
UNIVERSITY OF OKLAHOMA 
 

GRADUATE COLLEGE 
 
 
 
 
 
 
 

LARGE-SCALE DATA PROCESSING FOR DETECTING ACTIVITY ZONES IN  
MILAN 

 
 
 
 
 
 

A THESIS 
 

SUBMITTED TO THE GRADUATE FACULTY 
 

in partial fulfillment of the requirements for the 
 

Degree of 
 

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING  

 
 
 
 
 
 
 
 
 

By 
 

ARSALAN DARBANDI 
Norman, Oklahoma 

2017 



ii 

 
 
 
 
 
 

LARGE-SCALE DATA PROCESSING FOR DETECTING ACTIVITY ZONES IN  
MILAN 

 
 

A THESIS APPROVED FOR THE 
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING  

 
 
 
 
 
 
 
 

BY 
 
 
 

______________________________ 
Dr. Ali Imran, Chair  

 
 

______________________________ 
Dr. Samuel Cheng 

 
 

______________________________ 
Dr. Gregory G. MacDonald 

 
 
 
 
 
 
 
 
 
 
 
 



iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by ARSALAN DARBANDI 2017 
All Rights Reserved. 



iv 

Acknowledgements 

I would never have been able to finish my dissertation without the guidance of 

my committee members, help from friends, and support from my family. 

I would like to express my deepest gratitude to my advisor, Dr. Ali Imran, 

whose expertise, understanding, and patience, added considerably to my graduate 

experience. I appreciate his vast knowledge and skill in many areas who has led me to 

the field of big data and data science. His enthusiasm for research has motivated me to 

work hard all the time. 

I would like to thank the other members of my committee, Dr. Samuel Cheng, 

and Dr. Macdonald for guiding my research for the past several years and helping me to 

develop my background in data mining, and machine learning.  

Many thanks to members of BSONLab, Hasan Farooq, Ahmad Asghar, Azar 

Taufique, Umair Hashmi, Haneya Qureshi, Sinasi Cetinkaya, and other students in the 

department of telecommunication and electrical and computer engineering at OU-Tulsa. 

My research would not have been possible without their helps. 

I want to thank Murray Patricia from writing services at OU- Tulsa for editing my 

thesis. I am grateful to have wonderful supporting friends and delightful people like 

Renee Wagenblatt and Krista Pettersen, Lawson A. Lee, and Joshua M. Davis in my 

life. 

I am extremely grateful to my parents for their love, prayers, caring and 

sacrifices for educating and preparing me for my future. I am very much thankful to my 

girlfriend for her love, understanding, prayers and continuing support to complete this 

research work. Also, I express my thanks to my sisters, brother, for their support and 



v 

valuable prayers. My Special thanks goes to my sister for the keen helped to complete 

this thesis successfully. Finally, there are my friends. We were not only able to support 

each other by deliberating over our problems and findings, but also happily by talking 

about things other than just our papers. 

 

 

 



vi 

Table of Contents 

List of Tables ................................................................................................................. viii	

List of Figures .................................................................................................................. ix	

Abstract ............................................................................................................................ xi	

Chapter 1: Introduction ..................................................................................................... 1	

1.1 Background ........................................................................................................... 1	

1.2 Motivation ............................................................................................................. 1	

Generating Dataset for Small-Cells Deployment ................................................. 3	

Small-Cells Planning for mmWave Cellular Network ......................................... 5	

Chapter 2: Generating Appropriate Data for Small Cells ................................................. 6	

2.1 Milan Data ............................................................................................................ 6	

2.2 Data Preprocessing and Visualization .................................................................. 9	

2.3 Algorithms .......................................................................................................... 18	

2.3.1 Converting Schema .................................................................................... 18	

2.3.2 Tools Used in Experiment ......................................................................... 19	

2.3.3 Finding Points of Interest ........................................................................... 19	

2.3.4 Finding Occupancy and area of a point ..................................................... 21	

2.3.5 Finding Work Hour of each point .............................................................. 21	

2.3.6 Image Processing ....................................................................................... 22	

2.3.7 Generating a New Dataset ......................................................................... 23	

2.4 Results ................................................................................................................. 24	

Chapter 3: Small-Cells Planning ..................................................................................... 25	

3.1 mm-wave small cells ........................................................................................... 25	



vii 

3.2 Dataset and Data Preprocessing .......................................................................... 26	

3.3 Related Work ...................................................................................................... 28	

3.3.1 Motivation to Choose DBSCAN Clustering .............................................. 28	

3.3.2 Motivation to Choose K-means Clustering ................................................ 29	

3.3.3 Motivation to Choose Other Clustering ..................................................... 29	

3.4 Algorithms .......................................................................................................... 30	

3.4.1 DBSCAN Clustering .................................................................................. 30	

3.4.2 Hierarchical Based Clustering ................................................................... 33	

3.4.3 K-means Clustering ................................................................................... 33	

3.4.4 Other Clustering Methods .......................................................................... 36	

3.5 Optimization ....................................................................................................... 38	

Chapter 4: Results and Discussion .................................................................................. 42	

4.1 Results ................................................................................................................. 42	

4.2 Discussion ........................................................................................................... 48	

Chapter 5: Conclusion and Future Work ........................................................................ 51	

References ....................................................................................................................... 54	



viii 

List of Tables 

Table 1. SMS, Call, Internet Data of Milan ...................................................................... 8	

Table 2. Maximum Level of Activity Per Hour .............................................................. 17	

Table 3. Working Hours for Different Types of places .................................................. 20	

Table 4. Normal DBSCAN Results ................................................................................ 42	

Table 5. Hierarchical Based Algorithm for 10000 bins .................................................. 43	

Table 6. K-means algorithm results ................................................................................ 44	

Table 7. Scaled k-means algorithm results ..................................................................... 45	

 



ix 

List of Figures 

Figure 1. Milan Gridding [5] ............................................................................................ 6	

Figure 2. Milan Square Geometry Location [5] ................................................................ 7	

Figure 3. Proportion of Missing Values .......................................................................... 10	

Figure 4. Methodology to Predict Missing Values ......................................................... 11	

Figure 5. SMS-out for Two Fridays ................................................................................ 12	

Figure 6. All Activities of a Friday ................................................................................. 13	

Figure 7. Combination of all Activities for two Fridays ................................................. 13	

Figure 8. All Activities during Weekends in December ................................................. 14	

Figure 9. All Activities during Weekdays in December ................................................. 14	

Figure 10. Markov Chain for December ......................................................................... 16	

Figure 11. Milan City Heat-Map for Three Hours on a Friday ...................................... 17	

Figure 12. Heat-map and Three Steps for Selecting Points of Interest ........................... 18	

Figure 13. The selected area in black and white mode using JavaScript ........................ 23	

Figure 14. Heat-map of Occupancy, x is latitude and y is longitude .............................. 24	

Figure 15. Internet Usage Density Heat-Map ................................................................. 27	

Figure 16. High and Low-Density Neighborhood .......................................................... 31	

Figure 17. DBSCAN Clustering Steps ........................................................................... 32	

Figure 18. K-means clustering process [11] ................................................................... 34	

Figure 19. K-means Algorithm [8] ................................................................................. 34	

Figure 20. Elbow Method to Find the Best SSE ............................................................. 35	

Figure 21. Famous Cleaning Pattern for Vacuum cleaner robot [12] ............................. 37	

Figure 22. Vacuum Cleaner Algorithm .......................................................................... 38	



x 

Figure 23. Ant Colony Algorithms [13] ......................................................................... 39	

Figure 25.a Result for the best clustering algorithm for hour_0 ..................................... 40	

