
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

 

UNSUPERVISED SEISMIC FACIES USING GAUSSIAN MIXTURE MODELS 

 

 

 

 

A THESIS 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

MASTER OF SCIENCE 

 

 

 

 

 

 

By 

ROBERT HARDISTY 

Norman, Oklahoma 

2017 

 

  



 

 
 

UNSUPERVISED SEISMIC FACIES USING GAUSSIAN MIXTURE MODELS 

 

A THESIS APPROVED FOR THE 

CONOCOPHILLIPS SCHOOL OF GEOLOGY AND GEOPHYSICS 

 

 

 

BY 

 

 

_________________________________ 

Dr. Kurt Marfurt, Chair 

 

_________________________________ 

Dr. Bradley Wallet 

 

_________________________________ 

Dr. Roger Slatt 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by ROBERT HARDISTY 2017 

All Rights Reserved.  



 

 

 

 

 

 

 

 

 

 

 

 

 

To my family, friends, mentors  

 

  



 

iv 
 

ACKNOWLEDGEMENTS 

 

I would like to thank the sponsors of the Attribute-Assisted Seismic Processing 

and Interpretation Consortium for their financial support. I would also like to thank 

Schlumberger for providing Petrel licenses. I would also like to thank the New Zealand 

Petroleum and Minerals for providing public access to their seismic data.  

People I would also like to thank are Tao Zhao and Lennon Infante for their 

previous efforts related to this research. I would like to thank Dr. Wallet for helping me 

understand machine learning, a complex topic that was brand new to me when I started 

this program. A special thanks to Dr. Slatt for letting me participate in his seminar and 

experience a completely different application of statistics. Finally, I would like to express 

my utmost gratitude to Dr. Marfurt for giving me a chance to be part of the AASPI team. 

 

 

 

  



 

v 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS................................................................................................iv 

TABLE OF CONTENTS.....................................................................................................v 

LIST OF TABLES..............................................................................................................vi 

LIST OF FIGURES...........................................................................................................vii 

ABSTRACT.......................................................................................................................ix 

CHAPTER 1: INTRODUCTION........................................................................................1 

CHAPTER 2: THEORY AND SYNTHETIC APPLICATION..........................................4 

CHAPTER 3: APPLICATION TO CANTURBURY BASIN, NEW ZEALAND...........19 

CHAPTER 4: APPLICATION TO TARANAKI BASIN, NEW ZEALAND..................50 

CHAPTER 5: CONCLUSIONS........................................................................................64 

REFERENCES..................................................................................................................66 

APPENDIX A: Definitions................................................................................................68 

APPENDIX B: Expectation-Maximization (EM) ............................................................70 

APPENDIX C: Stochastic Expectation-Maximization (SEM) and Classification 

Expectation-Maximization (CEM) ...................................................................................71 

APPENDIX D: Neighborhood Expectation-Maximization (NEM)..................................73  



 

vi 
 

LIST OF TABLES 

Table 2.1. Covariance paramterizations............................................................................11 

Table 2.2. Synthetic attribute values and their distribution...............................................15 

Table 3.1. Mixture model parameters for turbidite system...............................................37 

Table 3.2. Interpretation of clusters..................................................................................44 

Table 4.1. Mixture model parameters for volcanic body..................................................56 

Table 4.2. Interpretation of clusters..................................................................................62 

 

 

  



 

vii 
 

LIST OF FIGURES 

Figure 2.1. Example of a GMM with three mixture components.......................................6 

Figure 2.2. Flow chart for GMM generation......................................................................8 

Figure 2.3. Cross-section of synthetic attributes...............................................................16 

Figure 2.4. Histogram of Z-scores with Gaussian ellipsoids............................................17 

Figure 2.5. BIC for synthetic............................................................................................18 

Figure 2.6. Classification of synthetic attributes...............................................................19 

Figure 3.1. Aerial view of Waka 3D survey and study area.............................................21 

Figure 3.2. Amplitude slice at t=1.88s..............................................................................22 

Figure 3.3. The picked horizon.........................................................................................22 

Figure 3.4. Seismic amplitude along the horizon..............................................................23 

Figure 3.5. Crossplot of input attributes for SOM............................................................24 

Figure 3.6. Previous work using Self-Organizing Maps...................................................25 

Figure 3.7. Bayesian Information Criterion......................................................................27 

Figure 3.8-3.15 GMM classification using 2-9 clusters..............................................28-35 

Figure 3.16. Histogram of training data with Gaussian ellipsoids....................................36 

Figure 3.17. Gaussian ellipsoids with SOM 2D color bar................................................40 

Figure 3.18 Classification of turbidite system using GMM..............................................41 

Figure 3.19. Ambiguity of turbidite system......................................................................42 

Figure 3.20. GMM classification with uncertainty...........................................................43 

Figure 3.21. Cropped horizon to show channel feature....................................................45 

Figure 3.15. Horizon slice of channel feature...................................................................47 

Figure 3.16. Profile of A-A’..............................................................................................48 

Figure 3.17. Profile of B-B’..............................................................................................49 

Figure 4.1. Aerial view of study area in the Northern Graben of the Taranaki Basin......50 

Figure 4.2. Top of the Miocene volcanic..........................................................................51 

Figure 4.3. Top of the Miocene volcanic horizon slices...................................................52 

Figure 4.4. The SOM latent space.....................................................................................54 



 

viii 
 

Figure 4.5. Bayesian Information Criterion......................................................................55 

Figure 4.6 Histogram of training data with Gaussian ellipsoids.......................................57 

Figure 4.7. Gaussian ellipsoids with SOM 2D color bar..................................................58 

Figure 4.8. GMM classification with ambiguity...............................................................59 

Figure 4.9 GMM classification with uncertainty..............................................................60 

Figure 4.10. Southern part of horizon...............................................................................61 

Figure 4.11. West trending radial faulting........................................................................64 

 

 

 

 

 

 

 

  



 

ix 
 

ABSTRACT 

 

As the use of seismic attributes becomes more widespread, multivariate seismic 

analysis has become more commonplace for seismic facies analysis.  Unsupervised 

machine learning techniques provide methods of automatically finding patterns in data 

with minimal user interaction. When using unsupervised machine learning techniques 

such as K-means or Kohonen Self-Organizing Maps, the number of clusters can often be 

ambiguously defined and there is no measure of how confident the algorithm is in the 

classification of data vectors. The model-based probabilistic formulation of Gaussian 

mixture models (GMMs) allows for the number and shape of clusters to be determined in 

a more objective manner using a Bayesian framework that considers a model’s likelihood 

and complexity. Furthermore, the development of alternative Expectation-Maximization 

algorithms has allowed GMMs to be more tailored to unsupervised seismic facies 

analysis. The Classification Expectation-Maximization algorithm classifies data vectors 

according to their posterior probabilities that provides a measurement of uncertainty and 

ambiguity (often called a soft classification). The Neighborhood Expectation-

Maximization algorithm allows for spatial correlations to be considered to make 

classification volumes more realistic by enforcing spatial continuity. Co-rendering the 

classification with the uncertainty and ambiguity measurements produces an intuitive 

map of unsupervised seismic facies. 

I apply a model-based classification approach using Gaussian mixture models to a 

turbidite system in Canterbury Basin, New Zealand to clarify results from an initial Self-

Organizing Map and highlight areas of uncertainty and ambiguity. Special focus on a 

channel feature in the turbidite system using a Neighborhood Expectation-Maximization 
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algorithm shows it to be more realistic by considering spatial correlations within the data. 

I also use this model-based classification approach to highlight structural features on top 

of a Miocene submarine volcano in the Taranaki Basin, New Zealand. 
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CHAPTER 1 

INTRODUCTION 

 With the prominence of 3D seismic data and new seismic attributes being 

introduced each year, multivariate analysis has become more commonplace for seismic 

facies analysis.  Computer-based machine learning techniques provide means to 

automatically analyze enormous amounts of multivariate data, identifying patterns that 

would otherwise be overlooked by a human interpreter with a limited amount of time. 

