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Abstract 

Over the past several decades, robots have been used extensively in environments that 

pose high risk to human operators and in jobs that are repetitive and monotonous. In 

recent years, robot autonomy has been exploited to extend their use in several non-trivial 

tasks such as space exploration, underwater exploration, and investigating hazardous 

environments. Such tasks require robots to function in unstructured environments that 

can change dynamically. Successful use of robots in these tasks requires them to be able 

to determine their precise location, obtain maps and other information about their 

environment, navigate autonomously, and operate intelligently in the unknown 

environment. The process of determining the location of the robot and generating a map 

of its environment has been termed in the literature as Simultaneous Localization and 

Mapping (SLAM). Light Detection and Ranging (LiDAR), Sound Navigation and 

Ranging (SONAR) sensors, and depth cameras are typically used to generate a 

representation of the environment during the SLAM process. However, the real-time 

localization and generation of map information are still challenging tasks. Therefore, 

there is a need for techniques to speed up the approximate localization and mapping 

process while using fewer computational resources. This thesis presents an alternative 

method based on deep learning and computer vision algorithms for generating 

approximate localization information for mobile robots. This approach has been 

investigated to obtain approximate localization information captured by monocular 

cameras. Approximate localization can subsequently be used to develop coarse maps 

where a priori information is not available. Experiments were conducted to verify the 

ability of the proposed technique to determine the approximate location of the robot. The 
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approximate location of the robot was qualitatively denoted in terms of its location in a 

building, a floor of the building, and interior corridors. ArUco markers were used to 

determine the quantitative location of the robot. The use of this approximate location of 

the robot in determining the location of key features in the vicinity of the robot was also 

studied. The results of the research reported in this thesis demonstrate that low cost, low 

resolution techniques can be used in conjunction with deep learning techniques to obtain 

approximate localization of an autonomous robot. Further such approximate information 

can be used to determine coarse position information of key features in the vicinity. It is 

anticipated that this approach can be subsequently extended to develop low-resolution 

maps of the environment that are suitable for autonomous navigation of robots.  
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Chapter 1: Introduction 

1.1 Motivation and Problem Statement 

One of the important abilities for a mobile robot is the ability to navigate 

autonomously through regions of interest and carry out a variety of tasks. Such capability 

requires the robot to be able to determine its current location and then navigate to a desired 

location using maps of the environment. In unknown or partially known environments, 

where accurate information about the surrounding objects and free paths for navigation 

are not available, the robot has to be able to develop detailed maps of its surroundings 

and then use that information to navigate to a specified location. Given an environment 

for the robot to traverse, finding open space and a path to navigate through are two 

significant challenges in robot mobility. These problems have traditionally been 

discussed in the literature as ‘Findspace’ and ‘Findpath’ problems [25]. Early research on 

‘Findspace’ and ‘Findpath’ can be traced back to a paper by Lozano-Pérez et al. titled 

‘Spatial planning: A configuration space approach’ [25]. Later, researchers started 

exploring various other ways to find optimal trajectories for autonomous robots to 

navigate in an environment [40-45]. These approaches assume that detailed information 

about the environment is available and that the robot has precise knowledge of its location 

in the environment. However, tasks such as search and rescue often require the robot to 

operate in completely unknown environments, where such information is not available or 

the information is changing in a dynamic manner.  

In the past, extensive work has been carried out for planning and deploying 

autonomous robots for various tasks [35-45]. Approaches utilizing virtual force fields, 

artificial potential fields, and computer vision were used to help the robot navigate 
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through environments. In the virtual force field method, obstacles are assumed to have 

fields attached to them that causes a virtual repulsive force to act on the robot, while the 

target has virtual attractive force that attracts the robot to the goal [26]. This method 

allows the robot to avoid the densely cluttered and unexpected obstacles autonomously, 

while navigating towards the goal. The artificial potential field was first proposed by 

Khatib et al. [27]. Repulsive potential fields are assigned around obstacles which need to 

be avoided, and attractive potential field is assign to the target. The potential energy at 

any location in the environment is inversely proportional to the square of the distance 

from the source of the field. The robot navigates along the lines of force in the direction 

of decreasing potential energy, and is termed as a gradient descent search method. Both 

of the above methods were used with an assumption that the initial position and 

orientation of a robot, location of the goal, and a set of obstacles located in workspace are 

known. Vision based approaches are therefore being proposed in the literature to address 

this shortcoming. 

Horswill et al. were one of the first researchers to propose a vision-based behavior 

to help a robot traverse through an obstacle-filled environment [28]. Vision based 

approaches were also refined to develop maps of the environment in real-time to enable 

the robot to navigate to a target location. Once the map is formed, the robot can find an 

obstacle-free path to the target. For example, rovers used for exploration of Mars can 

build a map to navigate autonomously in a highly unknown environment. There are 

various methods to create a map and determine the location of the robot. Simultaneous 

Localization and Mapping (SLAM) is a popular approach to build a map in real-time by 

keeping the track of the position of the robot from the reference location that utilizes 
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sensors such as Light Detection and Ranging (LiDAR) sensors, Sound Navigation and 

Ranging (SONAR) sensors, and depth cameras [48]. In this approach, new spatial 

information is obtained as the robot traverses the environment and this information is 

used to build the map in an incremental manner. This method is discussed in greater detail 

in Chapter 2 of this thesis.  

SLAM finds applications in many scenarios in which a prior map is not available 

and needs to be developed. The SLAM community has made significant progress over 

the last 30 years [29]. According to Cadena et al. [29], the first twenty years of the SLAM 

problem can be termed as the classical age (1986 – 2004), and the subsequent period is 

known as the algorithmic-analysis age (2004-2015). Probabilistic methods for SLAM was 

introduced at the IEEE Robotics and Automation Conference in 1986. Peter Cheeseman, 

Jim Crowley, and Hugh Durrant-Whyte published two seminal papers on probabilistic 

SLAM after their discussion in that conference. The systematic historical review of the 

classical age of SLAM problem was covered by Durrant-Whyte and Bailey et al. in [29, 

30]. The significant contribution of the SLAM community during the classical age (1986-

2004) was the probabilistic foundations for SLAM, including approaches based on 

Extended Kalman Filter, Particle Filters, and Maximum Likelihood Estimation. The 

algorithmic-analysis age saw the study of fundamental properties of SLAM like 

convergence and consistency. Some of the SLAM techniques can increase the 

computational cost and can be slow depending on the complexity of the environment. 

Some of the prominent SLAM techniques that use advanced sensors such as Light 

Detecting and Ranging (LiDAR) sensor do not perform well in the presence of the glass 

walls in the environment, whereas other techniques using depth cameras have limitations 
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when used outdoors [61]. Moreover, depth cameras require significant computational 

resources and can slow down the real-time mapping and navigation process [61]. For the 

time-constrained applications such as search and rescue, these techniques may not be 

adequate. This thesis presents an alternative method based on deep learning and computer 

vision algorithms for obtaining approximate localization information in an environment. 

1.2 Scope of this Thesis 

This thesis aims to collect indoor images and use them to train a machine learning model 

to augment localization and map information in an unknown or partially known 

environment.  The location of the robot is determined both qualitatively as well as 

quantitatively. The qualitative location is denoted in terms of the location in a building, 

floor of the building, and interior corridor. The quantitative location is reported in terms 

of cartesian coordinates of a reference frame. The approximate location is then used to 

compute the location of key features in the environment of the robot as a first step towards 

developing a coarse map of the environment. The following are the key steps in the 

process adopted for this thesis:  

• Three different types of indoor scenes, namely buildings, floors, and corridors, 

are considered for the localization problem. Images from different floors, 

corridors in buildings are collected to create an initial dataset. Images taken at 

different time and under different lighting conditions are used to examine the 

robustness of the process.  

• The dataset images are then divided into three parts: a training set, validation set, 

and test set. The training set is used to develop a machine learning model using 

high computing GPU nodes and this model is later validated and tested. These 
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images are then grouped to avoid overfitting of the model during training of the 

classifiers. For example, images, that are taken on days - one, two, and four, could 

be a part of training set; while, images taken on days - three and five, could be a 

part of validation and testing set respectively. There is a high probability that two 

consecutive frames of a video could be a part of the training and as well as the 

validation set if they are chosen randomly. This can result in overfitting of the 

machine learning models and can be avoided by appropriately grouping of the 

images.  

• A convolutional neural network (CNN) is implemented and trained using the 

datasets developed in the previous step. 

• The trained models will be evaluated based on the accuracy that is achieved. These 

models are trained using Amazon Web Services (AWS) and FloydHub virtual 

GPU nodes. 

• An implementation of convolutional neural network will be evaluated to address 

its suitability to the rapid localization problem. 

• Furthermore, the use of planar markers to improve the speed of the localization 

process will be investigated.  