Figure 24.b Same clustering result from 24.a for hour_4 ............................................... 40	

Figure 26. Optimization Algorithm [8] ........................................................................... 41	

Figure 27. DBSCAN with eps=20, MinPts=16 .............................................................. 43	

Figure 28. Hierarchical algorithm for 200 clusters ......................................................... 44	

Figure 29. K-means algorithm for 100 clusters .............................................................. 45	

Figure 30. Scaled K-means clustering for k = 100 ......................................................... 46	

Figure 31. Split-Merge Clustering .................................................................................. 47	

Figure 32. Vacuum cleaner algorithm clusters ............................................................... 47	

Figure 33. Vacuum cleaner algorithm clusters V.2 ........................................................ 48	

Figure 34. A Detail Map of Small and Macro Cells ....................................................... 50	

Figure 35. Histogram of Traffic Load ............................................................................. 50	

 



xi 

Abstract 

Small cell networks are complements for existing networks to improve quality 

of service (QoS), capacity, and coverage. The primary purpose of this thesis is to mine 

mobile network data to provide an algorithm that mobile network operators can use to 

determine the best small cell network topology automatically instead of manually. The 

main drawbacks for deploying topology manually is the cost and time the effort 

consumes. Therefore, we have developed our algorithm based on a real dataset collected 

from the city of Milan, Italy, to show our approach for automating the task of 

identifying the best small cell network topology to implement for specific situations.  

First, we designed an algorithm to adjust all types of call detail records (CDRs) 

for small cells at mmWave frequencies. Moreover, the information produced by this 

algorithm together with spatio-temporal mobile data reflected a pattern of user activity 

in our sample city. 

Second, we compared k-means, density-based spatial clustering of applications 

with noise (DBSCAN), hierarchical algorithm, and two more clustering algorithms to 

find the best clustering method for small cell network topology. In addition, we 

developed an ant colony optimization algorithm to produce spatio-temporal mobile 

dataset and provide a novel small cell network planning solution.    

Finally, we ascertained the best topology by using machine learning clustering 

and an optimization algorithm. Our topology came up with 2097 mmWave cell sites 

that covered 1,853.28 sq. km, 424 small cell sites for that covered 11,276.3 sq. km, and 

25 macro cell sites that covered 22,090 sq. km.   
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Chapter 1: Introduction 

1.1 Background 

Wearable technologies and smartphones have dramatically evolved. Over the years, 

those technologies have grown to use more and more data. Global mobile data traffic 

has grown 63% from 2015 to 2016 [1]. That growth represents a usage of 7 exabytes 

per month. That value is expected to grow to 49 exabytes per month by 2021. These 

statistics show a high internet traffic demand for the future [1]. Fourth-generation (4G) 

data traffic reached 69% of mobile traffic in 2016 [2]. Based on these numbers, one can 

see the growing demand for capacity, capability, and quality-of-service (QoS) to 

accommodate mobile data traffic. 

1.2 Motivation 

mmWave small cells have been adopted to fill gaps in the macro cell network where 

demand is growing for capacity, capability, and QoS. mmWave Small cells can be used 

in existing cellular network infrastructure at a lower deployment costs than adding large 

cells to an existing cellular network which cannot solve QoS of the network. Therefore, 

they are a cost-effective solution for mobile operators and are fast becoming the next 

generation of mobile network.   

Although small cell is an elegant way to increase capacity, capability, and QoS, it 

poses some challenges. Some of those challenges are interference, backhaul issues, and 

energy efficiency. [3]. One of the main challenges for the service provider is backhaul 

issues. This challenge consists of several challenges. One of them is demand for a way 

to plan how many and where to deploy small cells. 
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The length of coverage for each small cell is between 10 m-100 m. Therefore, for an 

urban area such as Milan, Italy, with an area of 112,000 sq. m, a clustering technique 

would be beneficial to determine the number and location of the small cells to deploy.  

Optimally, a clustering methodology must be able to estimate the number of clusters to 

deploy to accommodate internet traffic of a specific area of Milan, Italy, that has a high 

data traffic demand.  

There are two other challenges to consider when trying to improve a data network to 

accommodate the data demand.  One challenge is sufficient human resources to install 

and maintain the small cells to be added to the network. The other challenge is the 

associated cost required to add the human resources. The cost of installation and 

maintenance of this type of network is less than if more large cells were added to the 

existing networks. However, if enough small cells were added to the existing network to 

accommodate the data traffic for the entire city of Milan, the cost would be higher that 

if a sufficient number of large cells were added to the existing network to accommodate 

the entire city of Milan. area of 112 sq. km that required around 1,120 to handle the 

cluster demand. 

 Another challenge for small cell backhaul is spatio temporal traffic. According to 

research conducted by AT&T, users are split into 7 groups with each group having a 

specific data usage pattern per day [4]. For instance, students have low SMS activity 

from 7:30 a.m. to 11:30 a.m.; however, from 3 p.m. to 10 p.m., they have heavy SMS 

activity. Therefore, each area of a city has specific patterns of traffic during various 

times of day, and the technique for clustering must consider this parameter. 
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In this research, several activities were performed on a real dataset to solve the 

problem of finding the minimum number of small cells (clusters) needed to 

accommodate data traffic while taking spatio temporal traffic into consideration.  From 

this research, an application was created to execute this technique on all call detail 

record (CDR), or dataset, that contains traffic load information for specific periods 

during the day for various areas of the city. 

Based on the actual findings of the analysis of the Milan data set, it became clear 

that network improvement could be restricted to just those areas of the city that had the 

heaviest data traffic but the lowest QoS. Therefore, this research focused on 

determining the areas of the city having the heaviest data traffic and creating a new 

network configuration that includes smalls. Therefore, a tool for developing the 

clustering plan had to be created, which in this case was a multi-step algorithm. 

1.3 Contributions 

This thesis investigates how to implementing small cell planning for mmWave 

cellular networks. This study is divided in two parts.  The first part shows the algorithm 

for generating a new dataset that is adjusted for small cells. The second part shows 

different clustering methods and compares them to determine the best method for 

clustering and using an optimization algorithm to find the best number of clusters to add 

to the network.  

Generating Dataset for Small-Cells Deployment 

A CDR dataset is primarily generated to issue a billing record for a user; however, it 

also is used for tracking call activity for different purposes. [4], [6], and [9] are some 

research using CDRs for different purposes. In this study, we made an algorithm by 
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obtaining a CDR dataset and extracting CDR information from it, making a dataset for 

small cell research.  

Chapter 2: Generating Appropriate Data for Small Cells shows the methods that 

were used for making the algorithm to generate a dataset for small cell. As mentioned 

earlier, small cells provide the benefit of a coverage length between 10m-100m. 

Therefore, we made an algorithm that generates a dataset from CDR information with 

accuracy of 5 m length. This algorithm prepares the dataset for implementing the 

clustering methodology.    

Chapter 2 describes how data that is used in clustering, includes the preprocessing 

process. Preprocessing is one of the important parts of this study because the 

information taken from the CDRs can be used for other studies. For instance, we 

provided some results that not only can be used for other cellular network operators but 

also can be used for other industries and businesses. We provided results that an 

industry or business reading the data can understand patterns of travelling and mobile 

activity of users for a location at different times of a day. For instance, digital marketing 

agencies can find the best location and time of day that has a high density of users and 

would be a good location for installing billboards or presenting something. Or, a small 

business such as a coffee shop can find the best locations to setup its business because it 

is important to detect the life style of an area such as nightlife in residential and 

commercial areas. In parts three of chapter 2, different schema of the algorithm is 

described. The last section of the chapter presents and explanation of how the dataset 

was generated from CDRs.  
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Small-Cells Planning for mmWave Cellular Network 

In chapter 3 different methods for planning small cell clustering is explained as 

well as reasons to select some of those methods. Next a comparison of those methods 

for finding the best clustering is addressed. The dataset referred to in chapter 3 is a 

subset of the dataset generated in the activities described in chapter 2.  There are 

three important criteria for clustering methods: 

Firstly, geographical size of each cluster. As mentioned earlier, for clustering 

methods, this is one of the important criteria that must be considered.  