Machine learning techniques are frequently divided into two categories: unsupervised and 

supervised learning. In the supervised case, the interpreter provides significance guidance 

to the algorithm concerning the hidden state of nature such as the underlying seismic 

facies. For example, an interpreter might instruct the computer to learn the difference 

between reservoir and non-reservoir facies in seismic data by providing the algorithm 

with a subset of the data that the interpreter knows represent the two cases. Ideally, the 

learning algorithm would then be able to find similar patterns within the larger dataset to 

differentiate the two. In unsupervised learning, patterns are automatically identified 

within the data with minimal interaction between the interpreter and the algorithm. In this 

scenario, patterns are automatically found by feeding the full dataset into the computer 

without any labeling of facies, allowing the data to “speak for themselves”. In this thesis, 

I use an unsupervised learning approach using Self-Organizing Maps (SOM) (Kohonen, 

1982) in conjunction with Gaussian mixture models to generate unsupervised seismic 

facies that can be assigned meaning through post-processing by the interpreter.  

 Self-Organizing Maps (SOM) is an unsupervised learning technique that has been 

previously applied to seismic facies analysis (e.g. Zhao et al., 2016; Roden et al., 2015; 
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Marroquin et al., 2009; Coleou et al., 2003; Strecker and Uden, 2003), with several 

commercial SOM analysis tools currently available. SOM aides in the understanding of 

high dimensional data by non-linearly projecting them onto a lower, usually 2-

dimensional, latent space such that similar data points fall close to each other. Although 

natural clusters are formed on an SOM, the number of clusters can often be ambiguous 

and subjective. Gaussian mixture models offer a more quantitative assessment of SOM 

latent spaces because of its probabilistic formulation. 

 In general, mixture models are model-based statistical tools to approximate 

probability density functions.  Gaussian mixture models (GMM) are good at modeling 

multimodal distributions by having a Gaussian distribution for each mode. Hathaway 

(1986) described GMM as a fuzzy-clustering technique. There are several different 

optimization criteria to solve different clustering problems. In this method, I define a 

GMM to be a non-orthogonal decomposition of the data that attempts to recover the true 

state of nature represented by the clusters. The classification approach using GMM to 

partition the data into different clusters is much like the K-means algorithm (MacQueen, 

1967). In fact, the classification approach becomes identical to the K-means algorithm 

under certain conditions, such that GMM can be thought of as a probabilistic extension of 

K-means. Because GMMs are rooted in probability theory, GMMs with different shapes 

and numbers of clusters can be quantitatively compared to each other using likelihood 

estimates and other model selection criteria.  

 GMMs have had some success in seismic facies analysis (Han et al., 2010), but I 

am unaware of any previous material that combines GMM with SOM for seismic facies 

analysis. SOM is a beneficial first step because it reduces the dimensionality of the data, 
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and forms natural clusters of the data. Reducing the dimensionality of the data is an 

important process due to the curse of dimensionality (Bellman, 1957; Wallet, 2012). 

Using the SOM latent space as input to a GMM allows for the number of clusters to be 

objectively assessed, along with a classification of the data and measurements of 

uncertainty and ambiguity. Finally, GMMs offer a more quantitative approach to the 

interpretation of SOM latent spaces than simple visualization, and interactively picking 

polygons about a collection of neurons. 

 I begin my thesis with a review of the theory behind GMMs in Chapter 2. Next in 

Chapter 3, I apply the model-based classification approach using GMMs to a previously 

interpreted turbidite system in Canterbury Basin, New Zealand with special focus on a 

channel feature. In chapter 4, I once again apply the model-based classification approach 

to a Miocene submarine volcanic body in the Taranaki Basin, New Zealand. Finally, in 

Chapter 5, I conclude with analysis of clusters and their significance to interpretation. 

Descriptions of the different algorithms used to find mixture models are added as 

Appendices.  
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CHAPTER 2 

Gaussian mixture model theory 

A multivariate Gaussian distribution can be defined as follows:                                    

                             𝜑(𝐱|µ, 𝐂) =
1

(2π)
𝑑
2|𝐂|

1
2

e−
1

2
(𝐱−𝛍)𝐂−1(𝐱−𝛍)T

                                 (2.1) 

where d is the number of input attributes, C is a covariance matrix and |𝐂| is the 

determinant of the covariance matrix, µ is the mean, and the symbol, T, denotes the 

transpose of a matrix or vector. In general, a GMM approximates a probability density 

function by adding together weighted Gaussian distributions (Figure 2.1). A GMM can 

also be used for clustering and classification where a cluster of a GMM can be described 

by its weighted Gaussian distribution. A Gaussian mixture density with K clusters for a 

data vector xn, where n = 1… N, is given by 

                              𝑝(𝐱𝑛|ψ) = ∑ 𝜋𝑘φ(𝐱𝑛|𝛍𝑘, 𝐂𝑘)𝐾
𝑘=1                                        (2.2) 

where ψ denotes the parameters of the GMM, and 𝜋𝑘 is the weight of the kth cluster such 

that  

                                                   ∑ 𝜋𝑗 = 1𝐾
𝑘=1                                                      (2.3) 

and 𝜋 k ≥ 0. The posterior probability, 𝑤𝑛,𝑘, of a data vector, xn, belonging to a certain 

cluster, k, is given by 

                               𝑤𝑛,𝑘 =
𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)

 ∑ 𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)𝐾
𝑘=1

=
𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)

𝑝(𝐱𝑛|ψ)
.                           (2.4) 
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A data vector is then classified as belonging to the cluster with the greatest posterior 

probability, max
𝑘

(𝑤𝑛,𝑘). Bensmail et al. (1996), propose to measure the uncertainty in the 

classification for a data vector, xn, using 

                                                  𝐴𝑛 = 1 − max
𝑘

(𝑤𝑛,𝑘),                                                  (2.5) 

and from now on will be referred to as ambiguity to distinguish itself from the GMMs 

uncertainty in describing the data vector. A data vector that lies in between two clusters is 

ambiguous but can still be described well by the model. To quantitatively assess the 

GMMs uncertainty in describing a data vector the Mahalanobis distance (Mahalanobis, 

1936) can be used. The Mahalanobis distance from the data vector, xn, to the cluster that 

it belongs to is 

                           𝑈𝑛 = √(𝐱𝑛 − 𝛍𝑘)𝐂𝑘
−1(𝐱𝑛 − 𝛍𝑘)T                                        (2.6) 

where 𝛍𝑘 and 𝐂𝑘 are the mean and covariance of the cluster that the data vector is 

classified to. Data vectors with a large Mahalanobis distance are farther from the cluster 

and are interpreted as more more uncertain and can be anomalous.  

One method for objectively and quantitively generating a parsimonious model is 

to generate models with a range of differing clusters and covariance parameterizations, 

and then select the best model using a criterion such as the Bayesian Information 

Criterion (BIC) (Fraley and Raftery, 1998). The selected model can then be used to 

classify data vectors as being from a certain cluster to generate unsupervised seismic 

facies. Under this classification scheme, data vectors are assumed to belong to a single 

Gaussian distribution. 



 

6 
 

Initialization and Optimization 

GMM initialization begins with a k-means clustering algorithm using the same 

number of clusters. The means, μk, and the covariance matrices, Ck of each cluster are 

initialized to be those computed using k-means (Macqueen, 1967), while the weights, πk, 

are initialized to be the fraction of attribute vectors assigned to each k-means cluster. 

