
(i, j)

I(i, j) b+i b j

]
, (3.3)

in which we call H0 the U-dependent diagonal part of the Hamiltonian (first, second and

third terms in Eq. 3.3) andTW represents theT-dependent kinetic energy part of H (fourth

and fifth terms in Eq. 3.3 with W representing the square bracket). Then TW/U represents

the perturbation and ε = T/U naturally identifies with the perturbation parameter.

The sites of the optical lattice and the set of all bonds {i, j} with weight I(i, j) , 0 define

an edge-weighted graph Λ = (V(Λ),E(Λ)), where V(Λ) is the set of vertices, i.e. sites,

E(Λ) is the set of edges, i.e. bonds (not necessarily nearest neighbors), and I(i, j) is the

weight on bond {i, j}

In the following we will work in a finite-dimensional Hilbert space H corresponding

to fixed particle numbers N (a) = k (a) M + p(a) and N (b) = k (b) M + p(b) for the two

components respectively 1. Here, k (a), k (b), p(a) and p(b) are nonnegative integers with

0 ≤ p(a) < M , 0 ≤ p(b) < M . The space H is spanned by an orthonormal basis of Fock

states |n〉 ⊗ |m〉:

|n〉 ⊗ |m〉 =
∏M

l=1 a+l
nl ∏M

m=1 b+m
mm |0〉√∏M

l=1 nl !
∏M

m=1mm!
, (3.4)

where |0〉 is the vacuum states, i.e. every site in the lattice is empty, and n,m are integers

such that
∑M

l=1 nl = k (a) M + p(a),
∑M

m=1mm = k (b) M + p(b).

To simplify our notation we use |n,m〉 to denote |n〉 ⊗ |m〉. The ground state(s) of

H0 are labelled by |n̄, m̄〉. We call O the set of states |n,m〉s, and Ō the set of the states

|n̄, m̄〉s. The operator W confined in the subspace spanned by |n̄, m̄〉’s is denoted by W̄ .

1Particle number operators commute with both H0 and H .
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The matrix representation of W in terms of the basis |n,m〉’s is denoted by W and the

matrix representation of W̄ in terms of |n̄, m̄〉’s is denoted by W̄.

The explicit expression of matrix elements of W is given by:

〈n,m|W |n′,m′〉 = −ta δm,m′
∑
(i, j)

[
I(i, j)

√
n j + 1

√
n′i + 1δn j+1,n′j δni,n

′
i+1

M∏
l,i, j

δnln′l

]

− tb δn,n′
∑
(i, j)

[
I(i, j)

√
m j + 1

√
m′i + 1δm j+1,m′j δmi,m′i+1

M∏
m,i, j

δmm,m′m

]
. (3.5)

It is obvious that the matrix elements are nonpositive. Moreover, a matrix element is

nonzero if and only if n′i = ni + 1, n′j + 1 = n j on bond {i, j} while all other n′l = nl , and

m = m′; or m′i = mi + 1, m′j + 1 = m j on bond {i, j} while all other m′l = ml , and n = n′.

This property of matrix elements will be used below.

After recalling that in the strongly-interacting regime we treat the term εW as a

perturbation with ε = T/U, the ground-state energy E of H = U (H0 + εW ) and its

eigenvector(s) |Ψl〉 (l = 1, · · · , fE , where fE is the degeneracy of E) can be expanded via

the perturbative series E = E0 +
∑∞

n=1 ε
nEn and |Ψl〉 = |ψ

0
l 〉 +

∑∞
n=1 ε

n |ψn
l 〉. Note that if

p(a) + p(b) > 0, then H0 has a degenerate ground-state energy E0 with degeneracy fE0 .

If fE0 = fE , one can apply perturbation theory starting from any ground state of H0. If

fE0 > fE and W fully lifts the extra degeneracy of E0, then E1 and |ψ0
l 〉 can be uniquely

determined by solving the matrix eigenvalue problem (degenerate perturbation theory):

∑
n̄′,m̄′
〈n̄, m̄|W |n̄′, m̄′〉 〈ψ0

l |n̄
′, m̄′〉 = E1 〈ψ

0
l |n̄, m̄〉 (3.6)

On the other hand, if neither of the previous scenarios are true, then |ψ0
l 〉’s are not uniquely

determined by solving Eq. 3.6. From this discussion, it becomes apparent that one needs

to study the degeneracy of both E and E1, and, in the case Eq. 3.6 is not applicable, find
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an alternative method to determine |ψ0〉.

As we will show in the following, the issue of degeneracy is closely related to the

connectivity of the lattice.

3.3 Degeneracy of the ground-state energy, connectivity

of lattice and connectedness between states

In this section, we discuss the degeneracy of the ground-state energy of H by utilizing

the notion of “connectedness” on the states of the basis and the Perron-Frobenius theorem

(PFT). This theorem states that if X is a real symmetric matrix such that (i) off-diagonal

elements are all nonpositive, (ii) for any two different indices p and q there exists an N

such that (XN )p,q , 0, then its lowest eigenvalue is nondegenerate and the corresponding

eigenvector is positive [52]. In the following we will apply PFT theorem for the case of

matrix W and H.

To begin with, we define the “connectedness” on states via a symmetric linear operator

X 2 (its corresponding matrix is denoted by X).

Hence, we say that |n,m〉 and |n′,m′〉 are connected by a symmetric linear operator X

if there exists a finite sequence {|α1, β1〉 , |α2, β2〉 , · · · , |αN, βN〉} with |α1, β1〉 = |n,m〉

and |αN, βN〉 = |n′,m′〉 in the set O such that for any 1 ≤ i < N , 〈αi, βi |X |αi+1, βi+1〉 , 0

or |αi, βi〉 = |αi+1, βi+1〉. This definition includes the trivial case |n,m〉 = |n′,m′〉. The

kinetic energy operator W and the Hamiltonian H are indeed symmetric linear operators.

The connectedness associated with X defines an equivalence relation 3 RX on O such that

2A linear operator X is symmetric if, for arbitrary states |φ〉 and |ψ〉, 〈φ|X |ψ〉 = 〈ψ |X |φ〉.
3A relationRX on a setO is a collection of ordered pairs (|n,m〉 , |n′,m′〉) inO. If (|n,m〉 , |n′,m′〉) ∈ O,

we say |n,m〉RX |n′,m′〉. RX is an equivalence relation on a set O if it satisfies
(i) reflexivity, i.e. |n,m〉RX |n,m〉, (ii) symmetry, i.e. |n,m〉RX |n′,m′〉 implies |n′,m′〉RX |n,m〉, (iii)

transitivity, i.e. |n,m〉RX |n′,m′〉 plus |n′,m′〉RX |n′′,m′′〉 imply |n,m〉RX |n′′,m′′〉.
For a given relation RX , |n,m〉 /RX denotes the set of all |n′,m′〉 related to |n,m〉, and O/RX denotes the
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|n,m〉RX |n′,m′〉 if and only if the two states are connected by X . Given this equivalence

relation, we can prove that:

Proposition 1. The following three conditions are equivalent: (a) X is irreducible 4, (b)

any |n,m〉 and |n′,m′〉 are connected by X , (c) property-(ii) in PFT is satisfied.

The proof is given in the Section 3.8.1.

3.3.1 Connectivity of Λ and the nondegeneracy of E

We want to prove that the ground state of H is nondegenerate by making use of PFT.

Hence, we need to show that H satisfies the hypothesis of the theorem. We first notice

that both H and W are symmetric linear operators. Moreover, 〈n,m|(H0 + ε W ) |n′,m′〉 =

〈n,m|H0 |n′,m′〉 + ε 〈n,m|W |n′,m′〉 = ε 〈n,m|W |n′,m′〉 ≤ 0 for any |n,m〉 , |n′,m′〉,

and hence H and W are both real matrices with nonpositive off-diagonal elements, as

requested by condition (i) of the PFT. Moreover, |n,m〉 and |n′,m′〉 are connected by H

if and only if they are connected by W . Next step is to show that condition (ii) is also

satisfied. In view of Proposition 1, it is sufficient to show that any |n,m〉 and |n′,m′〉 are

connected by W . From here on, we will assume that Λ is connected 5 (note that, the

connectivity of Λ is different from the connectedness on the basis). We can show that:

Proposition 2. Any |n,m〉 and |n′,m′〉 are connected by W if and only if Λ is connected.

We first prove the sufficient condition. The general idea of the proof is to connect both

states |n,m〉 and |n′,m′〉 to a state such that all particles are sitting on the same lattice site

collection of all |n,m〉 /RX ’s. An important property of equivalence relations is that O/RX is a partition of
O [58]. It’s easy to check that RX is well-defined here.

4A symmetric matrix is irreducible if and only if it cannot be block-diagonalized by permuting the
indices.

5 Λ is connected if any two sites can be linked by a path. Two sites i and j are linked if there exists a
path {i, · · · , kl, · · · , j} in which every neighboring pair in the sequence forms a bond.
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k, and then apply the transitivity property. Let us fix a site k. Then, any other site is linked

to k by a path. Since |n′′,m′′〉 = cic+j |n,m〉 /‖cic+j |n,m〉 ‖, c = a, b, is connected to |n,m〉

if {i, j} is a bond (see Eq. 3.5), we can apply aia+j or bib+j subsequently on the appropriate

bonds {i, j} in order to construct the special state |n′′′,m′′′〉 connected to |n,m〉. |n′′′,m′′′〉

is such that all bosons are sitting on site k. Next, we perform a similar operation on

|n′,m′〉 to connect it to |n′′′,m′′′〉. By transitivity of connectedness we have that |n,m〉

and |n′,m′〉 are connected to each other. A similar construction of intermediate states is

also used in [53].

Here, we prove the necessary condition by contradiction. Let us assume that the lattice

is not connected. Then, there exists at least two sites k and l not linked by any path. Let

K be the set of sites linked to k. Then the complement of K in V(Λ) is nonempty and is

not linked to K 6. Since there always exists states |n,m〉 and |n′,m′〉 with different total

number of particles on the sites belonging to K , then, these two states are obviously not

connected. We get contradiction.

We are now ready to apply PFT to conclude:

Theorem 1. If Λ is connected, then the ground-state energy of H is nondegenerate and it

has a positive 7 ground state.

Corollary 1. If Λ is connected, then ε W has a negative nondegenerate ground-state

energy with a positive ground state.

Another interesting result can be derived by setting the hopping amplitude of one of

the components to zero, e. g. T (b) = 0. Then, from Eq. 3.5, it is obvious that for any

|n,m〉, |n′,m′〉 with |m〉 , |m′〉, the two states are not connected by W . One can show the

following result (the proof is given in Section 3.8.2):

6Every site in K is not linked to any site in its complement.
7A vector is positive (in terms of the basis) if its expansion coefficients are all positive.
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Corollary 2. If Λ is connected and T (a) = 0,T (b) , 0 (or T (b) = 0,T (a) , 0), the

degeneracy of the ground-state energy of W is M N (b) (M N (a) ).

It is worth noting that the results presented in this Section are quite general. They

hold for the case of nearest-neighbor or longer-ranged hopping. Moreover, they are valid

in both the weakly and strongly correlated regime and for both repulsive or attractive

interspecies interaction. The only requirement is for the lattice to be connected and T (a,b)

, I(i, j) to be nonnegative. Finally, we would like to mention that the results presented in

this Section are also valid for the case of hard-core bosons although the specifics of the

proofs and the degeneracy in Corollary 2 are different [57]. Likewise, the results presented

in the following hold for hard-core bosons as well since they are based on the results of

Section. 3.3.

3.4 Degenerate perturbation theory

Theorem 1 states that the ground-state energy E of model 3.3 is nondegenerate. In the

general case where at least one of the two component is doped away from integer filling,

the ground state corresponding to E0 is degenerate. Then, the first order correction E1

can either be nondegenerate (i.e. W completely lifts the degeneracy of E0), in which case

|ψ0〉 is uniquely determined, or degenerate, in which case |ψ0〉 is not uniquely determined.

In this section, we discuss degeneracy properties of E1 in terms of graph theoretical

properties of Λ. In the case when E1 is degenerate, we provide a method to determine

|ψ0〉 according to symmetry properties of Λ, hence providing a rigorous solution to the

degenerate perturbation theory Eq. 3.6. This case is discussed in Section 3.6.
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3.4.1 Representing |n̄, m̄〉’s pictorially

At commensurate filling, i.e. N (a) = k (a) M and N (b) = k (b) M , the potential energy is

minimized when, on each site, there are k (a) A bosons and k (b) B bosons (recall we

are considering U (ab) < U (a),U (b)). When one or both components are doped away

from integer filling factor, the extra particles arrange themselves in order to minimize

the interspecies-interaction term in H . In particular, a given site will accommodate at

most k (a) + 1 species-A bosons and k (b) + 1 species-B bosons. Hence, we can specify

an arbitrary ground-state |n̄, m̄〉 of H0 in terms of the sites which accommodate extra

particles.

More specifically, when p(a) + p(b) ≤ M , there are no sites with both an extra A and

an extra B boson. Thus, the set of sites with an extra A boson has p(a) elements, and the

set of sites with an extraB boson has p(b) elements. Such sets have an empty intersection.

On the other hand, when p(a) + p(b) > M , there are p(a) + p(b) − M sites with both an

extra A and an extra B boson. In this case, the relevant sets have a nonempty intersection

containing p(a) + p(b) − M sites.

We can therefore identify an arbitrary ground-state |n̄, m̄〉 in terms of the sets n̄ and m̄

corresponding to p(a) sites with an extra A boson and p(b) sites with an extra B boson,

respectively. The set of ground-states Ō is therefore represented by a collection of pairs

of sets (n̄, m̄)s. In the following, for the sake of simplicity but without loss of rigor, we

represent states |n̄, m̄〉 pictorially by coloring sites belonging to n̄ in (dark) blue, sites

belonging to m̄ in (light) red, and sites belonging to the intersection between n̄ and m̄

in purple (circled in black). Site with neither extra A nor extra B bosons are colored

in white (circled in grey). Examples of the mapping from |n̄, m̄〉 to (n̄, m̄) are shown in

Fig. 4.2, where states 3.1(a), 3.1(c) and 3.1(e) are represented by 3.1(b), 3.1(d) and 3.1(f)

respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: 3.1(a), 3.1(c) and 3.1(e) are an example of states in |n̄, m̄〉s for the case of a one-
dimensional lattice with periodic boundary condition and M=6. These states correspond
to (k (a) = 1, k (b) = 1, p(a) = 0, p(b) = 0), (k (a) = 1, k (b) = 1, p(a) = 3, p(b) = 1), and
(k (a) = 1, k (b) = 1, p(a) = 5, p(b) = 3) respectively. The color (dark) blue refers to A

bosons and (light) red to B bosons. They are represented pictorially by 3.1(b), 3.1(d)
and 3.1(f), where (dark) blue sites form the set n̄, (light) red sites form the set m̄, purple
(circled in black) sites form the intersection of n̄ and m̄, and white (circled in grey) sites
form the set of sites with neither extra A nor extra B bosons.

W̄ is a symmetric linear operator in the subspace spanned by |n̄, m̄〉s, therefore we can

define the connectedness between states |n̄, m̄〉s by W̄ . From here on, we will describe

connectedness by using the representation in terms of color of sites. For example, ac-

cording to Eq. 3.5, when p(a) + p(b) < M , 〈n̄, m̄|W̄ |n̄′, m̄′〉 is nonzero if and only if one

white site exchanges color with a blue or red site on a bond while all other colors remain

unchanged. When p(a) = M − 1, p(b) > 1, 〈n̄, m̄|W̄ |n̄′, m̄′〉 is nonzero if and only if one

purple site exchanges color with a blue or red site on a bond while all other colors remain

unchanged 8.

It should now be apparent that purple sites behave in the same way as white sites.

Using this language, the rules to generate a connected state are as follows: (i) change the

color of a white (or purple) site with a red or blue site on a bond; (ii) “exchange” the

8These rules can also be stated formally: 〈n̄, m̄|W̄ |n̄′, m̄′〉 is nonzero if and only if either set m̄ = m̄′

while sets n̄, n̄′ only differ by sites i and j belonging to the bond {i, j}, or set n̄ = n̄′ while sets m̄, m̄′ only
differ by sites k and l belonging to the bond {k, l}.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.2: 3.2(a) through 3.2(i) represent a sequence of states in Ō with ka = kb = p(a) =

0 and p(b) = 3 for the case of a connected one-dimensional lattice. The sequence connects
states 3.2(a) and 3.2(i).

color of two sites with the same color on a bond (this operation is trivial and results from

the definition of connectedness where two neighboring states in the connecting sequence

can be identical). This second rule is introduced just for the sake of convenience in the

remainder of our discussion.

In terms of the pictorial representation that we have described above, a sequence

{|n̄, m̄〉 , · · · , | χl, θl〉 , · · · , |n̄′, m̄′〉} in Ō connecting |n̄, m̄〉 to |n̄′, m̄′〉 can be represented by

a sequence of pictures 9. For example, Fig. 3.2(a) through Fig. 3.2(i) shows a sequence

connecting states Fig. 3.2(a) and Fig. 3.2(i), with matrix elements of W̄ between any two

adjacent pictures being nonzero.

Next step is the study of the degeneracy of E1. Since Proposition 1 and the PFT

theorem also apply to W̄ , it is sufficient to check for the existence of a sequence

{|n̄, m̄〉 , · · · , | χl, θl〉 , · · · , |n̄′, m̄′〉} for any arbitrary |n̄, m̄〉 and |n̄′, m̄′〉. In the follow-

ing, we will study under which conditions arbitrary |n̄, m̄〉 and |n̄′, m̄′〉 are connected.

These conditions will differ depending on the values of p(a) and p(b).

9Formally, it’s a sequence of pairs of sets {(n̄, m̄), · · · , ( χl, θl ), · · · , (n̄′, m̄′)}.
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3.4.2 One of the species has commensurate filling factor, i. e., p(a) = 0

or p(b) = 0

It is obvious that when both species have commensurate filling factor, i.e. p(a) = 0 and

p(b) = 0, E0 is nondegenerate. In the strongly interacting regime one can apply the

non-degenerate perturbation method. Let us therefore consider the case when only one

of the species is at commensurate filling, e. g. p(a) = 0, p(b) , 0. In this case, besides

white sites, there are B red sites. The only assumption we are making on the lattice Λ is

that it is connected (periodic boundary conditions do not necessarily need to be satisfied).

Consider arbitrary |n̄, m̄〉 and |n̄′, m̄′〉, e. g. states Fig. 3.2(a) and Fig. 3.2(i). By using

induction, one can show:

Proposition 3. When p(a) = 0, p(b) , 0 (or p(a) , 0, p(b) = 0), any |n̄, m̄〉 and |n̄′, m̄′〉 are

connected if and only if Λ is connected.

Let us prove the sufficient condition by induction. Let us assume that Λ is connected.

Then, it is always possible to label sites by (i1, i2, · · · , iM ) such that if we remove the first

m sites in this sequence, the remaining (im+1, · · · , iM ) sites still form a connected lattice

for all 1 ≤ m < M [59]. Fig. 3.2(i) shows an example of labeling which satisfies this

property. Constructing a state such that the color of i1 (site 1 in our example) is the same

as in |n̄′, m̄′〉 can be done by first locating a site ik (site 3 in our example) in |n̄, m̄〉 with

the same color as i1 in |n̄′, m̄′〉. Next, we successively exchange the colors along a path

linking i1 to ik (see e.g. Fig. 3.2(a)-3.2(c)). Let us assume that this can be done for an

arbitrary im, with 1 ≤ m < M , and let us denote the constructed state by | χn, θn〉. Then,

since (im+1, · · · , iM ) forms a connected lattice, by applying the same procedure as for i1

we can fix the color on im+1 (see e.g. Fig. 3.2(c)-3.2(f)). Therefore, by induction, we have

shown that |n̄, m̄〉 and |n̄′, m̄′〉 are connected.
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The necessary condition is proved by a similar argument as in Proposition 2, which

implies that, if Λ is not connected, then there exist |n̄, m̄〉 and |n̄′, m̄′〉 which are not

connected.

A direct consequence of Proposition 1 and Proposition 3 is the following:

Theorem 2. When p(a) = 0, p(b) , 0 or p(a) , 0, p(b) = 0, E1 is nondegenerate if Λ is

connected.