Secondly, traffic load for each cluster. Select the best clustering method that 

equalizes the traffic size of each cluster as much as possible.  

Thirdly, optimal number and optimal members of clusters. Clusters must have 

high QoS while having low energy consumption. Therefore, optimization brings the 

best clustering method for this achievement.  

Fourthly, convex small cell clusters. A convex shape is a simple area (not self-

intersecting) in which no line between two points on the boundary ever go outside the 

polygon when they are connecting to each other.  

In summary, chapter 3 briefly explains the dataset and then we describe the 

preprocessing steps devised for better understanding of the dataset. Then different 

methods that have been used and also techniques for optimization is explained. Then on 

next chapter, cluster validation and results are provided.  
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Chapter 2: Generating Appropriate Data for Small Cells 

2.1 Milan Data  

Telecom Italia and SpazioDati published the first open source 

telecommunication data through the first Big Data Challenge in 2014 [5].  The 

challenge was designed to stimulate ideas in the big data field. Due to the high demand 

for the big data produced by those companies, after the competition they released the 

datasets under the name of Open Big Data [5]. Open Big Data has provided datasets for 

Milan and Trento in Italy. These datasets are the Milan and Trento Grid, 

Telecommunications – SMS, Call, Internet – MI, Telecommunications – MI to 

Provinces, etc. In this study, the datasets for the city of Milan were used as they covered 

a larger area than the Trento datasets. Moreover, it encompassed urban and 

rural areas. 

Figure 1. Milan Gridding [5] 
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Some of the datasets have gridding, which is based on the Milan grid. Figure 1 

shows the grids for Milan, an area of 550 km2. Each square grid has an ID. There are 

10,000 square grids, and each one of them is 235m ´ 235m. Figure 2 shows a sample of 

the labeling of each grid square and longitude and latitude value of each grid square. 

 

Figure 2. Milan Square Geometry Location [5]  
 

Telecommunications – SMS, Call, Internet – MI is one of the important datasets 

for Milan. This dataset provided information about the telecommunication activity of 

the square grids during the months of November and December, 2013. We used this 

dataset for implementing mmWave small cells. The size of the dataset is an estimated 

40Gb.  

According to Open Big Data, this dataset was generated from the CDRs. CDRs 

contain various attributes of a call that show the user activity. CDRs are used for several 

purposes such as billing and network management [6]. The following attributes are the 

fields of CDRs from Open Big Data that present activities of users: 

• Received SMS: Shows the number of SMSs a square grid received 

• Sent SMS: Shows the number of SMSs a square grid sent 

• Incoming Calls: Shows number of calls a square grid received 

• Outgoing Calls: Shows number of calls a square grid issued 
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• Internet: Shows either a square grid starts or ends using internet connection 

when a CDR is generate 

 The activity attributes of the current dataset used in this project were formed by 

combining several aforementioned elements from Open Big Data because of data 

privacy policies. Therefore, each activity attribute shows just the level of activity of the 

square grids but does not show any scale. In addition, higher value means higher 

activity for a specific activity attribute. 

Table 1 presents schema of the Milan city dataset. The first column is the grid 

square ID, which is numeric. IDs of squares range from 1 to 1000. The time column is 

shows time intervals, which are numerical and expressed  

in Unix format.  

Table 1. SMS, Call, Internet Data of Milan   
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The beginning of Unix time is January 1st, 1970, at UTC, and millisecond is the time 

interval for this timing format [7]. The time period of recoding activities for this dataset 

is 10 minutes. The Country column shows a code in numeric format and is the country 

code of the phones used by callers for each square ID. For instance, if the country code 

of a row equals 0, this means all SMS and call records of that row belong to Milan 

citizens. SMS-in and SMS-out activities are shown in two columns, and both are 

numerical, and present levels of activity in terms of sending and receiving SMS inside 

the grid square with the specified ID, during a 10-minutes interval. As with the SMS-in 

and SMS-out activities, the last two more columns show activity information for call-in 

and call-out. The last column is presenting internet traffic activity. Values in the last 

column, internet, are numerical and show internet traffic inside the grid square with a 

specific ID. Format of all files are csv. “If no activity was recorded for a field specified 

in the schema above then the corresponding value is missing from the file” [5]. 

 

2.2 Data Preprocessing and Visualization  

One of the important steps in our data analysis was data preprocessing because it 

formatted the dataset for implementing machine learning tools and data analyzing 

techniques. by applying preprocessing, noise, outliers, missing values, and duplicate 

data to be detected [8]. 

According to Table 1, which shows some rows of SMS, call, and internet data for 

Milan for a day, some values of SMS-in, SMS-out, Call-in, Call-out, and Internet are 

missing and are shown as NA. Also  
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Table 1, shows that in some cases for the same ID and time, we have more than one 

row. First of all, we might have duplicate elements in rows in the dataset because of the 

country attribute. For example, rows 1 and 2 of Table 1 have the same ID and time, but 

they differ in country code. It shows that for ID = 1, there is more than one telecom 

network nationality (country code). Since we are looking for the total number of all 

activity per ID of grid square per type of activity, we can sum up all of the rows that 

have the same ID and time. In this way, we can reduce the number of rows as well as 

the number of missing values.  

Detecting missed values is another important part of preprocessing. Most of the 

information in the current data had missing values due to either human mistakes or 

errors in precision of sensors. Figure 3 shows the proportion of missing values for a 1-

day duration.  

 

Figure 3. Proportion of Missing Values   

There are several options to overcome this problem. The simplest way to deal with 

missing values in an activity column is to assign a numeric value equal to the average of 

all activities in the column. Figure 4 shows an example of a way to find missing values. 
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In Figure 4, on the top left is the original dataset, and by random, some of its rows have 

been removed. On the top, right the mean matching methods is represented and red 

circles show missing values have been found by mean matching. Another method is to 

use K-Nearest Neighbors (KNN). The bottom left of Figure 4 shows the KNN method. 

In this example, KNN has a worse prediction when compared to the mean matching 

method. Another famous method for solving the issue of missing values is Regression 

with Random Error. This method is using regression; however, it adds some noise to the 

data to predict missing values more accurately. For this dataset, none of the above 

methods was used. According to what was mentioned earlier about when there was no 

activity reported for a cell, sensors did not record any activity; Also, it appeared that 

there is no activity value reported as 0, but reported as NA; hence, we can easily change 

NA values to 0. 

 
Figure 4. Methodology to Predict Missing Values 
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 Another step-in preprocessing was finding outliers. In some cases, outliers can 

affect the results of machine learning algorithms to a substantial degree. However 

sometimes they might not. In our dataset, how we search for outliers matters because of 

the dataset’s time series format. One way to analyze the dataset is to compare all the 

activity attributes of one day to find the outliers. Another way is to consider all the 

activity values for one attribute and compare that activity’s attribute at a certain day of 

every week to find outliers. For instance, we can select the activity values captured for 

the Call-In attribute for every Friday in a month. Figure 5 shows SMS-out for two 

Fridays. These Fridays have different distributions, and the activity values are different 

in each hour for each day. However, none of these two methods can be used for 

detecting outliers due to spatial-temporal dataset.   