Dempster et al. (1977) learns the mixture parameters, {𝜋𝑘, µk, Ck,}, using an 

Expectation-Maximization (EM) algorithm that seeks to maximize the observed log-

likelihood of ψ given by 

                   𝐿(ψ) = ∑ log {𝑁
𝑛=1 𝑝(𝐱𝑛|ψ)} = ∑ log{ ∑ 𝜋𝑘φ(𝐱𝑛|𝛍𝑘, 𝐂𝑘)𝑁

𝑛=1 }𝐾
𝑘=1             (2.7) 

 

Figure 2.1. Example of a GMM with three mixture components. The overall density is 

estimated as the sum of the three Gaussian components. This density can be used to 

classify data vectors as well as provide a measure of uncertainty and ambiguity in the 

classification.  (Modified from Wallet, Altimar, and Slatt 2014). 
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If the objective is to classify data vectors, alternative EM algorithms such as Celeux and 

Govaert’s (1992) Classification Expectation-Maximization (CEM) can be used where 

data vectors are assumed to be produced by a single Gaussian distribution. This 

classification approach defines a hard partition like the K-means algorithm and is 

interesting because the CEM becomes identical to K-means when the Gaussian mixture is 

parameterized as having equal proportions with clusters sharing a common covariance 

matrix of σ2𝐈 where 𝐈 is the identity matrix and σ2is an unknown scalar that ends up not 

affecting the classification (Celeux and Govaert, 1992). Celeux and Govaert (1992) 

propose using a Stochastic Expectation-Maximization (SEM) algorithm in conjunction 

with the CEM when data sets are large. The SEM algorithm iterates for a user-defined 

number of times and the iteration with highest complete log-likelihood,  

                                       𝐿c(ψ) = ∑ ∑ 𝑧𝑛𝑘log {𝜋𝑘φ(𝐱𝑛|𝛍𝑘, 𝐂𝑘)𝑁
𝑛=1 }𝐾

𝑘=1 ,                      (2.8) 

 is selected as the best model. The SEM algorithm simulates a GMM by guessing at the 

classification of data vectors. The randomness of the SEM algorithm helps to avoid the 

heavy dependence on initialization that the CEM algorithm relies on to find a maximum. 

The selected model from SEM can then optimized by the CEM algorithm until there is no 

change in the classification of data vectors (Figure 2.2).  
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Figure 2.2. Flow chart for GMM generation. The training data is input to the k-means 

algorithm to create K partitions of the data that are used to provide the initial estimates 

of the GMM. The Stochastic Expectation-Maximization algorithm helps to avoid sub-

optimal solutions by introducing a random component into the optimization process. 

The Classification Expectation-Maximization provides a final more deterministic 

solution. 
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Covariance matrix parameterizations 

 Following Celeux and Govaert (1993), the size, shape, and orientation of each 

covariance matrix associated with each cluster can be controlled through use of eigen-

decomposition. The eigenvalue decomposition for a covariance matrix, Ck, of the kth 

cluster can be given by  

                                                                  𝐂𝑘 = 𝛼𝑘𝐃𝑘𝚲𝑘𝐃𝑘
T                                          (2.9) 

where 𝛼𝑘 = |𝐂𝑘|1/𝑑, Dk is the matrix of eigenvectors, and 𝚲 k is a diagonal matrix 

containing eigenvalues in decreasing order and normalized so their sum is unity. 

Using this decomposition 𝛼𝑘 controls the volume of the covariance, Dk controls the 

orientation, and 𝚲 k controls the shape. By controlling the size, shape and orientation of 

the covariance matrix, the number of parameters needed to estimate a GMM can be 

reduced and more parsimonious models can be generated. For example, if the clusters 

were to have the same shape but different volumes, then the covariance parameterization 

would be written as 𝐂𝑘 = 𝛼𝑘𝐃𝚲𝐃T. By forcing the clusters to share the parameters, 

𝐃𝚲𝐃T, the total number of parameters necessary to describe a mixture model will be 

reduced making the model more parsimonious. Alternative means of varying these 

parameters results in eight different workflows. Furthermore, Celeux and Govaert (1993) 

also consider parameterizations of the form 

                                                                𝐂𝑘 = 𝛼𝑘𝐈                                                      (2.10) 

and 
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                                                                𝐂𝑘 = 𝛼𝑘𝚩𝑘                                                   (2.11) 

where I is the identity matrix and 𝚩𝑘 is a diagonal matrix. This results in an additional 

two parameterizations for equation 2.10 and an additional four parameters for equation 

2.11, resulting in a total of 14 parameterizations. Some parameterizations cannot be 

solved in closed form. The nine closed-form solutions from Celeux and Govaert (1993) 

are considered for this thesis (Table 2.1).  

 A trivial optimization of either log-likelihood function can be done by taking the 

limit as the determinant of the covariance matrix approaches zero resulting in an infinite 

likelihood value. Unfortunately, EM-based algorithms can converge to these singular 

matrices, especially if the data are redundant as is the case for seismic data (Marroquín et 

al., 2009). To deal with this challenge, a minimum width for all Gaussian distributions is 

used to prevent numerical instabilities associated with singular covariance matrices. 
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Table 2.1. Covariance parameterizations. Each covariance parameterization has a different number 

of parameters. The parameterizations are ordered from most parsimonious at the top to the most 

general in the bottom. The BIC has a penalty function that increases with the number of parameters. 

Module 

symbol 

Covariance 

parameterization 
Description 

EII 𝛼I Spherical. Equal volume. 

VII 𝛼kI Spherical. Varying volume. 

EEI 𝛼Β Diagonal. Equal volume. Equal shape.  

EVI 𝛼Βk Diagonal. Equal volume. Varying shape. 

VVI 𝛼kΒk Diagonal. Varying volume. Varying shape. 

EEE 𝛼D𝚲DT Ellipsoidal. Equal volume. Equal shape. Equal orientation. 

EEV 𝛼Dk𝚲DkT Ellipsoidal. Equal volume. Equal shape. Varying orientation. 

EVV 𝛼Dk𝚲kDkT Ellipsoidal. Equal volume. Varying shape. Varying orientation. 

VVV 𝛼𝑘Dk𝚲kDkT Ellipsoidal. Varying volume. Varying shape. Varying orientation. 
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Model selection 

 Likelihood is an effective way to compare models of the same complexity, but is 

not sufficient to compare models of differing complexity (i.e. differing number of clusters 

and covariance parameterization). Consider adding an additional cluster to any GMM and 

setting that cluster’s weight to zero. The likelihood with and without the additional 

component would be the same, but the additional component doesn’t add any useful 

information, such that the model without this additional component would be preferred 

(Wallet et al., 2014). In fact, any data set can be perfectly modeled with a GMM where 

the number of terms equal the number of observations and all variances being zero. 

 The model-based approach allows for model selection to be done in a more 

principled and formal way than heuristic approaches such as used in k-means (Figueiredo 

and Jain, 2002). Finding the true number of clusters in a data set may be an ill-posed 

problem in general, but there have been many different criteria that have been used to 

select the best model from amongst a suite of candidate models, including the Akaike 

(1973) Information Criterion (AIC) and the Minimum Message Length (Oliver, Baxter, 

and Wallace, 1996) technique. In this thesis, I use Schwarz’s (1978) Bayesian 

Information Criterion (BIC) to choose the best model. The BIC is defined as  

                                                    𝐵𝐼𝐶 = log(𝐿(ψ)) −
1

2
𝑚 log(𝑁),                             (2.12)        

where  𝐿(ψ) is the observed log-likelihood of the mode, N is the number of training 

vectors, and m is the number of estimated parameters. The higher the BIC value, the 

stronger the evidence is for the model having the correct number of clusters and 

covariance parameterization.  
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Often the first decisive local maximum is selected as the best model, but for the 

case where a maximum doesn’t exist a model is selected based on how much the BIC 

increases with successive clusters (Dasgupta and Raftery, 1995), effectively picking the 

shoulder of the curve. Fraley and Raftery (1998) find that although the regularity 

conditions for the BIC approximation don’t hold for mixture models, the BIC method 

works well in practice. The BIC penalizes extraneous parameters and large sample sizes 

to choose the best model in terms of parsimony and likelihood. 

 In summary, the model-based classification methodology is as follows: 

1. Define a minimum and maximum number of clusters [Kmin , Kmax] and a 

set of covariance parameterizations, 

2. Condition the data using a Z-score transform (optional), 

3. Decimate the inlines, crosslines, and vertical samples of the seismic 

attributes to create a training set of data vectors according to memory 

constraints, 

4. Repeat steps 4-8 for each number of clusters and covariance 

parameterization for the training set of data vectors, 

5. Generate an initial partition of the data using k-means 

6. Initialize the stochastic expectation maximization (SEM) algorithm using 

the centroids from k-means as the mean, the within-cluster scattering 

matrix for the covariance, and weights proportional to the partitioning 

done by the k-means algorithm. Iterate SEM for a set number of times and 

find the best model according to the complete log-likelihood in equation 

2.8, 
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7. Initialize the classification expectation maximization (CEM) algorithm 

using the results from SEM. Iterate CEM until the partition does not 

change. 

8. Calculate the Bayesian Information Criterion (BIC). 

9. Plot the BIC function for all models. The first decisive maximum provides 

strong evidence for the model. 