3.4.3 Useful properties of a 2-connected lattice

Let us first introduce the notion of 2-connectivity. A lattice Λ is said to be 2-connected

if the removal of any site leaves the remaining sites connected. In the one-dimensional

example of Fig. 3.3(a), this is equivalent to introducing periodic boundary conditions to

get Fig. 3.3(c). In higher dimensions, the 2-connectivity conditions is satisfied by square,

triangular, honeycomb, cubic, fcc lattices, etc. with any boundary conditions. Some

useful properties of 2-connectivity are as follows:

(a) if Λ is 2-connected then it is also connected;

(b) Λ is 2-connected if and only if, for any two distinct sites, there exist two disjoint

paths linking them (two paths are disjoint if they only share the two ends). This is

the global version of Menger’s theorem [59];

(c) for any distinct sites i1, i2 and i3, there exists a path linking i1 and i2 which avoids

i3 (this is a direct consequence of property (b));

(d) in any state with at least one white site, one can always move the blue or red

color from an arbitrary site to another arbitrary site according to the rules given in

Subsection 3.4.1 (we prove this property in Section 3.8.3).
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(a) (b) (c) (d) (e)

Figure 3.3: 3.3(a) and 3.3(b) are two unconnected states in Ō for the case of a connected
one-dimensional lattice with p(a) = 1, p(b) = 3. 3.3(c) and 3.3(e) are two connected states
in Ō for the case of a 2-connected lattice with p(a) = 1, p(b) = 3. 3.3(d) is an intermediate
state in the sequence connecting 3.3(c) to 3.3(e). The two crosses in Fig. 3.3(d) indicate
that the removal of site j leaves the remaining lattice still connected.

3.4.4 p(a) = 1, 0 < p(b) < M − 1 and p(a) = M − 1, 1 < p(b) ≤ M − 1

Although we will discuss our results explicitly for p(a) = 1, 0 < p(b) < M − 1, the case

of p(a) = M − 1, 1 < p(b) ≤ M − 1 can be mapped onto p(a) = 1, 0 < p(b) < M − 1 by

replacing blue with red and vice versa, and replacing purple with white. Since purple sites

can be moved in the same manner as white sites the two cases are completely equivalent.

In the case p(a) = 1, 0 < p(b) < M − 1, i.e. one blue and B red sites are present, the

requirement that Λ is connected is not sufficient for any two states to be connected. This

is shown with an example in Fig. 3.3(a) and 3.3(b), where the two states represented are

not connected because it is not possible to move the blue color in Fig. 3.3(a) to its position

in Fig. 3.3(b) according to the rules given in Subsection 3.4.1. We need to impose that the

lattice Λ is 2-connected. If this is the case, the following property holds:

Proposition 4. Any two states |n̄, m̄〉, |n̄′, m̄′〉with p(a) = 1 and arbitrary 0 < p(b) < M−1

(or p(a) = M − 1 and arbitrary 1 < p(b) ≤ M − 1) are connected if and only if Λ is 2-

connected.

Let us start by proving the sufficient condition. Consider arbitrary |n̄, m̄〉 and |n̄′, m̄′〉.

Without loss of generality, assume that the blue color is on site i in |n̄, m̄〉 and on site j

in |n̄′, m̄′〉. Due to property (d) of 2-connectivity, the blue color can be moved from i to
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(a) (b) (c) (d)

Figure 3.4: 3.4(a) through 3.4(d) represent states in Ō with p(a) = 1, p(b) = 3 for the
case of a lattice which is not 2-connected. The absence of 2-connectivity implies that the
removal of the site 3 leaves the remaining lattice unconnected. 3.4(a), 3.4(b) and 3.4(c)
are connected with each other, but they are not connected with 3.4(d).

j. In other words, we can construct a state | χn, θn〉 connected with |n̄, m̄〉 in which j is

blue. An example of states |n̄, m̄〉, | χn, θn〉 and |n̄′, m̄′〉 is displayed in Fig. 3.3(c), 3.3(d)

and 3.3(e) respectively. Moreover, the 2-connectivity of Λ implies that removal of site j

leaves the rest of the lattice still connected (see Fig. 3.3(d)). Removing site j leaves state

|n̄, m̄〉 with red and white sites only. Thus, following a similar argument as for the case

p(a) = 0, p(b) , 0 in Proposition 3, we can show that | χn, θn〉 is connected to |n̄′, m̄′〉.

Therefore, by transitivity of connectedness, |n̄, m̄〉 is connected to |n̄′, m̄′〉.

The necessary condition is proved by contradiction. For simplicity but without loss of

generality we choose a counter example with a single white site. If Λ is not 2-connected

(e.g. the lattice shown in Fig. 3.4(a)), then, there exists at least one site i (site 3 in our

example) whose removal leaves the remaining sites partially unconnected. Let J and

K denote the two unlinked sets (in our example (1, 2) and (4, 5) in Fig. 3.4(a)). Let us

consider two states, e. g. Fig. 3.4(a) and Fig. 3.4(d), with the blue color on J and K

respectively. In the attempt of transferring the blue color from J to K one can move the

white color as shown in Fig. 3.4(b) and Fig. 3.4(c). At this point, though, the blue color

cannot be moved to any site in K , because all sites in K are red. So it is not possible to

connect state Fig. 3.4(c) to state Fig. 3.4(d)).

Finally we can conclude the following:

Theorem 3. In the case p(a) = 1, 0 < p(b) < M − 1 (or p(a) = M − 1, 1 < p(b) ≤ M − 1),
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(a) (b)

Figure 3.5: 3.5(a) and 3.5(b) are two unconnected states in Ō for the case of a one-
dimensional lattice of M = 6 sites with periodic boundary condition and p(a) = 3, p(b) = 2.

E1 is nondegenerate if Λ is 2-connected.

3.5 Nondegeneracy of E1 in the general cases p(a) + p(b) <

M − 1 and p(a) + p(b) > M + 1.

We extend the results of Subsection 3.4.4 to the general case p(a)+p(b) < M−1. Replacing

white with purple, the case p(a) + p(b) > M + 1 can be mapped onto p(a) + p(b) < M − 1.

In general, for p(a) + p(b) < M − 1, 2-connectivity is not a sufficient condition for any

two states to be connected. This is shown by an example in Fig. 3.5(a) and 3.5(b) for

a one-dimensional system with periodic boundary conditions. For later convenience we

refer to this type of lattice as circle 10. When there are at least two blue and two red sites,

the order of the color on the circle becomes important. Note that the order of color only

includes red and blue, since white sites can be freely moved as explained previously. It is

obvious that one cannot change the order of the color in Fig. 3.5(a) to construct Fig. 3.5(b).

However, it is easy to check that two states on a circle are connected if they have the same

order of color. The sequence connecting them can be constructed by successively moving

the white color on the circle. Using this property one can show that:

Proposition 5. For p(a) + p(b) < M − 1 (or p(a) + p(b) > M + 1), if Λ is a circle with

10A circle is a path where the two ends are the same.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.6: 3.6(a) displays a 2-connected lattice constructed by adding path 2 and 3 to
the original circle 1. 3.6(b) and 3.6(g) represent two connected states in Ō for the case of
the lattice represented in 3.6(a). Here M = 12 and p(a) = 4, p(b) = 6. 3.6(c)-3.6(f) are
intermediate states in the sequence connecting 3.6(b) to 3.6(g). 3.6(h) and 3.6(i) show
states 3.6(d) and 3.6(e) on sublattices. 3.6(i) also shows three different paths (dashed,
dot-dashed and dotted lines) linking the end points of path 3 (see text).

one added path linking two unbonded sites on the circle, then any |n̄, m̄〉, |n̄′, m̄′〉 are

connected.

An example displaying the assumption of Proposition 5 on the lattice is shown in

Fig. 3.10(i). The proof of this proposition is given in the Section 3.8.4. Note that, Λ being

2-connected is equivalent toΛ being constructed as follows: (1) start from a circle; (2) add

a path which starts and ends on two distinct sites on the circle; (3) successively add paths

to the already constructed lattice in the same manner as in (2) [59] (see e.g. Fig. 3.6(a)) 11.

11Note that in the remainder of this Subsection all added paths are non trivial in the sense that they add
new sites to the already constructed lattice. Adding trivial bonds does not change our conclusions as it keeps
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By using this equivalence and Proposition 5, we give a necessary and sufficient con-

dition in order for any two states to be connected for generic cases (including all cases we

discussed above) with p(a) + p(b) < M − 1 ( or p(a) + p(b) > M + 1):

Proposition 6. Any two states |n̄, m̄〉, |n̄′, m̄′〉 with arbitrary p(a) + p(b) < M − 1 (or

arbitrary p(a) + p(b) > M + 1) are connected if and only if Λ is 2-connected and is not a

circle of 5 or more sites 12.

We will show that this is true with a specific example. The argument, though, can be

straightforwardly generalized to the general case. Let us start by proving the sufficient

condition. Consider a 2-connected lattice (not a circle of 5 or more sites) as displayed in

Fig. 3.6(a), and arbitrary |n̄, m̄〉, |n̄′, m̄′〉 as displayed in Fig. 3.6(b) and 3.6(g). Note that,

with p(a) + p(b) < M − 1, there exists at least two white sites. In this example we only

consider two white sites 13. Because the white color can be moved to any site in the lattice,

without loss of generality, we choose the white sites to be the same for |n̄, m̄〉 and |n̄′, m̄′〉

as shown Fig. 3.6(b) and 3.6(g). Starting from |n̄, m̄〉, we first construct an intermediate

state | χn, θn〉 (Fig. 3.6(c)) connected to |n̄, m̄〉 such that the number of blue and red sites

on the inner circle labelled by 1, and on the paths (in the context of this proof when we

count the number of colors in the added paths we exclude the end points from the paths)

labelled by 2 and 3, is the same as in |n̄′, m̄′〉. This can be done according to property (d)

of Section 3.4.3. Specifically, this is done by first fixing the colors on path 3, next, since

the remaining lattice is still 2-connected, on path 2. Obviously, at this point, the colors on

circle 1 are automatically fixed.

the 2-connectivity properties of the lattice.
12Two states on a circle with 4 or less sites are always connected, as shown in Lemma 4.6 of Tasaki’s

work [52]. In Ref. [52] the authors discuss the degeneracy problem of the ground-state energy of Fermi-
Hubbard model with infinite U at fixed number of spin-up(down) fermions and in the presence of a single
hole. It is interesting noting that the basis |n̄, m̄〉 that we define here is equivalent to the corresponding basis
defined in Ref. [52].

13Nothing would change if more than two white sites are present since the white color can be freely moved
on the lattice.
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(a) (b)

Figure 3.7: 3.7(a) and 3.7(b) display two different ways of viewing the same lattice. They
can both be viewed as an already constructed lattice plus an added path. In 3.7(a), two
ends of the added path (dark green) form a bond on the already constructed lattice (light
pink). In 3.7(b), two ends of the added path (dark green) doe not form a bond on the
already constructed lattice (light pink).

Next, we construct a sequence starting forward from | χn, θn〉 (Fig. 3.6(c)) and backward

from |n̄′, m̄′〉 (Fig. 3.6(g)), by firstly moving the white color from the original circle to the

two ends of path 3, only through sites on circle 1 and path 2. This step generates state

Fig. 3.6(d) from Fig. 3.6(c) and state Fig. 3.6(f) from Fig. 3.6(g). In order to connect

state 3.6(d) to state 3.6(f) we notice that path 2 combined with circle 1 (see Fig. 3.6(h))

satisfies the assumption of Proposition 5 14, therefore we can construct state Fig. 3.6(e)

such that colors on circle 1 and path 2 are the same as in state Fig. 3.6(f). Next, we notice

that both lattices in Fig. 3.6(b) and Fig. 3.6(h) are 2-connected, therefore there exists three

disjoint paths linking the two ends of path 3: path 3 itself and two paths belonging to circle

1 combined with path 2. This is shown in Fig. 3.6(i). Hence, we can apply Proposition 5

again to show that states 3.6(e) and 3.6(f) are connected. In conclusion, due to transitivity

of connectedness, we have shown that |n̄, m̄〉 and |n̄′, m̄′〉 are connected.

To prove the necessary condition, we simply observe that if Λ is not 2-connected or is

a circle with 5 or more sites, as shown in examples Fig. 3.4(a)-3.4(d) and Fig. 4.4, there

exists some cases for which not every two states are connected.

14If the two ends of any added path form a bond on the already constructed lattice as shown in Fig. 3.7(a),
where pink indicates the already constructed lattice and green indicates the added path, then, since the path
adds at least one new site, the “new” lattice we consider includes all sites as shown in Fig. 3.7(b) by pink
bonds with an added green trivial path. Now, in order to apply Proposition 5, we regard the green bond in
Fig. 3.7(b) as the added path.
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In view of Proposition 1 and Proposition 6 we can formulate the following theorem:

Theorem 4. In case of arbitrary p(a) + p(b) < M − 1 (or arbitrary p(a) + p(b) > M + 1),

E1 is nondegenerate if Λ is 2-connected and not a circle with 5 or more sites.

In the case p(a) + p(b) = M − 1 (or p(a) + p(b) = M + 1), finding a necessary and sufficient

condition on the connectivity of a lattice for any two states to be connected is still an

open question. Sufficient conditions for a specific model are provided by Tasaki [56] and

Katsura [60] 15

3.6 Determination of |ψ0〉 with Na, N b such that p(a) =

1, p(b) = M − 1

In the general case of p(a) + p(b) = M , there are neither white nor purple sites. Hence,

according to the rules given in Subection 3.4.1, any two different states are not connected.

This statement is valid independently on the connectivity properties of Λ. Therefore, all

matrix elements in W̄ are zero, which results in E1 = 0 and degenerate. We are interested

in the case p(a) = 1, p(b) = M − 1 (p(a) = M − 1, p(b) = 1) which corresponds to doping

species-A (B) with one particle and species-B (A) with one hole. In this case, |ψ0〉 is not

uniquely determined by solving Eq. 3.6. In the following we will take advantage of the

symmetry properties of the lattice to uniquely determine |ψ0〉.

Let us start by defining a symmetry operation r on the lattice and its corresponding

operator Sr . We say r is a (bond-weighted) lattice automorphism of Λ if r maps V(Λ)

one-to-one onto itself and satisfies (i) {i, j} is a bond if and only if {r (i), r ( j)} is a bond,

(ii) I(i, j) = I(r (i),r ( j)). The inverse of r , r−1, is also a lattice automorphism. Given a lattice

15In [60] the authors study the degeneracy of the ground-state energy of the SU (n) Fermi-Hubbard model
with U = ∞ and with exactly one hole. Another sufficient condition for the SU (2) Fermi-Hubbard model
requiring the lattice to be constructed by “exchange bond” was given in [56].
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Figure 3.8: 3.8(a) displays a lattice automorphism r on an hexagon. 3.8(b) displays the
action on Fock states of the corresponding operator Sr : the lattice is rotated while the
physical position of particles is unchanged.

automorphism r , one can define a linear operator Sr on H such that Sr |n,m〉 = |n′,m′〉,

where n′i = nr (i) and m′i = mr (i). If we take the example of Fig. 3.8 with equal weight

on all bonds (I(i, j) = 1 for every {i, j}), the lattice automorphism r is a 2π/3 clockwise

rotation (see Fig. 3.8(a)). The action of the corresponding Sr is shown in Fig. 3.8(b),

where the lattice is rotated while the physical position of particles is unchanged.

Since r is invertible, Sr also has an inverse, Sr
−1. It is easy to show that Sr−1 = S−1r .

Moreover, by definition |n′,m′〉 = Sr |n,m〉 is also a normalized Fock state. Therefore Sr

preserves the norm
√
〈ψ |ψ〉 for any arbitrary state |ψ〉 in a finite-dimensional H. Hence,

Sr is a unitary operator, i.e. Sr
+ = Sr

−1, and thus a bounded operator 16.

Note that, by definition, the state Sr |n,m〉 has exactly the same spatial configuration

of bosons as |n,m〉. Then the interaction-dependent terms in H are unchanged. Hence,

state Sr |n,m〉 has the same eigenvalue of H0 as |n,m〉, and thus Sr commutes with H0.

16Aunitary operator is always bounded. Then, if an operator Sr is bounded,
(
|ψ0〉 +

∑∞
n=1 ε

n |ψn〉
)
→ |Ψ〉

implies
(
Sr |ψ0〉 +

∑∞
n=1 ε

nSr |ψn〉
)
→ Sr |Ψ〉.
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Moreover, according to Eq. 3.5 and the definition of r ,

〈n,m|S−1r W Sr |n′,m′〉 =

−δm,m′ta
∑

(r (i),r ( j))

[
Ir (i),r ( j)

√
nr ( j) + 1

√
n′r (i) + 1 δnr ( j )+1,n′r ( j )

δnr (i),n′r (i)+1

M∏
l,r (i),r ( j)

δnr (l )n′r (l )

]

−δn,n′tb
∑

(r (i),r ( j))

[
Ir (i),r ( j)

√
mr ( j) + 1

√
m′r (i) + 1 δmr ( j )+1,m′r ( j )

δmr (i),m′r (i)+1

M∏
m,r (i),r ( j)

δmm,m′m

]

= 〈n,m|W |n′,m′〉 . (3.7)

Therefore, Sr also commutes with H .

The boundedness of Sr implies:

Sr |Ψ〉 = Sr |ψ
0〉 +

∞∑
n=1

εnSr |ψ
n〉 . (3.8)

Since E is nondegenerate and HSr |Ψ〉 = ESr |Ψ〉, then Sr |Ψ〉 = eiθ |Ψ〉. More specifically,

Sr |ψ
0〉 +

∞∑
n=1

εnSr |ψ
n〉 = eiθ |ψ0〉 +

∞∑
n=1

εneiθ |ψn〉 . (3.9)

Taking the limit ε → 0, we have Sr |ψ
0〉 = eiθ |ψ0〉. Furthermore, multiplying by 〈n,m|

Eq. 3.9, we obtain two power series of ε :

〈n,m|Sr |ψ
0〉 +

∞∑
n=1

εn 〈n,m|Sr |ψ
n〉 = eiθ 〈n,m|ψ0〉 +

∞∑
n=1

εneiθ 〈n,m|ψn〉 . (3.10)

Because the series are analytic in a small neighborhood of ε = 0, we can equate the

coefficients at each order n to get 〈n,m|Sr |ψ
n〉 = eiθ 〈n,m|ψn〉. In other words, |ψn〉 is

Sr-invariant (apart from a phase factor) for any lattice automorphism r .

In the following we will use these properties to determine the expansion coefficients
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of the first order correction to the ground state Eq. 3.6. Let us consider arbitrary states

|n̄, m̄〉 and |n̄′, m̄′〉. We denote the unique blue site (recall p(a) = 1 so all sites but one

are red) on these states by i and j respectively. If there exists a lattice automorphism r

such that r ( j) = i, then |n̄′, m̄′〉 = Sr |n̄, m̄〉. Moreover, as shown above, 〈n̄′, m̄′|Sr |ψ
0〉 =

〈S+r n̄′, m̄′|ψ0〉 = 〈S−1r n̄′, m̄′|ψ0〉 = 〈Sr−1 n̄′, m̄′|ψ0〉 = 〈n̄, m̄|ψ0〉 = eiθ 〈n̄′, m̄′|ψ0〉. If we

choose |Ψ〉 to be positive (see Theorem 1), in the limit of ε arbitrarily small, all 〈n̄, m̄|ψ0〉

are also positive. This implies 〈n̄, m̄|ψ0〉 = 〈n̄′, m̄′|ψ0〉. Therefore we can conclude the

following:

Theorem 5. If Λ is connected and for any two sites i and j there exists a lattice automor-

phism mapping j to i, then 〈n̄, m̄|ψ0〉 = 1/
√

M .

The assumption made on the lattice is very easily satisfied by any regular lattice with

periodic boundary conditions (e.g. hypercubic, triangular, honeycomb....) as long as

I(i, j) = Ii−j, where i, j refer to the position of sites i, j. We also note that this assumption

seems to be independent from the size of the lattice.

3.7 Conclusion

We have studied the degeneracy of the ground-state energy E of the two-component Bose-

Hubbard model and of the perturbative correction E1 in terms of connectivity properties

of the optical lattice. We have shown that the degeneracy properties of E and E1 are

closely related to the connectivity properties of the lattice. We can summarize our main

results as follows:

• The ground-state energy E is nondegenerate if the lattice is connected.

• When p(a) = 0, p(b) , 0 (p(b) = 0, p(a) , 0), E1 is nondegenerate if the lattice is

connected.
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• When p(a) = 1, 0 < p(b) < M − 1 or p(a) = M − 1,

1 < p(b) ≤ M − 1, E1 is nondegenerate if the lattice is 2-connected.

• In generic cases with p(a) + p(b) < M − 1 or

p(a) + p(b) > M +1, E1 is nondegenerate if the lattice is 2-connected and not a circle

with 5 or more sites.

• When p(a) + p(b) = M , E1 is degenerate independently on the connectivity of the

optical lattice. In the case of p(a) = M − 1, p(b) = 1 (p(a) = 1, p(b) = M − 1), we

have determined the 0th order correction of state ψ0. We have shown that ψ0 pos-

sesses equal expansion coefficient provided that there exists a lattice automorphism

mapping a generic site of the lattice into another one.

These results are used to ensure a valid perturbative approach of the two-component Bose-

Hubbard model also in the case of degenerate E1. Details of the degenerate perturbation

theory are given in Section 4.6.1. We expect that the analysis developed in this chapter

and the results about the ground-state degeneracy provide an effective tool to study the

asymmetric character of the Mott-insulator to superfluid transition between the particle

and hole side and, more in general, the entanglement properties that appear to characterize

this process.