 

Figure 5. SMS-out for Two Fridays 
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The best methods to find outliers within activity values is to combine all activity values 

and find outliers in the combination of activities during 1 month.  The outliers can show 

us abnormal activity during a day of a selected month for a specific location and time. 

Figure 6 shows all activities for a Friday, and Figure 7 shows the combination of all of 

the activities for all Fridays in the month. Each activity has a different distribution, but 

the combination of all activities gives almost the same distribution for the same day of 

all weeks. By using the discussed method, outliers can be detected in each day. 

 

Figure 6. All Activities of a Friday 

 
Figure 7. Combination of all Activities for two Fridays 
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 As mentioned before, December was selected for implementing machine learning 

clustering. Figures 8 and 9 show an overview of all activities during that month. The 

figures show that the last week of December has several days of abnormal activities, 

probably due to holidays and its events. 

 

Figure 8. All Activities during Weekends in December 

 

Figure 9. All Activities during Weekdays in December 

Although the previous figures and tables show the concentration of events 

(described as attributes) at a specific time of day in a specific period, i.e., month.  Now 

we wanted to add the element of location to the methodology. 

To detect patterns of users’ activities based on time and location, two steps must 

be completed. The first step is to determine the activity threshold for defining high, 

medium, and low activity. The second step is distributed the activity totals obtained in 
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the first step by time and location. There are some techniques such as the cumulative 

distribution to finding thresholds [9]. The problem for those techniques is they cannot 

give the exact threshold for the dataset because the activities’ attributes do not have any 

scale for calculating thresholds. According to the Fig. 8 and Fig. 9, for our research, the 

number of activities for weekends are different from those for weekdays. Therefore, two 

thresholds for weekdays and two thresholds for weekends have been selected to show 

pattern of activities.  

Weekdays   

Hence for weekdays, we selected 13.1 as the threshold dividing low and medium 

activities, meaning fewer than13.1 events defined low activity We defined the threshold 

for medium activity as between 13.1 and 54.5 activity events. High weekday activity 

threshold was assigned a value of 54.5.    

Weekends 

For weekends, if there were more than 73 events of a specific type, the total was 

defined as high activity; between 25 and 73, medium activity; and fewer than 25 events, 

low activity.  

To find the thresholds for weekdays and weekends for all attributes we changed the 

threshold values to find the best thresholds for all activity based on time and location. 

Table 2 and Fig. 11 have clear pattern of activities. (I don’t understand why you change 

thresholds. The reason is not clearly communicated here.) 

 From these thresholds and by implementing the Markov chain, a pattern of 

activities emerged for weekdays and weekends. Each state in the Markov chain 

presented the activity that with the maximum number of square grids. Figure 10 shows 
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that for a weekday 0.25 of low activity changed to high number of medium activity and 

0.75 of low activity staying on same activity. Also, for a weekday, medium activity by 

probability of one passing to another weekday, and same probability and activity for 

Friday to Saturday and Saturday to Sunday. 

 

Figure 10. Markov Chain for December 
 

The same pattern of traffic result was found for a 3-hour period on a weekday 

(see Table 2). For instance, from the table, it is obvious that the highest traffic values 

occurred from 8 a.m. until 7 p.m.  The data also showed that the patterns of activity for 

Saturday and Sunday were totally different from the weekday activity.  
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Table 2. Maximum Level of Activity Per Hour 

 

The last result obtained from these thresholds is a heat-map showing telephone activity 

for the city of Milan. 

 
Figure 11. Milan City Heat-Map for Three Hours on a Friday 

 According to Fig. 11, we have high activity in downtown Milan. The figure also 

shows that the greater the distance from downtown Milan, the lower the concentration 

of call during the hours shown. The remaining calls, depicted by the blue color, 

represent medium level of activity.  
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According to what was mentioned earlier about the coverage area of mmWave 

cellular network, we selected the area with high activity density. Since, in this study, we 

selected an area of 20 by 20 cells in which most of the day, the area had the maximum 

high activity for a whole month supported by 100 by 100 cells.  

This research has done base on parallel processing. Therefore, the methodology 

can apply to large numbers of grids equally well by adding more number of processers 

and systems in the cluster.  

 

2.3 Algorithms 

2.3.1 Converting Schema 

 Three steps we have done to convert each grid square to 47 bins from the 

selected dataset (Figure 12). First of all, detecting points of interest of each grid square. 

Then detecting streets and roads of each grid square. At last, combining all information 

from two previous steps with original dataset. In following sections are explained the 

algorithm to detect points of interest and important criteria about points of interest that 

must be considered and tools have been used.  

Figure 12. Heat-map and Three Steps for Selecting Points of Interest  
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2.3.2 Tools Used in Experiment 

 The details of all the tools used in this experiment including hardware and 

software for real and two virtual machines are as follows:  

• Operating System for Real Machine: Windows 7  

• Operating System for Virtual Machine: Linux Ubuntu 16.04 

• Language: Python version 2  

• Important Python Libraries: Pandas, Multiprocessing, Numpy, json, urllib 

• Hardware used in this experiment setup was as below: Processor: Intel(R) 

Xeon(R) CPU E5-2650 v4 @ 2.20GHz RAM: 64GB  

•  Hardware used in this experiment as a virtual machine setup was as below: 

CPU: 1 Processors and 8 cores per processor, RAM: 16GB  

2.3.3 Finding Points of Interest 

A point of interest is a specific point that has an attraction for some group of 

people. For instance, shopping mall, coffee shop, park, parking, and etc. are some 

examples of points of interest. A point of interest is a location that in overall has more 

occupancy than a normal place. For implementing points of interest, 3 steps must be 

considered. First, detecting points of interest; Second, defining occupancy and area of 

the points; Third, finding working hour of each point.     

There are lots of applications to find points of interest. For example, Trip 

Advisor, Expedia, and etc. are some of the applications to find points of interest but all 

of them have a problem that are limited to find various types for points of interest. 

Some of them just show Hotels and other lodging places or some of them have wider 

performance and they can show park and more locations but still they are limited for 
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variety. Google API is the best application that can show high number of types for 

points of interest. It detects 100 types of points, such as gas station, ATM, bank, hotel 

and etc. We have made an application by using python and Google API to find points of 

interest. The application gets maximum and minimum of latitude and longitude of the 

area, then the application gives a csv file that has GPS location of each points of interest 

with the type ID.  

 

 

 

Table 3. Working Hours for Different Types of places 
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2.3.4 Finding Occupancy and area of a point 

After finding all points of interest for the area, we need to find area and 

occupancy for each point. Most of countries has own measurement to calculate standard 

occupant density and area for different places. We used the information from Europe 

countries for this calculation. From the information, we figured out number of bins 

belong to a place and maximum number of occupancy for that specific point of interest. 

We have developed the application that gets the csv file from last function. It will check 

type ID of each location from the csv file with its source, which is predefined, then it 

makes a new csv file that has bins for over the selected places. Each bin has several 

attributes. One of the attribute shows the ID of bin, two attributes show GPS latitude 

and longitude, two attributes show ID latitude and longitude due to able match with the 

original dataset. The last attribute shows type of location that here we have more than 

100 types of points of interest because each point of interest has different shadow layers 

around itself which depends on the type of point of interest it has half value of 

occupancy or one third value of occupancy. Also in some bins, we don’t have any 

value, it means those bins do not belong to any either points of interest or shadows. 