10. Classify all the data vectors according to the selected model and calculate 

the uncertainty and ambiguity for each data vector to produce two seismic 

attribute volumes. 

Synthetic example 

Figure 2.3 shows a synthetic model used to illustrate the model based 

classification application to 3D seismic attributes where the two synthetic seismic 

attribute volumes represent three laterally continuous layers. The three layers were given 

attribute values that are drawn from the different 2D Gaussian distributions defined by 

Table 2.2. The synthetic data extend vertically 101 samples, with the first layer ranging 

between samples 1-10, the second between samples 11-50, and the third between samples 

51-101 (the extent of inlines and crosslines are irrelevant due to the synthetic layers being 

laterally continuous).  

Setting unknown number of clusters is set to range between a minimum of 1 and a 

maximum number of 10. All 14 covariance parameterizations are evaluated. The data are 

preconditioned using a Z-score transform (Figure 2.4). To create the training set of data 

vectors, the two synthetic attributes are decimated only in their inlines and crosslines 

because the synthetic attributes only vary vertically. A total of 21,816 training data 
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vectors are used in learning the mixture models. For each covariance matrix 

parameterization and for the number of candidate clusters, an initial partition is generated 

using the k-means algorithm, followed by optimization of the mixture model using the 

EM variants, SEM and CEM. For each mixture model, BIC values are shown in Figure 

2.5, and the mixture model with three clusters and a covariance parametrization of λΒ is 

selected as the best model because it has the highest BIC value. Applying the selected 

mixture model to the all the data vectors to produces a classification seismic volume. 

The ellipsoids in the cross-plot of the Z-scores show the mean and covariance of 

each cluster in the selected GMM, while the mixture model weights of each cluster 

correspond to each layer’s relative volume (Table 2.2). The classification correctly 

identifies the three layers and each layer is given a distinct color (Figure 2.6). Although 

the synthetic data were generated using the identity matrix, I, for the covariance matrix, 

the Z-score transform changes the variance along each attribute meaning the diagonals of 

the covariance matrix are no longer unity. This change requires the use of different 

variables along the diagonal to estimate the covariance matrix and explains why the 

covariance parameterization of λΒ is correct.

Table 2.2. Synthetic attribute values and their distribution. The synthetic attribute 

values were sampled from a Gaussian distribution. The two attributes create a 2D 

attribute space from which three clusters can be identified.  

 
Synthetic 

Attribute 1 

Synthetic 

Attribute 2 Vertical Samples 
By 

volume 

First layer φ(10,1) φ(10,1) 1-10 9.9% 

Second layer φ(20,1) φ(10,1) 11-50 39.6% 

Third layer φ(10,1) φ(30,1) 51-101 50.5% 
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Figure 2.3. Cross-section of synthetic attributes. The layers are laterally continuous and their vertical extent can be seen on 

the left. The values of each layer were sampled from a Gaussian distribution described by the white text, 𝜑(µ, 𝐂).  
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Figure 2.4. Histogram of Z-scores with Gaussian ellipsoids.  The color of the ellipsoids matches the colors of the 

classification profile. The green cluster (bottom right) contains 50.5% of the model weight, the red (top left) 39.6%, and the 

blue (bottom right) 9.9%. Histogram is made using 100x100 bins. 
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Figure 2.5. BIC for synthetic. For each covariance parameterization and number of clusters, the Bayesian Information 

Criterion (BIC) is calculated to evaluate each model in terms of likelihood and parsimony. The model with three clusters and 

a covariance parameterization of λΒ has the highest BIC value and corresponds to the correct underlying distribution by 

which the data is sampled from. 
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Figure 2.6. Classification of synthetic attributes. The classification shows three 

different layers which correspond to the underlying Gaussian distributions that the data 

was sampled from.  
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CHAPTER 3 

CANTURBURY BASIN, NEW ZEALAND- WAKA3D 

 

3.1 Geologic setting and previous latent space modeling 

The seismic survey is located on the Canterbury Basin, offshore New Zealand 

(Figure 1). The Canterbury Basin contains more than 6000ft of Cretaceous to Tertiary fill 

(Cozens, 2011).  Sediments in the basin were deposited in a single transgressive-

regressive cycle driven by tectonics (Zhao and Marfurt, 2014). The seismic survey is in 

the transition zone of the continental rise and continental slope and contains many 

paleocanyons and turbidite deposits (Zhao and Marfurt, 2014).  

A Miocene turbidite system was interpreted using a phantom horizon slice tied to 

a picked continuous reflector below the turbidite system by Zhao et al. (2016) (Figure 

3.2, 3.3, and 3.4). Using a Self-Organizing Map (SOM) (Kohonen, 1982) Zhao et al. 

(2016) projected the information of four different attributes, peak spectral frequency, 

peak spectral magnitude, coherent energy, and curvedness (Figure 3.5), onto a 2D 

manifold. Peak spectral frequency and peak spectral magnitude were used to represent 

variation of the seismic response, coherent energy to the amplitude response, and 

curvedness to represent the magnitude of structural deformation (Zhao et al., 2016). 

 Following Zhao et al.’s (2016) interpretation, the red arrows in Figure 3.6 indicate 

possible slope fans, blue arrows high amplitude deposits, white arrows stacked channels, 

and black arrows sinuous channels that were difficult to see on the horizon slice through 

seismic amplitude shown in Figure 3.4. 
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Figure 3.1. Aerial view of Waka 3D survey and study area. Modified from Zhao et al. 

(2016). 
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Figure 3.2. Amplitude slice at t=1.88s. Looking downdip. 

 

Figure 3.3. The picked horizon. Looking downdip. 
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Figure 3.4. Horizon slice through the seismic amplitude volume.   
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Figure 3.5. Crossplot of input attributes for SOM. The attributes used to construct the 

2D SOM latent space. The cloud shapes indicate that correlation amongst the four 

attributes is low, indicating that they are mathematically independent and favorable 

attributes to use for machine learning. (Modified from Zhao et al., 2016) 
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Figure 3.6. Previous work using Self-Organizing Maps. Red arrows indicate possible 

slope fans, blue arrows high amplitude deposits, white arrows stacked channels, and 

black arrows weak sinuous channels (Zhao et al. 2016).   
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3.2 Methods 

I will use the two SOM latent axes produced by Zhao et al. (2016) as input to a 

GMM to further analyze the turbidite system with the goal of generating better defined 

(though still unsupervised) seismic facies. The two latent axes first undergo a Z-

transform to condition the data making the population mean zero and the population 

covariance the identity matrix. A training data set is then extracted by sampling every 5th 

time sample, and every 10th inline and crossline from each SOM latent axis creating 

52718 2-dimensional data vectors. The training data set is used to generate multiple 

GMM; the number of clusters range from 1-30, and all nine covariance parameterizations 

discussed in Chapter 2 are considered. The Bayesian Information Criterion is then 

calculated for each model so they can be quantitatively compared (Figure 3.7). For a 

visual comparison, GMMs with clusters 1-10 and an unconstrained covariance matrix are 

shown on the horizon (Figures 3.8-3.15). Generally, the BIC has a definitive maximum 

point with the addition of successive clusters decreasing the BIC and the model with the 

maximum BIC value is considered to be the best model. In this case however, the BIC 

seems to increase as the number of components increase. The increase may be due to 

cluster geometries in the latent space being poorly represented by a Gaussian distribution, 

thus creating the need for multiple Gaussian distributions to fit the cluster. Another 

explanation could be that given the large sample size of the training data, there may be a 

large number of small clusters that are statistically significant but not interpretationally 

significant. In consideration of this ambiguity, and because the BIC not increasing 

significantly by using additional components, I construct a mixture model with seven 

clusters and a covariance parameterization of λjDjAjDjT. 
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 The means of the mixture model are well separated and the Gaussian ellipsoids 

exhibit minimal overlap (Figure 3.8). This separation is to be expected of the model-

based classification approach as opposed to the mixture approach where data vectors 

don’t necessarily belong to a single Gaussian distribution (Celeux and Govaert, 1993). 

The selected mixture model is applied to the entirety of both SOM latent axes to calculate 

the posterior probability of each data vector belonging to each cluster. The data vectors 

are classified according to the highest posterior probability and an estimate of the 

confidence in the classification is calculated resulting in a seismic attribute volume 

containing the class assignments, and two additional seismic attribute volume containing 

the uncertainty and ambiguity of the classification. 