This thesis is presented in three parts. Different types of localization and mapping 

techniques, their advantages and disadvantages, and proposed improvement are addressed 

in the first part. The training and evaluation of a state-of-the-art of machine learning 

model is presented in the second part of the thesis. In the third part, the use of planar 

markers as landmarks/features for localizing in the environment will be considered.  
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1.3 Anticipated Contributions of this Thesis 

One of the primary goals of this thesis is to simplify localization by using a 

machine learning model and a computer vision algorithm. It is anticipated that the 

technique proposed in this thesis will provide both qualitative and quantitative 

localization information of the robot. Thereafter, this information can be used to develop 

coarse maps where a priori information of the environment is not available. The low-

resolution map can reduce the computational complexity for some tasks where low level 

details of surroundings are sufficient for navigation. As result, a robot can produce map 

representations that are flexible, and whose complexity can vary depending on the task at 

hand.  

1.4 Organization of this Thesis 

This thesis is organized as follows. 

• Results from literature on localization and mapping techniques using visual and 

non-visual sensors are discussed, and their application to robot navigation is 

presented in Chapter 2.  

• Convolutional neural network, a popular deep learning algorithm for visual 

recognition, is considered and its application to localization is presented in 

Chapter 3.  

• Experimental results obtained using low cost low resolution monocular cameras 

for localization are also discussed in Chapter 4  

• Conclusions and scope of the future work are covered in Chapter 5. 
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Chapter 2: Localization and Mapping for Indoor Autonomous Robots 

2.1 Localization and Mapping Techniques 

Mapping is the process of creating symbolic representations of significant features 

in an environment. Mobile robots can use this representation of an environment to plan, 

navigate and/or carry out specific tasks. These representations or maps are needed when 

accurate absolute position is needed. Precise location information of a robot on a map is 

needed to be tracked when the robot is tasked to go to the coordinates of a specific place 

on a map and this is known as Localization [46]. A solution to modeling an environment 

and tracking the location problems is to localize and map the unknown environment 

simultaneously. The primary objective of the Simultaneous Localization and Mapping 

(SLAM) is to localize the robot from an initial location and start exploring unknown 

environments from that reference location in pursuit of an accurate map generation. In 

this manner, an autonomous robot can create maps of the unknown environment through 

indirect interactions with its surrounding objects. Full and Online SLAM are two main 

forms of SLAM [52]. Full SLAM involves estimating the entire path; while Online 

SLAM seeks to recover present robot location, instead of the entire path [52]. Online 

SLAM algorithms are usually incremental and process one data item at a time. In 

literature, the online SLAM methods are typically implemented using filtering techniques 

such as Extended Kalman Filter, Particle Filter. Researchers have also classified SLAM 

based on the method used, for example Feature-based vs. Volumetric SLAM, Topological 

vs. Geometric SLAM, Static vs. Dynamic SLAM, Single-robot vs. Multi-robot SLAM, 

and Active vs. Passive SLAM. Brief explanation of each method is given in the next 

paragraph. 
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In Volumetric SLAM, the environment is sampled at a high resolution to allow 

for photo-realistic representation of surroundings [57]. Feature-based SLAM extracts 

sparse features or landmarks from the sensor data stream [56]. Feature-based SLAM 

methods tend to be efficient, but the spatial representation that is obtained may be poorer 

than volumetric SLAM as extraction of feature discards other useful information from 

the measurement [52]. Topological SLAM represents the qualitative description of the 

environment, and in addition to spatial information, depicts the relationship between 

primary features [58]. Geometric SLAM considers the quantitative description of the 

environment. For example, the distance between two points in a map could be in units 

and feet when using Topological SLAM and Geometric SLAM respectively [52]. Static 

environment based SLAM algorithms assume that the environment does not change over 

time, while dynamic SLAM assumes that changes may occur in the environment. The 

single-robot SLAM method considers using only one robot to construct the map of the 

environment. The multi-robot SLAM method considers using more than one robot to 

construct the SLAM map. The multi-robot SLAM method is quick but coordinating the 

measurements between robots is a difficult task. The multi-robot based SLAM method 

finds uses in large and complex spaces [59]. In passive SLAM method, a human operator 

or some other entity controls the robot during the map generation process. Once the map 

is generated, the robot can navigate autonomously. In active SLAM method, the robot 

controls its movement and actively explores the environment independently.  

In a broad sense, the various solutions to the SLAM problem can be categorized 

as follows: Feature-based SLAM, Pose-based SLAM, and Appearance-based SLAM. The 

feature-based solution is the most popular approach to the SLAM problem [31]. It 
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searches for a predefined feature or landmark in an environment to estimate the current 

robot pose with respect to this feature or a landmark. Based on the types of sensor, various 

filtering techniques are used in conjunction with SLAM. As reported in Zamora et al. 

(2013), the estimated state in EKF-SLAM includes the position and orientation of the 

robot and the location of all landmarks in the environment. However, the biggest 

shortcoming of EKF‑SLAM is that the computational time that is required is a function 

of the square of the number of features [1]. The estimation accuracy of Graph SLAM is 

better than other SLAM methods, but comes at an increased computational cost and runs 

slower in real time. Furthermore, Zamora et al. show that while the PF SLAM is very 

efficient for nonlinear and non-Gaussian systems, the computational cost is prohibitive 

and the results are inconsistent when used in long-term autonomous applications [1].  

One of the popular techniques to address the SLAM problem models the poses of 

a robot as nodes in a graph and the spatial information gleaned from the 

sensors/observations are used to represent the edges. Graph based techniques are then 

used to determine paths without prior knowledge of the maps, thereby making the 

techniques suitable for navigation. However, the complexity of the problem increases as 

the number of nodes in the graph increase. 

The last method, appearance-based system, uses the appearance information of 

the environment to localize and map the world. This information can be divided further 

into visual and spatial information of the environment. The visual appearance method 

augments the previous metric-based method by detecting the loop closure and previously 

visited places. While appearance-based, as opposed to feature-based, methods are able to 

close loops between day and night sequences or between different seasons, the resulting 



10 

loop closure is topological in nature [31]. The spatial appearance based method uses range 

finders (non-visual sensors) to identify the location and the loop closure. Loop closure is 

the problem of recognizing a previously visited location by a robot. Current approaches 

rely heavily on vehicle pose estimates to prompt loop closure [62]. The unclear loop 

closure is one of the major issues when applying this method to real-world applications. 

In next subsections, SLAM methods using visual and non-visual sensors are explained. 

The focus of the thesis is estimating the approximate location and recognizing the scene 

through monocular images. Later, the generated map will be used to augment high 

resolution map of the environment.  

2.1.1 Localization and Mapping using Non-Visual Sensors 

Exploring an unknown environment is important as the autonomous robot should 

be able to execute its tasks in a safe manner. There are several sensor technologies such 

as range sensors, absolute position sensors, environmental sensors, and inertial sensors 

that can be used detect objects and structure of an environment. With the use of these 

sensors, a robot can perform path planning and navigate its surroundings without altering 

or disturbing the environmental objects. An example of range sensor (LiDAR) is shown 

in Figure 2.1 (a). This sensor emits a pulsed ray of light and measures the distance based 

on the time-of-flight of the reflected beam from the object. Global Positioning Systems 

(GPS) sensor is one example of absolute position sensors that returns the absolute position 

of the robot in terms of longitude and latitude. The inertial sensor returns differential 

properties of the robot’s position and orientation, for example, acceleration. The inertial 

sensors are used to assist an autonomous robot to control its motion through sensor 

feedback. These sensors are known as non-visual sensors as they return real-valued data 
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to portray that entire environment, and they are different from the perceived scene. This 

problem of recovering the environment from the sensor data can be described as an 

inverse problem.  

 

       (a)                                         (b) 

Figure 2.1 (a) Hokuyo LiDAR (b) Mapped environment using LiDAR [33] 

 

A variety of sensor properties such as the speed of operation, error rate, 

robustness, computational requirements, power, weight and size requirements can be used 

to select the right sensor for a given application. Based on the application, correct sensor 

technologies are chosen. For example, 2D LiDAR and depth cameras do not work well 

outdoors; because sunlight can inundate the sensor data stream and introduce errors as 

they also use light rays to estimate the distance. Heavy sensors, like RGB depth cameras, 

are not useful for micro aerial vehicles. Therefore, there is a need for the usage of 

adequate sensors such as vision sensors that can sense and represent the environment 

better. 

2.1.2 Localization and Mapping using Visual Sensors 

Humans seem to navigate effortlessly with vision and odometry; it seems obvious 

to consider vision as a tool for navigation of autonomous robots. There are various types 
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of visual sensors that can be very helpful in solving the SLAM problem. As vision relates 

measurement to the scene structure, it seems obvious to place more emphasis on vision 

based sensors compared to non-vision based sensors. For example, the laser range sensors 

return the distance to the objects, and so the robot obtains a set of distance measurements 

as a function of the direction in which the laser sensor is pointed.  