3.8 Proofs

3.8.1 Proof of Proposition 1

We only prove the equivalence between (a) and (b). A proof based on the connectivity of

the underlying graph of matrices is given in [61]. The equivalence bewteen (b) and (c) is

a direct consequence of Theorem 4.3 in Ref. [52].
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Let us first prove the necessary condition by contradiction. Let us assume that |n,m〉

and |n′,m′〉 are not connected by X . Then |n,m〉 /RX , |n′,m′〉 /RX and they both belong

to O/RX . So O/RX is a nontrivial partition of O, i.e. it includes more than one subset

of O, and thus X is reducible. We get contradiction. Therefore we proved the necessary

condition.

Let us now prove the sufficient condition also by contradiction. Let us assume X is

reducible. Then, there exists a nontrivial partition of O containing at least two disjoint

nonempty subsets O1 and O2 of O, and the blocks XO1×O1
c (O1

c is the complement of O1

in O), XO1
c×O1 , XO2×O2

c and XO2
c×O2 are zero. On the other hand, by hypothesis, for any

|n,m〉 and |n′,m′〉 which belong respectively to O1 and O2, there exists a finite sequence

in the basis {|α1, β1〉 , |α2, β2〉 , · · · , |αN, βN〉} such that |α1, β1〉 = |n,m〉, |αN, βN〉} =

|n′,m′〉 and for any 1 ≤ i < N , 〈αi, βi |X |αi+1, βi+1〉 , 0. Hence, for some 1 ≤ i < N ,

|αi, βi〉 ∈ O2
c and |αi+1, βi+1〉 ∈ O2 with

〈αi, βi |X |αi+1, βi+1〉 , 0 which implies XO2×O2
c , 0. We get contradiction, hence X is

irreducible.

3.8.2 Proof of Corollary 2

Let us consider t (b) = 0, t (a) , 0 (↔ T (b) = 0, T (a) , 0). The basic idea is to show that

W can be block diagonalized in terms of M N (b) identical blocks. Let us start by noticing

that matrix elements of W :

〈n,m|W |n′,m′〉 = −taδm,m′
∑

{i, j}∈E(Λ)

[
I(i, j)

√
n j + 1

√
n′i + 1δn j+1,n′j δni,n

′
i+1

M∏
l,i, j

δnln′l

]
.

(3.11)

are nonzero only when m = m′. Moreover, if m = m′, the value of matrix elements is

independent of m.
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Let us define a function f which provides a one-to-one mapping from the set P of all

|m〉s onto O/RW , such that for any |m〉, f ( |m〉) = |n,m〉 /RW . The mapping f can be

easily defined and one just needs to show that f is one-to-one and onto.

Let |m〉 and |m′〉 be different. It’s obvious that any member in f ( |m〉) is not connected

with any member in f ( |m′〉) by W , hence f (|m〉) , f (|m′〉), i.e. f is one-to-one.

Next, let x ∈ O/RW , i.e. x = |n′′,m′′〉 /RW for some |n′′,m′′〉. Let us now consider

f ( |m′′〉) = |n′′′,m′′〉 /RW for some |n′′′〉 , |n′′〉. By using connection properties of W ,

one can show that |n′′,m′′〉RW |n′′′,m′′〉. So |n′′,m′′〉 /RW = |n′′′,m′′〉 /RW and thus

x = f (|m′′〉), i.e. f is onto. In conclusion, f is a one-to-one mapping from P onto O/RW .

The total number of elements in P is M Nb , hence O/RW is a nontrivial partition of O.

Then, it is obvious that for any Oi ∈ O/RW , WOi×Oi
c and WOi

c×Oi
are zero matrices. In

other words, O/RW block-diagonalizes W.

Next, we show that each block is an irreducible nonnegative matrix and all blocks

have the same set of eigenvalues. Let |m〉 ∈ P, then f ( |m〉) ∈ O/RW . We can express

f ( |m〉) as f (|m〉) = Q ⊗ {|m〉}, where Q is the set of all |n〉’s. From Frobenius theorem,

one can conclude that W f (|m〉)× f ( |m〉) has a nondegenerate ground-state energy. Since

f ( |m〉) = Q ⊗ {|m〉}, one can use the identity map on Q, so that for any |m〉 , |m′〉,

a one-to-one mapping from W f (|m〉)× f ( |m〉) onto W f ( |m′〉)× f ( |m′〉) can be constructed. By

construction, this mapping keeps matrix element identical, i.e. the two matrices have the

same set of eigenvalues.

In conclusion, we have shown that the ground-state energy of W is M N (b) -degenerate.

3.8.3 Proof of property (d) in Section 3.4.3

We only consider the case of blue color. The proof for the red color is trivially equal.

Consider an arbitrary state and arbitrary sites i and j, where i is blue. We want to
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(a) (b) (c)

(d) (e)

Figure 3.9: 3.9(a) through 3.9(e) are examples of states in Ō on a 2-connected lattice
with p(a) = 3, p(b) = 6. The steps for moving the (dark) blue color from site i to j are
explained in the text and displayed pictorially in the sequence 3.9(a)-3.9(e). The dashed
arrow indicates a path connecting i and j. Black arrows indicate the path along which the
white (circled in grey) color is moved at each step.

move the blue color from i to j according to the rules given in Subsection 3.4.1. Because

Λ is connected, there exists a path {i, i2, · · · , j} linking i to j. The idea of following proof

is to move the blue color along this path.

To illustrate the proof, we give an example in Fig. 3.9, where 3.9(a) is the starting state,

and the path {i, i2, · · · , j} is indicated by a dashed arrow. To move the blue color along the

path, e.g. from in to in+1, we need to firstly move a white color to in+1 and then exchange

the color on the bond {in, in+1}. In order to do so we observe that due to the 2-connectivity

of Λ, there also exists a path {k1, k2, · · · , i2} which avoids i but links a white site k1 to i2.

The white color can be moved successively on {k1, k2, · · · , i2} so that i2 becomes white.

Note that the fact that the path {k1, k2, · · · , i2} avoids i is important, because it allows

us to keep the blue color on i while moving the white color to i2. Next step consists of

exchanging the color on the bond {i, i2} so that i2 becomes blue. The last two steps can be

repeated successively (i.e. finding a path {k′1, k′2, · · · , i3} linking a white site k′1 to i3 and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 3.10: 3.10(a) through 3.10(i) represents states in Ō for the case of a lattice consisting
of a circlewith one added path linking to unbonded sites. In this example p(a) = 3, p(b) = 5.
States 3.10(a) and 3.10(i) are connected through the sequence 3.10(b)-3.10(h). Black
arrows indicate how the white (circled in grey) color is moved at each step. Dashed circle
shows the order of the color which needs to be keep fixed (see text).

avoiding i2, moving the white color along this path until i3 becomes white, exchanging

the color on bond {i2, i3} so that i3 becomes blue and so on) until j acquires the blue color.

This process is illustrated in Fig. 3.9(a) through 3.9(e) where solid black arrows indicate

the path along which the white color is moved at each step.

3.8.4 Proof of Proposition 5

For simplicity, but without loss of generality, we prove the proposition for the specific

example shown in Fig. 4.6. The general case only differs in the number of sites on the

circle and the extra path connecting the two sites which are unbounded in the original

circle, and in the color of sites.
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Let us consider the lattice shown in Fig. 3.10(i). We denote by il , jl , k1, and k3 the sites

belonging to the original circle. Sites on the extra path connecting the initially unbounded

sites k1 and k3 are denoted by kl (in this case we only have k2). This path separates the

original circle into the left and right circles. Let us now consider arbitrary |n̄, m̄〉 and

|n̄′, m̄′〉 displayed by, e.g., Fig. 3.10(a) and 3.10(i) respectively. Because the white color

can be moved to any site of the lattice according to the rules given in Subsection 3.4.1,

we choose |n̄′, m̄′〉 such that both, left and right circles, have one white site. Note that the

proof below does not depend on the number of white sites.

The proof is based on the fact that we can first construct a generic state connected with

|n̄, m̄〉 and such that the order of color on i-sites is the same as in |n̄′, m̄′〉. In our particular

example, because one of the i sites is white, this reduces to fixing the color on the bond

specified by the dashed line in Figs. 3.10(d)-3.10(h). In order to do so, we first construct

a state connected to |n̄, m̄〉 where k1 is blue, as shown in Fig. 3.10(b). This process is

depicted in Fig. 3.10(a) by black arrows indicating how the white color moves. This

process is always possible due to the fact that Λ is 2-connected (see a similar argument

given to prove Proposition. 4). We keep moving the white color as depicted by black

arrows in Fig. 3.10(b)-3.10(d), in order to construct the sequence Fig. 3.10(c)-3.10(e). We

have finally constructed a state such that the order of the color on i sites is the same as

|n̄′, m̄′〉. Similar procedures can be followed if the color of more than two i sites need to

be fixed.

Next, we need to fix the order of color on the right circle. In a general case, this is

equivalent to switching the order of color on a certain number of bonds. In our case, we

only need to do so for the color on bond { j1, k1} of state Fig. 3.10(e). The procedure is

depicted by black arrows in 3.10(e)-3.10(g), so that we end up with state Fig. 3.10(h).

The idea of the procedure is to transfer the pair of colors on bond { j1, k1} to bond {k1, i1}

(see Fig. 3.10(f)) and then move white sites in order to transfer the pair of colors back to
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the original bond { j1, k1} (see Fig. 3.10(h)) but with the order of the color inverted. In

general, this procedure will ensure that the order of the color on { j1, k1} is inverted. Now

the order of color on the right circle is the same as in |n̄′, m̄′〉. The last step consists of

moving the white color (which does not change the order of color) on the right circle in

order to reach the state |n̄′, m̄′〉. This is depicted by the black arrow in Fig. 3.10(h).

In a more general case that the one described here, one simply needs to repeat similar

procedures to switch the color on bonds on the right circle as needed.
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Chapter 4

Inter-species entanglement of Bose-Bose

mixtures trapped in optical lattices

The material presented in the chapter is based on my work published in Reference [22].

In this chapter, we discuss inter-species entanglement in Bose-Bose mixtures trapped in

optical lattices. This work is motivated by the observation that, in the presence of a

second component, the Mott-insulator lobe shifts differently on the hole- and particle-side

with respect to the Mott lobe of the single species system [50, 2]. We use perturbation

theory, formulated in a Hilbert space decomposed by means of lattice symmetries, in

order to show that the nonuniform shift of the Mott lobe is a manifestation of inter-species

entanglement which differs in the lowest excited states to remove and add a particle. Our

results indicate that inter-species entanglement in mixtures can provide a new perspective

in understanding quantum phase transitions. To validate our approach, we compare our

results from perturbation theory with quantum Monte Carlo simulations.
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4.1 Introduction

In the past decade, quantum phase transitions of Bose-Bose, Bose-Fermi and Fermi-Fermi

mixtures in optical lattices have attracted considerable attention both experimentally and

theoretically [40, 41, 42, 43, 44, 20, 45, 46, 47, 48, 49, 62, 63, 64, 65, 66, 67, 68, 69,

70, 71, 72]. Nonetheless, the physics of mixtures is still not completely understood.

This is because the coupling between the various components introduces extra degrees

of freedom which result in a wealth of exotic and novel phases. Indeed, mixtures fea-

ture quantum phase transitions otherwise absent in single species systems. Moreover,

the inter-species coupling introduces non-trivial correlations between components which

may result in significant inter-species entanglement. Inter-species entanglement can of-

fer a different perspective in understanding quantum phase transitions in multicompo-

nent systems. Hence, by applying concepts from quantum computation to many-body

physics [73, 74, 75, 76, 77], one can gain further insight into the physics of mixtures.

Recent theoretical and experimental results report on the modification of the Mott lobe

and, in general, of the Mott-insulator to superfluid transition [19, 18, 78] in the presence of

a second component [2, 50, 79, 80, 81, 62, 63, 69]. In particular, it has been theoretically

shown and experimentally observed that the influence of a second bosonic or fermionic

species on the insulating phases of the other bosonic component can be controlled by

the strength of the inter-species coupling and by the density of the second component.

Intuitively, the strength of the inter-species coupling can be viewed as an indicator of how

entangled the two species are. In particular, in the limit of negligible coupling between the

two components, the same physics as for a single component system would be observed

and inter-species entanglement would be absent. Thus, naturally, one can expect that the

modifications on the Mott insulator lobe in the presence of a second component are a

manifestation of inter-species entanglement.
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In this chapter, we consider Bose-Bose mixtures trapped in optical lattices. Our main

goal is to provide a qualitative understanding of how inter-species entanglement relates

to the observations made in [2, 50] where the authors report a visible shift of the Mott

lobe boundary on the hole-side (i.e. when the superfluid is reached by doping with holes)

and an almost negligible shift on the particle-side of the lobe (i.e. when the superfluid is

reached by doping with particles).

This chapter is organized as follows. In Section 4.2 we introduce the two-component

Bose-Hubbard model. In Section 4.3 we provide intuitive understanding of how inter-

species entanglement affects the Mott-insulator to superfluid phase transition in the binary

mixture. In Section 4.4 we introduce the theoretical framework on which perturbation

theory is based and discuss the symmetries of the system. In Section 4.5 we discuss inter-

species entanglement of the two-component Bose-Hubbard model defined in a reduced

and decomposed Hilbert space. In Section 4.6 we present numerical results based on

perturbative calculation and we compare them with exact quantum Monte Carlo results.

Finally, we conclude in Section 4.7.

4.2 The model

We consider a bosonic binary mixture trapped in an optical lattice as described by the

two-component Bose-Hubbard model

H =
U (a)

2

M∑
i=1

n(a)
i (n(a)

i − 1) +
U (b)

2

M∑
i=1

n(b)
i (n(b)

i − 1) +U (ab)
M∑

i=1
n(a)

i n(b)
i

−T (a)
∑
(i, j)

a+i a j − T (b)
∑
(i, j)

b+i b j − µ
(a) N (a) − µ(b) N (b), (4.1)

where M is the number of lattice sites, a stands for the first species (species-A or

component-A) while b stands for the second species (species-B or component-B), a+i (b+i )
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and ai (bi) are creation and annihilation operators of species-A(B) at site i, n(a)
i = a+i ai,

n(b)
i = b+i bi, are the particle number operators at site i and N (a) =

∑
i n(a)

i , N (b) =
∑

i n(b)
i .

U (a) and U (b) are the onsite intra-species interactions for component-A and -B respec-

tively,U (ab) is the inter-species onsite interaction,T (a) andT (b) are the hopping amplitudes,

and µ(a) and µ(b) are the chemical potentials which set the total number of particles. In the

following we consider species-A to be the majority species, whose Mott lobe boundary is

affected by the presence of species-B, the minority component.

4.3 Characterization of the shift of the lobe boundary in

terms of mutual information

In this Section we discuss previous observations of a shift of the Mott-insulator (MI) lobe

boundary in the presence of a second bosonic minority component, and consider these

observations in the context of inter-species entanglement and mutual information of states.

In References [2, 50] it was found that, in the presence of species-B as a minority

component, the boundary of MI lobe of species-A is affected differently on the hole- and

particle-side compared to the MI lobe in the absence of species-B. Fig. 4.1 is borrowed

from Reference [2] and shows the nonuniform boundary shift of the first Mott lobe. The

diamonds correspond to the boundary of the first Mott lobe in the absence of a second

component, while the circles, squares and triangles correspond to the boundary of the first

Mott lobe in the presence of a second component with U (ab) = 10T (a), 15T (a), 20T (a)

respectively. Other parameters are set as U (b) = 10T (a), T (a) = T (b). The density of the

second component is 0.1. Overall, the shift of the MI lobe is always more prominent on

the hole-side of the boundary. The magnitude and the modality of the shift depend on

the interplay between kinetic and potential energies, and the density of species-B. For
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Figure 4.1: This figure, borrowed from Reference [2], shows the nonuniform boundary
shift of the first Mott lobe. The diamonds correspond to the boundary of the first Mott lobe
in the absence of a second component, while the circles, squares and triangles correspond
to the boundary of the first Mott lobe in the presence of a second component with
U (ab) = 10T (a), 15T (a), 20T (a) respectively. Other parameters are set as U (b) = 10T (a),
T (a) = T (b). The density of the second component is 0.1. Data are calculated with Monte
Carlo simulations.

example, at fixedU (ab) and for a given density of species-B, the first MI lobe of species-A

always possesses a visible shift on the hole-side of the boundary with respect to the lobe

in the single-species case, while the shift on the particle-side of the boundary is either

absent or considerably less pronounced, depending on the density of species-B [2, 50].

In particular, the particle-side of the boundary shifts only for sufficiently large fillings

of component-B. It is worth noting that the lobe boundaries can either be explored by

fixing U (a) while varying T (a) or vice versa. In the former case, the boundary shift on the

hole-side is already observed in the limit T (a)/U (a) → 0 and it gets progressively smaller

as the hopping is increased and quantum fluctuations become more prominent. On the

other hand, when the boundary is explored by fixing T (a) and varying U (a), the boundary

shift is inexistent in the limit T (a)/U (a) → 0 for which, the onsite intra-species interaction

U (a) becomes the dominant energy scale and the interaction between the two components

can be neglected. The shift becomes progressively larger upon increasing T (a)/U (a). In
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general, although the modality of the boundary shift depend on the specific choice of

model parameters, overall, a larger inter-species interaction leads to a greater shift of the

lobe.

In the following, we focus on exploring the lobe boundary by fixing U (a) while

varying T (a). As discussed above, the shift is already visible in the limit T (a)/U (a) → 0

which implies that one can perform a perturbative study of the phase boundary shift by

treating the hopping term as perturbation, treating the onsite interactions as unperturbed

Hamiltonian, and treating T (a)/U (a) (setting T (b) = T (a)) as perturbation parameter. This

perturbation method is based on a degenerate perturbation theory since the unperturbed

Hamiltonian has degenerate ground states. And the corresponding perturbation theory

has been systematically studied in Reference [21] where issues concerning the degeneracy

in perturbation theory are analyzed and solved.

In order to gain a qualitative understanding of the role played by species-B, let’s first

consider the limit T (a) → 0, T (b) → 0 and consider N (b) = 1. It should be noted that

we here study species-A and the single species-B boson within the two-component Bose-

Hubbard model, though the behavior of a single boson does not display Bose-Einstein

statistics. In this way, we emphasizes that N (b) = 1 is a special case of Bose-Bose mixture

and the kinetic energy together with the potential energy of the species-B boson in the

Bose-Hubbard model (rather than the Fermi-Hubbard model [82] where a single fermion

has different Hilbert space dimension and thus different hopping matrix due to half-integer

spin) capture the physics consistent with cases of N (b) > 1. Throughout this chapter, we

assume all onsite interactions to be repulsive and inter-species interactions are chosen

to avoid phase segregation [20]. We consider a square lattice with periodic boundary

conditions.

Let us start by reviewing the determination of the boundaries of theMI lobe away from

the tip. In the grand canonical ensemble, the MI lobe of species-A is a result of the energy
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gap between the ground state and the elementary excited state which corresponds to adding

a hole or a particle [19] of species-A to themixture. Denoting the ground state energy by E

and the lowest excited energy to add a hole (particle) by Eh (Ep), one has Eh > E (Ep > E)

inside the MI lobe, and Eh = E (Ep = E) at the hole-side (particle-side) boundary. Hence,

one can find the position of the boundary by setting the lowest excited energy equal to the

ground-state energy. It is therefore easy to understand the boundary shift in terms of a

change of the energy gap induced by the presence of the second component. For a given

chemical potential inside the MI lobe, the hole-side (particle-side) gap is given by the

distance between the chosen chemical potential and the hole (particle) boundary as shown

in Fig. 4.2(a). Without the species-B boson and in the zero hopping limit, we have

E = −µ(a) M, Eh = −µ
(a) (M − 1), Ep = U (a) − µ(a) (M + 1)

and the gaps Eh − E = µ(a), Ep− E = U (a) − µ(a). In the presence of the species-B boson,

the repulsive inter-species interaction “helps” removing a species-A boson from the lattice

in order to create a hole, so that the presence of species-B lowers the excitation energy

needed to add a hole, thus shrinking the lobe on the hole-side as shown in Fig. 4.2(a).

This can be easily understood in the limit of zero hopping where, in the presence of a

hole of species-A, particle-B occupies the same site as the hole-A in order to minimize

the inter-species interaction (see Fig. 4.2(b)). On the other hand, the repulsive interaction

between the two species has no influence on the energy needed to add a particle since, in

order to minimize the inter-species interaction, the added species-A boson will not occupy

the same site as the species-B boson as shown in Fig. 4.2(c). Hence, the excitation energy

to add a particle remains unchanged and the lobe shift is absent. Correspondingly, in the
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presence of particle-B we have

E = U (ab)−µ(a) M−µ(b), Eh = −µ
(a) (M−1)−µ(b), Ep = U (a)+U (ab)−µ(a) (M+1)−µ(b)

and the gaps Eh − E = µ(a) −U (ab), Ep − E = U (a) − µ(a). Obviously, the energy gap to

add a hole is lowered by U (ab) while the energy gap to add a particle stays the same.