 

 

 

Figure 3.7. Bayesian Information Criterion. The module symbols, EII, VII, EEI, EVI, 

etc…, represent the different parametrizations of the covariance matrix. Since the BIC 

does not decrease with the number of clusters, the model on the shoulder of the curve is 

picked. 
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Figure 3.8. Classification of turbidite system using two GMM clusters. Cluster colors 

are arbitrary. 
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Figure 3.9. Classification of turbidite system using three GMM clusters. Cluster colors 

are arbitrary. 
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Figure 3.10. Classification of turbidite system using four GMM clusters. Cluster colors 

are arbitrary. 
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Figure 3.11. Classification of turbidite system using five GMM clusters. Cluster colors 

are arbitrary. 
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Figure 3.12. Classification of turbidite system using six GMM clusters. Cluster colors 

are arbitrary. 
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Figure 3.13. Classification of turbidite system using seven GMM clusters. Cluster 

colors are arbitrary. 
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Figure 3.14. Classification of turbidite system using eight GMM clusters. Cluster colors 

are arbitrary. 
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Figure 3.15. Classification of turbidite system using nine GMM clusters. Cluster colors 

are arbitrary. 
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Figure 3.16. Histogram of training data with a new GMM.Gaussian ellipsoids represent 

a one standard deviation contour of the Gaussian distribution and don’t represent the 

mixing weights of the mixture model. The covariance parameterization of λjDjAjDjT 
allows for the Gaussian ellipsoids to vary in terms of size, shape, and orientation. 
The colors of the ellipsoids here are arbitrary and are not representative of any 
inter-cluster relationship. 
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Table 3.1. Mixture model parameters for the turbidite system. Selected model is built 

using seven clusters and a covariance parameterization of the form λjDjAjDjT. 

Cluster 𝜋 (%) µ(
SOM latent axis 1
SOM latent axis 2

) C 

1 11.5% 
0.489
−1.77

 
0.458 0.075
0.075 0.019

 

2 9.5% 
−0.201
−1.08

 
0.031 0.017
0.017 0.032

 

3 19.5% 
−0.636
−0.117

 
0.034 0.008
0.008 0.024

 

4 19.7% 
0.203

−0.108
 

0.062 −0.022
−0.022 0.045

 

5 18.8% 
−1.07
0.572

 
0.034 0.083
0.083 0.268

 

6 9.14% 
−0.17
1.84

 
0.022 0.031
0.031 0.048

 

7 12% 
2.15

0.607
 

0.148 −0.158
−0.158 0.344

 

 

3.3 Results and Interpretation 

In the GMM, the cluster numbers are arbitrary and do not reflect any sort of 

measurement between each other which can make the choice of color bar difficult. Since 

the classification is an integer number, a discrete color bar should be used such that a 

single color represents each cluster. Zhao et al. (2016) used a 2D color bar to represent 

two SOM latent axes. The GMM was generated using training vectors from the Z-scores 

of the two SOM latent axes. For the sake of comparison, each cluster is assigned a color 

close to where the clusters’ means would be on the 2D color bar from Zhao et al. (2016) 

as if the color bar was rescaled to fit the range of Z-scores (Figure 3.17). Part of the 
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reason the SOM latent axes look smooth is due to the interpolation scheme used by 

visualization software package. In the GMM classification, interpolation is not used 

because there is no relationship between the clusters and the cluster number, meaning the 

classification map of the GMM will not be inherently smooth.  

The continuous 2D SOM latent space is reduced to 7 different clusters each of 

which have a different color. The choice of color bar makes it difficult to differentiate 

some of the facies (Figure 3.18). Co-rendering the ambiguity with the classification itself 

mutes areas where the model isn’t confident in the classification (Figure 3.19). The 

horizon slice is segmented into just seven different clusters.  

Although each cluster may have a significant amount of the mixture model 

weight, the clusters may be lacking in geological or geophysical significance. 

Furthermore, since the construction of the mixture model did not contain any spatial 

information, the clusters are not expected to be spatially continuous. Specifically, the 2nd, 

3rd, and 5th clusters are spatially discontinuous making it hard to correlate them with any 

architectural elements or geologic features. The 3rd cluster is widespread and can be 

found in almost every architectural element on the horizon. The 2nd cluster and 5th cluster 

seem to be more restricted in their distribution, but don’t seem to have any obvious 

structure. The 1st, 4th, 6th, and 7th clusters contain at least some areas with a continuous 

distribution that may be part of a channel or sand lobe. 

The 6th cluster has the smallest amount of weight in the mixture model, but shows 

clear lineaments along the sinuous channels. The 4th cluster has the largest amount of 

weight in the mixture model, and is relatively continuous and corresponds well with 

previously interpreted slope fan and lobe deposits previously mapped by Zhao et al. 
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(2016) in the northern and southern parts of the horizon. The 1st cluster contains facies 

around previously interpreted slope fan and lobe deposits in the southern corner and 

northeastern part of the horizon. The 7th cluster contains facies that correspond mostly to 

features interpreted by Zhao et al. (2016) as sandy channels.  

Closely inspecting the ambiguity, the 3rd cluster seems to contain the most 

ambiguous facies (Figure 3.19). The 3rd cluster is in close proximity to the 4th and 5th 

clusters in the latent space which may be causing the GMM to be ambiguous when 

representing multiple data vectors that fall between them. Furthermore, the 2nd, 3rd, and 

5th clusters are observed to be spatially discontinuous which may merit interpreting the 

three clusters as being a larger, single cluster.  

The Mahalanobis distance is used a measure the GMM’s uncertainty in describing 

a data vector (Figure 3.20). The Mahalanobis distance is calculated for each point with 

respect to the GMM component that the data vector got classified to. Areas with a large 

Mahalanobis distance can be considered anomalous because they aren’t close to the 

GMM component that it belongs to. Co-rendering with the classification shows two 

anomalous areas of the 4th cluster that indicate possible slope fans. Highly ambiguous and 

uncertain areas are interpreted as meaningless anomalies. 
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Figure 3.17. Gaussian ellipsoids with 2D SOM color bar in background. The means of 

each cluster are in the center of each Gaussian ellipsoid and each cluster is assigned a 

color where its mean lies on the 2D color bar. 
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Figure 3.18. Classification of turbidite system using GMM. Each cluster is assigned a 

color similar to where the mean of each cluster would lie on the 2D color bar of the 2D 

SOM latent space from Figure 3.9. Similarity is overlaid in black to show boundaries.  
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Figure 3.19. Ambiguity of turbidite system. The classification is overlaid by the 

ambiguity to hide areas where the mixture model is not so confident in the 

classification. The ambiguity in the classification along the horizon seems to mostly 

correspond with the 2nd cluster. The ambiguity has a range of [0,1-1/K] where K is the 

number of clusters; in this case [0,0.857].  
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Figure 3.20. GMM classification with uncertainty. Classification co-rendered with the 

Mahalanobis distance as a measure of uncertainty.  
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3.4 Spatial considerations 

Combining Self-Organizing maps with GMM facilitates a more quantitative 

approach to determining the number of clusters as opposed to a qualitative visual 

inspection. However, the classification isn’t guaranteed to be spatially continuous 

because there is no spatial information in the input attributes nor in the mixture model. In 

the next section, a special variant of the expectation-maximization (EM) algorithm called 

the neighborhood EM algorithm is implemented to consider spatial correlations using a 

small subset of the horizon to highlight a channel feature (Figure 3.21). Model selection 

is not being considered with model parameters being set to four clusters (called 

components in the next section) with an unconstrained covariance matrix, 𝐂𝑘 =

𝛼𝑘𝐃𝑘𝚲𝑘𝐃𝑘
T.  

 

 

 

 

 

Table 4.2. Interpretation of clusters 

Cluster Interpretation 

1 Continuous; associated with slope fan and lobe deposits 

2 Discontinuous; some constraint in distribution 

3 Discontinuous; widespread distribution 

4 Continuous; possibly slope fan and lobe deposits 

5 Discontinuous; some constraint in distribution 

6 Clear lineaments along channels 

7 Continuous; constrained to channels, slope fan and lobe deposits; sandy 
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3.5 Neighborhood expectation-maximization (NEM) algorithm and application 

(The following is from an accepted SEG abstract by Hardisty and Wallet 2017). 