Many autonomous robots use a camera as one of the imaging sensors that can 

record its field of view. However, for a given scene, a single perspective camera is not 

sufficient to determine the three-dimensional measurements of objects. A camera 

provides a two-dimensional array of points with respect to the field of view; and this two-

dimensional array can only provide the information of the direction and distance of the 

object from the camera. To get the full perspective and information about the third 

dimension, i.e. the depth of the point being measured, it is necessary to use stereo or 

trinocular cameras on a mobile robot. Now suppose the robot used a vision based sensor 

instead of a laser sensor, the perceived data is relatively easy to interpret for the human 

operator as can be seen in Figure 2.2. The stereo camera is being used to measure the 

relative depth information of the scene. This depth information can help an autonomous 

robot to avoid the static and dynamic obstacles in the environment effortlessly. Few 

drawbacks of using this stereo sensor are the amount of computation required and the 

high operational power requirements. Other sensors such as trinocular and 

omnidirectional cameras are also used to understand the environment in-detail as one of 

the problems with a standard monocular or stereo camera is the limited field of view that 

is available. Omnidirectional cameras resolve this issue and provide 360 degrees view of 
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an environment into a single image. However, they have similar drawbacks as stereo 

cameras. 

 

Figure 2.2 BumbleBee stereo camera and depth information [22] 

 

Autonomous robots like CoBots, shown in Figure 2.3, are deployed for a long-term 

autonomy with multiple depth cameras, monocular cameras, non-visual sensors like 

range sensors mounted on them. This robot can be expensive to deploy commercially as 

these sensors cost much higher.  

 

Figure 2.3 Autonomous Robots: CoBots, CMU [21] 

 

In recent years, autonomous vehicles are being commercialized. This effort 

motivates the researchers to come up with better solutions for object detection, 

segmentation, localization, and approximate the relative distances using low cost 

monocular or stereo cameras information. Figure 2.4 shows one latest effort in this 

research direction. The algorithm can localize the movable and relevant objects using a 



14 

single monocular image. Segmented objects based localization and planning can be very 

useful for outdoor robots to navigate using a RGB image sequence. Successful results of 

that work motivate the use of a monocular camera for localization and mapping in this 

work. This thesis is focused on using monocular image and state-of-the-art computer 

vision and machine learning algorithms to obtain approximate location information.   

 

Figure 2.4 Object segmentation using single monocular image [20] 

 

2.2 Related Work 

Work has been done as for many years towards the goal of extracting the 

information about the environment and storing in best possible way so that systems can 

operate autonomously. Biswas et al. proposed localization and navigation algorithms of 

the CoBots for long-term autonomy [21]. The CoBots interact with the real world every 

day and face many challenges as mentioned by Biswas. They use different types of visual 

and non-visual sensors to get the best estimate of the robot’s state and state of the mapped 

environment. CoBots are deployed with very efficient sensors such as range sensors, 

ultrasonic sensors, high-precision wheel encoders, stereo and depth cameras. However, 

as mentioned [21], the laser rangefinders and depth cameras on the CoBots are rated only 

for indoor use and are not rated for operation in direct sunlight. In some parts of their 
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mapped environment, at some particular seasons and times of the day, the CoBots do 

encounter direct sunlight. The direct sunlight saturates the sensor measurements, causing 

them to return invalid range readings. They chose to err on the side of caution in this case, 

and when the CoBots detect invalid range or depth readings, they come to a stop and wait 

[21]. If the sensors do not recover from saturation within 5 minutes, the CoBots email the 

research group with the last estimated location for the human support. Moreover, due to 

high power requirements and size requirements, this robot can only be used to validate 

the research algorithms and cannot be deployed commercially as a service robot. 

Furthermore, glass corridors and heat radiators are invisible for these CoBots which are 

very common issues for all the autonomous robots. The glass walls are invisible for both 

laser ranger finders and depth cameras as depicted in Figure 2.5. The radiators being 

poorly reflective, are invisible for a depth camera but partially visible to laser range 

sensors. 

 

Figure 2.5 CoBots between glass walls [34] 

 

In these events, our proposed work can resolve both issues by passively interacting with 

these places which can determine approximate localization information. 
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Chen et al. describe door recognition algorithm for visual based robot navigation 

using the state-of-the-art machine learning technique in the paper [3]. They use this 

algorithm to detect the presence of doors in an indoor environment and identify five types 

of spatial relationship between the robot and the door [3]. Later, they used the presence 

of the door as the localization information to navigate the corridor. However, their model 

would fail in several scenarios like a fully opened door, no door corridor, transparent 

door, or occluded door. Therefore, this algorithm in which authors localize and navigate 

a robot by detecting an object like a door cannot be applied to all settings. For fully 

autonomous navigation systems, there is a necessity of map generation using similar 

imaging sensors used for the door detection. Using different type of sensors like non-

visual and visual sensor while performing map building and navigation task can increase 

computational cost. The next chapter describes one state-of-the-art machine learning and 

computer vision algorithm that can be useful for monocular camera based localization, 

mapping, and navigation.  
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Chapter 3: Deep Convolutional Neural Networks for Indoor Scene 

Recognition 

3.1 Introduction to Scene Recognition 

Computer vision is an interdisciplinary field that aims to provide capabilities like 

the human visual system to a computer [50]. Computer vision is concerned with the 

extraction and understanding of useful information from an image or a sequence of 

images. This useful piece of information termed as a feature in the literature. These 

features could be a specific structure of an image like points, edges, regions, shapes, etc., 

or could be the color of an area within some specific boundaries. These features are used 

to develop object detection algorithms that recognize and localize objects in an image. 

For example, one of the feature detection algorithms is the edge detection algorithm [51] 

that is depicted in Figure 3.1. Figure 3.1 (a) shows some typical objects in the view of the 

robot and the edges of the objects detected by the algorithm are shown in Figure 3.1 (b). 

 

(a)                                          (b) 

Figure 3.1 (a) Parts image (b) Canny edge detection [51] 

 

Feature detection algorithms are also useful for scene recognition tasks. In real 

world images, objects are depicted in different contexts. For example, automobile 

showroom images and highway images contain cars but they are completely different 
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scenes. Therefore, recognition of the scene cannot be performed solely based on the 

objects the scene contains. In literature, a group of similar context images for a given 

application is known as a class. For the car model recognition task, Toyota Camry and 

Corolla are two different classes; whereas, for the car manufacturer recognition task, 

Toyota cars and Honda cars are two distinct categories (classes). Therefore, recognizing 

only objects in a scene cannot help in the classification. Furthermore, if the images are 

under all kinds of variations such as lighting, viewpoints, partial occlusion, then the 

recognition task can become significantly harder. 

Scene recognition using computer vision is an open-ended and challenging 

problem. While there have been several technological advances in image capture, 

processing, and analysis, there are still many challenges to be addressed in vision-based 

navigation. One of those challenges is the extraction and understanding of scene and 

context information from images. Most context and scene understanding algorithms that 

work well for outdoor images perform very poorly in indoor conditions. Several 

researchers in computer vision have used images ranging from outdoor landscapes to 

indoor spaces to develop algorithms for scene recognition [5, 6, 7]. While the accuracy 

rate is acceptable for some outdoor space classification tasks, recognizing indoor spaces 

is still a challenging task due to similar image features across different classes and huge 

feature variation within a class [8]. The main issue is that while the high-level features 

can well characterize some indoor scenes (e.g. corridors, halls), others (e.g. library, 

laboratory, coffee-shop) are better described by the objects they contain. Furthermore, 

there still exists the same challenges like lighting condition, object orientation, object 

occlusion, camera parameters, etc. for both indoor and outdoor categories.  



19 

When a computer stores an image, it stores a 2D or 3D array of pixel values in 

memory. Grayscale image can be represented as a 2D array; while, color image can be 

represented as a 3D array. Each of the array element is given a value from 0 to 255 which 

describes the pixel intensity at that pixel location. One example of the effect of 

illumination can be seen in Figure 3.2. Figure 3.2 (a) and 3.2 (b) depict two frames from 

a sequence and Figure 3.2 (c) is the absolute difference between the frames (i.e., arrays). 

As seen in Figure 3.2 (c), there are significant image information changes in just two 

consecutive frames of the sequence for the same object which increases difficulty level 

of object detection or scene recognition task.   