2.3.5 Finding Work Hour of each point 

Finding work hour is the complex part of the application. It is important because 

it has effect on user density but it is complex because different neighborhoods and 

different type of point, has own work schedule. For better understanding, a branch of 

McDonald in a neighborhood, works 24 hours however another branch on same 

neighborhood works just from 8AM to 10PM. Therefore, for each location the 

application must check working hour. But there is no library and command for 
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programming language to detect working hour. Therefore, we defined a data frame as a 

source for the application that has average working hour for each type of points of 

interest. Figure 16 shows working hour table, the first column gives name of each type, 

second and third columns give working hour of each type for weekend and weekday 

and the last column gives type value of each location. In this part, the application just 

adds two columns to main data-frame to define working hour points of interest for 

weekend and weekday.  

 

2.3.6 Image Processing 

From Google API, just 100 types of places can be detected and these places 

mostly are detected from commercial and industrial area however still some other types 

of places have not been detected. Residential area, several commercial areas, private 

landscapes, and roads/streets are some example of points that the application has not 

detected.  

We have made another function for the application to detect streets and roads 

and add them as a new type to the main data frame. The application by using JavaScript 

selects area and degree of details for the area. Degree of details can be used to define 

type of streets and roads; We want for analyzing. For instance, if we set zoom value as 

11, the application will detect alley also but if we define zoom value as 8, it just detects 

streets bigger than alley street size. The application converts color of the Google map to 

black and white by using JavaScript (Figure 14) to prepare the map for image 

processing. Then the application takes a screenshot of the map by using python. It uses 

python image processing to read value of each pixel. If value of pixel is black it means 
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that pixel is part of a street or road, and it checks type of that location on main data 

frame; If the point on main data frame does not have any value for type, it will assign 

that location as a street otherwise it will leave the location and check another point.  

Figure 13. The selected area in black and white mode using JavaScript  
 
 

2.3.7 Generating a New Dataset 

After image processing and finding points of interest, now we have a data frame 

that has all bins for the selected area with type and hour for all bins and occupancy of 

each. There is one more function left which gets the original dataset and splits the 

dataset to different datasets regarding to hours. Then by combine information from a 

divided dataset and the main data frame, it generates a new dataset for each hour where 

instead of having grid squares we have bins.  
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2.4 Results 

The application, after all previous processes, generates a new dataset that every 

bin has a new activity value regarding to combination of time, type of location, and 

activity from the original dataset. Figure 18 shows the last map after finding points of 

interest with shadows and streets and roads, light color on the heat-map shows high 

number of occupancy and dark color shows low number of occupancy.  

 
Figure 14. Heat-map of Occupancy, x is latitude and y is longitude  

 One of the property of this application that is developed by parallel processing 

for big data. generating just a grid square which is 235m´235m, takes around 2.67 

seconds by using multi processors. However, same processes with a single process takes 

around 9.77 seconds. For generating the last dataset for each date, it takes around 39.47 

minutes and same results with just a single processor takes around 130.251 minutes.   
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Chapter 3: Small-Cells Planning 

One of the challenges for small-cells planning is, finding the best clustering 

algorithm. In this chapter, all conditions that a clustering method must have, is 

explained. Then regarding to those conditions, we provide our methodologies for 

planning small cells and in next chapter we discuss all results of these methodologies 

and select one of them as the best.  

3.1 mm-wave small cells 

Mobile network operators are looking for the best topology of planning small 

cells and the best topology cannot find easily because of several conditions of small 

cells. 

In a cellular cell, there is different types of users such as student, employer and 

etc. [4]. Some of users are considered as users that are using mobiles and data more than 

other users. Also, some users are using data continuously with low download or 

uploading packets but some users are using data more than others but in a short time. 

Hence, mobile network has a complex structure because of different group of users. 

Mobile network operators are looking for a technique that makes a small cell 

that has almost constant traffic load.  

After analyzing different datasets such as CDRs dataset and finding number of 

clusters and information about each cluster, mathematic formula for physical part of 

antenna and cell must be implemented to plan small cells. For instance, calculating 

path-loss model and other elements. Therefore, shape of a cell is another important 
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parameter. Regular hexagon, irregular polygon, and fractal shape are some of the 

famous shapes for a mobile cell topology. For this study, irregular polygon is selected 

for shape of each cell for clustering to keep traffic load constant. One of the important 

criteria of irregular polygon and another cell network that they must be convex.  

As mentioned earlier, the network coverage area for mmWave small cells is 

between 10m-100m. This limitation is one of the important challenges for planning 

small cell. It makes algorithm and calculation more complex because we have to 

consider those two previous conditions. In addition, it is not rational due to cost for 

installing and maintaining for mmWave to cover a whole city by mmWave network. 

Therefore, we need a threshold to reduce number of clusters for areas that have low 

number of activities.   

CDRs and network data are time series data that show information about mobile 

activity for users during time period. According to [4], users in a cell are divided in 

different groups regarding to their type of activity. These groups in different time has 

different pattern of mobile activity. Also, these groups in some area has high density of 

members and in some other area has low density of members. All of these reasons cause 

that data activity for mobile network has spatio temporal pattern. By using optimization 

algorithm, we can find the optimum number and size of clusters.    

3.2 Dataset and Data Preprocessing 

The dataset is used in this part; it is retrieved from last chapter. It has 4 attributes 

which are latitude ID has range from 0 to 940, longitude ID has range from 0 to 940, 

time in Unix format, and traffic load has range from 0 to around 10,000. Each latitude 

and longitude ID present location of each bin that has area of 5m´5m on map. This 
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dataset shows internet activities of users in selected 22,090km2 area of Milan city at 

December 2014. Figure 15 shows heat map of user activity for first hour of December. 

Light color on the plot shows high density of activities and dark color shows low 

density of activities.  

 

Figure 15. Internet Usage Density Heat-Map  

According to figures 8, 9, and heat map (figure 11), we can see except abnormal 

activity at the end of December, there is no other abnormal activity for this month 

otherwise we have to eliminate those abnormal activities to get normal pattern of 

activities for using internet. 

 To find number of cluster and size of small cell for each we used weekdays to 

get a topology. According to table 2, All weekdays have same pattern. Therefore, we 

are looking the best topology for weekdays.   
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3.3 Related Work 

As mentioned before, the purpose of this research is, to find the best method for 

clustering. When clustering techniques are mentioned Machine learning (ML) and Data 

Mining are two names that pupping up on mind. Clustering is one of the purpose of 

implementing Machine Learning and Data Mining. Since, for literature review is tried 

to find the best related research in this area. According to [6], there are several 

techniques that are used more than other techniques. Density Based by 53 percent has 

the highest number for is used in different papers, then receptively from high to low, we 

have k-means, Grid Based, Hierarchical Based, Bin-Packing Based and other methods. 

We have selected several algorithms as base methods for this research which are 

DBSCAN, K-means, and other algorithms that have been tried to develop regarding to 

the dataset. In following sections are explained the reasons to select these methods and 

briefly mention advantages of each method over than other methods. Then, in Methods 

part, we discuss more in details about each algorithm and in results and discussion 

chapter we bring our reasons to select the best algorithm.  

 

3.3.1 Motivation to Choose DBSCAN Clustering 

 First of all, according to [6], more than 50 percent of research have used this 

method for clustering, since this reason it just a reasonable motivation to read and work 

on this method. Second, although processing time for this technique is more than other 

techniques, it has an accurate result to compare to other ML clustering techniques. It is 
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important for implementing the topology we have the highest accurate result due to cost 

and QoS for users [8]. Third, as can see from name of this algorithm, this algorithm is 

working base on density of area and we want to do clustering base on user activities 

which kind of users’ density. Therefore, this is exactly same thing that in this study we 

are looking for, to get clusters regarding to density of geo location.  