Let us now turn to the discussion of how inter-species entanglement is related to the

non-uniform MI lobe shift we just described. Indeed, as will be shown in the following,

in the intuitive picture discussed above, the species-B boson impacts on the excitation of

species-A in an “entangled” way. In other words, the repulsion between the two species

is reflected in the quantum correlation in excited states of the Bose-Bose mixture. In

the system considered, the inter-species entanglement arises from a tensor-product form

H(a) ⊗H(b) of the Hilbert space of the system, whereH(a) andH(b) are the Fock spaces

corresponding to each single-species system. In the limit of zero hopping 1, the ground

state of the MI and the first excited states to add a hole or a particle are expanded in terms

of Fock states each with equal coefficient (weight). Moreover the Fock states entering

the expansion are characterized by similar particle distribution on the lattice [21] as we

explain in detail below.

In the Fock states spanning theMI ground state, species-A bosons are uniformly located

in the lattice while the single species-B boson can be located anywhere (an example of this

type of configurations is shown in Fig. 4.2(d)). It is clear that the location of species-A

is irrelevant to the location of species-B. In terms of mutual information, which, in this

context, represents the ability of determining e.g. the position of particle-B from the

1Here, we consider the limit of zero hopping T (a) → 0, T (b) → 0 instead of exactly zero hopping
T (a) = T (b) = 0 in order to exploit the results discussed in [21] which state that, at non-zero hopping,
the ground states of the two-component Bose-Hubbard model corresponding to fixed particle numbers are
always unique. This means that, at finite hopping, the system is described by a pure state rather than a
density operator.
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(a)

(b)

(c)

(d)

Figure 4.2: a) Sketch of the Mott insulator lobe of the single component (solid blue line).
Sketch of the shifted lobe in the presence of a second component (dashed black line).
The red spot inside the lobe represent at fixed value of chemical potential with arrows
indicating the gap the add a hole or an extra particle. The excited energy corresponding to
the addition of a hole (dotted circle) and an extra particle (solid circle) are sketched on the
vertical axis. b) Representative Fock state when a hole is added to the Mott insulator. The
hole of component-A and particle-B occupy the same lattice site in order to minimize the
energy. c) Representative Fock state when an extra particle is added to the Mott insulator.
The extra particle of component-A occupies a site different than the one occupied by
particle-B. d) Representative Fock state in the Mott insulator of component-A in the
presence of particle-B.

position of particles-A, we can conclude that in the MI ground state there is no mutual

information between the two species. For pure states, mutual information can also be

seen as a measure of the entanglement [83], hence, we expect the MI ground state to be

non-entangled.

In the Fock states spanning the first excited state to add a hole (in the following we refer

to it by hole-side excited state), the single species-B boson has to be located on the same

site where the hole-A is located in order to minimize the inter-species interaction. This is

shown in Fig. 4.2(b). In this case the location of boson-B uniquely determines the location
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of hole-A. Therefore, we anticipate this state to have maximal mutual information and

thus this excited state to be maximally entangled.

In the Fock states spanning the first excited state to add a particle (in the following

we refer to it by particle-side excited state), the inter-species interaction is minimized

with boson-B located everywhere in the optical lattice except for the site where the extra

particle-A is located. An example of this type of configuration is shown in Fig. 4.2(c).

In this case, the location of particles-A determines the location of boson-B only partially.

More specifically, the location of particles-A only specifies the site where boson-B will

not be located. Therefore, we anticipate a ‘small’ amount of mutual information between

the two species and this state to be ‘slightly’ entangled. This statement will be quantified

in the following, by calculating entanglement entropy as a measure of the entanglement

in the system [83].

The above discussion can be summarized as follows: In the limit of zero hopping, the

hole-side boundary has a visible shift corresponding to a maximally entangled hole-side

excited state; The particle-side boundary does not shift, corresponding to a weakly-

entangled particle-side excited state. Indeed, as we will show below by means of a

perturbative calculation, the degree of entanglement between the two components is

closely related to the extent of the shift of the lobe. Indeed, these observations suggest

that the inter-species entanglement differs in the ground state, particle-side excited state

and hole-side excited states. This difference leads to different shifts in the energy gaps

to add a hole or a particle, hence resulting in a nonuniform shift of the lobe on the two

sides. Therefore, it is expected that inter-species entanglement plays a role in quantum

phases transitions of mixtures, specifically, in this case, in the Mott-insulator to superfluid

transition at non-fixed number of particles.

Before introducing the framework of the perturbation theory, it is important to note that

for systems described by the Bose-Hubbard model in the grand-canonical ensemble, the
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first excited states corresponding to adding a hole or a particle are identical to ground states

in the canonical ensemblewith one less or one extra particle with respect to the ground state

of the MI phase. Therefore, it is sufficient to study generic properties of the inter-species

entanglement in ground states corresponding to different (fixed) particle numbers. With

this in mind, in the following we introduce a framework capable of studying inter-species

entanglement in ground states corresponding to fixed particle numbers. First, we reduce

the Hilbert space of model 4.1 utilizing symmetries of the Hamiltonian in order to remove

irrelevant degrees of freedom and facilitate numerical study. Second, we decompose

the Hilbert space in terms of symmetry and degrees of freedom and give a criterion for

inter-species entanglement of ground states.

In our framework, we emphasize the structure of the ground state in relation to the

decomposition of Hilbert spaces. We will show that this decomposition provides sim-

plification and convenience for the numerical implementation of the perturbation theory.

Although in the following we consider a square lattice with periodic boundary conditions,

our approach can be applied to any type of finite lattice. Moreover, while we focus on

repulsive inter-species interaction, the method holds for attractive interaction as well.

4.4 Symmetries of the ground state

In this Section we discuss the symmetry of the ground state and utilize it in order to reduce

the Hilbert space.

Consider the ground state Ψ of the Hamiltonian H given by Eq. 4.1 at fixed particle

numbers N (a) and N (b). Ψ lives in the tensor product spaceH(a) ⊗H(b) with a Fock basis

{|n〉 ⊗ |m〉}. The spaces Ha and H(b) are finite-dimensional Hilbert spaces of the single-

component Bose-Hubbard model at fixed particle numbers N (a) and N (b) respectively.

They are spanned by Fock bases {|n〉} and {|m〉}, determined by the lowest band Wannier
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functions [19, 18].

The two-component Bose-Hubbardmodel is defined on a lattice with a finite number of

sites. To describe the nearest-neighbor tunneling, the lattice is endowed a graph structure,

which is specified by bonds or edges [59], i.e. nearest-neighbor pairs of lattice sites.

Lattice symmetries are described by graph automorphisms. A graph automorphism g is a

one-to-one mapping on the lattice such that {g(i), g( j)} (where i and j are sites) is a bond

if and only if {i, j} is a bond [59]. Obviously, all graph automorphisms of a finite lattice

form a finite group under the function composition (g ◦ g′)(i) = g(g′(i)). We denote this

group by G. In a square lattice with periodic boundary condition, G is the group generated

by all translations, rotations and reflections which leave the lattice unchanged.

The group G has three unitary representations π(ab), π(a) and π(b) in the Hilbert spaces

H(a) ⊗ H(b), H(a) and H(b), respectively 2. In general, a representation π is defined by

mapping any element g ∈ G into a unitary operator π(g) whose action is defined on the

relevant Hilbert spaces. The representations are naturally defined in terms of Fock bases.

Specifically, given a Fock state |n,m〉 = |n〉 ⊗ |m〉 = |n1, n2, ...ni, ...〉 ⊗ |m1,m2, ...mi, ...〉

(where ni and mi are occupation numbers of species-A and species-B bosons on site i) in

H(a) ⊗H(b), then π(ab) (g)(|n〉 ⊗ |m〉) is also a Fock state corresponding to

|ng−1(1), ng−1(2), · · · ng−1(i) · · ·〉 ⊗ |mg−1(1),mg−1(2), · · ·mg−1(i) · · ·〉 ,

where the action of g induces a site reshuffling. An example of π(ab) (g) on |n,m〉 is

illustrated in Fig. 4.3. Here, g represents a 180◦ clockwise rotation of a 2 × 2 square

lattice. Fig. 4.3(a) displays the initial state |n,m〉, while Fig. 4.3(c) displays the final state

π(ab) (g) |n,m〉. One can understand the action of π(ab) (g) from the intermediate step,

Fig. 4.3(b), where, according to the definition of π(ab) (g), the positions of bosons are

2A unitary representation π of the group G in the space H is a group homomorphism mapping each g

into a unitary operator π(g) onH, so that π(g1)π(g2) = π(g1 ◦ g2).
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(a) (b) (c)

Figure 4.3: a) and c) Sketch of |n,m〉 and π(ab) (g) |n,m〉 on a 2 × 2 square lattice. Here
g represents a 180◦ clockwise rotation. b) Intermediate step where, according to the
definition of π(ab) (g), the positions of bosons are fixed while g−1 operates on the lattice.

fixed while g−1 operates on the lattice. In this example g−1 is a 180◦ counterclockwise

rotation. Hence, the action of π(ab) (g) in going directly from Fig. 4.3(a) to Fig. 4.3(c),

can be viewed as the operation g on the position of bosons. Similarly, we can define π(a)

and π(b), and, according to their definition, we have π(a) (g) ⊗ π(b) (g) = π(ab) (g) for all

g ∈ G.

Both, the Hamiltonian H and the ground state |Ψ〉 are invariant under the action of

any graph automorphism g, i.e. they are symmetric under the group G. The invariance

of H under the action of G can be easily seen by observing that [H, π(ab) (g)] = 0 for

any g ∈ G. On the other hand, the invariance of |Ψ〉 under G, i.e. π(ab) (g) |Ψ〉 = |Ψ〉

for any g ∈ G, can be seen from the following arguments. The ground state energy E is

nondegenerate and the expansion coefficients of |Ψ〉 in the Fock basis are all positive, i.e.

〈m, n|Ψ〉 > 0 for all |n,m〉 [21]. Thus, because any π(ab) (g) commute with H , due to the

nondegeneracy of E, π(ab) (g) |Ψ〉 = c |Ψ〉, where c is a constant. Here, c must be positive,

because the matrix elements of π(ab) (g) in the Fock basis are all real and nonnegative,

and 〈m, n|Ψ〉 > 0. Moreover, c must be 1, since the unitary operator π(ab) (g) preserves

the norm. So we conclude π(ab) (g) |Ψ〉 = |Ψ〉.

It is also important to notice that from the definition of π(ab) which leaves unchanged

the relative position of bosons, any |n,m〉 and π(ab) (g) |n,m〉 display the same intra- and

inter-species interactions, as shown in the example of Fig. 4.3(a) and 4.3(c). Hence, we say
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that |n,m〉 and π(ab) (g) |n,m〉 belong to the same “configuration”. In what follows, when

we mention “configuration" of Fock states we refer to the following formal definition.

A configuration of Fock states inH(a)⊗H(b) is defined as a subset in the Fock basis such

that all elements in the subset are obtained by acting on some fixed |n,m〉 with π(ab) (g),

for all g in G. In other words, a configuration groups together all Fock states which only

differ in the location of individual bosons but with the same relative positions of bosons.

According to this definition, the Fock basis can be partitioned in terms of distinguishable

configurations. These are equivalence classes [58] [|n,m〉] defined by the property that

any Fock states |n′,m′〉 of the class is related to the representative element |n,m〉 by the

equivalence relation |n′,m′〉 = π(ab) (g) |n,m〉 for some g ∈ G. Then, the Fock basis

is the disjoint union of configurations
⋃

k [|nk,mk〉], where the subscript k runs through

configurations. It is useful to introduce in each class [|nk,mk〉] = {|nαk ,m
α
k 〉, 1 ≤ α ≤ nk ]}

the superscript α which enumerates the number nk of Fock states belonging to the same

configuration k. In terms of this partition, theHilbert spaceH(a)⊗H(b) can be decomposed

as a direct sum H(a) ⊗H(b) = ⊕kH
(ab)
k , where H(ab)

k is the subspace spanned by the kth

configuration.

Consider two arbitrary Fock states |nk,mk〉 and |n′k,m
′
k〉 of the same configuration

k, for which, of course, |n′k,m
′
k〉 = π(ab) (g) |nk,mk〉 for some g. Based on the defini-

tion of π(ab) (g) and the symmetry of |Ψ〉 under the action of g, we have 〈n′k,m
′
k |Ψ〉 =

〈nk,mk |π
(ab) (g)+ |Ψ〉 = 〈nk,mk |Ψ〉, being π(ab) (g)+ = π(ab) (g)−1 = π(ab) (g−1). It fol-

lows that the ground state |Ψ〉 has the same expansion coefficients for all Fock states

belonging to the same configuration. As a consequence, the ground state is only expanded

on configurations rather than states, namely

|Ψ〉 =
∑

k

ck | χk〉 , | χk〉 ≡
1
√

nk

nk∑
α=1
|nαk ,m

α
k 〉 , (4.2)
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where the class-dependent | χk〉 have been defined. Here, each ck is positive, and each | χk〉

is normalized and spans an invariant subspace under the action of G, i.e. π(ab) (g) | χk〉 =

| χk〉. We denote this invariant subspace by h(ab)
k . Since | χk〉 is expanded by Fock states

in the kth configuration, we have h(ab)
k ⊂ H

(ab)
k . Most importantly, Eq. 4.2 implies that

|Ψ〉 lives in ⊕kh
(ab)
k . It is also important to notice that for any state |ψ〉 ∈ H(a) ⊗ H(b),

|ψ〉 is contained in ⊕kh
(ab)
k if and only if it is invariant under the action of G or has the

G-symmetry (G-symmetry of |Ψ〉 requires it being expanded equally on Fock states in

each configuration). Moreover, since the Hamiltonian H commutes with all π(ab) (g),

then, for any |ψ〉 ∈ ⊕kh
(ab)
k and g ∈ G, π(ab) (g)H |ψ〉 = Hπ(ab) (g) |ψ〉 = H |ψ〉, which

implies that the direct sum ⊕kh
(ab)
k is also invariant under the action of H . Therefore, for

the purpose of studying the ground state and its energy, one can reduce the two-component

Bose-Hubbard model to be defined in ⊕kh
(ab)
k .

This is one of the central results of this chapter. It demonstrates the property that

quantum phase transitions of the two-component Bose-Hubbard model are only associated

to the degrees of freedom describing the relative locations of bosons. Moreover, this

reduction of theHilbert space allows to greatly reduce the numerical cost of the perturbative

calculation. In particular, the matrix size of the Hamiltonian can be considerably reduced.

For example, for a L × L square lattice with periodic boundary condition, the number of

Fock states nk in each configuration can be as large as 8 × L2. Referring to Fig. 4.4(a),

all graph automorphisms can be obtained by doing the following. Consider sites, e.g., 1,

2 and 4, as specifying a coordinate system centered at position of site 1. This coordinate

system can be arbitrarily mapped onto another coordinate system originating at any other

site of the lattice and such that the three sites 1, 2 and 4 maintain their relative position.

This gives a factor of L2. Next, for a fixed origin of the coordinate system (position of site

1), there exist 8 choices for mapping sites 2 and 4 using rotations and reflections which

leave the lattice unchanged (see Figures 4.4(b)-4.4(i)). Therefore, in this example, there
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Figure 4.4: a) Sites 1,2 and 4 specify a coordinate system centered at position of site 1.
b)-i) Eight graph automorphisms which specify the new positions of sites 2 and 4 while
leaving the lattice unchanged (see text).

are 8×L2 graph automorphisms in total. As a consequence, the matrix size can be roughly

reduced by a factor 1/(8 × L2)2.

4.5 The criterion of inter-species entanglement

In this Section we investigate how the inter-species entanglement arises in the ground state

of a binary interacting mixture. As discussed above, we will work on a reduced Hilbert

space.

The inter-species interaction characterized by a strength U (ab) is the source of the

inter-species entanglement. This is because in the noninteracting binary mixture the

Hamiltonian is simply the sum of two single-species Bose-Hubbard models, and therefore,

due to the uniqueness of the ground state one has |Ψ〉 = |Φ(a)〉 ⊗ |Φ(b)〉 and thus |Ψ〉 is

non-entangled. Here |Φ(a)〉 and |Φ(b)〉 are unique ground states of the single-component

systems defined in H(a) and H(b), respectively (the uniqueness of these ground states

can be shown by similar arguments used in Reference [21]). Therefore, the inter-species

interaction is a necessary condition for finite entanglement of binary bosonic mixtures in

optical lattices.
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To further understand the role played by the inter-species interaction, we start by

studying the ground state of noninteracting mixtures and its symmetry properties. By

applying similar arguments as in Reference [21], we can conclude that 〈n|Φ(a)〉 > 0 and

〈m|Φ(b)〉 > 0 for the Fock bases {|n〉} and {|m〉} defined in H(a) and H(b) respectively.

Then, the above analysis on representation map π(ab) can be applied to both π(a) and π(b).

For this reason, we can define subspaces h(a)
i ⊂ H

(a)
i and h(b)

j ⊂ H
(b)
j corresponding to

the ith and the jth configurations of the single-species Fock bases {|n〉} and {|m〉}, in a

similar way as we defined h(ab)
k ⊂ H

(ab)
k . Likewise, we have

|Φ(a)〉 ∈ ⊕ih
(a)
i ⊂ ⊕iH

(a)
i = H(a) , and |Φ(b)〉 ∈ ⊕ jh

(b)
j ⊂ ⊕ jH

(b)
j = H(b) .

Based on the symmetries of |Φ(a)〉 and |Φ(b)〉, it follows that π(a) (g) ⊗ π(b) (g′) |Ψ〉 =

π(a) (g) |Φ(a)〉 ⊗ π(b) (g′) |Φ(b)〉 = |Φ(a)〉 ⊗ |Φ(b)〉 = |Ψ〉 for any two graph automorphisms

g and g′. Considering that π(a) ⊗ π(b) : (g, g′) 7→ π(a) (g) ⊗ π(b) (g′) defines a unitary

representation of the direct product group G ∗ G in which the number of group elements

is squared, we conclude that |Ψ〉 is invariant under the action of the direct product of the

graph automorphism group. In other words, in the absence of inter-species interaction,

the system is invariant when two arbitrary graph automorphisms g and g′ operate on the

two species independently. On the other hand, for U (ab) , 0, the system is generally not

invariant under the action of g and g′ independently, unless g = g′. This implies that the

absence of the inter-species interaction ‘loosens’ the restrictions on the operations which

leave the ground state invariant making the system more symmetric. Indeed, the lack of

G ∗G symmetry will be shown to serve as a criterion for the appearance of entanglement

in the ground state |Ψ〉 once the inter-species interaction is turned on.

We now turn on the inter-species interaction and look at the decomposition of the

Hilbert spaces in order to gain further insight in the structure of |Ψ〉. First, we con-
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sider the ith configuration of species-A and the jth configuration of species-B, i.e.

{|n1i 〉, |n
2
i 〉, ..., |n

ri
i 〉} and {|m

1
j 〉, |m

2
j 〉, ..., |m

s j
j 〉} with labels interpreted as for the config-

uration of the mixture, that is, subscripts refer to configurations while superscripts refer

to Fock states within a configuration. We define the product-configuration (i, j) as

{|n1i 〉|m
1
j 〉, |n

1
i 〉|m

2
j 〉, ..., |n

2
i 〉|m

1
j 〉, |n

2
i 〉|m

2
j 〉, ..., |n

ri
i 〉|m

s j
j 〉},

i.e. the collection of all possible products of Fock states from the ith configuration of

species-A and the jth configuration of species-B. In terms of the definition of configu-

rations for single species, one can alternatively define the product-configuration by fixing

some Fock state |n,m〉 = |n〉 ⊗ |m〉 and collecting all π(a) (g1) |n〉 ⊗ π(b) (g2) |m〉 running

through all g1, g2 ∈ G.

Let us consider an arbitrary product-configuration (i, j) andfix aFock state |n,m〉 in this

configuration with |n〉 belonging to the ith configuration of species-A and |m〉 belonging to

the jth configuration of species-B. If we choose two arbitrary g1 and g2 fromG, and collect

all π(a) (g)π(a) (g1) |n〉⊗π(b) (g)π(b) (g2) |m〉 = π(a) (gg1) |n〉⊗π(b) (gg2) |m〉with g running

through all g ∈ G, we obtain a configuration of the mixture which is surely included in

the product-configuration (i, j). Then, we repeat this process by choosing two other g3

and g4 from G with π(a) (g3) |n〉 ⊗ π(b) (g4) |m〉 not included in the previously obtained

configuration, and we obtain another configuration of the mixture which is disjoint from

the former one. Thus, inductively, we can partition the product-configuration (i, j) in terms

of configurations of the mixture (below we refer to configurations of the mixture simply as

‘configurations’, as defined in Section 4.4, as opposed to product-configurations defined

above). In other words, the product-configuration (i, j) is the union of the configurations

included in it. This is displayed in Fig. 4.5, where the configurations of species-A and

species-B, shown in 4.5(a) and 4.5(b) respectively, determine a product-configuration
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(a) (b) (c) (d)

Figure 4.5: a) and b) Example of a configuration of species-A and of species-B, respec-
tively. c) and d) Configurations of the mixture contained in the product-configuration
resulting from single species configurations sketched in a) and b).

which consists of the union of the two configurations displayed in 4.5(c) and 4.5(d) (note

that we only display a single Fock state per configuration).