 

(a)                     (b)                        (c) 

Figure 3.2 Two frames from sequence, (a) and (b), and their difference, (c) [8] 

 

3.1.1 Traditional Computer Vision methods 

 In last decade, researchers had developed several computer vision models such as 

the Bag-of-Words (BoW), Spatial pyramid, Histogram of Oriented Gradients (HOG) for 

visual object/scene recognition problems [54]. The general block diagram of traditional 

computer vision based image classifier is depicted in Figure 3.3. The bag-of-words model 

represents an image as an unordered collection of local patches. These patches are treated 

as words in a document. The bag-of-words model is based on a codebook of visual words 
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which is a fixed set of visual features. The process generates a histogram of visual word 

(feature) occurrences out of an image. The object is classified using probabilistic models 

based on the occurrence of these features/patches of an image [53].  These histograms are 

used to train a classifier using machine learning algorithm such as SVM. One of the 

disadvantages of the bag-of-words model is that it disregards the spatial relationships 

among the image patches.  

 

Figure 3.3 Traditional Image Classifier  

 

 Feature detection is a low-level image processing operation that is used to solve 

many computer vision tasks. The most popular feature descriptor is the Histogram of 

Oriented Gradients (HOG) feature descriptor [54]. In the first step, HOG algorithm 

extracts the HOG descriptors from the samples of positive image set of the object(s). In 

the second step, the algorithm extracts the HOG descriptors from the samples of negative 

image set of the object that does not contain the object to be detected. In practice, the size 

of the negative image set must be large compared to positive image set. In the third step, 

a machine learning based classifier such as the linear support vector machine algorithm 

is trained using both positive and negative image sets to detect the object. The support 

vector machine algorithm is a popular machine learning algorithm published by Vapnik 

et al. in 1995 [12]. The HOG can be seen as an extension of the scale-invariant feature 
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transform (SIFT) descriptor [55] from a circular interest region to a rectangular detection 

window. For a larger object detection dataset, HOG method needs to be performed for 

every object class in order to extract various features from each class [50].  

After many years of intense research in this direction, researchers have developed 

various feature extraction and description algorithms. All the above methods use feature 

description algorithm such as SURF, SIFT, and HOG to extract unique features [50]. It 

is very challenging to hand-code these features for the problem of object classification, 

scene understanding, and activity prediction which use large image dataset [2]. 

Furthermore, if there is diversity within object or scene category, then it is almost 

impossible to work with hand-coded feature detection algorithms.  

The computer vision algorithms such as HOG and SIFT have been used by many 

researchers for very complex computer vision tasks like ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) [60]. In the ImageNet 2012 challenge, Alex et al. [4] 

came up with the machine learning algorithm that is known as a convolutional neural 

network (CNN) to classify 1.2 million images. Using high computing resources and the 

convolutional neural network algorithm, they were able to improve the accuracy of image 

recognition by over 10% in comparison with traditional computer vision techniques 

existing at that time. Soon then after, artificial neural network based methods found 

widespread use in complex computer vision tasks. The difference between the traditional 

algorithms and the CNN algorithm is the absence of hand-coded feature detection and 

descriptor block of Figure 3.3. Rather CNN learns the characteristics of the objects during 

the training (learning) phase of the classifier. AlexNet convolutional neural network 

architecture was based on LeCun et al. architecture which was published in 1998 as 
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Gradient-Based Learning Applied to Document Recognition [9] and is depicted in Figure 

3.4. This neural network structure was used to recognize handwritten digits initially and 

was not widely used due to its dependence on high-speed computing power necessary for 

the algorithm to execute in real time. The input to the neural network is a handwritten 

digit image and the output is the predicted digit. One of the advantages of this architecture 

is that it considers the spatial relationships among the image patches that was a major 

issue in the BOW method. The intermediate layers are known as convolutional and 

pooling layers that are explained later in this Chapter 3. Due to developments of GPUs in 

last decade, the high computing power of modern day GPUs is now sufficient to train this 

convolutional neural network model. The convolutional neural network algorithm for 

scene recognition problems like buildings classification, floor classification, and corridor 

classification is considered in this thesis. To recognize the scene and location information 

using a trained convolutional neural network, images were collected at different time and 

locations which is covered in the subsequent section. A brief introduction on an artificial 

neural network is covered in Section 3.3.  

 

Figure 3.4 LeNet-5 Convolutional Neural Network Architecture [9] 
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3.2 Data Collection 

Among the buildings on the University of Oklahoma (OU) main campus are 

Carson Engineering Center (CEC), Felgar Hall (FH), Devon Energy Hall (DH), 

Engineering Laboratory (EL), Sarkeys Energy Center (SEC), and Rawls Engineering 

Practice Facility (REPF). Figure 3.5 shows the map of the main buildings which we used 

in our experiments. Based on the maps of OU’s buildings and corridors, we considered 

capturing images of corridors of DEH, FH, and CEC for our 1st experiment. In our second 

experiment, we considered capturing indoor pictures of five floors’ of DEH. DEH is 

shown in Figure 3.6. In third experiment, we considered capturing images of corridors of 

fourth floor in DEH. 

 

Figure 3.5 OU Engineering Main Campus Map 
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Figure 3.6 Devon Energy Hall, University of Oklahoma, Norman 

 

We took videos using a commercial SONY digital still camera which has 30mm 

wide-angle lens and generates more stable, clear and high definition video data. 

Considering the intensity variance of ambient light inside the buildings, we captured 

several sets of data at different times of the day. The camera was hand held at about 1 

meter above the ground to keep the camera’s shooting angle at the mobile robot level. 

We also gave sufficient spatial variance to the viewing angle of the camera, to produce a 

detailed dataset regarding mobile robot’s perspective. As shown in Figure 3.7, each row 

contains sample training images of each floor taken at a different time in Devon Energy 

Hall (DEH).  
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(a) First floor of DEH 

 

(b) Second floor of DEH 

 

(c) Third floor of DEH 

 

(d) Fourth floor of DEH 

 

(e) Fifth floor of DEH 

Figure 3.7 Sample images of five floors of DEH 
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For the building-level data collection, the experimenter made several trips 

walking around each segment while shooting an indoor scene using a monocular camera. 

These multiple trips were made at different times to include all possible lighting 

conditions in the dataset. 32 videos are recorded for the first experiment. For the floor-

level data collection, the experimenter walked in the centric position of each corridor, 

shooting the corridors as if the mobile robot would capture. 50 videos were recorded for 

the floor-level image classification problem. The images required for training a machine 

learning algorithm were extracted from those videos. The whole procedure includes four 

steps:  

• Extract images from all frames of the video and resize to 240×240 pixels 

• Remove low quality blurred images 

• Split the dataset into two parts: 20% images from each category as 

validation dataset, and use the rest as training dataset 

• One more walk at the same location for the test dataset batch.  

 

3.3 Deep Convolutional Neural Network (DCNN) 

3.3.1 Artificial Neural Networks 

The human brain can be described as one complex neural network. Artificial 

neural networks are computing systems inspired by biological neural networks that 

represent a human brain. An important application of this artificial neural network is 

pattern recognition. A convolutional neural network (CNN) is type of artificial neural 

networks and has been used widely in classification tasks.  
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An artificial neural network (ANN) consists of simple processing nodes, the 

neurons, and weighted connections between those neurons as shown in Figure 3.8. The 

network can be further divided into multiple layers such as input layer, hidden layer(s), 

and output layer.  

 

Figure 3.8 Feedforward Neural Network [49] 

 

In the example given in Figure 3.8, there are 784 neurons in the input layer which hold 

the incoming data value. Each of the neurons is connected to every neuron in the hidden 

layer, and every hidden layer's neuron is connected to the output layer neurons through 

weights. All these neurons are activated by passing through a function known as an 

activation function. This neural network can be used for classification such as handwritten 

digits classification. It can classify after proper weights are assigned to each connection 

in the network. These weights are not randomly assigned, but learned by backpropagation 
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algorithm [11]. This algorithm backpropagates the errors at the output layer through all 

the intermediate weights to compute the gradients. Later, these weights are updated to 

decrease the error. These steps are repeated until the classifier exhibits minimal error. 

The feedforward neural network is useful for one dimensional data. For the input 

data, such as videos and images, feedforward neural network is not very efficient as it 

does not take into account of spatial structure and relations of the data [49]. In the next 

section, we describe convolutional neural network that uses a special architecture that is 

well-adapted to classify two-dimensional data such as images.  

3.3.2 DCNN Architecture  

A convolutional neural network (CNN) is a special type of neural network for 3D 

input that has an ability to learn unique features among various 3D data like images. A 

convolutional neural network leverages the ideas of local connectivity, parameter sharing, 

and pooling of hidden units. The idea behind the local connectivity is that each hidden 

unit is only connected to a subregion of the input. Without local connectivity, fully 

connected layers would have an unmanageable number of parameters as every neuron of 

a layer would be connected to all neurons of the next layer in two-dimensional. Parameter 

sharing is about sharing matrix parameters across other neighbor hidden units of the same 

layer. The units organized into the same ‘feature map’ share parameters. Thus, it extracts 

the same features at every position regardless of the object location within the image. 