 

3.3.2 Motivation to Choose K-means Clustering 

 The first reason that causes K-means is elected as another method for clustering, 

same as DBSCAN this method is popular for clustering [6]. Although this method just 

has 17 percent of popularity, still this method has the second place of popular 

techniques for clustering. But this is not the main reason. The main reason is because 

this technique has the simplest algorithm to compare most of techniques. Therefore, it 

can do clustering faster than DBSCAN method. K-means is one of the popular 

technique for analyzing and clustering big dataset [14]. It can be used for analyzing 

real-time dataset.   

 

3.3.3 Motivation to Choose Other Clustering 

 Regarding to dataset and the purpose for clustering, we used other clustering 

techniques. Moreover, we have made some other techniques by using idea and 

algorithm from other methods because for clustering this dataset, there are some criteria 

that must be included which are discussed more in section 3.4 Algorithms. 

 One of the technique that used in this part is Hierarchical Based algorithm. This 

algorithm has algorithm as simple as K-means. Since, it is one of the motivation to 
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select this algorithm. Also, the base idea of this algorithm is splitting dataset regarding 

to similar properties that nodes of each cluster has. Also base on idea of this technique 

and splitting-merging technique, we have made another clustering which is explained 

on next part. There is one more method that was implemented base on vacuum cleaner 

challenge and motivation to select these new methods for this type of dataset to try 

bring new algorithms that have been never used for mobile network datasets [12].  

 

3.4 Algorithms 

 In this section, we explain all algorithms are used in our study. We describe the 

reasons and method to select clusters for mmWave small cells. At last, we explain an 

optimization method and how we developed it for our dataset. 

All of the algorithms in this part have been modified for the CDRs dataset and 

criteria for mmWave small cells. We select number of clusters for each method base on 

size of area and traffic load data of cells.  

 

3.4.1 DBSCAN Clustering 

 Density Based Spatial or DBSCAN clustering is a method for clustering that is 

based on density of area. DBSCAN regions high density area from low density area. 

There are two parameters to the algorithm, MinPts and Eps. Eps is maximum radius of 

the neighborhood and MinPts is minimum number of points in the neighborhood of a 

point. There is an issue for this method which is selection method to assign value for 

two parameters. There are some techniques to find the parameters such as Kth nearest 
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neighbor (KNN) or by assigning a value for MinPts which it must be equal or bigger 

than number of dimensions of the dataset plus 1.  

A cluster in DBSCAN has two set of points, core and non-core. Core samples 

can be found from other cores by calculating distance. A cluster also has a set of non-

core that are neighbors of a core sample but they are not themselves core samples. 

DBSCAN has two advantages to compare to other methods. Firstly, it can find number 

of clusters without finding it. Secondly, DBSCAN can find clusters from noisy dataset.  

From figure 15, two clusters low and high are shown for MinPts = 4. Left figure 

shows high density where point P is neighbor with three other points and all nodes in 

the cluster exceed the threshold which is 4. However, for right figure, for point q, the 

neighborhood is considered as low density because in the cluster with radius of Eps it 

does not exceed the threshold of MinPts.   

 

Figure 16. High and Low-Density Neighborhood  

Figure 17 shows that how DBSCAN finds clusters for a dataset. The top-left plot 

shows dataset value. In the top-right plot, by using MinPts and Eps, outliers and border 

points and core points can be detected where green points are core points, blue points 

are borders and outliers are shown by red. In the third plot outliers are a cluster, and 

other clusters are defined by using clustering method and density connectivity. Two 
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points are density-connected when they they are commonly density-reachable from a 

point.  

In our study, we implemented DBSCAN on an hour of dataset to compare the 

results with other clustering methods. We select range of radius for different values to 

check which parameters gives us the best result to compare with other methods. 

Figure 17. DBSCAN Clustering Steps 
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We select the best cluster where it has low load variance and low number of 

clusters. For MinPts, we selected 16 because the minimum number of nodes that each 

cluster can have is 16 bins.  

 

3.4.2 Hierarchical Based Clustering 

 In this method, algorithm starts with n clusters where n is number of objects in 

data. In other word, each node in a data is a single cluster. Then it is reducing the 

number of clusters by joining those two clusters that are most similar to each other. This 

step is repeating until there is only one cluster left which is all objects of data.  

There are different techniques for implementing Hierarchical Based Clustering: 

Centroid, it is clustering base on distance between the centroids of the two clusters. 

Average Linkage, it is averaging dissimilarity between all pairs of two points. Single 

Linkage, it is clustering by finding dissimilarity between the two most similar data. 

Complete Linkage, it is based on dissimilarity between the two most dissimilar data. 

 For our study, we used Hierarchical Based distance matrix clustering. We did 

not find number of cluster base on a tree diagram. As mentioned earlier a cluster has 

several conditions. Therefore, we implement our algorithm to limit size, load, and shape 

of cluster base on our parameters and then check conditions for each number of cluster 

till it exceeds the conditions. 

 

3.4.3 K-means Clustering 

 K-means is one of the fastest method for clustering. Because of this ability, it is 

being used for large number of dataset. One of the weakness of k-means is to find 
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number of clusters k. However, we modified this clustering methods due to conditional 

small cells we are looking for. K-means algorithm is divided in two sections:  

Firstly, find member of each cluster.  

Secondly, find number of k clusters.  

 To find member of each cluster, if the purpose to find two clusters. First of all, 

two points as a center of each cluster, called centroid, must be selected by random value  

(Figure 18.b). Then each node of dataset is compared with these two centroids and the 

closest centroid takes as the center of the cluster that the node belongs to (Figure 18.c). 

After these steps, center of each cluster must be found and then again compare distance 

of each node with selected centers (Figure 18.d). Last two steps are running until those 

two centers are not moving anymore. K-means is described by algorithm in figure 19. 

 

Figure 18. K-means clustering process [11] 

 
Figure 19. K-means Algorithm [8] 
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One of the weakness of k-means is to select start point for centroid. The method 

to reduce the effect of this weakness is to run this algorithm with different value of 

centroid. In our algorithm, we ran k-means for 100 times to find the best members of 

cluster.  

 As mentioned earlier for other clustering algorithm, we modified each clustering 

techniques to find number of clusters. Although the technique to find k number of 

clusters has not been used to find k for k-means clustering, this technique has been 

selected to select areas with high density. In k-means clustering, elbow method is used 

to find k number of clusters. K-means is running for k = 1 till k = number of nodes or 

half of number of nodes. For each k, Sum Squared Error is calculated (SSE). Equation 1 

shows how to calculate SSE. In the equation k is number of cluster, Ci is center of 

cluster ith, and x is member of cluster ith.  

Figure 20 shows SSE value for k from 1 to 6. By using Elbow method, we select 

a point that has minimum number of cluster and minimum SSE value where k = 2 is the 

best value for this example because from k = 2 to k = 6, SSE does not have drastic 

change. There is a problem for Elbow method that in some cases it is not easy to detect 

a point for k.  

 
Figure 20. Elbow Method to Find the Best SSE 

Equation 1 
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3.4.4 Other Clustering Methods 

 Nowadays, mostly Machine Learning (ML) techniques are using for clustering. 

In this section, we explain some new techniques for clustering that we have developed 

regarding to dataset and conditions we have for implementing mmWave small cells. 

There are two clustering methods that we have developed. However, the base idea for 

these two techniques are coming from ML but they have not been used for 

telecommunication.  