Obviously, each configuration has to be included in some product-configuration be-

cause both configurations and product-configurations partition the same Fock basis. Let

us denote the kth configuration included in the product-configuration (i, j) by k ∈ (i, j).

Then, according to the definition ofH(a)
i , H(b)

j andH(ab)
k , we have

H
(a)
i ⊗H

(b)
j = ⊕k∈(i, j)H

(ab)
k .

Furthermore, since h(a)
i and h(b)

j are spanned by |ζi〉 = (1/
√

ri)
∑ri
α=1 |n

α
i 〉 and |λ j〉 =

(1/√s j )
∑s j
β=1 |m

β
j 〉, respectively, then h

(a)
i ⊗ h

(b)
j is spanned by

|ζi〉 ⊗ |λ j〉 =
1
√ris j

ri∑
α=1

s j∑
β=1
|nαi 〉 ⊗ |m

β
j 〉

i.e. the equally weighted sum of the Fock states contained in the product-configuration

(i, j). Moreover, for any k ∈ (i, j), | χk〉 = (1/
√

nk )
∑nk
σ=1 |n

σ
k 〉 ⊗ |m

σ
k 〉 is also an equally

weighted sum of a subset of states in the product-configuration (i, j) which defines the

kth configuration. Here, every |nσk 〉 ⊗ |m
σ
k 〉 is equal to some |nαi 〉 ⊗ |m

β
j 〉 in the product-

configuration (to avoid confusion, we use subscript k to indicate configurations of the

mixture and subscripts i and j to indicate configurations of species-A and species-B
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respectively). Since product-configuration (i, j) consists of all kth configurations with

k ∈ (i, j), then |ζi〉 ⊗ |λ j〉 = (1/√ris j )
∑

k∈(i, j)
√

nk | χk〉. The latter equality implies

h
(a)
i ⊗ h

(b)
j ⊂ ⊕k∈(i, j)h

(ab)
k , and thus

⊕i, j (h
(a)
i ⊗ h

(b)
j ) ⊂ ⊕kh

(ab)
k .

It is easy to show that a state belongs to the subspace

⊕i, j
(
h

(a)
i ⊗ h

(b)
j

)
=

(
⊕ih

(a)
i

)
⊗

(
⊕ jh

(b)
j

)
if and only if it is invariant under the action of the direct product group G ∗G (see 4.8.1).

This result is an essential property since, by applying the finiteness of the automorphism

group, we can show that if the ground state |Ψ〉 is non-entangled, then |Ψ〉 ∈ ⊕i, j (h
(a)
i ⊗h

(b)
j )

as proved in 4.8.2. Consequently, a non-entangled Ψ implies that it is invariant under the

action of any direct product of graph automorphisms (g, g′) ∈ G ∗ G. Alternatively,

breaking the G ∗ G symmetry of Ψ implies onset of entanglement of the mixture in the

ground state. It is worth noting that in the case where there is only one boson of the second

component, i.e. N (b) = 1, the loss of G ∗ G symmetry of Ψ serves as a necessary and

sufficient condition for the onset of entanglement. In this case, in fact, the second species

has only one configuration. If |Ψ〉 is symmetric under G ∗ G, then |Ψ〉 ∈ (⊕ih
(a)
i ) ⊗ h(b).

Since h(b) is one-dimensional, |Ψ〉 will always has the form |φ(a)〉 ⊗ |φ(b)〉, where |φ(b)〉

spans h(b), and as such |Ψ〉 will be non-entangled.

It would be interesting to investigate if, in the general case of N b , 1, |Ψ〉 ∈ ⊕i, j (h
(a)
i ⊗

h
(b)
j ) also implies that |Ψ〉 is non-entangled. If this is the case, then, the fact that the ground

state belongs to ⊕i, j (h
(a)
i ⊗ h

(b)
j ) or, equivalently, as we have just shown, that the ground

state lacks G ∗ G symmetry, is a sufficient and necessary condition for the entangling
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of |Ψ〉. On the other hand, if this is not the case, then, the entangled ground state |Ψ〉

belongs to ⊕i, j (h
(a)
i ⊗ h

(b)
j ) and possesses G ∗G symmetry. A finite entanglement implies

a non-zero inter-species interaction U (ab) (recall we have shown that non-zero U (ab) is

a necessary condition for an entangled ground state |Ψ〉). As |U (ab) | is increased and

provided all other model parameter are kept fixed, the expansion coefficients of |Ψ〉 inside

each product-configuration will eventually no longer be the same since Fock states which

minimize the inter-species interaction energy will be favored, i.e. will have a greater

weight. Thus, |Ψ〉 will no longer belong to ⊕i, j (h
(a)
i ⊗ h

(b)
j ). The implication of the above

argument is that there would be a phase transition between a phase characterized by G ∗G

symmetry and non-zero U (ab) and a phase with broken G ∗ G symmetry. We are not

attempting to answer this question here as this goes beyond the scope of the present work

but we find this possibility intriguing and therefore worth it to mention.

4.6 Numerical results

In this Section, we discuss our results for the entanglement entropy of the ground state and

the excited states corresponding to the hole- and particle-side. The entanglement entropy

is the standard measure of bipartite entanglement for pure states. It is defined as the von

Neumann entropy S of the reduced density operator ρ(a) = Tr(b)[ρ], or ρ(b) = Tr(a)[ρ]

where ρ = |Ψ〉〈Ψ| [84]. In the following, we use the notation e(ρ) = S(ρ(a)) = S(ρ(b)).

Our results are based on perturbation theory carried out on a 10 × 10 square lattice

with periodic boundary conditions. We have checked finite size effects for systems of

linear size L = 6, 7, 8, 9, 10 and found no sizable discrepancy on the lobe boundaries. The

perturbative calculation treats the hopping term in Eq. 4.1 (or the W term in Eq. 3.3) as the

perturbation. We calculated the second order perturbed energy and the first order perturbed

ground state based on the degenerate perturbation theory developed in Chapter 3, taking
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advantage of the symmetry properties of the ground state as discussed in Section 4.4. In

the following, we derive the expressions of the perturbed energy and ground state which

are adopted in our numerical computation.

4.6.1 Degenerate perturbation theory

We first rewrite the Hamiltonian Eq. 4.1 with fixed filling factor as

H = U
[u(a)

2

M∑
i=1

n(a)
i (n(a)

i − 1) +
u(b)

2

M∑
i=1

n(b)
i (n(b)

i − 1) +
U (ab)

U

M∑
i=1

n(a)
i n(b)

i

]

+ T
[
− t (a)

∑
(i, j)

a+i a j − t (b)
∑
(i, j)

b+i b j

]
,

where Uu(a) = U (a), Uu(b) = U (b), Tt (a) = T (a) and Tt (b) = T (b). The unperturbed

Hamiltonian is

H0 = U
[u(a)

2

M∑
i=1

n(a)
i (n(a)

i − 1) +
u(b)

2

M∑
i=1

n(b)
i (n(b)

i − 1) +
U (ab)

U

M∑
i=1

n(a)
i n(b)

i

]
,

and the perturbation is

T
U

W =
T
U

[
− t (a)

∑
(i, j)

a+i a j − t (b)
∑
(i, j)

b+i b j

]

with the perturbation parameter ε = T/U .

Since [H, π(ab) (g)] = 0, [H0, π
(ab) (g)] = 0, and the ground state |Ψ〉 of H is invariant

under the action of π(ab) (g) for any g ∈ G, the perturbative approximation of |Ψ〉 and of

its energy E can be defined in the G-symmetry subspace ⊕kh
(ab)
k with the basis {| χk〉} (as

introduced in Section 4.4). We denote the lowest energy of H0 by E0, and the energy of

| χk〉, an eigenvector of H0 by definition, by E0(k).
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According to the standard perturbation theory, the second order perturbed energy

E0 + εE1 + ε
2E2 and the first order perturbed ground state |ψ0〉 + ε |ψ1〉 are calculated

from equations

H0 |ψ
0〉 = E0 |ψ

0〉 , (4.3)

H0 |ψ
1〉 +W |ψ0〉 = E0 |ψ

1〉 + E1 |ψ
0〉 (4.4)

and

H0 |ψ
2〉 +W |ψ1〉 = E0 |ψ

2〉 + E1 |ψ
1〉 + E2 |ψ

0〉 . (4.5)

Multiplying Eq. 4.4 and 4.5 by 〈ψ0 | and 〈χk |, we can directly derive

〈χk |W |ψ0〉 =
∑

E0(k ′)=E0

〈χk |W | χk ′〉 〈χk ′ |ψ
0〉 = E1 〈χk |ψ

0〉 (4.6)

for E0(k) = E0,

E1 = 〈ψ
0 |W |ψ0〉 , (4.7)

〈χk |ψ
1〉 =

〈χk |W |ψ0〉

E0 − E0(k)
(4.8)

for E0(k) > E0, and

E2 = 〈ψ
0 |W |ψ1〉 . (4.9)

Here Eq. 4.6 can be viewed as a matrix eigenvalue equation in which matrix 〈χk |W | χk ′〉

represents the operatorW projected into the subspace spanned by | χk〉’s with E0(k) = E0.

In the following, we denote the projected W by W̄ . Since E is always nondegenerate

(see Chapter 3), according to the discussion in Section 3.6 and 4.4, in solving Eq. 4.6

with N (b) = 1, we encounter two possibilities: (1) N (a) = M + 1, E0 is degenerate, and

the spectra of W̄ split all degeneracy of E0; (2) N (a) = M − 1, E1 is nondegenerate. In

case (1), |ψ0〉 is the eigenvector of W̄ corresponding to the lowest eigenvalue E1. Hence,
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|ψ0〉 can be obtained by directly solving Eq. 4.6. In this case, we denote an arbitrary

eigenvector of W̄ with eigenvalue E1(l) by |φl〉. In case (2), |ψ0〉 = | χk〉 with | χk〉 being

the only eigenvector of H0 corresponding to E0, and we simply use the nondegenerate

perturbation theory. In the following, we derive expressions of E1, E2 and |ψ1〉 for case

(1). Corresponding expressions for case (2) will be similar.

Taking advantage of the expression

|ψ1〉 =
∑

E0(k)>E0

| χk〉 〈χk |ψ
1〉 +

∑
E0(k)=E0

| χk〉 〈χk |ψ
1〉 ,

we have

E2 =
∑

E0(k)>E0

〈ψ0 |W | χk〉 〈χk |ψ
1〉 +

∑
E0(k)=E0

〈ψ0 |W | χk〉 〈χk |ψ
1〉

where the second term in the right hand side is, according to Eq. 4.6, equal to E1 〈ψ
0 |ψ1〉.

Furthermore, since |Ψ〉 is normalized and has positive expansion coefficients in the basis

{ χk }, we can derive that 〈ψ0 |ψ1〉 = 0. Hence, we have

E2 =
∑

E0(k)>E0

〈ψ0 |W | χk〉 〈χk |ψ
1〉 =

∑
E0(k)>E0

〈ψ0 |W | χk〉 〈χk |W |ψ0〉

E0 − E0(k)
, (4.10)

which is the final expression used in our computation. Now, we derive 〈χk |ψ
1〉 for

E0(k) = E0, which, together with Eq. 4.8, gives the expression of |ψ1〉 used in our

computation.First, we multiply Eq. 4.5 by 〈φl |, and get

∑
E0(k)=E0

〈φl |W | χk〉 〈χk |ψ
1〉 +

∑
E0(k)>E0

〈φl |W | χk〉 〈χk |ψ
1〉 = E1 〈φl |ψ

1〉 .

76



Because |φl〉 is an eigenvector of W̄ with eigenvalue E1(l), we have

E1(l) 〈φl |ψ
1〉 +

∑
E0(k)>E0

〈φl |W | χk〉 〈χk |ψ
1〉 = E1 〈φl |ψ

1〉 .

Then, we can derive

〈φl |ψ
1〉 =

∑
E0(k)>E0

〈φl |W | χk〉 〈χk |ψ
1〉

E1 − E1(l)
=

∑
E0(k)>E0

〈φl |W | χk〉 〈χk |W |ψ0〉

(E1 − E1(l))(E0 − E0(k))
.

Finally, we have

〈χk |ψ
1〉 =

∑
φl,ψ0

∑
E0(k ′)>E0

〈χk |φl〉
〈φl |W | χk ′〉 〈χk ′ |ψ

1〉

E1 − E1(l)

=
∑
φl,ψ0

∑
E0(k ′)>E0

〈χk |φl〉
〈φl |W | χk ′〉 〈χk ′ |W |ψ0〉

(E1 − E1(l))(E0 − E0(k′))
. (4.11)

for E0(k) = E0.

Note that, in case (2), Eq. 4.8 and 4.10 can be directly applied while Eq. 4.11 is not

needed, since E0 is nondegenerate, | χk〉 = |ψ
0〉 and 〈χk |ψ

1〉 = 0 for E0(k) = E0.

4.6.2 Results

The results presented refer to T (a) = T (b), U (ab) = 0.1U (a) = 0.1U (b), and N (b) = 1.

The validity of the perturbative calculation can be inferred by a comparison with quantum

Monte Carlo (QMC) results by the two-worm algorithm [85] of the first MI lobe of

component-A. Fig. 4.6(a) shows the lobe boundaries as computed with QMC (blue

squares) and by means of perturbation theory (red triangles). For comparison, we also

plot the lobe boundaries of the single species Bose-Hubbard model (black circles) as

computed with QMC. The QMC simulation is carried out on a 10× 10 square lattice with
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Figure 4.6: a) lobe boundaries of component-A in the presence of a single particle-B
as computed with quantum Monte Carlo (blue squares) and by means of perturbation
theory (red triangles). For comparison, we also plot the lobe boundaries of the single
species Bose-Hubbard model (black circles) as computed with quantum Monte Carlo. b)
entanglement entropies of the ground state (triangle), hole-side excited state (square) and
particle-side excited state (circle) calculated using perturbation theory.

periodic boundary condition. To produce the QMC results of the first MI lobe, we fix

T (a)/U (a) and scan over µ(a)/U (a). Then, the boundary of the first MI lobe is determined

by the value of µ(a)/U (a) at which the integer filling factor disappears. All simulations

ran till error bars were smaller than 1%.

Overall, we see that the particle-side of the lobe (upper boundary) in the presence

of a single particle-B is basically unaffected and lies on top of the boundary for the

single-species case. On the other hand, at low hopping, the hole-side of the lobe (lower

boundary) is prominently different from the single-species lobe boundary. This difference

is more pronounced for smaller hopping, where quantum fluctuations are less important.

As the ratio T (a)/U (a) reaches a value of 0.03, we start seeing discrepancy between the

perturbative and QMC calculations.

Fig. 4.6(b) shows the entanglement entropies of the ground state (triangle), hole-side

excited state (square) and particle-side excited state (circle) calculated using perturbation
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theory. We find that the entanglement entropy of the hole-side excited state is much larger

than the entanglement entropy of the particle-side excited state. This observation supports

our intuition that the shift of the lobe boundary is closely related to the inter-species

entanglement, with a larger shift on the hole-side of the boundary being accompanied by

a larger inter-species entanglement compared to the particle-side of the boundary. As the

hopping is increased we observe a decrease in the entanglement entropy of the hole-side

excited state. This is due to the proliferation of quantum fluctuations which results in a

finite contribution of Fock states with particle-hole excitations to the hole-excited state. As

a consequence, a decrease in mutual information is observed as more sites corresponding

to holes of component-A are available to be occupied by particle-B in each Fock state, with

maximal mutual information occurring in the limit of zero hopping (and a single hole) as

discussed in Section 4.3. The entanglement entropy of the particle-excited state, instead,

shows aminimum as the hopping amplitude is increased. This could be explained by a two-

fold effect of quantum fluctuations. On the one hand, the finite contribution of Fock states

with particle-hole excitations tends to increase the mutual information due to the presence

of holes, absent in the zero hopping limit. On the other hand, an initial proliferation of

these states with very low weight might result in a decrease of entanglement entropy due

to non-linear nature of the latter. This topic is under investigation at the moment [57].

Lastly, Fig. 4.6(b) shows that the entanglement entropy of the ground state does not change

significantly as T (a)/U (a) is increased and it remains basically the same as its value at zero

hopping, i.e. e(ρ) = 0, corresponding to absence of inter-species entanglement.

4.7 Conclusions

In summary, we have studied the inter-species entanglement of bosonic mixtures trapped

in optical lattices within a perturbative approach. Motivated by the observation that, in
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the presence of a second component, the Mott-insulator lobe shifts differently on the hole-

and particle-side with respect to the Mott lobe of the single species system, we have

investigated how this effect is related to the inter-species entanglement. This relationship

indicates that inter-species entanglement plays an important role in the characterization of

the quantum-phase transitions of mixtures, specifically in the Mott-insulator to superfluid

transition.

Our perturbative calculation is formulated in a Hilbert space decomposed by means

of lattice symmetries (graph automorphisms). Within this decomposition, we have shown

that if the ground state is not invariant under the independent action of symmetry operations

on the two species, then the ground state must be entangled. The decomposition of the

Hilbert space also results in a drastic reduction of the dimension of the Hilbert space

relevant to the calculations of interest and hence a drastic reduction of the numerical cost

of these calculations. We have calculated the Mott-lobe boundaries in the presence of a

single particle of the second component and shown that, in the limit of small hopping,

the hole-side of the boundary is dramatically affected by the presence of this single

particle. We have compared our results with quantumMonte Carlo simulations by the two-

worm algorithm. We have then quantified the entanglement in the Mott insulator ground

state and the excited states corresponding to the hole- and particle-side by calculating

the entanglement entropy (von Neumann entropy) as the standard measure of bipartite

entanglement. We have found that the entanglement entropy of the hole-side excited state

is much larger than the entanglement entropy of the particle-side excited state. This means

that the shift of the lobe boundary is closely related to the inter-species entanglement with

a larger shift on the hole-side of the boundary being accompanied by a larger inter-species

entanglement compared to the particle-side of the boundary.

A natural extension of the results presented in this chapter is the study of the “structural”

nature of the entanglement as resulting from the ground state |Ψ〉 beingwritten in terms of a
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decomposedHilbert space [22]. Furthermore, this study can give us a better understanding

of the dependence of entanglement entropy on the model parameters and better clarify

the observations of Fig. 4.6(b). Finally, we will study inter-species entanglement for

Bose-Bose, Bose-Fermi, and Fermi-Fermi mixtures.

4.8 Proofs

4.8.1 A state belongs to ⊕i, j
(
h

(a)
i ⊗ h

(b)
j

)
if and only if it is invariant

under the action of G ∗ G

Assume π(a) (g1) ⊗ π(b) (g2) |ψ〉 = |ψ〉 for any g1, g2 ∈ G. Then for two arbitrary |n,m〉

and |n′,m′〉 in the product-configuration (i, j) with |n′,m′〉 = π(a) (g1) |n〉 ⊗ π(b) (g2) |m〉,

one has

〈n′,m′|ψ〉 =
(
〈n|π(a) (g1)

+
⊗ 〈m|π(b) (g2)

+)
|ψ〉

= 〈n,m|(π(a) (g1)
+
⊗ π(b) (g2)

+
) |ψ〉 = 〈n,m|ψ〉 .