There are three major types of layer in DCNN: convolutional layer, pooling layer, and 

fully connected layer as shown in Figure 3.9. 
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Figure 3.9 Simple convolutional neural network for 28x28 image size input and 10 

output classes with one convolutional layer and one pooling layer. [49] 

 

3.3.3 Convolutional Layers 

Convolutional layer operation is shown in Figure 3.10. There two different filter 

sets W0 and W1 (in red) are convolving with the input size of 7×7×3 pixels and taking 

stride of 2 in both the dimensions (in blue). The output volume of size 3×3×2 is shown in 

the green. The Convolutional layer parameters are as shown below: 

• Kernels = 2 (W0, W1) 

• Number of spatial filters per kernel = 3 ( W0[ :, :, i], i=0,1,2 ) 

• Stride = 2 

• Zero padding = 1 
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Figure 3.10 Sample Convolutional layer [10] 

 

That is, we have two filters of size 3 × 3, and they are applied with a stride of 2. Moreover, 

a zero padding of size one is being implemented to the input data. We do that so that we 

preserve as much information as possible in first layers of the network. Therefore, the 

output layer size has spatial size (5 - 3 + 2)/2 + 1 = 3. In Figure, the 3 × 3 O[:,:, 0] matrix 

is the output after convolving W0 filter with the input matrix. Each feature map forms a 

grid of features/kernels. It can be computed with a discrete convolution: 

𝑦𝑗 = 𝑅𝑒𝐿𝑈((∑𝑘𝑖𝑗 ∗ 𝑥𝑖) + 𝑏) 

Here, 𝑘𝑖𝑗 is the weight kernel, and 𝑥𝑖 is the 𝑖th channel of input. All the convolutional 

layers use the Rectified Linear Unit (ReLU) activation function. Often, the convolutional 

layer and ReLU layer are considered as one layer. It introduces invariance to the unit in 
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the previous layer. ReLU applies an elementwise activation function to the input image, 

such as the 𝑚𝑎𝑥(0, 𝑧) thresholding at zero as shown in Figure 3.11. 

  

(a)                                                                     (b) 

Figure 3.11 (a) Rectified Linear Unit and (b) Sigmoid activation function [10] 

 

Rectified Linear Units (ReLU) and Sigmoid functions are used as activation functions of 

the hidden layers’ and output layer’s neurons respectively. All the convolutional layers’ 

outputs were fed into Rectified Linear Unit nonlinearity function; while sigmoid 

activation function is used only for the fully-connected output layers. Later, the cross-

entropy error function is applied to the output of sigmoid activations to get the 

classification outputs where one means the correct predicted class and zero means the 

incorrect predicted class. 

3.3.4 Sub-sampling Layers 

There are two different ways to subsample the output of the convolutional layer: 

Max-Pooling and Mean Pooling. The pooling/subsampling introduces invariance to local 

translation. In this research, we use a max pooling layer between two convolutional 
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layers. Its purpose is to progressively reduce the spatial size of the representation to 

reduce the number of parameters and computations in the network. 

We use a pooling layer with filters of size 2 × 2 applied with a stride of 2 and 

down sampled every channel in the input by two, with the result of discarding 75% of the 

activations as shown in Figure 3.12 below. Max pooling can be used with different strides 

and sizes. The stride of p is standard pooling stride for the filter of size p × p. Therefore, 

we get the dimension reduction by the factor of p at the output of max pooling layer. 

 

Figure 3.12 Max pooling layer with 2 × 2 filter [10] 

 

The sample pooling operation on one of the corridor images is shown in Figure 

3.13. The 240 × 240 output from second convolutional layer was down sampled to 120 × 

120 at the output of the max pooling layer. Only four activation maps are shown in the 

image to demonstrate the sub-sampling operation. Every ‘max’ operation would, in this 

case, be taking a max over four numbers. Pooling operation does not cost any extra 

parameters, and therefore, the depth dimension remains unchanged. 
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(a) Input to Max Pooling Layer 

 

(a) Output of Max Pooling Layer 

Figure 3.13 Sample images (a) Input to Max Pooling Layer: 240x240 image size (b) 

Output of Max Pooling Layer: 120x120 image size 

 

The second type of sub-sampling layers is known as a mean pooling layer. As the 

name suggests, the mean/average pooling layer operates independently on every depth 

slice of the input and down-sample it spatially, using the ‘mean’ operation. Every ‘mean’ 

operation would, in this case, be taking an average of all the elements in 2 × 2 matrices 

(m=2): 

 

One of the first successful convolutional neural network architecture is shown in 

Figure 3.4. Here, the input is 2D gray-scale image. Layer C1 is a convolutional layer with 

six feature maps, and each feature map is generated by convolving 5 × 5 filter kernel to 
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the input image of size 32 × 32. The next layer is called a sub-sampling layer with similar 

six feature maps and of size 14 × 14. These maps generated by applying max operation 

on 2 X 2 patch on C1 feature maps. The last three layers are fully connected layers which 

make a feed-forward neural network. In our experiments, we use max pooling layers with 

filter of size 2 × 2. The performance of the DCNN highly depends on weight initialization. 

In our experiments, all the convolutional kernels were initialized normally distributed 

with zero mean and 0.1 standard deviations. When initializing all the neurons with zero 

mean and 0.5 (higher) standard deviation normally distributed, the network can converge 

to poor local minima, or it may not train very well. Keeping the small standard deviation 

is often preferred by neural network researchers to reduce the invariance shift [4]. The 

stride sizes for convolutional and pooling layer were one and two respectively. 

3.3.5 Regularization 

One of the important issues while training a neural network is overfitting. One of 

the regularization methods to avoid overfitting is known as the dropout [10]. The dropout 

technique was published by Srivastava et al. [10] and is shown in Figure 3.14 for a feed-

forward neural network.   

 

(a)                                  (b)  

Figure 3.14 (a) Standard Neural Network (b) After applying Dropout [10] 



35 

As shown in Figure 3.14, the major difference between the standard neural 

network and dropout neural network is that some neurons among the layers have been 

randomly set to zero in the dropout neural network type during the training phase. 

However, all the neurons remain in the network during validation and testing phase which 

causes the neural network to avoid overfitting in the test phase [10]. The dropout layers 

can be applied after pooling layers in the convolution neural networks. To train the 

dropout efficiently, we use a mini-batch learning method that divides the training images 

into small batches, and with each batch, we train the samples with Adaptive Moment 

Estimation (Adam) optimization algorithm [11]. Each time we take mini batches as a 

training input we randomly drop 30% of the neurons by applying the binary mask to all 

the hidden layers of CNN. The Adaptive Moment Estimation (Adam) optimization 

algorithm is one of the most popular methods that compute adaptive learning rates for 

each parameter. The algorithm takes the first moment (the mean) and the second moment 

(the uncentered variance) of the gradients into consideration while updating the weights. 

The moment coefficients β1 and β2 were set to 0.9 and 0.999 respectively as suggested 

in the paper [11]. The convolutional neural networks used for the scene recognition 

problem have more number of layers than the AlexNet [4]. We use multi-layer 

convolution neural network for buildings, floors, and corridor classification problems. 

Figure 3.15 shows the convolutional neural network architectures of the indoor scene 

recognition problems. Figure 3.15 (c) shows the color coding of all layer types - 

convolutional, pooling, fully connected (FC), and output layers. The DCNN architectures 

are made up of these layers as depicted in the figure. As depicted in the figure, the image 

is fed at the input block and the output of the predicted class is presented at the output 
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layer. The interconnections between the two blocks represent convolutional kernels or 

max-pooling matrices. In this work, we use 3x3 convolutional kernels for every 

convolutional layer. The third dimension (depth) of output of convolutional layer depends 

on the number of weight matrices used between the layers. For example, the output of the 

first convolutional layer is 240 x 240 x 16 which suggests that the sixteen convolutional 

kernels were used between input layer and first convolutional layer.  

 

  (a)                                              (b)                                        (c) 

Figure 3.15 (a) DCNN Architecture for Floor classification (b) DCNN Architecture 

for Building/Corridor classification (c) Color coding for layers 
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Training of the deep convolutional neural network was done on Amazon Web 

Services (AWS) and FloydHub using g2.2xlarge GPU instance which is parallel 

computing environment and FloydHub NVIDIA GPU respectively. The FloudHub server 

includes virtual GPU computing node with 1536 CUDA cores and 12GB RAM for video 

memory. Training takes approximately 3-6 hours to train each network. The discussions 

of the experimental results are given in the next section. 