 Learning of a GMM using the EM algorithm is a purely statistical construct and 

doesn’t consider spatial correlations. In general, facies are expected to be at least laterally 

continuous to some extent. To account for spatial correlations of the latent space the 

Neighborhood-EM (NEM) algorithm is implemented and compared to the results of the 

conventional EM. A more detailed discussion of the NEM algorithm can be found in 

Appendix A.  

The area of interest has been interpreted as a possible channel feature by Zhao et 

al. (2016). The area of interest consists of 456 crosslines x 576 inlines x 23 time samples. 

 

Figure 3.21. Cropped horizon to show channel feature. A subset of the SOM 

latent space axes is cropped to highlight a channel feature. The large memory 

requirements of the neighborhood expectation-maximization algorithm require 

a smaller subset of the data to be used. 
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The SOM latent axis 1 and SOM latent axis 2 are used as inputs for two different GMM; 

one mixture model using the conventional EM algorithm and another using the NEM 

algorithm. A training set is constructed by uniformly sampling every 125th voxel (one 

voxel for every 5th inline, crossline, and time sample). For the NEM algorithm, the spatial 

weight parameter is set to 0.1 and the neighborhood window for which spatial 

correlations are considered is a 3-dimensional window of length 15 inlines x 15 

crosslines x15 time samples. 

Two cross sections are made, A-A’ and B-B’, to show the channel feature in three 

dimensions (Figure 3.22). Previously this was interpreted by Zhao et al. (2016) as a 

possible muddy channel cutting through a sandy channel. In both the EM and NEM case 

the sandy channel is dominated by the 4th component of the mixture model and is colored 

tan. Likewise, the muddy channel is dominated by the 2nd and 3rd components of the 

mixture model, and are colored red and green respectively. The NEM algorithm 

successfully segments the image into more spatially continuous facies. However, there 

are unnatural hard right angles in the classification due to the sub-sampling of the training 

set of data.  

Cross section A-A’ shows the high amplitude channel being delineated by the tan 

colored facies and being surrounded by the blue colored facies (Figure 3.23). The NEM 

algorithm improves the segmentation by removing the anomalous red facies above the 

high amplitude feature. In both EM and NEM the red and green facies are not within the 

high amplitude feature.  

Cross section B-B’ goes more or less along the flow direction of the tan colored 

channel (Figure 3.24). The combination of red and green colored facies provide good 
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channel segmentation. The NEM algorithm removes many of the red-colored facies in in 

the high amplitude areas and replaces them with tan-colored facies.  

 

 

 

 

 

Figure 3.22:  Horizon slice of channel feature. (a) seismic amplitude for reference and 

results from (b) EM algorithm, and (c) NEM algorithm. A-A’ cuts across the flow 

direction of both channels. B-B’ goes along the flow direction of the tan-colored 

channel and cuts across the blue-green colored channel in the western end of the profile. 
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Figure 3.23: Profile A-A’ of (a) seismic amplitude, (b) EM algorithm, and (c) NEM 

algorithm. Cuts perpindicular to the flow direction of tan colored channel. The black 

arrow indicates a high amplitude feature. 
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Figure 3.24:  Profile B-B’ of (a) seismic amplitude, (b) EM algorithm, and (c) NEM algorithm. The channel outlined in 

purple is  composed of all the facies. In the NEM algorithm, C, constrains the red facies to mostly the channel fill unlike 

the EM algorithm. 
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CHAPTER 4 

TARANAKI BASIN, NEW ZEALAND- KORA3D 

 

4.1 Geologic setting 

Within the Northern Graben of the Taranaki Basin there lies the Miocene-age 

submarine Kora Volcano that is the focus of this chapter. Radial faulting hypothesized to 

be caused by the cooling and collapse episodes of the volcanic body have been previously 

identified by Infante and Marfurt (2017).  

 

 

Figure 4.1. Aerial view of study area in Northern Graben of Taranaki Basin (Modified 

from Infante and Marfurt, 2017). Red circles signify modern volcano analogs for the 

Miocene volcano. 
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4.2 Methods 

The Kora3d seismic data volume images the Kora Volcano and formed the basis 

of study published by Infante and Marfurt (2017). A horizon identifying the top of the 

Miocene volcanic is used to identify structural features (Figure 4.2). First, the inline dip 

and crossline dip measurements are calculated and filtered to be used for curvature 

attribute calculations. In addition to mapping the most-positive and most-negative 

curvature, I compute curvedness, reflector convergence magnitude, and reflector rotation 

about the normal (Figure 4.3).  

Curvedness is the square root of the sum of squares of the two principle 

curvatures and is used here as a single measure of deformation. Reflector convergence 

magnitude and reflector rotation about the normal are two different measurements of the 

more generic reflector rotation vector, which is the curl of the normal vector to the dip 

 

Figure 4.2. Top of the Miocene volcanic. Also contains onlapping wedge features on 

the outer edges deposited after the formation of the volcano. 
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measurements. Reflector convergence azimuth is not being used because its cyclical 

nature isn’t recognized well by machine learning techniques. In this data volume, 

reflector convergence magnitude measures vertical changes in dip where onlap, offlap, 

and erosional truncation would occur, while reflector rotation about the normal measures 

lateral changes in dip, where different rates of deposition across a fault or 

 

Figure 4.3. Top of the Miocene volcanic horizon slices. A) Seismic amplitude with 

similarity overlay B) Curvedness attribute C) Reflector convergence magnitude D) 

Reflector rotation about the normal direction. 
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rotation of reflectors about a fault would occur. Combining these three curvature 

attributes should show structural features with similar reflector orientation and 

deformation. 

The next step is to generate a latent space using Self-Organizing Maps (SOM) 

(Kohonen, 1982). The three curvature attributes, curvedness, reflector convergence 

magnitude, and reflector rotation about the normal, define a 3D attribute space when 

cross-plotted against each other. The SOM is being used to project the 3D attribute space 

onto a deformed 2D SOM latent space. The deformation of the SOM latent space will 

cause similar attribute values to be close together while preserving the topology of the 3D 

attribute space. The 2D SOM latent space is output as a pair of attribute volumes that can 

be displayed on a 2D color bar (Figure 4.4). 

GMMs are constructed from the 2D SOM latent space and the Bayesian 

Information Criterion (BIC) is calculated as a measure to compare all the different 

mixture models (Figure 4.5). The model with nine clusters and covariance 

parameterization of λjDjAjDjT is selected because it is a local maximum and the BIC 

doesn’t increase significantly after that point (Figure 4.6 and Table 4.1). The covariance 

of many of these clusters have a small eigenvalue and a much larger eigenvalue which 

can make the ellipsoid look more like a line (ex. Cluster 8 in the top left and Cluster 9 in 

the top right).  Applying the selected mixture model to the data outputs a classification, 

ambiguity, and uncertainty attribute volumes. 
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Figure 4.4. The SOM latent space. The SOM latent space is constructed use curvedness, 

reflector convergence magnitude, and reflector rotation about the normal.  
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Figure 4.5. Bayesian Information Criterion. Arrow pointing to the selected model of 9 

clusters and a covariance parameterization of λjDjAjDjT. Since the BIC does not decrease 

with the number of clusters, the model on the shoulder of the curve is picked. The 

sudden drops in BIC are likely due to clusters having near zero weight and being 

penalized without any increase to likelihood. 
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Table 4.1. Mixture model parameters for volcanic body. The selected model has 9 

clusters and covariance parameterization of λjDjAjDjT . 