Therefore, |ψ〉 expands equally inside any product-configuration. By applying the trick

used in Eq. 4.2, we conclude |ψ〉 ∈ ⊕i, j (h
(a)
i ⊗ h

(b)
j ). The reverse case is easily proved

in two steps. First, we show that h(a)
i and h(b)

j are invariant under the action of G using

similar arguments as in proving h(ab)
k is invariant under the action ofG. Then, we show that

h
(a)
i ⊗ h

(b)
j is invariant under the action of G ∗G using the definition of the representation

π(a) ⊗ π(b). Thus, ⊕i, j (h
(a)
i ⊗ h

(b)
j ) is automatically invariant under the action of G ∗ G.
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4.8.2 Non-entangled |Ψ〉 belongs to ⊕i, j (h
(a)
i ⊗ h

(b)
j )

In this section we want to show that a non-entangled |Ψ〉 belongs to ⊕i, j (h
(a)
i ⊗ h

(b)
j ). For

this purpose, it is sufficient to show that, given |n′′,m′′〉 = π(a) (g) |n〉 ⊗ π(b) (g′) |m〉 one

has,

〈n′′,m′′|Ψ〉 = 〈n| ⊗ 〈m|
(
π(a) (g)

+
⊗ π(b) (g′)

+)
|Ψ〉 = 〈n,m|Ψ〉

for arbitrary g, g′ ∈ G and arbitrary |n,m〉 = |n〉 ⊗ |m〉. Let |Ψ〉 = |φ(a)〉 ⊗ |φ(b)〉. Since

|Ψ〉 is invariant under the action of G, we have

(
〈n|π(a) (g)

+
⊗ 〈m|π(b) (g′)

+)
|Ψ〉

= 〈n|π(a) (g)
+
|φ(a)〉 〈m|π(b) (g′)

+
|φ(b)〉 = 〈n|φ(a)〉 〈m|φ(b)〉 . (4.12)

Considering that 〈n|φ(a)〉 , 0 (|Ψ〉 has positive expansion coefficients), we have

〈m|φ(b)〉 =
〈n|π(a) (g)+ |φ(a)〉

〈n|φ(a)〉
〈m|π(b) (g′)

+
|φ(b)〉 . (4.13)

We can now rewrite Eq. 4.12 by replacing |m〉 with π(b) (g) |m〉, so that equation 4.13

becomes

〈m|π(b) (g)
+
|φ(b)〉 =

〈n|π(a) (g)+ |φ(a)〉

〈n|φ(a)〉
〈m|(π(b) (g)

+
)2 |φ(b)〉 . (4.14)

Then, inserting Eq. 4.14 in Eq. 4.13, we have

〈m|φb〉 = *
,

〈n|π(a) (g)+ |φ(a)〉

〈n|φ(a)〉
+
-

2

〈m|(π(b) (g)
+

)2 |φ(b)〉 . (4.15)
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We perform n − 1 iterations of these steps, where n is chosen to be the smallest integer

such that gn = 1, and get

〈m|φ(b)〉 = *
,

〈n|π(a) (g)+ |φ(a)〉

〈n|φ(a)〉
+
-

n

〈m|(π(b) (g)
+

)n |φ(b)〉 (4.16)

Then, (π(b) (g))n is the identity operator and thus

〈m|φ(b)〉 = *
,

〈n|π(a) (g)+ |φ(a)〉

〈n|φ(a)〉
+
-

n

〈m|φ(b)〉 . (4.17)

Since 〈m|φ(b)〉 , 0 (|Ψ〉 has positive expansion coefficients), Eq. 4.17 implies

|〈n|π(a) (g)+ |φ(a)〉| = |〈n|φ(a)〉|. In a similar way, we can show |〈m|π(b) (g′)+ |φ(b)〉| =

|〈m|φ(b)〉|.

Finally, since 〈n|π(a) (g)+ |φ(a)〉〈m|π(b) (g′)+ |φ(b)〉 > 0 and 〈n|φ(a)〉〈m|φ(b)〉 > 0, we

have

〈n|π(a) (g)+ |φ(a)〉〈m|π(b) (g′)+ |φ(b)〉 = 〈n|φ(a)〉〈m|φ(b)〉 or

〈n′′,m′′|Ψ〉 = 〈n,m|Ψ〉 . (4.18)
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Chapter 5

The Z2 toric-code and the

double-semion topological order of

hardcore Bose-Hubbard-type models in

the strong-interaction limit

The material presented in the chapter is based on my work published in Reference [25]. In

this chapter, we present a generic framework for the emergence of theZ2 toric-code and the

double-semion topological order in a wide class of hardcore Bose-Hubbard-type models

governed by density-density interaction and in the strong-interaction regime. We fix

fractional filling factor and study under which conditions the density-density interaction

gives rise to topological degeneracy. We further specify which dynamics determines

the toric-code and the double-semion topological order. Our results indicate that the

specifics of the density-density interaction determine the long-range entanglement of the

model which possesses “restricted patterns” of the long-range entanglement realized in

corresponding string-net models with the same topological order.
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5.1 Introduction

Hardcore lattice bosons (HLB) in two spatial dimensions form a wide class of strongly

correlated many-body systems which includes models realizable experimentally with cold

atoms and molecules trapped in optical lattices. In the past two decades, exotic quantum

phases of HLB have attracted a great deal of attention [86, 87, 88, 89, 73, 90, 91, 92].

Prominent examples include spin liquids and topologically ordered phases in the strong-

interaction limit. In the strong-interaction and strongly-correlated regimes, entanglement

can play a prominent role [93] making these limits particularly interesting. The quest of

HLBmodels exhibiting certain exotic phases andwhich can be realized experimentally [94]

is a top priority in view of their astounding potential applications in quantum information

and computation[16, 17].

HLB are described by Bose-Hubbard-type models where the correlation is governed

by a two-site density-density interaction which is diagonal in the Fock basis and expressed

as a sum of local operators, H0 =
∑

i, j Vi jnin j . It has been reported that for certain

lattice geometries, certain Vi j’s, and appropriate fixed filling factor, strongly interacting

HLB harbor Z2 topological order and form gapped quantum spin liquid [87, 86, 73, 88,

89]. These observations prompted considerable interest in exploring strongly interacting

lattice models which harbor topological order and have the potential to be experimentally

realized [16, 95, 96]. This pursuit calls for a general understanding of how a certain

long-range entanglement [34, 33] can be emergent in strongly-interacting lattice systems.

Given that quantum phases stabilized in the strong-interaction limit are determined by H0,

it is natural to expect that the specific features of the two-site density-density interaction

can give rise to patterns of long-range entanglement.

In this chapter, we unveil the connection between the specifics of the density-density in-

teraction of hardcore lattice bosons and both the Z2 toric-code (TC) topological order [39],
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and the double-semion (DS) topological order [97] realized in the strong-interaction limit.

To the best of our knowledge, this connection is systematically investigated for the first

time. We also conjecture a correspondence between hardcore Bose-Hubbard-type lat-

tice models and string-net models by discussing the long-range-entanglement “patterns”.

That is, given the long-range-entanglement “pattern” in ground states of certain string-net

models, we argue, under certain conditions, the existence of the same topological order

in strong-interaction Bose-Hubbard-type lattice models through the realization of a “re-

stricted pattern” of long-range-entanglement. Moreover, with the present work, we expect

to provide an analytical guidance for future numerical studies which can pave the way for

searching experimentally realizable HLB models harboring spin liquid and topological

order.

5.2 Local constraints

Unlike the exactly solvable Hamiltonians of the TC topological order [39, 97, 98] and the

DS topological order [97, 99] containing mutually commutative terms involving three or

more sites, in a typical HLB system the interaction term and dynamics terms are non-

commutative. Thus, the relationship between the interaction and the topological order

harbored by certain HLB models is not as transparent as in exactly solvable models. This

relationship can be unveiled by considering the nature of the interaction term. Specifically,

the geometry of the lattice, the weight Vi j , and the filling factor specify certain “local

constraints”, e.g., requirements on the number of particles allowed in a plaquette and their

relative position. These “local constraints" determine the Fock states spanning the ground-

state subspaceH0 of H0. Moreover, they specify which dynamics leavesH0 invariant, or

equivalently, stipulate how the position of bosons in a given Fock state inH0 can be moved

generating another Fock state in H0. As it will become clear in the following discussion,
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the “local constraints” determine the capability of strongly-interacting HLB to harbor TC

topological order and DS topological order. Throughout this chapter, by topologically

ordered phase in the strong-interaction limit, we mean a gapped phase (with a spectral

gap and a finite ground-state degeneracy), extending upon approaching the limit of no

dynamics, which has nontrivial bulk topological degeneracy and locally indistinguishable

ground states.

In the following, we consider a class of HLB models and study the “local constraints”

(associated with H0 =
∑

i, j Vi jnin j at specific fractional filling factors) which can give

rise to TC or DS topological order in the strong-interaction limit. We will first discuss

the conditions on the “local constraints” which imply the 22g-fold topological degeneracy

when the underlying lattice has the geometry of a closed orientable surface with genus

g. Then, we show that certain dynamics determine the TC and the DS topological orders

respectively. In summary, we establish a generic framework for the emergence of the TC

and the DS topological order in strongly-interacting HLB models. Within the framework

we have developed, the lattice can possess defects and irregularities, making the system

more realistic.

5.3 Model

The general model describing HLB takes the form

H = −t
∑
(i, j)

a+i a j +
∑
[i, j]

Vi jnin j +O(t2/V ), (5.1)

where the creation and annihilation operators at site i a+i and ai satisfy the hard-core

constraint a+i a+i = 0. The first term is the hopping between site i and site j, the second

term is the diagonal density-density interaction with ni = a+i ai, and the last term represents
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higher order dynamics terms (V is the maximum of ���Vi j
���) which will be discussed below.

We only consider local Hamiltonians. Notice that the hopping and the diagonal interaction

can be defined on different, and not-necessarily nearest-neighboring, pairs of sites. In the

following we assume fixed fractional filling factor.

For convenience in the following discussion, we can alternatively define H on a lattice

Λ different from the original lattice Λ0. The degrees of freedom, defined on vertices of

Λ0, are now defined on links of Λ as it is done in the toric code model. Note that, Λ is not

the dual lattice ofΛ0. In the construction of the dual lattice ofΛ0, vertices are replaced by

plaquettes. Here, vertices are replaced by links. There are multiple ways to define Λ from

Λ0. In many cases of interest, the relation between the two is best elucidated by viewing

Λ0 as defined from Λ in the following manner. The vertex (or site) of Λ0 replaces the

link (or bond) of Λ, the pair of sites (i, j) in Λ0 form a bond if and only if (i, j) as a pair

of links in Λ share a vertex, that is, i and j are adjacent links. For example, the modified

kagome lattice Λ0 (see Fig. 5.1(a) where bonds are added to the second and third nearest

neighbors inside each hexagon of the kagome lattice) is defined from the triangular lattice

Λ (see Fig. 5.1(c)). As shown in Fig. 5.1(b), the sites i, j and k in Fig. 5.1(a) replace

the links i, j and k in Fig. 5.1(c). Since each pair of links (i, j), (i, k) and ( j, k) share

a vertex in Fig. 5.1(c), pairs of sites (i, j), (i, k) and ( j, k) all form bonds in Fig. 5.1(a).

Similarly, as shown in Fig. 5.1(e), the checkerboard lattice Λ0 (see Fig. 5.1(d)) can be

defined from the square lattice Λ (see Fig. 5.1(f)). In the following text, we only consider

cases in which Λ is non-bipartite. This choice will be motivated below, in the discussion

of topological degeneracy. It should be noted that Λ0 being non-bipartite does not imply

that Λ is non-bipartite (see Fig. 5.1(d) and 5.1(f)).

When t � V , the dynamics of H can be treated perturbatively and the low energy

physics of H can be effectively described by a Hamiltonian Heff solely defined withinH0,

the ground-state subspace of H0 =
∑

[i, j] Vi jnin j [87, 100]. Heff consists of the lowest-
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: 5.1(b) shows how to define the modified kagome lattice 5.1(a) from the
triangular lattice 5.1(c). A pair of links (thick red) sharing a vertex in 5.1(c) (e.g.,(i, j),(i, k)
and ( j, k)) is replaced by a pair of vertices forming a bond in 5.1(a). Similarly, 5.1(d)
shows how to define the checkerboard lattice 5.1(d) from the square lattice 5.1(f).

order perturbative term of the hopping along with terms in O(t2/V ) which leave H0

unchanged. The detailed form of Heff depends on H0 and thus on the “local constraints”

given by H0. As we shall discuss in details, this effective description reveals the origin

of the entanglement in the ground states of H: the dynamics, responsible for quantum

fluctuation, “stacks” Fock states into a single ground state, generating entanglement while

the two-site density-density interaction provides constraints on the contributing Fock

states, i.e. they all belong to H0.

5.4 Topological degeneracy and anyonic excitation

We now discuss under which conditions Heff supports topological degeneracy. In order

to do so, we take the following route. In the section Topological sectors, we show that,

based on certain requirements in the “local constraints”, H0 can be decomposed into 22g

topological sectors when the lattice Λ has the geometry of a closed orientable surface

S with genus g. In the section Effective Hamiltonian, we show that these sectors are
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(a) (b) (c)

(d) (e)

Figure 5.2: 5.2(a) represents a Fock state belonging toH0 and corresponding to 1/3 filling
on the triangular lattice. Dark blue links are occupied by bosons. 5.2(b) represents a Fock
states corresponding to 1/6 filling. 5.2(c) is an example of a Fock state in C but not in C0
corresponding to 1/3 filling. 5.2(d) and 5.2(e) illustrate the formal summation defined on
Fock states.

invariant under the action of Heff and any local operators. In the section Ergodicity,

we discuss requirements in the “local constraints” and the detailed form of Heff which

imply ergodicity of Heff in each topological sector. Finally, in the sections Toric-code

topological order and Double-semion topological order, based on the invariance property

and ergodicity, we discuss the presence of topological degeneracy and anyonic excitations

corresponding to the TC topological order and the DS topological order respectively.

Unless otherwise specified, in the following, we consider the model to be defined on

lattice Λ where bosons are located on links. When necessary, we will use spin language

assuming the mapping from occupation number 1 to spin down ↓, and from occupation

number 0 to spin up ↑.
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5.4.1 Topological sectors

Given an arbitrary Fock state, we define s(v) as the number of links with occupation

number 1 and adjacent to the vertex v, and P(v) (with values in {odd, even}) as the parity

of s(v). In order to build topological sectors of H0, the “local constraints” associated to

H0 and the filling factor need to require that the parity P(v) assigned to each vertex v is

the same for all Fock states in H0. We call this requirement the fixed-parity condition.

Fixed P(v) at each vertex v for all Fock states inH0 means that for any two Fock states in

H0, say |ψ〉 and |φ〉, P(v)ψ = P(v)φ for all vertices v. Notice that P(v) can be different

from vertex to vertex, i.e. P(v)ψ , P(v′)ψ and P(v)φ , P(v′)φ for two vertices v and v′

while P(v)ψ = P(v)φ and P(v′)ψ = P(v′)φ. For convenience in the following discussion,

we denote the set of all Fock states spanningH0 by C0.

An example of H0 satisfying the fixed-parity condition is H0 = V
∑

i, j nin j where

each (i, j) is a pair of links on the triangular lattice Λ, which share a vertex (see (i, j) in

Fig. 5.1(c)). Equivalently, each (i, j) can be viewed as a pair of sites forming a bond of the

lattice Λ0 as shown in Fig. 5.1(a). It has been shown [88] that at 1/3 filling, s(v) = 2 (and

P(v) = even) at each vertex. In other words, in each Fock state belonging to C0, links

occupied by bosons form non-crossing closed loops on the lattice (see Fig. 5.2(a) where

links in dark blue are occupied by bosons). At 1/6 filling, s(v) = 1 (and P(v) = odd) at

each vertex (see Fig. 5.2(b)), that is, occupied links in each Fock state in C0 form a dimer

configuration. More generally, H0 = V
∑

i, j nin j as just defined for the triangular lattice at

fixed filling factor imply s(v) = const also on a generic lattice. Note that fixing only the

parity P(v), rather than the number s(v) of occupied links adjacent to a vertex, is a looser

condition in the “local constraints” which guarantees the existence of topological sectors

also for irregular lattices which may have defects or irregularities [101].

It should be noted that there exist Fock states satisfying the fixed-parity condition but
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not consistent with the filling factor. In the case of 1/3 filling, an example of a Fock

state satisfying the fixed parity condition but which does not belong to C0 is illustrated in

Fig. 5.2(c). In the following, in building topological sectors, we denote by C the set of

all Fock states satisfying the fixed-parity condition but not necessarily consistent with the

fixed filling factor. Then, for H0 whose “local constraints” obey the fixed-parity condition,

we have C0 ⊂ C.

We now define a formal summation on Fock states. Based on this summation, topo-

logical sectors can be built from the corresponding group-theory structure. We adopt the

notation ? for the formal summation to distinguish it from the superposition of states.

The formal summation on Fock states is based on the sum of occupation numbers modulo

2: 1 ? 1 = 0, 1 ? 0 = 0 ? 1 = 1, and 0 ? 0 = 0 as illustrated in Fig. 5.2(d) and 5.2(e),

which is also the group operation of the abelian group Z2 = {0, 1}. For example, we have

|1, 0, 0, 1 · · ·〉? |1, 1, 0, 0 · · ·〉 = |1? 1, 0? 1, 0? 0, 1? 0 · · ·〉 = |0, 1, 0, 1 · · ·〉. This rule gen-

eralizes the sum rule defining transition graphs in quantum dimer models [102, 103, 104].

Based on the above rule, Fock states form an abelian group. In particular, we can define a

subgroupZ in which every Fock state satisfies the fixed-parity condition with P(v) = even

at all vertices (e.g., states represented by Fig. 5.2(a) and 5.2(c)). Moreover, since in any

state with P(v) = even, links occupied by 1 boson form closed loops, also called cycles,

on the surface S on which the lattice Λ is embedded, then, we say that Z consists of

Fock states with loop configurations. Loop configurations can be classified according to

the topology of S. That is, for a surface S of genius g, Z can be partitioned into 22g

disjoint subsets {Z1, · · · ,Z22g
}. Loop configurations belonging to different subsets cannot

be connected by local moves such as continuous deformation of loops, or by creation

or deletion of loops which delimit a region on the surface S [105]. In order to define

topological sectors in C, we partition it in terms of {Z1, · · · ,Z22g
} by mapping each state

in C to an even-parity state, i.e. a state in Z. A simple way to do so is by fixing a
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reference state belonging to C and using the formal summation defined above. Indeed, for

an arbitrary reference state |cr〉 = |cr1, cr2, · · ·〉 in C, we can define the map |c〉 7→ |c〉? |cr〉

for every |c〉 = |c1, c2, · · ·〉 in C. Since all elements in C have the same parity by definition,

|c〉? |cr〉 = |c1 ? cr1, c2 ? cr2, · · ·〉 is guaranteed to have even parity and hence belongs to

Z as desired. Indeed, |c〉 7→ |c〉 ? |cr〉 maps C one-to-one onto Z and defines a partition

{C1, · · · ,C2
2g
} of C such that |c〉 belongs to Ck if and only if |c〉 ? |cr〉 belongs to Zk .

Note that for different reference states |cr〉, the map |c〉 7→ |c〉 ? |cr〉 is different, but the

resultant disjoint subsets {C1, · · · ,C22g
} of C are the same. (See Methods section for a

formal discussion of the map.) If we now take the intersection C0∩Ck , then the set C0 will

be partitioned into disjoint subsets {C10, · · · ,C
22g

0 }. These subsets span a set of orthogo-

nal subspaces {H1
0, · · · ,H

22g

0 } which decompose H0. By construction, these subspaces

depend on the topology of the surface S, and as such, they are topological sectors.

5.4.2 Effective Hamiltonian

According to the fixed-parity condition, we specify Heff and show that Heff does not

allow transitions between states belonging to different sectors. Because of the fixed-parity

condition associated with H0, the non-vanishing perturbative hopping term of the order

t2/V in Heff must have the ring-exchange form and be defined on 4-link closed loops.

Likewise, other terms O(t2/V ) which leave H0 unchanged should have the form of the

ring-exchange operators, a+i a j a+k al · · · + H.c.. Hence, the effective Hamiltonian has the

following generic form,

Heff = −t2/V
∑

b={i, j,k,l,··· }

q(b)(a+i a j a+k al · · · + H.c.), (5.2)

where b is a closed loop of finite size in the thermodynamic limit, consisting of even

number of adjacent links {i, j, k, l, · · · } in Λ, contractible, i.e. delimiting a region, on
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S. The value of the coefficient q(b) = ±1 will be specified below. For each b =

{i, j, k, l, · · · } contributing to the sum in Eq. 5.2, we can equivalently express the operators

a+i a j a+k al · · ·+H.c. as |b̄〉〈b|+ |b〉〈b̄|, where |b̄〉=|1, 0, 1, 0, · · ·〉 and |b〉=|0, 1, 0, 1, · · ·〉 stand

for states solely defined on links forming the loop b with bosons located alternatively on

the loop b. Alternatively, we can write the ring-exchange operator for each b using Pauli

operators as ΓH0Γb
∏

i∈b σ
x
i where ΓH0 is the projection operator associated withH0 and

Γb = |b̄〉〈b̄| + |b〉〈b| is the projection operator defined on the closed loop b.

We now show that an arbitrary subspace Hk
0 is invariant under the action of Heff by

using the Pauli operator expression. Let us consider a Fock state |c〉 = |c1, c2, · · ·〉 in

Ck
0. Then, as discussed above, given a reference state |cr〉 in C, |c〉 ? |cr〉 = |z〉 belongs

to Zk . When acting with ΓH0Γb
∏

i∈b σ
x
i upon |c〉, the result is 0 if |c〉 does not have

bosons occupying alternating links on the loop b, or |c〉 ? |b〉 where |b〉 is a Fock state

with occupation number bi = 1 for each link i on loop b and bi = 0 otherwise. Moreover,

|c〉 ? |b〉 ? |cr〉 = |c〉 ? |cr〉 ? |b〉 = |z〉 ? |b〉, where |z〉 ? |b〉 can be obtained from |z〉

by acting upon with local moves. Hence, |z〉? |b〉 belongs to Zk . Consequently, |c〉 and

|c〉? |b〉 are mapped to the same subspace Zk , that is, they both belong to Ck
0. Therefore,

ΓH0Γb
∏

i∈b σ
x
i maps Hk

0 into itself, that is, Hk
0 is invariant under the action of Heff .