3.4 DCNN based localization – Experimental Results 

3.4.1 Recognition of Buildings 

In this section, the results from training a building classifier is explained. We used the 

various indoor images of DEH, CEC, and FH to train a classification model. There were 

approximately 1795 training images, 504 validation images, and 329 testing images. The 

DCNN architecture is shown in Figure 3.15 (b) and it took about 3.5 hours to train on a 

12 GB FloydHub GPU. The first and most significant quantity to track while training a 

neural network is the loss function. As shown in Figure 3.16, this learning curve can give 

valuable insights into the amount of overfitting in the neural network model. The 

difference between the training loss value and validation loss value is known as the 

generalization error. This generalization error should decay over epochs for a perfect 

neural network model. The increase in the generalization error after certain epochs can 

be seen in the plot which represents the overfitting. 
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Figure 3.16 Building classifier learning curve (without Dropout) 

 

After applying dropout, the generalization error seems to be constant over epochs as 

shown in Figure 3.17.  

 

Figure 3.17 Building classifier learning curve (with Dropout = 0.2) 

 

The second significant quantity to track while training a classifier is the 

validation/training accuracy. Based on the validation accuracy, the parameters and depth 
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of the network were changed to achieve highest possible validation accuracy. The trained 

model achieved an 82% accuracy. As shown in Figure 3.18, the normalized confusion 

matrix of test images represents the network performance for classifying FH, DEH, and 

CEC buildings. The darker diagonal of the confusion matrix represents the better 

accuracy of the network model. As it can be seen, Felgar Hall and CEC building images 

are most easily distinguishable. This model can be used to find a location of a robot on 

the campus. This model is useful only when a robot is starting its operation without prior 

information about the location and is useful when the kidnapped robot problem occurs.  

 

Figure 3.18 Normalized confusion matrix of building classifier 

 

3.4.2 Recognition of Levels of a Building 

Floor/level classification neural network architecture is very identical to the building 

classification network except an extra pooling layer number four as shown in Figure 3.19. 

This makes the network smaller than the building classification in term of some layers 

and parameters. We used the various indoor images of five floors of DEH building to 

train a classification model. There were approximately 2245 training images, 720 
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validation images, and 540 testing images. The training took approximately five hours. 

The learning curve of the floor classifier is shown in Figure 3.19.  

 

Figure 3.19 Floor classifier learning curve (with Dropout = 0.2) 

 

The validation set of five floor-levels of DEH classifier achieved an approximately 60.7% 

accuracy. As shown in Figure 3.20, the normalized confusion matrix of test images 

represents the network performance for classifying five floors of DEH. X axis represents 

predicted labels and Y axis represents true labels. Each block contains two values: (1) 

number of images and (2) accuracy. For example, from total 78 images of level-one, the 

image classifier recognized 62 images correctly and 17 images incorrectly. This result 

exhibits an accuracy of approximately 79% for the level one of the DEH building. 

Moreover, there are 35 and 16 images of the third floor-level recognized as the fourth 

floor and fifth floor respectively. The network performance can be visualized with this 

confusion matrix as darker shade in diagonal represents the better accuracy of the model.  
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Figure 3.20 Normalized confusion matrix of floor classifier. X axis represents 

predicted floor/level and Y axis represents true floor/level. 

 

A sample of false detected images is shown in Figure 3.21 below. As it can be observed, 

there is no unique feature in the image that can be used to classify the floor efficiently. 

Moreover, being very close to the end of the corridor makes it a much more challenging 

problem to recognize the level and the location within the hallway. This issue is known 

as a fine-grained classification problem [7]. This issue arises when there are many feature 

similarities among the classes and also when there are many various features within the 
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class. This result suggests that the proposed DCNN architecture does not work well for 

some recognition tasks where visual features are very difficult to distinguish among 

classes. The network was trained multiple times to evaluate the consistency of the 

performance of the model. As expected, the results were the same or worst in almost 

every experiment. 

 

Figure 3.21 True: 2nd Floor. Predicted 3rd Floor 

 

As it can be seen from the confusion matrix, floor-level number two and three are very 

identical and difficult to classify with higher accuracies. On the contrary, floor-level 

number one and five can be easily recognized. Further improvement in the architecture 

can be evaluated such as increase in depth of the network or width of the network to 

evaluate the classifier accuracy. Furthermore, the training images can be taken uniformly 

and by a constantly moving robot to have a deep convolutional neural network to work 

better in detecting and finding unique features. To solve this issue, one could add a unique 

feature or landmark in the scene to make the floor-level recognition robust. In this 

scenario, passive markers can be placed in the scene to recognize the different floors and 

to localize robot’s position using monocular images. These artificial markers add unique 
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landmarks to the floors which can be used to recognize a floor-level using computer 

vision algorithms. 

3.4.3 Recognition of Corridors 

In this section, DCNN is trained to recognize the corridors of the floor which is one step 

closer to the finer localization of the indoor spaces for a mobile robot. This approach can 

help an autonomous robot to localize in the map using 240 x 240 RGB images. Images 

of the 4th floor of the Devon Energy Hall are captured to evaluate the performance of the 

network. The 4th floor can be divided into three corridors, and they are connected in C 

shape. In this section, we train the deep convolutional neural network to classify each 

corridor. The architecture of the DCNN remains unchanged, and so there are five 

convolutional layers followed by the pooling layers as depicted in Figure 3.8 (b). The 

only change is the number of neurons in the output layer. Here, the dataset is divided into 

six classes. Walking from East to West and vice versa are considered different categories 

in each corridor. Therefore, there two classes for each corridor of the 4th floor of the 

Devon Energy Hall. Figure 3.22 shows the confusion matrix of the experiment. The labels 

are as following 1A, 1B, 1C, 2A, 2B, 2C. Here, ‘1’ in the labels represents the walking 

direction from West to East; and ‘2’ accounts for the walking direction from East to West. 

A, B, and C represent West exit, Main, East exit corridors.  
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Figure 3.22 Normalized confusion matrix for corridor classifier 

 

Figure 3.23 shows the learning curve for this experiment. The best model based on the 

validation loss and validation accuracy from the experiment is later used to test on the 

test dataset.  
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Figure 3.23 Learning curve for corridor classifier 

 

The achieved test set classification accuracy is 88.7%. An experiment to classify all the 

corridors of multiple buildings can be performed to evaluate the neural network 

performance. 

3.4.2 Visual Representation of DCNN Layers 

The visualization of deep convolutional neural network layers can help to find better 

features and to improve and make changes in the architecture if there is a need. In this 

visualization, an image was fed into a network and the outputs at every layer were 

recorded. The visualizations of CNN layers are shown in Figure 3.24 to Figure 3.33 for 

one CEC building image. 
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Figure 3.24 Input image 

 

 

Figure 3.25 Output of Convolutional Layer 1 

 

 

Figure 3.26 Output of Convolutional Layer 2 
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Figure 3.27 Output of Pooling Layer 2 

 

 

Figure 3.28 Output of Convolutional Layer 3 
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Figure 3.29 Output of Pooling Layer 3 

 

 

Figure 3.30 Output of Convolutional Layer 4 
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Figure 3.31 Output of Pooling Layer 4 

 

Figure 3.32 Output of Convolutional Layer 5 
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Figure 3.33 Output of Pooling Layer 5 

 

3.5 Discussion and Conclusions 

Map generation and localization are important phases for the robot to 

autonomously navigate and accomplish the tasks. Generating localization maps using on-

board monocular cameras is not an easy task. The purpose of this experiment was to 

recognize the scenes within the building or even within the corridor by using monocular 

image or sequence of video frames to have fast and coarse localization. The experiment 

presented in this chapter can be useful to recognize approximate location of the robot by 

feeding an image to the Deep Convolutional Neural Network, and the algorithm can 

return the location information within milliseconds. Furthermore, the model size of the 

DCNN is within the range of 1 megabytes – 6 megabytes (MB). It requires sufficient 
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images to train the neural network model which can be generated using the SLAM 

technique explained in Chapter 4 or by manually labeling the images. For this experiment, 

the images were labeled and preprocessed manually. The drawback of this architecture is 

that it can only be used for coarse localization.  

The architecture performance can be further evaluated by training more number 

of images and using deeper and high-level network models like ResNet [23]. This 

network is only useful when there is a plenty of training images and computing time and 

resources. More importantly, weight initialization plays very significant role in the 

training. In all the experiments, the weights of the neural network were initialized as 

normally distributed around zero mean. The popular weight initialization technique for 

ImageNet challenges like Xavier [24] can be evaluated in future for the problem of indoor 

scene recognition work. In this proposed technique, the weights are initialized based on 

the number of input and output neurons rather than normally distributed weights. 

Furthermore, the above all results were produced by dynamic tests, i.e., images were 

taken by walking in the hallways and holding the camera. This data collection method 

generates few blurred images in training and validation sets. For future work, a mobile 

robot in steady motion can be used to collect data for further performance evaluation of 

the model which would capture steady and clearer images. This method can only be used 

for very coarse localization. To get a finer localization and mapping, there is need of a 

method that can help a robot to determine its precise location. One of the methods is to 

add artificial landmarks or features in the scene to recognize the relative pose of the robot 

in the corridor or floor-level. For example, planar markers can be added as a unique 
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feature of the environment to use the metric localization information of a robot in the 

environment to improve the efficiency, which is the topic of the next Chapter 4.  
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Chapter 4: Localization using Monocular Images 

4.1 Introduction 

Mapping and Localization using monocular images are challenging problems due 

to the absence of sufficient features that can represent a map of an environment. 