Cluster 𝜋 (%) µ(
SOM latent axis 1
SOM latent axis 2

) C 

1 1.96% 
0.430
−3.64

 
1𝐸 − 4 0

0 1𝐸 − 4
 

2 5.22% 
−0.469
−1.47

 
1𝐸 − 4 0

0 1𝐸 − 4
 

3 22.6% 
−0.761
−0.126

 
1𝐸 − 4 0

0 1𝐸 − 4
 

4 23.8% 
−0.216
−0.628

 
0.193 −0.196

−0.196 0.192
 

5 20.4% 
−0.430
−0.337

 
3.82𝐸 − 4 1.52𝐸 − 3
1.52𝐸 − 3 8.33𝐸 − 3

 

6 9.58% 
−0.176
−0.762

 
1𝐸 − 4 0

0 1𝐸 − 4
 

7 9.63% 
1.67

−0.413
 

0.295 −0.305
−0.305 0.637

 

8 5.49% 
−0.149

2.3
 

0.359 0.510
0.510 0.726

 

9 1.35% 
4.68
2.87

 
1.84 −1.24

−1.24 0.838
 



  

57 
 

 
4.3 Results and Interpretation 

 Each cluster is assigned a color close to where the clusters’ means would be on 

the 2D SOM color bar as if the color bar was rescaled to fit the range of Z-scores (Figure 

4.7). The continuous 2D color bar used for the SOM latent space is essentially reduced to 

nine different discrete colors with a measurement of how ambiguous the mixture model is 

in the color (Figure 4.8). The most dominant feature on the horizon slice is perhaps the 

 

Figure 4.6. Histogram of training data with Gaussian ellipsoids. The Gaussian 

ellipsoids represent a one standard deviation contour of the Gaussian distribution and 

don’t represent the mixing weights of the mixture model. The covariance 

parameterization of λjDjAjDjT allows for the Gaussian ellipsoids to vary in terms of 

size, shape, and orientation. The colors of the ellipsoids here are arbitrary and are 

not representative of any inter-cluster relationship.  



  

58 
 

 

circular chaotic collection of clusters in the middle of the horizon corresponding to the 

location of the submarine volcano indicating that the reflectors within the volcano don’t 

have a single trend.  

 

 

 

 

 

 

Figure 4.7. Gaussian ellipsoids with scaled 2D SOM color bar in background. The 

means of each cluster are in the center of each Gaussian ellipsoid, and each cluster is 

assigned a color close to where the mean lies. 
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Figure 4.8. GMM classification with ambiguity. The chaotic collection of clusters in the 

middle correspond to the Miocene submarine volcano and indicate that the reflectors 

don’t have a single trend in that area. 
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Considering the spatial distribution of clusters can aide the interpretation. The 4th 

and 5th clusters don’t have areas of high spatial continuity indicating that these clusters 

may not be representing anything geological. The 4th cluster is widespread, contains the 

second highest weight of the mixture model, and contains the most ambiguity in general. 

The 5th cluster seems to be concentrated outside of the volcano. However, other than 

those generalizations these clusters lack any clear structure or geological meaning. 

The 3rd cluster has spatially continuous areas and is widespread which might be 

expected considering it takes up the most weight of the mixture model. The 3rd cluster 

 

Figure 4.9. GMM classification with uncertainty The chaotic collection of clusters in 

the middle correspond to the Miocene submarine volcano and indicate that the reflectors 

don’t have a single trend in that area. 
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tends to avoid areas with lineaments. Moreover, the 3rd cluster is highly ambiguous when 

it does exist near areas with lineaments. The 1st cluster interpreted as having little 

deformation where reflectors don’t have much rotation relative to the horizon. 

The 1st, 2nd,6th, 7th, 8th, and 9th clusters contain lineaments related to a radial 

faulting pattern.  The 1st, 2nd, and 9th clusters seem to delineate this pattern best in the 

southern part of the horizon (Figure 4.10). The classification is shown to have high 

confidence in areas where fault patterns may go unnoticed when using just the Sobel 

filter similarity attribute. In the western part of the horizon, radial faulting trending east-

west is best delineated by the 1st and 8th cluster with the 1st cluster representing the 

thrown-down side and the 8th cluster representing the thrown-up side (Figure 4.11). 
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Table 4.2. Interpretation of clusters 

Cluster Interpretation 

1 Radial faulting; thrown-up block on western part 

2 Clear lineaments associated with faulting 

3 Little to no deformation; no change in reflectors relative to horizon. 

4 Discontinuous. Not meaningful 

5 Discontinuous. Not meaningful 

6 Clear lineaments associated with faulting 

7 Clear lineaments associated with faulting 

8 Radial faulting; thrown-down block on western part 

9 Clear lineaments associated with faulting 

     

 

 

 

 

 

Figure 4.10. Southern part of horizon. A) Seismic amplitude, B) Sobel filter similarity, 

C) mixture model clusters D) SOM latent space. Orange arrows indicating radial 

faulting, gray arrow indication high ambiguity within a radial fault, and blue arrows 

showing features appear that in the SOM latent space and mixture model classification, 

but might go unnoticed in the seismic amplitude or Sobel filter similarity. 
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Figure 4.11. West trending radial faulting. A) Seismic amplitude, B) Sobel filter 

similarity, C) mixture model clusters D) SOM latent space. On the horizon slice, the 

edge of the thrown-up block is characterized by the 1st cluster, and the edge of the 

thrown-down block is characterized by the 8th cluster. 
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CHAPTER 5 

CONCLUSIONS 

 

When using self-organizing maps, the number of clusters is determined by a 

subjective interpretation of the number of distinct colors the interpreter sees. The 

probabilistic formulation of GMM allows for the number and shape of clusters to be 

determined from a more quantitative viewpoint via a Bayesian framework by considering 

a model’s likelihood and complexity. Although the number of clusters can be evaluated, 

geophysical features may be represented by more than one cluster, especially when 

evaluating these clusters in terms of architectural elements. The representation of 

geophysical features by more than one cluster is often due to the difference between 

mathematical clusters and interpretational features. In addition, there is no reason for a 

natural cluster to be expressed by a Gaussian distribution. Due to the flexibility of GMM, 

a single natural cluster may be approximated by more than one Gaussian distribution, 

requiring subsequent “clumping” to aid the interpretation. The cases where the Bayesian 

Information Criterion doesn’t decrease with the number clusters may be indicative of 

natural classes not being described well by a single Gaussian distribution. 

The classification of data vectors using posterior probabilities results in 

measurements of uncertainty and ambiguity. Co-rendering the classification with the 

uncertainty and ambiguity measurements can produce an intuitive map of unsupervised 

seismic facies. Although uncertainty can identify anomalies, ambiguity should also be 

taken into account to determine how meaningful the anomaly is.  
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Geophysics has often been described as the search for anomalies and GMMs can 

help identify and evaluate such features. Optimizing a GMM using a combination of the 

SEM an CEM algorithms seems to work better than the EM algorithm from a 

computational standpoint. For interpretation, the CEM algorithm and classification 

approach makes interpretation much simpler and straightforward because data vectors are 

assumed to belong to a single cluster. The covariance parametrizations don’t seem to 

affect the BIC as much as the addition of a new cluster and computation time can be 

reduced by only considering the unconstrained covariance matrix. However, singularities 

in the unconstrained covariance matrix can be difficult to deal with and a simpler 

parametrization might be considered. Ambiguity and uncertainty measurements highlight 

the strengths of GMMs as an interpretation tool. Plotting ambiguity along saturation, 

uncertainty along lightness, and the classification along hue on a hue-lightness-saturation 

color plot may improve the intuitiveness of the unsupervised seismic facies. 
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APPENDIX A: Definitions 

Ambiguity- A measure of uncertainty in the classification (e.g. a data vector that lies in 

between two GMM components would be ambiguous). Quantitatively defined in equation 2.5. 

See Bensmail et al. (1996). 

Classification- The assignment of data vectors to a certain cluster. Usually done by 

assigning a data vector to the cluster that has the highest posterior probability (equation 

2.4) (the NEM algorithm is an exception to this). 

Cluster- A subset of data vectors that are similar to each other in some sense. See 

Hathaway (1986). In this thesis, the data vectors assigned to a GMM component are 

evaluated as a cluster.  

Expectation-Maximization (EM)- A versatile algorithm used to find optimal estimates 

of the parameters of a GMM by finding a local maximum to the observed log-likelihood 

function (equation 2.7). See Appendix B and Dempster (1977).  

Likelihood- A relative measure to different parameter values. Sufficient to compare 

GMMs of similar complexity. See Edwards (1974). 

Mahalanobis distance- Measures how many standard deviations away a data vector is 

from a component of a GMM. See Mahalanobis (1936). 

Neighborhood Expectation-Maximization (NEM)- Special variant of the EM algorithm 

which considers spatial correlations of the data. See Appendix C. 