Moreover, since an arbitrary local operator is expressed as a sum of products of Pauli

operators and can be expressed in terms of local moves, it is easy to show that Hk
0 is

invariant under the action of any local operator.

5.4.3 Ergodicity

The irreducibility of Hk
0 under the action of Heff is equivalent to the ergodicity of Heff in

eachHk
0 . Here, ergodicity means that each Ck

0 is nonempty and any two Fock states in Ck
0

can be connected by sequentially applying ring-exchange operators in Heff . Rigorously
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proving that ergodicity holds is very challenging as efforts towards this task for the case

of quantum dimer model (s(v) = 1) have shown [102]. This is beyond the scope of the

present work. We therefore take a heuristic approach and discuss ergodicity in terms of

the two requirements discussed below. The heuristic arguments used here can be viewed

as a generalization of the conditions which guarantee ergodicity of quantum dimer models

defined on non-bipartite lattices [104, 103]. We should notice that, in principle, ergodicity

can be numerically checked by Monte Carlo simulations [86].

First, “local constraints” need to require that given a Fock state |c〉 in C0, for any closed

loop b′ consisting of even number of links –but not necessarily contributing to the sum of

Heff , hence not necessarily contractible– and such that bosons are located alternatively on

it, positions of bosons and holes on b′ can be exchanged resulting in another Fock state

|c′〉 in C0. This is illustrated in Fig. 5.3(a) (state |c〉) and Fig. 5.3(b) (state |c′〉) where the

loop b′ is indicated by the red dashed line. It is important to notice that this exchange

between bosons and holes does not change s(v). Moreoever, if b′ is contractible, states |c〉

and |c′〉 necessarily belong to the same sector since the boson-hole exchange corresponds

to a local operation. On the other hand, if b′ is non-contractible, |c〉 and |c′〉 belong to

different sectors. The existence of non-contractible b′ loops (e.g., loops in the two toroidal

directions on a torus) is guaranteed by the fractional filling factor. The requirement just

described associated to “local constraints” ensures that each sector is non-trivial since the

existence of state |c〉 implies the existence of a state |c′〉 in each sector.

Secondly, for any state |c〉 in C0, the “local constraints” need to imply that the surface

S on which the lattice is embedded can be covered by areasA, in general partially overlap-

ping, bounded by contractible closed loops b′ on which bosons are located alternatively.

Notice that the areas should be of finite-size. This requirement together with the first one

ensures that no state in Ck
0 is isolated from others upon applying ring-exchange operators.

Moreover, since Eq. 5.2 can be viewed as a generalization of the dynamics in quantum
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(a) (b)

Figure 5.3: 5.3(a) and 5.3(b) represent two Fock states in C0 corresponding to H0 =

V
∑

i, j nin j , where the sum extends to all pairs of adjacent links defined on triangular
lattice and at 1/3 filling. 5.3(b) is obtained from 5.3(a) by exchanging bosons (colored
links) and holes (uncolored links) on a closed loop b′ indicated by the red dashed line.

dimer models, we also require Λ to be non-bipartite. If the b loops entering the sum in

Eq. 5.2 satisfy the two-requirements described above and Λ is non-bipartite, then, based

on this heuristic argument, we conclude that the Hamiltonian in Eq. 5.2 is ergodic in each

Ck
0.

Examples of systems whose “local constraints” are consistent with the requirements

discussed above include models with H0 = V
∑

i, j nin j where each (i, j) is a pair of links

sharing a vertex on lattice Λ. See references [86, 87, 88, 89] and Equation (12) in [99]. It

is an interesting and open question whether and under which conditions the topologically

ordered phase corresponding to uniform weights Vi, j = V survives when this constraint is

relaxed. This question can possibly be answered using quantum Monte Carlo simulations

to calculate topological entanglement entropy [106].

5.4.4 Toric-code topological order

In order to demonstrate topological degeneracy, we are left with showing that ground

states |ψk
ex〉 of Heff in each Hk

0 are unique, have the same energy which is gapped above,

and are locally indistinguishable.
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We first study the case of the TC topological order which corresponds to

q(b) = 1 (5.3)

for all b in Heff . Due to the ergodicity of Heff in Hk
0 , the Perron-Frobenius theorem [52]

implies the uniqueness of the lowest-energy state ψk
eff in Hk

0 in a finite-size system. We

now discuss under which conditions ground-states in different sectors are degenerate and

separated from other eigenstates by an energy gap independent on the system size. In

some special cases, like the quantum dimer model on the Kagome lattice [103], Heff itself

is exactly solvable and gapped, and ground-states are equal-weight sums of Fock states

in each topological sector. In this case, Heff has 22g-fold topological degeneracy. More

generally, for non-exactly solvable effective models, Heff can be smoothly connected to

an exactly solvable model Hex, analogous to the Rokhsar-Kivelson (RK) quantum dimer

model [102], by means of the r-parameterized Hamiltonian

H̃ (r) = −t2/V
∑

b

( |b̄〉〈b| + |b〉〈b̄|) + r
∑

b

Γb, (5.4)

where b is a contractible loop consisting of an even number of adjacent links in Λ,

|b̄〉=|1, 0, 1, 0, · · ·〉 and |b〉=|0, 1, 0, 1, · · ·〉 stand for states solely defined on links forming

the loop b with bosons located alternatively, and Γb = |b̄〉〈b̄| + |b〉〈b|. If r = 0, then

H̃ = Heff . If r = t2/V , then one obtains an exactly solvable model H̃ (r) = Hex with

Hex = t2/V
∑

b

( |b̄〉 − |b〉)(〈b̄| − 〈b|). (5.5)

The lowest-energy eigenstate |ψk
ex〉 of Hex in each Hk

0 is an equal-weight sum of all Fock

states in Ck
0 and has zero energy. For RK quantum dimer models (corresponding to Eq. 5.5

with s(v) = 1) on non-bipartite lattices Λ, it has been shown that there exists an energy

97



gap separating ground states |ψk
ex〉 in each sector from other eigenstates [102]. This

conclusion has also been demonstrated for models (included in our generic models) other

than quantum dimer models and corresponding to s(v) = 2, 3 [88, 87]. In reference [102],

the authors indicate that the RK quantum dimer model possesses 22g-fold topological

degeneracy on a torus, and that the gap properties only depend on the graph nature of

the lattice, i.e. bipartite or not, and on the ergodicity of the dynamics in H0. Given that

our models can be viewed as generalizations of quantum dimer models, we believe these

results can be extended to models considered here. Therefore, we expect Hex to possess a

gap and have a 22g-fold topological degeneracy.

Let us call the subspace spanned by ground-states {|ψk
ex〉} of Hex as Eex. If the gap

remains open as the parameter r is tuned to 0, then Heff will also be gapped and have

a 22g-fold topological degeneracy. Examples of models for which the gap remains open

include models corresponding to Eq. 5.4 with s(v) = 2 and s(v) = 3 on the triangular

lattice [88] and s(v) = 1 on a kagome lattice or star lattice [103, 107]. Furthermore, as

indicated in Ref. [34], local and gapped Hamiltonians smoothly connected by a family of

local Hamiltonians which maintain the gap open are in the same quantum phase with their

ground state subspace connected by a local unitary transformation. As a result, there exists

a local unitary transformation Uex determined by H̃ (r), such that Uex(Eeff ) = Eex, where

Eeff is the subspace spanned by {|ψk
eff〉}. As a consequence, Heff and Hex are in the same

quantum phase. Specifically, if the ground states {|ψk
ex〉} are locally indistinguishable,

then both Hex and Heff are in the same topologically ordered phase.

We now discuss local indistinguishability of {|ψk
ex〉} in terms of the “local constraints”.

Local indistinguishability means that
〈
ψk
ex

���A
���ψ

l
ex

〉
= f (A)δk,l in the thermodynamic limit

for any local operator A, where f (A) is independent of topological sectors. According

to our discussion on topological sectors, a local operator A cannot induce any transition

between different topological sectors, and thus we have
〈
ψk
ex

���A
���ψ

l
ex

〉
= 0 for k , l.
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Then, we only need to show that the value of f (A) is the same in different topological

sectors. Let’s consider a local region including the support of A and delimited by a

closed loop b, and a Fock state |b〉 solely defined on this region and satisfying the “local

constraints”. Starting from |b〉, one can imagine building Fock states in each topological

sector by populating with particles links outside b according to “local constraints”. Since

“local constraints” stipulate how bosons are located on the lattice locally, the procedure of

building Fock states is independent of topological sectors which differ from each other by

nonlocal properties. As a consequence, one would expect that the number of Fock states

in each sector coinciding with |b〉 approaches the same value in the thermodynamic limit.

Note that this property can in principle be checked numerically. Finally, we can

conclude that averages of A in each degenerate ground state |ψk
ex〉 (which is an equal-

weight sum of Fock states) approach the same value in the thermodynamics limit, i.e.

f (A) is independent of topological sectors.

Following the discussion above, Heff and Hex have the same topological order and the

anyons realized by excitations of Heff are the same as the ones realized in Hex. Excitations

of Hex are essentially the same as excitations of a Rokhsar-Kivelson quantum dimer model

in the RVB phase [102, 108]. There are three types of anyonic excitations: (1) deconfined

spin-1/2 fermions (analogous to spinons in quantum dimer model) appearing in pairs,

corresponding to two ends of an open string in Λ, for which a typical excited state is an

equal-weight sum of Fock states with two vertices with assigned parities opposite to P(v);

(2) spinless bosons (analogous to visons) appearing in pairs, corresponding to two ends of

an open string in the dual lattice of Λ, for which the excitation can be viewed as a locally

dressed operator of
∏
σz on an open string in the dual lattice [108]; (3) spinon-vison

composition. Fusion and braiding of the three types of anyons can be studied in the same

way as in the quantum dimer model of RVB phase [102, 108]. Accordingly, the anyonic

excitations defines the Z2 toric-code topological order [39] of model 5.2 with q(b) = 1.
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5.4.5 Double-semion topological order

In order to study the case of DS topological order, we can similarly define

HDS
ex = t2/V

∑
b

(|b̄〉 − q(b) |b〉)(〈b̄| − q(b) 〈b|) (5.6)

connected to HDS
eff via the r-parametrized Hamiltonian

H̃DS(r) = −t2/V
∑

b

q(b)( |b̄〉〈b| + |b〉〈b̄|) + r
∑

b

Γb (5.7)

where b, |b̄〉, |b〉, and Γb are defined as in Eq. 5.4. First, we specify the phase factor

q(b) according to considerations below. Then, we show that the DS topological order is

implied by the specified phase factor.

As shown in the exactly solvablemodel of theDS topological order [97, 33], the anyonic

excitations are determined by the fact that the ground state is a sum of non-crossing-closed-

loop configurations on a trivalent lattice with expansion coefficients (−1)N (z) where N (z)

is the number of loops in |z〉 [33]. (Notice that non-crossing-closed-loop configurations

belong to Z by definition). In order to study the DS topological order of HDS
ex defined

on an arbitrary non-bipartite lattice Λ, we will “equivalently” represent the ground state

of HDS
ex by a sum of non-crossing-closed-loop configurations with expansion coefficients

determined by the number of loops. Note that the number of loops can be uniquely

defined only for non-crossing-closed-loop configurations. One obvious way to realize

non-crossing-closed-loop configurations corresponds to s(v) = 0 or 2 for all vertices so

that, in each |c〉 belonging to C0, links with occupation number 1 directly form non-

crossing closed loops, see e.g. fig 5.3(a). However, in this case, to realize the expansion

coefficients (−1)N (c), the phase factor q(b) must be replaced by an operator, similar to the

operator-valued phase factor in the exactly solvable model [97, 99]. Adopting the operator-
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valued phase factor will deviate from our goal of making Eq. 5.1 as realistic as possible.

Hence, we consider another way to realize non-crossing-closed-loop configurations by

considering s(v) = 1 for all vertices. In this case, in order to represent the ground state of

HDS
ex as a sum of non-crossing-closed-loop configurations, we make use of a local unitary

transformation, as explained below.

By fixing a reference Fock state |cr〉 in C0, we can define a quantum circuit operator

U′ =
∏

cr i=1 σ
x
i which is local unitary [34]. Then, we construct the locally and unitarily

transformed Hamiltonian U′HDS
ex U′+ which possesses the same quantum phase as HDS

ex .

Let us assume that the ground state |ψk
ex〉 of HDS

ex is a sum of |c〉 belonging to Ck
0 (we

will later show that this is indeed the case), then, the ground state of U′HDS
ex U′+, U′ |ψk

ex〉,

is a sum of U′ |c〉 = |c〉 ? |cr〉. Due to the fixed parity condition, |c〉 ? |cr〉 belongs to

Z with s(v) = 0, 2 at each vertex and, as a cosequence, has a non-crossing-closed-loop

configuration. Thus, U′ |ψk
ex〉 is the desired “equivalent” representation of |ψk

ex〉.

Now, in terms of the fixed reference state |cr〉 in C0, we specify q(b) in HDS
eff defined on

an arbitrary non-bipartite lattice Λ. In terms of the specified q(b), we will show that the

ground state of HDS
ex is a superposition of |c〉 belonging to Ck

0 with expansion coefficients

depending on the number of loops in |c〉? |cr〉.

Let us consider an arbitrary loop b contributing to the sum of HDS
eff . Fig. 5.4(a) shows

the loop b and links emanating from it, where blue color represents occupied links in

the reference state |cr〉 and black links are unoccupied. We omit the lattice structure

complementary to the loop b and the links emanating from it. Here, loop b in Fig. 5.4(a)

is made long enough to illustrate general arguments below while in well known quantum

dimer models [104, 107] loops contributing to Eq. 5.2 are shorter. Consider an arbitrary

|c〉 inC0 in which bosons are located alternatively on b. Note that the existence of such a |c〉

is guaranteed by the way we specify the dynamics in Eq. 5.1 as discussed in the Ergodicity

section. We want to specify q(b) only in terms of b and |cr〉 and such that, given the
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(a) (b) (c)

Figure 5.4: 5.4(a) represent an arbitrary loop b contributing to the sum of HDS
eff and links

emanating from it, where blue color represents occupied links in the reference state |cr〉,
black links are unoccupied. We omit the lattice structure complementary to the loop b
and links emanating from b. 5.4(b) represents |c〉? |cr〉 and 5.4(c) represents |c′〉? |cr〉.
Green color represents occupied links in state |c〉 and |c′〉, black dashed lines complete
the loops outside and inside b.

state |c′〉 = ( |b̄〉〈b| + |b〉〈b̄|) |c〉, when q(b) = 1 the number of loops in |c′〉? |cr〉 has the

same parity as in |c〉? |cr〉; when q(b) = −1 the parity is changed. Since |b̄〉〈b| + |b〉〈b̄|

only acts on the loop b, the change in the number of loops only depends on how the loops

are reconnected on b. As an example, Fig. 5.4(b) represents |c〉 ? |cr〉 and Fig. 5.4(c)

represents |c′〉 ? |cr〉, where blue links correspond to occupied links in |cr〉 while green

links correspond to occupied links in |c〉 or |c′〉 respectively, black links are unoccupied,

and black dashed lines complete the loops outside and inside b. Note that, if a green and a

blue link overlap, the link will appear black in the representation of |c〉? |cr〉 or |c′〉? |cr〉

due to the sum rule 1 ? 1 = 0. The action of |b̄〉〈b| + |b〉〈b̄| corresponds to shifting the

green links clockwise (or counterclockwise) on b. As we show in the Methods section,

q(b) is defined in terms of the number of outer and inner links occupied by bosons in

state |cr〉 and emanating from vertices on b. We will define two even numbers, M1(b, cr )

and M2(b, cr ), by reducing the number of outer and inner links emanating from b and

occupied by bosons in |cr〉, so that the parity change in the number of loops from |c〉? |cr〉

to |c′〉 ? |cr〉 can be characterized by the number of removable links M1(b, cr ) and the
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number of non-removable links M2(b, cr ). Accordingly, we set

q(b) = iM1(b,cr )+M2(b,cr )+2. (5.8)

As shown in the Methods section such defined q(b) satisfies the desired properties.

We now define state |ψk
ex〉 =

∑
c∈Ck

0
−1N (|c〉?|cr 〉) |c〉where N (|c〉? |cr〉) is the number of

loops in the state |c〉? |cr〉 and show that it is a unique ground state in the topological sector

Hk
0 . Indeed, according to above discussion on the properties of q(b), when q(b) = 1,

(|b̄〉− |b〉)(〈b̄|−〈b|) |ψk
ex〉 = 0; when q(b) = −1, (|b̄〉+ |b〉)(〈b̄|+〈b|) |ψk

ex〉 = 0. Therefore,

|ψk
ex〉 is obviously a ground state of HDS

ex with the lowest energy 0. Next, we show that HDS
ex

is gapped and |ψk
ex〉 is unique in each topological sector. To this end, we define a non-local

unitary operator V such that V |c〉 = −1N ( |c〉?|cr 〉) |c〉 for all |c〉 ∈ C0. By calculating matrix

elements of VHDS
ex V+, it is easy to show that VHDS

ex V+ = t2/V
∑

b( |b̄〉 − |b〉)(〈b̄| − 〈b|)

which is the Hamiltonian Hex for the TC topological order. Moreover, V |ψk
ex〉 =

∑
c∈Ck

0
|c〉

is the ground state of VHDS
ex V+ which has been shown to possess TC topological order.

Therefore, according to the previous discussion, |ψk
ex〉 is the unique ground state of HDS

ex

in the sectorHk
0 with an energy gap in the thermodynamic limit. In addition, using similar

arguments as for the case of TC topological order, we can show that the ground states

of HDS
ex are locally indistinguishable. Therefore, we conclude that HDS

ex is topologically

ordered. By construction, U′HDS
ex U′+ possess the same topological order as HDS

ex . Finally,

if the gap remains open when tuning r to 0, HDS
eff is also gapped and has the same

ground-state degeneracy as HDS
ex . As a result HDS

eff possesses the same topological order

as HDS
ex

In order to discuss anyonic excitations of HDS
ex , we work with |φk〉 = U′ |ψk

ex〉 =∑
c∈Ck

0
−1N ( |c〉?|cr 〉) |c〉 ? |cr〉 which is a sum of non-crossing-closed-loop configurations

(see also Ref. [107]). We can define the monomer, antimonomer, and vison excitations
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of |ψk
ex〉 by directly generalizing the case where Λ is the triangular lattice [107]. Using

the same arguments as in Ref. [107] made for the case of triangular lattice, we can show

that the three types of excitation define anyons of the DS topological order: semion,

antisemion, and bosonic bound state.

5.5 Discussion

The most important conclusion that one can draw from the above discussion is that it is

possible to realize the toric-code (TC) and the double-semion (DS) topological order in

simpler, more realistic hamiltonians, specifically Bose-Hubbard-typemodels with two-site

interaction terms. This becomes clear from the fact that ground states for the TC or DS

topological order of Bose-Hubbard-type models discussed here can be locally unitarily

transformed (and hence they possess the same topological order) into ground states which

resemble ground-states of string-net models with the TC or DS topological order. Indeed,

the long-range entangled ground states for the TC or DS topological order of the models

studied in this work can be locally unitarily transformed into a state |ψ〉. |ψ〉 is a sum of

all Fock states in C0 which enter with equal-weight for the case of TC topological order or

with a phase-factor for the case of DS topological order. By comparing |ψ〉with the ground

state of the exactly solvable models for the TC or DS topological order, one can see that

their long-range-entanglement “patterns” are different. As discussed in Reference [33],

“pattern” of long-range entanglement refers to (1) common features describing Fock states

(or spin product states) participating in the expansion of an entangled state, e.g., all Fock

states in the expansion are closed-loop configuration; (2) how these Fock states participate

in the expansion, i.e. their coefficients. Here, we discuss the TC topological order as an

example. The DS topological order can be considered similarly.