 First technique is Split-Merge technique. In this technique, we used idea from 

post-processing for ML. There is a technique for k-means to reduce SSE value. In k-

means after finding number of clusters and members of clusters, to reduce SSE value, 

first we must find a cluster that has the highest SSE value. Then by splitting that cluster 

in two clusters we reduce the SSE value. After splitting there are two techniques for 

complete post-processing. By removing the centroid of the split clusters and reassigning 

the points to other clusters, we can reduce number of clusters and SSE. Another 

technique, by finding closest centroid to the split clusters merge two clusters with other 

clusters. We have made a new technique for clustering by merging split-merge 

technique and Hierarchical Based Clustering. 

In our technique, we consider all data as a cluster. Then by splitting them into 

two other clusters we reduce value of load of the cluster. Splitting is either vertical or 

horizontal to have convex clusters. We repeat this process for cluster that has the 

highest value. This technique is opposite of Hierarchical Based clustering. Splitting 

threshold is defined where two cluster has the closet load. By this technique, at the end 

we will have clusters that they have same load activity.  
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There is another method that we have made it from vacuum cleaner problem. 

Vacuum Cleaner problem is one of the famous challenge for Artificial Intelligence (AI). 

AI is looking for the most optimize technique that a cleaner clean area that has dust in 

the fastest time and shortest pattern. There are several famous techniques to clean area  

that has dust. Figure 21, shows some of the techniques but one of the famous techniques 

is come from ML techniques which is Reinforcement technique. 

 
  Figure 21. Famous Cleaning Pattern for Vacuum cleaner robot [12] 

 One of the Reinforcement example is a robot starts from start point and it check 

all neighbor cells of cell that robot is in. It selects a neighbor cell that either has highest 

value or same value. It continues until reaches the final point which has the highest 

value. Then from that point it is valuing other cells. This problem is for vacuum cleaner 

robot when it does not have a map for dust density. However, in our problem, we have 

all value of cell. In our technique, the algorithm selects a corner point for start where it 

is defined as a bin that has lowest ID and it compares all neighbor bins for selected ID. 

The algorithm adds neighbors from the highest traffic load data till lowest traffic load 

data. The algorithm is continuing this step until the selected cluster exceeds either 

traffic load data. Then the algorithm continues clustering for another cluster. These 
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steps are continuing until we clustering all bins in the dataset. The algorithm is 

described by algorithm in figure 22.  

As mentioned earlier number of bins are in this dataset is 883,600. Moreover, each 

cluster has maximum 400 bins. Therefore, minimum number of cluster than we can 

have is 2,209. However, in some area again we do not have high activity from figure 15. 

Therefore, by using Elbow method (figure 20), we try to find minimum number of 

cluster where we have low variance for traffic load data of clusters. In addition, we will 

have figure 20 but instead of SSE we will have variance for traffic load data of all 

clusters. 

 

 

3.5 Optimization 

 Our goal of clustering from previous to find number of clusters and area the 

clusters must be located for mmWave small cells. But the final result that we are 

looking for, is optimal number of clusters and optimal area of the clusters for any hour 

of a week.  Therefore, in this section we discuss about optimization to solve the 

problem. There are different algorithms for implementing optimization but one of the 

famous algorithm is Ant Colony optimization.  

Figure 22. Vacuum Cleaner Algorithm 
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 Ant colony optimization algorithm is a probabilistic technique for solving 

mathematical calculation problems related to time series which can be reduced to 

finding good paths.   

Figure 23. Ant Colony Algorithms [13] 

 According to figure 23.1, There are some ways between F and N where some 

ants try to go from point F to N and come back. We try to come up that how ants find 

the fastest way. In this example, the ants are going immediately after each other. If the 

first ant selects to go from yellow pattern, it takes T1 to get N. Other ants try to go from 

new way until there is no newer way. In this example, delay time from moving time for 

the first ant and others are very small because of that we do not consider that time. 

When the first ant is arrived if it is the first ant that arrives to point N it means this way 

is the fastest but as can see in the figure the path for the first ant is not the fastest. 

Therefore, the first ant will come back from the path of the ant which arrived earliest 

and it well select path of ant that has smallest value of T. After some time, all ants will 

figure out the fastest way from ants that they went same time and arrived earlier or from 
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the previous ants. On Figure 23.3, all ants select the fastest way and every other time 

some ants randomly select different time to check the path again.  

For this study, we use combination of Ant Colony and Reinforcement which 

discussed in section 3.4.4 for optimization. Ant Colony algorithm is used for checking 

the clustering result for each hour and Reinforcement algorithm is used to modify the 

clustering result for any hour. We assume that figure 24.a shows a result for the best 

clustering method. The algorithm uses the same clusters for different hour which shows 

in figure 24.b. The traffic load data for figure 24.b is different from 24.a and if the 

variance load data for figure 24.b is less than 24.a it means the clustering result is good, 

otherwise the clustering must be changed.  

Now, the algorithm selects the lowest traffic load data cluster and check all 

neighbor clusters. It selects a neighbor cluster which has the biggest traffic and/or it is 

bigger than the limitation traffic plus error. Then it tries to remove bins from the biggest 

cluster and add those bins to selected cluster. The algorithm repeats this step until the 

selected cluster area exceeds the limitation or passes the limitation for traffic or there is 

another neighbor that has the biggest traffic load. If the selected cluster achieves the  

Figure 24.a Result for the best 
clustering algorithm for hour_0 

Figure 25.b Same clustering result 
from 24.a for hour_4 
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minimum traffic limitation or limitation for the area first the algorithm check shape of 

the cluster and if it’s not convex it tries by add or remove bins make the shape convex. 

If there are gaps between bins in a cluster means the shape is not convex therefore by 

adding bins from the highest cluster or adding bins to lowest cluster, makes the cluster 

convex. Then the algorithm will select another cluster that has the smallest value. Else, 

the algorithm will select another neighbor that has the biggest traffic load. The 

algorithm continues these steps until it exceeds the limitation for minimum and 

maximum traffic load or the changes for variance it is less than beta. 

Figure 26. Optimization Algorithm [8] 



42 

Chapter 4: Results and Discussion 

4.1 Results 

 In this chapter, we describe the results for each method. Section 4.2 discusses 

and compared all methods and states reasons for choosing an algorithm as the best 

method. 

 

 Table 4 shows results for DBSCAN algorithm for different values of eps and 

MinPts. We selected different eps to find the best distance value less than 40 bins, 

which is equal to 200 meters. Distance shows the number of bins between either 

maximum and minimum latitude or maximum and minimum longitude. We selected 40 

bins because they cover an area with a radius of 100m. MinPts value of 16 was selected 

because the minimum length of a cell is 10 meters since, cells cannot have number bins 

less than 16. Figure 27 shows DBSCAN clusters when eps=20 and MinPts=16. We 

found maximum threshold of 2173515 from the smallest cell that had the highest 

density of users. 

Table 4. Normal DBSCAN Results 
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Table 5. Hierarchical Based Algorithm for 10000 bins 

 
Hierarchical-Based clustering is the second algorithm that we have checked. 

This method was not able to manage large sized datasets. However, we have tried it on 

a sample of the dataset. The sample dataset had 10,000 bins, and a maximum traffic 

load limitation for this dataset was 12558 events. The maximum length this algorithm 

got for 200 clusters was less than the maximum length of a cluster. The maximum 

cluster traffic load was close to the threshold (Table 5). Figure 28 shows a pattern of 

200 clusters.  

Figure 27. DBSCAN with eps=20, MinPts=16 
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 As mentioned earlier in chapter 3, K-means is able to manage large amounts of 

datasets.  Table 6 shows the distance and traffic load for 10, 100, 1000 clusters in K-

means. After running the K-means algorithm for k = 1000 clusters, the maximum traffic 

load and distance was bigger than the conditions (Table 6).  