Furthermore, the monocular image may not suffice to extract all the information we need 

to create a map of an environment. In past decades, researchers have used several 

algorithms to localize and create maps using high-tech sensors like LiDAR, depth camera, 

stereo camera, Radar, etc. These systems can be used to generate high-resolution 2D and 

3D maps. However, they are computationally costly and sometimes very slow to operate 

in real time. In this chapter, we propose a new method to approximately localize a robot 

using monocular images and passive planar markers. This method can be used to rapidly 

explore an unknown environment and later it can also be used to augment the high-

resolution maps generated in a known environment. 

In the past decade, Augmented Reality (AR) and Virtual Reality (VR) have been 

highest interests for the gaming industry. In the past, researchers have explored and found 

multiple methods like marker-based and markerless methods for augmented reality (AR) 

applications. The marker-based method is the very popular method for the localization 

and object detection algorithms among AR engineers due to low cost and easily 

implementation. The marker-based method uses external markers to augment the reality 

by showing objects and replacing those markers in an image or video. However, use of 

these AR markers for mapping an environment for the indoor mobile robot is unheard of. 

Our methodology involves placing planar augmented reality marker patterns on the walls 

of an unexplored environment and detecting them using an onboard mobile robot camera 
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hardware. A single monocular camera can be used to identify and estimate the relative 

pose of the marker in real-time using computer vision algorithm. Such markers are widely 

used in Augmented Reality (AR) applications for object localization and augmentation. 

One of the AR examples is shown in Figure 4.1. The chairs and lamp are not real and are 

augmented in the original image. 

 

Figure 4.1 Augmented Reality example with virtual chairs and a virtual lamp [14] 

 

There are different types of AR marker being used by researchers, e.g. ARToolkit [16], 

ARTag [17], Intersense [18], and ArUco [15], etc. In this thesis, we present the system 

design and localization technique by using relatively newer ArUco markers. Moreover, 

ArUco dictionary can be custom generated based on the number of markers required for 

the application. This dictionary contains markers with unique identification numbers as 

shown in Figure 4.2. These generated markers have error correction built-in, and the 

marker patterns are mathematically generated to maximize the distinction among the 

different marker codes. The algorithm to make the ArUco markers is explained by S. 

Garrido-Jurado et al. [15]. The test results of the thesis indicate that it is possible to detect 

displacement of an indoor mobile robot relative to the fixed marker position. 
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Furthermore, the results of experimentation with the system focused on mobile robot 

localization are presented in next section. 

4.2 Marker based Localization - Experimental Results 

4.2.1 Methods and Experimental Setup 

The planar markers in the ArUco system are defined by p × p array. For this 

experiment, we consider evaluating the performance of markers with size p = 6 and 7. 

Each of squares is binary coded, and so they are either white or black but the outer two 

rows and columns define the border of the marker, and these boundaries are color coded 

black as shown in Figure 4.2. The internal binary code of these markers, as explained by 

S. Garrido-Jurado et al., is defined by four and five words respectively which is equivalent 

to removing the black padded rows and columns. Each word contains the same number 

of bits as a word, i.e. five bits per word for five words system and four bits per word for 

four words system.  

      

                                                (a)                                     (b) 

Figure 4.2 (a) 4 x 4 ArUco marker (b) 5 x 5 ArUco marker   

 

In total, both markers contain 16 and 25 bits respectively. These markers are 

encoded with a slight modification of Hamming code explained by S. Garrido-Jurado et 

al. [15]. This coding technique is very efficient such that the system mostly detects the 

marker in the environment. Based on the number of bits in the marker, ArUco algorithm 
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can generate many different markers. For example, for 4 x 4 (p = 6) marker system, 

ArUco produces 1024 different markers in the dictionary. After detecting the marker in 

the incoming image or video frame, inbuilt functions of ArUco library provide 

translational and rotational vector information of the marker referenced to the origin of 

the optical axis of the camera. However, when placing the marker on the dark painted 

walls, ArUco built-in algorithm fails, and successful marker detection happens once every 

2-3 seconds. Moreover, in our experiment, the detection rate decreases when placed on 

glass walls due to varying sun lighting conditions in the background, which make it 

difficult for the algorithm to filter and recognize the location of the marker. To resolve 

this issue, we add two white padding rows and columns around the ArUco marker during 

our experiment. This change in the marker is very efficient and the algorithm recognizes 

it most of the time on dark painted walls or glass walls. The modified ArUco markers are 

shown in Figure 4.3 below.   

      

                                                (a)                                     (b) 

Figure 4.3 Padded markers (a) 4 x 4 ArUco marker (b) 5 x 5 ArUco marker   

 

 A Logitech C615 USB camera was used to capture images and record real time 

video input for high-resolution mode and low-resolution mode experiment respectively. 

Both experiments, high and low resolution, was performed by operating the camera in 8 



57 

MP and 2 MP resolutions respectively. The autofocus mode was turned off for all 

experiments. Before proceeding to the experiments, intrinsic camera parameters required 

for the marker detection were estimated using the camera calibration functions in 

OpenCV. To accomplish this, we took 32 images of the 9 x 6 black & white checkerboard 

from various angles. This is a very decisive step as the image correction is necessary to 

reduce the error rate. During the experiment, the resolutions were set to 3264 x 2448 and 

1600 x 1200 respectively. OpenCV3.2.0 and its companion version of the ArUco library 

were used to perform all the experiments in this chapter. A sample image of the marker 

and corridor is shown in Figure 4.4. 

 

 

Figure 4.4 Markers placed at the end of the corridor (at about 60 feet) 

 

4.2.2 Performance Evaluation and Experimental Results 

In this section, we place 4x4 and 5x5 markers at the end of the corridor to perform 

two experiments – low-resolution mode and high-resolution mode. In the first 

experiment, i.e. low-resolution mode, we investigated the tracking accuracy for both 
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padded markers regarding distance from the camera in 1600 x 1200 resolution. With the 

padded border included the marker size was x = y = 2 feet. For this experiment, we 

observe that the tracking error gradually increases over the distance for both the markers 

in Figure 4.5. The markers were placed within 30 degrees of field of view of the camera. 

The Root Mean Squared Error (RMSE) in feet vs. distance in feet is plotted to evaluate 

the performance of the markers. For every 10 feet and up to 60 feet distance, 30-40 sample 

images were collected in the corridor, and the markers’ distances were estimated in the 

camera coordinate system. The error bars indicate two standard deviations from the mean. 

The decrement in accuracy over the distance means that the smaller the area of pixels on 

the image, the less accurate the system is. 

 

Figure 4.5 16-bit and 25-bit marker position tracking error for 2MP camera 

resolution 
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As it can be seen from the plots above, Root Mean Squared Error (RMSE) is very 

small and steady for 4 x 4 marker for up to 30 feet. Both, 4 x 4 and 5 x 5 markers yield 

3.2-4.0 feet RMS error at 60 feet of distance. And it is very perceptible that 5 x 5 marker 

has comparatively small variance even at 60 feet. During the experiment, we also 

observed that 4 x 4 marker (p = 6) has low detection rate at longer distances like 60 feet. 

As shown in Figure 4.6, 5 x 5 marker was effortlessly detected, and system predicted 

~63.84 feet whereas 4 x 4 marker problematic to identify in this image. This observation 

is expected as low bit marker patterns can be easily camouflaged at longer distances. 

 

Figure 4.6 Detection rate at about 60 feet. 

 

In practical application, one can use both types of marker together to obtain localization 

and to build better accuracy maps. In the second experiment, we evaluate the system 

performance to obtain a high-resolution approximate location information using same 

markers. First, we take image samples of the corridor at 8 MP resolution. Then, we run 

our algorithm to detect the markers in the high-resolution images. The Root Mean 

Squared Error (RMSE) in feet vs. distance in feet is plotted to evaluate the performance 
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of the markers in Figure 4.7. From the test results, we see that the tracking error gradually 

increases over the distance for both the markers. The error bars show two standard 

deviations in the plots. The RMS error is about 1 feet at 60 feet for both marker types 

which is much better than the low-resolution mode. The curves seem to be constant up to 

40 feet and are at below 0.5 feet RMS error.  

 

Figure 4.7 16-bit and 25-bit marker position tracking error for 8MP camera 

resolution 

 

 

However, the downside of this mode is the amount of time to capture the image and detect 

and estimate the pose. The Logitech USB camera does not support real-time video 

recording at this resolution and only supports image capture mode. The total time to 

capture and run the algorithm may take up to 1200 ms. This may not be used for fast 
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moving mobile robots to localize and map its environment. However, different 

localization and mapping policies can be established to enforce a mobile robot to take 

advantage of the high-resolution mode. 