Uncertainty- A measure of how well a GMM describes a data vector; not to be confused 

with ambiguity. The Mahalanobis distance is a measure of uncertainty. 
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Z-score- A data vector where the population mean is subtracted and then divided by the 

population standard deviation. Used to condition the data initially. 
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APPENDIX B: Expectation-Maximization (EM) 

 The conventional expectation-maximization (EM) algorithm is an iterative 

method that finds a maximum likelihood or maximum a posteriori estimate. For a GMM, 

the EM algorithm finds the optimal values for the mixture model parameters, {𝜋𝑘, µk, 

Ck,}. The EM algorithm alternates between an E-step and an M-step to find a local 

maximum to the observed log-likelihood function. The E-step and M-step are repeated 

until the observed log-likelihood doesn’t increase significantly or some other 

convergence criteria has been met. If we let 𝜑(𝐱|µ, 𝐂) be a Gaussian distribution and 

𝑝(𝐱𝑛|ψ) be a Gaussian mixture density as defined in Chapter 2, the E-step and M-step 

can be described as follows: 

 E-step: Accumulate the N by K matrix of posterior probabilities, w,  

                                    𝑤𝑛,𝑘 =
𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)

 ∑ 𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)𝐾
𝑘=1

=
𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)

𝑝(𝐱𝑛|ψ)
                       (B.1) 

 M-step: For each cluster, k, update the mixture parameters, {𝜋𝑘, µk, Ck,}, using 

the posterior probabilities in the E-step. Denoting the update parameters to be 

{𝜋𝑘
+, 𝛍𝑘

+, 𝐂𝑘
+}, the update equations for an unconstrained covariance matrix 

become: 

                                     𝜋𝑘
+ =

∑ 𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)𝑁
𝑛=1  

𝑁
  ,                                              (B.2)               

                                   𝛍𝑘
+ =

∑ 𝑤𝑛,𝑘𝐱𝑛
𝑁
𝑛=1  

∑ 𝑤𝑛,𝑘
𝑁
𝑛=1

  , and                                                   (B.3) 

                                   𝐂𝑘
+ =

∑ 𝑤𝑘𝑛
𝑁
𝑛=1 (𝐱𝑛−𝛍𝑘

+)(𝐱𝑛−𝛍𝑘
+)T

∑ 𝑤𝑛,𝑘
𝑁
𝑛=1

 .                                       (B.4) 
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APPENDIX C: Stochastic Expectation-Maximization (SEM) and Classification 

Expectation-Maximization (CEM) 

 

The Classification Expectation-Maximization (CEM) and Stochastic Expectation-

Maximization (SEM) algorithms are like the conventional EM algorithm but with the 

addition of a C-step for CEM and an S-step for SEM. The C- and S-step of each 

algorithm defines a partition of the input data, with the mixture model parameters being 

updated for each partition. The CEM algorithm defines the partition using K-dimensional 

binary indicator vectors, 𝐳𝑛 = {𝑧𝑛1, 𝑧𝑛2, … 𝑧𝑛𝐾} for 𝑛 = 1 … 𝑁, where 𝑧𝑛𝑘 has a value of 

1 if and only if the data vector 𝐱𝑛 belongs to cluster 𝑘 (Biernacki et al., 2000). The CEM 

algorithm seeks to maximize the complete log-likelihood of ψ given by 

                                   𝐿c(ψ) = ∑ ∑ 𝑧𝑛𝑘log {𝜋𝑘φ(𝐱𝑛|𝛍𝑘, 𝐂𝑘)𝑁
𝑛=1 }𝐾

𝑘=1  .                        (C.1) 

Key components of the CEM algorithm include the:  

 E-step: Accumulate the N by K matrix of posterior probabilities, w,  

                       𝑤𝑛,𝑘 =
𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)

 ∑ 𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)𝐾
𝑘=1

=
𝜋𝑘𝜑(𝐱𝑛|𝛍𝑘,𝐂𝑘)

𝑝(𝐱𝑛|ψ)
                                    

(C.2) 

 C-step: Create K-partitions by assigning each xn to the cluster that 

provides the highest posterior probability according to the matrix w 

computed in the E-step. Formally this is done by using a K-dimensional 

latent variable, 𝐳𝑛, indicating the cluster to which each xn belongs. Let 𝑃𝑘 

denote the resulting partition for the kth cluster and Mk be the number of 

data vectors in the partition. In other words, 𝐱𝑛𝜖𝑃𝑘 if 𝑧𝑛𝑘 = 1, and Mk is 

the number of elements in 𝑃𝑘. 
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 M-step: For each cluster, k, update the mixture parameters, {𝜋𝑘, µk, Ck,}, 

with the respective partition defined in the previous step. Denoting the 

update parameters to be {𝜋𝑘
+, 𝛍𝑘

+, 𝐂𝑘
+}, the update equations for an 

unconstrained covariance matrix become: 

                                     𝜋𝑘
+ =

𝑀𝑘 

𝑁
  ,                                                        (C.3)   

                                   𝛍𝑘
+ =

1

𝑀𝑘
∑ 𝐱𝑛𝐱𝑛𝜖𝑃𝑘

  , and                                    (C.4)  

                                   𝐂𝑘
+ =

1

𝑀𝑘
∑ (𝐱𝑛𝐱𝑛𝜖𝑃𝑘

− 𝛍𝑘
+)(𝐱𝑛 − 𝛍𝑘

+)T .            (C.5) 

The SEM algorithm is identical, except that the C-step is replaced by the S-step: 

 S-step: Create K-partitions by randomly assigning each xn to a cluster 

using the posterior probabilities in the matrix generated from the E-step  

The EM-based algorithms find a local maximum to a log-likelihood function, and may 

provide suboptimal solutions. The SEM algorithm helps to avoid these sub-optimal 

solutions by reducing the dependence on initialization. However, since the S-step is 

random, the partition it creates is also random such that point-wise convergence cannot 

be guaranteed. For this reason, the number of SEM iterations are set to be a large fixed 

number, and the iteration with the highest complete log-likelihood, 𝐿c(ψ), is selected as 

the best model. To make the final result more deterministic, the resulting SEM model is 

used to initialize the CEM algorithm which then gives a final partition and GMM. 
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APPENDIX D: Neighborhood Expectation-Maximization (NEM) 

 

 Learning of a GMM using the EM algorithm is a purely statistical construct and 

doesn’t consider spatial correlations. In general, facies are expected to be at least laterally 

continuous to some extent. To account for spatial correlations of the latent space the 

Neighborhood expectation-maximization (NEM) algorithm can be implemented.  The 

conventional EM algorithm can be viewed as a variant of coordinate descent on a certain 

objective function,  

                          D(𝒘, ψ) = ∑ ∑ 𝑤𝑘,𝑛[log {𝑁
𝑛=1

𝐾
𝑘=1 𝑤𝑘,𝑛} − log {𝜋𝑘φ(𝐱| 𝛍𝑘, 𝐂𝑘)}]    (D.1) 

where 𝑤𝑘,𝑛 are the elements of the responsibility matrix, 𝒘 (Hathaway, 1986). Ambroise 

et al. (1996) introduced a regularization term to take into account the spatial information 

of the data, 

                                              G(𝐰) =
1

2
∑ ∑ ∑ 𝑤𝑖𝑘 ∙ 𝑤𝑝𝑘 ∙ 𝑣𝑖𝑝

𝑁
𝑝=1

𝑁
𝑖=1

𝐾
𝑘=1                               (D.2) 

where 𝑣𝑖𝑝  are the elements of a N x N “neighborhood matrix”, 𝐯. The new objective 

function then becomes 

                                                        U(𝐰, ψ) = D(𝐰, ψ) + β ∙ G(𝐰)                                    (D.3) 

where β ≥ 0 and determines the weight of the spatial term, G(w). The “neighborhood 

matrix”, 𝐯, for this application has been chosen to be 

                                                     𝑣𝑖𝑝 = {
1            if 𝐱𝑖 and 𝐱𝑝 neighbors

0                                             else
,                         (D.4) 

 and 𝐱𝑖  and 𝐱𝑝 are neighbors if they both lie within a user-defined window. The benefit of 

the NEM algorithm is that the responsibilities of neighboring voxels are considered when 

deciding which mixture component a voxel belongs to. 

 