Table 6. K-means algorithm results 

Figure 28. Hierarchical algorithm for 200 clusters 
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Figure 29 shows how K-means did clustering for the original dataset. We used a 

statistic technique to change properties of a parameter of the dataset to get other results 

for the K-means algorithm. We scaled the traffic load parameter to 0–100. Therefore, 

the traffic load threshold/limitation also changed. Table 7 shows the results from the 

scaled K-means after implementing the technique on the dataset.  

 

Figure 29. K-means algorithm for 100 clusters 

Table 7. Scaled k-means algorithm results 
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There are two more methods left that we implemented for mmWave small cells 

planning. As mentioned earlier, one of them is the split-merge technique. We ran this 

technique on a sample of the dataset to check the effect of it on the sample then 

deployed it on the main dataset. Figure 31 shows the result before implementing on 

whole dataset. Split-merge clustered mostly base on longitude. Therefore, the most of 

clusters have coverage length longer than the limitation. 

 

 

 

 

 

 

 

Figure 30. Scaled K-means clustering for k = 100 
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The last method is vacuum cleaner method. We implemented this technique on a 

sample of the dataset. Figure 32 shows the vacuum cleaner method when id = 1 is initial 

Id for clustering and Id = 10,000 is the last id of clustering. The vacuum cleaner method 

found 284 number of clusters which following all conditions for mmWave small cells 

except convexity.     

 

  

Figure 31. Split-Merge Clustering 

Figure 32. Vacuum cleaner algorithm clusters 
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 We developed vacuum cleaner method by solving the convexity problem. In 

second version of vacuum cleaner we changed initial Id from Id = 1 to Id that had 

highest activity value. We add a function to check convexity and make clusters convex. 

Figure 33 shows clusters for this method where each color shows area of each cluster.  

 

Figure 33. Vacuum cleaner algorithm clusters V.2 
 

4.2 Discussion 

 We elected to use Vacuum cleaner algorithm for clustering. DBSCAN has two 

main problems. First of all, according to table 4, the algorithm detected high number of 

bins as noises and considered all of them as one cluster. Therefore, results from 

DBSCAN show Max constant traffic load and Max length for different eps. Secondly, 

we are looking for max traffic load around 2173515 and length of a cell 40 but Max 

traffic load for DBSCAN was 75 times more than desire traffic load likewise maximum 

length of cells was 23 times more than desire length.   

Although, Hierarchical Based Clustering gave us max clusters length less than threshold 

and traffic load closed to the load threshold, it had two main problems. Firstly, the 

algorithm cannot manage large amount of dataset. Secondly, although maximum load 
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traffic and length were less than limitation, there are lots of cells that they have bins less 

than 16, so those clusters and nodes need another algorithm to manage all of them 

(Figure 28). 

However, K-means manages large amount of data but this algorithm has a 

hidden problem regarding to max length. By looking to figure 29 it is not clear that 

there are cells with length higher than 477. This problem is happened because k-means 

algorithm is based on distance. In generated dataset, traffic load has high effect on our 

result because range of it is between around 0 to 135844. However, cell ID is between 1 

to 940. Therefore, k-means is clustering the dataset based on load traffic. We scaled 

traffic load parameter to solve the problem. Then we repeated k-means algorithm with 

scaled dataset. According to table 7, for 3500 number of clusters the maximum length is 

less than 40 bins and traffic load is 18538 which is close to our threshold.  

Split-Merge clustering method, gives almost equal traffic load for each cluster 

but this structure is not practical due to length of each cell. Length of each cell is as 

same as range for either latitude or longitude because this algorithm tries to split a 

cluster to two clusters based on which two clusters have more similar traffic load.  

The last algorithm is for Vacuum cleaner algorithm. This method gives almost 

the best number clusters, the lowest variance traffic load for all cells. Vacuum cleaner 

algorithm has a main issue that is not time efficiency. We used vacuum cleaner 

algorithm because we are looking for accurate result for deploying small cells.  

 The result from vacuum cleaner algorithm and ant colony optimization show for 

selected area, 2097 mmWave cells, 424 small cells and 25 macro cells are required. 

According to Figure 34, yellow part is covered with macro cells, dark green is covered 
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with small cells, and light green is covered with mmWave. From whole area that is 

covered with 25 macro cells (22,090 sq. km), small cells cover 11,276.3 sq. km, and 

mmWave cells cover 1,853.28 sq. km. 

 

Figure 34. A Detail Map of Small and Macro Cells 
 

 Figure 35 shows the histogram of traffic load after optimization for initial time 

hour. Some cells have traffic load less than the defined boundary because in different 

hours we have different pattern of activity and some cells have traffic load more than 

boundary and by adding more macro cells we can manage the traffic load. 

 

 
Figure 35. Histogram of Traffic Load 
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Chapter 5: Conclusion and Future Work 

 The primary purpose of this study was to mine mobile network data to improve 

QoS, capacity, and coverage of networks by implementing mmWave small cells for 

existing macro-cell networks. We focused on call detail records, real data that was 

generated every time a user used the mobile network for different types of activity such 

as accessing the internet and for sending or receiving short message services (SMSs) to 

detect meaningful user patterns of activity.   

 In the beginning, machine learning (ML) and data mining techniques helped to 

approach the desired goal. The first achievement of this study was to detect patterns of 

mobile activities for the entire city of Milan, Italy. By implementing a Markov chain 

and some data preprocessing techniques of data mining, a basic pattern of activities was 

detected. Not only can mobile network operators benefit from knowing these patterns, 

but other businesses and industries also can gain a better understanding of their 

customers’ behavior regarding their product or service. We created a heat-map and table 

hours of users’ activities during a day. The heat-map and table hours show 

classifications of user activities. From this information, we selected high activity areas, 

i.e., those having 20-by-20 number of cells for two reasons. First, the purpose of small 

cell networks is to compensate for weak capacity of macro cell networks during periods 

of high user activity. Second, a large dataset demands a cluster of servers for processing 

and generating results.   

 There is imperfection limitation when implementing mmWave small cells in 

some CDR datasets. The CDR dataset is a collection of users’ information gathered 

during their use of the macro cell. However, the collection area of a cell in macro cell 
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networks is different from that of a cell in a small cell network. Therefore, there is a 

gap, scale of dataset, for achieving the desired goal. To overcome this limitation, we 

developed an algorithm to scale the CDR dataset. The algorithm generated a new 

dataset by using the, maximum and minimum of latitude and longitude of the CDR 

dataset. In this study, the algorithm converted a big cell with an area 235m ´ 235m to 

2209 small bins with and area of 5m´5m.   

 Finally, to accomplish the desired goal, deploying small cells at mmWave 

frequencies we compared five ML techniques to determine which was the best. We 

compared different clustering methods such as K-means, DBSCAN. scaled K-means, 

and the vacuum cleaner technique to identify the best algorithm. 

 Vacuum cleaner algorithm had the accurate result to compare to other methods. 

However, the time of processing for this method was more than other methods. After 

implementing vacuum cleaner clustering and ant colony optimization, 25 macro cells 

were found to cover the whole selected area, 424 small cells were found to cover 

11,276.3 sq. km, and 2097 mmWave cells were found to cover 1,853.28 sq. km. From 

this number of small cells more than 617 cells are temporary cells which different hours 

depends on traffic must be on or off. 

 There are two main objectives that we want to complete in the future. First, in 

this study, we performed clustering for normal day activity. However, during a year, 

there are many abnormal activities. For instance, in November, there were three 

important football games that contributed to a spike in cell activity in our test location. 

In addition, the second important object has two parts. One, is to improve our algorithm 
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for running on a cluster. Currently it runs on parallel processors, but it needs to run on a 

cluster of processors due to dataset’s large size.  
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