We define a generalized toric code on Λ, HTC = −
∑

v (−1)P(v) Av −
∑

p Bp, where
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Av =
∏

v∈∂i σ
z
i is defined on each vertex v, Bp =

∏
i∈∂p σ

x
i is defined on each plaquette

p. Here, ∂i denotes the two vertices delimiting link i, ∂p is the set of links belonging

to the boundary of plaquette p. P(v) is the parity associated to vertices, as defined in

the Topological sectors section. (Recall that spin ↓ and ↑ are identified with occupation

numbers 1 and 0.) By a local unitary transformation 1, the model can be mapped to the

original toric code [39], so that HTC possesses the toric-code topological order. Moreover,

the ground state |Ψ〉 of HTC is an equal-weight sum of all Fock states in C (that is, all

states which satisfy the fixed-parity condition given by P(v)). Due to the nature of the

two-site density-density interaction and the fixed filling factor, C0 is a subset of C. In other

words, the sum defining |ψ〉 runs through only a part of states contributing to the sum

defining |Ψ〉. By interpreting the equal-weight sum as long-range-entanglement “pattern”,

we conclude that |ψ〉 has a more restricted “pattern” than |Ψ〉, though both |ψ〉 and |Ψ〉

correspond to the same topological order.

This difference in the long-range-entanglement “pattern” corresponds to different ways

of realizing topological order. In a string-net model, the topological order is determined

by local rules which determine spin product states expanding |Ψ〉 and the dynamics [97].

In a strong-interaction hardcore Bose-Hubbard-type lattice model, the topological order is

determined by the “local constraints” (associated to density-density interaction and filling

factor) which characterize Fock states expanding |ψ〉 and specify the dynamics. In light of

the above discussion, we conjecture that there exists a correspondence between topological

order realized inBose-Hubbard-type latticemodels and in string-netmodels. That is, given

the long-range-entanglement “pattern” in ground states of certain string-netmodels, we can

argue the existence of the same topological order in strong-interaction Bose-Hubbard-type

1We fix a reference Fock state |cr 〉 in C and define U′ =
∏

cr i=1 σ
x
i . Obviously U′ is a quantum circuit

and thus local unitary. It is easy to check that U′HTCU′+ = −
∑

v Av −
∑

p Bp which is the original
toric-code. Due to the unitarity, U′HTCU′+ and HTC have the same spectrum. The ground state of HTC is∑
|z〉∈Z U′+ |z〉 =

∑
|z〉(|z〉? |cr 〉) =

∑
|c〉∈C |c〉
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lattice models by realizing a “restricted pattern” of long-range-entanglement in ground

states.

5.6 Conclusions

We have studied the emergence of the Z2 toric-code topological order and the double-

semion topological order in a wide class of strongly-interacting hardcore lattice bosons

described by Bose-Hubbard-type models Eq. 5.1 with density-density interaction. The

model is defined on a non-bipartite lattice Λ where degrees of freedom are located on

links rather than sites. We have shown that model Eq. 5.1 harbors toric-code or double-

semion topological order, with phase factor in the dynamics specified by Eq. 5.3 or 5.8

respectively, if the following two conditions are satisfied.

The first condition concerns “local constraints” determined by the interaction H0

together with the fractional filling. “Local constraints”, which characterize the Fock

states spanning the lowest-energy subspace H0 of the interaction H0, need to include the

following two requirements. (i) The parity P(v) assigned to each vertex v is the same for

all Fock states in H0. Here, P(v) refers to the parity of s(v), the number of links with

occupation number 1 adjacent to the vertex v. (ii) Positions of bosons in a given Fock state

inH0 can be moved thus generating another Fock state in H0 in a way which generalizes

how dimer configurations can be connected by resonances in quantum dimer models, as

described in the Ergodicity section.

The second condition concerns the existence of an energy gap at r = t2/V of the

r-parametrized hamiltonian H̃ (r) (given by Eq. 5.4 and 5.7 for the toric-code and the

double-semion topological order, respectively) which connects an exactly solvable model

to the effective hamiltonian. The gap needs to remain open when the parameter r is tuned

to 0.
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An example of lattice system satisfying these two conditions and harboring the toric-

code topological order is given by the hardcore Bose-Hubbard model defined on sites

of a Kagome lattice (or equivalently on links of a triangular lattice) with filling factor

equal to 1/3 [88]. On the other hand, at filling factor 1/6, there is no topological order

(as numerically demonstrated [88]) since the second condition of energy gap fails to be

satisfied.

We have shown that the above two conditions are both determined by H0 along with

the fixed filling factor. Hence, these two conditions establish a connection between the

density-density interaction and the emergence of the toric-code and the double-semion

topological order of the hardcore lattice bosons in the strong-interaction limit.

We also conjectured that there exists a correspondence between hardcore Bose-

Hubbard-type latticemodels and string-netmodels by discussing the long-range-entanglement

“patterns”. That is, given the long-range-entanglement “pattern” in ground states of cer-

tain string-net models, we argued the existence of the same topological order in strong-

interaction Bose-Hubbard-type lattice models through the realization of a “restricted

pattern” of long-range-entanglement.

We expect that the work developed here will provide guidance to numerical studies

which can pave the way for searching experimentally realizable lattice systems harboring

topological order.

5.7 Proofs

5.7.1 Specifying q(b) for the case of DS topological order

In this section, we specify the phase factor q(b) in Eq. 5.6 for the DS topological order.

Let’s consider a contractible closed loop b on Λ which contributes to the sum in Eq. 5.6,
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a reference state |cr〉 in C0, and an arbitrary state |c〉 in C0 such that bosons are located

alternatively on b. In the following, we will define q(b) in terms of b and |cr〉 and show

that, given the state |c′〉 = ( |b̄〉〈b| + |b〉〈b̄|) |c〉, if q(b) = 1 then the number of loops

in |c′〉 ? |cr〉 has the same parity as in |c〉 ? |cr〉; if, instead, q(b) = −1 the parity is

changed. Below, we illustrate arguments using figures, though we have formalized them

into rigorous proof in the context of topological graph theory [109] (not presented here

for the sake of readability).

We start by discussing the relationship between the parity change under the action

of |b̄〉〈b| + |b〉〈b̄| on |c〉 and the links emanating from b which, in the reference state

|cr〉, are occupied by bosons. Fig. 5.5(a) shows state |cr〉 on loop b, where thick blue

links are occupied by bosons and black links are unoccupied (we omit the lattice structure

complementary to b). We denote by lo the outer links emanating from b with occupation

number cr (lo) = 1, li the inner links emanating from bwith occupation number cr (li) = 1,

and lb the links forming the loop b with occupation number cr (lb) = 1 (see Fig. 5.5(a)).

Due to the fixed-parity condition, i.e. P(v) = odd and s(v) = 1 for all vertices, the

number of lo links and the number of li links are even. In order to show this, let’s consider

the non-crossing-closed-loop configurations of |c〉? |cr〉 or |c′〉? |cr〉 shown in Fig. 5.5(b)

and 5.5(c) respectively, where blue links correspond to occupied links in |cr〉, green links

correspond to occupied links in |c〉 or |c′〉 respectively, black links are unoccupied links,

and black dashed lines complete the loops outside and inside b. Note that, if a green and a

blue link overlap, the link will appear black in the representation of |c〉? |cr〉 or |c′〉? |cr〉

due to the sum rule 1? 1 = 0. Any string inside b must start and end with li links since

no inner link emanating from b has occupation number 1 in |c〉 or |c′〉 (otherwise bosons

cannot be located alternatively on b in state |c〉 or |c′〉). Therefore, the total number of li

links is even. Similarly, the number of lo links is also even. Notice that in the illustrations

Fig. 5.5(b) and 5.5(c), under the action of |b̄〉〈b| + |b〉〈b̄| on |c〉, non-crossing closed loops
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are reconnected on loop b. In particular, as will be shown below, the reconnection is

determined by how many inner links li are in between two successive outer links lo.

We now show that the parity change under the action of |b̄〉〈b| + |b〉〈b̄| is independent

of |c〉. For this purpose, let us consider another state |c1〉 in C0, in which bosons are

located alternatively on b. Let |c′1〉 = ( |b̄〉〈b| + |b〉〈b̄|) |c1〉. We set |c1〉 to coincide

with |c〉 on b and |c′1〉 to coincide with |c′〉 on b. The configurations of |c1〉 ? |cr〉 and

|c′1〉 ? |cr〉 are represented by Fig. 5.5(d) and 5.5(e) respectively. Notice that loops in

|c1〉 ? |cr〉 and |c′1〉 ? |cr〉 are connected in a different way from those in |c〉 ? |cr〉 and

|c′〉 ? |cr〉. We can show that, if, upon reconnecting loops going from Fig. 5.5(b) to

5.5(d), the parity of the number of loops is unchanged (changed), then, upon reconnecting

loops going from Fig. 5.5(c) to 5.5(e), the parity of the number of loops is also unchanged

(changed). This can be shown from an elementary loop reconnection illustrated in Fig. 5.6,

where the colored links are interpreted in the same way as in previous figures. Note that

Fig. 5.6(a) coincides with 5.6(c) on b though loops are reconnected in such a way that

5.6(c) possesses one extra loop. Likewise, 5.6(b) coincides with 5.6(d) on b but 5.6(d)

possesses one less loop than 5.6(b). Therefore, upon shifting the green links clockwise (or

counterclockwise), which is equivalent to acting with ( |b̄〉〈b| + |b〉〈b̄|) on |c〉, the parity

change from Fig. 5.6(a) to 5.6(b) is the same as from Fig. 5.6(c) to 5.6(d). As a result,

since the action of |b̄〉〈b| + |b〉〈b̄| only reconnects loops on b, the parity change in the

number of loops in going from |c〉? |cr〉 to |c′〉? |cr〉 is the same as the parity change in

the number of loops in going from |c1〉? |cr〉 to |c′1〉? |cr〉, as was shown in Fig. 5.5. In

other words, the parity change is not affected by how links are connected outside or inside

the loop b. Simply put it, dashed lines in Fig. 5.5 do not matter.

For simplicity, in the following, we equivalently work on the surface S on which the

lattice Λ is embedded and interpret Fig. 5.5(b), 5.5(c), 5.5(d) and 5.5(e) as the images

of links and loops on S. With this interpretation, we are allowed to modify loop b by
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(a)

(b) (c)

(d) (e)

Figure 5.5: 5.5(a) represent an arbitrary loop b contributing to the sum of HDS
eff , where blue

links emanating from b and indexed clockwise by lo, li and lb represent occupied links
in the reference state |cr〉 while black links are unoccupied. We omit the lattice structure
complementary to the loop b and the links emanating from it. Fig. 5.5(b) and 5.5(c)
represent the configuration of |c〉? |cr〉 and |c′〉? |cr〉, respectively. Blue links represent
occupied links in |cr〉, green links represent occupied links in |c〉 or |c′〉, black links are
unoccupied, and black dashed lines complete loops outside and inside b. Fig. 5.5(d)
and 5.5(e) represent the configuration of |c1〉 ? |cr〉 and |c′1〉 ? |cr〉, respectively. The
significance of the colors is the same as above. Notice that loops outside and inside b are
connected differently than in 5.5(b) and 5.5(c).
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(a) (b)

(c) (d)

Figure 5.6: 5.6(a) and 5.6(c) illustrate an elementary loop reconnection operation which
is also illustrated in 5.6(b) and 5.6(d). The lop reconnection does not affect the parity
change upon shifting green links clockwise (or counterclockwise) on b. Colored links
have the same meaning as in previous figures.
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removing links without worrying about the lattice structure as long as green links are

alternating on loop b and each site on b possesses exactly one blue link. As we explain

below in details, this procedure allows us to determine the parity change in question. To

this end, we define two even numbers M1(b, cr ) and M2(b, cr ) as follows.

We start by removing lb links. As shown in Fig. 5.5(b) and 5.5(c), link lb
1 either forms

a segment of a closed loop together with green links, or overlaps with a green link and

does not contribute to any loop. As a consequence, removing lb links has no effect on

the number of loops and hence on the parity change. Fig. 5.7(a) and 5.7(b) show the new

configurations obtained after removing lb links from Fig. 5.5(b) and 5.5(c). Notice that,

in order for the number of links on b to stay even, links must be removed in pairs.

We now fix any two successive lo links and remove an even number of li links existing

in between until there is at most one such li link. As an example of such removal, we

remove links li
2, li

3 between links lo
1 and lo

2, and li
5, li

6 between links lo
1 and lo

4 from

Fig. 5.7(a) and 5.7(b). Note that, for each li removed, an adjacent link on b needs to be

removed in order to have exactly one blue link attached to each vertex. After the removal,

we obtain configurations Fig. 5.7(c) and 5.7(d). The parity change in the configurations

obtained after this removal is the same as before if we remove an even total number of

pairs while the parity change is opposite if the total number of removed pairs is odd. To

see this, consider such a pair of li links, say li
2 and li

3 in Fig. 5.7(a) and 5.7(b), which are

connected by a black dashed line. Note that, if such a pair is not connected by a black

dashed line, we can always reconnect loops so that the pair is connected by a black dashed

line inside b without affecting the parity change. li
2 and li

3 form a loop together with a

green link and a black dashed line in Fig. 5.7(a). After shifting green links clockwise on

b, this loop no longer exists in Fig. 5.7(b). As a result, the removal of an odd number of

pairs of li links results in the opposite parity change compared to the parity change of the

initial configurations.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: 5.7(a) and 5.7(b) show configurations obtained after removing lb links from
Fig. 5.5(b) and 5.5(c). Note that the parity change is the same as before removing lb links.
5.7(c) and 5.7(d) show configurations obtained after removing links li

2, li
3, li

5 and li
6 from

Fig. 5.7(a) and 5.7(b). Note that, since an even number of pairs of links has been removed,
the parity change stays the same. 5.7(e) and 5.7(f) show configurations obtained after
removing links lo

1, lo
2, lo

3 and lo
4 from Fig. 5.7(c) and 5.7(d). Again, since an even number

of pairs of links has been removed, the parity change stays the same. Colored links and
dashed links have the same meaning as in previous figures.
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Subsequently, in the same manner, we remove an even number of lo links which are

located in between two consecutive li links. Once again, the removal alters the parity

change in the same way as explained above for removal of li links.

Finally, we repeat these two removal processes until meeting one of these three situ-

ations: (1) there are only lo links; (2) there are only li links; (3) lo links and li links are

located alternatively along the loop b. As an example, we further remove links lo
1, lo

2, lo
3

and lo
4 from Fig. 5.7(c) and 5.7(d) to obtain the final configurations Fig. 5.7(e) to 5.7(f).

We are now ready to define M1(b, cr ) and M2(b, cr ) as follows. M1(b, cr ) is the total

number of lo and li links removed. M2(b, cr ) is the number of lo links if we end up in

situation (1), the number of li links if we end up in situation (2), or the number of lo (or li)

links if we end up in situation (3). Note that M1(b, cr ) is even by definition and M2(b, cr )

is even since the number of lo links and the number of li links are both even.

Let us consider the example shown in Fig. 5.8, where 5.8(a) and 5.8(b) show the parity

change in situation (1); 5.8(c) and 5.8(d) show the parity change in situation (2); and 5.8(e)

and 5.8(f) show the parity changein situation (3). One can easily check that M2(b, cr )

as defined above characterizes the parity change as follows. If iM2(b,cr )+2 = 1, then the

parity change stays the same under the action of shifting green links clockwise, while if

iM2(b,cr )+2 = −1, then the parity change is opposite.

Furthermore, recall that M1(b, cr ), by definition, records the total number of lo and li

links removed and, as a consequence, keeps track of whether the parity change between

initial configurations is the same or not as in the final configurations. Recall, an even

number of removed pairs implies the same parity change, while an odd number of removed

pairs implies the opposite parity change. Then, combining M1(b, cr ) and M2(b, cr ), we can

conclude that iM1(b,cr )+M2(b,cr )+2 gives the parity change between the initial configurations.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: 5.8(a) and 5.8(b) show parity change in situation when there are only lo links;
5.8(c) and 5.8(d) show parity change in situation when there are only li links; 5.8(e) and
5.8(f) show parity change in situation when lo and li links are located alternatively along
loop b. Colored links and dashed lines have the same meaning as in previous figures.
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Chapter 6

Conclusive remarks and outlook

In this dissertation, I have adopted analytic techniques from condensed matter physics,

entanglement theory and mathematical physics to study the entanglement structure in

ground states and its relation to quantum phases of Bose-Hubbard-type models.

In particular, mywork on the two-component Bose-Hubbardmodel has revealed a close

relationship between the interspecies entanglement and the Mott-insulator-to-superfluid

quantum phase transition of one component in the presence of a second component. This

work provides a newperspective for the study of quantumphases inmixtures. Interestingly,

this new perspective has recently been adopted in experimental studies [110].

My work on the emergence of certain topological order in a wide class of strongly in-

teracting Bose-Hubbard-type models has unveiled the relationship between certain type of

long-range entanglement in ground states and the interaction term in Bose-Hubbard-type

models. This work provides a guidance for numerical studies of non-abelian topologi-

cal order in Bose-Hubbard-type models, with the ultimate goal of finding Hamiltonians

harboring non-trivial topological order which can be engineered with cold-atom sys-

tems trapped in optical lattices. Promising experimental systems which may realize

nontrivially entangled state include polar molecules and charged ions trapped in optical
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lattices [111, 112]. These systems can realize off-site interaction. This type of interaction,

together with appropriate filling factor, may give rise to nontrivially entangled ground

state according to what discussed in Chapter 5.

My study on ground state entanglement has demonstrated that in the strongly inter-

acting regime, the interaction, in the form of interspecies interaction in binary mixtures

or in the form of site-site interaction in the single-component case, plays a decisive role

in determining the macroscopic properties of the system, e.g., topological order. Indeed,

the interaction term determines ground-state entanglement properties which are the mi-

croscopic counterparts of quantum phases. This insight motivates future studies on the

ground state entanglement of lattice systems with potential to realize exotic phenomena of

interest in areas of quantum optics, soft matter physics, quantum information and quantum

computation science.

The major challenge for these studies is to bridge a microscopic property, such as

entanglement, studied in terms of certain tensor product structure at fixed finite system size,

to the macroscopic collective behavior which becomes evident as system size increases.

In other words, techniques like quantum field theory and renormalization group, which

capture the collective behavior, can hardly probe the structure of entanglement, especially

multipartite spatial entanglement. Meanwhile, techniques from quantum information, like

entanglement theory, which are specialized in studying entanglement structure, can not

efficiently describe macroscopic properties. The gap between the two perspectives calls

for new approaches in the study of strongly correlated systems. My current and future

research is motivated by two technical developments which compensate the viewpoint of

each other: (1) study of the scaling behavior of the Rényi entanglement entropy and of the

entanglement negativity in ground states to characterize quantum phases; (2) application

of tensor network methods to probe the entanglement structure. I will briefly introduce

them below.
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The Rényi entanglement entropy [113] measures the bipartite ground-state entangle-

ment between a sublattice and its complement. In a gapped system described by a local

Hamiltonian, it is believed to satisfy the area law [113], that is, the leading term in the

scaling of the Rényi entanglement entropy is αL where α is a constant and L is the lat-

tice size 1. Moreover, when a 2D system is in a topologically ordered phase, the Rényi

entanglement entropy has been shown to scale as αL − γ where γ, the topological en-

tanglement entropy [114, 115], is a universal constant representing nonlocal properties of

the ground states. During the last year, I have introduced the replica trick [116] to the

worm-algorithm quantumMonte Carlo code to perform large-scale numerical simulations

of Bose-Hubbard-type models in order to compute the Rényi entanglement entropy. Cur-

rently, I am studying the topological entanglement entropy for hardcore Bose-Hubbard

models defined on a Kagome lattice where the site-site interaction term includes the near-

est, the second nearest and the third nearest neighbors inside each hexagon. The goal of

this project is to determine if the Z2-topologically ordered phase, which has been shown

to exist for uniform interaction strength [88, 89], is stable when decreasing the interaction

weights on the the second and the third nearest neighbors, as a more realistic Hamiltonian

would requires. The code will also be used to study the scaling behavior of the Rényi en-

tanglement entropy in gapless lattice systems with local Hamiltonian and gapped systems

with nonlocal Hamiltonians in which the area law can fail and new properties of the scal-

ing behavior are expected. At the moment, I am also working on introducing a modified

replica trick in the quantum Monte Carlo code in order to calculate ground-state entan-

glement negativity [117]. The entanglement negativity is a more comprehensive measure

of entanglement. It can measure the bipartite entanglement between two arbitrarily sep-

arated non-complementary sublattices, and thus directly probe long-range properties in

1For 1D gapped lattice systems described by a local Hamiltonian, the area law is rigorously proved. For
2D systems, it remains an open question.
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ground states. It can also be used to study the entanglement between two complementary

sublattices at finite temperature when the system is in a mixed state.

I am also planning to use tensor network methods [118, 119] to study the entanglement

structure of ground states in Bose-Hubbard-type models. In particular, tensor network

methods can be utilized to study the capability of Bose-Hubbard-type models of realizing

non-abelian topological order harbored by string-net models (see Section 5.5). For a

given lattice system, tensor network methods propose a class of states which encode the

entanglement structure of the ground state. Then, these proposed states can be used in

a variational manner, e.g., density matrix renormalization, to efficiently obtain a ground

state. Tensor network methods not only introduce new algorithm to efficiently simulate

lattice systemswith large size, but also provide newperspectives to understand the structure

of ground state entanglement.
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