 

Figure 4.8 Marker detection in high-resolution mode at 60 feet 

 

The sample marker detection in high-resolution mode is shown in the above 

Figure 4.8. The estimated distance for both markers is shown in the bottom of the image. 

Green fonts represent the 4 x 4 marker estimation, and white fonts represent the 5 x 5 

maker estimation. Using one marker and its coordinates information, a robot can 

approximately localize in an environment. 

4.2.3 Marker based Localization Experimental Results 

This part of the chapter focuses on answering two major questions of any 

autonomous robot should have: “Where am I on the map?” and “What is around me?”. 

Once the autonomous robot has those answers, navigation becomes very well-organized, 

and the system can plan effectively to accomplish various tasks autonomously. In this 
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subsection, we experiment of using multiple markers in the multi-resolution modes to 

estimate the location and distance to surrounding objects very precisely. To imitate the 

robot localization, we took several videos and images of a corridor at the height of 

approximately 1.2 meters. For a long-term autonomy, the markers can be placed at the 

height of the mobile robot. Few different resolution and size markers were placed on the 

walls of the corridor as shown in Figure 4.9. Localization of a robot in high-resolution 

mode is shown in Figure 4.10. The ArUco library pose estimation function returns the 

pose of the marker in terms of translational and rotational vectors around X, Y, and Z 

axis. Rotation matrix was obtained by using Rodrigues rotation transformation. The 

converted rotation matrix was used to obtain Euler’s and quaternions angle 

representations. With the use of quaternion angles, one can transform the co-ordinate 

reference frame from camera system to ArUco marker’s co-ordinate system. 

 

Figure 4.9 ArUco markers’ placement in the corridor 
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Figure 4.10 Localization in the corridor using ArUco markers. Locations of all the 

markers in camera coordinate system and estimated robot locations are displayed 

below the marker IDs.  

 

Table 1. Mean estimated robot location from various markers 

Robot 

Location 

(X,Y,Z) 

(feet) 

Mean estimated robot location from various markers (feet) 

Marker ID: 0 Marker ID: 1 Marker ID: 5 Marker ID: 6 

(4,3.3,10) (3.9,3.16,9.97) (3.97,3.12,9.7) (3.95,3.20,9.8) (4.01,3.1,10.03) 

(3.2,3.3,14) (3.19,3.03,14.1) (3.39,3.27,14) (3.1,3.09,14.03) (3.29,3.0,13.95) 

(5,3.3,20) (5.13,3.2,19.87) (4.87,3.4,19.8) (4.70,3.49,20.1) (5.1,3.16,20.21) 
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The captured information was then processed to detect the ArUco markers and to 

estimate their pose relative to the camera coordinate system. The values displayed at the 

bottom of Figure 4.10 denote the robot location, i.e. (3.26, 2.97, 13.9) feet represents the 

(X, Y, Z) in the reference coordinate system. Here, the origin is considered at left bottom 

corner of the front wall. Direction from the wall to the robot is considered Z axis. Other 

X and Y axis considered in left to right and bottom to top directions respectively. The 

experiment was performed to evaluate the performance of the system. Results from the 

experiment is shown in Table 1. This result is very promising and validates the working 

system of approximate localization using monocular images and ArUco markers.  

Using ArUco library, system can generate 1024 unique markers of size 4 x 4. This 

can also help to augment the localization information by using predefined marker IDs for 

important aspects of the environment like dead-end, path turn right, path turn left, T-

shaped end, glass doors etc.  For example, marker IDs 13 and 201 can be used at all dead-

ends and T-shaped ends in the environment respectively. Thus, markers can also be used 

for storing architectural information about the environment. This can be explored in 

future work. 

4.3 Discussion and Conclusions 

Map generation and localization are critical functions required in a robot that has 

autonomous navigation function for the system to autonomously navigate and accomplish 

the tasks. Obtaining approximate localization information using on-board monocular 

cameras is not an easy task. While, depth cameras, stereo cameras, and LiDAR can be 

used to localize and map the environment very precisely, they are computationally 

expensive and require a significant amount of space to store the high dimension maps. 
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The purpose of this experiment was to augment traditional localization techniques by 

using monocular images to have fast and coarse localization solutions in an unknown 

environment. The experiments presented in this chapter can be useful to explore an 

unfamiliar environment rapidly.  

The accuracy and system performance regarding the angle with the optical axis 

can be performed in future work. However, the best accuracy is achieved at an optical 

axis as further away the marker is rotated it gets squeezed nonuniformly. In this regard, 

multiple markers can be used in the environment which can help to introduce the angular 

invariance in the pose estimation. Furthermore, the above all results were produced by 

static tests, i.e., images were taken at every ten feet and by keeping the camera steady. 

Later, a moving mobile robot can be used to collect data for further performance 

evaluation of these markers with respect to the speed of the robot. 
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Chapter 5: Conclusions of this Thesis and Scope of Future Work  

5.1 Conclusions 

The design of rapid and low-cost localization techniques for autonomous robots 

to navigate in an unknown or partially known environment was addressed in this thesis. 

Commonly used SLAM techniques using LiDAR and depth cameras are computationally 

demanding and can be slow depending on the complexity of the environment. Advanced 

sensors like LiDAR do not work well in the presence of the glass walls in the 

environment, whereas sensors like depth cameras have limitations when used outdoors. 

Further, these techniques ae inadequate for time-constrained applications such as search 

and rescue. Traditional computer vision algorithms also do not efficiently recognize a 

scene when required to operate under varying lighting conditions, object orientation, 

object occlusion, etc. These issues can hinder execution of localization and navigation 

tasks.  

In this thesis, a strategy using the DCNNs coupled with ArUco planar markers 

was developed and demonstrated to address the problem of rapid and efficient 

localization technique for an autonomous robot to traverse through an unknown 

environment. The implementation carried out in this thesis had the following 

components:  

(a) Various types of indoor scene images were collected and preprocessed for the 

problem of scene recognition (Chapter 3). 

(b) The architectures of DCNN were developed for image classifiers to recognize 

indoor spaces like buildings, floors, and corridors. 
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(c) DCNN models were trained using computing resources such as GPUs in order 

to recognize buildings, floors, and corridors spaces using a single monocular 

image (Chapter 3). 

(d) The approximate location information of a robot in the environment was 

generated using state-of-the-art computer vision algorithm and ArUco planar 

markers (Chapter 4). 

The experimental results show the following. 

(i) The trained DCNN model for buildings classification achieved more than 

75% accuracy. 

(ii) The floor level classifier achieved approximately 49% accuracy. 

(iii) The corridors classifier achieved very high 88.7% accuracy. 

(iv) In low-resolution mode, the algorithm detects the ArUco marker with an 

RMS error of 3.5 feet when at a distance of 60 feet. In the high-resolution 

mode, the algorithm detects the ArUco markers with an RMS error of 1 

foot at about 60 feet.  

(v) The 4x4 ArUco marker showed better accuracy compare to the 5x5 

marker. However, the detection rate of the 4x4 marker was not reliable 

beyond a distance of 55 feet.  

(vi) Multiple markers can be placed on walls and/or important objects to obtain 

approximate localization information and to detect objects in a structured 

environment.  

The results in this thesis demonstrate that DCNN algorithm coupled with ArUco 

marker algorithm can be used to localize in the unknown environment without resorting 
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to high-end computational resources and cost. The ArUco marker algorithm is useful for 

rapid localization in a partially known or unknown structured environment. While the 

results show the feasibility of the proposed approach, further studies are to be conducted 

to improve on the classification accuracy. One of the issues that affected the accuracy of 

the classification algorithms developed in this research is the similarity in the appearance 

of several buildings and their interiors.   

The results of the research reported in this thesis demonstrate that low cost, low 

resolution techniques can be used in conjunction with deep learning techniques to obtain 

approximate localization of an autonomous robot. It is anticipated that this approach can 

be subsequently extended to develop low-resolution maps of the environment. 

5.2 Limitations and Scope of Future Work 

This study was limited to the generation of coarse localization information of the 

robot using monocular images. Similarity in the interiors of the buildings caused lower 

than expected classification accuracies. Further study is required to determine ways to 

improve the accuracy of the classifier. Stereo images provide one such tool to improve 

the representation of the environment and will be considered in future work. The 

performance of deep neural network model depends on the size of the dataset used in the 

development and training of the model. The size of the dataset can be increased to achieve 

better performance. Semantic segmentation is one of the many ways to identify and find 

the better static features and has been successfully demonstrated using a deep 

convolutional neural network for outdoor scenes [30]. The use of small markers and high-

resolution cameras can be utilized in the experiment for low-level representation of the 
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environment. Later, this method can be coupled with multiple convolutional neural 

network architectures to construct the low-level representation of surroundings.  
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